Aussie AI
RAG Knowledge Graph Architectures
-
Last Updated 22 October, 2025
-
by David Spuler, Ph.D.
Research on RAG Knowledge Graph Architectures
Research papers include:
- Dr. Ashish Bamania, Aug 2024, ‘MedGraphRAG’ Is A Complete Game Changer For AI In Medicine A deep-dive into how RAG, GraphRAG, and MedGraphRAG work and how they significantly improve the performance of LLM responses in Medicine, https://levelup.gitconnected.com/medgraphrag-is-a-complete-game-changer-for-ai-in-medicine-c6b41b0effd6
- Junde Wu, Jiayuan Zhu, Yunli Qi, 8 Aug 2024, Medical Graph RAG: Towards Safe Medical Large Language Model via Graph Retrieval-Augmented Generation, https://arxiv.org/abs/2408.04187 Code: https://github.com/MedicineToken/Medical-Graph-RAG/tree/main
- Yuntong Hu, Zhihan Lei, Zheng Zhang, Bo Pan, Chen Ling, Liang Zhao, 26 May 2024, GRAG: Graph Retrieval-Augmented Generation, https://arxiv.org/abs/2405.16506
- Philip Rathle, Jul 11, 2024, The GraphRAG Manifesto: Adding Knowledge to GenAI, https://neo4j.com/blog/graphrag-manifesto/
- Microsoft, Aug 2024 (accessed), GraphRAG: A modular graph-based Retrieval-Augmented Generation (RAG) system, https://github.com/microsoft/graphrag
- Chia Jeng Yang, Dec 14, 2023, A first intro to Complex RAG (Retrieval Augmented Generation), https://medium.com/enterprise-rag/a-first-intro-to-complex-rag-retrieval-augmented-generation-a8624d70090f
- Vahe Aslanyan, June 11, 2024, Next-Gen Large Language Models: The Retrieval-Augmented Generation (RAG) Handbook, https://www.freecodecamp.org/news/retrieval-augmented-generation-rag-handbook/
- Lei Liang, Mengshu Sun, Zhengke Gui, Zhongshu Zhu, Zhouyu Jiang, Ling Zhong, Yuan Qu, Peilong Zhao, Zhongpu Bo, Jin Yang, Huaidong Xiong, Lin Yuan, Jun Xu, Zaoyang Wang, Zhiqiang Zhang, Wen Zhang, Huajun Chen, Wenguang Chen, Jun Zhou, 24 Sep 2024 (v2), KAG: Boosting LLMs in Professional Domains via Knowledge Augmented Generation, https://arxiv.org/abs/2409.13731
- Xinke Jiang, Rihong Qiu, Yongxin Xu, Wentao Zhang, Yichen Zhu, Ruizhe Zhang, Yuchen Fang, Xu Chu, Junfeng Zhao, Yasha Wang, 31 Oct 2024, RAGraph: A General Retrieval-Augmented Graph Learning Framework, https://arxiv.org/abs/2410.23855
- Cristian-George Crăciun, Răzvan-Alexandru Smădu, Dumitru-Clementin Cercel, Mihaela-Claudia Cercel, 5 Dec 2024, GRAF: Graph Retrieval Augmented by Facts for Legal Question Answering, https://arxiv.org/abs/2412.04119
- Vivedha Elango, Dec 2024, How to Make your RAG application Use External Data More Wisely? RAG Optimisation Techniques for Explicit and Implicit Fact Queries with Implementations. https://ai.gopubby.com/how-to-make-your-rag-application-use-external-data-more-wisely-4ff1863752c5
- AI Engineer, Sep 2024, GraphRAG: The Marriage of Knowledge Graphs and RAG: Emil Eifrem, https://www.youtube.com/watch?v=knDDGYHnnSI
- Alla Chepurova, Yuri Kuratov, Aydar Bulatov, and Mikhail Burtsev. 2024. Prompt Me One More Time: A Two-Step Knowledge Extraction Pipeline with Ontology-Based Verification. In Proceedings of TextGraphs-17: Graph-based Methods for Natural Language Processing, pages 61–77, Bangkok, Thailand. Association for Computational Linguistics. https://aclanthology.org/2024.textgraphs-1.5/ https://aclanthology.org/2024.textgraphs-1.5.pdf
- Steve Hedden, Dec 30, 2024, How to Build a Graph RAG App: Using knowledge graphs and AI to retrieve, filter, and summarize medical journal articles, https://towardsdatascience.com/how-to-build-a-graph-rag-app-b323fc33ba06
- Alhassan Mumuni, Fuseini Mumuni, 6 Jan 2025, Large language models for artificial general intelligence (AGI): A survey of foundational principles and approaches, https://arxiv.org/abs/2501.03151
- Tianyu Fan, Jingyuan Wang, Xubin Ren, Chao Huang, 14 Jan 2025 (v2), MiniRAG: Towards Extremely Simple Retrieval-Augmented Generation, https://arxiv.org/abs/2501.06713 https://github.com/HKUDS/MiniRAG (Uses the name "mini RAG" but is about knowledge graphs not long context RAG.)
