Aussie AI

Skipping Optimizations

  • Last Updated 26 August, 2025
  • by David Spuler, Ph.D.

Skipping calculations is a powerful optimization whenever it can be achieved. And neural network inference is a morass of redundant calculation, so there is plenty to be skipped. There is a variety of different types of "skipping" that can be done to improve AI inference speed, from top to bottom of the AI stack.

Structural component-level skipping methods include:

Transformer-specific types of structural "skipping" are possible:

Calculation skipping is possible at various levels, both structured and unstructured, and in various ways:

Top-level skipping of a big model's inference phase entirely, in favor of a smaller model:

General Papers on Skipping Optimizations

Papers with skipping algorithm theory include:

  • Sparsh Mittal. 2016. A survey of techniques for approximate computing. ACM Computing Surveys (CSUR) 48, 4 (2016), 1–33. https://dl.acm.org/doi/10.1145/2893356
  • Shujian Zhang, Korawat Tanwisuth, Chengyue Gong, Pengcheng He, Mingyuan Zhou, 7 May 2024, Switchable Decision: Dynamic Neural Generation Networks, https://arxiv.org/abs/2405.04513 (Switching and skipping sub-layer components such as attention heads, FFNs, or input token skipping, using decisions made based on allocating computation resources.)
  • You Zhou, Xiujing Lin, Xiang Zhang, Maolin Wang, Gangwei Jiang, Huakang Lu, Yupeng Wu, Kai Zhang, Zhe Yang, Kehang Wang, Yongduo Sui, Fengwei Jia, Zuoli Tang, Yao Zhao, Hongxuan Zhang, Tiannuo Yang, Weibo Chen, Yunong Mao, Yi Li, De Bao, Yu Li, Hongrui Liao, Ting Liu, Jingwen Liu, Jinchi Guo, Xiangyu Zhao, Ying WEI, Hong Qian, Qi Liu, Xiang Wang, Wai Kin (Victor)Chan, Chenliang Li, Yusen Li, Shiyu Yang, Jining Yan, Chao Mou, Shuai Han, Wuxia Jin, Guannan Zhang, Xiaodong Zeng, Nov 2023, On the Opportunities of Green Computing: A Survey, https://arxiv.org/abs/2311.00447 (Extensive survey of environmental and green AI issues, along with a survey of various optimization methods to reduce AI resource requirements in training and inference.)
  • Ajay Jaiswal, Bodun Hu, Lu Yin, Yeonju Ro, Shiwei Liu, Tianlong Chen, Aditya Akella, 5 Apr 2024, FFN-SkipLLM: A Hidden Gem for Autoregressive Decoding with Adaptive Feed Forward Skipping, https://arxiv.org/abs/2404.03865
  • Ren Zhuang, Ben Wang, Shuifa Sun, 17 May 2025 (v2), Accelerating Chain-of-Thought Reasoning: When Goal-Gradient Importance Meets Dynamic Skipping, https://arxiv.org/abs/2505.08392
  • Daniel Commey, Kamel Abbad, Garth V. Crosby and Lyes Khoukhi, 18 Jul 2025, FedSkipTwin: Digital-Twin-Guided Client Skipping for Communication-Efficient Federated Learning, https://arxiv.org/abs/2507.13624

AI Books from Aussie AI



The Sweetest Lesson: Your Brain Versus AI The Sweetest Lesson: Your Brain Versus AI: new book on AI intelligence theory:
  • Your brain is 50 times bigger than the best AI engines.
  • Truly intelligent AI will require more compute!
  • Another case of the bitter lesson?
  • Maybe it's the opposite of that: the sweetest lesson.

Get your copy from Amazon: The Sweetest Lesson



RAG Optimization RAG Optimization: Accurate and Efficient LLM Applications: new book on RAG architectures:
  • Smarter RAG
  • Faster RAG
  • Cheaper RAG
  • Agentic RAG
  • RAG reasoning

Get your copy from Amazon: RAG Optimization



Generative AI in C++ Generative AI Applications book:
  • Deciding on your AI project
  • Planning for success and safety
  • Designs and LLM architectures
  • Expediting development
  • Implementation and deployment

Get your copy from Amazon: Generative AI Applications



Generative AI in C++ Generative AI programming book:
  • Generative AI coding in C++
  • Transformer engine speedups
  • LLM models
  • Phone and desktop AI
  • Code examples
  • Research citations

Get your copy from Amazon: Generative AI in C++



CUDA C++ Optimization CUDA C++ Optimization book:
  • Faster CUDA C++ kernels
  • Optimization tools & techniques
  • Compute optimization
  • Memory optimization

Get your copy from Amazon: CUDA C++ Optimization



CUDA C++ Optimization CUDA C++ Debugging book:
  • Debugging CUDA C++ kernels
  • Tools & techniques
  • Self-testing & reliability
  • Common GPU kernel bugs

Get your copy from Amazon: CUDA C++ Debugging

More AI Research

Read more about: