Aussie AI

Multi-Agent Architectures

  • Last Updated 22 October, 2025
  • by David Spuler, Ph.D.

Research on Multi-Agent Architectures

Research papers include:

  • Anton Antich, May 17, 2024, Anatomy of an AI Multi-Agent: How do we build a useful AI agent? https://medium.com/superstringtheory/anatomy-of-an-ai-multi-agent-e2cfedc3b050
  • Sandi Besen, Apr 24, 2024, The Landscape of Emerging AI Agent Architectures for Reasoning, Planning, and Tool Calling: A Survey, Towards Data Science, https://towardsdatascience.com/the-landscape-of-emerging-ai-agent-architectures-for-reasoning-planning-and-tool-calling-a-a95214b743c1
  • Junlin Wang, Jue Wang, Ben Athiwaratkun, Ce Zhang, James Zou, 7 Jun 2024, Mixture-of-Agents Enhances Large Language Model Capabilities, https://arxiv.org/abs/2406.04692
  • Ignacio de Gregorio, June 2024, Mixture-of-Agents Beats ChatGPT-4o: Collaboration is Intelligence, https://medium.com/@ignacio.de.gregorio.noblejas/mixture-of-agents-beats-chatgpt-4o-6470a74f1525
  • Honghua Dong, Qidong Su, Yubo Gao, Zhaoyu Li, Yangjun Ruan, Gennady Pekhimenko, Chris J. Maddison, Xujie Si, 19 Jun 2024, APPL: A Prompt Programming Language for Harmonious Integration of Programs and Large Language Model Prompts, https://arxiv.org/abs/2406.13161 Code: https://github.com/appl-team/appl (A Python-like script language for prompt engineering integration into applications and agents.)
  • Mariya Mansurova, Jun 17, 2024, Multi AI Agent Systems 101: Automating Routine Tasks in Data Source Management with CrewAI, https://towardsdatascience.com/multi-ai-agent-systems-101-bac58e3bcc47
  • Assaf Elovic, May 10, 2024, How to Build the Ultimate AI Automation with Multi-Agent Collaboration, https://medium.com/@assafelovic/how-to-build-the-ultimate-ai-automation-with-multi-agent-collaboration-ed61a1ea8f3b
  • Haolin Jin, Linghan Huang, Haipeng Cai, Jun Yan, Bo Li, Huaming Chen, 5 Aug 2024, From LLMs to LLM-based Agents for Software Engineering: A Survey of Current, Challenges and Future, https://arxiv.org/abs/2408.02479
  • Lakshmi narayana .U, Jul 28, 2024, STORM: Stanford’s Revolutionary Research Tool Harnessing the Power of Agents and Agentic Workflows, https://blog.stackademic.com/storm-stanfords-revolutionary-research-tool-harnessing-the-power-of-agents-and-agentic-workflows-a2fa0e1a7fe3
  • Victor Dibia, Jingya Chen, Gagan Bansal, Suff Syed, Adam Fourney, Erkang Zhu, Chi Wang, Saleema Amershi, 9 Aug 2024, AutoGen Studio: A No-Code Developer Tool for Building and Debugging Multi-Agent Systems, https://arxiv.org/abs/2408.15247
  • Vipin Nair, Aug 10, 2024, A Simple Guide to Collaborative AI Agents with LangGraph, https://medium.com/aitech/a-simple-guide-to-collaborative-ai-agents-with-langgraph-d6b89e13560f
  • Junwei Liu, Kaixin Wang, Yixuan Chen, Xin Peng, Zhenpeng Chen, Lingming Zhang, Yiling Lou, 4 Sep 2024, Large Language Model-Based Agents for Software Engineering: A Survey, https://arxiv.org/abs/2409.02977 Project: https://github.com/FudanSELab/Agent4SE-Paper-List
  • Federico Berto, Chuanbo Hua, Laurin Luttmann, Jiwoo Son, Junyoung Park, Kyuree Ahn, Changhyun Kwon, Lin Xie, Jinkyoo Park, 5 Sep 2024, PARCO: Learning Parallel Autoregressive Policies for Efficient Multi-Agent Combinatorial Optimization, https://arxiv.org/abs/2409.03811 https://github.com/ai4co/parco
  • Guibin Zhang, Yanwei Yue, Zhixun Li, Sukwon Yun, Guancheng Wan, Kun Wang, Dawei Cheng, Jeffrey Xu Yu, Tianlong Chen, 3 Oct 2024, Cut the Crap: An Economical Communication Pipeline for LLM-based Multi-Agent Systems, https://arxiv.org/abs/2410.02506 (Address the inter-agent communication bottleneck in multi-agent systems.)
  • Ilan Bigio, Oct 10, 2024, Orchestrating Agents: Routines and Handoffs, https://cookbook.openai.com/examples/orchestrating_agents
  • Anita Kirkovska, David Vargas, Jul 11, 2024, Agentic Workflows in 2024: The ultimate guide, https://www.vellum.ai/blog/agentic-workflows-emerging-architectures-and-design-patterns
  • A. Singh, A. Ehtesham, S. Kumar and T. T. Khoei, "Enhancing AI Systems with Agentic Workflows Patterns in Large Language Model," 2024 IEEE World AI IoT Congress (AIIoT), Seattle, WA, USA, 2024, pp. 527-532, doi: 10.1109/AIIoT61789.2024.10578990. https://ieeexplore.ieee.org/abstract/document/10578990
  • Chawla, Chhavi; Chatterjee, Siddharth; Gadadinni, Sanketh Siddanna; Verma, Pulkit; Banerjee, Sourav, 2024, Agentic AI: The building blocks of sophisticated AI business applications, Journal of AI, Robotics & Workplace Automation, Volume 3 / Number 3 / Summer 2024, pp. 1-15(15), Henry Stewart Publications, DOI: https://doi.org/10.69554/XEHZ1946 https://www.ingentaconnect.com/content/hsp/airwa/2024/00000003/00000003/art00001
  • Dawei Gao, Zitao Li, Xuchen Pan, Weirui Kuang, Zhijian Ma, Bingchen Qian, Fei Wei, Wenhao Zhang, Yuexiang Xie, Daoyuan Chen, Liuyi Yao, Hongyi Peng, Zeyu Zhang, Lin Zhu, Chen Cheng, Hongzhu Shi, Yaliang Li, Bolin Ding, Jingren Zhou, 20 May 2024 (v2), AgentScope: A Flexible yet Robust Multi-Agent Platform, https://arxiv.org/abs/2402.14034 https://github.com/modelscope/agentscope
  • Haoyang Su, Renqi Chen, Shixiang Tang, Xinzhe Zheng, Jingzhe Li, Zhenfei Yin, Wanli Ouyang, Nanqing Dong, 12 Oct 2024, Two Heads Are Better Than One: A Multi-Agent System Has the Potential to Improve Scientific Idea Generation, https://arxiv.org/abs/2410.09403
  • Jiarui Ji, Runlin Lei, Jialing Bi, Zhewei Wei, Yankai Lin, Xuchen Pan, Yaliang Li, Bolin Ding, 13 Oct 2024, Dynamic and Textual Graph Generation Via Large-Scale LLM-based Agent Simulation, https://arxiv.org/abs/2410.09824
  • Yuwei Hu, Runlin Lei, Xinyi Huang, Zhewei Wei, Yongchao Liu, 7 Oct 2024, Scalable and Accurate Graph Reasoning with LLM-based Multi-Agents, https://arxiv.org/abs/2410.05130
  • Xuchen Pan, Dawei Gao, Yuexiang Xie, Zhewei Wei, Yaliang Li, Bolin Ding, Ji-Rong Wen, Jingren Zhou, 25 Jul 2024, Very Large-Scale Multi-Agent Simulation in AgentScope, https://arxiv.org/abs/2407.17789
  • Qian Wang, Tianyu Wang, Qinbin Li, Jingsheng Liang, Bingsheng He, 20 Aug 2024 (v2), MegaAgent: A Practical Framework for Autonomous Cooperation in Large-Scale LLM Agent Systems, https://arxiv.org/abs/2408.09955 https://anonymous.4open.science/r/MegaAgent-81F3
  • Mohammadreza Doostmohammadian, Sérgio Pequito, 27 Oct 2024, Logarithmically Quantized Distributed Optimization over Dynamic Multi-Agent Networks. https://arxiv.org/abs/2410.20345
  • Jonas Becker, 30 Oct 2024, Multi-Agent Large Language Models for Conversational Task-Solving, https://arxiv.org/abs/2410.22932
  • Do Xuan Long, Duong Ngoc Yen, Anh Tuan Luu, Kenji Kawaguchi, Min-Yen Kan, Nancy F. Chen, 1 Nov 2024, Multi-expert Prompting Improves Reliability, Safety, and Usefulness of Large Language Models, https://arxiv.org/abs/2411.00492
  • Rogerio Bonatti, Dan Zhao, Francesco Bonacci, Dillon Dupont, Sara Abdali, Yinheng Li, Yadong Lu, Justin Wagle, Kazuhito Koishida, Arthur Bucker, Lawrence Jang, Zack Hui, 13 Sep 2024 (v2), Windows Agent Arena: Evaluating Multi-Modal OS Agents at Scale, https://arxiv.org/abs/2409.08264
  • Biao Wu, Yanda Li, Meng Fang, Zirui Song, Zhiwei Zhang, Yunchao Wei, Ling Chen, 4 Nov 2024, Foundations and Recent Trends in Multimodal Mobile Agents: A Survey, https://arxiv.org/abs/2411.02006 https://github.com/aialt/awesome-mobile-agents
  • Eric Broda, Nov 2024, Agentic Mesh: The Future of Generative AI-Enabled Autonomous Agent Ecosystems https://towardsdatascience.com/agentic-mesh-the-future-of-generative-ai-enabled-autonomous-agent-ecosystems-d6a11381c979
  • Mohammed Lubbad, Oct 11, 2024, Top 4 Agentic AI Architecture Design Patterns, https://mlubbad.medium.com/top-4-agentic-ai-architecture-design-patterns-2ad890a543e8
  • Zhiqiang Xie, Hao Kang, Ying Sheng, Tushar Krishna, Kayvon Fatahalian, Christos Kozyrakis, 5 Nov 2024, AI Metropolis: Scaling Large Language Model-based Multi-Agent Simulation with Out-of-order Execution https://arxiv.org/abs/2411.03519 (Scheduling multiple agents.)
  • Shubham Gandhi, Manasi Patwardhan, Lovekesh Vig, Gautam Shroff, 12 Nov 2024, BudgetMLAgent: A Cost-Effective LLM Multi-Agent system for Automating Machine Learning Tasks, https://arxiv.org/abs/2411.07464
  • Jared Spataro, November 19, 2024, Introducing Copilot Actions, new agents, and tools to empower IT teams, https://www.microsoft.com/en-us/microsoft-365/blog/2024/11/19/introducing-copilot-actions-new-agents-and-tools-to-empower-it-teams/ ("Copilot is the UI for AI")
  • Yingxuan Yang, Qiuying Peng, Jun Wang, Weinan Zhang, 21 Nov 2024, Multi-LLM-Agent Systems: Techniques and Business Perspectives, https://arxiv.org/abs/2411.14033
  • Ziyang Huang, Jun Zhao, Kang Liu, 1 Dec 2024, Towards Adaptive Mechanism Activation in Language Agent, https://arxiv.org/abs/2412.00722
  • Agnostiq, Dec 2024, multi-agent-llm: LLM based Multi-Agent methods: Lean implementation of various multi-agent LLM methods, including Iteration of Thought (IoT), https://github.com/AgnostiqHQ/multi-agent-llm
  • Wenchao Xu, Jinyu Chen, Peirong Zheng, Xiaoquan Yi, Tianyi Tian, Wenhui Zhu, Quan Wan, Haozhao Wang, Yunfeng Fan, Qinliang Su, Xuemin Shen, https://arxiv.org/abs/2412.13437 18 Dec 2024, Deploying Foundation Model Powered Agent Services: A Survey, (A survey of not just deployment, but many inference optimization techniques.)
  • Siddharth Narayanan, James D. Braza, Ryan-Rhys Griffiths, Manu Ponnapati, Albert Bou, Jon Laurent, Ori Kabeli, Geemi Wellawatte, Sam Cox, Samuel G. Rodriques, Andrew D. White, 30 Dec 2024. Aviary: training language agents on challenging scientific tasks, https://arxiv.org/abs/2412.21154
  • Mayi Xu, Yunfeng Ning, Yongqi Li, Jianhao Chen, Jintao Wen, Yao Xiao, Shen Zhou, Birong Pan, Zepeng Bao, Xin Miao, Hankun Kang, Ke Sun, Tieyun Qian, 2 Jan 2025, Reasoning based on symbolic and parametric knowledge bases: a survey, https://arxiv.org/abs/2501.01030 (Extensive survey of reasoning from CoT to knowledge graphs to table-based reasoning.)
  • Chirag Shah, Ryen W. White, 19 Dec 2024, Agents Are Not Enough, https://www.arxiv.org/abs/2412.16241
  • Austin Starks, Jan 2025, You are an absolute moron for believing in the hype of “AI Agents”. https://medium.com/@austin-starks/you-are-an-absolute-moron-for-believing-in-the-hype-of-ai-agents-c0f760e7e48e
  • Manish Sanwal, 3 Feb 2025 (v2), Layered Chain-of-Thought Prompting for Multi-Agent LLM Systems: A Comprehensive Approach to Explainable Large Language Models, https://arxiv.org/abs/2501.18645
  • Alexandru-Andrei Avram, Adrian Groza, Alexandru Lecu, 13 Aug 2025, MCP-Orchestrated Multi-Agent System for Automated Disinformation Detection, https://arxiv.org/abs/2508.10143
  • Stepan Kulibaba, Artem Dzhalilov, Roman Pakhomov, Oleg Svidchenko, Alexander Gasnikov, Aleksei Shpilman, 13 Aug 2025, KompeteAI: Accelerated Autonomous Multi-Agent System for End-to-End Pipeline Generation for Machine Learning Problems, https://arxiv.org/abs/2508.10177
  • Chak Lam Shek, Guangyao Shi, Pratap Tokekar, 14 Aug 2025, Multi-Agent Trust Region Policy Optimisation: A Joint Constraint Approach, https://arxiv.org/abs/2508.10340
  • Guanzi Yao, Heyao Liu, Linyan Dai, 14 Aug 2025, Multi-Agent Reinforcement Learning for Adaptive Resource Orchestration in Cloud-Native Clusters, https://arxiv.org/abs/2508.10253
  • Jiulin Li, Ping Huang, Yexin Li, Shuo Chen, Juewen Hu, Ye Tian, 14 Aug 2025, A Unified Multi-Agent Framework for Universal Multimodal Understanding and Generation, https://arxiv.org/abs/2508.10494