- Aditi Singh, Abul Ehtesham, Saket Kumar, Tala Talaei Khoei, 15 Jan 2025, Agentic Retrieval-Augmented Generation: A Survey on Agentic RAG, https://arxiv.org/abs/2501.09136
- Reham Omar, Omij Mangukiya, Essam Mansour, 17 Jan 2025, Dialogue Benchmark Generation from Knowledge Graphs with Cost-Effective Retrieval-Augmented LLMs, https://arxiv.org/abs/2501.09928
- Shige Liu, Zhifang Zeng, Li Chen, Adil Ainihaer, Arun Ramasami, Songting Chen, Yu Xu, Mingxi Wu, Jianguo Wang, 20 Jan 2025, TigerVector: Supporting Vector Search in Graph Databases for Advanced RAGs, https://arxiv.org/abs/2501.11216
- Qinggang Zhang, Shengyuan Chen, Yuanchen Bei, Zheng Yuan, Huachi Zhou, Zijin Hong, Junnan Dong, Hao Chen, Yi Chang, Xiao Huang, 21 Jan 2025, A Survey of Graph Retrieval-Augmented Generation for Customized Large Language Models, https://arxiv.org/abs/2501.13958
- Tianpeng Pan, Wenqiang Pu, Licheng Zhao, Rui Zhou, 30 Jan 2025, Leveraging LLM Agents for Automated Optimization Modeling for SASP Problems: A Graph-RAG based Approach, https://arxiv.org/abs/2501.18320
- Xiangrong Zhu, Yuexiang Xie, Yi Liu, Yaliang Li, Wei Hu, 8 Feb 2025, Knowledge Graph-Guided Retrieval Augmented Generation, https://arxiv.org/abs/2502.06864
- Haoyu Han, Harry Shomer, Yu Wang, Yongjia Lei, Kai Guo, Zhigang Hua, Bo Long, Hui Liu, Jiliang Tang, 17 Feb 2025, RAG vs. GraphRAG: A Systematic Evaluation and Key Insights, https://arxiv.org/abs/2502.11371
- Pengcheng Jiang, Lang Cao, Ruike Zhu, Minhao Jiang, Yunyi Zhang, Jimeng Sun, Jiawei Han, 16 Feb 2025, RAS: Retrieval-And-Structuring for Knowledge-Intensive LLM Generation, https://arxiv.org/abs/2502.10996
- Bernal Jiménez Gutiérrez, Yiheng Shu, Weijian Qi, Sizhe Zhou, Yu Su, 20 Feb 2025, From RAG to Memory: Non-Parametric Continual Learning for Large Language Models, https://arxiv.org/abs/2502.14802 https://github.com/OSU-NLP-Group/HippoRAG
- Pengcheng Huang, Zhenghao Liu, Yukun Yan, Xiaoyuan Yi, Hao Chen, Zhiyuan Liu, Maosong Sun, Tong Xiao, Ge Yu, Chenyan Xiong, 21 Feb 2025, PIP-KAG: Mitigating Knowledge Conflicts in Knowledge-Augmented Generation via Parametric Pruning, https://arxiv.org/abs/2502.15543
- R Chen, Mar 2025, Retrieval-Augmented Generation with Knowledge Graphs: A Survey Computer Science Undergradaute Conference 2025, https://openreview.net/pdf?id=ZikTuGY28C
- Jeff Yang, Duy-Khanh Vu, Minh-Tien Nguyen, Xuan-Quang Nguyen, Linh Nguyen, Hung Le, 28 Feb 2025, SuperRAG: Beyond RAG with Layout-Aware Graph Modeling, https://arxiv.org/abs/2503.04790
- Mingyue Cheng, Yucong Luo, Jie Ouyang, Qi Liu, Huijie Liu, Li Li, Shuo Yu, Bohou Zhang, Jiawei Cao, Jie Ma, Daoyu Wang, Enhong Chen, 17 Mar 2025 (v2), A Survey on Knowledge-Oriented Retrieval-Augmented Generation, https://arxiv.org/abs/2503.10677
