Safe C++

Fixing Memory Safety Issues

David Spuler

Aussie AI Labs

Safe C++: Fixing Memory Safety Issues

Copyright © David Spuler, 2024. All rights reserved.

Published by Aussie Al Labs Pty Ltd, Adelaide, Australia.
https://www.aussieai.com

First published: October 2024.

This book is copyright. Subject to statutory exceptions and to the provisions of any
separate licensing agreements, no reproduction of any part of this book is allowed

without prior written permission from the publisher.

All registered or unregistered trademarks mentioned in this book are owned by their
respective rightsholders.

Neither author nor publisher guarantee the persistence or accuracy of URLs for
external or third-party internet websites referred to in this book, and do not
guarantee that any content on such websites is, or will remain, accurate or
appropriate.

Preface

Why a Book on Safe C++?

This book examines the new proposals for a standardized “Safe C++” extensions,
along with a variety of pragmatic techniques for coding safe C++ programs, from
beginner to advanced, along with a catalog of common C++ bugs to avoid.

Who This Book is For

Anyone programming in C++ or trying to learn the language will benefit from
better safety! skills! This book examines safety in coding from beginner to advanced,
starting with basic techniques. In the later chapters, the book then covers a variety
of advanced techniques.

How This Book is Otganized

This book is organized with safety in mind, from its rounded corners to soft
crumple zones.

About Aussie Al

Aussie Al is a platform for the development of consumer Al applications, with a
special focus on Al-based writing and editing tools for fiction. Our premier
applications offer an extensive range of reports and error checks for both fiction
and non-fiction writing, from a full-length novel to a short report. Please try it out
and let us know what you think: https://www.aussieai.com

Safe C++ Projects

Learn more about our C++ projects at https://www.aussieai.com/safe/projects:

e Aussie Debuglib — debug wrapper library for C++ primitives.
e Aussie Lint — linter capability for C++.

iii Safe C++

https://www.aussieai.com/
https://www.aussieai.com/safe/projects

Our AI Research

The primary focus of research at Aussie Al is on optimizing LLM inference
algorithms (i.e., “running” the model after training or fine-tuning), and our research
is toward the following aims:

e Fast on-device model inference algorithms, specifically for smartphones
and AI PCs.

e Scaling inference algorithms to large volumes of requests.

e Efficient inference algorithms (hardware acceleration).

e Inference optimization algorithms (i.e., software methods).

C++ Source Code

Most of the source code examples are excerpts from the Aussie AI C++ library, in
many of the C++ source code examples. Details about source code availability can
be found in the Aussie Al Safe C++ book area:

https://www.aussieai.com/safe/overview

Some code examples are abridged with various code statements removed for brevity
ot elucidation. For example, assertions, self-checking code, or function argument
validation tests have sometimes been removed.

Most of the code is standard C++, and should run across most platforms.
Disclosure: Minimal Al Authorship

Despite my being involved in the Al industry, there was almost no Al engine usage
in creating this book’s text or its coding examples. Some text has been analyzed and
reviewed using Aussie AD’s editing tools, but not even one paragraph was auto-
created by any generative Al engine. All of the C++ code is also human-written,
without involvement of any Al coding copilot tools. I mean, who needs them?

However, Al was used in several ways. Al-assisted search tools, such as “Bing Chat
with GPT-4”, were very useful in brainstorming topics and researching some of the
technical issues. The main cover art image was Al-generated, followed by human
editing.

David Spuler iv

https://www.aussieai.com/safe/overview

More Safe C++

A whole book on Safe C++ isn’t enough for you? You can find more on our
website.

Updates and Bonus Materials: Additional book materials, bonus articles and
chapters, updates and errata will be made available over time online at the Aussie
Al website. Visit this URL: https://www.aussieai.com/safe/overview

Errata: Any bugs or slugs that we learn about in this work will be posted online on
the Aussie Al website in the Errata section of Aussie Al research. Visit this URL
to view these details: https://www.aussieai.com/safe/errata

AI Research Literature Review: Ongoing updates to the Al research literature
review are found in the Aussie Al Research pages, categorized by topic, starting at
the entry page: https://www.aussieai.com/research/overview. The main Safe C++
research is available at: https://www.aussieai.com/research/safe. If you have a
correction to a citation or a paper to suggest for a category, please
email research@aussieai.com

Blog: Add a regular dose of Safe C++ to your feed. Review the Aussie Al blog
at https://www.aussieai.com/blog/index, with a variety of articles on Al and Safe
C++ programming.

Future Editions: Please get in touch with any contributions or corrections as
future editions of the book are planned. I welcome suggestions for improvement
or information on any errors you find in the book.

Disclaimers

Although I hope the information is useful to you, neither the content nor code in
this work is guaranteed for any particular purpose. Nothing herein is intended to
be personal, medical, financial or legal advice. You should make your own enquiries
to confirm the appropriateness to your situation of any information. Many code
examples are simplistic and have been included for explanatory or educational
benefit, and are therefore lacking in terms of correctness, quality, functionality, or
reliability. For example, some of the examples are not good at handling the special
floating-point values such as negative zero, NaN, or Inf.

% Safe C++

https://www.aussieai.com/safe/overview
https://www.aussieai.com/safe/errata
https://www.aussieai.com/research/overview
https://www.aussieai.com/research/safe
https://www.aussieai.com/blog/index

Oh, and sometimes I’'m being sarcastic, or making a joke, but it’s hard to know
when, because there’s also a saying that “Truth is often said in jest!” Your Al engine
certainly won’t be able to help you sort out that conundrum.

Third-Party License Notices

Except where expressly noted, all content and code is written by David Spuler or
the contributors, with copyright and other rights owned by David Spuler and/or
Aussie Al

Additional information, acknowledgments and legal notices in relation to this book,
the C++ source code, or other Aussie Al software, can be found on the Aussie Al

Legal Notices page: https://www.aussieai.com/admin/legal-notices.

Acknowledgements

This book would not have been possible without the help of others. Thank you to
Michael Sharpe who lent his Al and C++ expertise to the project with industry
guidance and technical reviews. Data scientist and architecture expert Cameron
Gregory also provided much assistance with many contributions to various
chapters on coding, architecture, and DevOps.

I would like to acknowledge the many hardware engineers, Al researchers and open
source contributors who have made the Al revolution possible. In particular, the
advanced coding skills shown in the many C++ projects and examples are
acknowledged with both admiration and appreciation.

Please Leave a Review

I hope you enjoy the book! Please consider leaving a review on the website where
you purchased the book. Since few readers do this, each review is important to me,
and I read them all personally.

Feedback and Contacts

Feedback from readers is welcome. Please feel free to tell us what you think of the
book, the literature review, or our Aussie Al software. Contact us by email
via support@aussieai.com.

David Spuler Vi

https://www.aussieai.com/admin/legal-notices

About the Author

David Spuler is a serial technology entrepreneur who has combined his love for
writing with Al technology in his latest venture: Aussie Al is a suite of tools for
writing and editing, with a focus on fiction from short stories to full-length novels.
His published works include Generative Al in C++, which covers Al internals, two
books on CUDA C++ programming for the GPU, and four books on general C++
programming covering introductory and advanced C++ programming,
efficiency/optimization, debugging/testing, and software development tools.

Other than writing, he’s an avid Al researcher with a Ph.D. in Computer Science
and decades of professional experience. Most recently, Dr. Spuler has been
founding startups, including the current Aussie Al startup and multiple high-traffic
website platforms with millions of monthly uniques. Prior roles in the corporate
wortld have been as a software industry executive at BMC Softwate, M&A advisor,
strategy consultant, patent expert, and prolific C++ coder with expertise in
autonomous agents, compiler construction, internationalization, ontologies and
AI/ML. Contact by email to research@aussieai.comor connect via
LinkedIn.

Vii Safe C++

About the Contributors

Michael Sharpeis an experienced technologist with expertise in AI/ML,
cybersecurity, cloud atchitectures, compiler construction, and multiple
programming languages. He is currently Senior Software Architect at PROS Inc.,,
where he is a member of the Office of Technology focusing on developing and
evangelizing Al. His professional expertise extends to monitoring/observability,
devops/MLOps, ITSM, low-tesoutce LLM inference, Retrieval Augmented
Generation (RAG) and Al-based agents.

In along R&D career, Michael has been coding C++ for almost 30 years, with prior
roles at BMC Software, Attachmate (formerly NetlQQ) and IT Involve. Michael has
a Bachelor of Science with First Class Honors in Computer Science from James
Cook University and holds several registered patents.

Cameron Gregory is a technology entrepreneur including as co-founder of fintech
bond trading startup BQuotes (acquited by Moody’s), co-founder and Chief
Technology Officer (CTO) of Trademark Vision with an Al-based image search
product (acquired by Clarivate), and founder of several image creation companies
including FlamingText.com, LogoNut, AddText, and Creator.me. Currently a
Senior Data Scientist focused on “big data” for hedge funds at fintech startup
Advan Research Corporation, he is used to working with real-world data at scale.

Cameron has been making code go fast since the 1990s at AT&T Bell Laboratories
in New Jersey, and is proficient in multiple computer programming languages,
including C++, Java, and JavaScript. He holds a Bachelor of Science with First Class
Honors in Computer Science from James Cook University.

David Spuler viii

Table of Contents

Preface... it iii
About the AUthOL c.ceeiieiriiiieiinitrennteeeceeeeee e aee e vii
About the CoNtribULOrS ...cciiiiiiiiierrieiiiiiiirreeccnerrree s viii
Table Of CONTENES....uuiirriririiriritieiiirinrireneeenireetreseresaneesssesssasesssssessnnes ix
LY U550 103 o A T L] 1
Why Safe CH2. i 1
What To DO? ceeiiiiiiiiiiiii i 1
Choices for Safe CH+ Projects....ccuviiiiniiiiiiiiiiiiiiiiciiciiiiciceicee e 2
The Safe C++ Proposalcoceviiviiiiiiiiiiiiii 3
The Pragmatic Planccccooiiviiniiiiiiiiiiiiiiii 3
Sliding Scale Of SAfety..civiiiiiiiiiiiii 4
Organizational Safety INIIAtIVES .veevvviiiiiiiiiiiiiciecien i 6

< RUSE VErsus Ch ittt aae e aees 7
Why Rust Memory Safety?.....cviiiiiviiiiiiiiiiiiiiii i 7
CH+ Versus RUst e 8
Why Not Other Memory-Safe Languages?ccooeuvvvveeieiienieniiiinieciecienieens 8
In Defense of CH ..o 9
Types of Memory Safety....cuviiniiiiiiiiiiiiiiiii 9
Detection versus Tolerationccovueiiiiiiiiiiniiiiiii i 10
Compiler-Supported Memory Safetycooiiieiiiiiiiiiii, 11
Languages Can’t Fix Everythingccoccovviiiviiiiiiiniiiiiininiiiicices 12

. The Safe C++ Proposal.......iiiiiiiiiiiiiiiiinnniiiiiniieciieecnnneseennneee 13
Introducing Safe CH ..o 13
Goals Of Safe CA oo e 14

ix Safe C++

Safe CH = EXTENSIONS tiiiirrrvrriiieeeeeireitiiieeieeeerettriieeeeeeerrreraeeeeeessesrsminseeessreses 14

Safe CH+ SYNtax coovvviiviiiiiiiiii 15
Supporting Safe CH ..o 16
4. Pragmatic Safe CHt....ouiinviiiniiiiniiininiiciiecnne e csseees 17
Don’t Waith .o 17
Hardening CH ..o 18
Safer Production CH ..ot 19
Building QA-Enabled Productscccoviiviiniiniiiiiiiiiiiiiicis 21
Triggering Bugs Earlierccooivviiiiiiiiiiiiiiiiiiic s 21
Compiler Vendor Safety ..o 23
TN B < U 27
What is AL Safety? coveviiiiiiiiiiii s 27
AT QUALIEY .ottt 27
Failure Stories for Generative Al ..o, 29
Consequences of Al Failurescooviviiviiniiniiniiiiiiiiiies 29
Data Causes of AL Failurescooviviiniiiiiiiiiiiiiiiiiiiciccs 30
Types of Al Safety ISSUES.....cvviiviiiiiiiiiiiiii 31
JaIBLEaKS uvieviiiiciiii 32
Risk MItIGAtIONS .eviivuriiniiiiiiiiieitic ittt 33
Refusal Modules and Prompt Shields......coccoviiiiiiiiiiniiiniiiiiniiiiniieens 34
Al Engine Reliability.....cccoocviviiiiiiiiiiniiiiiiiiiiiei s 35
(TR P53 (S O o g oo 37
o) @ o T R 37
Runtime Memoty Checkersoouviiiiiiiiiiiiiiiiiiiiie s 37
Valgrind ..o 38
Gnu Debugget: gdb...uiiiiiiiiiiiiiii 39
Pre-Breakpointing Trick ..cecveiiiiiiiiiiiiiiiiiii 40
Postmortem Debugg@ing........cccociviiiiiiiiiiiniiniiii 41

David Spuler X

7. Non-Memory Safety ISSUES.....cuuvveerirrirremimieiiiiiiiiiiiii. 43

The Othet 30%0 cuveerireeeiiieeiie ettt et sree st esbe e s sre e e sbeessaee e saeeesareeesanes 43
Code Blindness and Copy-Paste Brrorsooueeveeiiiiiiiiiiiiciiciccc, 43
Arithmetic Overflow and Undetflow......cccceereeiiniiiniicniiciiieiececsreeee 44
Insidious C++ Coding Brorscocviviiiiiiiiiiiiiiiiiiiiiciciencccec s 47
8. Undefined C++ Featurescouuuurieeiiiiiiiiinnnieeiiiiininnnreeeceesesnnsnneeeeeenes 53
What are Undefined Behaviors?cveivieiiiieiniiiiiieiiiecnreeeieesec e 53
Safety Issues for Compiler Vendors.....ooviviviiniiinniiniiiiiniciennn, 54
C++ Operator Pitfalls ...cccoveiiiiiiiiiiiiiiiiiiiii 55
Standard Library Problemsccocviviiiiiniiniiiiiiiiiiiiiccs 59
9. E110r ChecKing.....couviiiiiiiiieiiniiiieiniiieiniiieciiiecenineecsssseeessssssessssnes 63
Error Checking ..ooviviiiiiiiiiiiiiiiiciicici 63
Types of Error ChecKing......cccoviiviiiiiiiiiiiiiiiiiiiiiic s 64
Function Return Attribute: nodiscard......ccvvveviiiiiiiiiiiiniiiiniiiniiciieece, 64
Recursive Macro Error Checks.....iviiiiniiiiiiiiiiciiciecicnnecneciec e 66
Macro Intercepted Debug Wrapper Functionseovevieiiiiiiiicniniicieniinns 68
Reporting and Handling Efrors ..o, 69
Reporting Error CONteXt ..ot 69
Limitations of Macro Error Checking........ccvvviviiiiiiiiiiiiiiiiiiiiiiiii, 70
10. Safe BUildsueeeeeeiiiiiiiiineeieiiiiiiiiinnteeceinnceeeeeecessssesssssseeessssssssssssseees 71
Build Managementcvvvuveiiiiiiiiiiinii i 71
Leveraging More Builds.......ccccoviiniiniiiiiiiiiiiiiiiiiiiis 72
Warning-Free Build......oocoviiiiniiniiiiiiiiiiiiic s 73
Advanced Build ISSUES ..ccovveeeiiiiiieiiieiee e 75
11. Linters and Static ANalysiS......cccovvvuereeeiiiiiiiiiinrieneiiiiiinieeeccceeennneens 77
Linters fOr CHt i 77
Using GCC as @ LINTET wuvivviiiiiiiiiiiiiiiciicnicni i 78
TNt PLOAUCES weveiiireeeiiiiiee e 79

Xi Safe C++

Linter Capabilities.....ccciviiiiiiiiiiiiiiiiiiiiiiiiii s 80

Linter Research.....cooiiiiiiiiiiiiiiiiiii 81
12. Self-Testing Codecccvurirvirinruiiinririniieiniieiieenie e cssnesssseenes 83
What is Self-Testing Coder ..ovvviniiiiiiiiiiiiiiieii s 83
Self-Testing Code Blockccciiiiiiiiiiiiiiiiiiiiiis 83
Debug Stacktrace....ouvviiiiiiiiiiiiiiiiii 86
13, ASSEITIONS wueeierurieiiiiiieeiniiieeiiiiiiecesiieeestieecessteecesssseessssssesessssassesannns 87
Why Use ASSEIHIONS? cuvivuiireiiiiiriiiiiiiiiesie sttt sreens 87
Compile-Time Assertions: Static_aSSErt....civiiiiiriiriesieinieeierieresieeneeseeseenns 87
Custom ASSEItioN MaCIOS....vviviiiiiiiiiiiiiiiicirie s 88
Variadic Mactro ASSEITOMNS .ovvuviirriiiiiiiiiieiiic it 90
Assertless Production Codecoviiniiiiiiiiiiiiiiiiiiiiiiiiiceen 91
Generalized ASSEITIONS .ioviiiviiiiiiiiiiii st 93
Next-Level Assertion EXtensions. ... 99
14. Safe Standard C++ Librarycueeeeeiiiieiiininieiinniieiiniieecnnieeeennieeen, 101
Debug Standard Library Versionscceeeeveinenieiiiiiniecnecneciessis e 101
Safe Standard LiDratiesccveceeviiriiniiiiiiiie e 102
Extra Builtin Functions for Debugging........ccccvviiviiniiiiiiiiiiiniininiinninnn, 105
15. Safety Wrapper FUNCLIONSccouuiiiiiiuiiiiiiiiieiiiiiieiniieecnneeccnnneeenns 107
Why Use Wrapper FUNCHONS? ...cceiviiuieiiiiiiiieiinieciesie e 107
Fast Debug Wrapper Codeovviviiiiiiiiiiiiiiiciinii e 108
Wrapping Memory Functions ...t 109
Standard C++ Debug Wrapper Functions.......covueeveiieeiniiiieniieiienieineen, 110
Generalized Self-Testing Debug Wrappersccoceeviiiiiieiiiiciiiicc 113
Wrapping Math FUNCHONS ..ivviiviiiiiiiiniiieiin i 114
Wrapping File Operations......cvecveenieeneiniiiiiiiiciiciieneenieesee e 114
Link-Time Interception: new and delete........oveevvivirniniiinineininicniinenn, 115
Destructor Problems with Debug Wirappersoovveeviiiiicniieiniiiciiinenen 116

David Spuler Xii

16. Debugging Strate@ieseeeeeieiiiiiuiireeeiiiiiiiiiiiieeeeeecinnieeeeecesssennneens 119

General Debugging Techniques.......covueeiieiieiiiniieieniiiieiecec e, 119
Bug Symptom DiIagnosiscceeveiiiiiiiiiiiiiiini i 120
Making the COrfection......civuiiiiiiiiiiiiiiic i 129
Production-Level Codecooviiniiiiiiiiiniiiiiiiiiii 130
17. Debug TIACING ...ccvvuriiniriiiiiiiiiiiieente e esseesssse s sasessasees 131
Debug Tracing MeSSagesccviiriiiiiiiiiiiiiiicnieiie e 131
Variable-Argument Debug Mactoscoveviviiviiiiniiniiiiiciecnnen 132
Dynamic Debug Tracing Flag......cocovvvviininiiiiniiiiiiiieiicnn, 133
Multi-Statement Debug Trace MactO....cccvvvviiviiiiiiiiiiicnicnicic i 134
Multiple Levels of Debug T1acingccovvevvvviiiininiiniiniiieniinecienenn 136
Advanced Debug Tracing....ccoviviiiiiiiiiiiniiiiis e 138
18. POrtability c...veeevueeiniureiiirinitieiniieiirenieinieeeereniee e esaneessaeesssaeesannes 139
Portability STrAte@y .ouvevvviiviiiiiiiiiiiiiiiiiii i 139
Compilation Problems......cociviiiiiiiiiiiiiiiiiiii 140
Runtime Portability GLitchesccovvviiviiiiiiiiiiiiiii 142
Data TYPe SIZES..ueeiiiiiiiiiiieiieiicieie e 142
Data Representation Pitfallscceeeviieeniiniiiiiniiiiiiiciccececnen, 144
Pointers versus Integer SIZes ...c.eoivviiiiiiiiiiiiniiiiiiiici 145
REfErenCes.cuviiiiiiiiiii it 146
19. SUPPOILLADIHLY cuvveervreiririnitiriniieiieeie e eare s 147
What is SUppOrtability?.....c.eieeriiiiiiiiiiiiieiiieci 147
Graceful Core DUmMPS ..cccviiviiiniiiiiiiiiii 148
Random Number Seeds......covvviiiiiiiiiiiiiiniii 149
Adding Portability to SUPPOLtability ...cecveeieiiiiiiiiiiiiiiiiiiiice s 151

Xiii Safe C++

20. QUALLY..uuurrerrrrriiiiiiiii s 153

What is Software QUality?......coccviviiiiiiiiiiiiiiiiic i 153
Advanced Software QUAlitycocvevviiviiiiiiiiii 154
SEllabIlIty «vvevveviiriineiiiiiieii s 155
Software Engineering Methodologies......ccuuiviviiiiiniiiiiiniiiiciiiicniniens 156
Software Engineering Process Groupcccevveviiniiniiiiiiiiinicninienienen 157
Coding Standards......ccoviiiiiiiiiiiiiiniii i 158
Project EStMationciveiiiieiiiiiiciiiccieiccies i 159
Code QUAlILY c.veeiiiiiiiiiiii e 160
EXtensIDILEY . veeeveeirieiiiiiiicii et 160
SCalability . cccviiiiiiiiiiiiiii 161
Reusability .oveivviiiiiiiiiiiiiiciicii 162
21, Reliability ..cocveeirureiniriniiieiniieiiieeniieiniiecinesnie et see e aneenes 163
Code REHabIlty..occviiiiiiiniiiiiiiiiiieci s 163
Refactoring versus ReWritingcovviiiiiiiiiiiniiininiiciiiiiccecn 164
Defensive Programmingcccvvveviiiiiiiiiiiiiiiciiiii e 165
Maintainability c.veovveeieiiiiiiici 167
Technical Debt .. 170

David Spuler Xiv

1. Memory Safety

Why Safe C++?

If you’re a C++ programmer, then why are you asking? You already know all about
the issues with C++ and its lack of memory safety. The only real question is why
everyone suddenly cares.

There’s really been two driving forces towards the need for a “Safe C++” language:

e Large software companies, and
e The U.S. Federal Government.

Large companies in the software development business, notably Microsoft and
Google, have been complaining about C++ memory weaknesses for years. Notably,
both Microsoft and Google reported the same percentage of failures attributable to
memory safety issues: 70% of errors. These were mainly in the area of security,
which is a subset of “safety,” but the number 70% is so high that people started to
pay attention to C++ memory issues.

Following on from this, several initiatives in the U.S. Federal Government cited
memory safety as not just an economic issue, but also a security issue. Guidelines
are available for the use of memory-safe programming languages, and C++ is
definitely not on that list. This culminated in public releases from the White House
with reports about memory safety in software.

Sounds like it’s time to do something]

What To Do?

An important point to make is: #his isn’t the 1980s. Computers are massively faster
than when the C and C++ programming languages emerged. Modern computers
have the capability to defer more computational power to safety concerns without
unduly reducing performance for users. Hence, whereas slowing down C++ for
performance would have been anathema in decades past, it is quite plausible to do
in the modern tech stack.

1 Safe C++

Hence, drawing attention to the memory safety issues in C++ is not unwarranted,
and some would say it’s long past time to do so. Reactions by affected parties to
the White House materials were varied, and included:

e Push to use Rust over C++,
e Defenders of C++ emerged, and
o The “Safe C++” initiative was launched.

It’s not like nobody’s ever done anything before. Indeed, those very same
companies, Microsoft and Google, have done extensive work on their internal C++
software development practices. The whole industry has developed tools and
techniques aimed towards higher quality C++ software in terms of memory safety
and other quality concerns.

Notably, the recent high-level attention has also spawned a new initiative: the Safe
C++ language proposal, which is also connected to the official ISO standardization
organization. The idea of Safe C++ is to define an extension to the standard C++
language that incorporates additional safety capabilities.

This new proposal, which will hopefully evolve into an ISO-ratified standard, uses
some advanced and brain-bending ideas. Many of these ideas are borrowed from
Rust (surprise!), which has a model of memory “borrows” and “lifetimes” that can
give a compile-time guarantee of memory safety, while not incurring the runtime
cost of garbage collection methods.

Choices for Safe C++ Projects

Organizations are well aware of software quality issues, and their software
development organizations already use many tools and techniques. Nevertheless,
how should you respond to the Safe C++ initiative? At a high-level, the main
choices are:

e Switch — move to a memory-safe programming language (e.g., Rust),
e Stay — do nothing different and keep using C++.
e Wait — for Safe C++.

Note that Rust is not the only alternative language to C++. There are other
memory-safe languages, such as Go or Java, but these have the performance cost
of garbage collection.

David Spuler 2

I’m not a fan of the Rust rewrite, mainly because I'm a C++ programmer. Thus, I
have disclosed my bias. But most developers love a good rewrite, so they might be
happy to learn a new programming language for that. The pay rates for Rust are
higher at the moment, so there’s that incentive, too.

Don’t count on me to switch to Rust, but, on the other hand, as an experienced
C++ programmer for multiple decades, I’'m well aware of all the memory problems
inherent to C++ programs. It’s surprising the industry has taken so long to make it
more of a priority.

People just like speed, I suppose?

The Safe C++ Proposal

This book examines the proposal for “Safe C++” from the C++ Alliance. This is
an early working-draft proposal for extensions to the C++ language, intended to
move towards an ISO standard for safer C++.

The first draft of the standard was released in September 2024, by authors Sean
Baxter and Christian Mazakas at safecpp.org. The Sate C++ proposal includes
an extensive document and a Github repository.

It is important to note that this is only a proposal at the time of writing. You should
check whether anything more recent has changed in the C++ standardization area,
although formal ratification of new ISO standards may take years.

Another area is that the industry C++ compilers, such as GCC, Clang, and
Microsoft Visual C++, often lead in terms of adding new language functionality.
These compilers already have significant safety features that can be used already,
and more will undoubtedly be added over time, especially with the current interest
in safer C++ practices.

The Pragmatic Plan

Are these your only options for addressing C++ memory safety: “stray, stay or
play”’? By which I mean, move to Rust, stay with standard C++, or “play” while
awaiting Safe C++.

3 Safe C++

How about this for a fourth option:

e Fix or mitigate as many C++ problems as possible now, and
e Move to Safe C++ when available.

Let’s do something pragmatic, right now!

There are incremental ways to partially address the C++ safety issue, instead of a
massive dislocation (Rust), or doing nothing, And it sure beats just sitting around
to wait for compiler vendors and the standardization organizations to finish their
work on a new Safe C++ language.

There are many ways to proactively intervene now to improve the safety of C++
code. Some suggestions that we’ll examine in this book include:

e Use existing safety capabilities of compilers (there are many!)

e Exploit all of the various toolchains for C++.

¢ Run the memory debugging tools at full scale.

e Use debugging libraries available already.

e Use linters and static analyzers as another defensive method.

e Adopt defensive C++ coding practices that can prevent or mitigate against
failures.

It’s not like nobody’s ever done anything about safe C++. Let’s max it out!

Sliding Scale of Safety

There’s not a binary distinction between “safe” or “unsafe” programs. Rather,
there’s a sliding scale where there is a trade-off between levels of safety and the
runtime performance cost of achieving that safety. At the two ends of the scale are:

e 100% safe — pointer accesses disallowed or in bubble wrap.
e 100% unsafe — super fast, no checks at all.

Now, 100% memory safety is effectively achievable today, but it runs slow. I don’t
mean the Safe C++ language proposal, which would run fast, because we don’t yet
have that.

David Spuler 4

Instead, I mean the well-known memory checker tools such as valgrind and the
other various “sanitizer” tools, which effectively wrap all erroneous pointer and
memorty issues, and make them harmless, with a reported error message. Hence, we
certainly can run C++ programs in a very safe way, just by using these tools that
already exist.

These runtime memory checker tools are widely used by C++ developers during
the testing and debugging phases. But we can’t make our customers use these tools,
because they’d be just too slow. Hence, the real question is not how to get C++
safety, but how to achieve C++ safety with acceptable speed.

The software development industry knows this issue only too well. There are a
number of techniques to improve C++ quality as part of the software development
processes. We already mentioned one of them, which is the regular use of sanitizers
and memory checkers by developers. There are numerous other things that C++
coders do “in the lab” to improve code quality:

e Unit testing and regression testing (i.e., automated testing).

e Compiler warnings and linter tools that examine source code.

e Standardized libraries and third-party code (i.e., reusing pre-tested C++
components).

The list is rather long, and we’re going to examine various other ideas in later
chapters. But here’s the big question:

What's missing?

The answer is simply there’s no safety net when running C++ for customers. This
book examines two main types of bubble wrap to use for running a C++ program:

e Safe C++ language proposal — guaranteed memory-safety.
e Dpynamic safer C++ libraries — detect and make harmless a large subset
of problems.

Again, there’s a sliding scale. The proposal for a Safe C++ language achieves
memory safety with zero cost to run-time efficiency and an enforceable compile-
time guarantee. The various other “safe C++ library” ideas can improve safety, but
their effectiveness is on the sliding scale: simple error checks can prevent some
memory failures, at a low runtime cost, whereas more comprehensive memory
checking can prevent more errors, but at a greater slow-down in execution speed.

5 Safe C++

Organizational Safety Initiatives

Most of this book is down in the details of the C++ language, but that’s not the
only area to examine. At a high level, here are some company-wide actions that will
improve C++ safety:

e Hire experienced C++ programmets.

e Train your existing C++ staff with a focus on safety practices.

e Review existing C++ development practices from a safety perspective.

e Ensure correct processes and project management are in place for software
development.

With regard to processes for software development, some additional specific ideas
include:

e Professionalize workflow with source code control systems, requirements
and design, etc.

e Document policies and practices related to C++ safety.

e Define coding standards and risk areas with regard to safety.

e Implement code review and CI/CD approval practices.

e Consider safety-specific refactoring projects.

e Don’t expect Al to save youl

The reality is that C++ safety won’t improve much unless you make it a business
priority. Doing so is not without cost in terms of time and money, so you should
also consider what you’re going to de-focus away from in order to have time for a
coding safety initiative.

David Spuler 6

2. Rust versus C++

Why Rust Memory Safety?

We didn’t get here overnight. The concerns about C++ memory glitches have been
well-known for years. A variety of techniques and tools have arisen to mitigate these
problems, but they’re not perfection.

More recently came the focus on security vulnerabilities. The problem with memory
safety issues is not only that it causes a crash or a glitch for our users, but it also
exposes a security vulnerability that can be exploited by malicious actors.

The classic attack vector is to use a buffer overrun to cause the program to execute
malicious code. The attack is rather involved, meaning that the buffer overrun has
to trigger the machine code to be executed. However, exploiting these memory
errors, especially on the stack, has become routine.