  • Qi Liu, Xiaopeng Zhang, Mingshan Tan, Shuaikang Ma, Jinliang Ding, Yanjie Li, 14 Aug 2025, MASH: Cooperative-Heterogeneous Multi-Agent Reinforcement Learning for Single Humanoid Robot Locomotion, https://arxiv.org/abs/2508.10423
  • Xuchuang Wang, Bo Sun, Hedyeh Beyhaghi, John C.S. Lui, Mohammad Hajiesmaili, Adam Wierman, 13 Aug 2025, Competitive Algorithms for Multi-Agent Ski-Rental Problems, https://arxiv.org/abs/2507.15727
  • Jingtian Yan, Zhifei Li, William Kang, Kevin Zheng, Yulun Zhang, Zhe Chen, Yue Zhang, Daniel Harabor, Stephen F. Smith, Jiaoyang Li, 14 Aug 2025, Advancing MAPF towards the Real World: A Scalable Multi-Agent Realistic Testbed (SMART), https://arxiv.org/abs/2503.04798
  • Shao-Hung Chan, Thomy Phan, Jiaoyang Li, Sven Koenig, 22 Jul 2025, New Mechanisms in Flex Distribution for Bounded Suboptimal Multi-Agent Path Finding, https://arxiv.org/abs/2507.17054
  • Raz Beck and Roni Stern, 22 Jul 2025, Budget Allocation Policies for Real-Time Multi-Agent Path Finding, https://arxiv.org/abs/2507.16874
  • Chengxuan Xia, Qianye Wu, Sixuan Tian, Yilun Hao, 22 Jul 2025, Parallelism Meets Adaptiveness: Scalable Documents Understanding in Multi-Agent LLM Systems, https://arxiv.org/abs/2507.17061
  • Mariam ALMutairi, Hyungmin Kim, 23 Jul 2025, Resilient Multi-Agent Negotiation for Medical Supply Chains:Integrating LLMs and Blockchain for Transparent Coordination, https://arxiv.org/abs/2507.17134
  • Fangze Lin, Ying He, Fei Yu and Hong Zhang, 23 Jul 2025, JAM: Keypoint-Guided Joint Prediction after Classification-Aware Marginal Proposal for Multi-Agent Interaction, https://arxiv.org/abs/2507.17152
  • Lijie Zheng, Ji He, Shih Yu Chang, Yulong Shen and Dusit Niyato, 23 Jul 2025, LLM Meets the Sky: Heuristic Multi-Agent Reinforcement Learning for Secure Heterogeneous UAV Networks, https://arxiv.org/abs/2507.17188
  • Hugh Adams, Srijoni Majumdar, Evangelos Pournaras, 23 Jul 2025, Fair Compromises in Participatory Budgeting: a Multi-Agent Deep Reinforcement Learning Approach, https://arxiv.org/abs/2507.17433
  • Li-Hsiang Shen, Jyun-Jhe Huang, 22 Jul 2025, CHIMERA: Compressed Hybrid Intelligence for Twin-Model Enhanced Multi-Agent Deep Reinforcement Learning for Multi-Functional RIS-Assisted Space-Air-Ground Integrated Networks, https://arxiv.org/abs/2507.16204
  • Ali Mohamed Ali, Luca Tirel and Hashim A. Hashim, 22 Jul 2025, Novel Multi-Agent Action Masked Deep Reinforcement Learning for General Industrial Assembly Lines Balancing Problems, https://arxiv.org/abs/2507.16635
  • Mian Ibad Ali Shah, Enda Barrett, Karl Mason, 22 Jul 2025, Uncertainty-Aware Knowledge Transformers for Peer-to-Peer Energy Trading with Multi-Agent Reinforcement Learning, https://arxiv.org/abs/2507.16796
  • Srivatsan Krishnan, Jason Jabbour, Dan Zhang, Natasha Jaques, Aleksandra Faust, Shayegan Omidshafiei, Vijay Janapa Reddi, 22 Jul 2025, Multi-Agent Reinforcement Learning for Sample-Efficient Deep Neural Network Mapping, https://arxiv.org/abs/2507.16249
  • Roland Pihlakas, Joel Pyykk\"o, 22 Jul 2025, From homeostasis to resource sharing: Biologically and economically aligned multi-objective multi-agent AI safety benchmarks, https://arxiv.org/abs/2410.00081
  • Yueheng Li, Guangming Xie, Zongqing Lu, 24 Jul 2025, Multi-Agent Guided Policy Optimization, https://arxiv.org/abs/2507.18059
  • Yao Fehlis, Charles Crain, Aidan Jensen, Michael Watson, James Juhasz, Paul Mandel, Betty Liu, Shawn Mahon, Daren Wilson, Nick Lynch-Jonely, Ben Leedom, David Fuller, 18 Jul 2025, Technical Implementation of Tippy: Multi-Agent Architecture and System Design for Drug Discovery Laboratory Automation, https://arxiv.org/abs/2507.17852
  • Yao Shi, Rongkeng Liang, Yong Xu, 24 Jul 2025, EducationQ: Evaluating LLMs' Teaching Capabilities Through Multi-Agent Dialogue Framework, https://arxiv.org/abs/2504.14928
  • Qibing Ren, Sitao Xie, Longxuan Wei, Zhenfei Yin, Junchi Yan, Lizhuang Ma, Jing Shao, 24 Jul 2025, When Autonomy Goes Rogue: Preparing for Risks of Multi-Agent Collusion in Social Systems, https://arxiv.org/abs/2507.14660
  • Kathrin Korte, Christian Medeiros Adriano, Sona Ghahremani, Holger Giese, 18 Jul 2025, Causal Knowledge Transfer for Multi-Agent Reinforcement Learning in Dynamic Environments, https://arxiv.org/abs/2507.13846
  • Shijun Guo, Haoran Xu, Yaming Yang, Ziyu Guan, Wei Zhao, Xinyi Zhang, Yishan Song, Jiwei Chen, 11 Jul 2025, H-NeiFi: Non-Invasive and Consensus-Efficient Multi-Agent Opinion Guidance, https://arxiv.org/abs/2507.13370
  • Jing Fang, Saihao Yan, Xueyu Yin, Yinbo Yu, Chunwei Tian, and Jiajia Liu, 18 Jul 2025, BLAST: A Stealthy Backdoor Leverage Attack against Cooperative Multi-Agent Deep Reinforcement Learning based Systems, https://arxiv.org/abs/2501.01593
  • Asma Yamani and Malak Baslyman and Moataz Ahmed, 18 Jul 2025, Multi-Agent LLMs as Ethics Advocates for AI-Based Systems, https://arxiv.org/abs/2507.08392
  • Xiaowen Ma, Chenyang Lin, Yao Zhang, Volker Tresp, Yunpu Ma, 18 Jul 2025, Agentic Neural Networks: Self-Evolving Multi-Agent Systems via Textual Backpropagation, https://arxiv.org/abs/2506.09046
  • Humza Sami, Mubashir ul Islam, Pierre-Emmanuel Gaillardon, Valerio Tenace, 18 Jul 2025, Adaptive Multi-Agent Reasoning via Automated Workflow Generation, https://arxiv.org/abs/2507.14393
  • Sai Wang, Senthilnathan Subramanian, Mudit Sahni, Praneeth Gone, Lingjie Meng, Xiaochen Wang, Nicolas Ferradas Bertoli, Tingxian Cheng, Jun Xu, 19 Jul 2025, Configurable multi-agent framework for scalable and realistic testing of llm-based agents, https://arxiv.org/abs/2507.14705
  • Junhyeong Lee, Joon-Young Kim, Heekyu Kim, Inhyo Lee and Seunghwa Ryu, 21 Jul 2025, IM-Chat: A Multi-agent LLM-based Framework for Knowledge Transfer in Injection Molding Industry, https://arxiv.org/abs/2507.15268
  • Zijian Zhao, Sen Li, 21 Jul 2025, One Step is Enough: Multi-Agent Reinforcement Learning based on One-Step Policy Optimization for Order Dispatch on Ride-Sharing Platforms, https://arxiv.org/abs/2507.15351
  • Jingyi Zheng, Zifan Peng, Yule Liu, Junfeng Wang, Yifan Liao, Wenhan Dong, Xinlei He, 21 Jul 2025, GasAgent: A Multi-Agent Framework for Automated Gas Optimization in Smart Contracts, https://arxiv.org/abs/2507.15761
  • H. M. Sabbir Ahmad, Ehsan Sabouni, Alexander Wasilkoff, Param Budhraja, Zijian Guo, Songyuan Zhang, Chuchu Fan, Christos Cassandras, Wenchao Li, 20 Jul 2025, Hierarchical Multi-Agent Reinforcement Learning with Control Barrier Functions for Safety-Critical Autonomous Systems, https://arxiv.org/abs/2507.14850
  • Justin Turnau, Longchao Da, Khoa Vo, Ferdous Al Rafi, Shreyas Bachiraju, Tiejin Chen, Hua Wei, 21 Jul 2025, Joint-Local Grounded Action Transformation for Sim-to-Real Transfer in Multi-Agent Traffic Control, https://arxiv.org/abs/2507.15174
  • Yinsong Chen, Kaifeng Wang, Xiaoqiang Meng, Xueyuan Li, Zirui Li, Xin Gao, 21 Jul 2025, Red-Team Multi-Agent Reinforcement Learning for Emergency Braking Scenario, https://arxiv.org/abs/2507.15587
  • Shengji Tang, Jianjian Cao, Weihao Lin, Jiale Hong, Bo Zhang, Shuyue Hu, Lei Bai, Tao Chen, Wanli Ouyang, Peng Ye, 14 Jul 2025, Open-Source LLMs Collaboration Beats Closed-Source LLMs: A Scalable Multi-Agent System, https://arxiv.org/abs/2507.14200
  • Xinheng Lyu, Yuci Liang, Wenting Chen, Meidan Ding, Jiaqi Yang, Guolin Huang, Daokun Zhang, Xiangjian He, and Linlin Shen, 19 Jul 2025, WSI-Agents: A Collaborative Multi-Agent System for Multi-Modal Whole Slide Image Analysis, https://arxiv.org/abs/2507.14680
  • Faizan Contractor, Li Li, Ranwa Al Mallah, 19 Jul 2025, Learning to Communicate in Multi-Agent Reinforcement Learning for Autonomous Cyber Defence, https://arxiv.org/abs/2507.14658
  • Seth Karten, Wenzhe Li, Zihan Ding, Samuel Kleiner, Yu Bai, Chi Jin, 21 Jul 2025, LLM Economist: Large Population Models and Mechanism Design in Multi-Agent Generative Simulacra, https://arxiv.org/abs/2507.15815
  • Xiaofeng Shi, Qian Kou, Yuduo Li, Ning Tang, Jinxin Xie, Longbin Yu, Songjing Wang, Hua Zhou, 21 Jul 2025, SciSage: A Multi-Agent Framework for High-Quality Scientific Survey Generation, https://arxiv.org/abs/2506.12689
  • Felix H\"arer, 19 Jul 2025, Specification and Evaluation of Multi-Agent LLM Systems -- Prototype and Cybersecurity Applications, https://arxiv.org/abs/2506.10467
  • Lance Yao, Suman Samantray, Ayana Ghosh, Kevin Roccapriore, Libor Kovarik, Sarah Allec, Maxim Ziatdinov, 7 Aug 2025, Operationalizing Serendipity: Multi-Agent AI Workflows for Enhanced Materials Characterization with Theory-in-the-Loop, https://arxiv.org/abs/2508.06569
  • Xutong Zhao, Yaqi Xie, 9 Aug 2025, Multi-level Advantage Credit Assignment for Cooperative Multi-Agent Reinforcement Learning, https://arxiv.org/abs/2508.06836
  • Changqing Li, Tianlin Li, Xiaohan Zhang, Aishan Liu, Li Pan, 9 Aug 2025, MASteer: Multi-Agent Adaptive Steer Strategy for End-to-End LLM Trustworthiness Repair, https://arxiv.org/abs/2508.06963
  • Dom Huh, Prasant Mohapatra, 10 Aug 2025, Grounding Natural Language for Multi-agent Decision-Making with Multi-agentic LLMs, https://arxiv.org/abs/2508.07466
  • Wenkai Li, Liwen Sun, Zhenxiang Guan, Xuhui Zhou, Maarten Sap, 11 Aug 2025, 1-2-3 Check: Enhancing Contextual Privacy in LLM via Multi-Agent Reasoning, https://arxiv.org/abs/2508.07667
  • Chen Shen, Wanqing Zhang, Kehan Li, Erwen Huang, Haitao Bi, Aiying Fan, Yiwen Shen, Hongmei Dong, Ji Zhang, Yuming Shao, Zengjia Liu, Xinshe Liu, Tao Li, Chunxia Yan, Shuanliang Fan, Di Wu, Jianhua Ma, Bin Cong, Zhenyuan Wang, and Chunfeng Lian, 11 Aug 2025, FEAT: A Multi-Agent Forensic AI System with Domain-Adapted Large Language Model for Automated Cause-of-Death Analysis, https://arxiv.org/abs/2508.07950
  • Rui Miao and Yixin Liu and Yili Wang and Xu Shen and Yue Tan and Yiwei Dai and Shirui Pan and Xin Wang, 11 Aug 2025, BlindGuard: Safeguarding LLM-based Multi-Agent Systems under Unknown Attacks, https://arxiv.org/abs/2508.08127
  • Arman Dogru, R. Irem Bor-Yaliniz, and Nimal Gamini Senarath, 9 Aug 2025, PANAMA: A Network-Aware MARL Framework for Multi-Agent Path Finding in Digital Twin Ecosystems, https://arxiv.org/abs/2508.06767
  • Myeung Suk Oh, Zhiyao Zhang, FNU Hairi, Alvaro Velasquez, Jia Liu, 9 Aug 2025, Consensus-based Decentralized Multi-agent Reinforcement Learning for Random Access Network Optimization, https://arxiv.org/abs/2508.07001
  • Amulya Suravarjhula, Rashi Chandrashekhar Agrawal, Sakshi Jayesh Patel, Rahul Gupta, 11 Aug 2025, Retrieval-Augmented Multi-Agent System for Rapid Statement of Work Generation, https://arxiv.org/abs/2508.07569
  • Jiongchi Yu, Xiaofei Xie, Qiang Hu, Yuhan Ma, Ziming Zhao, 11 Aug 2025, Chimera: Harnessing Multi-Agent LLMs for Automatic Insider Threat Simulation, https://arxiv.org/abs/2508.07745
  • Yiye Chen, Harpreet Sawhney, Nicholas Gyd\'e, Yanan Jian, Jack Saunders, Patricio Vela, Ben Lundell, 8 Aug 2025, Schema-Guided Scene-Graph Reasoning based on Multi-Agent Large Language Model System, https://arxiv.org/abs/2502.03450
  • Jun Liu and Zhenglun Kong and Changdi Yang and Fan Yang and Tianqi Li and Peiyan Dong and Joannah Nanjekye and Hao Tang and Geng Yuan and Wei Niu and Wenbin Zhang and Pu Zhao and Xue Lin and Dong Huang and Yanzhi Wang, 10 Aug 2025, RCR-Router: Efficient Role-Aware Context Routing for Multi-Agent LLM Systems with Structured Memory, https://arxiv.org/abs/2508.04903
  • Vince Trencsenyi and Agnieszka Mensfelt and Kostas Stathis, 25 Jul 2025, Hypergames: Modeling Misaligned Perceptions and Nested Beliefs for Multi-agent Systems, https://arxiv.org/abs/2507.19593