- Haoran Luo, Haihong E, Guanting Chen, Yandan Zheng, Xiaobao Wu, Yikai Guo, Qika Lin, Yu Feng, Zemin Kuang, Meina Song, Yifan Zhu, Luu Anh Tuan, 27 Mar 2025, HyperGraphRAG: Retrieval-Augmented Generation with Hypergraph-Structured Knowledge Representation, https://arxiv.org/abs/2503.21322
- Qiuyu Zhu, Liang Zhang, Qianxiong Xu, Cheng Long, Jie Zhang, 19 May 2025 (v2), SubGCache: Accelerating Graph-based RAG with Subgraph-level KV Cache, https://arxiv.org/abs/2505.10951
- Junde Wu, Jiayuan Zhu, Yunli Qi, Jingkun Chen, Aug 2025, Min Xu, Filippo Menolascina, Yueming Jin, Vicente Grau, Medical Graph RAG: Evidence-based Medical Large Language Model via Graph Retrieval-Augmented Generation, Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 28443–28467 July 27- August 1, 2025, https://aclanthology.org/2025.acl-long.1381.pdf
- Qiao Xiao, Hong Ting Tsang, Jiaxin Bai, 23 Sep 2025, TERAG: Token-Efficient Graph-Based Retrieval-Augmented Generation, https://arxiv.org/abs/2509.18667
- Zahra Zehtabi Sabeti Moghaddam, Zeinab Dehghani, Maneeha Rani, Koorosh Aslansefat, Bhupesh Kumar Mishra, Rameez Raja Kureshi, Dhavalkumar Thakker, 3 Sep 2025, Explainable Knowledge Graph Retrieval-Augmented Generation (KG-RAG) with KG-SMILE, https://arxiv.org/abs/2509.03626
- Kai Hu, Parfait Atchade-Adelomou, Carlo Adornetto, Adrian Mora-Carrero, Luis Alonso-Pastor, Ariel Noyman, Yubo Liu, Kent Larson, 5 Sep 2025, Graph RAG as Human Choice Model: Building a Data-Driven Mobility Agent with Preference Chain, https://arxiv.org/abs/2508.16172
- Yaodong Su, Yixiang Fang, Yingli Zhou, Quanqing Xu, Chuanhui Yang, 3 Aug 2025, Clue-RAG: Towards Accurate and Cost-Efficient Graph-based RAG via Multi-Partite Graph and Query-Driven Iterative Retrieval, https://arxiv.org/abs/2507.08445
- Xu Yuan, Liangbo Ning, Wenqi Fan, Qing Li, 7 Aug 2025, mKG-RAG: Multimodal Knowledge Graph-Enhanced RAG for Visual Question Answering, https://arxiv.org/abs/2508.05318
- Congmin Min, Rhea Mathew, Joyce Pan, Sahil Bansal, Abbas Keshavarzi, Amar Viswanathan Kannan, 7 Aug 2025, Efficient Knowledge Graph Construction and Retrieval from Unstructured Text for Large-Scale RAG Systems, https://arxiv.org/abs/2507.03226
- Dongzhuoran Zhou, Yuqicheng Zhu, Xiaxia Wang, Hongkuan Zhou, Yuan He, Jiaoyan Chen, Evgeny Kharlamov, Steffen Staab, 11 Aug 2025, What Breaks Knowledge Graph based RAG? Empirical Insights into Reasoning under Incomplete Knowledge, https://arxiv.org/abs/2508.08344
- Sarat Ahmad, Zeinab Nezami, Maryam Hafeez, Syed Ali Raza Zaidi, 20 Aug 2025, Benchmarking Vector, Graph and Hybrid Retrieval Augmented Generation (RAG) Pipelines for Open Radio Access Networks (ORAN), https://arxiv.org/abs/2507.03608
- Hudson de Martim, 26 Aug 2025, An Ontology-Driven Graph RAG for Legal Norms: A Hierarchical, Temporal, and Deterministic Approach, https://arxiv.org/abs/2505.00039
