

Efficient Modern C++

Data Structures

Container and Algorithm Optimizations

David Spuler

Aussie AI Labs

David Spuler 2

Copyright © David Spuler, 2025. All rights reserved.

Published by Aussie AI Labs Pty Ltd, Adelaide, Australia.

https://www.aussieai.com

First published: May 2025.

This book is copyright. Subject to statutory exceptions and to the provisions of any
separate licensing agreements, no reproduction of any part of this book is allowed
without prior written permission from the publisher.

All registered or unregistered trademarks mentioned in this book are owned by their
respective rightsholders.

Neither author nor publisher guarantee the persistence or accuracy of URLs for
external or third-party internet websites referred to in this book, and do not
guarantee that any content on such websites is, or will remain, accurate or
appropriate.

3 Efficient Modern C++ Data Structures

About the Author

David Spuler is a C++ expert and serial technology entrepreneur who has
combined his love of writing with AI technology in his latest venture: Aussie AI is
a suite of tools for writing and editing, with a focus on fiction from short stories to
full-length novels. His published works include two advanced C++ books (low
latency and safety), two generative AI books, two CUDA C++ books, four non-
fiction textbooks on C++ programming covering introductory and advanced C++
programming, efficiency, code optimization, debugging, testing, and software
development tools, and one application management book.

Other than writing, he’s an avid AI researcher with a Ph.D. in Computer Science
and decades of professional experience. Most recently, Dr. Spuler has been
founding startups, including the current Aussie AI startup and multiple high-traffic
website platforms with millions of monthly uniques, including an e-health startup
acquired by HealthGrades, Inc. Prior roles in the corporate world have been as a
software industry executive at BMC Software, M&A advisor, strategy consultant,
patent expert, and prolific C++ coder with expertise in autonomous agents,
compiler construction, internationalization, ontologies and AI/ML. Contact by
email to research@aussieai.com or connect via LinkedIn.

David Spuler 4

About the Contributors

Michael Sharpe is an experienced technologist with expertise in AI/ML,
cybersecurity, cloud architectures, compiler construction, and multiple
programming languages. He is currently Senior Software Architect at PROS Inc.,
where he is a member of the Office of Technology focusing on developing and
evangelizing AI. His AI expertise extends to monitoring, observability, devops,
MLOps, ITSM, low-resource LLM inference, Retrieval Augmented Generation
(RAG) and AI-based agents.

In a long R&D career, Michael has been coding C++ for almost 30 years, with prior
roles at BMC Software, Attachmate (formerly NetIQ) and IT Involve. Michael has
a Bachelor of Science with First Class Honors in Computer Science from James
Cook University and holds several registered patents. He made major contributions
to this book, especially in the chapters on GPU hardware acceleration, LLM
training, and RAG architectures, not to mention that he also technically-reviewed
the book in its entirety!

Cameron Gregory is a technology entrepreneur including as co-founder of fintech
bond trading startup BQuotes (acquired by Moody’s), co-founder and Chief
Technology Officer (CTO) of Trademark Vision with an AI-based image search
product (acquired by Clarivate), and founder of several image creation companies
including FlamingText.com, LogoNut, AddText, and Creator.me. Currently a
Senior Data Scientist focused on “big data” for hedge funds at fintech startup
Advan Research Corporation, he is used to working with real-world data at scale.

Cameron has been making code go fast since the 1990s at AT&T Bell Laboratories
in New Jersey, and is proficient in multiple programming languages, including C++,
plus Java and JavaScript. He holds a Bachelor of Science with First Class Honors
in Computer Science from James Cook University. His contributions to the book
included detailed suggestions for scaling a high-traffic cloud architecture
underpinning AI engines, and overall software development practices and tools.

5 Efficient Modern C++ Data Structures

Preface

Why a Book on Efficient Data Structures?

There’s nothing more important than data structures! The state of the art has
advanced so much in the last few years that it’s hard to know them all. Even more
difficult is knowing how to implement them with optimal efficiency in modern
C++.

Please Leave a Review

I hope you enjoy the book! Please consider leaving a review on the website where
you purchased the book. Since few readers do this, each review is important to me,
and I read them all personally.

Feedback and Contacts

Feedback from readers is welcome. Please feel free to tell us what you think of the
book, the literature review, or our Aussie AI software. Contact us by email
via support@aussieai.com.

Other Books by the Author

If you want fast code, here are a number of other books with a particular focus on
AI and fast LLM backends:

• C++ Low Latency: Multithreading and Hotpath Optimizations

• Generative AI Applications: Planning, Design, and Implementation

• Generative AI in C++: Coding Transformers and LLMs

• CUDA C++ Optimization: Programming Faster GPU Kernels

• CUDA C++ Debugging: Safer GPU Kernels

• Safe C++: Fixing Memory Safety Issues

https://www.amazon.com/dp/B0F2SNYS3L
https://www.amazon.com/dp/B0DMMVCMPQ
https://www.amazon.com/Generative-AI-Coding-Transformers-LLMs/dp/B0D14LHGZ6/
https://www.amazon.com/gp/product/B0DK21QQYD
https://www.amazon.com/gp/product/B0DK19V6NH
https://www.amazon.com/gp/product/B0DK9LM8H3

David Spuler 6

About Aussie AI

Aussie AI is a platform for the development of consumer AI applications, with a
special focus on AI-based writing and editing tools for fiction. Our premier
applications offer an extensive range of reports and error checks for both fiction
and non-fiction writing, from a full-length novel to a short report. Please try it out
and let us know what you think: https://www.aussieai.com

Our AI Research

The primary focus of research at Aussie AI is on optimizing LLM inference
algorithms (i.e., “running” the model after training or fine-tuning), and our research
is toward the following aims:

• Fast on-device model inference algorithms, specifically for smartphones
and AI PCs.

• Scaling inference algorithms to large volumes of requests.

• Efficient GPU inference algorithms (hardware acceleration).

• Non-GPU inference optimization algorithms (i.e., software methods).

Disclosure: Minimal AI Authorship

Despite my being involved in the AI industry, there was almost no AI engine usage
in creating this book’s text or its coding examples. Some text has been analyzed and
reviewed using Aussie AI’s editing tools, but not even one paragraph was auto-
created by any generative AI engine. All of the CUDA C++ code is also human-
written, without involvement of any AI coding copilot tools. I mean, who needs
them?

However, AI was used in several ways. AI-assisted search tools, such as “Bing Chat
with GPT-4”, were very useful in brainstorming topics and researching some of the
technical issues. The main cover art image was AI-generated, followed by human
editing.