  • Zhonghan Ge, Yuanyang Zhu, Chunlin Chen, 27 Jul 2025, Concept Learning for Cooperative Multi-Agent Reinforcement Learning, https://arxiv.org/abs/2507.20143
  • Yufan Chen, Ching Ting Leung, Bowen Yu, Jianwei Sun, Yong Huang, Linyan Li, Hao Chen, Hanyu Gao, 27 Jul 2025, A Multi-Agent System for Information Extraction from the Chemical Literature, https://arxiv.org/abs/2507.20230
  • Farshid Nooshi and Suining He, 27 Jul 2025, Multi-Agent Reinforcement Learning for Dynamic Mobility Resource Allocation with Hierarchical Adaptive Grouping, https://arxiv.org/abs/2507.20377
  • Haoyang Liu, Yijiang Li, Haohan Wang, 28 Jul 2025, GenoMAS: A Multi-Agent Framework for Scientific Discovery via Code-Driven Gene Expression Analysis, https://arxiv.org/abs/2507.21035
  • Faruk Alpay, Hamdi Alakkad, Bugra Kilictas, Taylan Alpay, 25 Jul 2025, Ultracoarse Equilibria and Ordinal-Folding Dynamics in Operator-Algebraic Models of Infinite Multi-Agent Games, https://arxiv.org/abs/2507.19694
  • Sourena Khanzadeh, 26 Jul 2025, AgentMesh: A Cooperative Multi-Agent Generative AI Framework for Software Development Automation, https://arxiv.org/abs/2507.19902
  • Kesen Wang, Daulet Toibazar, Abdulrahman Alfulayt, Abdulaziz S. Albadawi, Ranya A. Alkahtani, Asma A. Ibrahim, Haneen A. Alhomoud, Sherif Mohamed, Pedro J. Moreno, 27 Jul 2025, Multi-Agent Interactive Question Generation Framework for Long Document Understanding, https://arxiv.org/abs/2507.20145
  • Chieh-Yun Chen, Min Shi, Gong Zhang, Humphrey Shi, 28 Jul 2025, T2I-Copilot: A Training-Free Multi-Agent Text-to-Image System for Enhanced Prompt Interpretation and Interactive Generation, https://arxiv.org/abs/2507.20536
  • Songyang Liu, Muyang Fan, Weizi Li, Jing Du, Shuai Li, 26 Jul 2025, Large-Scale Mixed-Traffic and Intersection Control using Multi-agent Reinforcement Learning, https://arxiv.org/abs/2504.04691
  • Monika Zamojska and Jaros{\l}aw A. Chudziak, 28 Jul 2025, Games Agents Play: Towards Transactional Analysis in LLM-based Multi-Agent Systems, https://arxiv.org/abs/2507.21354
  • Callie C. Liao, Duoduo Liao, Sai Surya Gadiraju, 8 Jul 2025, AgentMaster: A Multi-Agent Conversational Framework Using A2A and MCP Protocols for Multimodal Information Retrieval and Analysis, https://arxiv.org/abs/2507.21105
  • Ruiyin Li, Yiran Zhang, Xiyu Zhou, Peng Liang, Weisong Sun, Jifeng Xuan, Zhi Jin, Yang Liu, 28 Jul 2025, MAAD: Automate Software Architecture Design through Knowledge-Driven Multi-Agent Collaboration, https://arxiv.org/abs/2507.21382
  • Wenbo Liu, Forbes Hou, Jon Zhang, Hong Liu, Allen Lei, 29 Jul 2025, A Multi-Agent Generative AI Framework for IC Module-Level Verification Automation, https://arxiv.org/abs/2507.21694
  • Yaobin Ling, Xiaoqian Jiang, Yejin Kim, 28 Jul 2025, MALLM-GAN: Multi-Agent Large Language Model as Generative Adversarial Network for Synthesizing Tabular Data, https://arxiv.org/abs/2406.10521
  • Prithvi Poddar, Ehsan Tarkesh Esfahani, Karthik Dantu and Souma Chowdhury, 29 Jul 2025, Automated Generation of Diverse Courses of Actions for Multi-Agent Operations using Binary Optimization and Graph Learning, https://arxiv.org/abs/2506.20031
  • Hui Yi Leong, Yuqing Wu, 31 Jul 2025, DynaSwarm: Dynamically Graph Structure Selection for LLM-based Multi-agent System, https://arxiv.org/abs/2507.23261
  • Tommaso Marzi, Cesare Alippi, Andrea Cini, 31 Jul 2025, Hierarchical Message-Passing Policies for Multi-Agent Reinforcement Learning, https://arxiv.org/abs/2507.23604
  • Ehsan Latif, Zirak Khan, and Xiaoming Zhai, 29 Jun 2025, SketchMind: A Multi-Agent Cognitive Framework for Assessing Student-Drawn Scientific Sketches, https://arxiv.org/abs/2507.22904
  • Ishani Mondal, Meera Bharadwaj, Ayush Roy, Aparna Garimella, Jordan Lee Boyd-Graber, 30 Jul 2025, SMART-Editor: A Multi-Agent Framework for Human-Like Design Editing with Structural Integrity, https://arxiv.org/abs/2507.23095
  • Virginia Padilla and Jacinto D\'avila, 31 Jul 2025, A survey of multi-agent geosimulation methodologies: from ABM to LLM, https://arxiv.org/abs/2507.23694
  • Han Li, Yuling Shi, Shaoxin Lin, Xiaodong Gu, Heng Lian, Xin Wang, Yantao Jia, Tao Huang, Qianxiang Wang, 31 Jul 2025, SWE-Debate: Competitive Multi-Agent Debate for Software Issue Resolution, https://arxiv.org/abs/2507.23348
  • Shiyue Wang, Haozheng Xu, Yuhan Zhang, Jingran Lin, Changhong Lu, Xiangfeng Wang, Wenhao Li, 31 Jul 2025, Where Paths Collide: A Comprehensive Survey of Classic and Learning-Based Multi-Agent Pathfinding, https://arxiv.org/abs/2505.19219
  • Zerui Yang and Yuwei Wan and Siyu Yan and Yudai Matsuda and Tong Xie and Bram Hoex and Linqi Song, 31 Jul 2025, DrugMCTS: a drug repurposing framework combining multi-agent, RAG and Monte Carlo Tree Search, https://arxiv.org/abs/2507.07426
  • Hugo Garrido-Lestache and Jeremy Kedziora, 31 Jul 2025, Enhancing Multi-Agent Collaboration with Attention-Based Actor-Critic Policies, https://arxiv.org/abs/2507.22782
  • Samir Abdaljalil, Hasan Kurban, Khalid Qaraqe, Erchin Serpedin, 31 Jul 2025, Theorem-of-Thought: A Multi-Agent Framework for Abductive, Deductive, and Inductive Reasoning in Language Models, https://arxiv.org/abs/2506.07106
  • Hongyan Cheng, Chengzhang Yu, Yanshu Shi, Chiyue Wang, Cong Liu, and Zhanpeng Jin, 30 Jul 2025, Collaborative Medical Triage under Uncertainty: A Multi-Agent Dynamic Matching Approach, https://arxiv.org/abs/2507.22504
  • Yaolun Zhang, Xiaogeng Liu, Chaowei Xiao, 30 Jul 2025, MetaAgent: Automatically Constructing Multi-Agent Systems Based on Finite State Machines, https://arxiv.org/abs/2507.22606
  • Black Sun, Die (Delia) Hu, 29 Jul 2025, CTG-Insight: A Multi-Agent Interpretable LLM Framework for Cardiotocography Analysis and Classification, https://arxiv.org/abs/2507.22205
  • Salar Basiri, Dhananjay Tiwari, Srinivasa M. Salapaka, 30 Jul 2025, Parametrized Multi-Agent Routing via Deep Attention Models, https://arxiv.org/abs/2507.22338
  • Muyang Li, 25 Jul 2025, From Cloud-Native to Trust-Native: A Protocol for Verifiable Multi-Agent Systems, https://arxiv.org/abs/2507.22077
  • Dane Malenfant, Blake A. Richards, 30 Jul 2025, The challenge of hidden gifts in multi-agent reinforcement learning, https://arxiv.org/abs/2505.20579
  • Riddhi J. Pitliya, Ozan Catal, Toon Van de Maele, Corrado Pezzato, Tim Verbelen, 1 Aug 2025, Theory of Mind Using Active Inference: A Framework for Multi-Agent Cooperation, https://arxiv.org/abs/2508.00401
  • Alexia Jolicoeur-Martineau, 1 Aug 2025, Multi-Agent Game Generation and Evaluation via Audio-Visual Recordings, https://arxiv.org/abs/2508.00632
  • Weilun Yu, Shixiang Tang, Yonggui Huang, Nanqing Dong, Li Fan, Honggang Qi, Wei Liu, Xiaoli Diao, Xi Chen and Wanli Ouyang, 1 Aug 2025, Dynamic Knowledge Exchange and Dual-diversity Review: Concisely Unleashing the Potential of a Multi-Agent Research Team, https://arxiv.org/abs/2506.18348
  • Yujing Ke and Kevin George and Kathan Pandya and David Blumenthal and Maximilian Sprang and Gerrit Gro{\ss}mann and Sebastian Vollmer and David Antony Selby, 2 Aug 2025, BioDisco: Multi-agent hypothesis generation with dual-mode evidence, iterative feedback and temporal evaluation, https://arxiv.org/abs/2508.01285
  • Jingtian Yan, Stephen F. Smith, Jiaoyang Li, 2 Aug 2025, WinkTPG: An Execution Framework for Multi-Agent Path Finding Using Temporal Reasoning, https://arxiv.org/abs/2508.01495
  • Tadisetty Sai Yashwanth, Dhatri C, 3 Aug 2025, A Multi-Agent Pokemon Tournament for Evaluating Strategic Reasoning of Large Language Models, https://arxiv.org/abs/2508.01623
  • Nicholas E. Corrado, Josiah P. Hanna, 1 Aug 2025, Centralized Adaptive Sampling for Reliable Co-Training of Independent Multi-Agent Policies, https://arxiv.org/abs/2508.01049
  • Jiayi Chen, Jing Li, Guiling Wang, 2 Aug 2025, MARS: A Meta-Adaptive Reinforcement Learning Framework for Risk-Aware Multi-Agent Portfolio Management, https://arxiv.org/abs/2508.01173
  • Xinzheng Wu, Junyi Chen, Shaolingfeng Ye, Wei Jiang, Yong Shen, 4 Aug 2025, An Evolving Scenario Generation Method based on Dual-modal Driver Model Trained by Multi-Agent Reinforcement Learning, https://arxiv.org/abs/2508.02027
  • Ziye Jia, Sijie He, Qiuming Zhu, Wei Wang, Qihui Wu, and Zhu Han, 31 Jul 2025, Trusted Routing for Blockchain-Empowered UAV Networks via Multi-Agent Deep Reinforcement Learning, https://arxiv.org/abs/2508.00938
  • Ngoc Bui Lam Quang, Nam Le Nguyen Binh, Thanh-Huy Nguyen, Le Thien Phuc Nguyen, Quan Nguyen, Ulas Bagci, 2 Aug 2025, GMAT: Grounded Multi-Agent Clinical Description Generation for Text Encoder in Vision-Language MIL for Whole Slide Image Classification, https://arxiv.org/abs/2508.01293
  • Jack Zeng, Andreu Matoses Gimenez, Eugene Vinitsky, Javier Alonso-Mora, Sihao Sun, 2 Aug 2025, Decentralized Aerial Manipulation of a Cable-Suspended Load using Multi-Agent Reinforcement Learning, https://arxiv.org/abs/2508.01522
  • Mansura Habiba, Nafiul I. Khan, 3 Aug 2025, Revisiting Gossip Protocols: A Vision for Emergent Coordination in Agentic Multi-Agent Systems, https://arxiv.org/abs/2508.01531
  • Akshay Dodwadmath, Setareh Maghsudi, 4 Aug 2025, Emergence of Fair Leaders via Mediators in Multi-Agent Reinforcement Learning, https://arxiv.org/abs/2508.02421
  • Hyunjn An, Yongwon Kim, Wonduk Seo, Joonil Park, Daye Kang, Changhoon Oh, Dokyun Kim, Seunghyun Lee, 4 Aug 2025, AIAP: A No-Code Workflow Builder for Non-Experts with Natural Language and Multi-Agent Collaboration, https://arxiv.org/abs/2508.02470
  • Wen-Tse Chen, Yuxuan Li, Shiyu Huang, Jiayu Chen, Jeff Schneider, 4 Aug 2025, ME-IGM: Individual-Global-Max in Maximum Entropy Multi-Agent Reinforcement Learning, https://arxiv.org/abs/2406.13930
  • Michael Amir, Guang Yang, Zhan Gao, Keisuke Okumura, Heedo Woo, Amanda Prorok, 2 Aug 2025, ReCoDe: Reinforcement Learning-based Dynamic Constraint Design for Multi-Agent Coordination, https://arxiv.org/abs/2507.19151
  • Ziruo Yi, Jinyu Liu, Ting Xiao, Mark V. Albert, 4 Aug 2025, A Multi-Agent System for Complex Reasoning in Radiology Visual Question Answering, https://arxiv.org/abs/2508.02841
  • Xinjie Zhao, Moritz Blum, Fan Gao, Yingjian Chen, Boming Yang, Luis Marquez-Carpintero, M\'onica Pina-Navarro, Yanran Fu, So Morikawa, Yusuke Iwasawa, Yutaka Matsuo, Chanjun Park, Irene Li, 5 Aug 2025, AGENTiGraph: A Multi-Agent Knowledge Graph Framework for Interactive, Domain-Specific LLM Chatbots, https://arxiv.org/abs/2508.02999
  • Qi Peng, Jialin Cui, Jiayuan Xie, Yi Cai, Qing Li, 5 Aug 2025, Tree-of-Reasoning: Towards Complex Medical Diagnosis via Multi-Agent Reasoning with Evidence Tree, https://arxiv.org/abs/2508.03038
  • Zain Ulabedeen Farhat, Debamita Ghosh, George K. Atia, Yue Wang, 4 Aug 2025, Online Robust Multi-Agent Reinforcement Learning under Model Uncertainties, https://arxiv.org/abs/2508.02948
  • Conor Wallace, Umer Siddique, Yongcan Cao, 4 Aug 2025, TransAM: Transformer-Based Agent Modeling for Multi-Agent Systems via Local Trajectory Encoding, https://arxiv.org/abs/2508.02826
  • Alireza Ghafarollahi and Markus J. Buehler, 4 Aug 2025, Autonomous Inorganic Materials Discovery via Multi-Agent Physics-Aware Scientific Reasoning, https://arxiv.org/abs/2508.02956
  • Xinlei Yu, Zhangquan Chen, Yudong Zhang, Shilin Lu, Ruolin Shen, Jiangning Zhang, Xiaobin Hu, Yanwei Fu, Shuicheng Yan, 5 Aug 2025, Visual Document Understanding and Question Answering: A Multi-Agent Collaboration Framework with Test-Time Scaling, https://arxiv.org/abs/2508.03404