- Qikai Wei and Huansheng Ning and Chunlong Han and Jianguo Ding, 7 Jul 2025, A Query-Aware Multi-Path Knowledge Graph Fusion Approach for Enhancing Retrieval-Augmented Generation in Large Language Models, https://arxiv.org/abs/2507.16826
- Hao Ye, Mengshi Qi, Zhaohong Liu, Liang Liu and Huadong Ma, 29 Jul 2025, SafeDriveRAG: Towards Safe Autonomous Driving with Knowledge Graph-based Retrieval-Augmented Generation, https://arxiv.org/abs/2507.21585
- Chuanyue Yu, Kuo Zhao, Yuhan Li, Heng Chang, Mingjian Feng, Xiangzhe Jiang, Yufei Sun, Jia Li, Yuzhi Zhang, Jianxin Li, Ziwei Zhang, 31 Jul 2025, GraphRAG-R1: Graph Retrieval-Augmented Generation with Process-Constrained Reinforcement Learning, https://arxiv.org/abs/2507.23581
- Jiayi Wen, Tianxin Chen, Zhirun Zheng, Cheng Huang, 6 Aug 2025, A Few Words Can Distort Graphs: Knowledge Poisoning Attacks on Graph-based Retrieval-Augmented Generation of Large Language Models, https://arxiv.org/abs/2508.04276
- Vibhor Agrawal, Fay Wang, Rishi Puri, 25 Jul 2025, Query-Aware Graph Neural Networks for Enhanced Retrieval-Augmented Generation, https://arxiv.org/abs/2508.05647
- Yukun Cao, Zengyi Gao, Zhiyang Li, Xike Xie, S. Kevin Zhou, Jianliang Xu, 19 Aug 2025, LEGO-GraphRAG: Modularizing Graph-based Retrieval-Augmented Generation for Design Space Exploration, https://arxiv.org/abs/2411.05844
- Jiale Liu, Jiahao Zhang, Suhang Wang, 24 Aug 2025, Exposing Privacy Risks in Graph Retrieval-Augmented Generation, https://arxiv.org/abs/2508.17222
- Jiasheng Xu, Mingda Li, Yongqiang Tang, Peijie Wang, Wensheng Zhang, 1 Sep 2025, Towards Open-World Retrieval-Augmented Generation on Knowledge Graph: A Multi-Agent Collaboration Framework, https://arxiv.org/abs/2509.01238
- ZiXuan Zhang, Bowen Hao, Yingjie Li, Hongzhi Yin, 6 Sep 2025, ZhiFangDanTai: Fine-tuning Graph-based Retrieval-Augmented Generation Model for Traditional Chinese Medicine Formula, https://arxiv.org/abs/2509.05867
- Thanh Ma, Tri-Tam La, Lam-Thu Le Huu, Minh-Nghi Nguyen, Khanh-Van Pham Luu, Huu-Hoa Nguyen, 2 Oct 2025, REBot: From RAG to CatRAG with Semantic Enrichment and Graph Routing, https://arxiv.org/abs/2510.01800
AI Books from Aussie AI
|
The Sweetest Lesson: Your Brain Versus AI: new book on AI intelligence theory:
Get your copy from Amazon: The Sweetest Lesson |
|
RAG Optimization: Accurate and Efficient LLM Applications:
new book on RAG architectures:
Get your copy from Amazon: RAG Optimization |
|
Generative AI Applications book:
Get your copy from Amazon: Generative AI Applications |
|
Generative AI programming book:
Get your copy from Amazon: Generative AI in C++ |
|
CUDA C++ Optimization book:
Get your copy from Amazon: CUDA C++ Optimization |
|
CUDA C++ Debugging book:
Get your copy from Amazon: CUDA C++ Debugging |
More AI Research Topics
Read more about:
- 500+ LLM Inference Optimization Techniques
- What's Hot in LLM Inference Optimization in 2025?
- Inference Optimization Research
- « Research Home