Disclaimers

Although I hope the information is useful to you, neither the content nor code in
this work is guaranteed for any particular purpose. Nothing herein is intended to
be personal, medical, financial or legal advice. You should make your own enquiries
to confirm the appropriateness to your situation of any information.

https://www.aussieai.com/

7 Efficient Modern C++ Data Structures

Many code examples are simplistic and have been included for explanatory or
educational benefit, and are therefore lacking in terms of correctness, quality,
functionality, or reliability. For example, some of the examples are not good at
handling the special floating-point values such as negative zero, NaN, or Inf.

Oh, and sometimes I’m being sarcastic, or making a joke, but it’s hard to know
when, because there’s also a saying that “Truth is often said in jest!” Your AI engine
certainly won’t be able to help you sort out that conundrum.

Third-Party License Notices

Except where expressly noted, all content and code is written by David Spuler or
the contributors, with copyright and other rights owned by David Spuler and/or
Aussie AI.

Additional information, acknowledgments and legal notices in relation to this book,
the C++ source code, or other Aussie AI software, can be found on the Aussie AI
Legal Notices page: https://www.aussieai.com/admin/legal-notices.

https://www.aussieai.com/admin/legal-notices

David Spuler 8

9 Efficient Modern C++ Data Structures

Table of Contents

About the Author ... 3

About the Contributors .. 4

Preface .. 5

Table of Contents ... 9

Part I: Optimization Techniques .. 19

1. Data Structures Overview ... 21

What Are Data Structures? ... 21

Types of Data Structures .. 22

Fastest Data Structures ... 25

Complexity vs Practical Performance .. 25

Throughput Versus Latency ... 27

Hybrid Data Structures ... 28

Modern C++ Versions .. 29

Advanced Data Structures .. 32

Performance Tuning Practices ... 33

Tuning Trade-offs .. 34

2. Modern C++ Containers ... 37

Standard C++ Containers ... 37

General Container Optimizations ... 40

Choosing Containers .. 41

Linearizing Containers ... 42

Changing Containers .. 42

David Spuler 10

Useful Member Functions .. 43

Hidden Auto-Resize Slugs ... 44

Hand-Coding Containers .. 48

3. Move Semantics .. 49

What are Move Semantics? .. 49

Copy Elision ... 50

Return Value Optimization ... 50

Moving Multiple Objects ... 52

Generic Move Operator .. 53

4. String Optimizations .. 59

Efficient Strings .. 59

Common String Operations .. 60

String Class Inefficiencies .. 64

String Memory Layout ... 64

5. Object Instrumentation ... 67

What is Object Instrumentation? .. 67

Tester Class .. 67

Link-Time Interception: new and delete .. 68

6. Timing and Benchmarking ... 71

Timing C++ Code ... 71

The Chrono Class ... 72

The Clock Function .. 72

Clock Problems .. 73

Benchmarking .. 74

Benchmarking Problems .. 76

Loop Unrolling ... 77

Limitations of Benchmarking ... 79

Examining Assembly Output ... 79

11 Efficient Modern C++ Data Structures

7. AVX SIMD Vectorization ... 83

What are AVX Intrinsics? .. 83

AVX Operations .. 84

AVX Horizontal Intrinsics ... 85

Portability Checking of AVX Versions ... 86

Example: Basic AVX SIMD Multiply ... 87

AVX Memory Alignment Issues ... 89

AVX-2 SIMD Multiplication ... 91

AVX-512 SIMD Multiplication ... 92

Example: AVX 128-Bit Dot Product ... 92

Example: AVX-2 256-Bit Dot Product .. 93

References .. 94

8. Memory Optimizations .. 95

Memory Reduction in C++ .. 95

Compact Data Representation .. 96

Reducing Data Size .. 97

Measuring Code Size and Static Storage ... 100

Code Bloat .. 101

Reducing Static Storage ... 103

Stack Usage .. 104

Reducing Heap Usage .. 105

References .. 106

David Spuler 12

Part II: Contiguous Data Structures .. 107

9. Arrays ... 109

Array Operation Complexity .. 109

Modern C++ Arrays ... 110

Custom Array Implementation ... 111

Sorted Arrays .. 112

Shuffling Array Elements ... 113

Binary-Like Sorted Array Insertion .. 114

Sorted Array Deletion... 115

Unsorted Arrays.. 115

Linear Search of Unsorted Arrays .. 116

Fast Linear Search .. 118

Low-Level Search Support ... 119

Parallel Linear Search ... 120

Unsorted Array Insertions .. 121

Fast Unsorted Array Deletion ... 122

Container Deletion Pitfalls ... 125

Bypassing Interfaces ... 126

Extensions .. 127

10. Pointer Arithmetic ... 129

What is Pointer Arithmetic? ... 129

Details of Pointer Arithmetic .. 130

Pointers and Arrays .. 133

Pointer Arithmetic Loop Optimizations ... 134

Smart Pointers .. 136

Pointers vs References .. 137

Iterator Pointer Arithmetic ... 139

Restricted Pointers and Aliasing .. 140

13 Efficient Modern C++ Data Structures

11. Contiguous Memory Blocks ... 141

Why Contiguous Memory Blocks? .. 141

Low-Level Memory Block Functions .. 142

Fast Memory Block Operations ... 143

Memory Block Function Pitfalls .. 145

Raw Subarray Memory Blocks .. 148

Cache Warming .. 149

Memory Prefetch Primitives .. 150

Volatile Temporary Variables .. 150

Pros and Cons of Cache Warming ... 151

Dynamic Memory Management Pitfalls .. 152

Pitfalls for Non-Dynamic Memory Blocks .. 153

References .. 154

12. Loop Optimizations ... 155

Sequential vs Parallel Loop Optimizations .. 155

Loop Fusion ... 156

Loop Perforation .. 157

Loop Unrolling ... 158

Duff’s Device for Loop Unrolling ... 161

Loop Tiling or Blocking... 163

Loop Fission ... 165

Loop Reversal .. 166

Loop Code Motion ... 167

Loop Distribution ... 168

Loop Reordering .. 169

Loop Iterator Strength Reduction ... 170

Loop Coalescing .. 170

Loop Collapsing ... 171

David Spuler 14

Loop Peeling ... 172

Loop Splitting ... 173

Loop Interchange .. 174

Loop Sentinel ... 176

Loop Strip Mining (Loop Sectioning) .. 177

Loop Spreading .. 177

Loop Normalization.. 178

Loop Skewing ... 179

References .. 181

13. Parallel Vectorization ... 183

What is Vectorization? ... 183

Example: AVX Vectorized Dot Product .. 184

Example: AVX Vector Sum Reduction.. 187

AVX Vector Max and Min Reductions .. 189

Vectorized Sum-of-Squares Reduction .. 192

Vectorized Multiply Vector by Scalar .. 194

Vectorized Add Scalar .. 196

Vectorized RELU with Max Intrinsics ... 196

Vectorization of Exponentiation ... 197