  • Longling Geng and Edward Y. Chang, 5 Aug 2025, REALM-Bench: A Benchmark for Evaluating Multi-Agent Systems on Real-world, Dynamic Planning and Scheduling Tasks, https://arxiv.org/abs/2502.18836
  • Zhenyu Pan, Yiting Zhang, Yutong Zhang, Jianshu Zhang, Haozheng Luo, Yuwei Han, Dennis Wu, Hong-Yu Chen, Philip S. Yu, Manling Li, Han Liu, 5 Aug 2025, Evo-MARL: Co-Evolutionary Multi-Agent Reinforcement Learning for Internalized Safety, https://arxiv.org/abs/2508.03864
  • Shuo Liu, Zeyu Liang, Xueguang Lyu, Christopher Amato, 6 Aug 2025, LLM Collaboration With Multi-Agent Reinforcement Learning, https://arxiv.org/abs/2508.04652
  • Nuo Chen, Yicheng Tong, Jiaying Wu, Minh Duc Duong, Qian Wang, Qingyun Zou, Bryan Hooi, Bingsheng He, 6 Aug 2025, Beyond Brainstorming: What Drives High-Quality Scientific Ideas? Lessons from Multi-Agent Collaboration, https://arxiv.org/abs/2508.04575
  • Yuanchen Bai, Zijian Ding, Shaoyue Wen, Xiang Chang, Angelique Taylor, 6 Aug 2025, From MAS to MARS: Coordination Failures and Reasoning Trade-offs in Hierarchical Multi-Agent Robotic Systems within a Healthcare Scenario, https://arxiv.org/abs/2508.04691
  • Ye Han, Lijun Zhang, Dejian Meng, Zhuang Zhang, Xingyu Hu, Songyu Weng, 6 Aug 2025, A Value Based Parallel Update MCTS Method for Multi-Agent Cooperative Decision Making of Connected and Automated Vehicles, https://arxiv.org/abs/2409.13783
  • Yimin Tang, Xiao Xiong, Jingyi Xi, Jiaoyang Li, Erdem B{\i}y{\i}k, Sven Koenig, 6 Aug 2025, RAILGUN: A Unified Convolutional Policy for Multi-Agent Path Finding Across Different Environments and Tasks, https://arxiv.org/abs/2503.02992
  • Yimin Tang, Zhenghong Yu, Jiaoyang Li, Sven Koenig, 6 Aug 2025, Accelerating Focal Search in Multi-Agent Path Finding with Tighter Lower Bounds, https://arxiv.org/abs/2503.03779
  • Huiya Zhao, Yinghao Zhu, Zixiang Wang, Yasha Wang, Junyi Gao, Liantao Ma, 6 Aug 2025, ConfAgents: A Conformal-Guided Multi-Agent Framework for Cost-Efficient Medical Diagnosis, https://arxiv.org/abs/2508.04915
  • Peer-Benedikt Degen and Igor Asanov, 7 Aug 2025, Beyond Automation: Socratic AI, Epistemic Agency, and the Implications of the Emergence of Orchestrated Multi-Agent Learning Architectures, https://arxiv.org/abs/2508.05116
  • Rong Sha, Binglin Wang, Jun Yang, Xiaoxiao Ma, Chengkun Wu, Liang Yan, Chao Zhou, Jixun Liu, Guochao Wang, Shuhua Yan, Lingxiao Zhu, 7 Aug 2025, LLM-based Multi-Agent Copilot for Quantum Sensor, https://arxiv.org/abs/2508.05421
  • Daniel J. Tan, Qianyi Xu, Kay Choong See, Dilruk Perera, Mengling Feng, 7 Aug 2025, Advancing Multi-Organ Disease Care: A Hierarchical Multi-Agent Reinforcement Learning Framework, https://arxiv.org/abs/2409.04224
  • Ming Shen, Raphael Shu, Anurag Pratik, James Gung, Yubin Ge, Monica Sunkara, Yi Zhang, 6 Aug 2025, Optimizing LLM-Based Multi-Agent System with Textual Feedback: A Case Study on Software Development, https://arxiv.org/abs/2505.16086
  • Kaitao Chen, Mianxin Liu, Daoming Zong, Chaoyue Ding, Shaohao Rui, Yankai Jiang, Mu Zhou, Xiaosong Wang, 8 Aug 2025, Mediator-Guided Multi-Agent Collaboration among Open-Source Models for Medical Decision-Making, https://arxiv.org/abs/2508.05996
  • Daechul Ahn, San Kim and Jonghyun Choi, 8 Aug 2025, Society of Mind Meets Real-Time Strategy: A Hierarchical Multi-Agent Framework for Strategic Reasoning, https://arxiv.org/abs/2508.06042
  • Yiran Rex Ma, 8 Aug 2025, PanelTR: Zero-Shot Table Reasoning Framework Through Multi-Agent Scientific Discussion, https://arxiv.org/abs/2508.06110
  • Zhuoran Li, Xun Wang, Hai Zhong, Longbo Huang, 8 Aug 2025, OM2P: Offline Multi-Agent Mean-Flow Policy, https://arxiv.org/abs/2508.06269
  • Alistair Reid, Simon O'Callaghan, Liam Carroll and Tiberio Caetano, 6 Aug 2025, Risk Analysis Techniques for Governed LLM-based Multi-Agent Systems, https://arxiv.org/abs/2508.05687
  • Yan Zhang, 7 Aug 2025, Semantic Reasoning Meets Numerical Precision: An LLM-Powered Multi-Agent System for Power Grid Control, https://arxiv.org/abs/2508.05702
  • George Wang, Jiaqian Hu, Safinah Ali, 8 Aug 2025, MAATS: A Multi-Agent Automated Translation System Based on MQM Evaluation, https://arxiv.org/abs/2505.14848
  • Dayu Wang, Jiaye Yang, Weikang Li, Jiahui Liang, Yang Li, 12 Aug 2025, Reducing Cognitive Load in Multi-Agent Reinforcement Learning for Mathematical Problem Solving: Decoupling Reasoning and Code Generation, https://arxiv.org/abs/2508.08882
  • Sizhe Yuen, Francisco Gomez Medina, Ting Su, Yali Du, Adam J. Sobey, 12 Aug 2025, Intrinsic Memory Agents: Heterogeneous Multi-Agent LLM Systems through Structured Contextual Memory, https://arxiv.org/abs/2508.08997
  • Andres Garcia Rincon and Eliseo Ferrante, 1 Aug 2025, MinionsLLM: a Task-adaptive Framework For The Training and Control of Multi-Agent Systems Through Natural Language, https://arxiv.org/abs/2508.08283
  • Muhammad Haseeb, 9 Aug 2025, Context Engineering for Multi-Agent LLM Code Assistants Using Elicit, NotebookLM, ChatGPT, and Claude Code, https://arxiv.org/abs/2508.08322
  • Qian Wang, Ziqi Huang, Ruoxi Jia, Paul Debevec, Ning Yu, 11 Aug 2025, MAViS: A Multi-Agent Framework for Long-Sequence Video Storytelling, https://arxiv.org/abs/2508.08487
  • Stavros Doropoulos (1), Stavros Vologiannidis (1), Ioannis Magnisalis (2) ((1) Department of Computer, Informatics and Telecommunications Engineering, International Hellenic University, (2) DG Informatics, European Commission, Brussels, Belgium), 12 Aug 2025, DevNous: An LLM-Based Multi-Agent System for Grounding IT Project Management in Unstructured Conversation, https://arxiv.org/abs/2508.08761
  • Lukas Krupp, Maximilian Sch\"offel, Elias Biehl and Norbert Wehn, 12 Aug 2025, CRADLE: Conversational RTL Design Space Exploration with LLM-based Multi-Agent Systems, https://arxiv.org/abs/2508.08709
  • Zhitian Xie, Qintong Wu, Chengyue Yu, Chenyi Zhuang, Jinjie Gu, 13 Aug 2025, AWorld: Dynamic Multi-Agent System with Stable Maneuvering for Robust GAIA Problem Solving, https://arxiv.org/abs/2508.09889
  • Bhavik Agarwal, Hemant Sunil Jomraj, Simone Kaplunov, Jack Krolick, Viktoria Rojkova, 13 Aug 2025, RAGulating Compliance: A Multi-Agent Knowledge Graph for Regulatory QA, https://arxiv.org/abs/2508.09893
  • Amine Andam, Jamal Bentahar, Mustapha Hedabou, 12 Aug 2025, Constrained Black-Box Attacks Against Multi-Agent Reinforcement Learning, https://arxiv.org/abs/2508.09275
  • Yutong Wu, Jie Zhang, Yiming Li, Chao Zhang, Qing Guo, Nils Lukas, Tianwei Zhang, 12 Aug 2025, Cowpox: Towards the Immunity of VLM-based Multi-Agent Systems, https://arxiv.org/abs/2508.09230
  • Gang Chen, Guoxin Wang, Anton van Beek, Zhenjun Ming, Yan Yan, 13 Aug 2025, Emergence of Hierarchies in Multi-Agent Self-Organizing Systems Pursuing a Joint Objective, https://arxiv.org/abs/2508.09541
  • Wentao Zhang, Liang Zeng, Yuzhen Xiao, Yongcong Li, Ce Cui, Yilei Zhao, Rui Hu, Yang Liu, Yahui Zhou, Bo An, 13 Aug 2025, AgentOrchestra: A Hierarchical Multi-Agent Framework for General-Purpose Task Solving, https://arxiv.org/abs/2506.12508
  • Zhiyao Zhang, Myeung Suk Oh, FNU Hairi, Ziyue Luo, Alvaro Velasquez, Jia Liu, 13 Aug 2025, Finite-Time Global Optimality Convergence in Deep Neural Actor-Critic Methods for Decentralized Multi-Agent Reinforcement Learning, https://arxiv.org/abs/2505.18433
  • Jiarong Wei, Niclas V\"odisch, Anna Rehr, Christian Feist, Abhinav Valada, 13 Aug 2025, ParkDiffusion: Heterogeneous Multi-Agent Multi-Modal Trajectory Prediction for Automated Parking using Diffusion Models, https://arxiv.org/abs/2505.00586
  • Boyuan Chen, Minghao Shao, Abdul Basit, Siddharth Garg, Muhammad Shafique, 13 Aug 2025, MetaCipher: A Time-Persistent and Universal Multi-Agent Framework for Cipher-Based Jailbreak Attacks for LLMs, https://arxiv.org/abs/2506.22557
  • Zahra Khotanlou, Kate Larson, Amir-Hossein Karimi, 14 Aug 2025, From Individual to Multi-Agent Algorithmic Recourse: Minimizing the Welfare Gap via Capacitated Bipartite Matching, https://arxiv.org/abs/2508.11070
  • Mithat Can Ozgun, Jiahuan Pei, Koen Hindriks, Lucia Donatelli, Qingzhi Liu, Xin Sun, Junxiao Wang, 15 Aug 2025, Trustworthy AI Psychotherapy: Multi-Agent LLM Workflow for Counseling and Explainable Mental Disorder Diagnosis, https://arxiv.org/abs/2508.11398
  • Xuyang Zhao, Shiwan Zhao, Hualong Yu, Liting Zhang, Qicheng Li, 16 Aug 2025, AgentCDM: Enhancing Multi-Agent Collaborative Decision-Making via ACH-Inspired Structured Reasoning, https://arxiv.org/abs/2508.11995
  • Zhanjiang Yang, Meng Li, Yang Shen, Yueming Li, Lijun Sun, 16 Aug 2025, MAPF-World: Action World Model for Multi-Agent Path Finding, https://arxiv.org/abs/2508.12087
  • Rongzheng Wang, Qizhi Chen, Yihong Huang, Yizhuo Ma, Muquan Li, Jiakai Li, Ke Qin, Guangchun Luo, Shuang Liang, 17 Aug 2025, GraphCogent: Overcoming LLMs' Working Memory Constraints via Multi-Agent Collaboration in Complex Graph Understanding, https://arxiv.org/abs/2508.12379
  • Giovanni Briglia, Francesco Fabiano, Stefano Mariani, 18 Aug 2025, Scaling Multi-Agent Epistemic Planning through GNN-Derived Heuristics, https://arxiv.org/abs/2508.12840
  • Artem Pshenitsyn, Aleksandr Panov, Alexey Skrynnik, 18 Aug 2025, CAMAR: Continuous Actions Multi-Agent Routing, https://arxiv.org/abs/2508.12845
  • Zhuofan Xu, Benedikt Bollig, Matthias F\"ugger, Thomas Nowak and Vincent Le Dr\'eau, 13 Aug 2025, Centralized Permutation Equivariant Policy for Cooperative Multi-Agent Reinforcement Learning, https://arxiv.org/abs/2508.11706
  • Ruijia Zhang, Xinyan Zhao, Ruixiang Wang, Sigen Chen, Guibin Zhang, An Zhang, Kun Wang and Qingsong Wen, 15 Aug 2025, SafeSieve: From Heuristics to Experience in Progressive Pruning for LLM-based Multi-Agent Communication, https://arxiv.org/abs/2508.11733
  • Punya Syon Pandey, Yongjin Yang, Jiarui Liu, Zhijing Jin, 16 Aug 2025, CORE: Measuring Multi-Agent LLM Interaction Quality under Game-Theoretic Pressures, https://arxiv.org/abs/2508.11915
  • Chiranjit Mitra, 17 Aug 2025, Synchronization Dynamics of Heterogeneous, Collaborative Multi-Agent AI Systems, https://arxiv.org/abs/2508.12314
  • Ron Solomon, Yarin Yerushalmi Levi, Lior Vaknin, Eran Aizikovich, Amit Baras, Etai Ohana, Amit Giloni, Shamik Bose, Chiara Picardi, Yuval Elovici, Asaf Shabtai, 17 Aug 2025, LumiMAS: A Comprehensive Framework for Real-Time Monitoring and Enhanced Observability in Multi-Agent Systems, https://arxiv.org/abs/2508.12412
  • David J. Moore, 18 Aug 2025, A Taxonomy of Hierarchical Multi-Agent Systems: Design Patterns, Coordination Mechanisms, and Industrial Applications, https://arxiv.org/abs/2508.12683
  • Yinggan Xu, Hana Kimlee, Yijia Xiao and Di Luo, 18 Aug 2025, Advancing AI-Scientist Understanding: Multi-Agent LLMs with Interpretable Physics Reasoning, https://arxiv.org/abs/2504.01911
  • Ghasem Pasandi, Kishor Kunal, Varun Tej, Kunjal Shah, Hanfei Sun, Sumit Jain, Chunhui Li, Chenhui Deng, Teodor-Dumitru Ene, Haoxing Ren, and Sreedhar Pratty, 15 Aug 2025, JARVIS: A Multi-Agent Code Assistant for High-Quality EDA Script Generation, https://arxiv.org/abs/2505.14978
  • Caleb Rascon, Luis Gato-Diaz, Eduardo Garc\'ia-Alarc\'on, 17 Aug 2025, Multi-agent Auditory Scene Analysis, https://arxiv.org/abs/2507.02755