Many companies have been running defence against security exploits, and have
spent a lot of resources doing so. Both Microsoft and Google report that over 70%
of their C++ vulnerabilities are related to memory safety failures.

Maybe we should fix that!

But the initiatives for C++ safety didn’t really get a head of steam until the U.S.
Government began reporting on security vulnerabilities related to memory safety
weaknesses in programming languages. The recent White House initiative to
convert usage to memory-safe programming languages was seen as a challenge to
the very existence of C++ as a programming language.

Hence, we get a full debate on Rust versus C++ and whether programmers should
switch to a memory-safe language. This has subsequently led to the development
of the Safe C++ proposal.

7 Safe C++

C++ Versus Rust

Rust is newer and is now gaining a lot of supporters in the development community.
The pros of Rust over C++ include:

e Memory safety
e Thread safety (concurrency control)
e Advanced modern language features

The advantages that C++ retains over Rust include:

e Tested and well-understood

e Developer community

e Longstanding codebases

e Large ecosystem of tools and libraries.

¢ Standardized (i.e., C++11/C++14/C++17/C++20/C++23)

Rust vs C++ Syntax. Some of the differences in the low-level syntax of the two
languages:

e Rustuses “let” for assignments.

¢ Rust memory allocation uses the “borrow” and “lifetime” annotations for
compile-time validated memory safety.

e Rust does not need a garbage collection mechanism (unlike various other
memory-safe languages such as Go or Java).

¢ Rusthasa “println” command for output.

e Ruse uses “struct” (structure) and “impl” (implementation) for class-
like modularity.

Why Not Other Memory-Safe Languages?

The push for an alternative memory-safe programming language has coalesced
around Rust as the main alternative. But it’s not the only memory-safe language.
Why not others like Go or Java?

The primary reasons ate:

e Memory safety compile-time enforcement, and
e No garbage collection.

David Spuler 8

Whereas Java has memory-safety, it also requires garbage collection for memory
allocation. This is a significant runtime cost, and hinders the use of Java in latency-
critical applications and low-level operating system code.

By way of comparison, Rust’s use of borrows means that there’s no need for
garbage collection. The de-allocation of memory is automatic. Hence, Rust has a
reputation as a strong choice for low-latency coding, and notably, is now being used
as part of the code for the Linux kernel.

In Defense of C++

C++ has a lot going for it, and a wholesale move to Rust would involve massive
upheaval. Advantages include:

e Large number of experienced and new developers.
e Strong ecosystem of tools and components.

e Standardized libraries of code (huge efforts).

e Existing installation codebase around the world.

Such an ecosystem didn’t grow without a reason. Let us take a moment to remind
ourselves of the inherent positives of the C++ programming language itself:

e Object oriented programming

e Modularity (classes)

e Type safety

e Speed and efficiency

e Portability (high-level language)
e Exception handling mechanisms

Types of Memory Safety

Memory errors are a large class of problems in C++ programs. Both Microsoft and
Google reported that approximately 70% of their C++ program issues were related
to memory safety. The main impacts are:

e Safety — glitches and crashes in programs.
e Security — buffer overflows and related memory vulnerabilities are attack
vectors.

9 Safe C++

Memory safety errors can be split into two main types:

e Spatial (location-based)
e Temporal (time-based)

Spatial memory errors are those related to a bad address. Examples in C++ would
include:

e Array address out-of-bounds
e Array address underflow

Temporal memory errors are time-related errors in the sequence of memory usage.
The memory was previously valid, but is now invalid. Uninitialized memory is
another example where the memory is not yet valid. Examples in C++ include:

e Double de-allocation.
e Use of stack addresses after stack unwinding.
e Use of de-allocated memory.

Concurrent and multi-threaded programming in C++ gives additional examples of
temporal issues in parallel programming:

e Race conditions (write-after-read, read-after-write, write-after-write).
e Synchronization errors (underlying cause).

Detection versus Toleration

There are many areas where there is tension between detecting errors and resilient
toleration of problems. These are the age-old debates about whether to leave debug
code in production or not. If there is a failure for a customer, do we want it to be
detected, bearing in mind that this will be perceived by the customer as a software
failure, little different to other less graceful crashes. Or would we rather that the
software quietly handles the error, and is thus resilient for the customer. An
intermediate method would be to do both:

(a) Detect the internal error and log it, and

(b) Tolerate the error and continue execution.

David Spuler 10

Speed. The other issue: speed versus safety. How much more performance in
terms of compute efficiency are we willing to give up to achieve these different
types of error detection and resilient capabilities?

Generally speaking, there is a trade-off between how many errors can be detected,
versus the execution time penalty for doing the additional checking. For example,
in trying to detect memory errors via filling the block with magic values, we could
use:

e None

e Magic value in the first address of a memory block.
e Magic values in the whole memory block.

e Hash table of addresses for tracking of blocks.

e Hash table for addresses and magic values in blocks.

Uninitialized memory errors. The problems with incorrect use of uninitialized
memory error present a classic example of using detection versus resilience. Our
debugging memory library can fill the uninitialized memory with data, with two
strategies:

e Canary strategy — fill with magic non-zero values.
e Toleration strategy — fill with zeros (i.e., initialize it).

The canary strategy will detect the error, whereas the toleration strategy will make
it harmless. Which one is better?

Compiler-Supported Memory Safety

Some of the specific features that could be used to improve memory safety include:

e Heap memory initialization (e.g., malloc, new)
e Stack memory initialization

e Double-deallocation detection

e Uninitialized memory detection

o Use-after-free memory detection

e Use after stack unwind memory detection

Note that these methods that initialize memory could either use a canary strategy
with non-zero magic values to detect memory issues, or could zero the memory to
make uninitialized-use errors harmless.

11 Safe C++

Hence, these safety methods should have multiple different options for handling
uninitialized memory usage checking:

e Nothing
e Canary (detection with magic value filling)
e Zeroing (toleration harmlessly).

Memory safety is only one aspect in overall safe programming, although it’s a major
problem in C++. Other issues in C++ (and other languages, too) include:

e Arithmetic overflow and underflow

¢ Undefined behavior (non-standardized features)
e String and character processing

e File processing

Languages Can’t Fix Everything
There are some things that neither Rust nor Safe C++ could possibly fix:

e Platform-specific features
e TLow-level features

Areas of portability that are unlikely to be sorted out by your programming language
include:

e Data type sizes (e.g., 32-bit vs 64-bit).
e Files and directories

e Database integrations

e Devices and peripherals

e Signals and interrupts

e Assembly language

There are also some more obscure C++ coding issues that are problematic for all
languages:

e Endian-ness of numeric representations.

e ASCII versus EBCDIC character set.
e Internationalization with UTF8 and Unicode.

David Spuler 12

3. The Safe C++ Proposal

Introducing Safe C++

The movement to address safety issues in the C++ programming language has been
spearheaded by major software vendors, notably Microsoft and Google, over many
years. However, the issue went mainstream when the U.S. federal government,
specifically the White House, went public with policies aimed at addressing memory
safety issues in software.

This led to work on extending C++ so that it has full memory-safety with a view
to creating an ISO standard for a language called Safe C++. The draft proposal for
Safe C++ is available online here: https://safecpp.org/draft.html

This is an immense body of work that has been completed over the prior 18
months. The results are not only the proposed standard for Safe C++, but also a
compiler that implements the proposal. The expected timeframe for full completion
is another 18 months after this announced draft in September, 2024, which puts
final completion into early 2026 by my calculations.

Note that there have been several other initiatives in regard to a “Safe C” language,
and also “Safe C Standard Library” versions. However, this is the first initiative for
C++ safety that attempts to address memory safety using a Rust-like model with
borrows and lifetimes. The main advantages of this policy are:

e Memory safety guarantees (at compile-timel)
e Low performance cost (no garbage collection needed)

Note that the performance benefit is not only the lack of garbage collection
overhead, but also that the compile-time guarantee of memory safety means that
there is not a runtime cost to enforcing pointer safety. For example, pointers and
arrays would not need a costly validation of their address at runtime.

The way of achieving this is quite involved, and the draft standard also provides
some advice for compiler implementers. The main features of the Safe C++
proposal are examined below.

13 Safe C++

Goals of Safe C++

In a word: safety. But in a way that extends C++ with features similar to Rust’s
memory safety guarantees, while maintaining backward compatibility with all the
existing C++ code. The over-arching goals are therefore:

¢ Reducing memory errors and their consequent failures.
e Increased security from the absence of memory errors.

The Safe C++ proposal aims to prevent memory errors rather than detecting them
via an intrinsic modification to the memory management model. Some memory
errors that should be prevented inside the safe sections of code include:

e Bulffer overflows

e Null pointer dereferences

e Dangling pointers

e Array out-of-bounds errors

e Use-after-free memory errors
e Double-free errors

e Memory leaks

Note that memory leaks are resolved by guaranteeing automatic de-allocation of
memory. The borrow method of managing all allocated memory does not require
garbage collection, which is an inherent advantage of Rust added to Safe C++.

Safe C++ Extensions

The main methods used for safety in the Safe C++ proposal include:

e Safe contexts — code is split into safe and unsafe areas.

e Memory safety — prevention of buffer overflows, array bounds errors, and
null pointer dereferences.

e Explicit mutation — clarification of when memory is modified.

e Borrow checking — guarantees memory addresses and de-allocation.

Note that Safe C++ is inspired by the borrow-lifetimes model in Rust for memory
safety, but does not adopt the Rust language syntax. Rather, Safe C++ maintains
the C++ style of syntax, while adding various safety-related extensions to the
language. Safe C++ also does not adopt other neat features of Rust unrelated to
safety, such as algebraic types or pattern matching. Instead, Safe C++ limits its
focus to safety-related additions, which is more than enough to start!

David Spuler 14

Safe C++ Syntax

The Safe C++ syntax builds on standard C++ syntax, so that existing developers
only need to learn the extensions. Some of the more interesting features of Rust are
not added to Safe C++.

Safe C++ introduces a number of new keywords to the language, such as:

e safe — mark safe contexts for statements or functions.

e unsafe — unsafe contexts and also a specifier.

e mut — explicit mutation contexts indicating memory modification.
e borrow — use of an object without transferring ownership.

e owned — marks objects as being “owned” rather than transferred.
e checked — marks risky areas that are checked at compile-time.

The features of Safe C++ are initially enabled by this line at the top of the C++
code:

#feature on safety

Blocks of code can be declared as “safe” using that as a keyword:

safe {
// code block
}

In a safe code block, all of the code must follow additional rules in relation to
memory safety, such as for pointers and arrays.

Various safe versions of the standard C++ library are available via “std2: :” rather
than “std: :” prefixes. Thus, the Safe C++ proposal requires significant additional
changes to the standard C++ libraries.

The safe keyword is not only for code blocks, but can also be used as a specifier in
declarations. You can declare a function as being “safe” via a special specifier
keyword that is part of its type (like “noexcept”):

void myfunc() safe;

A special keyword “mut” specifies a mutable context, whereby C++ memory
allocation is changed to Rust-like semantics with borrows and lifetimes.

15 Safe C++

Unsafe code blocks can be explicitly created inside Safe C++ functions using the
“unsafe” keyword. Here’s an example: using:

unsafe {
// Block of horrible code
}

The unsafe keyword can also be used in other contexts, such as types or array-
deference operators.

Supporting Safe C++

The draft proposal for Safe C++ needs support from the overall C++ community.
The intention is to develop the standard and then attempt to ratify it as an official
ISO standard. Please take the time to review the draft proposal and give it the full
attention that it deserves.

This proposal needs additional support from industry and feedback to make its way
through the standards process. It already represents over 18 months of work on
both the standards document and a Circle compiler that implements the proposal.
This plan is expected to take another 18 months to complete the proposal and to
implement a compiler and standard library for Safe C++.

Unfortunately, the Safe C++ language is not here already for businesses to use, and
will take some time to come to fruition, with the current estimate putting project
completion in early 2026. I'm not recommending a switch to Rust programming in
the interim. That would be a massive dislocation in software development efforts,
although I'm sure some organizations will make that choice.

Personally, I am recommending a strategy for memory safety that involves doing
some short-term pragmatic actions toward C++ quality improvements. There are
numerous ways to address memory safety and other areas of weakness in the C++
language, while retaining acceptance performance cost. However, the main problem
with this approach is that, although pragmatic in many ways, fully resolving some
of the intractable memory safety issues are too compute-expensive to achieve in the
current C++ language model. Hence, the long-term goal has to be the compile-
time memory safety guarantees, with zero runtime cost, that are achieved in the Safe
C++ proposal.

David Spuler 16

4. Pragmatic Safe C++

Don’t Wait!

There are many actions you can do now to improve C++ safety and resilience.
Many techniques can improve the quality of the code and harden it against bugs
and security glitches. I am certainly not an advocate of switching to Rust, and these
techniques will improve C++ safety while awaiting the full compile-time guarantees
of the Safe C++ standard.

Many of these approaches are internal to the software development processes, and
do not impact the execution speed of the product at the customer’s site at all.
Examples of these zero-impact approaches include:

e Automated testing (i.e., unit testing, regression testing)
e Source code analysis tools
e Using runtime memory checkers in the lab

However, there are a few approaches that may impact performance for customers,
whether this means paying external customers or the internal “customers” using
your code in production.

Approaches that can reduce speed include:
e Leaving self-testing code in the production build (e.g., assertions, self-tests,
parameter validation).
¢ Running dynamic “debug libraries” that can detect and mitigate various

memotry issues.

The performance impact can range from minimal (e.g., testing return codes) to quite
expensive (e.g., memory address validation to the same level as valgrind).

I don’t think your customers want that last one.

17 Safe C++

Hardening C++

Here are some ways to “harden” C++ code against both memory bugs and security
vulnerabilities:

e Unit testing

o Assertions

e Self-testing code blocks

e Debug tracing

e Function parameter validation

e Module-level self-tests

e Error checking of function return codes

Tools and environments are another area to optimize settings for safety:

e Compiler safety options

e Linters and static analyzers

e Debug wrapper libraries

e Memory error detection tools (sanitizers)

Automation of the “nightly builds” and other build-related automatic testing can
be improved:

e Warning-free builds

e Run unit tests via CI/CD approval automation (run-time hardening)

e Run longer regression tests on nightly builds (if too slow for CI/CD).

e Build on multiple compilers and platforms (compile-time and run-time
hardening)

e Build with different optimization levels

e Have multiple build paths with more or less warnings from compilers
and/or linters.

e Make sure someone’s fixing all these warnings!

General policies around the development of C++ for greater reliability include:
e Coding policies
e Code review on pull requests

e (CI/CD automation
e Automated testing harnesses

David Spuler 18

Software development management issues include overall reliability of the whole
workflow:

e Source code control systems (i.e., git, sv, cvs)
e Bug tracking systems

e Support case tracking systems

e Third-party library management and updates policy
e Release management

e Executables and debug versions management

e Backups policy

Safer Production C++

There are some safe C++ techniques that are fast enough to be considered for
production release. As already mentioned, a lot of assertions, function return
checks, parameter validation checks, and simple self-tests can be optionally left in
production code. The assumption here is that these are all only single value
comparisons, and are thus not costly.

Let us examine a few more speedy self-tests. Some of my targets in this section
include:

e Uninitialized memory usage.
e Already-deallocated memory usage.
e Double-deallocation errors.

These are whole categories of C++ memory safety errors that could be prevented.
Let us examine these ideas in more detail.

Uninitialized memory usage. The simplest idea is to initialize all memory. The
main primitives that create uninitialized memory are malloc and new, and there is
also realloc whenever it expands the block. There are also uninitialized stack
memory blocks from alloca. There are two ways to fix this:

e Auto-intercepts via macros or link-time wrappers that zero the memory.
e Coding policies requiring an immediate call to memset after these

routines.

Surely using memset is very efficient, and this policy will prevent a whole swathe
of common memory errors.

19 Safe C++

Note that this does not address all types of uninitialized memory, as it does not
intercept stack-local variables, such as simple variables and uninitialized non-
static arrays. These can be addressed by a coding policy of never declare any
variable without an initializer. This is not necessary for global variables
or static variables as these are already initialized to zero as part of standard C++.

De-allocated memory detection. A simple trick to prevent most de-allocated
memory usage errors is to write a four-byte magic value into the first bytes of the
deallocated block. Since this memory is being de-allocated, you can write whatever
values you want into it. This method requires the macro or link-time interception
of free and delete.

This method can especially prevent (and detect) any double-deallocation memory
errors. It is easier to do this check because both free and delete should always
be given an address at the start of an allocated memory block. Hence, these
deallocation primitives should first check for the magic value (and avoid
deallocation if found), before setting the magic value themselves before
deallocation. This method can trigger a few false positives, resulting in only memory
leaks, and also requires intercepted memory allocation primitives to ensure that no
blocks are less than four bytes.

Safer coding policies. If your preference is the use of coding policy guidelines for
safer C++ (rather than macro-interception of primitives), some of the ways to
address memory safety include:

e Prefer calloctomalloc

e FPollow calls tomalloc or non-object new operations with memset to
zeto.

e DPrecede calls to free with memset, if the size is known.

¢ Add memset at the end of destructors (assuming the size is known).

e Alternatively, write magic values before free or non-object delete, and
at the end of destructors.

There are various other coding policies available on the internet for safer C++
coding. Many of these are focused on secure C++ coding, which mostly achieves
the same thing,.

David Spuler 20

Building QA-Enabled Products

Developers love to get assigned work by the QA department. Hence, it’s beneficial
to build testing enablement capabilities directly into the product itself, to make the
life of the QA staff easiet.

Some ideas for building testing enablement into your product:

e Build separate “debug” versions of your executable with more enabled self-
testing code (this is not just the debug symbols, but enabling memory
checking, stack canaries, or other internal safety features).

e Command-line interface for easier automated testing with scripts and test
harnesses.

e Test-containing version: a debug version that is linked with the unit tests
and has a “~test” command-line option that runs the self-tests itself.

e Add a “-safe” command-line option that enables additional internal
memory safe-checking.

Many of these ideas can also be combined with “supportability” initiatives. After
all, product support is like on-site QA. Some of the opportunities to increase
supportability for customers include:

e Simple way to detect full context details (e.g., build dates and numbers,
versions, etc.)

e Unique error codes in all error messages that customers might see.

e Printing error context details or full stack backtrace for serious failures or
also in logging of less serious problems such as “soft assertions.”

Note that these product features are not just for the QA process, since these safety

capabilities can also be used during development in the automated test runs or the
nightly builds.

Triggering Bugs Earlier

A lot of bugs can be found using the techniques already mentioned. The above
approaches are very powerful, but they can also be limited in some less common
situations:

e Intermittent bugs — hard to reproduce bugs.
e Silent bugs — how would you even know?

21 Safe C++

You can’t really find a bug with gdb or the valgrind memory checker if you can’t
reproduce the failure. It’s probably a memory error nevertheless. On the other
hand, an intermittent failure might be a race condition or other synchronization
errof.

Silent bugs are even worse, because you don’t know they exist. I mean, they’re not
really a problem, because nobody’s logged a ticket to fix it, but you just know it’ll
happen in production at the biggest customer site in the middle of Shark Week.

How do you shake out more bugs? Here are some thoughts:

e Add self-testing code with more complex sanity checks.

e Consider debug wrapper functions with extra self-testing.

e Add more function parameter validation

e Auto-wrap function calls ensure error return checking for a// calls.

Consider non-memory bugs with changes such as:

e Arithmetic overflow or undertlow is a very silent bug for both integers and
floating-point (e.g., check unsigned integers aren’t so high they’d be
negative if converted to int).

¢ Add some assertions on arithmetic operations (e.g., tests for floating-
point NaN or negative zero).

With all of these things, any extra runtime testing code requites a shipping policy
choice: remove it for production, leave it in for production, only leave it in for beta
customers, leave in only the fast checks, and so on.

If you're still struggling with an unsolvable bug, here are a few “hail Mary” passes
into the endzone:

e Review the latest code changes; it’s often just a basic mistake hidden by
“code blindness.”

e Add alot of calls to synchronization primitives or run single-threaded to
rule out concurrency issue.

e Trymemset after malloc or new, or change to calloc.

And some other practical housekeeping tips can help with detecting new bugs as
soon as they enter the source code.

David Spuler 22

Plan ahead for future failure detection.

e Examine compiler warnings and have a “warning-free build” policy.

e Have a separate “make 1lint” build path with lots more warnings
enabled.

e Keep track of random number generator seeds for reproducibility.

e Add some portability sanity checks, such
as: static assert (sizeof (float)==4);

I guarantee that last one will save your bacon one day!

Compiler Vendor Safety

The various compiler vendors could assist in increasing the level of safety in C++.
Let us examine the use of additional safety in existing practices, as an interim step
before moving to full memory safety in a future Safe C++ standard. The ideas
below assume the compiler vendors could make changes to:

(a) The code generation features of some operators, and
(b) The Standard C++ library routines (e.g., malloc and new).

This is also just a first commentary. I am sure that the compiler designers who do
this kind of stuff all day long could come up with a much more extensive proposal,
perhaps with additional levels of trade-offs and individual settings for various sub-
types of techniques.

The focus here is to go beyond what is possible via macro or link-time intercepts
in your own safety wrapper library. There are additional techniques that can only
be applied by the compiler, which are difficult or impossible to do via intercepts.
The idea of this section is not necessarily for the safety modes to be used in
production, although perhaps the lower levels could be, but to allow multiple levels
of safety runs to be used in development practices. For example, a separate build
path to run the unit tests at each different safety level.

The basic idea is a simple option:

-safe

This would turn on safety levels for all of the code by default.

23 Safe C++

This could be overridden by unsafe and safe blocks, as in the Safe C++
proposal. The situations where some memory blocks are allocated or initialized in
an unsafe block needs to be considered carefully.

The extra capabilities that this first-level safety option could enable would include
ways to increase the overall safety of the program, focused on tolerance rather than
detection. Such ideas include:

e malloc and new should initialize memory bytes to zero

e realloc also, when it extends the memory

e Stack memory for automatic variables should initialize all to zero.
e The alloca stack allocation primitive should also zero the bytes.

These methods would not allow toleration of errors, but only reducing their
occurrence. Other possibilities involving both detection and toleration include:

e The standard library functions should all tolerate a null pointer argument
without crashing for all routines.

e Invalid parameters to the standard library should also be blocked (e.g., zero
size to memset).

e The * and [] operators can prevent null pointer uses with a basic test.

e freeand delete should use bit flags in the memory header block to
detect and avoid many invalid address de-allocations.

e Similarly, double deallocation errors could be detected and made harmless.

There are many other possibilities on the theme of “only requires an integer or
pointer test” for higher safety with detection and/or toleration. Obviously, the
compiler could offer each of these capabilities as a separate option, too, rather than
grouped into a particular safety level.

Level 2 Safety

The next level of safety would be possible via a compiler option:
-safe=2

The idea of the second-level safety is to use magic values and/or canaries as part of
the safety net. The initial check is an integer test of a simple four-byte magic value
(or canary), which indicates the high likelihood of an error, in which case a more
expensive analysis of an address can be performed. Overall, this would be very
efficient, but occasionally having false positives. This level two safety check goes
beyond integer or pointer tests, and adds a superset of additional safety checks.

David Spuler 24

Examples of capabilities include:

e malloc and new add magic bytes in their header control block, before
their allocated bytes as usual, to detect overwrites from array underruns.
Alternatively, the header control block itself can be checked for
consistency, without using extra bytes.

e Automatic simple variables are initialized to zero.

e Array memory blocks on the stack have a canary region at both ends, and
a magic value in their first bytes if not initialized.

e The alloca stack allocation function similarly uses two canary regions
and a magic value at the start.

e Global arrays and memory blocks also have a small canary region at both
ends (but they are initialized to zero in standard C++, so there is no magic
value in the first bytes).

e Similarly, they add extra bytes (e.g., four) at the end with canary magic bytes
to detect array overruns.

e malloc and new put a single magic value, possibly a four-byte integer, at
the start of their block indicating “not yet initialized.” The rest of the bytes
inside the block are zeroed for safety.

e Deallocation by free or delete would set a marker in the header control
block, and also a magic value at the first address of the memory block to
indicate “already freed” status. (They would first validate the magic value
to detect freeing uninitialized memory, and check canary overruns at both
ends of the block.)

e Library routines that use or write to an address can check for this magic
byte at the start of the memory block, and only if the value appears to be a
faulty magic byte (indicating never-initialized or already-freed blocks),
initiate more complex tests to check if it’s an invalid block. This only

detects cases involving addresses at the start of a block, rather than in the
middle.

The goal of level two safety is to check magic values, typically a single integer value,
which is relatively efficient. This finds an increasing level of errors, but does not
detect all cases:

e Addresses in the middle of a block are not easily validated.
e Array overruns or underruns via * and [] operators are not detected

immediately, but may be detected by overruns.

It would be too expensive to modify every * and [] operator to detect these
memory errors.

25 Safe C++

However, compilers are already able to auto-detect certain types of loops (e.g., auto-
vectorization), in which case the very first access could be checked, and possibly
the full extent of the loop could be analyzed to determine array overruns by the end
of the loop.

Level 3 Safety

The idea of level 3 safety is similar to what is available from sanitizers such
as valgrind. As such, its performance may be sluggish and inappropriate for
production usage. Since this type of performance is already available via sanitizers,
it may be unnecessary for compiler vendors to add this functionality directly.
However, it should be noted some of the checkers and sanitizers have limitations
(e.g., valgrind cannot detect overruns on non-allocated global memory or stack
memory blocks), whereas compiler designers could offer greater capabilities.

The basic design of this capability involves:

e All addresses are validated and checked, even those in the middle of a
block, or completely outside all blocks.

e All types of memory blocks are validated, including stack memory, read-
only memory, and global memory, whereas the previous levels focused on
heap blocks.

e All library functions have their address parameters validated.

e All address-related operations, such as * and [], will have their addresses
validate.

I remain unconvinced as to the necessity of this high-level safety capability in
compilers. This would be extremely slow to run, and serves as a reminder that what
is really needed is the compile-time memory safety guarantees in the Safe C++
proposal, as these do not have any performance impact at alll

David Spuler 26

5. Al Safety

What is AI Safety?

This chapter explores a number of the additional safety issues that arise in making
an Al application based on Large Language Models (LLMs). Although other
chapters focus more on lower-level C++ issues, they are nevertheless applicable to
Al applications because most of the low-level Al engine code is in C++.

This is mainly because C++ is fast, and Al engines tend to run slow, because they
have billions of parameters to slow them down.

The main additional safety issues in Al application arise because of the weird
properties of LLMs. These are not coding glitches, but are inherent properties in
neural networks. Some of the issues include

Hallucinations — LLMs make up plausible but false answers.
Bias and fairness
e Toxicity

Refusal issues

This chapter is a broad overview of some of these issues. The issue of Al safety
would fully deserve a whole book on the topic.

Al Quality

A quality Al would predict my wishes and wash my dishes. While we wait for that
to happen, the desirable qualities of an Al engine include:

e Accuracy

e Sensitivity

e Empathy

e Predictability
e Alignment

27 Safe C++

Much as I like code, a lot of the “smartness” of the LLM starts with the training
data. Garbage in, garbage out! Finding enough quality data that is ratified to use for
model fine-tuning or a RAG database is one of the hurdles that delays business
deployment of Al applications. Another problem with data quality is that new
models are starting to be trained using the outputs of other models, and this
“synthetic data” is leading to degradation in these downstream models.

At the other end of the quality spectrum, we’ve seen the headlines about the various
types of malfeasance that a low-quality Al engine could perform, such as:

e Bias

e Toxicity

e Inappropriateness

e Hallucinations (i.e., fake answers)

e Wrong answers (e.g., from inaccurate training data)

e Dangerous answers (e.g., mushroom collecting techniques)
e Going “rogue”

And some of the technical limitations and problems that have been seen in various
Al applications include:

e Lack of common sense

e Difficulty with mathematical reasoning

e Explainability/attribution difficulty

e Overconfidence

e Model drift (declining accuracy over time)

e Catastrophic forgetting (esp. in long texts)

e Lack of a “world view”

e Training cut-off dates

e Difficulty with time-related queries (e.g., “What is significant about
today?”’)

e Problems handling tabular input data (e.g., spreadsheets)

e Banal writing that lacks emotion and “heart” (it’s a robotl)

If you ask me, almost the exact same list would apply to any human toddler,
although at least ChatGPT doesn’t pour sand in your ear or explain enthusiastically
that “Dad likes wine” during show-and-tell. Personally, I think it’s still a long road
to Artificial General Intelligence (AGI).

Unfortunately, every single bullet point in the above paragraphs is a whole research
area in itself. Everyone’s trying to find methods to improve the smartness and
reduce the dumbness.

David Spuler 28

Failure Stories for Generative Al

Cautionary tales abound about Generative Al. It’s a new technology and some
companies have released their apps without fully vetting them.

Arguably, sometimes it’s a simple fact that it’s too hard to know all the possible
failures ahead of time with such a new tech stack, but risk mitigation is nevertheless
desirable.

Here’s a list of some public Al failures:

e ChatGPT giving potentially dangerous advice about mushroom picking.

o Google’s release of Al that had incorrect image generation about historical
figures.

e Air Canada’s lost lawsuit over a chatbot’s wrong bereavement flight policy
advice.

e Google Gemini advising to “eat rocks” for good health, and “use glue” on
pizza so the cheese sticks.

e Snapchat’s My Al glitch that caused it to “go rogue” and post stories.

There are some conclusions to draw on the causes of generative Al failures. Many
possible problems can arise:

e Hallucinations

e Toxicity

e Bias

e Incorrect information
e Outdated information
e Privacy breaches.

And that’s only the short list! More details are available later in the chapter.

Consequences of Al Failures

The public failures of Al projects have tended to have severe consequences for the
business. The negative results can include:

e PR disasters
e Lawsuits
e Regulatory enforcement

29 Safe C++

e Stock price decline

However, these very public consequences are probably in the minority, although
they’ve become known in the media. The more mundane consequences for
generative Al projects include:

¢ Not production-ready. Generative Al projects often get stuck in proof-of-
concept status.

e Excessive costs.

e Poor ROL

e Not business goal focused. There’s a tendency to use generative Al for a
project because it’s gotten so much attention, but where the project goal
itself is not well aligned with the business.

e Team capabilities exceeded. Some of this Al stuff is hard to do, and may
need some upskilling.

e Limitations of generative Al. There are various types of projects for which
generative Al is not a good fit, and it would be better to use traditional
predictive Al or even non-Al heuristics (gasp!).

o Legal signoff withheld or delayed (probably for good reason).

A lot of these project-related issues are improving quite quickly. Whereas a lot of
Al projects for businesses were stuck in POC status, they are starting to emerge
now into production usage. The outlook is optimistic that Al will start to deliver
on its promised benefits for businesses and individuals.

Data Causes of Al Failures

Not all failures are due to the model or the Al engine itself. The data is another
problematic area, with issues such as:

e Surfacing incorrect or outdated information (e.g., everything on the
company’s website gets potentially read by the Al engine, and it doesn’t
know if it’s incorrect).

e Sensitive data leakage. Accidentally surfacing confidential or proprietary
data via an Al engine can occur, such as if the training data hasn’t been
propetly screened for such content. If you’re putting a disk full of PDF
documents into your fine-tuning or RAG architecture, better be sure
there’s no internal-use-only reports in there.

e Private data leakage. Another problem with using internal documents, or
even public website data, is that they may accidentally contain private
personally-identifying individual information about customers or staff.