Vectorization of Lookup Tables ... 199

Auto-Vectorization and Restricted Pointers ... 200

14. Lookup Tables & Precomputation ... 203

Precomputation with Lookup Tables .. 203

Example: LUT Precomputation for sqrt ... 204

Float-to-Float Precomputation .. 207

Precalculating C++ Source Files .. 210

References .. 213

15 Efficient Modern C++ Data Structures

Part III: Multidimensional Data Structures ... 215

15. Matrix Multiplication ... 217

Matrix-Vector Multiplication ... 217

Spot the Buggy MatMul ... 218

Optimizing Matrix-Vector Multiplication .. 219

Tiled Matrix-Vector Multiplication ... 221

Matrix-Matrix Multiplication ... 224

Vectorized MatMul .. 229

Loop Tiled/Blocked MatMul ... 230

Fast Matrix Multiplication Theory ... 231

Multiplying by Transpose .. 231

References .. 232

16. Tensors ... 233

What are Tensors? .. 233

Neural Network Tensors .. 234

Tensor Arithmetic .. 236

Sparse Tensors ... 237

Part IV: Advanced Data Structures ... 239

17. Algorithm Speedups .. 241

Algorithm Optimization Techniques .. 241

Lookup Table Precomputation ... 242

Lazy Evaluation ... 243

Source Code Precomputation ... 244

Incremental Algorithms ... 245

Common Case First .. 246

Approximate Tests ... 248

Augmenting Data Structures .. 250

David Spuler 16

18. Vector Algorithms .. 251

Vector Dot Product ... 251

Vector Norms ... 252

Matrix Norms ... 255

Vector Min and Max .. 256

Top-K Vector Algorithm .. 257

Shuffle Top-K Algorithm ... 258

Theoretical Top-K Algorithms ... 259

19. Perfect Hashing ... 263

What is Perfect Hashing? ... 263

Disadvantages of Perfect Hashing .. 264

Perfect Hash Functions ... 264

Further Optimizations of Perfect Hashing .. 265

Example: ANSI C Keywords ... 268

Perfect Final Thoughts ... 272

Extensions .. 272

20. Memory Pool Optimizations .. 273

What are Memory Pools? ... 273

Why Memory Pools? .. 273

Disadvantages of Memory Pools .. 274

Memory Control Block Overhead .. 274

Fixed-Size Memory Pool Algorithms... 275

Boolean Flag Memory Pool .. 276

Disadvantages of Boolean Flag Method ... 278

Boolean Flag Array Method ... 279

Index Array Memory Pool .. 280

Memory Pools Versus Containers .. 282

Advanced Memory Pools ... 284

17 Efficient Modern C++ Data Structures

21. Fast Ring Buffers .. 285

What is a Ring Buffer? ... 285

Simple Ring Buffer .. 285

Pros and Cons of Ring Buffers ... 287

Incremental Count Optimization .. 288

Avoiding Three Integers .. 289

Modulo Arithmetic Optimizations ... 291

Move Semantics ... 294

Constructor Problems ... 296

Standard Vector Problems .. 297

Explicit Destructor Calls .. 298

Class Interface Bypass ... 299

Extensions .. 300

22. AI Data Structures ... 301

AI Engine Overview .. 301

Bit Vectors ... 303

Permutation Arrays .. 304

Vector Hashing .. 306

Perfect Hashing .. 307

Bloom Filters .. 307

Appendix 1. Source Code ... 309

Tester Object Instrumentation Class .. 309

Intercepted new and delete ... 313

David Spuler 18

19 Efficient Modern C++ Data Structures

Part I: Optimization Techniques

“Learning to fly is not pretty but flying is.”

— Satya Nadella, Hit Refresh, 2017.

David Spuler 20

21 Efficient Modern C++ Data Structures

1. Data Structures Overview

What Are Data Structures?

Data structures are the different ways of organizing data in memory. For example,
we can keep all the data together in memory, such as an array. Alternatively, we can
spread it out all over different parts of the memory, such as a linked list.

Data Structures versus Algorithms. These two go together very commonly, and
the understanding tends to be:

• Data structures — the structure of the data (aha!).

• Algorithms — the code that makes it so.

But it’s not a full definition, since there are many algorithms that exist separately
from particular data structures. Nevertheless, let’s run with that definition for now.

Data Structures versus Databases. Generally speaking, the distinction between a
data structure and databases goes like this:

• Data structures — small amount of data stored in memory.

• Databases — huge amount of data on disk.

It’s all relative, though, because a “small amount of data” can actually be gigabytes
if you’re talking about an AI model. And there are exceptions to this rule in both
directions:

• On-disk data structures — especially the B-tree.

• In-memory databases — various types exist, even with SQL and all that
jazz.

So, let’s pretend we now know what a data structure is.

David Spuler 22

Types of Data Structures

There’s a lot of ways to categorize data structures, and all will fail abjectly. If you
look at the Wikipedia page for data structures, there are literally hundreds. Every
categorization has exceptions, but nevertheless, I’m going to try a few ways.

Contiguous versus Linked Data Structures. When you store data next to each
other, that’s called a contiguous data structure. The main example is any type of
array, or the containers std::array and std::vector.

Linked data structures are those where the data is spread out more. The different
pieces of data are “linked” to each other using pointers. Examples of these include
linked lists and binary trees.

Linked lists can be either singly or doubly linked. The reason that the default is two
pointers per node is that a doubly-linked list is easier for insertions and deletions,
at the cost of some extra space. Modern C++ has both types of linked lists:

• std::list — doubly-linked list.

• std::forward_list — a singly-linked list.

The standard “binary tree” data structures include std::map for a dictionary
and std::set for set membership. These are both implemented as balanced red-
black binary search trees, which we could call BRBBST’s, but we don’t.

Dictionaries versus Sets. Dictionaries are a data structure category where you can
look up something (e.g., a word in a dictionary), and then you find the result from
the search (e.g., the definition of a word in a dictionary). The formal name for this
class of data structures is “associative data structures.” Other common names for
dictionary data structures include:

• Maps

• Key-value stores

• Symbol tables

• Hashmaps

All of these mean the same thing: a pair of data items, where one type of data is the
“key” that you search for, and the other item is the “value” that you return when
you find the key.