  • Weizhen Li, Jianbo Lin, Zhuosong Jiang, Jingyi Cao, Xinpeng Liu, Jiayu Zhang, Zhenqiang Huang, Qianben Chen, Weichen Sun, Qiexiang Wang, Hongxuan Lu, Tianrui Qin, Chenghao Zhu, Yi Yao, Shuying Fan, Xiaowan Li, Tiannan Wang, Pai Liu, King Zhu, He Zhu, Dingfeng Shi, Piaohong Wang, Yeyi Guan, Xiangru Tang, Minghao Liu, Yuchen Eleanor Jiang, Jian Yang, Jiaheng Liu, Ge Zhang, Wangchunshu Zhou, 6 Aug 2025, Chain-of-Agents: End-to-End Agent Foundation Models via Multi-Agent Distillation and Agentic RL, https://arxiv.org/abs/2508.13167
  • Minh Hoang Nguyen, Van Dai Do, Dung Nguyen, Thin Nguyen, Hung Le, 19 Aug 2025, CausalPlan: Empowering Efficient LLM Multi-Agent Collaboration Through Causality-Driven Planning, https://arxiv.org/abs/2508.13721
  • Maciej Wojtala, Bogusz Stefa\'nczyk, Dominik Bogucki, {\L}ukasz Lepak, Jakub Strykowski, Pawe{\l} Wawrzy\'nski, 19 Aug 2025, MACTAS: Self-Attention-Based Module for Inter-Agent Communication in Multi-Agent Reinforcement Learning, https://arxiv.org/abs/2508.13661
  • Yunxiang Yang, Ningning Xu, Jidong J. Yang, 19 Aug 2025, Structured Prompting and Multi-Agent Knowledge Distillation for Traffic Video Interpretation and Risk Inference, https://arxiv.org/abs/2508.13439
  • Abdullah Tokmak, Thomas B. Sch\"on, Dominik Baumann, 19 Aug 2025, Towards safe control parameter tuning in distributed multi-agent systems, https://arxiv.org/abs/2508.13608
  • Can Jin, Hongwu Peng, Qixin Zhang, Yujin Tang, Dimitris N. Metaxas, Tong Che, 19 Aug 2025, Two Heads are Better Than One: Test-time Scaling of Multi-agent Collaborative Reasoning, https://arxiv.org/abs/2504.09772
  • Zhengyang Li, 18 Aug 2025, Language-Guided Multi-Agent Learning in Simulations: A Unified Framework and Evaluation, https://arxiv.org/abs/2506.04251
  • Peilin Ji, Xiao Xue, Simeng Wang, Wenhao Yan, 20 Aug 2025, Entropy-Constrained Strategy Optimization in Urban Floods: A Multi-Agent Framework with LLM and Knowledge Graph Integration, https://arxiv.org/abs/2508.14654
  • Jinwei Tang, Jiayin Qin, Nuo Xu, Pragnya Sudershan Nalla, Yu Cao, Yang (Katie) Zhao, Caiwen Ding, 8 Aug 2025, MAHL: Multi-Agent LLM-Guided Hierarchical Chiplet Design with Adaptive Debugging, https://arxiv.org/abs/2508.14053
  • Moran Sorka, Alon Gorenshtein, Dvir Aran and Shahar Shelly, 10 Aug 2025, A Multi-Agent Approach to Neurological Clinical Reasoning, https://arxiv.org/abs/2508.14063
  • Junjie Qi, Siqi Mao, and Tianyi Tan, 19 Aug 2025, An Improved Multi-Agent Algorithm for Cooperative and Competitive Environments by Identifying and Encouraging Cooperation among Agents, https://arxiv.org/abs/2508.14131
  • Yibo Liu, Liam Shatzel, Brandon Haworth, Teseo Schneider, 20 Aug 2025, Emergent Crowds Dynamics from Language-Driven Multi-Agent Interactions, https://arxiv.org/abs/2508.15047
  • Zihao Wang, Junming Zhang, 21 Aug 2025, From Bits to Boardrooms: A Cutting-Edge Multi-Agent LLM Framework for Business Excellence, https://arxiv.org/abs/2508.15447
  • Ardian Selmonaj, Miroslav Strupl, Oleg Szehr, Alessandro Antonucci, 21 Aug 2025, Understanding Action Effects through Instrumental Empowerment in Multi-Agent Reinforcement Learning, https://arxiv.org/abs/2508.15652
  • Eric Ye, Ren Tao, Natasha Jaques, 21 Aug 2025, An Efficient Open World Environment for Multi-Agent Social Learning, https://arxiv.org/abs/2508.15679
  • Kiarash Kazari, Ezzeldin Shereen, Gy\"orgy D\'an, 21 Aug 2025, Distributed Detection of Adversarial Attacks in Multi-Agent Reinforcement Learning with Continuous Action Space, https://arxiv.org/abs/2508.15764
  • Songyuan Sui, Hongyi Liu, Serena Liu, Li Li, Soo-Hyun Choi, Rui Chen, Xia Hu, 14 Aug 2025, Chain-of-Query: Unleashing the Power of LLMs in SQL-Aided Table Understanding via Multi-Agent Collaboration, https://arxiv.org/abs/2508.15809
  • Fang Wang, Tianwei Yan, Zonghao Yang, Minghao Hu, Jun Zhang, Zhunchen Luo, Xiaoying Bai, 21 Aug 2025, DeepMEL: A Multi-Agent Collaboration Framework for Multimodal Entity Linking, https://arxiv.org/abs/2508.15876
  • Ahmed Allam, Youssef Mansour, and Mohamed Shalan, 21 Aug 2025, ASIC-Agent: An Autonomous Multi-Agent System for ASIC Design with Benchmark Evaluation, https://arxiv.org/abs/2508.15940
  • Talha Bozkus, Urbashi Mitra, 21 Aug 2025, Partially Decentralized Multi-Agent Q-Learning via Digital Cousins for Wireless Networks, https://arxiv.org/abs/2503.05970
  • Shuhao Liao, Weihang Xia, Yuhong Cao, Weiheng Dai, Chengyang He, Wenjun Wu, Guillaume Sartoretti, 22 Aug 2025, SIGMA: Sheaf-Informed Geometric Multi-Agent Pathfinding, https://arxiv.org/abs/2502.06440
  • Zhilin Zhang, Xiang Zhang, Jiaqi Wei, Yiwei Xu, Chenyu You, 24 Aug 2025, PosterGen: Aesthetic-Aware Paper-to-Poster Generation via Multi-Agent LLMs, https://arxiv.org/abs/2508.17188
  • Feng Tian, Flora D. Salim, Hao Xue, 25 Aug 2025, TradingGroup: A Multi-Agent Trading System with Self-Reflection and Data-Synthesis, https://arxiv.org/abs/2508.17565
  • Pu Feng, Size Wang, Yuhong Cao, Junkang Liang, Rongye Shi, Wenjun Wu, 25 Aug 2025, Neural Algorithmic Reasoners informed Large Language Model for Multi-Agent Path Finding, https://arxiv.org/abs/2508.17971
  • Jiayi Wang, Ruiwei Xiao, Xinying Hou, John Stamper, 20 Aug 2025, Enabling Multi-Agent Systems as Learning Designers: Applying Learning Sciences to AI Instructional Design, https://arxiv.org/abs/2508.16659
  • Yunxiang Yang, Ningning Xu, Jidong J. Yang, 24 Aug 2025, Multi-Agent Visual-Language Reasoning for Comprehensive Highway Scene Understanding, https://arxiv.org/abs/2508.17205
  • Xiangxiang Wang, Xuanyu Wang, YiJia Luo, Yongbin Yu, Manping Fan, Jingtao Zhang, Liyong Ren, 25 Aug 2025, Scene-Aware Vectorized Memory Multi-Agent Framework with Cross-Modal Differentiated Quantization VLMs for Visually Impaired Assistance, https://arxiv.org/abs/2508.18177
  • George Stamatelis, Angelos-Nikolaos Kanatas, Ioannis Asprogerakas, and George C. Alexandropoulos, 25 Aug 2025, Evasive Active Hypothesis Testing with Deep Neuroevolution: The Single- and Multi-Agent Cases, https://arxiv.org/abs/2403.10112
  • Karishma Thakrar, Shreyas Basavatia, Akshay Daftardar, 25 Aug 2025, Architecting Clinical Collaboration: Multi-Agent Reasoning Systems for Multimodal Medical VQA, https://arxiv.org/abs/2507.05520
  • Harsh Singh, Rocktim Jyoti Das, Mingfei Han, Preslav Nakov, Ivan Laptev, 25 Aug 2025, MALMM: Multi-Agent Large Language Models for Zero-Shot Robotics Manipulation, https://arxiv.org/abs/2411.17636
  • Xiao Wang, Lu Dong, Sahana Rangasrinivasan, Ifeoma Nwogu, Srirangaraj Setlur, Venugopal Govindaraju, 24 Aug 2025, AutoMisty: A Multi-Agent LLM Framework for Automated Code Generation in the Misty Social Robot, https://arxiv.org/abs/2503.06791
  • Fangqiao Tian, An Luo, Jin Du, Xun Xian, Robert Specht, Ganghua Wang, Xuan Bi, Jiawei Zhou, Ashish Kundu, Jayanth Srinivasa, Charles Fleming, Rui Zhang, Zirui Liu, Mingyi Hong, Jie Ding, 24 Aug 2025, An Outlook on the Opportunities and Challenges of Multi-Agent AI Systems, https://arxiv.org/abs/2505.18397
  • Hsien-Tsung Lin, Pei-Cing Huang, Chan-Tung Ku, Chan Hsu, Pei-Xuan Shieh, Yihuang Kang, 30 Jul 2025, Towards Simulating Social Influence Dynamics with LLM-based Multi-agents, https://arxiv.org/abs/2507.22467
  • Zhongjian Hu, Peng Yang, Bing Li, Zhenqi Wang, 7 Aug 2025, Multi-Agents Based on Large Language Models for Knowledge-based Visual Question Answering, https://arxiv.org/abs/2412.18351
  • Zuhong Lin, Daoyuan Ren, Kai Ran, Jing Sun, Songlin Yu, Xuefeng Bai, Xiaotian Huang, Haiyang He, Pengxu Pan, Ying Fang, Zhanglin Li, Haipu Li, Jingjing Yao, 8 Aug 2025, Reshaping MOFs text mining with a dynamic multi-agents framework of large language model, https://arxiv.org/abs/2504.18880
  • Tianjiao Zhao, Jingrao Lyu, Stokes Jones, Harrison Garber, Stefano Pasquali, Dhagash Mehta, 15 Aug 2025, AlphaAgents: Large Language Model based Multi-Agents for Equity Portfolio Constructions, https://arxiv.org/abs/2508.11152
  • Salman Rahman, Liwei Jiang, James Shiffer, Genglin Liu, Sheriff Issaka, Md Rizwan Parvez, Hamid Palangi, Kai-Wei Chang, Yejin Choi, Saadia Gabriel, 23 Aug 2025, X-Teaming: Multi-Turn Jailbreaks and Defenses with Adaptive Multi-Agents, https://arxiv.org/abs/2504.13203
  • Wei Yang, Jesse Thomason, 4 Sep 2025, Learning to Deliberate: Meta-policy Collaboration for Agentic LLMs with Multi-agent Reinforcement Learning, https://arxiv.org/abs/2509.03817
  • Zhengyang Li, Qijin Ji, Xinghong Ling, Quan Liu, 3 Sep 2025, A Comprehensive Review of Multi-Agent Reinforcement Learning in Video Games, https://arxiv.org/abs/2509.03682
  • Prathamesh Devadiga, Omkaar Jayadev Shetty, Pooja Agarwal, 4 Sep 2025, SAMVAD: A Multi-Agent System for Simulating Judicial Deliberation Dynamics in India, https://arxiv.org/abs/2509.03793
  • Aishik Mandal, Tanmoy Chakraborty, Iryna Gurevych, 4 Sep 2025, MAGneT: Coordinated Multi-Agent Generation of Synthetic Multi-Turn Mental Health Counseling Sessions, https://arxiv.org/abs/2509.04183
  • Babak Esmaeili and Hamidreza Modares, 4 Sep 2025, SAFE--MA--RRT: Multi-Agent Motion Planning with Data-Driven Safety Certificates, https://arxiv.org/abs/2509.04413
  • Brennen Hill, 5 Sep 2025, Language-Driven Hierarchical Task Structures as Explicit World Models for Multi-Agent Learning, https://arxiv.org/abs/2509.04731
  • Jusheng Zhang, Yijia Fan, Kaitong Cai, Xiaofei Sun, Keze Wang, 5 Sep 2025, OSC: Cognitive Orchestration through Dynamic Knowledge Alignment in Multi-Agent LLM Collaboration, https://arxiv.org/abs/2509.04876
  • Zheyan Qu, Wenbo Wang, Zitong Yu, Boquan Sun, Yang Li, and Xing Zhang, 5 Sep 2025, LLM Enabled Multi-Agent System for 6G Networks: Framework and Method of Dual-Loop Edge-Terminal Collaboration, https://arxiv.org/abs/2509.04993
  • Aaron Mark Thomas, Yu-Cheng Chen, Hubert Okadome Valencia, Sharu Theresa Jose, Ronin Wu, 5 Sep 2025, QCA-MolGAN: Quantum Circuit Associative Molecular GAN with Multi-Agent Reinforcement Learning, https://arxiv.org/abs/2509.05051
  • Aditya Vikram Singh, Ethan Rathbun, Emma Graham, Lisa Oakley, Simona Boboila, Alina Oprea, Peter Chin, 5 Sep 2025, Hierarchical Multi-agent Reinforcement Learning for Cyber Network Defense, https://arxiv.org/abs/2410.17351
  • Promise Osaine Ekpo, Brian La, Thomas Wiener, Saesha Agarwal, Arshia Agrawal, Gonzalo Gonzalez-Pumariega, Lekan P. Molu, Angelique Taylor, 5 Sep 2025, Skill-Aligned Fairness in Multi-Agent Learning for Collaboration in Healthcare, https://arxiv.org/abs/2508.18708
  • Lisai Zhang, Baohan Xu, Siqian Yang, Mingyu Yin, Jing Liu, Chao Xu, Siqi Wang, Yidi Wu, Yuxin Hong, Zihao Zhang, Yanzhang Liang, and Yudong Jiang, 26 Aug 2025, AniME: Adaptive Multi-Agent Planning for Long Animation Generation, https://arxiv.org/abs/2508.18781
  • Qi Chai, Zhang Zheng, Junlong Ren, Deheng Ye, Zichuan Lin, Hao Wang, 26 Aug 2025, CausalMACE: Causality Empowered Multi-Agents in Minecraft Cooperative Tasks, https://arxiv.org/abs/2508.18797
  • Ernest Lim, Yajie Vera He, Jared Joselowitz, Kate Preston, Mohita Chowdhury, Louis Williams, Aisling Higham, Katrina Mason, Mariane Melo, Tom Lawton, Yan Jia, Ibrahim Habli, 26 Aug 2025, MATRIX: Multi-Agent simulaTion fRamework for safe Interactions and conteXtual clinical conversational evaluation, https://arxiv.org/abs/2508.19163
  • Helen Pervez, Suyash Gaurav, Jukka Heikkonen, Jatin Chaudhary, 26 Aug 2025, Governance-as-a-Service: A Multi-Agent Framework for AI System Compliance and Policy Enforcement, https://arxiv.org/abs/2508.18765
  • Maojia Song, Tej Deep Pala, Weisheng Jin, Amir Zadeh, Chuan Li, Dorien Herremans, Soujanya Poria, 24 Aug 2025, LLMs Can't Handle Peer Pressure: Crumbling under Multi-Agent Social Interactions, https://arxiv.org/abs/2508.18321