David Spuler 30

e IP leakage. For example, if your programmers upload source code to cloud
Al for analysis or code checking, it might be exposing trade sectrets or other
IP. Wortse, the secret IP could end up used for training and available to
many other users.

e History storage. Some sensitive data could be retained in the cloud for a
much longer time than expected, if your cloud Al is maintaining session or
upload histories about its usets.

The LLM isn’t “self-aware” enough to know when the data is faulty. In typical
usage, the LLM will take any data at face value, rather than trying to judge its
authenticity. LLMs are not particularly good at identifying sarcasm or the underlying
bias of a particular source.

Types of Al Safety Issues

There are a variety of distinct issue in terms of appropriate use of Al. Some of the
categories include:

e Bias and fairness

e Inaccurate results

e Imaginary results (“hallucinations”)
e Inappropriate responses

There are some quality issues that get quite close to being philosophy rather than
technology:

e Alignment (ensuring Al engines are “aligned” with human goals)
e Overrideability/interruptibility
e Obedience vs autonomy

There are some overarching issues for Al matters for the government and in the
community:

e Ethics

e Governance

e Regulation

e Auditing and Enforcement
e Risk Mitigation

31 Safe C++

Code reliability. A lot of the discussion of Al safety overlooks some of the low-
level aspects of coding up a Transformer. It’s nice that everyone thinks that
programmers are perfect at writing bug-free code. Even better is that if an LLM
outputs something wrong, we can just blame the data. Hence, since we may rely on
Al models in various real-world situations, including dangerous real-time situations
like driving a car, there are some practical technological issues ensuring that Al
engines operate safely and reliably within their basic operational scope:

e Testing and Debugging (simply avoiding coding “bugs” in complex Al
engines)

e Real-time performance profiling (“de-slugging”)

e Error Handling (tolerance of internal or external errors)

e Code Resilience (handling unexpected inputs or situations reasonably)

Jailbreaks

Let us not forget the wonderful hackers, who can also now use words to their
advantage. The idea of “jailbreaks” is to use prompt engineering to get the LLM to
answer questions that it’s trained to refuse, or to otherwise act in ways that are
different to how it was trained.

It’s like a game of trying to get your polite friend to cuss.

Sometimes the objectives of jailbreaking are serious misuses, and sometimes it’s just
to poke fun at the LLM. Even this is actually a serious concern if something dumb
the LLM says goes viral on TikTok.

There are various types of jailbreaks for each different model. Sometimes it’s
exploiting a bug or idiosyncrasy of a model. There was a recent example with a
prompt that contained long sequences of punctuation characters, which for some
reason caused some models to get confused.

Another type is to use the uset’s prompt text to effectively override all other global
instructions, such as “forget all previous instructions” or overriding a persona with
“pretend you are a disgruntled customer.”

These prompt-based instruction-override jailbreaks work because of the way that
global instructions and user queries are ultimately concatenated together, and many

models don’t know which is which.

David Spuler 32

Models need explicit training against these types of jailbreaks, which is usually part
of refusal training. This type of training is tricky and needs broad coverage.

For example, a recent paper found that many refusal modules could be bypassed
simply by posing the inappropriate requests in past tense (“how did they make
bombs?”) rather than present tense (“how to make a bombr”), which shows the
fragility and specificity of refusal training.

Risk Mitigations

When building and launching a generative Al project, consider taking risk
mitigation actions, such as:

e Data cleaning

e LLM safety evaluations

¢ Red teaming

e Expedited update process

Safety in, safety out. Data quality issues can cause a variety of harms. Some of the
areas to filter in a training data set or a RAG content datastore, include:

e Profanity (cuss words)

e Sensitive topics

e Insults, anger, or harmful tones

e Personally identifiable information (e.g., names, cell phone numbers, postal
addresses, email addresses, etc.)

e DPersonal financial details (e.g., credit card numbers, bank details, credit
reports, lists of transactions)

e Personal identity numbers (e.g., social security numbers, drivers’ licenses,
passportt details)

e Personal histories (e.g., what products they bought from you, or what web
pages they visited).

e Out-of-date information

e Company proprietary information

e Internal conversations about issues (e.g., in an internal support database)

Being update-ready. LLMs are too flexible for you to realistically cover all the
problems ahead of time. Hence, when you launch a new Al-based application, your
team should be ready to quickly address issues as they arise with users.

33 Safe C++

If an odd response from your chatbot goes viral on social media, youll want to
block that problem quickly. It’s not good if you have a 48-hour build process to put
a correction live. Rather, you ideally would have a configurable prompt shield
method, which can be configured on-the-fly with new query strings to block, so
that users get a very polite refusal message instead of fodder for all their TikTok
followers.

Refusal Modules and Prompt Shields

LLMs have “refusal” modules designed to stop it from telling you how to build a
nuclear weapon in your garage. Mostly, these responses are trained into the weights
of the module using specialized data sets, but there are also “prompt shield”
modules designed to stop dubious queties ever getting to the model.

There are literally dozens of different types of malfeasance that LLM refusal training
data sets have to contend with. Maybe don’t look too closely into the text of that
data.

Some models do better than others at refusing inappropriate requests, and there are
even leaderboards for “security” of LLMs on the internet.

Prompt shields are modules that block inappropriate queries. They differ from
refusal modules in LLMs in that they block the query before it goes to the LLM.

These modules can be designed in heuristic ways (e.g., block all queries with cuss
wotds), or, for more generality, use a small LLLM to do a quick check via “sentiment
analysis” of the appropriateness of the topic of the query as a pre-check.

Prompt shields can also act as a minor speedup to inference engines because they
reduce the load on the main LLLM. They can block not only inappropriate questions,
but other miscellaneous incorrect queries, such as all blanks, or all punctuation
marks.

On the other hand, maybe you want to send those typo-like queries through to your
bot so that it can give a cute answer to the user. On the other, other hand, one of
the recent obscure jailbreak queries that was discovered used a query with dozens
of repeated commas in the text, so maybe you just want to block anything that looks
weird.

David Spuler 34

Al Engine Reliability

If your C++ application is an Al engine kernel, there are a lot of issues with
reliability. We want our Al model to be predictable, not irrational. And it should
show bravery in the face of adversity, rather than crumble into instability at the first
sign of prompt confusion. At a high-level, there are various facets to Al engine
reliability:

e Accuracy of model responses

e Safety issues (e.g., bias, toxicity)

e Engine basic quality (e.g., not crashing or spinning)
e Resilience to dubious inputs

e Scalability to many users

How to make a foundation model that’s smart and accurate is a whole discipline in
itself. The issues include the various training and other algorithms in the
Transformer architecture, along with the general quality of the training dataset. Such
issues aren’t covered in this chapter.

Aspects of the C++ code inside your Transformer engine are important for its basic
quality. Writing C++ that doesn’t crash or spin is a code quality issue with many
techniques. This involves coding methods such as assertions and self-testing, along
with external quality assurance techniques that examine the product from the
outside.

Resilience is tolerance of situations that were largely unexpected by programmers.
Appropriate handling of questionable inputs is a cross between a coding issue and
a model accuracy issue, depending on what type of inputs are causing the problem.
Similatly, the engine should be able to cope with resource failures, or at least to
gracefully fail with a meaningful response to users in such cases. Checking return
statuses and exception handling is a well-known issue here.

A system is only as reliable as its worst component. Hence, it’s not just the
Transformer and LLM to consider, but also the quality of the other components,
such as:

e Backend server software (e.g., web server, request scheduler)
e RAG components (e.g., retriever and document database)
e Vector database
e Application-specific logic (i.e., whatever your “Al thingy” does)
e Output formatting component
e User interface
35 Safe C++

Most other chapters in this book are about how to make your C++ code reliable,
whether it’s in an Al engine or other components. This includes various aspects of
“code quality” and also ways to tolerate problems such as exception handing and
defensive programming.

David Spuler 36

6. Safe C++ Tools

Tools Overview

There are several distinct types of C++ tools that improve the overall quality. Some
of them focus on memory safety issues, whereas other tools have a broader range
of features. The general categories with a specific focus on safety issues include:

e Runtime memory checkers (i.e., sanitizers, valgrind)
e General sanitizers (non-memory issues)

e Linters and static analysis tools

e Automated test harnesses

e Test coverage tools

e Security vulnerability analysis tools

In addition, some of the general programming tools are important in making a
significant impact on programmer productivity and overall quality. These include:

e IDE environments (without and without Al copilots)
e Compilers (with useful warnings and runtime features)
e Interactive debuggers (IDE-based debuggers and gdb)
e Performance profilers (IDE-based or command-line)
e Tracing tools

Runtime Memory Checkers

There are a variety of runtime memory checkers available to find memory errors in
C++. I remember using Purify back in the 1990s, and it still exists today. However,
there are several free high-quality memory sanitizer tools now. Some examples
include:

e Valgrind

e AddressSanitizer (Asan)
e MemorySanitizer (Msan)
e LeakSanitizer

37 Safe C++

There are also runtime checkers with a broader focus than memory safety issues:

e ThreadSanitizer (Tsan)
¢ UndefinedBehaviorSanitizer (UBSan)

Several compilers and IDEs have builtin support for running sanitizers. GCC has
options such as:

-fsanitize=address
-fsanitize=kernel-address
-fsanitize=hwaddress
-fsanitize=thread

-fsanitize=leak
-fsanitize=undefined
-fsanitize=signed-integer-overflow
-fsanitize=bounds

That’s only some of the GCC runtime error checking options for sanitizing. There

are many more options, including granular control over specific types of etror
checks.

Valgrind

The Linux version of Valgrind Memcheck is very capable and well supported. The
method to use the Valgrind tool for Linux on your application is simply to run the
executable:

valgrind a.out

If Valgrind is not installed in your Linux environment, you'll need to do something
like this:

apt install valgrind

The start of the Valgrind output is like this:

==1143== Memcheck, a memory error detector

==1143== Copyright (C) 2002-2017, and GNU GPL’d, by Julian
Seward et al.

==1143== Using Valgrind-3.18.1 and LibVEX; rerun with -h for
copyright info

==1143== Command: ./a.out

David Spuler 38

As it executes your program, the output from your program will be interleaved with
error reports from Valgrind. Hopefully, there won’t be any!

The end of the Valgrind execution gives you a nice summary of memory leaks and
errors (abridged):

==1143==
==1143==
==1143==

==1143==
—=1143==
==1143==
—=1143==
==1143==
—=1143==
==1143==
—=1143==
==1143==
—=1143==

HEAP SUMMARY :
in use at exit: 12,710,766 bytes in 10,810 blocks
total heap usage: 15,851 allocs, 5,041 frees,
47,396,077 bytes allocated

LEAK SUMMARY:
definitely lost: 0 bytes in 0 blocks
indirectly lost: 0 bytes in 0 blocks
possibly lost: 30,965 bytes in 199 blocks
still reachable: 12,679,801 bytes in 10,611 blocks
suppressed: 0 bytes in 0 blocks
Rerun with --leak-check=full to see leaked memory

ERROR SUMMARY: 0 errors from 0 contexts

Running programs in Valgrind is obviously slower because of the instrumentation,
but this is also true of similar sanitizer tools.

Gnu Debugger: gdb

I’m a big fan of gdb for debugging standard C++ on Linux. The basic commands

for gdb are:

e rorrun— run the code (with optional arguments), or restart if already
running.

e cor continue — continue running (after stopping at a breakpoint).

e s or step — stepping through statements (also just Enter).

e where — stack trace (also aliased to “bt” for backtrace).

e list — source code listing

e porprint — print a variable or expression.

[] up

(] n or next

39 Safe C++

Abnormal program termination

gdb batch mode. You can detect this program crash better in gdb as it will trap
the signals, so just run an interactive debugging session. Alternatively, if you have a
simple reproducible case, you can automate this with batch mode, where the
command to run is like this:

gdb -batch -x=gdbtest.txt a.out
The batch input file is a set of gdb commands:

run
where
exit

Here’s an example output (abridged):

Thread 1 "a.out" received signal SIGSEGV, Segmentation fault.
0x00007ffff7cdfade in ?? () from /lib/x86 64-linux-gnu/libc.so.6
#0 0x00007ffff7cdfade in ? from /lib/x86 64-linux-gnu/libc.so.6
#1 0x000055555555fdb5 in aussie malloc(void**, int) ()

#2 0x0000555555562ea9 in aussie run clear vector (int) ()

#3 0x00005555555633aa in main ()

A debugging session is active.

Inferior 1 [process 5143] will be killed.

Quit anyway? (y or n) [answered Y; input not from terminal]

There are various other useful things that can be automated using batch gdb and
various script commands. For example, you can use it as a trace mechanism that
prints out the stack trace at every call to a certain function.

Pre-Breakpointing Trick

One advanced tip for using gdb is to define a function called “breakpoint” in
your C++ application. Here’s an example:

void breakpoint ()

{
volatile int x = 0;
x = 0; // Set breakpoint here

David Spuler 40

It looks like a silly function, but it serves one useful purpose. The idea is that when
you start a new interactive debugging session with gdb, or automatically in your
“.gdbinit” resource file, you can set a breakpoint there:

b breakpoint

Why do that? The reason is that you also add calls to your “breakpoint” function
at relevant points in various places where failures can occur:

e Error check macros

e Assertion macros

e Debug wrapper function failure detection
e Unit test failures

Hence, if any of those bad things happen while you’re running interactively in the
debugger, you’re immediately stopped at exactly that point. If you’re not running in
the debugger, this is a very fast function (though admittedly, it can’t be inlinel),
so it doesn’t slow things down much. You can even consider leaving this in
production code, since the breakpoint function is only called in rare situations
where a serious failure has already occurred, in which case execution speed is not a
priority.

This technique is particularly useful because don’t have to go back and figure out
how to reproduce the failure, which can be difficult to do for some types of
intermittent failures from race conditions or other synchronization problems.
Instead, it’s already been pre-breakpointed for you, with the cursor blinking at you,
politely asking you to debug it right now, or maybe after lunch.

Postmortem Debugging

Postmortem debugging involves trying to debug a program crash, such as a “core
dump” on Linux. In this situation, you should have a “core” file that you can load
into gdb. The command to use is:

gdb a.out core

Unfortunately, not all errors in an application will trigger a core dump, so you might
have nothing to debug if it doesn’t.

Programmatic C++ core dumps. One way to ensure that you get a core file is
to trigger one yourself with the abort function. For example, you might do this in
your assertion failure routines or other internally self-detected error states.

41 Safe C++

You can even do this without exiting your application! If you’re wanting to have
your application to take control of its own core dumps (e.g., exceptions, assertion
failures, etc.), there are various points:

e You can always fork-and-abort on Linux.
e Surely you can write some code to crash!

On the other hand, maybe you’re only thinking about core dumps because you want
to save debug context information. Doing this might obviate the need for a core

dump:

e Use std: :backtrace or another backtrace library.
e Print error context information (e.g., user’s query)
e Print platform details

Customer core dumps. One of the supportability issues with postmortem
debugging is that you want your customers to be able to submit a core file that
they have triggered in your application. These are usually large files, so there are
logistical issues to overcome with uploads.

Another issue is that in order to run gdb on a core file, the developer needs to
have exactly the right executable that created the core dump. Hence, your build and
release management needs to maintain available copies of all executable files in
versions shipped to customers or in beta testing (or to internal customers for in-
house applications). This means not only tracking the production releases of
stripped executables, but also the correlated debug version of the executable with
symbolic information.

Also, there needs to be a command-line option or other method whereby the phone
support staff can instruct customers to report the exact version and build number
of the executable they are using. It’s easy to lose track!

References

1. GNU, Sep 2024 (accessed), 3.8 Options to Request or Suppress Warnings
(GCC warning options), https:/ /gcc.gnu.org/onlinedocs/gec/Warning-
Options.html

2. GNU, Oct 2024 (accessed), 3.72 Program Instrumentation
Options https:/ /gcc.gnu.org/onlinedocs/gec/Instrumentation-
Options.html

3. GNU, Oct 2024 (accessed), 3.9 Options That Control Static Analysis,
https://gcc.gnu.org/onlinedocs/gee/Static-Analyzer-Options.html

David Spuler 42

https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html

7. Non-Memory Safety Issues

The Other 30%

If Microsoft and Google both report that 70% of issues are related to memory
safety problems, that means there are 30% that are #oz. What type of non-memory
errors are problematic? Some of the main examples include:

e Logic errors (i.e., simple programming mistakes and other reasons).
e Arithmetic overflow and underflow

e File I/O errors

e Multithreading concurrency problems (e.g., race conditions).

Some of these are language-specific in relation to C++ syntax, whereas others arise
in all programming languages. Multithreaded code or other types of concurrency is
simply an order-of-magnitude more complex for programmers than sequential
coding. Programmers are also prone to making all sorts of dumb mistakes or simple
misunderstandings within the algorithm they are coding.

Code Blindness and Copy-Paste Errors

Setious errors in C++ software don’t need to come from intrinsic properties of the
programming language. Nor are they all related to memory safety or other
undefined arithmetic issues.

There can also be simple logic errors arising from programmer fallibility. They are
also very common in any use of “copy-paste” in coding.

There are many programming idioms that are commonly used by programmers and
yet carry the risk of occasional serious errors. One of the main ways these errors

get introduced is “copy-paste” of a block of code.

For example, one of the most common idioms is the use of an integer loop variable
in a for loop. A correct for loop header looks like:

for (1 = 1; i <= 10; i++)

43 Safe C++

However, when programmers “copy-and-paste” program statements there are
some errors that often arise. When asked to loop down from 10 to 1, a lazy
programmer will copy and change the above for loop header, a highly error-prone
practice.

One such error is that ++ is not changed to —- as below:
for (i = 10; i >= 1; i++) // ERROR

This will cause a loop that is (almost) infinite. It will terminate only when integer
overflow causes i to become negative.

A similar use of copy-and-paste without due care has caused a similar error in the
code below with nested loops:

for (1 = 1; i < n; 1i++)
for (j = 0; j < n; i++) // ERROR
arr[i] [J] = O;

Can you see the bug? It’s hidden by “code blindness” if you can’t.

Arithmetic Overflow and Underflow

Surprisingly, arithmetic errors are a reasonably common attack vector for malicious
actors. Many C++ programs largely ignore the issue of overflow.

However, when you consider that integers are often used as indices in arrays and
strings, it becomes clear that intentionally overflowing an index variable could cause
modification to memory in any other locations. This is one level of indirection
removed from buffer overflows, but it gets to the same thing,.

What are the solutions to arithmetic overflow?

e Compiler-supported “safe arithmetic” modes.
e Manual self-checks for overflow and underflow.
e Safe integer wrapper classes.

Having a compiler safe mode that fixes arithmetic overflow is likely to be
prohibitively expensive. Consider having every operator needing to check for
integer overflow, or similarly all floating-point arithmetic needing to check
for NaN or similar problems.

David Spuler 44

Fortunately, the effects of arithmetic overflow and underflow are well-defined in
practice, even if they are officially “undefined behavior” in code. The effects are:

e Signed integer overflow — from INT MAX to a large negative (INT MIN).

e Signed integer underflow — from INT MIN (negative)
to INT MAX (positive).

e Unsigned integer overflow — from UINT MAX around to zero.

e Unsigned integer underflow — from zero around to UINT MAX.

Self-testing arithmetic overflow. Self-tests for integer overflow can be things like
this:

int 1 = sz * sizeof (float);
assert (i > 0);

However, note that the above may detect overtlow in the lab, but if you have “soft
assertions” that don’t abort, then it doesn’t actually prevent a malicious actor from
abusing it. Instead, you could manually define the code:

if (1 < 0) {

assert (i > 0);
abort () ;

However, that block of code recks of copy-paste errors. Maybe you need a method
of defining “hard assertions” like:

assert abort (i > 0);
Testing for signed integer overflow becomes:

i++:
assert abort(i > 0);

Testing for signed integer underflow becomes:

i--;
assert abort (i < 0);

45 Safe C++

Testing for unsigned integer overflow is:

u++;
assert _abort(u != 0);

Testing for unsigned integer underflow is:

i--;
assert abort(u != UINT MAX);

Note that all of these are tests affer the overflow or underflow has already occurred.
This idea of “post-testing” for integer overflow also generalizes to other arithmetic
operations, such as addition or multiplication. There is also hardware support in
some CPUs for detecting an arithmetic operation that caused an overflow.

Pre-testing. Post-testing is probably acceptable, since it’s not the actual arithmetic
overflow or underflow that causes the vulnerability, but the misuse of the integer
variable afterwards.

However, you can also do “pre-testing” of simple forms of integer overflow, such
as from increment or decrement.

assert_abort (i != INT_MAX); // Int overflow pre-test
i++;

assert_abort (i != INT_MIN); // Int underflow pre-test
i-=;

assert _abort(u != UINT MAX); // Unsigned overflow
ut+;

assert abort(u != 0); // Unsigned underflow pre-test
u--;

Note that unsigned arithmetic testing also applies to various commonly-used builtin
types, such as size t.

David Spuler 46

Insidious C++ Coding Errors

If you’re one of the many who often ignore C++ compiler warnings, here’s a few
examples of things that cause insidious program failures. The only redeeming point:
many of them get warnings from the C++ compiler.

Aliasing in the overloaded assignment operator
The definition of an overloaded “operator=" function for a class should always
check for an assignment to itself (i.e., of the form “x=x"). Consider the following

simple MyString class:

class MyString {

private:
char* m str;
public:
MyString() { m str = new char[1l]; m str[0] = '\0'; }

MyString (char* s)
{

m str = new char[strlen(s)+1];
strcpy(m str, s);
}
void operator =(const MyStringé& s);
~MyString() { delete[] m str; }
void print() { printf("STRING: %$s\n", m_str); }
}i

void MyString::operator = (const MyStringé& s)

{
delete[] m _str; // delete old string
m str = new char[strlen(s.m str) + 1]; // alloc memory
strcpy(m str, s.m str); // copy new string

The above code looks fine, but this contains a hidden error that appears only if a
string is assigned to itself. Consider the effect of the code:

MyString s ("abc");
s = s;

s.print();

When the assignment operator is called, the argument s is the same as the object
to which the member function is applied.

a7 Safe C++

Therefore, the addressesm strand s.m strare the same pointer, and
the delete operator deallocates an address that is immediately used in the
subsequent strlen and strcpy function calls. Thus, these operations apply to
an illegal address with undefined behavior, and it fails with a crash or garbage
output.

This error is an example of a general problem of aliasing in the use of overloaded
operators, especially the = operator. The object to which the operator is applied is
an alias for the object passed as the argument. Any modifications to the data
members also affect the data in the argument object. This type of error is very
difficult to track down because it occurs only for one particular special case, and
this case may not occur very often. This error is not restricted
to operator= ,although this is its most common appearance. Similar aliasing
errors may also occur in other operators such as +=, or in non-operator member
functions that accept objects of the same type.

The correct idiom to avoid this problem of aliasing is to compare the implicit
pointer, this, with the address of the argument object (which must be passed as a
reference type). If these addresses are the same, the two objects are identical and
appropriate action can be taken for this special case. For example, in
the MyString class the correct action when assigning a string to itself is to make
no changes, and the operator= function becomes:

void MyString::operator = (const MyString& s)
{

if (this != &s) { // Correct!
delete[] m str;
m str = new char[strlen(s.m str) + 1];
strcpy (m _str, s.m str);

Accidental empty loop

A common novice error with loops is to place a semicolon just after the header of
a for or while loop. Syntactically, this is correct, so the compiler gives no error
message. However, it changes the meaning of the loop. For example, consider the
code:

for (i = 1; i <= 10; i++); // Extra semicolon

// body of loop

David Spuler 48

This is interpreted as:

for (1 = 1; i <= 10; i++)
; // empty loop

// body of loop executed only once

Semicolons are statements in C++.

The effect of this is that the body of the loop is assumed to be an empty loop by
the compiler. The block after the loop header (the real loop body) is only executed
after the loop has finished, and is executed only once.

Worse still, the accidental empty loop may cause an infinite loop if the condition is
not being changed in the header.

Dangling else error

The rule that an else always matches the closest 1f is usually satisfactory.
However, there are occasions where “dangling else” errors can arise in
nested if statements such as:

if (y < 0)
if (x < 0)
x = 0;
else // Bug!
y = 0;

Based on the indentation used by the programmer, the else clause is presumably
intended to match the first 1£. However, the compiler matches the else with the
second (closest) 1f, and compiles the code as if it were written as:

if (y < 0) |

if (x < 0)
x = 0;
else
y = 0;

49 Safe C++

The method of avoiding this error is to always use braces around the
inner if statement when using nested if statements.

if (y < 0) { // Correct
if (x < 0)
x = 0;
}
else
y:OI

sizeof array parameter

There is another situation when the sizeof operator computes surprising results
when applied to a function parameter of array type. The error is illustrated by the
following function:

void test sizeof (int arr[3])

{

printf ("Size is %d\n", (int) sizeof(arr));

The computed size is expected to be 3*sizeof (int), usually 12. However, the
actual result will usually be 4 or 8. This is because the sizeof operator is actually
being applied to a pointer type. An atray parameter is converted to the
corresponding pointer type and it is this type that sizeof applied to. Therefore,
the output result is exactly sizeof (int*), which is the size of a pointer,
commonly 4 or 8.

Accidental string literal concatenation

String concatenation is a relatively obscure feature of C++ that allows consecutive
string literals to be merged into a single string literal. Concatenation of string literals
takes place after the usual preprocessing tasks (i.e., after macro expansion), but
before parsing.

An example of its usage is that the following code:

char *prompt = "Hello "
"world";

David Spuler 50

This looks like a typo to beginner C++ programmers, but is totally valid C++ that
will be equivalent to:

char *prompt = "Hello world";

Once you get used to it, this is a very helpful C++ feature that is most useful for
writing long string literals on multiple lines. In particular, it avoids the pitfalls that
line splicing, with backslashes at the end of a line, has involving whitespace inside
string literals.

Unfortunately, the fact that the compiler (or preprocessor) performs this
concatenation automatically without any warning can also lead to strange errors.
Consider the following definition of an array of strings:

char *arr[] = { "a", "b" "c" }; // Missing comma!

The absence of the second comma causes “b” and “c” to be concatenated to
produce “bc” and arr is defined to hold 2 strings instead of 3. Even if the array
size were explicitly declared as 3 (i.e., char*arr[3]) many compilers would still
not produce a warning, since having too few initializers is not an error.

Octal integer constants

Any integer constant beginning with 0 is treated as an octal constant. This creates
no problem with 0 itself since its value is the same in both octal and decimal, but
there are dangers in using prefix zeros on integer constants. Nevertheless, the
temptation to use initial zeros in numbers can arise occasionally. For example,
consider representing 4-digit phone extension numbers as integers:

struct { char *name; int ext number; } arr[] = {
{ "Mary", 7234 },
{ "John", 3467 },
{ "Elaine™, 0135 } // Bug!

}i

The phone number 0135 will be interpreted as an octal constant, and won’t equal
decimal 135. It’s value in octal is 1*64+3*8+5=93,

51 Safe C++

Nested Comments Hide Statements

Nested /* comments are not allowed in C++, although they might trigger a
warning. This creates an insidious problem if you accidentally leave off the
closing */ for a comment. Note that there’s no similar issue with the // style of
commenting. Consider this CUDA C++ code:

__global void matrix add safe puzzle8(
float *m3, const float *ml, const float *m2,
int nx, int ny)

int x = blockIdx.x * blockDim.x + threadIdx.x;
int vy = blockIdx.y * blockDim.y + threadIdx.y;
if (x < nx /*X* / && y < nx /*Y*/) {

int id = x + y * nx; // Linearize

m3[id] = ml[id] + m2[id];

There’s a nested comment problem that will comment-out the “y < nx” test,
because there’s an accidental space between “*” and “/” in the first comment.
You’d probably get a compiler warning, and hopefully you pay attention to them!

David Spuler 52

8. Undefined C++ Features

What are Undefined Behaviors?

The C++ programming language is very portable despite its low-level focus on
efficiency. However, there are numerous areas of the C++ language that are
“undefined behaviors” and some of them are relatively common.

Technically, there are two types:

e “undefined behaviors” — compilers can do whatever they like, even
differently each time, or
e “implementation-specific behaviors” — compilers can do whatever they

like, but they have to be consistent in doing the same thing every time.

If you’ve never heard of this, well, actually you have. You’re certainly familiar with
some of the undefined behaviors, like accessing an uninitialized value, a null pointer
dereference, or accessing a memory address that has already been de-allocated.

In other words, all the memory bugs are from undefined behaviors.

Some of the indicators that you’ve accidentally used an undefined behavior include:
e Portability problems where the code crashes on different platforms.
e Use higher optimization levels causes the code to crash.

e Code runs fine in the debugger, but fails without it.

These are also indicators of a memory safety failure, which underscores my point
that the most common type of undefined behavior is related to memory errors.

53 Safe C++

Safety Issues for Compiler Vendors

We’ve examined various types of problems that can be addressed by memory debug
libraries and other debug wrapper libraries. But we can’t do everything that way.

Here are some of the issues that are hard to address without changing the code-
generation of the compiler. In other words, they can’t be detected or resolved by
changes to the standard C++ library alone.

Some of the problematic ateas include:

e Initialization of automatic stack variables without an explicit initializer (i.e.,
auto-initialization to zero).

e Checking pointer de-references have a valid address.

e Checking array accesses have a valid address.

e Race conditions and other concurrency problems.

e Integer overflow and underflow (signed or unsigned types).

e TFloating-point overflow and underflow.

e Order-of-evaluation issues with binary operator operands.

e Otrder-of-evaluation issues with function argument expressions.

e Undefined integer operations on signed negative values (e.g., remainder,
integer division, right bitshift).

e Throwing an exception inside a destructor.

e Calling exit or abort inside a destructor.

That’s not the full list. There are literally hundreds of these obscure “undefined
behaviors” in C++, although most of them are very rare.

Note that some of the most common memory safety issues are not on the above
list. For example, it would be easy for a vendor to change their standard library so
as to guarantee that malloc and new would zero the allocated memory.

These could be fixed in the vendot’s standard library, rather than needing changes
to the compiler engine.

David Spuler 54

C++ Operator Pitfalls

Most of the low-level arithmetic code in C++ algorithms looks quite standardized.
Well, not so much. The general areas where C++ code that looks standard is
actually non-portable includes trappy issues such as:

e Arithmetic overflow of integer or f1oat operators.

e Integer % remainder and / division operators on negatives.

e Right bitshift operator >> on a negative signed integer is not division.

e Divide-by-zero doesn’t always crash on all CPUs and GPUs.

e Otder of evaluation of expression operands (e.g., with side-effects).

e Order of evaluation of function arguments.

e Tunctions that should be Boolean are not always
(e.g., isdigit, isalpha)

e Tunctions that don’t return well-defined results (e.g., strcmp, memcmp,
etc.)

e Initialization order for static or global objects is undefined.

e memcmp is not an array equality test for non-basic types (e.g., structures).