23 Efficient Modern C++ Data Structures

Sets are like half a dictionary. With a set, we just look up the key, but there’s no
value to return. We only want to know whether our “key” is part of the set or not.
There’s no extra data to return.

Dictionaries and sets are very similar and are typically implemented in the same
types of data structures. In both cases, we want to search for a key, and the same
methods can be used. The only difference is at the end, whether there’s a payload
(dictionaries) or nothing (sets).

In modern C++ containers there’s a close correlation between those that do
dictionary lookup and those doing set membership. There are two container
versions that use a “red black tree”:

• std::map — dictionary in a red-black tree.

• std::set — set version.

And there are two classes that are hash tables, which are called “unordered” because
the data is not sorted:

• std::unordered_map — dictionary hash table.

• std::unordered_set — set in a hash table.

I suppose that hashing being “unordered” means that the data in red-black trees is
“ordered,” but it really doesn’t seem that way. They’re a linked tree data structure,
with the data all around the place. Sure, it’s ordered, whatever.

Hash tables. What are hash tables? Well, they enjoy a special type of distinction as
they don’t really fit well into descriptions of other data structures, such as
contiguous versus linked. A hash table can be one or the other, or a kind of hybrid
of contiguous and linked data.

But we forgive them because hash tables are super-fast. In fact, they are usually
constant-time cost for searches, insertions, and deletions. That’s hard to beat, and
we’ll talk a lot more about modern C++ hash table containers.

Stacks versus Queues. These two data structures are not related to dictionaries or
sets. We don’t look up anything, but instead we process the data in and out in a
particular pattern:

• Stacks — Last-In-First-Out (LIFO)

• Queues — First-In-First-Out (FIFO)

David Spuler 24

LIFO means that when we put something on a stack, it’ll be the first thing we pull
off the stack. It’s like how restaurants put your receipt on a sharp pointy thing. I
always wonder how many times the waiters stab themselves before they learn to
avoid it.

Anyway, the FIFO method in queues is the reverse, where whatever we put on the
queue will be the last thing we process, after all the other stuff already in our work
queue. It’s kind of like, you know, a queue that you stand in, where you are actually
the job that someone else needs to process.

Modern C++ has containers for both stacks and queues, which are imaginatively
named:

• std::stack

• std::queue

There’s also std::dequeue, which means a “double-ended queue,” since the
default queue data structure is a single-ended queue. Paradoxically, a single-ended
queue actually has two ends:

• Head — remove new work here.

• Tail — insert here.

And if you want a double-ended stack, don’t worry, because it’s literally the same
thing as a dequeue. There’s no difference.

And to further confuse things, there are two different ways to code them up. Both
stacks and queues can be implemented in two main ways:

• Contiguous arrays — fixed-size stack or queue.

• Linked lists — unlimited size (dynamic).

However, modern C++ doesn’t have any standard containers for the array versions,
but only the dynamic linked list versions of stacks and queues.

Heaps and Priority Queues. Priorities queues are a generalization of queues,
where each job can have a “priority” and higher-priority items come off the queue
first. Hence, it’s no longer about FIFO, but about what priority the jobs have,
except it’s still FIFO for jobs that have the same priority.

25 Efficient Modern C++ Data Structures

Priority queues are also known as “heaps” but you don’t need to implement them
using the heap, because that’s a different thing. Two types of heaps makes a lot of
sense, especially since they’re completely unrelated uses of the word. Heaps of fun!

Recursive Data Structures. Some data structures are “recursive” in that a sub-
part of the data structure looks the same structure as the whole thing. The main
examples are binary trees, but other data structures are also technically recursive,
such as linked lists.

As you’d expect from the name, you can code algorithms for these data structures
using recursion in your function calls. But you probably shouldn’t! This is a
discussion of efficient coding, after all, and recursive function calls are not that. It’s
better to use a loop.

Static versus Dynamic Data Structures. Static data structures are ones that don’t
change, whereas dynamic ones can. The general idea is that dynamic data structures
can grow and shrink, whereas static versions are read-only, and don’t have any
insertions or deletions. An example of a static data structure is “perfect hashing.”
A good example of a dynamic data structure is everything else.

Fastest Data Structures

Which one is the fastest data structure in the world? And I don’t mean a tribute.

My vote for the fastest data structure goes to the hash table. I’ve hand-coded
numerous hash tables in both C and C++, although these days I use the modern
C++ container versions. In modern C++, the containers that are hash tables are:

• Dictionary lookup — std::unordered_map

• Set lookup — std::unordered_set

Unfortunately, you can’t use a hash table for everything, although I’ve certainly
tried! For example, a hash table doesn’t work for coding a stack or queue data
structure.

Complexity vs Practical Performance

How do you assess which data structure is the fastest? The “big-O” mathematical
notation for algorithmic complexity is a useful way to think about efficiency. The
“O” actually stands for “order” of the mathematical function.

David Spuler 26

The basic levels of complexity in order of speed include:

• Constant time — O(1)

• Logarithmic — O(log n)

• Linear time — O(n)

• Linear-log — O(n log n)

• Quadratic — O(n^2)

There’s levels beyond these like cubic and quartic, such as dense matrix-matrix
multiplication (known as “MatMul” or “GEMM”), which is cubic in the size.
However, once you get to quadratic complexity, your code is slow already. A lot of
the current AI research is about speeding up some parts of LLM algorithms that
are horrifyingly quadratic or cubic in cost.

There are actually three different measures, which a data structure can have
different orders of complexity:

• Best case

• Average case

• Worst case

For example, as hash table has terrific O(1) average search cost, but a horrible O(n)
worst-case search performance. In practice, most code will get the average case
performance, but we have to be careful of worst-case performance characteristics
for time-critical applications, such as embedded programming or low-latency
programming.

Practical performance. Big-O notation refers to asymptotic performance of an
algorithm or data structure, as n gets very large. Hence, it’s not everything in terms
of speeding up C++ code. There are a lot of algorithms that are slow for large n but
are the best choices for speed when n is small.

A related issue is the “constant of proportionality” that’s hidden in the big-O
notation. The complexity order only refers to the overall characteristics of the
curve, and there’s a big different in practical performance between 2n and 2,000n,
but both are O(n) in terms of complexity order. There are some famous algorithms
that have great complexity characteristics, but with a constant so high that they are
impractical for actual usage. One well-known example is Strassen’s matrix
multiplication algorithm, which is O(n^2.7) and theoretically better than the
cubic O(n^3) cost of standard matrix multiplication, but is too costly to program in
practice.