  • Ilias Driouich, Hongliu Cao, Eoin Thomas, 26 Aug 2025, Diverse And Private Synthetic Datasets Generation for RAG evaluation: A multi-agent framework, https://arxiv.org/abs/2508.18929
  • Shrenik Jadhav, Birva Sevak, Srijita Das, Akhtar Hussain, Wencong Su, Van-Hai Bui, 26 Aug 2025, Scalable Fairness Shaping with LLM-Guided Multi-Agent Reinforcement Learning for Peer-to-Peer Electricity Markets, https://arxiv.org/abs/2508.18610
  • Xavier Cadet, Simona Boboila, Sie Hendrata Dharmawan, Alina Oprea, Peter Chin, 27 Aug 2025, PoolFlip: A Multi-Agent Reinforcement Learning Security Environment for Cyber Defense, https://arxiv.org/abs/2508.19488
  • Zhouyu Zhang, Chih-Yuan Chiu, Glen Chou, 27 Aug 2025, Constraint Learning in Multi-Agent Dynamic Games from Demonstrations of Local Nash Interactions, https://arxiv.org/abs/2508.19945
  • Ji Wang, Kashing Chen, Xinyuan Song, Ke Zhang, Lynn Ai, Eric Yang, Bill Shi, 27 Aug 2025, Symphony: A Decentralized Multi-Agent Framework for Scalable Collective Intelligence, https://arxiv.org/abs/2508.20019
  • Satchit Chatterji and Erman Acar, 26 Aug 2025, Think Smart, Act SMARL! Analyzing Probabilistic Logic Shields for Multi-Agent Reinforcement Learning, https://arxiv.org/abs/2411.04867
  • Zhenxiao Fu, Fan Chen, Lei Jiang, 26 Aug 2025, QAgent: An LLM-based Multi-Agent System for Autonomous OpenQASM programming, https://arxiv.org/abs/2508.20134
  • RexCharles Donatus, Kumater Ter, Ore-Ofe Ajayi, Daniel Udekwe, 27 Aug 2025, Multi-Agent Reinforcement Learning in Intelligent Transportation Systems: A Comprehensive Survey, https://arxiv.org/abs/2508.20315
  • Anirudh Satheesh, Keenan Powell, Hua Wei, 28 Aug 2025, cMALC-D: Contextual Multi-Agent LLM-Guided Curriculum Learning with Diversity-Based Context Blending, https://arxiv.org/abs/2508.20818
  • Katherine B. Adams, Justin J. Boutilier, Qinyang He, Yonatan Mintz, 28 Aug 2025, Finite-Time Guarantees for Multi-Agent Combinatorial Bandits with Nonstationary Rewards, https://arxiv.org/abs/2508.20923
  • Lingzhe Zhang, Tong Jia, Kangjin Wang, Weijie Hong, Chiming Duan, Minghua He, and Ying Li, 28 Aug 2025, Adaptive Root Cause Localization for Microservice Systems with Multi-Agent Recursion-of-Thought, https://arxiv.org/abs/2508.20370
  • Isaac David and Arthur Gervais, 28 Aug 2025, Multi-Agent Penetration Testing AI for the Web, https://arxiv.org/abs/2508.20816
  • Jiho Choi, Seojeong Park, Seongjong Song, Hyunjung Shim, 29 Aug 2025, PosterForest: Hierarchical Multi-Agent Collaboration for Scientific Poster Generation, https://arxiv.org/abs/2508.21720
  • Yeawon Lee, Xiaoyang Wang, Christopher C. Yang, 29 Aug 2025, Automated Clinical Problem Detection from SOAP Notes using a Collaborative Multi-Agent LLM Architecture, https://arxiv.org/abs/2508.21803
  • Xiaolong Wei, Bo Lu, Xingyu Zhang, Zhejun Zhao, Dongdong Shen, Long Xia, Dawei Yin, 29 Aug 2025, Igniting Creative Writing in Small Language Models: LLM-as-a-Judge versus Multi-Agent Refined Rewards, https://arxiv.org/abs/2508.21476
  • Anton Wolter, Georgios Vidalakis, Michael Yu, Ankit Grover, Vaishali Dhanoa, 30 Aug 2025, Multi-Agent Data Visualization and Narrative Generation, https://arxiv.org/abs/2509.00481
  • Albert Sadowski, Jaros{\l}aw A. Chudziak, 31 Aug 2025, On Verifiable Legal Reasoning: A Multi-Agent Framework with Formalized Knowledge Representations, https://arxiv.org/abs/2509.00710
  • Ziqi Wang, Boqin Yuan, 31 Aug 2025, L-MARS -- Legal Multi-Agent Workflow with Orchestrated Reasoning and Agentic Search, https://arxiv.org/abs/2509.00761
  • Bo Fu, Zhe Chen, Rahul Chandan, Alex Barbosa, Michael Caldara, Joey Durham, Federico Pecora, 31 Aug 2025, Symbolic Planning and Multi-Agent Path Finding in Extremely Dense Environments with Movable Obstacles, https://arxiv.org/abs/2509.01022
  • Wonduk Seo, Taesub Shin, Hyunjin An, Dokyun Kim, Seunghyun Lee, 1 Sep 2025, Question-to-Knowledge: Multi-Agent Generation of Inspectable Facts for Product Mapping, https://arxiv.org/abs/2509.01182
  • Jiasheng Xu, Mingda Li, Yongqiang Tang, Peijie Wang, Wensheng Zhang, 1 Sep 2025, Towards Open-World Retrieval-Augmented Generation on Knowledge Graph: A Multi-Agent Collaboration Framework, https://arxiv.org/abs/2509.01238
  • Andrea Fox, Francesco De Pellegrini, Eitan Altman, 1 Sep 2025, Multi-Agent Reinforcement Learning for Task Offloading in Wireless Edge Networks, https://arxiv.org/abs/2509.01257
  • Yigal Koifman, Erez Koifman, Eran Iceland, Ariel Barel and Alfred M. Bruckstein, 2 Sep 2025, VariAntNet: Learning Decentralized Control of Multi-Agent Systems, https://arxiv.org/abs/2509.02271
  • Peiwen Xing, Aske Plaat, Niki van Stein, 29 Aug 2025, CoComposer: LLM Multi-agent Collaborative Music Composition, https://arxiv.org/abs/2509.00132
  • Dezhang Kong, Hujin Peng, Yilun Zhang, Lele Zhao, Zhenhua Xu, Shi Lin, Changting Lin, Meng Han, 1 Sep 2025, Web Fraud Attacks Against LLM-Driven Multi-Agent Systems, https://arxiv.org/abs/2509.01211
  • Costin B\u{a}dic\u{a}, Amelia B\u{a}dic\u{a}, Maria Ganzha, Mirjana Ivanovi\'c, Marcin Paprzycki, Dan Seli\c{s}teanu, Zofia Wrona, 2 Sep 2025, Contemporary Agent Technology: LLM-Driven Advancements vs Classic Multi-Agent Systems, https://arxiv.org/abs/2509.02515
  • Yang Zhang, Shixin Yang, Chenjia Bai, Fei Wu, Xiu Li, Zhen Wang, Xuelong Li, 2 Sep 2025, Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration, https://arxiv.org/abs/2405.14314
  • Yang Zhang, Chenjia Bai, Bin Zhao, Junchi Yan, Xiu Li, Xuelong Li, 2 Sep 2025, Decentralized Transformers with Centralized Aggregation are Sample-Efficient Multi-Agent World Models, https://arxiv.org/abs/2406.15836
  • Mazyar Taghavi and Rahman Farnoosh, 26 Aug 2025, Latent Variable Modeling in Multi-Agent Reinforcement Learning via Expectation-Maximization for UAV-Based Wildlife Protection, https://arxiv.org/abs/2509.02579
  • Lijie Ding and Changwoo Do, 4 Sep 2025, SasAgent: Multi-Agent AI System for Small-Angle Scattering Data Analysis, https://arxiv.org/abs/2509.05363
  • Andreas Motzfeldt, Joakim Edin, Casper L. Christensen, Christian Hardmeier, Lars Maal{\o}e, Anna Rogers, 4 Sep 2025, Code Like Humans: A Multi-Agent Solution for Medical Coding, https://arxiv.org/abs/2509.05378
  • Chenguang Wang, Xiang Yan, Yilong Dai, Ziyi Wang, Susu Xu, 5 Sep 2025, From Image Generation to Infrastructure Design: a Multi-agent Pipeline for Street Design Generation, https://arxiv.org/abs/2509.05469
  • Yunzhe Wang, Volkan Ustun, Chris McGroarty, 8 Sep 2025, A data-driven discretized CS:GO simulation environment to facilitate strategic multi-agent planning research, https://arxiv.org/abs/2509.06355
  • Ran Xin, Zeyu Zheng, Yanchen Nie, Kun Yuan, Xia Xiao, 8 Sep 2025, Scaling up Multi-Turn Off-Policy RL and Multi-Agent Tree Search for LLM Step-Provers, https://arxiv.org/abs/2509.06493
  • Andrea Wynn and Harsh Satija and Gillian Hadfield, 5 Sep 2025, Talk Isn't Always Cheap: Understanding Failure Modes in Multi-Agent Debate, https://arxiv.org/abs/2509.05396
  • Lukas Beckenbauer, Johannes-Lucas Loewe, Ge Zheng, Alexandra Brintrup, 6 Sep 2025, Orchestrator: Active Inference for Multi-Agent Systems in Long-Horizon Tasks, https://arxiv.org/abs/2509.05651
  • Arthur Casals, Anarosa A. F. Brand\~ao, 8 Sep 2025, HECATE: An ECS-based Framework for Teaching and Developing Multi-Agent Systems, https://arxiv.org/abs/2509.06431
  • Chaoqian Ouyang, Ling Yue, Shimin Di, Libin Zheng, Shaowu Pan, Min-Ling Zhang, 7 Sep 2025, Code2MCP: A Multi-Agent Framework for Automated Transformation of Code Repositories into Model Context Protocol Services, https://arxiv.org/abs/2509.05941
  • Dake Chen, Haoyang Zhang, Hanbin Wang, Yunhao Huo, Yuzhao Li, Junjie Wang, 7 Sep 2025, GameGPT: Multi-agent Collaborative Framework for Game Development, https://arxiv.org/abs/2310.08067
  • Jusheng Zhang, Zimeng Huang, Yijia Fan, Ningyuan Liu, Mingyan Li, Zhuojie Yang, Jiawei Yao, Jian Wang, Keze Wang, 6 Sep 2025, KABB: Knowledge-Aware Bayesian Bandits for Dynamic Expert Coordination in Multi-Agent Systems, https://arxiv.org/abs/2502.07350
  • Ana Rita Ortigoso, Gabriel Vieira, Daniel Fuentes, Luis Fraz\~ao, Nuno Costa, Ant\'onio Pereira, 8 Sep 2025, Project Riley: Multimodal Multi-Agent LLM Collaboration with Emotional Reasoning and Voting, https://arxiv.org/abs/2505.20521
  • Tristan Tomilin, Luka van den Boogaard, Samuel Garcin, Bram Grooten, Meng Fang, Yali Du, Mykola Pechenizkiy, 6 Sep 2025, MEAL: A Benchmark for Continual Multi-Agent Reinforcement Learning, https://arxiv.org/abs/2506.14990
  • Weitong Zhang, Mengyun Qiao, Chengqi Zang, Steven Niederer, Paul M Matthews, Wenjia Bai, Bernhard Kainz, 8 Sep 2025, Multi-Agent Reasoning for Cardiovascular Imaging Phenotype Analysis, https://arxiv.org/abs/2507.03460
  • Rushia Harada, Yuken Kimura, Keito Inoshita, 7 Sep 2025, Role-Playing LLM-Based Multi-Agent Support Framework for Detecting and Addressing Family Communication Bias, https://arxiv.org/abs/2507.11210
  • Anjiang Wei, Tianran Sun, Yogesh Seenichamy, Hang Song, Anne Ouyang, Azalia Mirhoseini, Ke Wang, Alex Aiken, 9 Sep 2025, Astra: A Multi-Agent System for GPU Kernel Performance Optimization, https://arxiv.org/abs/2509.07506
  • Timothy Ossowski, Jixuan Chen, Danyal Maqbool, Zefan Cai, Tyler Bradshaw, Junjie Hu, 8 Sep 2025, COMMA: A Communicative Multimodal Multi-Agent Benchmark, https://arxiv.org/abs/2410.07553
  • Hailong Yang, Renhuo Zhao, Guanjin Wang and Zhaohong Deng, 12 Sep 2025, GAMA: A General Anonymizing Multi-Agent System for Privacy Preservation Enhanced by Domain Rules and Disproof Method, https://arxiv.org/abs/2509.10018
  • Hailong Yang, Mingxian Gu, Jianqi Wang, Guanjin Wang and Zhaohong Deng, 12 Sep 2025, XAgents: A Unified Framework for Multi-Agent Cooperation via IF-THEN Rules and Multipolar Task Processing Graph, https://arxiv.org/abs/2509.10054
  • Marko Petkovi\'c, Vlado Menkovski, Sof\'ia Calero, 12 Sep 2025, Towards Fully Automated Molecular Simulations: Multi-Agent Framework for Simulation Setup and Force Field Extraction, https://arxiv.org/abs/2509.10210
  • Alva West, Yixuan Weng, Minjun Zhu, Zhen Lin, Yue Zhang, 12 Sep 2025, Abduct, Act, Predict: Scaffolding Causal Inference for Automated Failure Attribution in Multi-Agent Systems, https://arxiv.org/abs/2509.10401
  • Francisco Javier Esono Nkulu Andong and Qi Min, 12 Sep 2025, Federated Multi-Agent Reinforcement Learning for Privacy-Preserving and Energy-Aware Resource Management in 6G Edge Networks, https://arxiv.org/abs/2509.10163
  • Elizaveta D. Moskovskaya and Anton D. Moscowsky, 12 Sep 2025, Robot guide with multi-agent control and automatic scenario generation with LLM, https://arxiv.org/abs/2509.10317
  • Xing Gao, Zherui Huang, Weiyao Lin, Xiao Sun, 11 Sep 2025, ProgD: Progressive Multi-scale Decoding with Dynamic Graphs for Joint Multi-agent Motion Forecasting, https://arxiv.org/abs/2509.09210
  • Qinnan Hu, Yuntao Wang, Yuan Gao, Zhou Su, Linkang Du, 11 Sep 2025, Enabling Regulatory Multi-Agent Collaboration: Architecture, Challenges, and Solutions, https://arxiv.org/abs/2509.09215
  • Xuefeng Wang, Lei Zhang, Henglin Pu, Ahmed H. Qureshi, Husheng Li, 11 Sep 2025, Continuous-Time Value Iteration for Multi-Agent Reinforcement Learning, https://arxiv.org/abs/2509.09135
  • Yujia Chen, Changsong Li, Yiming Wang, Tianjie Ju, Qingqing Xiao, Nan Zhang, Zifan Kong, Peng Wang, Binyu Yan, 11 Sep 2025, MIND: Towards Immersive Psychological Healing with Multi-agent Inner Dialogue, https://arxiv.org/abs/2502.19860
  • Yongkai Tian, Yirong Qi, Xin Yu, Wenjun Wu, Jie Luo, 11 Sep 2025, Symmetry-Guided Multi-Agent Inverse Reinforcement Learning, https://arxiv.org/abs/2509.08257