Note that these etrors are not only portability problems, but can arise in any C++
program. In particular, different levels of optimization in C++ compilers may cause
different computations, leading to insidious bugs.

Signed right bitshift is not division

The shift operators << and >> are often used to replace multiplication by a power
of 2 for a low-level optimization. However, it is dangerous to use >> on negative
numbers. Right shift is not equivalent to division for negative values. Note that the
problem does not arise for unsigned data types that are never negative, and for
which shifting is always a division.

There are two separate issues involved in shifting signed types with negative values:
firstly, that the compiler may choose two distinct methods of implementing >>,
and secondly, that neither of these approaches is equivalent to division (although
one approach is often equivalent). It is unspecified by the standard whether >> on
negative values will:

(a) sign extend, or

(b) shift in zero bits.

55 Safe C++

Different compilers must choose one of these methods, document it, and use it for
all applications of the >> operator. The use of shifting in zero bits is never equal
to division for a negative numbert, since it shifts a zero bit into the sign bit, causing
the result to be a nonnegative integer (dividing a negative number by two and
getting a positive result is not division!). Shifting in zero bits is always used for
unsigned types, which explains why right shifting on unsigned types is a division.

Divide and remainder on negative integers

Extreme care is needed when the integer division and remainder operators / and
% are applied to negative values. Actually, no, forget that, because you should never
use division or remainder and if you must, then you choose a power-of-two and
use bitwise operations instead. Division is unsigned right bitshift, and remainder is
bitwise-and.

Anyway, another reason to avoid these operators occurs with negatives. Problems
arise if a program assumes, for example, that -7/2 equals -3 (rather than -4) . The
direction of truncation of the / operator is undefined if either operand is negative.

Order of evaluation errors

Humans would assume that expressions are evaluated left-to-right. However, in
C++ the order of the evaluation of operands for most binary operators is not
specified and is undefined behavior. This makes it possible for compilers to apply
very good optimizing algorithms to the code. Unfortunately, it also leads to some
problems that the programmer must be aware of.

To see the effect of side effects, consider the increment operator in the expression
below. It is a dangerous side effect.

vy = (x++) + (x * 2);
Because the order of evaluation of the addition operator is not specified, there are
two orders in which the expression could actually be executed. The programmer’s

intended order is left-to-right:

temp = x++;
y = (temp) + (x * 2);

David Spuler 56

The other incorrect order is right-to-left:

temp = x * 2;
y = (x++) + (temp);

In the first case, the increment occurs before x*2 is evaluated. In the second, the
increment occurs after x*2 has been evaluated.

Obviously, the two interpretations give different results. This is a bug because it is
undefined which order the compiler will choose.

Function-call side effects

If there are two function calls in the one expression, the order of the function calls
can be important. For example, consider the code below:

x=1£(0) +g90;

Our first instinct is to assume a left-to-right evaluation of the “+” operator. If both
functions produce output or both modify the same global variable, the result of the
expression may depend on the order of evaluation of the “+” operator, which is
undefined in C++.

Order of evaluation of assignment operator

Otder of evaluation errors are a complicated problem. Most binary operators have
unspecified order of evaluation — even the assignment operators. A simple
assighment statement can be the cause of an error. This error can occur in
assignment statements such as:

ali]l = i++; // Bug

T2

The problem here is that “1” has a side effect applied to it (i.e., ++), and is also used
without a side effect.

Because the order of evaluation of the = operator is unspecified in C++, it is
undefined whether the increment side effect occurs before or after the evaluation
of 1 in the array index.

57 Safe C++

Function-call arguments

Another form of the order of evaluation problem occurs because the order of the
evaluation of arguments to a function call is not specified in C++. It is not
necessatily left-to-right, as the programmer expects it to be.

For example, consider the function call:

fn(a++, a); // Bug

Which argument is evaluated first? Is the second argument the new or old value
of a? It’s actually undefined in C++.

Order of initialization of static objects

A special order of evaluation error exists because the order of initialization of static
or global objects is not defined across files.

Within a single file the ordering is the same as the textual appearance of the
definitions. For example, the Chicken object is always initialized before the Egg

object in the following code:

Chicken chicken; // Chicken comes first
Egg egg;

However, as for any declarations there is no specified left-to-right ordering for
initialization of objects within a single declaration.

Therefore, it is undefined which of c1 or c2 is initialized first in the code below:
Chicken cl, c2;

If the declarations of the global objects “chicken” and “egg” appear in different
files that are linked together using independent compilation, it is undefined which
will be constructed first.

David Spuler 58

Standard Library Problems

Not everything is well-defined in the standard C++ library. There are numerous
pitfalls that can jump up and bite you in apparently innocuous uses of the library
functions. Here’s a selection of them below.

memcmp cannot test array equality

For equality tests on many types of arrays, the memcmp function might seem an
efficient way to test if two arrays are exactly equal. However, it only works in a few
simple situations (e.g., arrays of int).

This idea is buggy in several cases:

e Tloating-point has two zeros (positive and negative zero), so it fails.

e Floating-point also has multiple numbers representing NaN (not-a-
number).

e If there’s any padding in the array, such as arrays of objects or structures.

o Bit-field data members may have undefined padding,.

You can’t skip a proper comparison by looking at the bytes.
EOF is not a char

The EOF constant is a special value for C++ file operations. One problem related
to signed versus unsigned chars is comparing a char type variable with EOF.
Because EOF is represented as integer value —1, it should never be directly
compared with a char type. Although it will usually work if characters happen to
be signed for a particular implementation, if any characters are unsigned, the
comparison of a default char type with EOF is not correct since —1 is promoted
to unsigned int, yielding a huge value not representable by a char.

An example of this type of bug:

char ch = getchar();
if (ch == EOF) { ... } // Bug

The correct definition is to use “int ch’ as the declaration.

59 Safe C++

fflush on an input file

The £f1lush function is used to flush the buffer associated with a file pointer.
Unfortunately, it can only be used to flush an output buffer, causing output to
appear on screen (or be flushed to a file). Applying ££1ush on an input file leads
to undefined results; it will succeed on some systems, but cause failure on others.
The problem is typified by the following statement that often appears in code:

fflush(stdin) ;

The intention is to flush all input characters currently awaiting processing (i.e.,
stored in the buffer), so that the next call to getchar (or another input function)
will only read characters entered by the user after the £flush call. This
functionality would be very useful, but is unfortunately not possible in general, as
the effect of ££1ush is undefined on input streams. There is no portable way to
flush any “type ahead” input keystrokes; fflush (stdin) may work on some
systems, but on others it is necessary to call some non-standard library functions.

fread and fwrite without intervening fseek

When a binary file is opened for update using a mode such as “rb+”, the
programmer must be careful when using fread and fwrite. It is an error to
mix fread and fwrite operations without an intervening call to a repositioning
function such as fseek or rewind.

For example, do not assume, after sequentially reading all records in a file
using fread, that a call to fwrite will write data to the end of the file. Instead, use
an fseek call to explicitly reach the end of the file before writing. The best method
of avoiding this file access error is to call the £seek function immediately before
every fread or fwrite call.

Modification of string literals

String literals should not be modified in C++ because they could potentially be
stored in read-only memory. They should be thought of as having type const
char*. Therefore, using char* string types without caution can lead to errors,
such as applying strcpy to a pointer that currently points to a string literal, as
below:

char *result = "yes";
if (...)
strcpy (result, "no"); // WRONG

David Spuler 60

The effect of this code is to try to modify the memory containing the string literal
“yes”. If this is stored in read-only memory the strcpy function has no effect or
possibly a run-time failure.

Even if string literals happen to be modifiable for the particular implementation
this form of modification can lead to strange errors. Overwriting “yes” with “no”
means that the initialization of result will never again set result to “yes”.

The code can be thought of as equivalent to the following code:

char yes addr[4] = { 'y', 'e', 's', '"\0O' };
char *result = yes addr;
if (...)

strcpy (result, "no"); // WRONG

Hence, the strcpy call changes yes addr and the initialization will always set
“result” to whatever yes addr currently contains.

Worse still is the problem that many compilers merge identical string literals so as
to save space. Hence, the above strcpy call will change a/ uses of the constant
“yes” to be “no” throughout the program! Therefore, one change to a string
constant will affect all other instances of the same string constant — a very severe
form of aliasing.

Avoiding the modification of string literals is not all that difficult, requiring only a
better understanding of strings. One solution to the above problem is to use an
array of characters instead of a pointer:

char result[] = "yes";
if (...)
strcpy (result, "no"); // RIGHT

In this case the compiler allocates 4 bytes for result, rather than making it point at
the 4 bytes for the string literal (which was the same address that all uses were
given).

61 Safe C++

Backslash in DOS filenames

Windows and DOS use backslashes for directory paths in filenames, whereas Linux
uses a forward slash character. A common error with file operations occurs when a
DOS filename is encoded with its full path name. The backslash starts an escape
inside the string constant. Hence, the filename below is wrong:

fp = fopen ("c:\file.cpp", "r"); // Bug

The backslash character starts the escape \ £, which is a formfeed escape. The
correct statement uses two backslash characters:

fp = fopen("c:\\file.cpp", "r"); // Correct
Summary
The above is just a selection of some of the undefined and non-portable aspects of
C++. The solution to a fully safe C++ programming language rests not only in
addressing memory safety, but in fixing a lot of these areas. The goal would be to

change all the “undefined behaviors” into “well-defined” parts of the safe C++
standard. Unfortunately, there are many issues to choose from!

David Spuler 62

9. Error Checking

Error Checking

Everyone’s always known that it’s good programming style to check all error return
codes. It’s extra work, but everyone does it anyway, because it’s so important. I've
been coding for years, and I've never seen aprintf or fopen without
an if statement immediately after it.

Yeah, right! Many people don’t even know that printf returns a value, and as
for fopen, this is common:

fp = fopen(fname, "xr");
assert (fp != NULL);

Oh, well, technically that is an error return check! A better way to code it is:
fp = fopen(fname, "r");

if (fp == NULL) {
// Complain...

This is a very common approach in C++ programming, but when you think about
it, there’s a few things wrong with it:

e Relies on the programmer to add this code.
e Copy-paste errors in having error handling sequences everywhere.
e No way to enforce consistency in error handling.

e Enforcing the requirement for return checking is difficult.

This chapter examines some solutions to these problems.

63 Safe C++

Types of Error Checking

Everyone knows the basic idea of checking error returns from system functions.
Let’s have a look at the basic ideas:

e Checking standard library error returns
e Checking your own functions

But there are some other related issues:

e Validating input parameter values (in your own code).
e Validating standard C++ system parameter values (in a debug wrapper).
e Checking errno values (these are not “returned” but set).

And there’s the issue of how to integrate your basic error return checking in a way
that’s consistent with:

e Exception handing (i.e,, try..catch).
e Assertion failure handling

e Self-testing code

e Unit tests and regression tests

e Signal handling

For example, would you want an error detected in a function’s etrror return
to throw an exception?

Function Return Attribute: nodiscard

The [[nodiscard]] attribute can be used in the return type of function
declarations. It encourages the compiler to issue a warning (not an error) if the
function is then used in a way that discards its return check. There are two ways to
use it: the basic way, or a way with an optional message parameter.

[[nodiscard]] int my important function();
[[nodiscard ("Returns important status")]]
int my important function();

Note that the optional parameter can only be a string literal. It cannot be a
computed expression — not even a compile-time constant expression.

David Spuler 64

Obviously, this is helpful for enforcing a policy that certain functions should always
get error-checked. Also, some of the standard library functions will have this setting,
but it’s implementation-specific which ones will.

Suppressing with void casts. You can suppress a warning about discarding a
return value, simply by adding a type cast to void. Examples include:

(void)my important function(); // Not that important
void (my important function()); // Also not

Compatibility before C++17. Note that nodiscard was defined in C++17, but
there have been some earlier attributes used in some C++ compilers, such as
the Noreturn attribute. You probably shouldn’t use these old attributes in
newly-written code, but you might see them during code maintenance.

There is also a generalized version, added in C++20, that allows an optional string
literal containing a message or an explanation. This is obviously useful, but I feel
like it could also get a little abused. Here’s an example:

[[nodiscard ("You idiot!"™)]]
int my important function();

Detecting void casts. I feel like there should be a way to detect where the code
uses a type cast to void so as to override these settings. Otherwise, programmers
can simply work around the nodiscard settings without getting publicly shamed
on the internal Slack channel.

Unfortunately, I'm not aware of a compiler setting for this. Maybe some of the
static analyzer tools have this capability, but you could hand-code a simple solution

with grep:

grep '[(][I1*void[1*[)]"' *.cpp
grep 'void[1*[(][1*[a-zA-Z].*[1*[)]"' *.cpp

The first one is very specific, but the second one might need some refining to avoid
false positives.

65 Safe C++

Recursive Macro Error Checks

C++ allows macros to be recursive in the sense that they can use their own name.
It’s not actually “recursive” and is actually limited to a once-only expansion, rather
than an infinitely recursive expansion. This feature is a longstanding feature of C
and C++ languages since they were created, so you can rely upon it.

For example, these would be harmless:

#define memset (a,b,c) memset (a,b, c)
#define memcpy(a,b,c,d) memcpy(a,b,c,d)

The idea is to automatically add the error check macros:

#define memset(a,b,c) \

AUSSIE ERRORCHECK (memset (a,b,c))
#define memcpy(a,b,c) \

AUSSTE ERRORCHECK (memcpy (a,b, c))

But that doesn’t quite work, when used with this type of call:
errval = memcpy(....);

The do..while (0) trick expands out to give a compilation syntax error:
errval = do { ... // etc.

Similarly, the version with a combined macro and inline function also gets a
different type of compilation error:

errval = aussie check function(....)
The problem is that the return type of the inline function is void. Hence, we’d
need to go back and fix any code that uses the return value of memcpy or memset,

which would be a good job for a coding copilot, if only I didn’t have so many trust
issues.

David Spuler 66

Instead, we can just fix the return type to be void* and use a pass-through of the
return value:

#define AUSSIE ERRORCHECK3 (codeexpression) \
aussie check function2 ((codeexpression), \
__func_, FILE , LINE)

inline void * aussie check function2(
void *expression,
const char *func, const char *fname, int lnum)

if (expression == NULL) {
fprintf (stderr,
"ERROR: Function returned NULL: in %s at %s:%d\n",
func /*_ func_*/,
fname /* FILE */,
lnum /* LINE */);
}

return expression; // pass through!

And we really should add a ridiculous number of round brackets around the macro
parameters, and also use #undef for total macro safety:

#undef memset // safety
#undef memcpy
#define memset(a,b,c) \
(AUSSIE ERRORCHECK3 (memset ((a), (b), (c))))
#define memcpy (a,b,c,d) \
(AUSSIE_ERRORCHECK3 (memcpy ((a), (b), (c), (d))))

Vvila! Now we have a set of macros that automatically adds return code error
checking around all calls to memcpy and memset. And it should work irrespective
of whether their returned values are used or not in the calls.

To use them propetly, we just need to #include a header file near the top of every
C++ source file. But it has to be after any system header files because those system
header files have prototype declarations of functions like memcpy that our tricky
macros will break.

Now we only have to add similar recursive macros for all 1,657 of the Standard
C++ API functions. No, relax, I’'m just kidding. There’s only a few that matter.

67 Safe C++

Macro Intercepted Debug Wrapper Functions

Is there any way you can level up? We’ve already auto-added the error checking
macros around all the standard library function calls. Can we do better? Of course,
we can!

One extension is to build debug wrapper function versions for the main API calls.
These functions can then perform more extensive error self-checking than is
performed within the standard library.

#undef memcpy
void* aussie memcpy wrapper (
void *destp, const void *srcp, size t sz)
{
void *ret =
AUSSIE ERRORCHECK3 (memcpy (destp, srcp,sz));
return ret;

}
#define memcpy(a,b,c) \
aussie memcpy wrapper (a,b,c) // Intercept!

Note that the #undef is really important here, and must be before the wrapper
function body. If we’re not careful, our wrapper function can wrap itself, and
become infinitely recursive.

The above example doesn’t do any extra error checking, other than what we’ve
already put into the error checking macro (i.e., AUSSIE ERRORCHECK3).
However, we could add extra self-checking code for common errors that arise
from memcpy copy-pasting:

e Destination or source pointers are null
e Destination or source pointers are the wrong address scopes
e Destination pointer equals source pointer

The standard library may already find some of those errors, and valgrind or
other sanitizers would find even more. However, we could go further with our
analysis. For example, some more extensive error checks possible could be:

e memcpy size argument is zero or negative (after conversion to size t).
e memcpy arguments appear to be in reverse order.

David Spuler 68

The possible error checks from this type of system function interception are
discussed further in the full chapter on debug wrapper functions.

Reporting and Handling Errors
What should an error checking macro do on failures? Some options include:

e Print an error message

e Print the error code number, such as errno and its name with strerror
e Give source code context information

e Exit the program (or not?)

That’s not the full list, and advanced ideas for production-error handling include:

e Throw an exception and hope someone’s listening.

e Full stack trace (e.g., std: :backtrace in C++23).

e Report a full error context for supportability in the wild.
e Log information to a file, not just to stderr.

e Abort the program to generate a “core” file.

Reporting Error Context

A key aspect of reporting the error context is the C++ statements that triggered the
issue. The basics of error context are these macros:

e func
e FILE
e LINE

I don’t know why one is lower case and two are upper case, but it’s called
international standardization. That’s what makes C++ programming so fun.

However, I have to say that I think these source code context macros are on their
way out. Once reporting the full stack trace in C++23 with std: :backtraceis
widespread, why would we need those macros? Also gone would be lots more
preprocessor macro tricks that only exist in order to report the source code context.
Instead, use an inline function and std: :backtrace. More advanced error
context that can help with supportability includes things like:

e Date and time of error.

69 Safe C++

e User query that triggered the failure.
e Random number seed (for reproducibility of Al errors).
e Full stack trace (if available)

Limitations of Macro Error Checking

Some problem areas include:

e Cannot intercept everything (e.g., can’t intercept arithmetic operators to
check for overtlow or divide-by-zero).

e Macro interception is not perfect, with some valid syntax causing compile
errofs.

Two of these methods rely on preprocessor macro interception to auto-wrap the
calls with debug checks. Unfortunately, macro interception isn’t a perfect solution,
and some of the problems that macros may have include:

e Interception of new and delete operators is only possible at link-time.

e Namespace-scoped calls fail:
e.g.,std: :memcpy(...) or std: :memset (...)

e Use of these standard function names as function pointers won’t work.

e Non-standard calling syntax: e.g., parentheses around the function name.

Much better than macro interception would be a way to link to a debug version of
the standard C++ library. Many more complex error checks are possible than are
performed, and this would significantly improve the timeframe to detect many types
of coding errors.

But I have to finish by saying that the really major limitation is this:
Remenbering to add it every time!

I’'ve given a few suggestions for auto-fixing that issue above, but they’re far from
perfect. Maybe the Standard C++ library needs a callback mechanism, or some
other method whereby programmers can ensure that they never miss an error
return.

David Spuler 70

10. Safe Builds

Build Management

Proper build management can be an important part of C++ safety initiatives. The
aspects of builds related to C++ safety in the development environment are many.

Some examples include:

e Warnings analysis from compiler output.

e Automated unit tests and regression testing.

e Integrated testing with the nightly builds.

e CI/CD approval processes (e.g., tun unit tests).

In regards to external management of builds and releases, there are also
opportunities to improve overall quality:

e Tracking builds and releases (the basics)

e Keeping executables for all builds

e Matching debug versions of executables (for postmortem debugging
purposes).

e Maintaining hash signatures for executable security.

Some of the pitfalls in build management include:

e Inadvertent disclosure of security credentials used in testing.
e Security tracking to ensure hackers cannot add viruses to your builds.

Build engineering is not just about building!

71 Safe C++

Leveraging More Builds

Instead of thinking about how to get the product built, let’s think about ways to
leverage builds for extra quality. The basic method is simply “nightly builds”
whereby:

e Unit tests automatically run.

e Full regression test suite automatically run.

e Tailures are detected.

e Notification via email to the developer team about any failures.

This is a very efficient system. Once it’s setup, there’s very little to maintain. But
we can level it up:

e Run unit tests with valgrind and/or other sanitizers.

e Run the full regression test suite with valgrind and/or other memory
checkers and sanitizers (if it takes more than a day, don’t run it every night).

e Automate analysis of compiler warnings (e.g., remove unimportant ones).

e Add multiple runs of unit tests under different build conditions (e.g., with
and without debug code enabled, with different optimizer levels, with
different compilers).

e Add linters and static analysis tool pathways.

The incremental cost of setting up more builds is relatively low. Hence, if you really
want to finesse things:

e Build and run tests on different hardware platforms (e.g., with local
hardware or via remote virtual machines).

e Run multiple sanitizers, and/or use your own home-grown memory debug
library (e.g., as in this book).

e Use multiple pathways for compiler warnings (e.g., the basic build and one
with many optional compiler warnings enabled).

e Use multiple linter pathways (i.e., one for bug-focused warnings, and one
with more pedantic settings for style issues).

One final point about all these builds: don’t just email the output. A huge ream of
informational messages and compiler warnings causes immediate overload.

David Spuler 72

Instead, someone needs to take the time to grep out the unimportant messages.
Otherwise, anything major detected by unit tests or compiler/linter warnings gets
lost in the snow.

Maybe you shouldn’t take your build engineer for granted. They’re probably less
likely to be replaced by Al than youl!

Warning-Free Build

Don’t ignore compiler warnings! A very good goal for C++ software quality is to
get to a warning-free compile. You should think of compiler warnings as doing
“static analysis” of your code. To maximize this idea, turn on more warning options,
since the warnings are rarely wrong in modern compilers, although some are about
harmless things.

Harmless doesn’t mean unimportant. And anyway, the so-called “harmless”
warnings aren’t actually harmless, because if there’s too many of them in the
compilation output, then the bad bugs won’t get seen. Hence, make the effort to
fix the minor issues in C++ code that’s causing warnings. For example, fix the
“unused variable” warnings or “mixing float and double” type warnings, even
though they’re rarely a real bug. And yet, sometimes they are! This is why it’s
powerful to have a warning-free compile.

Tracking compilation warnings. One way to take warning-free compilation to
the next level is to actually store and analyze the compiler output. It’s like log file
analysis in DevOps, only it’s not for systems management, but for debugging. On
Linux, I typically use this idea:

make build |& tee makebuild.txt
Here’s an actual example from a Makefile in an Aussie Al project on Linux:

build:
—-@make build2 |& tee makebuild.txt
-@echo 'See output in makebuild.txt'

The Makefile uses prefix “~” and “@” flags, which means that it doesn’t echo the
command to output, and doesn’t stop if one of the steps triggers an error.

When the build has finished, then we have a text file “makebuild. txt” which
can be viewed for warning messages. To go further, I usually use grep to remove
some of the common informational messages, to leave only warning messages.

73 Safe C++

Typically, my Linux command looks like:
make warnings

Here’s an example of the “warnings” target in a Makefile for one of my Aussie
Al projects:

warnings:
-@cat makebuild.txt | grep -v '"r -' \
| grep -v '"“g++ ' | grep -v '“Compiling' \
| grep -v '“Making' | grep -v '“ar ' \
| grep -v '"make\[' | grep -v '“ranlib' \
| grep -v '"7INFO:' | grep -v 'Regressions failed: 0' \
| grep -v 'Assertions failed: 0' | grep -v SUCCESS \
|more

Note that this uses the grep command to also remove the various informational
messages from g++, ar, ranlib, and make. And it also removes the unit testing
success messages if all tests pass (but not if they faill). The idea is to show only the
bad stuff because log outputs with too many lines get boring far too quickly and
then nobody’s watching.

One annoying thing about using grep with make is that you get these kind of error
messages:

make: [annoying] Error 1 (ignored)
Here’s a way to fix them in a Makefile on Linux:
-@grep tmpnam *.cu *.cpp || true

The “true” command is a shell command that never fails. Note that this line uses
the double-pipe “| | ”” shell logical-or operator, so it only runs “true” if grep fails.
But don’t accidentally use a single “|” pipe operator, which would actually be a
silent bug! This idea makes the command line calling grep return a non-zero status,
and then make is silent.

Finally, your warning-free tracking method should ideally be part of your “nightly
builds” that do more extensive analysis than the basic CI/CD acceptance testing.
You should email those warnings to the whole team, at about 2am ideally, because
C++ programmers don’t deserve any sleep.

David Spuler 74

Advanced Build Issues

There are various other aspects of build management that can improve overall
quality. These include:

e Seccurity issues

e CI/CD/CT integration issues

¢ Documentation generation issues
e Release management

Build security. Security issues with builds are both internal and external. There are
two main issues:

e Accidental release of internal security credentials.

e Protection against security issues in third-party licenses.

e Avoiding malicious contamination of your releases (don’t be part of a
“supply chain attack”).

It’s common for internal security credentials to get added into the source code
control system. This is mostly problematic if your build is releasing an open source
package, whereas if it’s building software executables, these credentials probably
won’t be in the release.

However, if credentials are hard-coded into the source code for testing purposes,
these will still be disclosed publicly as part of an executable. Don’t underestimate
the power of hackers to disassemble binaries, or the simple capabilities from
the strings Linux tool.

External security issues arise in terms of the third-party libraries that you are using
in your application (i.e., dependency management). Alternatively, you can be a direct
victim of a hacking attempt, which may damage your business.

Even more insidious are the cases where hackers have embedded payloads into
software that is distributed to other customers, which are known as “supply chain
attacks.” You don’t want to be the source of a virus distributed to all your
customers!

Release management. Supportability can be greatly improved by good build
management. The release process needs to carefully manage which executables go
out in which build release.

75 Safe C++

Some of the issues include:

e Mapping customer releases to internal build numbers and versions.

e Tracking which versions of third-party licenses were used in which builds.

e Storing a permanent copy of any executable that went out.

e Keeping a correlated “debug” copy of the executable (for use in post-
mortem debugging any customer core dumps).

e Tagging the source code to mark the release numbers and builds.

The build management aspects of software are less heralded than the exciting
algorithms in the latest Al engines. But a good, solid foundation in your build
management is critical for high-quality software.

David Spuler 76

11. Linters and Static Analysis

Linters for C++

Linters, or “static analyzers,” are tools that examine your source code for errors or
stylistic concerns. The main advantage of these tools is that they improve safety
“for free” without any runtime impact for your customers. Judicious use of static
checkers on your C++ source code can detect a variety of errors before they impact
customers. The main advantages of linters include:

e Detect coding errors before the code is even run.

e Both security vulnerabilities and bugs can be flagged.

e General improvement in coding quality.

e Reduced debugging time because the number of live bugs is reduced.
e Can be used for stylistic issues or coding policy guidelines.

There are also some linters that focus on “reformatting” and “beautification” for
source code. Similarly, there are source code analysis tools that aim to auto-generate
internal code documentation. I’'m not really talking about those ones in this section.
I'm hunting bugs!

Linters are not for everyone, and are less popular with developers than runtime
memory checkers. Disadvantages of linters include:

e Additional cost and time to implement and address issues in an ongoing
way.

e Fixing harmless warnings (e.g., need to fix warnings that aren’t real bugs).

e Stylistic warnings are never popular with developers.

e Configuration of some linters is onerous (e.g., they need all the include
paths setup).

You should consider linters as an additional safety technique, which is orthogonal
to runtime techniques such as runtime memory checking tools. Linting is an add-
on technique for additional improvements to overall quality.

77 Safe C++

General advice in regard to using linters for C++ programming is:

e Use compiler warnings as free linting.

e Turn off less serious stylistic warnings when introducing linting,.
e Use a sepatate linter build sequence.

e Have two linter paths (i.c., one for bugs, one for style).

e Use multiple compilers and linters for extra coverage.

e Automate linting into the nightly build.

In the past, linters have gained a somewhat poor reputation because of two factors:

e Not finding many bugs, and
e Emitting a huge swathe of warnings for minor, stylistic nitpicks.

These concerns are largely no longer true of both open source and commercial
linting tools. Linting tools can now detect a huge range of real bugs in your code,
and many can be focused to only emit serious bugs or security vulnerabilities. You
can, of course, turn on all of the stylistic warnings if you want to use a linter for
enforcing a company-wide C++ coding policy, in which case, they won’t be popular
with the team.

Using GCC as a Linter

If you want more warnings, and who doesn’t, you can enable more warnings
in gcc on Linux. You can either do this in your main build by enabling more
compiler warnings, or use a separate build path (e.g., choose an inspiring name like:
“make 1int”) so that the main build is not inundated with new warnings.

There are some gcc flags that are specific to static analysis of source code:

e -fanalyzer — enables the static analyzer.
e -Wanalyzer-SUBAREA — controls the static analyzer’s warnings.

Some useful gcc warning flags include:
e -Wall — “all” warnings (well, actually, some).

e -Wextra — the “extra” warnings not enabled by “~Wall”.
e -Wpedantic — yet more of the fun ones.

David Spuler 78

You know, I really cannot say that I am a fan of endlessly scrolling warnings from
the “pedantic” mode. Maybe, turn that one off, and pick-and-choose from the list
of flags in the “pedantic” list. For example, I have used “~Wpointer-arith” in
projects.

Fixing Linter Warnings
Here’s some advice about fixing the code to address linter concerns:

e Aim for a warning-free compilation of bug-level messages.
e Don’t overdo code changes to fix any stylistic complaints.

Fix the bugs found by warnings (obviously), but as far as the stylistic type warnings
are concerned, be picky. I say, aim for code quality and resilience, not code aesthetic
perfection.

Warning-free linting. As with the main build, if you’re not fixing the less severe
linter warnings, turn them off, or have two separate build sequences for the main
anti-bug linting versus stylistic linting. You want any newly found serious problems
to be visible, not lost in a stream of a hundred other spurious warnings. Hence, high
quality code requires achieving a warning-free linting status for the main warnings.

On the other hand, you don’t want programmers doing too much “busy work”
fixing minor coding style warnings with little practical impact on code reliability.
Hence, you might find that your policy of “warning-free linting” needs to suppress
some of the pickier warnings. And that’ll be a fun meeting to have.

Linter Products

There are many existing linter tools that are available in open source or
commercially. Some examples include:

e Sonar Lint

e cppcheck

e cpplint

e oclint

e clang-tidy

79 Safe C++

Existing compilers and IDEs also include linters and static analysis tools:
e Microsoft Visual Studio’s

e (lang static analyzer

e GCC static analyzer

static analyzer”

There are many more. Wikipedia has an extensive list of them on its “List of tools
for static code analysis” page.

Note that we have an active project for a C++ linter. Find more information about
Aussie Lint at https://www.aussieai.com/safe/projects.