27 Efficient Modern C++ Data Structures

Throughput Versus Latency

Analyzing the speed of data structures actually has multiple metrics. There’s a major
difference between optimizing for these two measures:

• Latency — also known as “response time” or “round trip.”

• Throughput — total work pushed through the data structure.

These are both important concepts and it’s not easy to understand the difference.
Don’t you want both? The basic distinction is:

• Single job — measure latency.

• All jobs — measure throughput.

The simplest way to decide which metric is more important is to consider the uses:

• Interactive jobs — low latency required for user responsiveness.

• Batch jobs — high throughput more important.

But yes, it’s correct that low latency and throughput are often inter-related. Coding
a better software algorithm or buying a faster CPU or GPU will improve both
latency and throughput.

But there are cases where latency and throughput diverge. A workload that runs a
long time, but does many jobs in parallel, will have high throughput in total (good),
but each job has poor latency (bad for user responsiveness). Similarly, a workload
that runs jobs quickly will have a low latency (for each job), but if it has to serialize
the work, then it has a poor throughput (for all jobs).

In terms of system design, you have to consider your main processor. A little known
fact is that CPUs are faster than GPUs. It’s easy to buy a CPU with a 5 GHz clock
speed, but a top-line GPU is only about 1.6GHz clock speed, because it does so
much in parallel that it would overheat at faster clock speeds.

Hence, this seems like the choice:

• CPU — low latency

• GPU — high throughput

But as everyone who hasn’t been hiding under a rock the last couple years will
know, GPUs are super-fast at running AI workloads with low latency for users.

David Spuler 28

The reason for this is, when you have a lot of data to crunch through (e.g., a trillion-
parameter AI model), then the equation is:

Throughput + parallelization = low latency

Hence, the answer is: yes, you can have both.

Hybrid Data Structures

The best thing about data structures: you can use more than one. There are various
ways to combine two data structures into a hybrid beast.

Some common examples:

• Hashed chaining — a hash table and a linked list (as
in std::unordered_map).

• Bloom filters — a probabilistic set combining bit vectors and hash
functions.

• Skip list — hybrid of a sorted array and a linked list.

My favorite combination that I’ve used in real-life programming is to combine a
hash table with a better data structure than chaining for collision resolution.

There’s nothing to say that you have to hang a linked list off your hash table.
Personally, I’ve used binary trees instead of chained hashing, which guarantees
logarithmic worst case complexity if you use balance trees like AVL trees or red-
black trees. Note that std::map uses red-black trees, but it’s linear chaining in the
hashed containers.

Another flexible approach is to simply insert the same key into two different data
structures, independent of each other. There are two basic strategies:

• Create one data structure (insertions), then export the data at the end, or

• Incrementally maintain two separate data structures.

The first strategy is appropriate when the data structure has a two-phase sequence,
which is very common in real-world usage:

• Initialization phase — lots of insertions.

• Processing phase — searches endlessly.

29 Efficient Modern C++ Data Structures

In this case, it can make sense to store the data in an insert-friendly data structure
while building it, and then export the data to a more search-efficient data structure
once the initialization phase is finished.

For example, you could build the data structure with an unsorted array (std::vector
or std::array), a hash table (std::unordered_map) or a red-black tree
(std::map), all of which offer fast insertions (on average).

Once finished, you can export them to an array data structure, and/or
use std::sort for ordering. In various applications, the contiguous storage has
better cache locality properties for lots of fast searches or linear scans across all the
data.

Incremental processing means you insert twice, as new data arrives. For example,
when you want fast accesses using a hash table (e.g., std::unordered_map), but
if you also want fast ordered processing, use a red-black tree (e.g., std::map). You
can simply insert every key into two independent data structures. It’s twice the
insertion cost and twice the memory space, but double the fun.

Modern C++ Versions

Modern C++ has evolved into a massive and amazing language, complete with a
suite of already-coded container libraries. This has made C++ programming into a
much higher-level abstraction for all but the most latency-critical of tasks. The
overall version updates with their key points are:

• C++98 — formalized several language features.

• C++03 — considered mostly a “bug fix” version.

• C++11 — a huge update with so many goodies (hooray!).

• C++14 — mostly a relatively minor update.

• C++17 — added parallel execution modes.

• C++20 — added coroutines for async coding.

• C++23 — several major features like concepts, reflection, etc.

• C++26 — already looking great!

Every one of these releases also had a large set of smaller language feature updates.
I’m not going to list them all, because we’d be here till next Sunday, but here’s some
more details on the versions.

David Spuler 30

C++11. This version of C++ in 2011 was such a massive release that it’s hard to
summarize everything. Some of the main advances were:

• Standard containers

• Iterators and range loops

• Move semantics

• Standardizing std::string

• Multithreading classes (e.g., std::thread)

• Compile-time metaprogramming (e.g., constexpr)

• Template capabilities enhanced (e.g., variadic templates)

• Lambda functions

• Function objects (functors)

• Asynchronous programming (futures and promises)

C++14. This wasn’t a big release, but was mostly fixing a lot of minor issues in
C++11 release. However, some performance-related improvements included:

• constexpr capabilities increased (relaxed limitations)

• Multithreading: std::shared_lock, std::shared_timed_mutex

C++17. New features related to efficiency and also data structures and containers
included:

• Parallel execution modes in <execution>

• Standard container parallel execution support

• constexpr further unleashed

• extract() and merge() container member functions.

• Fold expressions

• Parameter packs

• Structured bindings

• std::filesystem

• Multithreading: std::shared_mutex

C++20. Some of the major features in C++20 included:

• Coroutines and asynchronous programming

• constinit and consteval

• The “spaceship” <=> three-way operator (I just love it!)

• Multithreading: <latch>, <semaphore>, std::jthread

• Concepts (“requires” syntax)

31 Efficient Modern C++ Data Structures

C++23. New containers in C++23 included:

• std::flat_set

• std::flat_map

• std::flat_multiset

• std::flat_multimap

Other major features of C++23 include:

• Reflection

• Contracts

• Concepts (extended)

• Modules

C++26. Features coming in 2026 include:

• std::hive

• std::inplace_vector

• Safe “checked” integer class <stdckdint>

• Multithreading: hazard
pointers, atomic_fetch_max, atomic_fetch_min

• <rcu> — Read-Copy-Update

• <simd> — CPU vectorization primitives

• <linalg> — linear algebra operations

• Uninitialized memory block extensions

• Hardened standard C++ library (safety)

• Debugging support

• Placeholder variables

C is not C++. Finally, if you’re a C programmer, too bad, you’re missing out on
all of the above! Well, not all, since newer C standards use some C++ capabilities:

• restrict (non-aliased pointers)

• static_assert

• memccpy

• bool/true/false

• alignas/alignof

• typeof

• thread_local

• nullptr

David Spuler 32

Advanced Data Structures

The best thing about studying data structures is that there’s a never-ending stream
of new ones. Some bright spark writes a research paper, and suddenly there’s a
whole new idea for everyone to code up.