  • Rakesh Nadig, Vamanan Arulchelvan, Rahul Bera, Taha Shahroodi, Gagandeep Singh, Andreas Kakolyris, Mohammad Sadrosadati, Jisung Park, Onur Mutlu, 11 Sep 2025, Harmonia: A Multi-Agent Reinforcement Learning Approach to Data Placement and Migration in Hybrid Storage Systems, https://arxiv.org/abs/2503.20507
  • Di Wen, Kunyu Peng, Junwei Zheng, Yufan Chen, Yitain Shi, Jiale Wei, Ruiping Liu, Kailun Yang, Rainer Stiefelhagen, 17 Sep 2025, MICA: Multi-Agent Industrial Coordination Assistant, https://arxiv.org/abs/2509.15237
  • Andrejs Sorstkins, Josh Bailey, Dr Alistair Baron, 18 Sep 2025, Diagnostics of cognitive failures in multi-agent expert systems using dynamic evaluation protocols and subsequent mutation of the processing context, https://arxiv.org/abs/2509.15366
  • Nan Li, Bo Kang, Tijl De Bie, 19 Sep 2025, Building Data-Driven Occupation Taxonomies: A Bottom-Up Multi-Stage Approach via Semantic Clustering and Multi-Agent Collaboration, https://arxiv.org/abs/2509.15786
  • Chao Li, Bingkun Bao, Yang Gao, 19 Sep 2025, Fully Decentralized Cooperative Multi-Agent Reinforcement Learning is A Context Modeling Problem, https://arxiv.org/abs/2509.15519
  • Reza Pirayeshshirazinezhad, Nima Fathi, 18 Sep 2025, Explainable AI-Enhanced Supervisory Control for Robust Multi-Agent Robotic Systems, https://arxiv.org/abs/2509.15491
  • Max Studt and Georg Schildbach, 19 Sep 2025, Hierarchical Reinforcement Learning with Low-Level MPC for Multi-Agent Control, https://arxiv.org/abs/2509.15799
  • Simin Li, Zheng Yuwei, Zihao Mao, Linhao Wang, Ruixiao Xu, Chengdong Ma, Xin Yu, Yuqing Ma, Qi Dou, Xin Wang, Jie Luo, Bo An, Yaodong Yang, Weifeng Lv, Xianglong Liu, 19 Sep 2025, Vulnerable Agent Identification in Large-Scale Multi-Agent Reinforcement Learning, https://arxiv.org/abs/2509.15103
  • Daojun Chen, Xi Wang, Shenyuan Ren, Qingzhi Ma, Pengpeng Zhao, and An Liu, 16 Sep 2025, GBV-SQL: Guided Generation and SQL2Text Back-Translation Validation for Multi-Agent Text2SQL, https://arxiv.org/abs/2509.12612
  • Xingxing Hong, Yungong Wang, Dexin Jin, Ye Yuan, Ximing Huang, Zijian Wu, Wenxin Li, 16 Sep 2025, HLSMAC: A New StarCraft Multi-Agent Challenge for High-Level Strategic Decision-Making, https://arxiv.org/abs/2509.12927
  • Dawei Xiang, Wenyan Xu, Kexin Chu, Zixu Shen, Tianqi Ding, Wei Zhang, 15 Sep 2025, PromptSculptor: Multi-Agent Based Text-to-Image Prompt Optimization, https://arxiv.org/abs/2509.12446
  • Feliks Ba\'nka (Warsaw University of Technology, Faculty of Electronics and Information Technology), Jaros{\l}aw A. Chudziak (Warsaw University of Technology), 16 Sep 2025, DeltaHedge: A Multi-Agent Framework for Portfolio Options Optimization, https://arxiv.org/abs/2509.12753
  • Weiliang Zhang, Xiaohan Huang, Yi Du, Ziyue Qiao, Qingqing Long, Zhen Meng, Yuanchun Zhou, Meng Xiao, 16 Sep 2025, Comprehend, Divide, and Conquer: Feature Subspace Exploration via Multi-Agent Hierarchical Reinforcement Learning, https://arxiv.org/abs/2504.17356
  • Shaina Raza, Ranjan Sapkota, Manoj Karkee, Christos Emmanouilidis, 15 Sep 2025, TRiSM for Agentic AI: A Review of Trust, Risk, and Security Management in LLM-based Agentic Multi-Agent Systems, https://arxiv.org/abs/2506.04133
  • Liangxuan Guo, Bin Zhu, Qingqian Tao, Kangning Liu, Xun Zhao, Xianzhe Qin, Jin Gao and Guangfu Hao, 16 Sep 2025, Agentic Lybic: Multi-Agent Execution System with Tiered Reasoning and Orchestration, https://arxiv.org/abs/2509.11067
  • Zhiqiang Yuan, Weitong Chen, Hanlin Wang, Kai Yu, Xin Peng, Yiling Lou, 16 Sep 2025, TRANSAGENT: An LLM-Based Multi-Agent System for Code Translation, https://arxiv.org/abs/2409.19894
  • Yu Cui and Hang Fu and Haibin Zhang and Licheng Wang and Cong Zuo, 14 Sep 2025, Free-MAD: Consensus-Free Multi-Agent Debate, https://arxiv.org/abs/2509.11035
  • Yichen Han, Bojun Liu, Zhengpeng zhou, Guanyu Liu, Zeng Zhang, Yang Yang, Wenli Wang, Isaac N Shi, Yunyan, Lewei He, Tianyu Shi, 14 Sep 2025, MAPGD: Multi-Agent Prompt Gradient Descent for Collaborative Prompt Optimization, https://arxiv.org/abs/2509.11361
  • Sabin Huda, Ernest Foo, Zahra Jadidi, MA Hakim Newton and Abdul Sattar, 15 Sep 2025, AMLNet: A Knowledge-Based Multi-Agent Framework to Generate and Detect Realistic Money Laundering Transactions, https://arxiv.org/abs/2509.11595
  • Chirayu Nimonkar, Shlok Shah, Catherine Ji, and Benjamin Eysenbach, 12 Sep 2025, Self-Supervised Goal-Reaching Results in Multi-Agent Cooperation and Exploration, https://arxiv.org/abs/2509.10656
  • Aryaman Reddi, Gabriele Tiboni, Jan Peters, Carlo D'Eramo, 15 Sep 2025, $K$-Level Policy Gradients for Multi-Agent Reinforcement Learning, https://arxiv.org/abs/2509.12117
  • Jonas Becker, Lars Benedikt Kaesberg, Niklas Bauer, Jan Philip Wahle, Terry Ruas, Bela Gipp, 15 Sep 2025, MALLM: Multi-Agent Large Language Models Framework, https://arxiv.org/abs/2509.11656
  • Tinglong Deng, Hang Tao, Xinxiang Wang, Yinyan Wang, Hanjiang Luo, 15 Sep 2025, SafeDiver: Cooperative AUV-USV Assisted Diver Communication via Multi-agent Reinforcement Learning Approach, https://arxiv.org/abs/2509.11508
  • Ronghua Shi, Yiou Liu, Xinyu Ying, Yang Tan, Yuchun Feng, Lynn Ai, Bill Shi, Xuhui Wang, Zhuang Liu, 15 Sep 2025, Hide-and-Shill: A Reinforcement Learning Framework for Market Manipulation Detection in Symphony-a Decentralized Multi-Agent System, https://arxiv.org/abs/2507.09179
  • Crystal Qian and Kehang Zhu and John Horton and Benjamin S. Manning and Vivian Tsai and James Wexler and Nithum Thain, 12 Sep 2025, Strategic Tradeoffs Between Humans and AI in Multi-Agent Bargaining, https://arxiv.org/abs/2509.09071
  • Jenny Ma, Riya Sahni, Karthik Sreedhar, Lydia B. Chilton, 12 Sep 2025, AgentDynEx: Nudging the Mechanics and Dynamics of Multi-Agent Simulations, https://arxiv.org/abs/2504.09662
  • Harold Triedman, Rishi Jha, and Vitaly Shmatikov, 12 Sep 2025, Multi-Agent Systems Execute Arbitrary Malicious Code, https://arxiv.org/abs/2503.12188
  • Marko Tesic, Yue Zhao, Joel Z. Leibo, Rakshit S. Trivedi, Jose Hernandez-Orallo, 17 Sep 2025, Beyond the high score: Prosocial ability profiles of multi-agent populations, https://arxiv.org/abs/2509.14485
  • Yi Lin and Lujin Zhao and Yijie Shi, 18 Sep 2025, (P)rior(D)yna(F)low: A Priori Dynamic Workflow Construction via Multi-Agent Collaboration, https://arxiv.org/abs/2509.14547
  • Diego Gosmar, Deborah A. Dahl, 18 Sep 2025, Sentinel Agents for Secure and Trustworthy Agentic AI in Multi-Agent Systems, https://arxiv.org/abs/2509.14956
  • Ankur Samanta, Akshayaa Magesh, Youliang Yu, Runzhe Wu, Ayush Jain, Daniel Jiang, Boris Vidolov, Paul Sajda, Yonathan Efroni, Kaveh Hassani, 18 Sep 2025, Internalizing Self-Consistency in Language Models: Multi-Agent Consensus Alignment, https://arxiv.org/abs/2509.15172
  • Yuxiang Mai, Qiyue Yin, Wancheng Ni, Pei Xu, Kaiqi Huang, 16 Sep 2025, Constructive Conflict-Driven Multi-Agent Reinforcement Learning for Strategic Diversity, https://arxiv.org/abs/2509.14276
  • Vaidehi Patil, Elias Stengel-Eskin, Mohit Bansal, 16 Sep 2025, The Sum Leaks More Than Its Parts: Compositional Privacy Risks and Mitigations in Multi-Agent Collaboration, https://arxiv.org/abs/2509.14284
  • Xian Gao, Zongyun Zhang, Ting Liu, Yuzhuo Fu, 18 Sep 2025, OnlineMate: An LLM-Based Multi-Agent Companion System for Cognitive Support in Online Learning, https://arxiv.org/abs/2509.14803
  • Wonduk Seo, Minhyeong Yu, Hyunjin An, Seunghyun Lee, 18 Sep 2025, MARIC: Multi-Agent Reasoning for Image Classification, https://arxiv.org/abs/2509.14860
  • Rohin Gillgallon, Giacomo Bergami, Reham Almutairi and Graham Morgan, 18 Sep 2025, AI-Driven Multi-Agent Vehicular Planning for Battery Efficiency and QoS in 6G Smart Cities, https://arxiv.org/abs/2509.14877
  • S M Asif Hossain, Ruksat Khan Shayoni, Mohd Ruhul Ameen, Akif Islam, M. F. Mridha, Jungpil Shin, 16 Sep 2025, A Multi-Agent LLM Defense Pipeline Against Prompt Injection Attacks, https://arxiv.org/abs/2509.14285
  • Tianyang Duan, Zongyuan Zhang, Songxiao Guo, Dong Huang, Yuanye Zhao, Zheng Lin, Zihan Fang, Dianxin Luan, Heming Cui, Yong Cui, 18 Sep 2025, LEED: A Highly Efficient and Scalable LLM-Empowered Expert Demonstrations Framework for Multi-Agent Reinforcement Learning, https://arxiv.org/abs/2509.14680
  • Chiyu Ma, Enpei Zhang, Yilun Zhao, Wenjun Liu, Yaning Jia, Peijun Qing, Lin Shi, Arman Cohan, Yujun Yan, Soroush Vosoughi, 17 Sep 2025, Judging with Many Minds: Do More Perspectives Mean Less Prejudice? On Bias Amplifications and Resistance in Multi-Agent Based LLM-as-Judge, https://arxiv.org/abs/2505.19477
  • Bingxuan Li, Yiwei Wang, Jiuxiang Gu, Kai-Wei Chang, Nanyun Peng, 17 Sep 2025, METAL: A Multi-Agent Framework for Chart Generation with Test-Time Scaling, https://arxiv.org/abs/2502.17651
  • Elizabeth Mieczkowski, Ruaridh Mon-Williams, Neil Bramley, Christopher G. Lucas, Natalia Velez, Thomas L. Griffiths, 17 Sep 2025, Predicting Multi-Agent Specialization via Task Parallelizability, https://arxiv.org/abs/2503.15703
  • Guoqing Ma, Jia Zhu, Hanghui Guo, Weijie Shi, Jiawei Shen, Jingjiang Liu, Yidan Liang, 10 Sep 2025, Automatic Failure Attribution and Critical Step Prediction Method for Multi-Agent Systems Based on Causal Inference, https://arxiv.org/abs/2509.08682
  • Dong Han, Zhehong Ai, Pengxiang Cai, Shuzhou Sun, Shanya Lu, Jianpeng Chen, Ben Gao, Lingli Ge, Weida Wang, Xiangxin Zhou, Xihui Liu, Mao Su, Wanli Ouyang, Lei Bai, Dongzhan Zhou, Tao XU, Yuqiang Li, Shufei Zhang, 10 Sep 2025, ChemBOMAS: Accelerated BO in Chemistry with LLM-Enhanced Multi-Agent System, https://arxiv.org/abs/2509.08736
  • Viraj Parimi and Brian C. Williams, 9 Sep 2025, Risk-Bounded Multi-Agent Visual Navigation via Dynamic Budget Allocation, https://arxiv.org/abs/2509.08157
  • S Krishna Niketh, Sagar Babu Mitikiri, V Vignesh, Vedantham Lakshmi Srinivas, Mayukha Pal, 10 Sep 2025, Game-Theoretic Resilience Framework for Cyber-Physical Microgrids using Multi-Agent Reinforcement Learning, https://arxiv.org/abs/2509.08310
  • Yuyang Zhou, Guang Cheng, Kang Du, Zihan Chen, Tian Qin, Yuyu Zhao, 10 Sep 2025, From Static to Adaptive Defense: Federated Multi-Agent Deep Reinforcement Learning-Driven Moving Target Defense Against DoS Attacks in UAV Swarm Networks, https://arxiv.org/abs/2506.07392
  • Maosheng Qin, Renyu Zhu, Mingxuan Xia, Chenkai Chen, Zhen Zhu, Minmin Lin, Junbo Zhao, Lu Xu, Changjie Fan, Runze Wu, Haobo Wang, 17 Sep 2025, CrowdAgent: Multi-Agent Managed Multi-Source Annotation System, https://arxiv.org/abs/2509.14030
  • Xinxu Zhou, Jiaqi Bai, Zhenqi Sun, Fanxiang Zeng and Yue Liu, 17 Sep 2025, AgentCTG: Harnessing Multi-Agent Collaboration for Fine-Grained Precise Control in Text Generation, https://arxiv.org/abs/2509.13677
  • Yu Ge (1), Linna Xie (1), Zhong Li (1), Yu Pei (2), Tian Zhang (1) ((1) Nanjing University, (2) The Hong Kong Polytechnic University), 17 Sep 2025, Who is Introducing the Failure? Automatically Attributing Failures of Multi-Agent Systems via Spectrum Analysis, https://arxiv.org/abs/2509.13782
  • Mahmood Hegazy, Aaron Rodrigues, Azzam Naeem, 17 Sep 2025, MAFA: A multi-agent framework for annotation, https://arxiv.org/abs/2505.13668
  • Oucheng Huang, Yuhang Ma, Zeng Zhao, Mingrui Wu, Jiayi Ji, Rongsheng Zhang, Zhipeng Hu, Xiaoshuai Sun and Rongrong Ji, 17 Sep 2025, ComfyGPT: A Self-Optimizing Multi-Agent System for Comprehensive ComfyUI Workflow Generation, https://arxiv.org/abs/2503.17671