Linter Capabilities

There are many linters available, and a whole range of features. There are various
different types of linting capabilities that you might consider in a project:

e Bug detection
e Security vulnerability detection
e Coding policy adherence

Note that the state-of-the-art has progressed rapidly in the area of static analysis.
These tools can identify a variety of pitfalls in C++ programming, including:

e Lexical oddities (e.g., nested comments).

e Preprocessor errors (e.g., macro operator precedence errors).

e Expression errors (e.g., wrong logical operators).

e Control flow errors (e.g., unreachable code, never-failing conditions, etc.)

e (C++ class errors (e.g., consistent types of any constructor and destructor
declarations).

e Function call graph errors (e.g., indirect recursion)

Some examples of specific and simple warnings in coding style may include:

e Deprecated functions (e.g., gets versus f£gets).

e Inefficient older functions (e.g., rand and srand).

e Security-vulnerable functions (e.g., tmpnam).

e Buffer-overflow prone functions (e.g., sprintf).

e Unsafe functions to change to “safe” versions (e.g., strcpy vs strncpy).

David Spuler 80

https://www.aussieai.com/safe/projects

Linter Research

Linters have an advanced base of theory these days. It’s similar to compiler design
theory, but with a different focus, since linters do not need the “code generation”
phase of compilation.

Some of the main techniques that linters use include:

e Expression trees
e Control flow graphs
e Function call graphs

Expression trees expression operator precedence and parenthesized sub-
expressions into a hierarchical tree. This is not a graph, since there are no cross-
edges between subtrees.

Control flow graphs express the flow of control through a function or a code block.
These primarily focus on if statements, loops, and switch statements. Aspects
of short-circuited operators and the ternary operator may sometimes be involved,
ot these may be handled in the expression trees. Note that control flow graphs may
contain cycles due to loops.

Function call graphs express the hierarchy of function calls. Never-returning
functions such as exit or abort need to be handled specially. This analysis is
primarily based on the static calls to function names, and will have difficulty
if virtual functions or function pointers are used for dynamic function calls.
Nevertheless, the call graph can be useful to detect various errors.

Note that the call graph may contain cycles in the event that recursion, directly or
indirectly, is used in any functions.

Variable analysis. Particularly interesting is that static analyzers now use “flow
propagation” to track errors throughout execution pathways. The idea is similar to
a compiler’s “constant propagation” but can relate to categories of values for a
variable, rather than just a single constant value.

Aspects of the value of a variable can be propagated through expression trees and
also along the edges of the control-flow graph. In advanced cases, it may also be
propagated through the function call graph.

81 Safe C++

For example, pointers can be tracked as null versus non-null, as a simple binary
condition. Integral variables can have sets of possible values propagated through
control flow statements, so that always-succeed or always-fail tests on these
variables can be detected.

The level of error detection from these approaches is quite amazing. If you’ve tried

static analysis tools for C++ in the past, and been underwhelmed, you really should
give them another try!

David Spuler 82

12. Self-Testing Code

What is Self-Testing Code?

Instead of doing work yourself, get a machine to do it. Who would have ever
thought of that?

Getting your code to test itself means you can go get a cup of coffee and still be
billing hours. The basic techniques include:

o Unit tests

e Regression tests

e Error checking

o Assertions

e Self-testing code blocks

¢ Debug wrapper functions

The simplest of these is unit tests, which aim to build quality brick-by-brick from
the bottom of the code hierarchy. The largest techniques are to run full regression
tests suites, or to add huge self-testing code blocks.

Self-Testing Code Block

Sometimes an assertion, unit test, or debug tracing printout is too small to check
everything. Then you have to write a bigger chunk of self-testing code. The
traditional way to do this in code is to wrap it in a preprocessor macro:

#if DEBUG
// block of test code
#endif

Another reason to use a different type of self-testing code than assertions is that
you’ve probably decided to leave the simpler assertions in production code. A

simple test like this is probably fine for production:

assert (ptr != NULL); // Fast

83 Safe C++

But a bigger amount of arithmetic may be something that’s not for production:
assert (aussie vector sum(v, n) == 0.0); // Slow

So, you probably need macros and preprocessor settings for both production and
debug-only assertions and self-testing code blocks. The simple way looks like this:

#1if DEBUG
assert (aussie vector sum(v, n) == 0.0);
#endif

Or you could have your own debug-only version of assertions that are skipped for
production mode:

assert debug(aussie vector sum(v, n) == 0.0);

The definition of “assert_debug” then looks like this in the header file:

#if DEBUG

#define assert debug(cond) assert(cond) // Debug mode
#else

#define assert debug(cond) // nothing in production
#tendif

This makes the “assert debug” macro a normal assertion in debug mode, but
the whole coded expression disappears to nothing in production build mode. The
above example assumes a separate set of build flags for a production build.

Self-test Code Block Macro

An alternative formulation of a macro for installing self-testing code using a block-
style, rather than a function-like macro, is as follows:

SELFTEST {
// block of debug or self-test statements
}

The definition of the SELFTEST macto looks like:

#if DEBUG

#define SELFTEST // nothing (enables!)
#else

#define SELFTEST if(l) {} else // disabled

David Spuler 84

#endif

This method relies on the C++ optimizer to fix the non-debug version, by noticing
that “i f (1) ” invalidates the e1se clause, so as to remove the block of unreachable
self-testing code that’s not ever executed.

Note also that SELFTEST is not function-like, so we don’t have the “forgotten
semicolon” risk when removing SELFTEST as “nothing”. In fact, the nothing
version is actually when SELFTEST code is enabled, which is the opposite situation
of that earlier problem. Furthermore, we cannot use the “do-while (0)” trick in
this different syntax formulation.

Self-Test Block Macro with Debug Flags

The compile-time on/off decision about self-testing code is not the most flexible
method. The block version of SELFTEST can also have levels or debug flag areas.
One natural extension is to implement a “flags” idiom for the debug areas, to allow
configuration of what areas of self-testing code are executed for a particular run
(e.g., a decoding algorithm flag, a normalization flag, a MatMul flag, etc.). One
Boolean flag is set for each debugging area, which controls whether or not the self-
testing code in that module is enabled or not.

A macro definition of SELFTEST (flagarea) can be hooked into the run-time
configuration library for debugging output. In this way, it has both a compile-out
setting (DEBUG==0) and dynamic runtime “areas” for self-testing code. Here’s the
definition of the self-testing code areas:

enum self test areas ({
SELFTEST NORMALIZATION,
SELFTEST_MATMUL,
SELFTEST_SOFTMAX,
// ... more

}s
A use of the SELFTEST method with areas looks like:

SELFTEST(SELFTESTiNORMALIZATION) {
// ... self-test code
}

The SELFTEST macro definition with area flags looks like:

extern bool g aussie debug enabled; // Global override

85 Safe C++

extern bool DEBUG FLAGS[100]; // Area flags

#if DEBUG
#define SELFTEST (flagarea) \
if (g_aussie debug enabled == 0 || \
DEBUG_FLAGS[flagarea] == 0) \

{ /* do nothing */ } else
felse
#define SELFTEST if (1) {} else // disabled completely
#endif

This uses a “debug flags” array idea as for the debugging output commands, rather
than a single “level” of debugging. Naturally, a better implementation would allow
separation of the areas for debug trace output and self-testing code, with two
different sets of levels/flags, but this is left as an extension for the reader.

Debug Stacktrace

There are various situations where it can be useful to have a programmatic method
for reporting the “stack trace” or “backtrace” of the function call stack in C++.
Some examples include:

* Your assertion macro can report the full stack trace on failure.
e Self-testing code similarly can report the location.

e Debug wrapper functions too.

e Writing your own memory allocation tracker library.

C++ is about to have standard stack trace capabilities with its standardization in
C++23. This is available via the “std: :stacktrace” facility, such as printing
the current stack via:

std::cout << "Stacktrace: "
<< std::stacktrace::current ()
<< std::endl;

The C++23 stacktrace library is already supported by GCC and early support
in MSVS is available via a compiler flag “/std:c++latest”. There are also two
different longstanding implementations of stack trace capabilities:
glibc backtrace and Boost StackTrace. The C++23 standardized version is
based on Boost’s version.

David Spuler 86

13. Assertions

Why Use Assertions?

Of all the self-testing code techniques, my favorite one is definitely assertions.
They’re just so easy to add! The use of assertions in C++ programs can be a very
valuable part of improving the quality of your work over the long term. They ensure
that you find bugs eatly in the life cycle of code, and they don’t have much impact
on performance (if used correctly). I find them especially useful in getting rid of
obvious glitches when I’'m writing new code, but then I usually leave them in there.

The standard C++ library has had an “assert” macro since back when it was
called C. The simplest idea is therefore to use the builtin assert macro.
The assert macro is a convenient method of performing simple tests. The basic
usage is illustrated to validate the inputs of a simple vector function:

#include <assert.h>

float vector sum(float v[], int n)

{
assert (v != NULL); // Easy!
// ... etc

Compile-Time Assertions: static_assert

Runtime assertions have been a staple of C++ code reliability since the beginning
of time. However, there’s often been a disagreement over whether or not to leave
the assertions in production code, because they inherently slow things down.

The modern answer to this conundrum is the C++ “static_assert” directive.
This is like a runtime assertion, but it is fully evaluated at compile-time, so it’s supet-
fast. Failure of the assertion triggers a compile-time error, preventing execution,
and the code completely disappears at run-time.

Unfortunately, there really aren’t that many things you can assert at compile-time.
Most computations are dynamic and stored in variables at runtime.

87 Safe C++

However, the static_assert statement can be useful for things like blocking
inappropriate use of template instantiation code, or for portability checking such
as:

static assert(sizeof (float)==4, "float not 32 bits");

This statement is an elegant and language-standardized method to prevent
compilation on a platform where a “float” data type is 64-bits, alerting you to a
portability problem.

Custom Assertion Macros

An important point about the default “assert” macro is that its failure handling
may not be what you want. The default C++ assert macro will literally crash your
program by calling the standard “abort” function, which triggers a fatal exception
on Windows or a core dump on Linux.

That is fine for debugging, but it isn’t usually what you want for production code.
Hence, most professional C++ programmers declare their own custom assertion
macros instead.

For example, here’s my own “aussie assert” macro in my own header file:

#define aussie assert (cond) \
((cond) |1 \
aussie assert fail(#cond, _ FILE , LINE))
This tricky macro uses the short-circuiting of the “| |” operator, which has a
meaning like “or-else”. So, think of it this way: the condition is true, or else we call
the failure function. The effect is similar to an if-else statement, but an
expression is cleaner in a macro.

The FILE and LINE preprocessor macros expand to the current
filename and line number. The filename is a string constant, whereas the line
number is an integer constant. The expression “#cond” is the “stringize” operator,
which works in preprocessor macros, creating a string of its argument.

Note that you can add “ func__” to also report the current function name if
you wish. There’s also an older non-standard FUNCTION _ version of the
macro. Note that the need for all these macros goes away once there is widespread
C++ support for std: :stacktrace, as standardized in C++23, in which case a
failing assertion could report its own call stack in an error message.

David Spuler 88

When Assertions Fail. This aussie assert macro relies on a function that is
called only when an assertion has failed. And the function has to have a dummy
return type of “bool” so that it can be used as an operand of the | | operator,
whereas a “void” return type would give a compilation error. Hence, the
declaration is:

// Assertion failed
bool aussie assert fail (char* str, char* fname, int 1n);

And here’s the definition of the function:

bool aussie assert fail(char* str, char* fname, int 1n)

{
// Assertion failure has occurred...
g_aussie assert failure count++;
printf ("AUSSIE ASSERTION FAILURE: %s, %s:%d\n",
str, fname, 1n);
return false; // Always fails

This assertion failure function must always return “false” so that the assertion
macro can be used in an if-statement condition.

Assertion Failure Extra Message

The typical assertion macro will report a stringized version of the condition
argument (i.e., #condis the special stringize operator), plus the source code
filename, line number, and function name. This can be a little cryptic, so a more
human-friendly extra message is often added. The longstanding hack to do this has
been:

aussie assert (fp!=NULL && "File open failed"); // Works

The trick is that a string constant has a non-null address, so && on a string constant
is like doing “and true” (and is hopefully optimized out). This gives the extra message
in the assertion failure because the string constant is stringized into the condition
(although you’ll also see the “&&”” and the double quotes, too). Note that an attempt
to be tricky with comma operator fails:

aussie assert (fp!=NULL, "File open failed"); // Bug

There are two problems. Firstly, it doesn’t compile because it’s not the comma
operator, but two arguments to the aussie assert macro.

89 Safe C++

Even if this worked, or if we wrapped it in double-parentheses, there’s a runtime
problem: this assertion condition will never fail. The result of the comma operator
is the string literal address, which is never false.

Optional Assertion Failure Extra Message: The above hacks motivate us to see
if we could allow an optional second parameter to assertions. We need two usages,
similar to how “static_assert” currently works in C++:

aussie assert (fp != NULL);
aussie assert (fp != NULL, "File open failed");

Obviously, we can do this if “aussie assert” was a function, using basic C++
function default arguments or function overloading. If you have faith in your C++
compiler, just declare the functions “inline” and go get lunch. But if we don’t
want to call a function just to check a condition, we can also use C++ variadic
macros.

Variadic Macro Assertions

C++ allows #define preprocessor macros to have variable arguments using the

“...7and . VA ARG 7 special tokens. Our aussie assert macro changes
to:
#define aussie assert(cond, ...) \
((cond) || \

aussie assert fail (#cond, \
__FILE_, LINE , VA ARG))

And we change our “aussie assert fail” to have an extra optional
“message” parameter.

bool aussie assert fail(
char* str, char* fname, int 1n, char *mesg=0

) ;

This all works fine if the aussie assert macro has 2 arguments (condition and

extra message) but we get a bizarre compilation error if we omit the extra message

(e, just a basic assertion with a condition). The problem is

that VA ARG expands to nothing (because there’s no optional extra message
¢ »

argument), and the replacement text then has an extra ““, ” just hanging there at the
end of the argument list, causing a syntax error.

David Spuler 90

Fortunately, the deities who define C++ standards noticed this problem and added
a solution in C++17. There’s a dare-lI-say ‘“hackish” way to fix it with
the VA OPT__ special token. This is a special token whose only purpose is to
disappear along if there’s zero arguments to VA ARG (i.e., it takes the ball and
goes home if there’s no-one else to play with). Hence, we can hide the comma from
the syntax parser by putting it inside VA OPT _ parentheses.

#define aussie assert(cond, ...) \
((cond) || \
aussie assert fail (#cond, FILE , LINE \
VA OPT (,) VA ARG))

Note that the comma after LINE is now inside of a VA OPT _ special
macro. Actually, that’s not the final, final version.

We really should add “ func__ ”in there, too, to report the function name. Heck,
why not add DATE and TIME _ while were at it? Why isn’t there a
standard DEVELOPER _ macro that adds my name?

Assertless Production Code

Not everyone likes assertions, and coincidentally some people wear sweaters with
reindeer on them. If you want to compile out all of the assertions from the
production code, you can use this:

#define aussie assert(cond) // nothing

But this is not perfect, and has an insidious bug that occurs rarely (if you forget the
semicolon). A more professional version is to use “0” and this works by itself, but
even better is a “0” that has been typecast to type “void” so it cannot be
accidentally used in any expression:

#define aussie assert(cond) ((void)O0)
The method to remove the variadic macro version uses the “. . .” token:
#define aussie assert(cond, ...) ((void)O)
Personally, I don’t recommend doing this at all, as I think that assertions should be
left in the production code for improved supportability. I mean, come on, recycle

and reuse, remember? Far too many perfectly good assertions get sent to landfill
every year.

91 Safe C++

Assertion Return Value Usage

Some programmers like to use an assertion style that tests the return code of
their assert macro:

if (assert(ptr != NULL)) { // Risky
// Normal code
ptr->count++;

}

else {
// Assertion failed

This assertion style can be used if you like it, but I don’t particularly recommend it,
because it has a few risks:

1. The failure function returns false so the if test fails when the assertion fails.

2. Embedding assertions deeply into the main code expressions increases the
temptation to use side effects like “++” in the condition, which can quietly
disappear if you ever remove the assertions from a production build:

if (assert(++i >= 0)) { // Risky
//

2

3. The usual assertion removal method of “ ((void) 0)” will fail with compilation
errors in an if statement. Also using a dummy replacement value of “0” is
incorrect, and even “17 is not a great option, since the
“if (assert (ptr!=NULL))” test becomes the unsafe “if (1) ”. A safer removal
method is a macro:

#define assert (cond) (cond)
Ot you can use an inline function:
inline void assert(bool cond) { } // Empty

This avoids crashes, but may still leave debug code running (i.e., a slug, not a bug).
It relies on the optimizer to remove any assertions that are not inside an “if”
condition, which just leave a null-effect condition sitting there. Note also that this
removal method with “ (cond)” is also safer because keeping the condition also
retains any side-effects in that condition (i.e., the optimizer won’t remove thosel).

David Spuler 92

Generalized Assertions

Once you’ve used assertions for a while, they begin to annoy you a little bit. They
can fail a lot, especially during initial module development and unit testing of new
code. And that’s the first time they get irritating, because the assertion failure
reports don’t actually give you enough information to help debug the problem.
However, you can set a breakpoint on the assertion failure code when running
in gdb, so that’s usually good enough.

The second time that assertions are annoying is when you ship the product. That’s
when you see assertion failures in the logs as an annoying reminder of your own
imperfections. Again, there’s often not enough information to reproduce the bug.

So, for your own sanity, and for improved supportability, consider extending your
own assertion library into a kind of simplified unit-testing library. The extensions
you should consider:

e Add std::stacktrace capabilities if you can, or use Boost Stacktrace
or GCC backtrace as a backup. Printing the whole stack trace on an
assertion failure is a win.

e Add extra assertion messages as a second argument.

e Add func to show the function name, if you haven’t already.

And you can also generalize assertions to cover some other common code failings.

e Unreachable code assertion

e “Null pointer” assertion

e Integer value assertions

e Floating-point value assertions
e Range value assertions

Creating specialized assertion macros for these special cases also means the error
messages become more specific.

Unreachable code assertion
This is an assertion failure that triggers when code that should be unreachable
actually got executed somehow. The simple way that programmers have done this

in the past is:

aussie assert(0); // unreachable

93 Safe C++

And you can finesse that a little with just a better name:

#define aussie assert not reached() \
(aussie assert (false))

aussie assert not reached(); // unreachable
Here’s a nicer version with a better error message:

#define aussie assert not reached() \
(aussie assert fail ("Unreachable code", \
__FILE _, LINE))

Once-only execution assertion

Want to ensure that code is never executed twice? A function that should only ever
be called once? Here’s an idea for an assertion that triggers on the second execution
of a code pathway, by using its own hidden “static” call counter local variable:

#define aussie assert once() do { \
static int s _count = 0; \
++s_count; \
if (s _count > 1) { \
aussie assert fail ("Code executed twice", \
__FILE _, LINE); \
P\
} while (0)
Restricting any block of code to once-only execution is as simple as adding a
statement like this:

aussie assert once(); // Not twice!

This can be added at the start of a function, or inside any if statement
or else clause, or at the top of a loop body (although why is it coded as a loop if
you only want it executed once?). Note that this macro won’t detect the case where
the code is never executed. Also note that you could customize this macro to return
an error code, or throw a different type of exception, or other exception handling
method when it detects double-executed code.

David Spuler 94

Function Call Counting

The idea of once-only code assertions can be generalized to a count. For example,
if you want to ensure a function isn’t called too many times, use this code:

aussie assert N times(1000);
Here’s the macro, similar to aussie assert once, but with a parameter:

#define aussie assert N times(ntimes) do { \
static int s _count = 0; \
++s_count; \
if (s_count > (ntimes)) { \
aussie assert fail(\

"Code executed more than " \
#ntimes " times", \
__FILE_, _LINE_); \
FA
} while (0)

This checks for too many invocations of the code block. Checking for “too few” is
a little trickier, and would need a static smart counter object with a destructor.

Detecting Spinning Loops

Note that the above call-counting macro doesn’t work for checking that a loop isn’t
spinning. It might seem that we can use the above macro at the top of the loop
body to avoid a loop iterating more than 1,000 times. But it doesn’t work, because
it will count multiple times that the loop is entered, not just a single time. If we want
to track a loop call count, the counter should not be a “static” variable, and it’s
more difficult to do in a macro. The simplest method is to hand-code the test:

int loopcount = 0;
while (...) {
if (++loopcount > 1000) { // Spinning?
// Warn...

95 Safe C++

Generalized Variable-Value Assertions

Various generalized assertion macros can not only check values of variables, but
also print out the value when the assertion fails. The basic method doesn’t print out
the variable’s value:

aussie assert(n == 10);
A better way is:

aussie assertieqg(n, 10); // n == 10

The assertion macro looks like:

#define aussie assertieq(x,y) \

(C (x) == (v)) |l \
aussie assert fail int (#x "==" #y, \
(x), "==", (y), \

__FILE , LINE))

The assertion failure function has extra parameters for the variables and operator
string:

bool aussie assert fail int(char* str, int x,
char *opstr, int y, char* fname, int 1n)

{
// Assert failure has occurred...
g aussie assert failure count++;
fprintf (stderr, "INT ASSERT: %s, %d %s %d, %s:%d\n",
str, x, opstr, y, fname, 1n);
return false; // Always fails

If you don’t mind lots of assertion macros with similar names, then you can define
named versions for each operator, such as:

® aussie assertneq—!=
e aussie assertgtr —>
e aussie assertgeq-—>=
® aussie assertlss —<
e aussie assertleq—<=

David Spuler 96

If you don’t mind ugly syntax, you can generalize this to specify an operator as a
parameter:

aussie assertiop(n, ==, 10);
The macro with an “op” parameter is:

#define aussie assertiop(x, op, y) \

(C (x) op (v)) I\
aussie assert fail int (#x #op #y, \

(x), #op, (v), \
__FILE_, LINE))

And finally, you have to duplicate all of this to change from int to float type
variables. For example, there’s macros named “aussie assertfeq”,
“aussie assertfop”, and a failure function named
“aussie assert fail float”. There’s probably a fancy way to avoid this
using function overloading or C++ templates and compile-time type traits, but only
if you’re smarter than me.

Assertions for Function Parameter Validation

Assertions and toleration of exceptions have some tricky overlaps. Consider the
modified version of vector summation with my own “aussie assert” macro
instead:

float vector sum(float v[], int n)

{

aussie assert (v != NULL);
// etc..

What happens when this assertion fails in a custom assertion macro? The execution
will progress after the assertion, in which case any use of v will be a null pointer
dereference. The code is not very resilient.

Hence, the above code works fine only if your custom “aussie assert”
assertion macro throws an exception. This requires that you have a robust exception
handling mechanism in place above it, for the caught exception, which is a
significant amount of work. There are also problems with using assertions in
destructors if you throw exceptions on assertion failure.

97 Safe C++

The alternative is to both assert and handle the error in the same place, which makes
for a complex block of code:

aussie assert (v != NULL);
if (v == NULL) {
return 0.0; // Tolerate

Slightly more micro-efficient is to only test once:

if (v == NULL) {
aussie assert(v != NULL); // Always triggers
return 0.0; // Tolerate

This is a lot of code that can get repeated all over the place. Various copy-paste
coding errors are inevitable.

Assert Parameter and Return

An improved solution is an assertion macro that captures the logic “check
parameter and return zero” in one place. Such a macro first tests a function
parameter and if it fails, the macro will not only emit an assertion failure message,
but will also tolerate the error by returning a specified default value from the
function.

Here’s a generic version for any condition:

#define aussie assert and return(cond,retval) \
if (cond) {} else { \
aussie assert fail (#cond " == NULL", \
__FILE_, _LINE_); \
return (retval); \

The usage of this function is:

float aussie vector something(float v[], int n)

{

aussie assert and return(v != NULL, 0.0f);

David Spuler 98

The above version works for any condition. Here’s another version specifically for
testing an incoming function parameter for a NULL value:

#define aussie assert param tolerate null(var,retval) \
if ((var) != NULL) {} else { \
aussie assert fail (#var " ==
__FILE_, _LINE_); \
return (retval); \

NULL", \

The usage of this function is:
aussie assert param tolerate null(v, 0.0f);

If you want to be picky, a slightly better version wraps the “if-else” logic inside
a “do-while (0)” trick. This is a well-known trick to make a macro act more
function-like in all statement structures.

#define aussie assert param tolerate null2(var,retval) \
do { 1f ((var) != NULL) {} else { \
aussie assert fail (#var " == NULL", \
__FILE _, LINE); \
return (retval); \
}} while (0)

The idea of this macro is to avoid lots of parameter-checking boilerplate that will
be laborious and etror-prone. But it’s also an odd style to hide a return statement
inside a function-like preprocessor macro, so this is not a method that will suit
everyone.

Next-Level Assertion Extensions

Here are some final thoughts on how to further improve your assertions:

e Change any often-triggered assertions into proper error messages with fault
tolerance. Users don’t like seeing assertion messages. They’re kind of like
gibberish to ordinary mortals.

e Add extra context information in the assertion message (i.c., add an extra
information string). This is much easier to read than a stringized
expression, filename with line number, or multi-line stack trace.

99 Safe C++

e Add unique codes to assertion messages for increased supportability.
Although, maybe not, because any assertion that’s triggering often enough
to need a code, probably shouldn’t remain an assertion!

e inline assertion function? Why use macros? Maybe these assertions
should instead be an inline function in modern C++? And it could
report context using std: :backtrace. Alll can say is that old habits die
hard, and I still don’t trust the optimizer to actually optimize much.

The downside of assertions is mainly that they make you lazy as a programmer
because they’re so easy to add. But sometimes no matter how good they seem, you
have to throw an assertion into the fires of Mordor. The pitfalls include:

e Don’t use assertions instead of user input validation.

e Don’t use assertions to check program configurations.

e Don’t use assertions as unit tests (it works, but bypasses the test harness
statistics).

e Don’t use assertions to check if a file opened.

You need to step up and code the checks of input and configurations as part of
proper exception handling. For example, it has to check the values, and then emit
a useful error code if they’ve failed, and ideally it’s got a unique etror code as part
of the message, so that users can give a code to support if they need. You really
don’t want users to see the dirty laundry of an assertion message with its source file,
function name, and line number.

David Spuler 100

14. Safe Standard C++ Library

Debug Standard Library Versions

Various vendor capabilities exist in terms of debugging features and debug versions
of the standard library. GCC appears to be leading the way, and Clang has a lot of
features too. The Microsoft Visual Studio capabilities are less fully formed in this
area, although it does have static analysis capabilities, runtime checks and some
other debugging features.

GCC Debug Library. GCC does have a debug version of its glibcxx library,
which you can link in by using the /usr/1ib/debug path. You can add linker
options like these:

e “-I/usr/lib/debug” for static libraries, or
e “LD LIBRARY PATH=/usr/lib/debug” for dynamic libraries.

But that’s not really what I’'m talking about. This is a version which has the symbolic
information retained for better debugging, rather than a version which offers
additional safety and debugging features.

But GCC also has one of those!

GCC has a debug-enabled version of 1ibstdc++ with additional error checking
enabled. Interestingly, this is implemented via a “wrapper model” on top of the
production versions of the standard library. The GCC debug library with error
checking is GLIBCXX_ DEBUG and there is also a flag GLIBCXX ASSERTIONS.

Clang debug capabilities. Clang has been following GCC with a lot of common
features. For example, Clang has options to launch a variety of sanitizer tools at
runtime (e.g., ASan, UBSan, TSan, MSan, etc.), and has the Clang Static Analyzer
and clang-tidy for source code analysis.

101 Safe C++

Safe Standard Libraries

This section is a list of bugs and undefined behaviors that could probably be
detected by a linkable debug version of the standard libraries. This could mean:

e Macro-intercepted debug wrapper library, or
e Vendor offered debug versions of the standard library.

The standard library could perform a lot more internal self-tests to detect and
prevent serious internal errors. This could be done better by compiler vendors, but
a lot could also be done by users with a debug wrapper library based on macro or
link-time intercepts.

For error detection and prevention, I’m thinking in terms of what could be done
quickly, just by testing a few flags or magic values, rather than a full-scale memory
debugging library (i.e., not to the extent of valgrind or other sanitizers). A lot of
internal errors could be changed from crashes to harmless logged warnings.

Error preventions. The standard library is in a position to prevent several
categories of memory errors. For example, why don’t malloc and new clear their
memory to zero? Similarly, the alloca function could clear stack memory. This
would prevent a whole range of “uninitialized memory use” errors. Surely, this
wouldn’t be very slow, or it could be offered as an option to users of the library.

Memory errors. The heap management libraries need to have a hidden block of
data for each allocated memory block, anyway. So, add some more flags and magic
values in there, which are then checked by all of the primitives trying to access a
memory block. Many of the usual suspects could be caught relatively simply:

e Double de-allocation
e Non-heap address for de-allocation
e Mismatched allocation/de-allocations

Detecting usage of uninitialized memory from malloc or newis less simple,
because although you can set a flag to say “newly allocated block,” it’s harder to
know if a simple array access has written to the memory block, thereby initializing
it. However, this is also doable with reasonable efficiency via a single magic value
in the first few bytes of a block.

David Spuler 102

Memory overruns are harder to detect only in a library. However, there are two
ways to detect this:

e Add canary memory ranges at the end of the allocated blocks (i.e., a magic
value just a few bytes afterwards).

e Intercept the standard C++ library byte manipulation library calls
(e.g., memset, strcpy, etc.)

Many of the techniques that can be used by vendor standard libraries are discussed
in the chapter on debug wrapper libraries. It’s the same problem.

File pointers and file descriptors. All of the file descriptors (integers), file pointer
structures, or £stream classes manage a block of memory for an open file, which
could contain bit flags of its status (e.g., open, just written, just read, closed, etc.).
Furthermore, these file data structures are only used or modified via standard library
primitives, so a debug version of a standard library could surely detect most errors.
Also, the pointers for these file pointers are usually within a fixed-size array, so it’s
two pointer comparisons to validate the file pointer is inside this block. And finally,
the most recent type of file operation could be tracked in a bit flag (e.g., recently
read, recently written, recently seeked).

It seems like these file blocks could be self-tested on any file access. Hence, my list
of file-related errors and undefined behaviors that could be (a) detected, and (b)
made harmless, includes:

e Null file pointer value.

e Invalid file descriptor (or file pointer or £stream) is outside the range for
valid pointer addresses, or an invalid integer file handle.

e Tile descriptor is a “never-opened” file (i.e., does not have an “opened” or
“closed” bit flag set).

e Double-close (i.e., the “closed” bit flag is already set).

e Read/write/seek operation on already-closed file.

e Read/write sequence without intervening seck on file pointer (a weird
“undefined behavior”).

e fflush onaninput file (e.g, £flush(stdin) is a common mistake).

All of these file-related errors would become suddenly harmless. I've certainly had
crashes myself from “double fclose” errors. These are fixable at the performance
cost of a few bit flag and pointer comparisons.

Worth doing!

103 Safe C++

Going further, this debug file management library could have trace capabilities, so
you can view not only the above serious internal errors, but also application-level
happenings such as what files are opened and closed. This could already record
“warnings” for things like “file not found” or read or write failed to read/write
enough bytes.

As such, odd file occurrences could get telegraphed to the developer eatlier.

Character functions. Various functions could be more carefully implemented to
check errors and tolerate unusual usage. Examples include:

e Character category function arguments (e.g., islower) should warn and
tolerate out-of-range values (e.g., more than 255) and consistently handle
negative values (i.e., from signed character types).

e Character category function return values limited to Boolean status
(e.g., islower should return only true or false, rather than zero
Versus non-zero).

String functions. There are various failures that could be detected in libraries.

e Memory addresses — the standard string functions, such as strcpy,
should be incorporated into the memory safety checking.

e Standard return values — e.g., strcmp should return explicitly -1, 0, or 1,
rather than only requiring less-than, equal-to, or greater-than zero (this
makes harmless a common misuse).

Math functions. At first thought, it seems that there’s not that many errors that
can be auto-detected by changes to the standard mathematical libraries, without
needing changes to the C++ operators. However, I came up with a few that can be
done just inside the functions themselves:

e Degtrees versus radians — cos (60.0) is confusing radians and degrees.
The library could warn if any trigonometric function is using large values
that are unusual for radians, or degree-like exact integer values (30, 45, 60,
90, etc.)

e Anyerrno-setting happening in the math library could issue or log a
warning, rather than relying on the caller to check errno.

e Any arithmetic function that returns a result NaN could log a warning,.

e Invalid ranges of arguments could also log a warning and be made harmless
(e.g., division by zero, or infinite results like tan (0.0) is one).

David Spuler 104

Container classes. The various standard C++ container classes could improve
their quality, such as:

e Out-of-bounds array accesses on std::vector should be expressly
handled with warning and make-harmless processing.

e Tracing and logging of uncommonly occurring problem issues, such as
the std: : vector automatically resizing itself (a common slug).

Extra Builtin Functions for Debugging

It’s somewhat difficult to build your own debug library, whether macro-intercepted
or linked, because some things are hidden in the compiler implementation layer.

Some API primitives that would be useful if provided by compiler vendors include:

e Address categorization — is this address on the stack? In the heap? Global?
Read-only datar String literal?

e Address is an allocated block? — valid heap block start address? Inside a
valid block? Which block?

e Address of the start of an allocated block, if given an address inside it.

e Size of the allocated memory block, if given the start address of a heap
block.

e Address of start of a stack block given an address inside.

e Size of a stack block if given the starting stack block address.

e Heap statistics — size of the heap, remaining free memory, block counts,
etc.

e (Callbacks that are callable on various internal events (e.g., memory
allocation, de-allocation, various primitives called, etc.).

Note that some of these could be offered in two or more versions, with a slower
and faster option. Fast memory address checking could be based on a magic value
or other trick.

Slower memory address checking would, for example, scan the entire heap to
confirm it’s a valid address.

105 Safe C++

These would be valuable for users to create their own debug library infrastructure.
It would also be valuable for coding policies aimed at memory safety, whereby the
user could decide whether to incur the runtime cost of checking a memory address
before using it.

Some of these issues are flat out impossible to do in any C++ platforms. A few of
them are possible in a very non-portable way. It seems to me that a compiler vendor
could offer a lot of these functions with a relatively low amount of work, because
they have a great deal more information available behind the scenes.

David Spuler 106

15. Safety Wrapper Functions

Why Use Wrapper Functions?

The idea of debug wrapper functions is to fill a small gap in the self-checking
available in the C++ ecosystem. There are two types of self-testing that happen
when you run C++ programs:

e Self-tests such as error return checks, assertions, and wrappers in the main
C++ code.

e valgrind of sanitizer detection of numerous run-time etrors.

Both of these methods are highly capable and will catch a lot of bugs. To optimize
your use of these capabilities in debugging, you should:

e Testall error return codes (e.g., a fancy macro method), and
e Runvalgrind and/or other sanitizers on lots of unit tests and regression

tests in your CI/CD approval process, or, when that gets too slow, at least
in the nightly builds.

But this is not perfection! But there’s two main reasons that some bugs will be
missed:

e Seclf-testing doesn’t detect all the bugs.
* You have to remember to run sanitizers on your code.

Okay, so I'm joking about “remembering” to run the debug tests, because you’ve
of joking g 8 ¥
probably got them running automatically in your build. But there’s some real cases
where the application won’t ever be run in debug mode:

e Many internal failures trigger no visible symptoms for users (silent failures).

e Customers cannot run valgrindon their premises (unless you ask
nicely).

* Your website “customers” also cannot run it on the website backends.

e Some applications are too costly to re-run just to debug an obscure error
(I'm looking at you, Al training).

107 Safe C++

Hence, in the first case, there’s bugs missed in total silence, never to be fixed. And
in the latter cases, there’s a complex level of indirection between the failure
occurring and the C++ programmer trying to reproduce it in the test lab. It’s much
easier if your application self-diagnoses the errox!

Fast Debug Wrapper Code

But it’s too slow, I hear you say. Running the code with valgrind or other
runtime memory checkers is much slower than without. We can’t ship an executable
where the application has so much debug instrumentation that they’re running that
much slower.

You’re not wrong, and it’s the age-old quandary about whether to ship testing code.
Fortunately, there are a few solutions:

e Use fast self-testing tricks like magic numbers in memory.

e Have a command-line flag or config option that turns debug tests on and
off at runtime.

e Have “fast” and “debug” versions of your executable (e.g., ship both to
beta customers).

At the very least, you could have a lot of your internal C++ code development and
QA testing done on the debug wrapper version that self-detects and reports internal
errofs.

As the first point states, there are “layers” of debugging wrappers (also ogtes, like
Shrek). You can define very fast or very slow types of self-checking code into debug
wrapper code. These self-tests can be as simple as parameter null tests or as
complex as detecting memory stomp overwrites with your own custom code. In
approximate order of time cost, here are some ideas:

e Parameter basic validation (e.g., null pointer tests).

e Magic values added to the initial bytes of uninitialized and freed memory
blocks.

e Magic values stored in every byte of these blocks.

e Tracking 1 or 2 (or 3) of the most recently allocated/ freed addresses.

e Hash tables to track addresses of every allocated or freed memory block.

I’ve actually done all of the above for a debug library in standard C++. Make sure
you check the Aussie Al website to see when it gets released.

David Spuler 108

Wrapping Memory Functions

You can use macros to intercept various standard C++ functions. For example,
here’s a simple interception of malloc:

// intercept malloc

#undef malloc

#define malloc aussie malloc
void*aussie malloc (int sz);

Once intercepted, the wrapper code can perform simple validation tests of the
various parameters. Here’s a simple wrapper for the malloc function in a debug
library for C++ that I'm working on:

void *aussie malloc(int sz)
{
// Debug wrapper version: malloc ()
AUSSIE DEBUGLIB TRACE ("malloc called");
AUSSIE_DEBUG_PRINTF("%S: == ENTRY malloc === sz=%d\n",
~ _func_, sz);

g_aussie malloc_count++;
AUSSIE CHECK(sz != 0, "AUS007", "malloc size is zero");
AUSSIE CHECK(sz >= 0, "AUS008", "malloc size negative");

// Call the real malloc
void *new v = NULL;

new v = malloc(sz);
if (new v == NULL) {
AUSSIE ERROR("AUS200", "ERROR: malloc failure");

// Try to keep going?
}

return new v;

This actually has multiple levels of tests:

e Validation of called parameter values.
e Detection of memory allocation failure.
e Builtin debug tracing macros that can be enabled.

A more advanced version could also attempt to check pointer addresses are valid
and have not been previously freed, and a variety of other memory errors. Coming
soon!

109 Safe C++

Standard C++ Debug Wrapper Functions

It can be helpful during debugging to wrap several standard C++ library function
calls with your own versions, so as to add additional parameter validation and self-
checking code. Some of the functions which you might consider wrapping include:

e malloc
e calloc
e memset
e memcpy
® memcmp

If you’re doing string operations in your code, you might consider wrapping these:

e strdup
e strcmp
e strcpy
e sprintf

Note that you can wrap the C++ “new” and “delete” operators at the linker level
by defining your own versions, but not as macro intercepts. You can also intercept
the “new[]” and “delete []” array allocation versions at link-time.

There are different approaches to consider when wrapping system calls, which we
examine using memset as an example:

e Leave “memset” calls in your code (auto-intercepts)
e Use “memset wrapper” in your code instead (manual intercepts)

Macro auto-intercepts: You might want to leave your code unchanged
using memset. To leave “memset” in your code, but have it automatically call

“memset wrapper” you can use a macro intercept in a header file.

#undef memset // ensure no prior definition
#define memset memset wrapper // Intercept

Note that you can also use preprocessor macros to add context information to the
debug wrapper functions.

David Spuler 110

For example, you could add extra parameters to “memset wrapper” such as:

#define memset (x,vy,2z) \
memset wrapper ((x), (y), (z), FILE , LINE , func)

Note that in the above version, the macro parameters must be parenthesized even
between commas, because there’s a C++ comma operator that could occur in a
passed-in expression.

Also note that these context macros (e.g., FILE) aren’t necessary if you have
a C++ stack trace library, such as std: : stacktrace, on your platform.

Variadic preprocessor macros: Note also that there is varargs support in
C++ #define macros. If you want to track variable-argument functions
like sprintf, printf,or fprintf, or other C++ ovetrloaded functions, you can
use “...”7and “ VA ARGS__”in preprocessor macros.

Here’s an example:

#define sprintf (fmt,...) \
sprintf wrapper ((fmt), FILE , LINE , \
__func__, VA ARGS)

Manual Wrapping: Alternatively, you might want to individually change the calls
to memset to call memset wrapper without hiding it behind a macro. If you’d
rather have to control whether or not the wrapper is called, then you can use both
in the program, wrapped or non-wrapped. Or if you want them all changed, but
want the intercept to be less hidden (e.g., later during code maintenance), then you
might consider adding a helpful reminder instead:

#undef memset
#define memset dont use memset please

This trick will give you a compilation error at every call to memset that hasn’t been
changed to memset wrapper.

111 Safe C++

Example: memset Wrapper Self-Checks

Here’s an example of what you can do in a wrapper function called
“memset wrapper” from one of the Aussie Al projects:

// Wrap memset
void *memset wrapper (void *dest, int val, int sz)
{
if (dest == NULL) {
aussie assert2(dest != NULL, "memset null dest");
return NULL;
}
if (sz < 0) {
// Why we have "int sz" not "size t sz" above
aussie assert2(sz>=0, "memset size negative");
return dest; // fail

if (sz == 0) {
aussie assert2(sz != 0, "memset zero size");
return dest;

if (sz <= sizeof (void*)) {
// Suspiciously small size
aussie assert2(sz > sizeof (void*),
"memset with sizeof array parameter?");
// Allow it, keep going

if (val >= 256) {
aussie assert2(val < 256, "memset not char");
return dest; // fail

}

void* sret = ::memset(dest, val, sz); // Real calll!
return sret;

It’s a judgement call whether or not to leave the debug wrappers in place, in the
vein of speed versus safety. Do you prefer sprinting to make your flight, or arriving two
hours early? Here’s one way to remove the wrapper functions completely with the
preprocessor if you’ve been manually changing them to the wrapper names:

#1if DEBUG
// Debug mode, leave wrappers..
#else // Production (remove them all)
#define memset wrapper memset

David Spuler 112

//... others
#endif

Compile-time self-testing macro wrappers

Here’s an idea for combining the runtime debug wrapper function idea with some
additional compile-time tests using static_assert.

#define memset wrapper (addr,ch,n) (\
static_assert(n != 0), \
static_assert(ch == 0), \
memset wrapper ((addr), (ch), (n), \
__FILE , LINE , func_))

The idea is interesting, but it doesn’t really work, because not all calls to
the memset wrapper will have constant arguments for the character or the number
of bytes, so the static assert commands will fail in that case. You could use
standard assertions, but this adds runtime cost. Note that it’s a self-referential
macro, but that C++ guarantees it only gets expanded once (i.e., there’s no infinite
recursion of preprocessor macros).

Generalized Self-Testing Debug Wrappers

The technique of debug wrappers can be extended to offer a variety of self-testing
and debug capabilities. The types of messages that can be emitted by debug
wrappers include:

e Input parameter validation failures (e.g., non-null)
e Failure returns (e.g., allocation failures)

e Common error usages

e Informational tracing messages

e Statistical tracking (e.g., call counts)

Personally, I’ve built some quite extensive debug wrapping layers over the years. It
always surprises me that this can be beneficial, because it would be easier if it were
done fully by the standard libraries of compiler vendors. The level of debugging
checks has been increasing significantly (e.g., in GCC), but I still find value in adding
my own wrappers.

There are several major areas where you can really self-check for a lot of problems
with runtime debug wrappers:

113 Safe C++

e Tile operations
e Memory allocation
e String operations

Wrapping Math Functions

It might seem that it’s not worth wrapping the mathematical functions, as their
failures are rare. However, these are some things you can check:

e errno is already set on entry.

e errno is set afterwards (if not already set).
e Function returns NaN.

e Function returns negative zero.

Most of these can be implemented as a single integer test (e.g., errno) or as a
bitwise trick on the underlying floating-point representation (e.g.,
convert float to an unsigned). There are also builtin library functions to detect
floating-point categories such as NaN.

In this way, a set of math wrapper functions has automated a lot of your detection
of common issues. These aren’t as common as memory issue, but it’s yet another
way to move towards a safe C++ implementation.

Wrapping File Operations

Many of the file operations are done via function calls, and are a good candidate
for debug wrapper functions. Examples of standard C++ functions that you could
intercept include:

e fopen, fread, fwrite, fseek, fclose
e open, read,write, creat,close

Note that intercepting £stream operations in this way is not workable. They don’t
use a function-like syntax for file operations.

Using the approach of wrapping file operations can add error detection, error
prevention, and tracing capabilities to these operations. Undefined situations and
errors that can be auto-detected include:

e File did not open (i.e., trace this).

David Spuler 114

e Read or write failed or was truncated.
e Read and write without intervening seek operation.

Link-Time Interception: new and delete

Macro interception works for C++ functions like the standard C++ functions
like malloc and free, but you can’t macro-intercept
the new and delete operators, because they don’t use function-like syntax.
Fortunately, you can use link-time interception of these operators instead, simply
by defining your own versions. This is a standard feature of C++ that has been long
supported.

Note that defining class-level versions of the new and delete operators is a well-
known optimization for a class to manage its own memory allocation pool, but this
isn’t what we’re doing here. Instead, this link-time interception requires defining
four operators at global scope:

e new

e newl]

e delete

e deletel]

You cannot use the real new and delete inside these link-time wrappers. They
would get intercepted again, and you’d have infinite stack recursion.

However, you can call malloc and free instead, assuming they aren’t also macro-
intercepted in this code. Here’s the simplest versions:

void * operator new(size t n)
{

return malloc (n);

void* operator newl[] (size t n)
{

return malloc (n);

void operator delete(void* v)
{

free (v);
115 Safe C++

}

void operator delete[] (void* wv)

{
free (v);

}

This method of link-time interception is an officially sanctioned standard C++
language feature since the 1990s. Be careful, though, that the return types and
parameter types are precise, using size tand void*, as you cannot
use int or char*.

so, declarin ese functions as inline gets a compilation warning, and is
Also, declaring these functi 1 get pilat g, and
presumably ignored by the compiler, as this requires link-time interception.

Here’s an example of some ideas of some basic possible checks:

#define AUSSIE ERROR (mesg, ...) \
(printf((mesg) _ VA OPT (,) _ VA ARGS))

void * operator new(size t n)
{
if (n == 0) {
AUSSIE ERROR("new operator size is zero\n");
}
void *v = malloc (n);
if (v == NULL) {
AUSSIE ERROR ("new operator: alloc failure\n");
}

return v;

Note that you can’tuse FILE or LINE as these are link-time intercepts,
not macros. Maybe you could use std::backtrace instead, but I have my
doubts.

Destructor Problems with Debug Wrappers

The use of a debug wrapper library can be very valuable. However, there are a few
problematic areas:

e Destructors should not throw an exception.
e Destructors should not call exit or abort.

David Spuler 116

e Destructor issues with assert.

Any of these happenstances can trigger an infinite loop situation. Exception
handlers can trigger destructors, which in turn trigger exceptions again. Exiting or
aborting in a destructor may trigger global variable destruction, which calls the same
destructor, which tries to exit or abort again.

Be careful of the system assert macro inside destructors, because it’s a hidden
call to abort if it fails.

Although these infinite-looping problems are serious, it would seem that these are
minor issues to add to your coding standards: don’t do these things inside a
destructor.

However, we’re talking about debug wrapper libraries, rather than explicit calls, and
destructors often have need to:

e De-allocate memory
e C(lose files

Both of these tasks are often intercepted by debug wrapper libraries, whether
macro-intercepted or at link-time. Hence, the issue we have is that any failure
detected by the debug wrapper code may trigger one of the above disallowed calls,
depending on our policy for handling a detected failure.

Unfortunately, I’'m not aware of an API that checks if “I’'m running a destructor”
in C++. Hence, it’s hard for the debug library to address this issue itself. There are
a few mitigations you can use in coding destructors:

e Recursive re-entry detection inside destructors using a static local
variable.

e Modify the debug library’s error handling flags on entry and exit of a
destructor

e Have global flags called “I’'m exiting” or “I’'m failing” that are checked by
all your destructors, in which case it should probably do nothing.

Alternatively, you could manage your own global flag “I’m in a destructor” in every
destructor function. More accurately, this is not a flag, but a counter of destructor
depth. This flag or counter is then checked by the debug library to check if it’s in a
destructor before it throws an exception, exits, or aborts.

117 Safe C++

But I’'m not sure what the debug library should do instead? Maybe it can itself set a
global flag saying “I want to exit soon” and then it will later detect this flag is set
on the next intercepted call to the debug library, provided that it’s not still inside a
destructor.

Perhaps your application’s main processing loop could regularly check with the
debug library whether it wants to quit, by just checking that global variable often.

Ugh! None of that sounds workable.
A better plan is probably that your debugging library wrapper functions should
never throw an exception, exit, abort, or use the builtin system assert function,

because it can’t ever be sure it’s not inside a destructor. Instead, report errors and
log errors in another way, but try to keep going, which is a good idea anyway.

David Spuler 118

16. Debugging Strategies

General Debugging Techniques

A lot of the work in debugging programs is nothing special: it’s just basic C++
coding mistakes. Most of the errors in coding are ordinary, boring coding errors
that every C++ programmer is prone to. There are a variety of ways to go wrong
in handling pointers and addresses, from basic beginner mistakes to traps that can
catch the experienced practitioner.

The best way to catch a bug is to try to make it happen eary. We want the program
to crash in the lab, not out in production. In this regard, some of the best practices
are about auto-detecting the failures in your code, rather than waiting for them to
actually cause a crash:

e Check every return code (even the harmless functions that can “never”
fail).

e Use macro wrappers to help handle errors.

e Add debug wrapper functions and enable them while testing.

e Run valgrind or other sanitizers on your code regularly.

e Thrash the code in many ways in the nightly builds.

If you mess up, and a bug happens in the production backend of your Al training
run, I suggest this: blame the data scientists. Surely, the problem was in the training
data, not in my perfect C++ code. And if that doesn’t work, well, obviously the
GPU was overheating.

Very Difficult Bugs. Some bugs are like roaches and keep coming out of the
woodwork. General strategies for solving a tricky bug include:

e Can you reproduce it? That’s the key.

e Write a unit test that triggers it (if you can).

e Try to cut down the input to the smallest case that triggers the fault.

e Gather as much information about the context as possible (e.g., if it’s a
user-reported error).

119 Safe C++

Your debugging approach should include:

e Runvalgrind or sanitizers to check for memory glitches.

e Think about what code you just changed recently (or was just committed
to the repo by someone else!).

e Memory-related failures often cause weird errors nowhere near the cause.

e Review the debug trace output carefully (i.e., may be that some other part
of the code failed much eatlier).

e Step through the code in gdb about ten more times.

e Run a static analysis (“lintet”) tool on the code.

e Run an Al copilot debugger tool. I hear they’re terrific.

e Refactor a large module into smaller functions that are more easily unit-
tested (often you accidentally fix the bug]).

If you really get stuck, you could try talking to another human (gasp!). Show your
code to someone else and they’ll find the bug in three seconds.

Bug Symptom Diagnosis

It is very beneficial to the debugging process to be able to identify the cause of an
error from its symptoms. Unfortunately, this is a very difficult process — otherwise
debugging would be easy! Nevertheless, there are some common run-time errors
with well-known causes, and this section attempts to provide a brief catalog of
common error causes, mapping observable failure symptoms into the common
errofs.

Linux core dumps

There are a number of run-time error messages that occur mainly on Linux
machines. Some of the common run-time error messages ate:

e Segmentation fault
e Bus error

e Illegal instruction
e Trace/BPT trap

The message “core dumped” will often accompany the error message if it causes
program termination, and this indicates that a file named “core” has been saved in
the current directory. The “core” file can be used for postmortem debugging to
locate the failure with a symbolic debugger.

David Spuler 120

Note that the dump of the core file can be prevented by providing an empty file
named “core” thatis set to protection mode 000 using chmod. This may be useful
if disk space is limited and the core dumps are huge.

A segmentation fault occurs when the hardware detects a memory access by the
program that attempts to reference memory it is not allowed to use. For example,
the address NULL cannot be referenced, and in fact, the single most common cause
of a segmentation fault (at least for the experienced programmer) is a null
dereference, but there are many other causes.

A bus error occurs when an attempt is made to load an incorrect address into an
address bus. Although this leads us to suspect bad pointers, this error can also arise
via stack corruption (because this can cause bad pointer addresses), and so there
are a variety of potential causes.

Segmentation faults and bus errors may be reported as the program receiving
signal SIGSEGV or SIGBUS in some situations. The most common causes of a
segmentation fault or bus error are listed below. Different architectures will have
different results for these errors, but will usually produce either a segmentation fault
or bus error.

Here are some of the causes:

e Null pointer dereference.

e Wayward pointer dereference (memory allocation problem).

e Non-initialized pointer dereference.

e Array index out of bounds.

e Wrong number or type of arguments to non-prototyped function.
e Bad arguments to scanf or printf.

e Forgetting the & on arguments to scanf.

e Deallocating non-allocated location using free or delete.

e Deallocating same address twice using free or delete.

¢ Executable file removed/modified as being executed (dynamic loading).
e Stack overflow due to function calls or automatic variables.

Another common abnormal termination condition for Linux machines is the
message “illegal instruction,” which usually causes a core dump.

121 Safe C++

The most common causes of this method of termination are:

e assert macro has failed (causes abort call).

e abort library function called.

e Data has been executed somehow (uninitialized pointer-to-function?).

e Stack corruption (e.g., write past end of local array).

e Stack overflow (not the website).

e (C++ exception problem causing abort call.

e Unhandled exception was thrown.

e Unexpected exception from function with interface specification.

e Exception thrown in destructor during exception-related stack unwinding.

Another run-time error message for Linux machines is the message “fixed up non-
aligned data access,” although this does not necessarily lead to program termination.
This indicates that hardware has detected an attempt to access a value through an
address with incorrect alignhment requirements. Typically, it refers to attempting to
read or write an integer or pointer at an odd-valued address (i.e., an address that is
not word-aligned). Note that on machines without this automatic “fix-up” the same
code will probably cause a bus error.

Program hangs infinitely

When one is faced with debugging a program that seems to get stuck, it is important
to determine what type of “hang” has occurred. If the program is simply stuck in
an infinite loop, you will still have control of the program and can interrupt it. One
method of finding out where the program is stuck is to run the program from a
debugger, or to use the keyboatd interrupt <ctrl-\> to cause a core dump, which
can then be examined by a debugger. Some causes of this form of infinite looping
are:

e NP-complete algorithm (i.e., basically anything in AI).

e Infinite loop is occurring due to logic bug or coding error.

e Looping down to zero with a size t index variable (i.e.,, unsigned).
e Accidental semicolon on end of while/for loop header.

e exit called within a destructor of global object (C++ only).

e Handled/ignored signal is recurring (e.g., SIGSEGV, SIGBUS).

e Waiting for input: getc/getch assigned to char.

e Linked data structure corrupted (contains pointer cycles).

David Spuler 122

Delayed crash

If the program hangs for a period of time and then crashes, a likely candidate is a
runaway recursive function. This will loop (almost) infinitely, consuming stack
space all the time, until it runs out of stack space and:

(a) Terminates abnormally, or

(b) The stack overwrites some important memory and the second, more
severe form of “hang” occurs.

Non-responsive program

The most severe form of a “hung” program is one that will not respond. You know
it’s a bad bug when the reset button is the only thing that works. When this occurs,
I recommend the use of any compiler run-time checks, especially stack overflow
checking and array bounds checking (if available). An additional method is to
recompile using a sanitizer or a memory allocation debugging library.

Some possible causes of a non-responsive program are:

e Infinite recursion error.

e Stack overflow for other reasons.

e Array index out of bounds.

e Modification via wayward pointer.

e Modification via non-initialized pointer.
e Modification via null pointer.

e Freeing a non-allocated block.

e [Freeing a string constant.

e Non-terminated string was copied.

e Inconsistent compiler/linker options.

Failure after long execution

A very annoying error is that of a program that runs perfectly for a long period of
time and then suddenly fails for no apparent reason. This usually indicates a
“memory leak” causing the system to use up all available memory and malloc to
return NULL.

123 Safe C++

However, there are other causes and a more complete list is:

e Untested rare sequence of events is causing the error (try to repeat it).

e Heap memory leak causing allocation failure (allocated memory not
deallocated).

¢ Running out of FILE* handles (files opened but not closed).

e Some form of memory corruption (symptom of bug doesn’t appear
immediately).

e Integer overflow (e.g., of some 16-bit or 32-bit counter).

e Disk filling up (e.g., excessive logging).

e Unhandled peripheral error (e.g., printer out of paper).

Optimizer-only bugs

A program that runs correctly with normal compilation but fails when the optimizer
is invoked is a well-known problem. The immediate reaction is to blame a bug in
the optimizer. Memory safety errors are a likely cause! However, if your runtime
memory checker is showing no errors, it’s something else. although such bugs are
not so rare as one would wish, there are a number of other potential causes. It is
usually an indication that some erroneous or non-portable code has been working
correctly more by luck than good programming, and the more aggressive
optimizations have shown up the error. Some possible causes are:

e Otder of evaluation errors (optimizer rearranges expressions).

e Special location not declared volatile.

e Use of an uninitialized variable.

e Wrong number/type of arguments to non-prototyped function.

e Wrong arguments to prototyped function not declared before use.

e Memory access problems (optimizer has rearranged some memory).

In this situation it may be useful to examine what compiler options are available to
choose which optimizations are chosen. For example, there may be an option to
choose between traditional stack-based argument passing and pass by register. If
so, recompilation with and without that option can help to test for argument
passing errors.

David Spuler 124

Failure disappears when debugger used

A really annoying situation is a program that crashes when run normally, but does
not fail when run via a symbolic debugger or interpreter. One fairly well-known
cause is the use of an uninitialized automatic variable. The error may disappear
when run via the debugger, because some debuggers set these local variables to zero
or NULL initially. Thus, some possible causes are mainly from memory access
problems, where the debugger has rearranged memory somehow:

e Using uninitialized variable (especially a pointer)
e Array index out of bounds

e Modification via wayward pointer

e Modification via non-initialized pointer

e NULL pointer dereference

e Modification via null pointer

e Treeing a non-allocated block

e Freeing a string constant

The list of errors possibly causing a memory-related problem is comparable with
the list of errors causing a non-recoverable hung program.

Program crashes at startup

When a C++ program crashes on program startup, without even executing the first
statement in main, we must suspect constructors of global objects. Use a run-time
debugger to determine if main has been entered; but note that some debuggers
allow debugging of constructors before main and others do not. Alternatively, place
an output statement as the very first statement in main (even before the first
declaration!) to ensure that the problem really is arising before main, rather than
from instructions in main. Once a constructor problem has been identified, finding
the root cause of the problem is a debugging matter. There are no forms of error
particular to constructors, so the problem is something being done by a constructor
that is probably some type of other error (e.g., a memory stomp etror).

Program crashes on exit

The program can fail in a few obscure ways at the end of execution. Careful
consideration of what actions are taking place at the end of execution is important
(e.g., destructors are invoked in C++; any functions registered with atexit will be
called). In my experience this failure is most common during the learning phase in
C++ programming, when destructor errors are common.

125 Safe C++

Possible causes include:

e delete operation in object destructor is trashing memory.

e Destructor in global object calls exit.

e main accidentally declared returning non-int. e.g., missing semicolon
on class or struct declaration above main.

e setbuf bufferis a non-static local variable of main.

e No call toexit, and no return statement inmain (a few platforms
only).

e Tile closed twice (e.g., double fclose error).

Function apparently not invoked

Consider the situation where you are debugging a program, and discover that a
particular function seems to be having no effect. You put an output statement at its
first statement and no output appears. Why isn’t the function being invoked?

Some possible causes are:

e No call to the function (), e.g., you didn’t rebuild propetly (your fault), or
a source code repo issue (someone else’s fault) or you’re looking in the
wrong C++ source file (I've done it many times).

e Control flow or conditional test controlling the call is wrong.

e Missing brackets on function call (null-effect).

e Tunction is a macro at call location.

e Tunction is a reserved library function name (wrong function is getting
called).

e Missig semicolon or statement in 1 f statement above the function call.

e Nested comments unclosed and deleting call to function.

Garbage output

When a program runs and produces strange output there are a number of
possibilities (mostly related to misusing string variables). Note that it is important
to distinguish whether the output of a statement is entirely garbage or whether it
has a correct prefix (which may indicate a non-terminated string).

David Spuler 126

Some causes are:

e Uninitialized local or allocated variable.

e Constructor not initializing all data members.

e Missing argument to printf %$s format.

e Wrong type argument to printf %s format.

e Returning address of automatic local string array.
e Stack corruption (local array buffer overrun).

e strncpy leaves string non-terminated.

e DPointer variable not initialized.

e Address has already been deallocated

Failure on new platform

When a program appears to be running successfully on one machine, it is by no
means guaranteed that porting the source code and recompiling on a new machine
will not lead to new errors.

When a new error is discovered, the first thing that must be tested is whether the
same error exists for the same test data on the original machine. The bug might not
be a portability problem — it might be an untested case.

However, if the bug appears on one machine but not on another there are a few
common causes. The most frequent portability problem is a memory corruption
error since these will often lurk undetected on one machine, and appear in the new
memory layout of a different environment.

Other possible causes are different compilation results that may arise when a new
compiler uses more aggressive optimization. Hence, code that relies on an
undocumented compiler feature (e.g., left to right function argument evaluation)
may suddenly fail.

Note that this implies that portability errors can arise after a compiler upgrade on
the same machine, as well as when moving code to a new machine.

Some common causes of portability errors are:

e Memory corruption errors.

e Array index out of bounds.

e Modification via wayward pointer.

e Modification via non-initialized pointer.
e Null pointer dereference.

127 Safe C++

e Modification via null pointer.

e Freeing a non-allocated block.

e FPreeing a string constant.

e Function has no return statement.

e Order of evaluation error.

e Operator order-of-evaluation: a [1]=1++;

e Function argument order-of-evaluation: fn (i, i++) ;
e Global object construction in separate files.

e Special location not declared volatile.

e Use of an uninitialized variable.

e Constructor not initializing all data members.

e new doesn’t initialize non-class types.

e malloc doesn’t initialize any types.

e Bit-field is plain int.

e DPlain char is signed/unsigned.

e getc/getchar return value assigned to char.