There’s already quite a few data structures, and nobody knows them all! Some of
the lesser-known data structures include:

• Bloom filters — a fast hybrid of bit vectors and hash functions.

• Bucket Arrays — like a dynamic-size memory pool, but not re-using
deleted space.

• Hives — a generalization of bucket arrays and memory pools
(std::hive in C++26).

• Union-find data structure — I’ve never seen this actually used except for
job interviews.

Some other specialized data structures for text processing include:

• Rope data structure — organizing subsequences of text as a binary tree.

• Directed Acyclic Word Graph (DAWG) — fast lookup of words in texts.

• Automata — text sequence lookup, like an unfolded trie.

• Suffix trees — good for text analysis.

Multi-dimensional data structures include:

• Tensors — generalized multi-dimensional data used in AI.

• Vector hashing — searching in a multi-dimensional space.

• Quad-trees and KD-trees — organizing multi-dimensional spatial data.

And if you want to get even more specialized, there’s always more:

• Rewind and replay data structures

• Undo and redo trees

• Scatter-gather multi-buffering (networking)

• LLM Transformer architecture (in AI engines)

Don’t worry, that’s not the full list. Feel free to ask AI for a “list of data structures”
on your own time.

33 Efficient Modern C++ Data Structures

Performance Tuning Practices

How should the huge number of methods of improving program efficiency be
applied to a program? The code transformations that improve the program by a
significant amount should be tried first, and the smaller optimizations used only
when it is important to squeeze out that last bit of extra speed in bottlenecks.
Hence, I suggest the following steps for improving the efficiency of a program:

1. Time your program to get a baseline

2. Invoke the C++ compiler’s built-in optimizer.

3. Profile the code and find the “hot spots.”

4. Consider a better data structure or algorithm.

5. Use the major code transformations.

6. Use smaller code transformations, if speed is crucial.

The first step is to measure your code’s time cost. Otherwise, how will you know
whether anything made it better?

The next step is easy: turn on your optimizer. All modern C++ compilers have an
option to invoke an optimizer on the code. The optimizer, although it may not
always yield a major increase in speed, has one very important advantage — the
programmer need not change the code. Hence, if a small improvement is desired,
the optimizer can often provide it without much effort.

Software tuning. Assuming you’re done with all the non-code changes to the
system (e.g., hardware, networking), it’s time to examine the C++. You can either
start high by looking at the data structures, or start low by optimizing the busiest
low-level kernels.

The choice of a better algorithm (usually with different data structures) for a
program is not an easy method of program improvement. Simply identifying what
would be a better algorithm is a difficult problem! And once identified, the new
algorithm must be implemented by the programmer, costing precious man hours.
However, this is the best method to achieve an order-of-magnitude increase in the
program’s performance.

David Spuler 34

The next step is to profile in detail the C++ code to determine which functions (or
statements) are accounting for most of the program’s time; these are the “hot spots”
of the program.

This identification of costly statements is best achieved by a profiler. Identifying
frequently called functions and deeply nested loops is often adequate.

Once the hot spots are identified, all efficiency measures, large and small, should
be applied to this code. Any improvement to the efficiency of a statement, no
matter how small, will improve the overall efficiency greatly if that statement is
executed often.

Once the most costly functions and loops have been optimized, other statements
can also be optimized, although the increase in speed will not be as noticeable. Some
of the better code transformations to apply are parallelization, loop optimizations
(vectorizations), using pass-by-reference for passing structures or objects to
functions, and replacing small functions with macros or inline functions.

Make it right first? The speed improvement techniques in C++ can be applied
either as the programmer is writing the code, or after the development and
debugging of the program.

The second approach is often referred to as the “make it right first” rule. However,
I believe that the first method is preferable simply because optimizing your program
once it is working is a dangerous practice, and often introduces new bugs. Deferring
efficiency improvement to the final development stage can also waste programmer
time in improving the basic algorithms used in a program.

Using efficiency techniques during the development of the program is a much
sounder method of improving efficiency.

Tuning Trade-offs

Tuning a program is not always a clear-cut gain. There are numerous other
quantities that efficiency may affect:

• Space versus time-efficiency.

• Robustness of a program.

• Readability and maintainability of a program.

• Portability of a program.

35 Efficient Modern C++ Data Structures

There is almost always a trade-off between time and space when making programs
run faster. Many of the algorithm improvements sacrifice space for extra speed,
such as caching and precalculation.

An often overlooked trade-off is between program efficiency and a programmer’s
time in making the changes.

Changing a program for efficiency can introduce extra bugs into a program
(although you could argue that it might remove bugs, too). If a piece of code has
already been debugged, improving its efficiency may not be worth the risk to the
robustness of a program.

Many of the program transformations used for efficiency can reduce the readability
of a program. Naturally, this also makes it more difficult for a program to be
maintained, and since the major cost in a program’s development cycle is usually
maintenance, improving efficiency may not be worth it in the long run.

Perhaps surprisingly, the efficiency of a program can usually be increased
significantly without affecting portability. There are data structure efficiency
techniques in this book that are generic methods that work across all modern C++
code.

Almost all of the dangers of improving efficiency are dangers for the programmer.
On the other hand, the users of a program will be well pleased by extra
responsiveness, and this alone makes choosing an efficient data structure a
worthwhile exercise.

David Spuler 36

37 Efficient Modern C++ Data Structures

2. Modern C++ Containers

Standard C++ Containers

Contiguous data containers. The general-purpose containers with contiguous
data are called “sequence containers” and include several that are well-known and
often used:

• std::string — dynamic character arrays.

• std::vector — dynamic everything arrays.

• std::array — static fixed-size arrays.

• std::bitset — fast bit vectors.

Associative containers and sets. The associative key-value data structures are
more commonly called a “map,” “dictionary,” or “symbol table” design pattern.
Note that the “set membership” idiom is usually very similar to the associative
containers, because the search is the same, but the sets don’t have a payload at the
end.

The main types of modern C++ containers for searching include the choice
between two main types of underlying data structures:

• Red-black balanced binary trees — logarithmic complexity for search,
insert and delete.