AI Books from Aussie AI



The Sweetest Lesson: Your Brain Versus AI The Sweetest Lesson: Your Brain Versus AI: new book on AI intelligence theory:
  • Your brain is 50 times bigger than the best AI engines.
  • Truly intelligent AI will require more compute!
  • Another case of the bitter lesson?
  • Maybe it's the opposite of that: the sweetest lesson.

Get your copy from Amazon: The Sweetest Lesson



RAG Optimization RAG Optimization: Accurate and Efficient LLM Applications: new book on RAG architectures:
  • Smarter RAG
  • Faster RAG
  • Cheaper RAG
  • Agentic RAG
  • RAG reasoning

Get your copy from Amazon: RAG Optimization



Generative AI in C++ Generative AI Applications book:
  • Deciding on your AI project
  • Planning for success and safety
  • Designs and LLM architectures
  • Expediting development
  • Implementation and deployment

Get your copy from Amazon: Generative AI Applications



Generative AI in C++ Generative AI programming book:
  • Generative AI coding in C++
  • Transformer engine speedups
  • LLM models
  • Phone and desktop AI
  • Code examples
  • Research citations

Get your copy from Amazon: Generative AI in C++



CUDA C++ Optimization CUDA C++ Optimization book:
  • Faster CUDA C++ kernels
  • Optimization tools & techniques
  • Compute optimization
  • Memory optimization

Get your copy from Amazon: CUDA C++ Optimization



CUDA C++ Optimization CUDA C++ Debugging book:
  • Debugging CUDA C++ kernels
  • Tools & techniques
  • Self-testing & reliability
  • Common GPU kernel bugs

Get your copy from Amazon: CUDA C++ Debugging

More AI Research Topics

Read more about: