Aussie AI
Agentic RAG Architectures
-
Last Updated 22 October, 2025
-
by David Spuler, Ph.D.
What is Agentic RAG Architectures?
Agentic RAG architectures are LLM stacks that combine the benefits of RAG retrieval-based answering with the power of AI agents. The agents can be "read" agents that query information from plugins (e.g., database lookups or internet searches), or "write" agents that actually perform an action (e.g., sending an email, updating a database, etc.). Agentic RAG is a hot new area of research in creating advanced AI architectures.
Research on Agentic RAG Architectures
Research papers include:
- Anita Kirkovska, David Vargas, Jul 11, 2024, Agentic Workflows in 2024: The ultimate guide, https://www.vellum.ai/blog/agentic-workflows-emerging-architectures-and-design-patterns
- Dawei Gao, Zitao Li, Xuchen Pan, Weirui Kuang, Zhijian Ma, Bingchen Qian, Fei Wei, Wenhao Zhang, Yuexiang Xie, Daoyuan Chen, Liuyi Yao, Hongyi Peng, Zeyu Zhang, Lin Zhu, Chen Cheng, Hongzhu Shi, Yaliang Li, Bolin Ding, Jingren Zhou, 20 May 2024 (v2), AgentScope: A Flexible yet Robust Multi-Agent Platform, https://arxiv.org/abs/2402.14034 https://github.com/modelscope/agentscope
- Shubham Sharma. November 12, 2024, How agentic RAG can be a game-changer for data processing and retrieval, https://venturebeat.com/ai/how-agentic-rag-can-be-a-game-changer-for-data-processing-and-retrieval/
- Chidaksh Ravuru, Sagar Srinivas Sakhinana, Venkataramana Runkana, 18 Aug 2024, Agentic Retrieval-Augmented Generation for Time Series Analysis, https://arxiv.org/abs/2408.14484
- Jisoo Jang and Wen-Syan Li. 2024. AU-RAG: Agent-based Universal Retrieval Augmented Generation. In Proceedings of the 2024 Annual International ACM SIGIR Conference on Research and Development in Information Retrieval in the Asia Pacific Region (SIGIR-AP 2024). Association for Computing Machinery, New York, NY, USA, 2–11. https://doi.org/10.1145/3673791.3698416 https://dl.acm.org/doi/abs/10.1145/3673791.3698416
- Julia Wiesinger, Patrick Marlow and Vladimir Vuskovic, Sep 2024, Agents, Google Whitepaper, https://www.kaggle.com/whitepaper-agents
- Hui Wu, Xiaoyang Wang, Zhong Fan, 14 Jan 2025, Addressing the sustainable AI trilemma: a case study on LLM agents and RAG, https://arxiv.org/abs/2501.08262
- Aditi Singh, Abul Ehtesham, Saket Kumar, Tala Talaei Khoei, 15 Jan 2025, Agentic Retrieval-Augmented Generation: A Survey on Agentic RAG, https://arxiv.org/abs/2501.09136
- Peter Baile Chen, Yi Zhang, Michael Cafarella, Dan Roth, 30 Jan 2025, Can we Retrieve Everything All at Once? ARM: An Alignment-Oriented LLM-based Retrieval Method, https://arxiv.org/abs/2501.18539
- Zitao Li, Fei Wei, Yuexiang Xie, Dawei Gao, Weirui Kuang, Zhijian Ma, Bingchen Qian, Yaliang Li, Bolin Ding, 13 Feb 2025, KIMAs: A Configurable Knowledge Integrated Multi-Agent System, https://arxiv.org/abs/2502.09596
- Mingyue Cheng, Yucong Luo, Jie Ouyang, Qi Liu, Huijie Liu, Li Li, Shuo Yu, Bohou Zhang, Jiawei Cao, Jie Ma, Daoyu Wang, Enhong Chen, 17 Mar 2025 (v2), A Survey on Knowledge-Oriented Retrieval-Augmented Generation, https://arxiv.org/abs/2503.10677
- Ranjan Sapkota, Konstantinos I. Roumeliotis, Manoj Karkee, 20 May 2025 (v3), AI Agents vs. Agentic AI: A Conceptual Taxonomy, Applications and Challenges, https://arxiv.org/abs/2505.10468
- Antonio Martinez, Apr 3, 2025, Building an Agentic LLM with RAG Using OpenVINO™, https://medium.com/openvino-toolkit/building-an-agentic-llm-with-rag-using-openvino-4d98bef28205
- Zhejun Zhao, Yuehu Dong, Alley Liu, Lixue Zheng, Pingsheng Liu, Dongdong Shen, Long Xia, Jiashu Zhao, Dawei Yin, 6 Aug 2025, TURA: Tool-Augmented Unified Retrieval Agent for AI Search, https://arxiv.org/abs/2508.04604
- Andrew Brown, Muhammad Roman, Barry Devereux, 8 Aug 2025, A Systematic Literature Review of Retrieval-Augmented Generation: Techniques, Metrics, and Challenges, https://arxiv.org/abs/2508.06401
- Jean Lelong, Adnane Errazine and Annabelle Blangero, 22 Jul 2025, Agentic RAG with Knowledge Graphs for Complex Multi-Hop Reasoning in Real-World Applications, https://arxiv.org/abs/2507.16507
- Qiaoyu Zheng, Yuze Sun, Chaoyi Wu, Weike Zhao, Pengcheng Qiu, Yongguo Yu, Kun Sun, Yanfeng Wang, Ya Zhang and Weidi Xie, 21 Aug 2025, End-to-End Agentic RAG System Training for Traceable Diagnostic Reasoning, https://arxiv.org/abs/2508.15746
- Konstantinos I. Roumeliotis, Ranjan Sapkota, Manoj Karkee, Nikolaos D. Tselikas, 18 Jul 2025, Orchestrator-Agent Trust: A Modular Agentic AI Visual Classification System with Trust-Aware Orchestration and RAG-Based Reasoning, https://arxiv.org/abs/2507.10571
- Aditya Nagori, Ricardo Accorsi Casonatto, Ayush Gautam, Abhinav Manikantha Sai Cheruvu, and Rishikesan Kamaleswaran, 30 Jul 2025, Open-Source Agentic Hybrid RAG Framework for Scientific Literature Review, https://arxiv.org/abs/2508.05660
- Francesco Blefari, Cristian Cosentino, Francesco Aurelio Pironti, Angelo Furfaro, Fabrizio Marozzo, 10 Sep 2025, CyberRAG: An Agentic RAG cyber attack classification and reporting tool, https://arxiv.org/abs/2507.02424
AI Books from Aussie AI
|
The Sweetest Lesson: Your Brain Versus AI: new book on AI intelligence theory:
Get your copy from Amazon: The Sweetest Lesson |
|
RAG Optimization: Accurate and Efficient LLM Applications:
new book on RAG architectures:
Get your copy from Amazon: RAG Optimization |
|
Generative AI Applications book:
Get your copy from Amazon: Generative AI Applications |
|
Generative AI programming book:
Get your copy from Amazon: Generative AI in C++ |
|
CUDA C++ Optimization book:
Get your copy from Amazon: CUDA C++ Optimization |
|
CUDA C++ Debugging book:
Get your copy from Amazon: CUDA C++ Debugging |
More AI Research Topics
Read more about:
- 500+ LLM Inference Optimization Techniques
- What's Hot in LLM Inference Optimization in 2025?
- Inference Optimization Research
- « Research Home