• Hash tables (with chaining) — constant-time average complexity (fast!),
but linear worst-case (slow!).

The containers include these red-black tree versions:

• std::map — key-value lookup (dictionary idiom).

• std::set — key-only set membership lookup.

And these are the hash tables (my favorite data structure!):

• std::unordered_map — dictionary hash table for key-value pairs.

• std::unordered_set — hash table for set membership.

David Spuler 38

There are also variants that allow duplicates, which means multiple copies of the
same key stored separately in the container. Examples include:

• std::multiset

• std::multimap

• std::unordered_multiset

• std::unordered_multimap

Linked list containers. Some of the containers to manage data in dynamically-
allocated linked lists include:

• std::list — double-linked list

• std::forward_list — singly-linked list

Note that the hash table containers (e.g., std::unordered_map) also belong on
this list because they use “chaining” for collision resolution. This approach
effectively hangs linked lists off every bucket of the hash table.

Sorted “flat” containers. There are some newer containers in C++23 that are
“flat” in the sense that they maintain data in sorted order. These classes include:

• std::flat_set

• std::flat_map

• std::flat_multiset

• std::flat_multimap

Special semantics containers. Some of the general-purpose containers with
different semantics to searching include:

• std::stack — dynamic FIFO structure.

• std::queue — queue data structure (single-ended).

• std::dequeue — double-ended queue.

• std::priority_queue — implements the “heap” data structure.

View containers. The various types of “view” containers include:

• std::string_view

• std::span

• std::mdspan — multidimensional view class.

39 Efficient Modern C++ Data Structures

Bit-level data structures. Modern C++ supports both class libraries and utility
functions for a variety of low-level bit manipulation tasks. Some examples include:

• std::bitset

• Bit manipulation utilities in <bit>

Small utility data structures. Some of the more generic types of “mini-data
structures” include:

• std::pair

• std::tuple

• Ranges

• std::optional

• Permutations

Multithreading data structures. Parallel coding with synchronization and locking
is supported in modern C++ with libraries such as:

• std::thread

• std::mutex

• std::lock

• std::condition_variable

• std::atomic

• std::latch

• std::barrier

And that’s not the full list of primitives available in the concurrency library. Many
of these multithreading capabilities have been available since C++11.

Upcoming C++26 containers. Some of the upcoming containers include:

• std::hive (C++26)

• std::inplace_vector (C++26)

What’s missing? I feel ungrateful to even be writing this list, given the amazing
amount of work that’s gone into coding up all the above data structures in the
standard C++ library. Nevertheless, some of my favorites aren’t on the list yet!

David Spuler 40

Data structures that are missing from the standard C++ containers library include:

• Sorted array — indirectly supported only (e.g., std::sort).

• Tries — 26-way tree for storing text keys based on letters.

• B-tree — multi-way tree data structure good for disk storage.

• Graphs — depth-first search, breadth-first search, topological sort.

• Tri-state Boolean — indirectly supported via std::optional.

General Container Optimizations

Containers have a lot of commonalities in their performance patterns. Some general
comments apply to multiple types of container classes, and making them run faster.
Consider the following when implementing the usage patterns of your containers:

• Choose an initial size — avoid container auto-resizing slowdowns.

• Minimize insertions and deletions — yeah, right, those actions are why we
use containers!

• Auto-resizing of containers — watch out for silent slugs!

• Remove all elements with clear() rather than a loop.

• Container destruction can be slow.

Choose your containers wisely:

• Prefer hash tables for fast searching (e.g., std::unordered_map).

• Don’t use a key-value associative container if you only need a set.

• Consider whether you need sorted or unsorted scanning of all elements.

• Prefer contiguous memory containers that are available in the standard
C++ library: std::array and std::vector have good cache locality.

Optimizations in relation to the types of data to use in containers:

• Choose scalar types — objects have more risks of slowdowns from calls to
constructors, destructors, move operators, etc.

• Prefer integer keys — faster than std::string or char* in key-value
pairs.

• Reduce the sizes of keys and values — minimizes overall container
memory size and improves cache locality.

41 Efficient Modern C++ Data Structures

Choosing Containers

This should be a short section. It’s easy: use a vector with std::vector or maybe
a faster hash table with std::unordered_map, and forget the rest. Oh,
maybe std::queue and std::stack if you must.

I’m only half joking, because there are two things that you often want to do quickly:

• Scanning — std::vector is an array with contiguous data (cache
locality).

• Searching — std::unordered_map is a hash table with O(1) average
complexity for search, insert, and delete.

So, that’s covered most of the basic data processing requirements. You’re either
scanning through a set of data to work on it repeatedly. Or you’re looking a key up
in a dictionary, so you need search to be fast.

What about the other dynamic classes? Somebody’s spent a whole lot of time on
them, so surely they’re useful for something?

There are situations where you might want to consider alternatives to arrays and
hash tables. For example, there’s std::map, which uses red-black trees and has
logarithmic complexity for searching, inserting and deletion. But this is not as good
as O(1) of a hash table.

The situations where a hash table might not be the best include:

• Scanning sorted data — neither the vector class std::vector nor the
hashmap std::unordered_map are good at this.

• Real-time latency-critical situations — where the worst-case linear
performance of searching a hash table is too risky.

But if you ask me, you can still use only arrays and hash tables in combination. Hash
tables aren’t great at scanning because it’s a non-contiguous linked list scan. Here’s
a funny thought:

1. Insert repeatedly into the hash table, and then

2. Linearize the hash table in an array.

David Spuler 42

Those are your main trade-offs. Beyond that, if you’re only searching a set of keys,
but don’t need to map the key to any other data, then use a set rather than a
dictionary (officially called an “associative container”). There’s a (slow) red-black
binary tree in std::set, but fortunately there’s a (faster) hash table for that
called std::unordered_set.

Linearizing Containers

One common optimization is to perform some “preprocessing” before doing a lot
of sequential processing of the data. This applies when the startup does a lot of
insertions, but the main processing is mostly about scanning the data. In this case,
we can switch to a linearized version of a dynamic container for faster scanning.
Here’s example code for linearizing a linked list:

 // Linearize linked list to vector

 std::list<int> mylist;

 std::vector<int> vec;

 //

 int n = mylist.size();

 vec.reserve(n);

 for (auto& iter : mylist) {

 vec.push_back(iter);

 }

This code to linearize is not particularly efficient, because it’s forced to linearly scan
the linked list, and then insert into the vector one-at-a-time. However, I can’t see a
way to do a bulk-insert out of a linked list.