Most of these causes are fairly self-explanatory. However, the appearance of
“function has no return statement” in the list may appear surprising — surely
this will cause a bug on all implementations?

In fact, most C++ implementation will offer a compilation error, but this is not
always true, and not applicable to C compilers. It has been observed surprisingly
frequently that a function that terminates without a return statement might
accidentally return the correct value. Typically, this surprising outcome occurs if, by
coincidence, a local scalar variable that is intended to be returned happens to be in
the hardware register that is used to hold the function return value. Since that
register is not loaded when no return statement is found, the correct result is
accidentally returned, and there is no failure until a different compiler or
environment is used.

Some compilers have compilation options to change various compiler-dependent
features. For example, there may be options to change the default type of
plain char and/or plain int bit-fields to signed or unsigned. If it is suspected that
this may be the cause of the error, the code can be recompiled with different option
settings to confirm this. Any run-time error checking options such as memory
allocation debugging and stack overflow checking should also be enabled.

David Spuler 128

Making the Correction

An important part of the debugging phase that is often neglected is actually making
the correction. You’ve found the cause of the failure, but how do you fix it? It is
imperative that you actually understand what caused the error before fixing it; don’t
be satisfied when a correction works and you don’t know why.

Here are some thoughts on the best practices for the “fixing” part of debugging:

e Test it one last time.

e Add a unit test or regression test.

e Re-run the entire unit test or regression test suite.
e Update status logs, bug databases, change logs, etc.
e Update documentation (if applicable)

Another common pitfall is to make the correction and then not test whether it
actually fixed the problem. Furthermore, making a correction will often uncover (or
introduce!) another new bug. Hence, not only should you test for this bug, but it’s
a very good idea to use extensive regression tests after making an apparently
successful correction.

Level Up Your Post-Debugging Routine. Assuming you can fix it, think about
the next level of professionalism to avoid having a repetition of similar problems.
Consider doing followups such as:

e Add a unit test or regression test to re-check that problematic input every

build.

e Write it up and close the incident in the bug tracking database like a Goody
Two-Shoes.

e Add safety input validation tests so that a similar failure is tolerated (and
logged).

e Add a self-check in a C++ debug wrapper function to check for it next
time at runtime.

e Is there a tool that would have found it? Or even a grep script? Can you
run it automatically? Every build?

129 Safe C++

Production-Level Code

As with all applications, there’s another level needed to get the code out the door
into production. Some of the issues for fully production-ready C++ code include:

e Validate function parameters (don’t trust the caller or the user).
e Check return codes of all primitives.

e Handle memory allocation failure (e.g., graceful shutdown).

e Add unique error message codes for supportability

Let’s not forget that maybe a little testing is required. High-quality coding requires
all manner of joyous programmer tasks: write unit tests, warning-free compilation,
static analysis checks, add assertions and debug tracing, run valgrind or
sanitizers, write useful commit summaries (rather than “I forget”), don’t cuss in the
bug tracking record, update the doc, comment your code, and be good to your
mother.

David Spuler 130

17. Debug Tracing

Debug Tracing Messages
Ah, yes, worship the mighty printf!

A common debugging method is adding debug trace output statements to a
program to print out important information at various points in the program.
Judicious use of these printf statements can be highly effective in localizing the
cause of an error, but this method can also lead to huge volumes of not particulatly
useful information. One desirable feature of this method is that the output
statements can be selectively enabled at either compile-time or run-time.

Debug tracing messages are informational messages that you only enable during
debugging. These are useful to software developers to track where the program is

executing, and what data it is processing. The simplest version of this idea looks
like:

#if DEBUG
printf ("DEBUG: I am here!\n");
#endif

A better solution is to code some BYO debug tracing macros. Here’s a macro
version:

#define aussie debug(str) (\
fprintf (stderr, "DEBUG: %s\n", (str)))

aussie debug ("I am here!");
Here’s the C++ stream version:

#define aussie debug(str) \
(std::cerr << str << std::endl)

aussie debug ("DEBUG: I am here!");

131 Safe C++

In order to only show these when debug mode is enabled in the code, our header
file looks like this:

#if DEBUG
#define aussie debug(str) \
(std::cerr << str << std::endl)
#else
#define aussie debug(str) // nothing
#endif

Missing Semicolon Bug: Professional programmers prefer to use “0” rather than
emptiness to remove the debug code when removing it from the production
version. It is also good to typecast it to “void” type so it cannot accidentally be
used as the number “0” in expressions. Hence, we get this improved version for
removing a debug macro:

#define aussie debug(str) ((void)0) // better!

It’s not just a stylistic preference. The reason is that the “nothing” version can
introduce an insidious bug if you forget a semicolon after the debug trace call in
an if statement:

if (something) aussie debug("Hello world") // No semi!
X++;

If the “nothing” macro expansion is used, then the missing semicolon leads to this
code:

if (something) // nothing
X++;

Can you see why it’s a bug? Instead, if the expansion is “ ((void) 0)” then this
missing semicolon typo will get a compilation error.

Variable-Argument Debug Macros

A neater solution is to use varargs preprocessor macros with the special tokens
“...7and “ VA ARGS 7, which are standard in C and C++ (since 1999):

#define aussie debug(fmt,...) \
printf ((fmt), VA ARGS)

aussie debug ("DEBUG: I am here!\n");
David Spuler 132

That’s not especially helpful, so we can add more context:

// Version with file/line/function context

#define aussie debug(fmt,...) \
(printf ("DEBUG [%s:%d:%s]: ", \
__FILE , LINE , func__), \

printf ((fmt), VA ARGS))

aussie debug ("I am here!\n");

This will report the source code filename, line number, and function name. Note
the use of the comma operator between the two printf statements (whereas a
semicolon would be a macro bug). Also required are parentheses around the whole
thing, and around each use of the “fmt” parameter.

Here’s a final example that also detects if you forgot a newline in your format string

(how kind!):

// Version with newline optional

#define aussie debug(fmt,...) \
(printf ("DEBUG [%$s:%d:%s]: ", \
__FILE , LINE , func__), \
printf ((fmt), VA ARGS), \
(strchr ((fmt), '\n') != NULL \
Il printf("\n")))
aussie debug ("I am here!"); // Newline optional

Dynamic Debug Tracing Flag

Instead of using “#if DEBUG”, it can be desirable to have the debug tracing
dynamically controlled at runtime. This allows you to turn it on and off without a
rebuild, such as via a command-line argument or inside a gdb session. And you can
decide whether or not you want to ship it to production with the tracing available
to be used. Your phone support staff would like to have an action to offer
customers rather than “turn it off and on.”

This idea of dynamic control of tracing can be controlled by a single Boolean flag:

extern bool g aussie debug enabled;

133 Safe C++

We can add some macros to control it:

#define aussie debug off () \
(g_aussie debug enabled
#define aussie debug on() \
(g_aussie debug enabled = true)

false)

And then the basic debug tracing macros simply need to check it:

#define aussie dbg(fmt,...) \
(g_aussie debug enabled && \
printf ((fmt), VA ARGS))

So, this adds some runtime cost of testing a global flag every time this line of code
is executed.

Here’s the version with file, line, and function context:

#define aussie dbg(fmt,...) \
(g_aussie debug enabled && \
(printf ("DEBUG [%$s:%d:%s]: ", \
__FILE , LINE , func__), \

printf ((fmt), VA ARGS)))

And here’s the courtesy newline-optional version:

#define aussie dbg(fmt,...) \
(g _aussie debug enabled && \
(printf ("DEBUG [%$s:%d:%s]: ", \
__FILE , LINE , func__), \
printf ((fmt), VA ARGS), \
(strchr ((fmt), '\n') != NULL \
Il printf ("\n"))))

Multi-Statement Debug Trace Macro

An alternative method of using debugging statements is to use a special macro that
allows any arbitrary statements. For example, debugging output statements can be
written as:

DBG(printf ("DEBUG: Entered function printilist\n");)

David Spuler 134

Or using C++ iostream output style:

DBG (std::cerr << "DEBUG: Entered function
print list\n";)

This allows use of multiple statements of debugging, with self-testing code as:

DBG(count++;)

DBG(if (count != count elements(table)) {)

DBG (aussie internal error ("ERROR: Count wrong");)
DBG(})

But it’s actually easier to add multiple lines of code or a whole block in many cases.
An alternative use of DBG with multiple statements is valid, provided that the
enclosed statements do not include any comma tokens (unless they are nested inside
matching brackets). The presence of a comma would separate the tokens into two
or more macro arguments for the preprocessor, and the DBG macro above requires
only one parameter:

DBG (
count++;
if (count != count elements(table)) { // self-test
aussie internal error ("ERROR: Count wrong");

The multi-statement DBG macro is declared in a header file as:

#if DEBUG

#define DBG(token list) token list // Risky
#else

#define DBG(token list) // nothing

#endif

The above version of DBG is actually non-optimal for the macro error reasons
already examined. A safer idea is to add surrounding braces and the “do-
while (0)” trick to the DBG macro:

#if DEBUG
#define DBG(token list) \

do { token list } while(0) // Safer
#else
#define DBG(token list) ((void)0)
#endif

135 Safe C++

Note that this now requires a semicolon after every expansion of the DBG macro,
whereas the earlier definition did not:

DBG(std::cerr << "Value of i is " << 1 << "\n";);

Whenever debugging is enabled, the statements inside the DBG argument are
activated, but when debugging is disabled they disappear completely. Thus, this
method offers a very simple method of removing debugging code from the
production version of a program, if you like that kind of thing.

This DBG macro may be considered poor style since it does not mimic any usual
syntax. However, it is a neat and general method of introducing debugging
statements, and is not limited to output statements.

Yet another alternative style is to declare the DBG macro so that it follows this
statement block structure:

DBG {
// debug statements
}

Refer to the implementation of a block “SELFTEST” macro in the prior chapter
for details on how to do this.

Multiple Levels of Debug Tracing

Once you've used these debug methods for a while, you start to see that you get
too much output. For a while, you’re just commenting and uncommenting calls to
the debug routines. A more sustainable solution in a large project is to add numeric
levels of tracing, where a higher number gets more verbose.

To make this work well, we declare both a Boolean overall flag and a numeric level:

extern bool g aussie debug enabled;
extern int g aussie debug level;

Here’s the macros to enable and disable the basic level:

#define aussie debug off ()
g_aussie debug enabled
g_aussie debug level =

(\
= false, \
0)

David Spuler 136

#define aussie debug on()
g_aussie debug enabled

(\
= true, \
g _aussie debug level =1)

And here’s the new macro that sets a numeric level of debug tracing (higher number
means more verbose):

#define aussie debug set level(lvl) (\
g _aussie debug enabled = (((1lvl) != 0)), \
g_aussie debug level = (lvl))

Here’s what a basic debug macro looks like:

#define aussie dbglevel (1vl, fmt,...) (\
g _aussie debug enabled && \
(lvl) <= g aussie debug level && \
printf ((fmt), VA ARGS))

aussie dbglevel (1, "Hello world");
aussie dbglevel (2, "More details");

Now we see the reason for having two global variables. In non-debug mode, the
only cost is a single Boolean flag test, rather than a more costly integer “<”
operation.

And for convenience we might add multiple macro name versions for different
levels:

#define aussie dbglevell (fmt)
(aussie debuglevel (1, (fmt)

#define aussie dbglevel2 (fmt)
(aussie_debuglevel (2, (fmt)

\
))
\

))

aussie dbglevell ("Hello world");
aussie dbglevel2 ("More details");

Very volatile. Note that if you are altering debug tracing levels inside a symbolic
debugger (e.g., gdb) or IDE debugger, you might want to consider declaring the
global level variables with the “volatile” qualifier. This applies in this situation
because their values can be changed (by you!) in a dynamic way that the optimizer
cannot predict. On the other hand, you can skip this, as this issue won’t affect
production usage, and only rarely impacts your own interactive debugging usage.

137 Safe C++

BYO debug printf: All of the above examples are quite fast in execution, but heavy
in space usage. They will be adding a fair amount of executable code for each
“aussie debug” statement. I’'m not sure that I really should cate that much
about the code size, but anyway, we could fix it easily by declaring our own variable-
argument debug print f-like function.

Advanced Debug Tracing

The above ideas are far from being the end of the options for debug tracing. The
finesses to using debug tracing messages include:

e Environment variable to enable debug messages.

¢ Command-line argument to enable them (and set the level).

e Configuration settings (e.g., changeable inside the GUI, or in a config file).

e Add unit tests running in trace mode (because sometimes debug tracing
crashes!).

e Extend to multiple sets or named classes of debug messages, not just
numeric levels, so you can trace different aspects of execution dynamically.

Supportability Tip: Think about customers and debug tracing messages: are there
times when you want users to enable them? Usually, the answer is yes. Whenever a
user has submitted an error report, you’d like the user to submit a run of the
program with tracing enabled to help with reproducibility. Hence, consider what
you want to tell customers about enabling tracing (if anything). Similatly, debug
tracing messages could be useful to phone support staff in various ways to diagnose
ot resolve customer problems. Consider how a phone support person might help a
customer to enable these messages.

David Spuler 138

18. Portability

Portability Strategy

You do need portability if your users have different platforms. There are also
various generic benefits from having most of the C++ code being standardized and
portable. Using portable C++ in the general code areas means being able to run
unit test on lots of utility code on developer’s boxes, no matter what the deployment
platform.

Good code design generally dictates that the non-portable parts should at least be
wrapped and isolated.

Portability in C++ programming of Al applications involves correctly running on
the underlying tech stack, including the operating system, CPU, and GPU
capabilities.

Conceptually, in both cases, there are two levels:

1. Toleration. The first level of portability is “toleration” where the
program must at least work correctly on whatever platform it finds itself.

2. Exploitation. The second level is “exploiting” the specific features of a
particular tech stack, such as making the most of whatever CPU or GPU
hardware is available.

This is generally true for any application, but especially true for Al engines. To get
it running fast, you’ll need a whole boatload of exploitation deep in your C++
backends. Hence, the basic approach to writing portable code is:

1. Write generic code portably, and

2. Write platform-specific code where needed.

139 Safe C++

Writing portable standard C++ code. Wherever your application doesn’t need a
GPU, your C++ code should be written in portable C++. The majority of the C++
programming language is well-standardized, and a lot of code can be written that
simply compiles on all platforms in a way that it has consistent results. You just
have to avoid the portability pitfalls.

Platform-specific coding. Most C++ programmers are familiar with
using #1f or #ifdef preprocessor directives to handle different platforms, and
the various flavors of this are discussed further below. The newer C++ equivalent
is “if constexpr” statements for compile-time processing. Small or sometimes
large sections of C++ code will need to be written differently on each platform.

Likely major areas that will be non-portable include:

e Hardware acceleration (GPU interfaces)

e Intrinsic functions (CPU acceleration)

e FP16/BF16 floating-point types

e User interfaces (Windows vs Mac vs X Windows)

e Android vs iOS (not just the GUI)

e Multi-threading (Linux vs Windows threads)

e Text file differences (You’ve heard of \r, right?)

e File system issues (Directory hierarchies, permissions, etc.)
e “Endian” issues in integer representations.

Consider your code choices carefully. Some other areas where you can create
portability pain for yourself include:

e Third-party libraries (i.e., if not widely used like STL or Boost).
e Newer C++ standard language features (e.g., C++23 features won’t be
widely supported yet).

Compilation Problems

If you want your C++ code to run on both Linux and Windows, you might need
to get past the compiler errors first! C++ has been standardized for decades, or it
seems like that. So, I feel like it should be easier to get C++ code to compile. And
yet, I find myself sometimes spending an hour or two getting past a few darn
compiler errors.

Most compilers have a treat-warnings-as-errors mode. Come on, I want the reverse.

David Spuler 140

Some of the main issues that will have a C++ program compile on one C++
compiler (e.g., MSVS) but not on another (e.g., GCC) include:

(] const correctness
e Permissive versus conformant modes
e Pointer type casting

const correctness refer to the careful use of “const” to mark not just named
constants, but also all unchanging read-only data types. If it’s “const” then it
cannot be changed; if it’s non-const, then it’s writable.

People have different levels of feelings about whether this is a good idea. There are
the fastidious Vogon-relative rule-followers who want it, and the normal reasonable
pragmatic people who don’t. Can you see which side I'm on?

Anyway, to get non-const-correct code (i.e., mine) to compile on GCC or MSVS,
you need to turn off the fussy modes. On MSVS, there’s a “permissive” flag in
“Conformance Mode” in Project Settings that you have to turn off.

Pointer type casting is another issue. C++ for Al has a lot of problems with
pointer types, mainly because C++ standardizers back in the 1990s neglected to
create a “short float” 16-bit floating-point type. Theoretically, you’re not
supposed to cast between different pointer types, like “int*” and “char*”. And
theoretically, you'’re supposed to use “void*” for generic addresses, rather than
“char*” or “unsigned char*”.

But, you know, this is Al, so them rules is made to be broken, and the C++
standardizer committees finally admitted as much when they created the vatious
special types of casts about 20 years later (i.e., reinterpret cast).

Anyway, the strategies for getting a non-compiling pointer cast to work include:

e Just casting it to whatever you want.
e Turning on permissive mode
e (Casting it to void* and back again (i.e.,
“x=* (int*) (void*) (char*) &c”)
e Using “reinterpret cast” like a Goody Two-Shoes.

141 Safe C++

Runtime Portability Glitches

A bug that occurs on every platform is just that: a bug. A portability glitch is one
with different behavior on different platforms. Some examples of the types that can
occut:

e The code doesn’t compile on a platform.

e The code has different results on different platforms.
e Sluggish processing on one platform.

e Crashes, hangs, or spins on one platform.

Some other types of weird problems that might indicate a portability glitch:

e Code runs fine in normal mode, but fails when the optimizer is enabled, or
if the optimization level is increased.

e Code crashes in production, but runs just fine in the debugger (i.e., cannot
reproduce it).

e Code intermittently fails (e.g., it could be a race condition or other timing
1ssue.)

Alot of these types of symptoms are screaming “memory error!” And indeed, that’s
got to be top of the list. You might want to run your memory debugging tools again
(e.g., Valgrind), even on a different platform to the one that’s crashing.

However, it’s not always memory or pointers. There are various insidious bugs that
can cause weird behavior in the 0.001% cases where it’s not a memory glitch:

e Uninitialized variables or object members.

e Numeric overflow or underflow (of integers or float type).

e Data size problems (e.g., 16-bit, 32-bit, or 64-bit).

e Undefined language features. Your code might be relying on something
that isn’t actually guaranteed in C++.

Data Type Sizes

There are a variety of portability issues with the sizes of basic data types in C++.
Some of the problems include:

e Fundamental data type byte sizes (e.g., how many bytes is an “int”).
e Pointer versus integer sizes (e.g., do void pointers fit inside an int?).

David Spuler 142

e size tisusuallyunsigned long, notunsigned int

Typical Al engines work with 32-bit floating-point (£loat type). Note that for 32-
bit integers you cannot assume that int is 32 bits, but must define a specific type.
Furthermore, if you assume that short is 16-bit, int is 32-bit, and 1ong is 64-bit,
well, you’d be incorrect. Most platforms have 64-bit int types, and the C++
standard only requires relative sizes, such as that 1ong is at least as big as int.

Your startup portability check should check that sizes are what you want:

// Test basic numeric sizes
aussie assert(sizeof (int) == 4);
aussie assert (sizeof (float) == 4);
aussie assert (sizeof (short) 2

Another more efficient way is the compile-time static assert method:

static assert(sizeof (int)
static_assert(sizeof (float
static_assert (sizeof (short

Il
NS N
N

And you should also print them out in a report, or to a log file, for supportability
reasons. Here’s a useful way with a macro that uses the “#” stringize preprocessor
operator and also the standard adjacent string concatenation feature of C++.

#define PRINT TYPE SIZE (type) \
printf ("Config: sizeof " #type \
" = %d bytes (%d bits)\n", \
(int) sizeof (type), 8*(int)sizeof (type)):

You can print out whatever types you need:

PRINT TYPE SIZE (int);
PRINT TYPE SIZE(float);
PRINT TYPE SIZE (short);

Here’s the output on my Windows laptop with MSVS:

Config: sizeof int = 4 bytes (32 bits)
Config: sizeof float = 4 bytes (32 bits)
Config: sizeof short 2 bytes (16 bits)

143 Safe C++

Standard Library Types: Other data types to consider are the builtin ones in the
standards. I’'m looking at you, size t and time t, and a few others that belong
on Santa’s naughty list. People often assume thatsize tis the same as
“unsigned int” but it’s actually usually “unsigned long”. Here’s a partial
solution:

PRINT TYPE SIZE (size t);
PRINT TYPE SIZE (clock t);
PRINT TYPE SIZE (ptrdiff t);

Data Representation Pitfalls

Portability of C++ to platforms also has data representation issues such as:

e Floating-point oddities (e.g., negative zero, Inf, and NaN).

e Whether “char” means “signed char” or “unsigned char”

e Endian-ness of integer byte storage (i.e., do you prefer “big endian” or
“little endian’?).

e Whether zero bytes represent zero integers, zero floating-point, and null
pointers.

Zero is not always zero? You probably assume that a 4-byte integer containing
“0” has all four individual bytes equal to zero. It seems completely reasonable, and
is correct on many platforms, but not all. There’s a theoretical portability problem
on a few obscure platforms. There are computers where integer zero or floating-
point 0.0 is not four zero bytes. If you want to check, here’s a few lines of code for
your platform portability self-check code at startup:

int i2 = 0;

unsigned char* cptr2 = (unsigned char*)&i2;
for (int i = 0; 1 < sizeof(int); i++) {
assert (cptr2[i] == 0);

Are null pointers all-bytes-zero, too? Here’s the code to check NULL in a “char*”

type:

// Test pointer NULL portability
char *ptrl = NULL;

unsigned char* cptr3 = (unsigned char*) &ptrl;
for (int i = 0; 1 < sizeof (char*); i++) {
assert (cptr3[i] == 0);

}
David Spuler 144

What about 0.0 in floating-point? You can test it explicitly with portability self-
testing code:

// Test float zero portability
float £f1 = 0.0f;

unsigned char* cptr4 = (unsigned char*)&fl;
for (int i = 0; 1 < sizeof(float); i++) {
assert (cptrd[i] == 0);

It is important to include these tests in a portability self-test, because you’re relying
on this whenever you use memset or calloc.

Pointers versus Integer Sizes

You didn’t hear this from me, but apparently you can store pointers in integers, and
vice-versa, in C++ code. Weirdly, you can even get paid for doing this. But it only
works if the byte sizes are big enough, and it’s best to self-test this portability risk
during program startup. What exactly you want to test depends on what you’re (not)
doing, but here’s one example:

// Test LONGs can be stored in pointers
aussie assert(sizeof (char*) >= sizeof(long));
aussie assert(sizeof (void*) >= sizeof(long));
aussie assert(sizeof (int*) >= sizeof (long));
// ... and more

Note that a better version in modern C++ would use “static assert” to test
these sizes at compile-time, with zero runtime cost.

static_assert (sizeof (char*) >= sizeof(long));
static_assert(sizeof (void*) >= sizeof(long));
static_assert(sizeof (int*) >= sizeof(long));

In this way, you can perfectly safely mix pointers and integers in a single variable.
Just don’t tell the SOC compliance officer.

145 Safe C++

References

1. Horton, Mark, Portable C Software, Prentice Hall,

1990, https://www.amazon.com/Portable-Software-Mark-R-
Horton/dp/0138680507.

2. Jaeschke, Rex, Portability and the C Language, Hayden Books,

1989, https://www.amazon.com/Portability-l.anguage-Hayden-Books-
library/dp/0672484285.

3. Lapin, J. E., Portable C and UNIX Systenr Programming, Prentice Hall,
1987, https://www.amazon.com/Portable-Systems-Programming-
Prentice-hall-Processing/dp/0136864945.

4. Rabinowitz, Henry, and SCHAAP, Chaim, Portable C, Prentice Hall,
1990, https://www.amazon.com/Portable-C-Prentice-Hall-
Software/dp/0136859674.

5. David Spuler, March 2024, Generative Al in

C++, https://www.amazon.com/Generative-Al-Coding-Transformers-
LLMs-ebook/dp/BOCXJKCWX9/.

David Spuler 146

https://www.amazon.com/Portable-Software-Mark-R-Horton/dp/0138680507
https://www.amazon.com/Portable-Software-Mark-R-Horton/dp/0138680507
https://www.amazon.com/Portability-Language-Hayden-Books-library/dp/0672484285
https://www.amazon.com/Portability-Language-Hayden-Books-library/dp/0672484285
https://www.amazon.com/Portable-Systems-Programming-Prentice-hall-Processing/dp/0136864945
https://www.amazon.com/Portable-Systems-Programming-Prentice-hall-Processing/dp/0136864945
https://www.amazon.com/Portable-C-Prentice-Hall-Software/dp/0136859674
https://www.amazon.com/Portable-C-Prentice-Hall-Software/dp/0136859674
https://www.amazon.com/Generative-AI-Coding-Transformers-LLMs-ebook/dp/B0CXJKCWX9/
https://www.amazon.com/Generative-AI-Coding-Transformers-LLMs-ebook/dp/B0CXJKCWX9/

19. Supportability

What is Supportability?

Supportability refers to making it easier to support your customers in the field. This
means making it easier for your customers to solve their problems, and also making
it easier for your phone support staff whenever customers call in.

Hey! I have an idea: how about you build an Al chatbot that knows how to debug
your software? Umm, sorry, rush of blood to the head.

Some of the areas where the software’s design can help both customers and support
staff include:

e Easy method to print the program’s basic configuration, version, and
platform details (e.g., either an interactive method or logged to a file).

e Printing important platform stats (e.g., what CPU/GPU acceleration was
found by the program, what is sizeof int,and so on).

e Self-check common issues. Don’t just check for input file not found. You
can also check if it was empty, blanks only, zero words, punctuation only,
wrong character encoding, and so on.

e Verbose and meaningful error messages. Assume every error message will
be seen by customers.

e Specific error messages. Lazy coders group two failures: “ERROR: File not
found or empty.” Which is it?

e Unique codes in error messages.

e Documenting your error messages in public help pages or by making your
online support database world-public (gasp!).

e Retain copies of all shipped executables, with and without debug
information, as part of your build and release process, so you can
postmortem debug later.

e Have a procedure whereby customers can upload core files to support.

e Documentation for customers about how to run the support/debug
features of the software, how to run self-diagnostics, or how to locate the
tracing logs or other supportability features.

¢ Documenting post-mortem procedures, such as gdb on a core file, as
customers aren’t necessarily engineers.

147 Safe C++

e Not crashing in the first place. Fix this by writing perfect code, please.

Why use unique message codes? Adding unique numeric or symbolic codes in your
error messages and even in assertions can improve supportability in two ways: self-
help and phone support call-ins.

A unique code allows customers to find these error codes easily on the internet (i.e.,
via Google or Bing), either in your website’s online help web pages, or on the third-
party websites (e.g., Stack Overflow and the like), where other customers have had
the same problem.

Note that the codes don’t really #eed to be completely unique, so don’t worry if two
messages have the same code, unless you’re doing internationalization! And
certainly, don’t agonize over enforcing a huge corporate policy for all teams to use
different numbers or prefixes. However, it does help for your unique code to have
a prefix indicating which software application it’s coming from, because the Al tech
stack has quite a lot of components in production, so maybe you need a policy after

all (szgh).

Note that supportability is at the tail end of the user experience. It’s less important
than first impressions: the user interface, installation and the on-boarding
experience.

Graceful Core Dumps

Okay, so it’s a bit of an oxymoron to say that. But here’s a way to at least print a
useful support message if your code crashes. Register a signal handler
for SIGSEGV (seg fault), SIGILL (illegal instructions), SIGFPE (floating point
error), and any other fatal signals.

Here’s an example of a shutdown signal handler:

void crash gracefully(int sig)
{
static bool s _already = false;
if (s_already) {
// Already shutting down
// Probably a re-raised signal
// Too dangerous here to do anything
return; // Just finish
}
s_already = true; // Avoid recursive calls
fprintf (stderr, "Hi Customer, alas we crashed!\n");
fprintf (stderr, "Please call 1-800-DEVNULL to report.\n");

David Spuler 148

fprintf (stderr, "Email core to devnull@<MYSITE>.com.\n");
abort(); // Trigger the core dump

This is how you install a signal handler, usually at the start of program execution,
such as the top of main.

#include <signal.h>

//

signal (SIGSEGV, crash gracefully);
signal (SIGILL, crash gracefully);

I’ve successfully used this approach on Unix and Linux platforms, but I’'m not sure
about on MacOS (which is like BSD Unix) or Windows (which isn’t). Note that you
must be very careful about re-raised signals here. Otherwise, this function is going
to spin for the customer, rather than core dump.

There’s not much you can do other than print a message and core dump. You can’t
try to recover from this for fatal signals. If you try to block a SIGSEGV signal and
just return, hoping to keep going, it won’t work. Instead, the SIGSEGV will get
raised again by the CPU, and also spin.

You can test this code quite easily by writing bad code that crashes (intentionally,
for a change). Feel free to try getting it to print out a stack trace
with std: :backtrace (C++23) or the other stack trace libraties from GNU or
Boost. ’'m betting against it, because it’ll probably be too corrupted to see the stack
in a signal handler, but it might work.

Random Number Seeds

Neural network code often uses random numbers to improve accuracy via a
stochastic algorithm. For example, the top-£decoding uses randomness for
creativity and to prevent the repetitive looping that can occur with greedy decoding.
And you might use randomness to generate input tests when you’re trying to thrash
the model with random prompt strings.

But that’s not good for debugging! We don’t want randomness when we’re trying
to reproduce a bug!

Hence, we want it to be random for users, but not when we’re debugging. Random
numbers need a “seed” to get started, so we can just save and re-use the seed for a

debugging session.

149 Safe C++

This idea can be applied to old-style rand/srand functions or to the
newer <random> libraries like std: :mt19937 (stands for “Mersenne twister”).

Seeding the random number generator in old-style C++ is done via the “srand”
function. The longstanding way to initialize the random number generator, so it’s
truly random, is to use the current time:

srand (time (NULL)) ;

Note that seeding with a guessable value is a security risk. Hence, it’s safer to use
some additional arithmetic on the time return value.

After seeding, the “rand” function can be used to get a truly unpredictable set of
random numbers. The random number generator works well and is efficient. A

generalized plan is to have a debugging or regression testing mode where the seed
is fixed.

if (g_aussie debug srand seed != 0) {
// Debugging mode
srand(g_aussie debug srand seed); // Non-random!
}
else { // Normal run
srand (time (NULL)) ;

The test harness (not shown here) would have to set the global debug variable
“g aussie debug srand seed” whenever it’s needed for a regression test.
For example, either it’s manually hard-coded into a testing function, or it could be
set via a command-line argument to your test harness executable, so the program
can be scripted to run with a known seed.

This is better, but if we have a bug in production, we won’t know the seed number.
So, the better code also prints out the seed number (or logs it) in case you need to
use it later to reproduce a bug that occurred live.

if (g_aussie debug srand seed != 0) {
srand(g_aussie debug srand seed); // Debug mode
}
else { // Normal run
long int iseed = (long)time (NULL) ;
fprintf (stderr, "INFO: Random number seed: %$1d 0x%1x\n",
iseed, iseed);

David Spuler 150

srand (iseed) ;

An extension would be to also print out the seed in error context information on
assertion failures, self-test errors, or other internal errors.

There’s one practical problem with this for reproducibility: what if the bug occurs
after a thousand queries? If there’s been innumerable calls to our random number
generator, there’s not really a way to reproduce the current situation.

One simple fix is to instantiate a new random number generator for every query,
which really isn’t very expensive.

Adding Portability to Supportability

The basic best practices are to write portable code until you can’t. Here are some
suggestions to further finesse your portability coding practices for improved

supportability:
1. Self-test portability issues at startup.
2. Print out platform settings into logs.

A good idea is to self-test that certain portability settings meet the minimum
requirements of your application. It’s necessary to check for the exact feature you
want. And you probably should do these feature self-tests even in the production
versions that users run, not just in the debugging versions.

It’s only a handful of lines of code that can save you a lot of headaches later.

Also, you should detect and print out the current portability settings as part of the
program’s output (or report), or at least to the logs.

Ideally, you would actually summarize these settings in the uset’s output display,
which helps the poor phone jockeys trying to answers callers offering very useful
problem summaries: “My Al doesn’t work.”

If it’s not a PEBKAC, then having the ability to get these platform settings to put
into the incident log is very helpful in resolving production-level support issues.
This is especially true if you have users running your software on different user
interfaces, and, honestly, if you don’t support multiple user interfaces, then what
are you doing here?

151 Safe C++

You should also output backend portability settings for API or other backend
software products. The idea works the same even if your “users” are programmers
who are running your code on different hardware platforms or virtual machines,
except that their issue summaries will be like: “My kernel fission optimizations of
batch normalization core dump from a SIGILL whenever I pass it a Mersenne
prime.”

David Spuler 152

20. Quality

What is Software Quality?

Quality is an overarching goal in software design. The terms “software quality” and
“code quality” are not the same thing. Software quality is more about product
quality from the user or company perspective, which has a more outward looking
feel with issues such as functionality and usability. Code quality is what software
developers work on every day. Having quality coding practices is a pre-requisite for
software quality, so there’s much overlap.How do we improve both types of
“quality”’?

First, let’s acknowledge the subjectivity. Some groups of people are more focused
on “software quality” than “code quality” as a goal. Salespeople want the product
to have the hot features. Marketing wants a nice Ul and a “positioning” in the
market (what is so great about the letter P?). Support wants nobody to call.

For those working on software, everyone has a different view of code quality.
Quality engineers want everything to be perfect before it ships. Project managers
want to hit the date by time-boxing features. Developers want, well, who knows,
because every developer has a different but deeply-held belief about this topic.

Second, let’s examine the metrics for quality code. It’s runtime things like: has cool
features, doesn’t crash or spin, and is performant. And it’s static things like:
readability, modularity, and so on. And there are future-looking metrics such as:
maintainability, extensibility, etc. There are various techniques to enhance these
types of metrics, which we examine in the following chapters.

Third, let’s take a top-down look. What does “software quality” or “code quality”
mean on the executive floor? Probably it means any software that has “Al” features,
so the CEO can say that buzzword in the earnings call about a hundred times. I
heard on TikTok that McKinsey research proved that stocks appreciate
by sqrt(pi/ 8) percentage points for every mention.

Finally, let’s take a bottom-up look, which is really most of this chapter and the
following chapters. We are talking about C++ coding, after all. There are several
practical techniques that can be used to improve the delivery of quality software
through improvements to C++ code quality and other areas.

153 Safe C++

Advanced Software Quality

If you want to write the best C++ software for enterprise purposes in terms of
“quality,” you need to consider a lot of “abilities™:

e Testability

e Debuggability
e Scalability

e Usability

e Installability

e Supportability
e Availability

e Reliability

e Maintainability
e DPortability

e Extensibility

e Interoperability
e Reusability

Take a breath. Keep going. Some more:

e Deployability

e Manageability

e Readability

e Upgradability

e Marketability

e Monetizability

e Quality-ability (whatever that means!)
e Security protection (hackability)

e Internationalization (translatability)

e Fault tolerance and resilience (keep-going-ability)
e Modularity (separatability)

e Stability

Oh, and I almost forgot one coding quality issue:
e Adding new features that customers want.

Before we get too wrapped in all those inward-looking “abilities,” let us remind
ourselves that the customer only cares about a few of them: installability, usability,
stability.

David Spuler 154

For a B2C product, think about the “grandma test”; could your grandma use this
software? (After she’s called you and made you set up her WiFi, I mean.) For B2B
customers, the main thing the users actually care about is “ability-ability” which is
whether your software has the capability to help users do whatever bizarre things
businesses want to do with your code.

Sellability

Oops, I've forgotten about sales yet again, which isn’t surprising because all of us
in R&D aren’t allowed to talk to the reps. I guess they have cooties or they’ll stop
selling the currently shipped version or they’ll blame us for not winning a deal with
the currently shipped version. We have drills to practice hiding under our chairs if
we see a rep.

Anyway, to get back on topic, marketability and sellability is actually the highest
level of quality. If nobody buys it, who cares how beautiful an architecture?
Consider broadening the definition of “quality” beyond the C++ code to the
“software quality” of the entire product from the perspective of the company.
Sellability is quality!
Most of the “code quality” practices in software engineering are internal inward-
focused work, rather than looking “outwards” at the customer. If your company
goal is actually financial success of your C++ software product in the B2B market,
here’s my suggestion of an alternative set of C++ “sellability” processes to consider:

1. Ask your sales reps what new features will close their current deal.

2. Code that in C++.

3. Run your 24-hour or 48-hour automated test suite.

4. Give the executables to your sales reps on a zippy.

Note that I only said to “consider” this method. Nobody in R&D is actually going
to do it, I'm sure. I only wrote that so all the sales reps would buy a programming
book.

155 Safe C++

Software Engineering Methodologies

Below is a list of various software engineering paradigms and architectural practices.
Let me hereby emphatically state that one of these methods is clearly and by far the
absolute best one, far superior to all the rest, and I will defend it to the hilt over a
brew any day of the week.

Oh, but I’'m not going to tell you which one. Feel free to argue amongst yourselves.
Here’s the list:

e Agile development

e Pair programming

e Al copilot programming

e Waterfall method

e DevOps for everyone

e Test-driven development

e Feature-driven development

e Agile scrum

e Lean coding

e GMB

e Don’t Repeat Yourself (DRY)

e Structured Design Methodology

e Designated Object Architecture (DOA)
e UML

e Rapid Application Development (RAD)
e cXtreme Programming

¢ Object Oriented Design (OOD)

e SOQA

e Rogue coder model

e Pick Your Favorite Acronym (PYFA)

e Intentional coding

e Joint Application Development Process
e Move fast & break stuff

e Behavior-Driven Development

e SOLID

e Domain-Driven Design

e Product Market Fit (PMF)

e ISO something

e Tingers and toes crossed

e Spiral Model

David Spuler 156

e TQM or six-sigma or Jack Welch stuff

e Code myself a new minivan

¢ YAGNI

e Rational Unified Coding

e Product-Led Growth (PLG)
What a fun list! I'm going to make a poster to put on the wall above my
conclusions” mat.

fump to

Software Engineering Process Group

The idea of a Software Engineering Process Group (SEPG) is a team of people in
your company who aim to help software engineers write better code. It’s people
helping people, so what could be better than that?

What this SEPG team does is buy everyone in the company a copy of this book,
including the valet parking attendants and catering staff, who are integral to your
software development strategy, if you ask me (you didn’t). After that, it’s feet up on
the desk and read the newspaper for the rest of the day on the SEPG floor, because
it’s all sorted in this book.

I really like the idea of the SEPG, but I've also seen it ineffective when product
groups simply ignored their advice. I don’t know what to say about that. I guess if
I were running an SEPG, I'd say try to focus on pragmatic and incremental ways to
improve software processes. Some of the ways that an SEPG can add tremendous
value across an entire software development organization include:

e Educating engineers on best practices.

e Reviewing coding tools that might be useful.

e Vetting common libraries of low-level functionality (reusability!).
e Documenting and sharing successful methods and ideas.

e Coding up horizontal libraries like debug wrappers.

Oh, yeah, and a coding standards document, because who doesn’t love a great one
of those.

157 Safe C++

Coding Standards

I cannot pretend that I am a big fan of having coding style standards. But most
large companies tend to have them, and there is certainly a benefit to doing so. You
can find Google’s on the Internet, and I read it to my toddler to put him to sleep
(easier than putting him into a child seat and doing a hundred blockies at 3am while
wearing pyjamas; who doesn’t love parentingp).

The advantage of a coding policy is a standardization of various activities and
processes company-wide, which is something they really like in head office. The
disadvantages include things like: (a) a focus on “busy work” coding rather than
adding new user features, and (b) practical difficulties merging two different
development procedures if you acquire another big company. Newly acquired
startups will expend a fair amount of effort to conform to your standards, but they
probably need to do similar activities to fix technical debt, anyway.

My preference would rather be that a company has a specific organizational group
focused on software engineering excellence, with a focus on practicality, rather than
dictate the “one true way” of programming. Coding standards are only one of the
many issues for such a cross-company team to address. This is the idea of having
an SEPG in your organization, which is kind of like a SEP field, if you know what
I mean. So, it is a matter of tone and focus in terms of how high or how low to go
in devising the coding standard for your project or organization.

Some high-level issues that could be addressed:

e Which programming language. (C++, of coursel)

e Code libraries allowed

e Tech stack: database, app layer, UL, etc.

e Tools: source code control, bug database, etc.

e Naming: e.g., good APIs follow a naming convention that the developer
can guess.

A coding style for C++ could specify a variety of factors about which of the
advanced language features to use (or avoid):

e Templates

e Operator overloading

e (lass inheritance hierarchies
¢ Namespace management

David Spuler 158

I'm really not going to suggest your coding standard document should address
indentation, variable names, comments, and so on, but some of these wonderful
types of documents actually do.

There is also value in specifying standard suggested coding libraries and interfaces:

e Basic data types

e Basic coding libraries

e Basic data structures (e.g., hash tables, lookup tables, etc.)
e Unit testing library/APIs

e Regression testing tools and harnesses

e Assertions and self-testing

e Decbug tracing code

e Exception handling

e Testing and debugging tools

I could go on, but I won't.

Project Estimation

Estimating project time and space requirements is an important part of software
project management. Although estimating the efficiency of a proposed project is
important in ascertaining its feasibility, it is difficult to find anything concrete to say
about arriving at these estimates. Producing advance estimates is more of an art
than a science, and a typical process goes like this:

1. Pick a random date.

2. Deny programmers sleep until this date.
3. Slip the date.

4. Time-box out all useful features.

5. Ship it

Experience is probably the best source of methods for producing an accurate
estimate. Hence, it is wise to seek out others who have implemented a similar
project, or to perform a literature search for relevant papers and books.
Unfortunately, neither of these methods is guaranteed to succeed and the
implementor may be forced to go it alone. The only other realistic means of
estimation relies on a good understanding of the various data structures and
algorithms that will be used by the program. Making realistic assumptions about the
input can provide some means of examining the performance of a data structure.
How a data structure performs under worst case assumptions may also be of great
importance.

159 Safe C++

An alternative to these methods of plucking estimates out of the air is to code up a
prototype version of the program, which implements only the most important parts
of the project (especially those which will have the biggest impact). The efficiency
of the prototype can then be measured using the various techniques. Even if the
prototype is inefficient, at least the problem has been identified eatly in the
development cycle, when the investment in the project is relatively low.

Code Quality

Everyone has their own opinions on the best way to write software, so I'll choose
to simply offer some possible options for you to discuss. Here is my list of
pragmatic and useful ways to ensure code reliability as a professional developer:

e Lots of unit tests.

e Lots of assertions.

e Lots of bigger regression tests.

e Automated acceptance testing in CI/CD.

e Nightly builds that automatically re-run all the bigger tests that are too slow
for CI/CD.

e Warning-free compilation (as a coding policy goal).

e Running Valgrind or other memory checkers in the nightly builds (Linux).

e Run big multi-platform tests in the nightly builds.

e Check return codes (as a coding policy).

e Validate incoming function parameters (as a coding policy).

e Use an error logger.

e Use a debug tracing library.

e Add some debug wrapper functions.

And here’s an extra bonus one: have an occasional “testing day.” Programmers are
good at random testing of OPC, but they tend not to do it much.

Extensibility

Extensibility is allowing your customers to extend or customize your Al software.
Although your first thought is going to be to run off and build an API or an SDK,
there are a few things to consider first. The simpler ways to “extend” are:

e Just add more features.

e Add configuration settings.

¢ Add command-line options.

e Add minor personalization features.

David Spuler 160

Adding customer features. The basic problem that customers have is that they
want to find a way to do something. If they’re looking to extend your software,
well, that means that some feature is lacking. If one customer finds this issue, other
customers are probably silently suffering. So, rather than building an API, just listen
to your customer, and add some more features to your code that will solve the issue,
and other reasonably similar issues.

Configuration settings. Think about your Al’s configuration settings from the
point-of-view of extensibility. If you prefer, call them “declarative extensions.” It’s
much easier for a customer to change a config option than to write a program using
your SDK. Consider elevating and documenting some of the different ways that
your application can be configured, to give your customers more capabilities. Yes,
this does significantly increase the error handling code and QA testing cycle, so this
is a careful consideration: which of your internal config options do you hide or
publicize?

Personalization options. When you’re deep in the guts of an Al application,
you’re thinking about really brain-intensive stuff like vectorizing your tokenizer.
Your customer, however, just wants to put their company’s name at the top of their
Al-generated report. Hence, focus on adding some of the “smaller” functionality
that seems trivial to engineers, but is what customers want. Maybe, like the wheel,
the report could even have different colors?

And one final point about extensibility: your customers aren’t programmers. They
don’t even know what the acronyms API and SDK stand for. Your customers need
an API like a fish needs a bicycle.

Scalability

Almost this entire treatise is about scalability of your application. Getting a huge
behemoth to run fast is the biggest challenge.

But the actual software code is not the only scalability concern. There’s also the
server on which your application resides, receiving and process requests, sending
them on to the backend application, and collating returned results. This server is
itself a piece of software, and it could be an off-the-shelf server, or you could write
your own in C++ if you like.

User interfaces are another overlooked point in regard to scalability. Not only must
the backend be fast, but the user interface layer must handle all of the requirements
in a way that people can cope with.

161 Safe C++

The key point is this:
Humans don’t scale.

What that means is that making your human user do anything is a hard problem.
People cannot read reams of text fast, they cannot click on a thousand warning
messages, and they do dumb things in the interface, like re-clicking the “Load”
button a hundred times if it’s taking too long. The fact that a human is part of the
process flow means that you have to make sure that all of your steps are human-
friendly. This is an often-underestimated aspect of scalability.

Reusability

In our commercial world it is frequently the cost of our own time that is the greatest.
Using our own time efficiently can be more important than writing fast programs.
Although improving programming productivity is not our main topic of this book,
let us briefly consider a few methods here.

The basic method of reducing time spent programming is to build on the work of
others. The use of libraries, including the wide variety of commercially available
source code libraries, and the C++ standard library, is a good way to build on the
work of others. There are a few concerns with using third-party libraries:

e Quality concerns — Is it bug-free? How well tested and supported?

e Security issues — Consider the source and its security protections.

o Legal licenses — Don’t use “copyleft” or “share-alike” or “non-
commercial” code.

Building on your own work is the other main method of productivity improvement.
How often have you coded up a hash table? Have you ever written a sorting routine
off the top of your head and then spent hours debugging it? You should perform
tasks only once. This doesn’t necessarily mean writing reusable code in its most
general sense, but just having the source code available for the most common
problems. Modifying code that has already been debugged is far more time-efficient
than writing it from scratch. Organizations should seek to create building blocks of
code that programmers can use, but you can also do so in your own personal career.

David Spuler 162

21. Reliability

Code Reliability

Code reliability means that the execution is predictable and produces the desired
results. Sequential coding is hard enough, but parallelized code of any kind (e.g.,
CPU or GPU vectorization, multi-threaded, multi-GPU, etc.) multiplies this
complexity by another order of magnitude. Hence, starting with the basics of high
quality coding practices are ever more important for code reliability, such as:

e Unit tests

e Assertions

e Self-testing code

e Debug tracing methods

e Automated system tests

e Function argument validation

e Error detection (e.g., starting with checking error return codes)
e Exception handling (wrapping code in a full exception handling stack)
e Resilience and failure tolerance

e Regression testing

e Test automation

e Test coverage measurement

One useful method of catching program failures is making the program apply
checks to itself. Assertions and other self-testing code have the major advantage
that they will catch such errors early, rather than letting the program continue, and
cause a failure much later.

All of these techniques involve a significant chunk of extra coding work. Theory
says that full exception handling can be 80% of a finalized software product, so it’s

a four-fold amount of extra work!

Maybe that estimate is a little outdated, given improvements in modern tech stacks,
but it still contains many grains of truth.

163 Safe C++

There are many programming tools to help improve code reliability throughout the
development, testing and debugging cycle:

¢ Memory debugging tools (e.g., valgrind).

e Performance profiling tools (for “de-slugging”).

e Synchronization debugging tools (e.g., race condition checkers).

e Memory usage tracking (i.e., memory leaks and allocated memory
measurement).

e Interactive debugging tools (IDE and command-line).

e Static analysis tools (“linters”) or turn on more compiler warnings.

e Bug tracking databases (for cussing at each other).

Refactoring versus Rewriting

Refactoring was something I was doing for years, but I called it “code cleanup.”
The seminal work on refactoring is Martin Fowlet’s book “Refactoring” from 1999.
This was the first work to gain traction in popularizing and formalizing the ideas of
cleaning up code into a disciplined approach.

Refactoring is a code maintenance task that you do mainly for code quality reasons,
and it needs to be considered an overhead cost. True refactoring does not add any
new functionality for customers, and marketing won’t be happy if you do
refactoring all day long. But refactoring is a powerful way to achieve consistency in
code quality and adhere to principles such as DRY. In highly technical special cases
such as writing an API, you’ll need to refactor multiple times until the API is
“good.”

Rewriting is where you pick up the dusty server containing the old source code
repo, walk over to the office window and toss it out. You watch it smash ten floors
below, drive over to CompUSA to buy a new server, and then start tapping away
with a big smile on your face.

The goals of refactoring and rewriting are quite different. Refactoring aims to:
e Make the existing code “better” (e.g., modularized, layered).
e Add unit testing and other formality.

¢ Retain all the old features and functionality.
e Not add any new functionality.

David Spuler 164

Rewriting projects tend to:

e Throw away all the existing code.

e Choose a new tech stack, new Ul, new tools, etc.
e Not support backward compatibility.

e Add some new functionality.

Refactoring and rewriting are very close together, and there’s a lot of middle ground
between them. If you’re fixing some old code by rewriting one of the main modules,
is it refactoring or rewriting?

The reality is that rewriting versus refactoring is always an engineering choice, and
it’s a difficult one without a clear right or wrong answer. You can’t try both to see
which one works better, so there’s never any proof either way.

Defensive Programming

Defensive programming is a mindset where you assume that everything will go
wrong. The user input will be garbage. Anyone else’s code will be broken. The
operating system intrinsics will fail. And your poor helpless C++ application needs
to keep chugging along.

Many of the high-level types of defensive coding are discussed elsewhere in this
book. Good practices that attempt to prevent bugs include: assertions, self-testing
code, unit tests, regression tests, check return codes, validate incoming parameter
values, exception handling, error logging, debug tracing code, warning-free
compilation, memory debugging tools, static analysis tools, document your code,
and call your mother on Sunday.

Using Compiler Errors for Good, not Evil: One of the advanced tricks for
defensive programming is to intentionally trigger compiler errors that prevent
compilation. For example, you can enforce security coding policies:

#define tmpnam dont use tmpnam please

Or if you are using debug wrappers for some low-level system functions, you can
enforce that:

#define memset please use memset wrapper

Politeness is always required. You don’t want to be rude to your colleagues.

165 Safe C++

Defensive Coding Style Policies: You might want to consider some specific bug-
prevention coding styles, for defensive programming, maintainability, and general
reliability. Some examples might be:

e All variables must be initialized when declared. Don’t want to see this
anymore: int x;

e All switch statements need a default clause.

e Null the pointer after every delete. You can define a macro to help.

e Null the pointer after every free. If you use a debug wrapper for free,
make it pass-by-reference and NULL the pointer’s value insider the
wrapper function.

e Null the file pointer after fclose. Also can be nulled by a wrapper
function.

e Unreachable code should be marked as such with an assertion (a special
type).

e Prefer inline functions to preprocessor macros.

e Define numeric constants using const rather than #define.

e Validate enum variables are in range. Add a dummy EOL item at the end
of an enum list, which can be used as an upper-bound to range-check
any enum has a valid value. Define a self-test macro to range-check the
value.

e Use [[nodiscard]] attributes for functions. All of them.

e Start different enums at different numbers (e.g., token numbers start at
10,000 and some other IDs start at 200,000), so that they can’t get mixed
up, even if they end up in int variables. And you’ll need a bottom and top
value to range-check their validity. You have to remove the commas from
these numbers, though!

e All allocated memory must be zeroed. This might be a policy for each
coder, or it could be auto-handled by intercepting the new operator
and malloc/calloc into debug wrappers, and only returning cleared
memoty.

e Constructors should use memset to zero their own memory. This seems
like bad coding style in a way, but how many times have you forgotten to
initialize a data member in a constructor?

e Zero means “not set” for every flag, enum, status code, etc. This is a policy
supporting the “zero all memory” defensive idea.

David Spuler 166

Assume failures will happen: Plan ahead to make failures easier to detect and
debug (supportability!), even when they happen in production code:

e Use extra messages in assertions, and make them brief but useful.

e If an assertion keeps failing in testing, or fails in production for users,
change it to more detailed self-checking code that emits a more detailed
errof.

¢ Add unique code numbers to error messages to make identifying causes
easier (supportability).

e Separately check different error occurrences. Don’t use only one combined
assertion: assert (s && *s);

e Review assertions for cases where lazy code jockeys have used them to
check return codes (e.g., file not found).

Maintainability

My first Software Engineer job was maintenance of low-level systems management
on a lumbering Ultrix box in C code, with hardly any comments. You’d think I hate
code maintenance, right? No, I had the opposite reaction: it was the best job ever!

If you think you don’t like code maintenance, consider this: Code maintenance is
what you do every day. I mean, except for those rare days where you're starting a
new project from scratch, you’re either maintaining your own code or someone
else’s, or both. There are two main modes: you’re cither debugging issues or
extending the product with new features, but in both cases it is at some level a
maintenance activity.

So, how do you improve future maintainability of code? And how do you fix up
old code that’s landed on your desk, flapping around like a seagull, because your
company acquired a small startup.

Let’s consider your existing code. How would you make your code better so that a
future new hire can be quickly productive? The answer is probably not that different
to the general approach to improving reliability of your code. Things like unit tests,
regression testing, exception handling, and so on will make it easier for a new hire.
You can’t stop that college intern from re-naming all the source code files or re-
indenting the whole codebase, but at least you can help them to not break stuff.

167 Safe C++

One way to think about future maintainability is to take a step back and think of it
as a “new hire induction” problem. After you’ve shown your new colleague the ping
pong table in the lunch room and the restrooms, they need to know:

e Where is the code, and how do I check it out of the repo?

e How do I build it? Run it? Test it?

e Where’s the bug database, requirements documents, or enhancements list?
e What are the big code libraries? Which directories?

After that, then you can get into the nitty-gritty of how the C++ is laid out. Where
are the utility libraries that handle low-level things like files, memory allocation,
strings, hash tables, and whatnot? Where do I add a new unit test? A new command-
line argument or configuration property?

Maintenance safety nets: How do you make your actual C++ code resilient to
the onslaught of a new hire programmer? Assume that future changes to the code
will often introduce bugs, and try to plan ahead to catch them using various coding
tricks. Actually, the big things in preventing future bugs are the large code reliability
techniques (e.g., unit tests, assertions, comment your code, blah blah blah). There
are a lot of little things you can do, which are really quite marginal compared to the
big things, but are much more fun, so here’s my list:

e All variables should be initialized, even if it’ll be immediately overwritten
(.e, “int x=3;” never just “int x;”). The temptation to ot initialize
is mainly from variables that are only declared so as to be passed into some
other function to be set as a reference parameter. And yes, in this case, it’s
an intentional micro-inefficiency to protect against a future macro-
crashability.

e Unreachable code should be marked with at least a comment or preferably
an attribute or assertion (e.g., use the “assert not reached” assertion
idea).

e DPrefer statement blocks with curly braces to single-statements in
any if, else, or loop body. Also for case and default. Use braces
even if all fits on one line. Otherwise, some newbie will add a second
statement, guaranteed.

e Once-only initialization code that isn’t in a constructor should also be
protected (e.g., the “assert_once” idea).

e All switch statements need a default (even if it just triggers an
assertion).

e Don’tuse case fallthrough, except it’s allowed for Duff’s Device and any
other really cool code abuses. Tagit with [[fallthrough]] if you must
use 1t.

David Spuler 168

e Avoid preprocessor macros. Prefer inline functions rather than using
function-like preprocessor macro tricks, and do named constants
using const or enum names rather than #define. I’'ve only used macros
in this book for educational purposes, and you shouldn’t even be looking
at my dubious coding style.

e Declare a dummy enum value at the end of every long enum list (e.g.,
“MyEnum_EOL_ Dummy”), and use this EOL name in any range-checking
of values of enum variables. Otherwise, it breaks when someone adds a
new enum at the end. EOL means “end-of-list” if you were wondering.

e Add some range-checking of your enum variables, because you forgot
about that. Otherwise array indices and enum variables tend to get mixed
up when you have a lot of int variables.

e Assert the exact numeric values of a few random enum symbols, and put
cuss words in the optional message, telling newbie programmers that they
shouldn’t add a new enum at the top of the list.

e sizeof (varname) is better than sizeof (int) when someone
changes it to long type. Similarly, it can be significantly safer to
use sizeof (arr[0]) and sizeof (*ptr). No, the * operator isn’t
live in sizeof.

e All classes should have the “big four” (constructor, destructor, copy
constructor, and assignment operator), even if they’re silly, like when the
destructor is just {}.

e Ifyour class should not ever be bitwise-copied, then declare a dummy copy
constructor and assignment operator (i.e., as “private” and without a
function body), so the compiler prevents a newbie from accidentally doing
something that would be an object bitwise copy.

e If your code needs a mathematical constant, like the reciprocal of the
square root of pi, just work it out on your calculator and type the number
in directly. Job security.

e A switch over an enum should usually have the default clause as an error
or assertion. This detects the code maintenance situation where a newly
added enum code isn’t being handled.

e Avoid long i f-else-if sequences. They get confusing. They also break
completely if someone adds a new “1£” section in the middle, but forgets
it should be “else 1if” instead.

e Instigate a rule that whoever breaks the build has to bring kolaches
tomorrow.

But don’t sweat it. New hires will break your code, and then just comment out the
unit test that fails.

169 Safe C++

Maintaining OPC. What about brand-new code? It’s from that startup that got
acquired, and it’s really just a hacked-up prototype that should never have shipped.
Now it’s landed on your desk with a big red bow wrapped around it and a nice note
from your boss telling you how much it’ll be appreciated if you could have a little
look at this. At least it’s a challenge, and maybe you could even learn a little Italian,
because that’s the language the comments are written in.

So, refactoring has to be top of the list. You need to move code around so that it
is modulat, easier to unit test, and so on. Split out smaller functions and group all
the low-level factory type routines. Writing some internal documentation about new
code doesn’t hurt either! And “canale” means “channel” in Italian so now you’re

bilingual.
Technical Debt

When programmers talk in disparaging tones about “technical debt” in code, what
they often mean is that the code wasn’t written “properly.” A prototype got shipped
long ago, and was never designed well, or in fact, was never designed a7 a//. Some
other giveaways of high technical debt are basically:

e Unit tests? That’s someone else’s job.

e Documentation? Never heard of it. Oh, you meant code comments? We
don’t use those.

e Tile Explorer is a source code control system.

e And a backup tool.

e Bug tracking tool? Do you mean the whiteboard?

e Requirements documentation. Also the whiteboard.

e Test plan? Eating free bananas while I test it.

Or to summarize all these points into one:
* You work at an Al startup.

Debt-Free Code: The good news is that there is a popular software development
paradigm that has zero technical debt. It’s called Propetly-Written Code (PWC) and
programmers are always talking about it in hushed or strident tones. Personally, I've
been watching for years, but haven’t yet been fortunate enough to actually see any,
but apparently it exists somewhere out in the wild, kind of like the Loch Ness
Monster, but with semicolons.

David Spuler 170

Exactly what properly-written code means is rather vague, but the suggested
solution is usually a refactor or a rewrite. Personally, I favor refactoring, because 1
think that technical debt gets increased by rewrites, because the brand-new code:

a) Lacks unit tests.

b) Lacks internal documentation.

¢) Hasn’t been “tested by fire” in real customer usage.
d) Hasn’t been tested by anyone, for that matter.

e) Is a “version 1.0” no matter how you try to spin it.

So, here’s my probably-unpopular list of suggestions for reducing technical debt
without rewriting anything:

e Comment your codel!

e Tix compiler warnings to get warning-free compilation.

e Add more assertions and self-checking code.

e Check return codes from system functions (e.g., file operations).

e Add parameter validation checks to your functions.

e Add debug wrapper functions for selected system calls.

e Add automated tests (unit tests or regression tests).

e DPort the platform-independent code modules to another platform. Even
only to get compiler warnings and run tests.

e Add performance instrumentation (i.e., time).

¢ Add memory usage instrumentation (i.e., space).

e Add file usage instrumentation.

e Document the architecture, APIs, classes, data formats, or interfaces. With
words.

e Add unique codes to error messages (for supportability).

e Document your DevOps procedures.

e Run nightly builds, and with tests running, too.

e Do a backup once in a while.

171 Safe C++

And if you’re at a startup or a new project, get your tools sorted out for professional
software development workflows:

e Compilers and IDEs

e Memory error detection

e Source code control (e.g., svn or git or cvs)
e CI/CD/CT build system

e Bug tracking system

e Internal documentation tools

e User support database

What really makes better code? Well, that’s a rather big question about the
entirety of software development practices, so I'll offer only one final
suggestion: humans. My overarching view is that the quality of code is most impacted
by the ability and motivation of the programmers, rather than by new tools or a
trendy programming language (or even an Al coding copilot). A small team that is
“on fire” can outpace a hundred coders sitting in meetings talking about the right
way to do agile development processes. Hence, morale of the team is important,
too.

David Spuler 172