As an alternative, if we no longer needed the linked list version, we could use
the merge() member function (C++17) to transfer items from the list container
to the vector. This is particularly effective because merge() changes the internal
container pointers, but doesn’t call any copy or move methods.

Changing Containers

Another idea is to convert our insertion-friendly container to one that’s best for
fast searches. One idea that goes from binary trees to hash tables is this:

• Handle the insertion phase with std::map — logarithmic insertion
complexity with red-black trees.

• Convert to std::unordered_map (hash table) for faster searches.

43 Efficient Modern C++ Data Structures

Note that C++17 has the std::merge() member functions for splicing one
container into another. There’s also extract() to remove a single item.

Note that these routines don’t move or copy any user data, but only update
container internal pointers. This avoids the need for erasing data from one
container and re-inserting all the data into the other container.

On the other hand, hash tables also have fast insertion with constant time on
average, which is better than logarithmic (on average), so why do we need the red-
black trees at all? One reason is that hash tables can degrade to linear performance
in the worst case. Another reason is that the trees are good at fast processing of the
data in sorted order, whereas hash tables have unsorted data.

Maybe we should do the reverse, handling insertions with our hash table, and then
converting to a red-black tree for scanning in sorted order. No, not really. If we
want sorted scanning of data, we’d probably do better to export the hash table to
a std::array or std::vector, and then use std::sort() on the array or
vector.

So many choices, so little time!

Useful Member Functions

Optimizing containers is about choosing the best one for your requirements, and
then making the best usage of the interfaces that are provided. You don’t need to
write your own if you can do better with the standard containers.

Memory management of the various standard containers can be optimized in a
number of ways. Firstly, you can consider things like whether the container is “full”
and what “capacity” it has.

The main member functions include:

• size() — number of elements in the data structure.

• capacity() — maximum allowed with current memory.

• reserve() — request an amount of memory.

• resize() — reorganize to a bigger or smaller size.

• clear() — quickly remove all elements.

• shrink_to_fit() — request a smaller memory size.

David Spuler 44

The hash table containers, such as std::unordered_map, also have member
functions to control the number of buckets and the resizing policies:

• bucket_count() — size of the hash table array.

• bucket_size() — length of a chain at an index.

• load_factor() — number of keys divided by hash table size.

• max_load_factor() — read or set the load factor that will trigger a
rehash.

• rehash() — manually trigger a hash table size change and rehash (at your
discretion).

You can use these member functions to track how effective the hash table is
performing. This also allows taking control of the policy of when it will auto-resize
and rehash into a bigger hash table with more buckets.

These C++17 member functions are useful sometimes for removing or moving
multiple elements in a container:

• extract() — pulls a node out of the container data structure.

• merge() — efficiently combines two containers.

Hidden Auto-Resize Slugs

The auto-resizing capabilities of many C++ containers makes them dynamic and
easy to use. However, it also hides a common efficiency that has existed since the
earliest days of the STL: hidden calls to special functions. In fact, there are multiple
reasons that you might want to avoid container auto-resizing:

• Slow performance — every object might get moved.

• Iterator invalidation — all objects could be at new addresses.

Auto-resizing of a container is probably something you want to avoid for
performance reasons. In the worst case, it can trigger a significant delay when you’re
inserting into a container. The cost of an auto-resize may include:

• Memory allocation — e.g., allocating a new memory block or a hash table
array.

• Move assignment calls — not for all container classes.

• Re-hashing — re-computing this for all the objects.

45 Efficient Modern C++ Data Structures

Note that some containers will call the move assignment operators, whereas others
will resize the container without actually putting the stored objects in new locations.
Here’s how it works for some:

• std::vector — calls move assignments if the allocated block changes.

• std::unordered_map — zero move operator calls.

The situation with the hash table is complex, but basically it moved internal pointers
around, but not your objects. The hash container doesn’t need to move the objects
inside the nodes on the chained linked list, so doesn’t call move operators for the
user’s objects on those nodes.

However, it does have to do other container-internal computations:

• Re-compute the hash function for every node’s key, and

• Re-attach the node to a different chained linked list.

There’s no overall mechanism to control the resizing properties of all containers,
but we can use various different methods. The main solutions are:

• Reserve maximum memory, or

• Manually manage the resizing process.

Initialization with maximum size. The first idea for avoiding auto-resizing is to
guess the maximum number of elements we could possibly need to store in the
containers, and call the reserve() function at the definition of the container
object. For example, the code could be:

 std::vector<int> v;

 v.reserve(1000);

But not this, which will run 1,000 default constructors in a vector of non-scalar
type:

 v.resize(1000); // Slow!

And this also would create 1,000 new objects and run their constructors:

 std::vector<int> v(1000); // Slug!

David Spuler 46

This reservation of memory is a type of “preallocation” optimization. We ensure
that all memory that could be required is allocated during the initialization phase,
which ensures that no memory allocations are performed later in the hotpath.

Detecting auto-resizing. Alternatively, we can detect when an insertion is likely
to trigger an auto-resize. The standard container interfaces allow us to know this,
before we do an insertion:

 if (v.size() + 1 > v.capacity()) {

 // Resizing likely on insertion!

 }

Unfortunately, there’s not a lot that we can do in this situation. I mean, we could
just “not insert” as a strategy, but that doesn’t sound great.

Deferring container auto-resizing. Alternatively, we could detect the situation 10
insertions ahead of time, still insert the single item, and then do something later to
manage the resizing, perhaps in a lower-priority thread.

 const int n_lookahead = 10;

 if (v.size() + n_lookahead > v.capacity()) {

 // Resizing will be soon!

 }

In classes that are more dynamic than the vector class std::vector, such as the
hashmap std::unordered_map, we can also defer the auto-resizing to a more
convenient time.

This is only possible for the dynamic classes based on linked lists or binary trees.
Note that the hash table classes actually used linked lists, because of linear chaining
as the collision resolution mechanism.

We can initialize the hash table to a particular size in the constructor. The bucket
count is an optional integer parameter to the constructor.

 std::unordered_map<std::string, int> hmap(1000);

This only works well if we know the maximum size that we need. For more dynamic
handling, we can also use the bucket management functions in the
hashmap std::unordered_map interface to detect when the hash table is
getting full, and take appropriate action.

47 Efficient Modern C++ Data Structures

The “load factor” is the number of elements stored in the container, divided by the
hash table array size (i.e., the number of “buckets”). There’s no target load factor
in the standard definition, but an implementation will typically aim for a load factor
around 0.5 to 1.0.

The container implementation also has a “maximum load factor” that will trigger a
rehash into a bigger hash table when it’s exceeded.

When the load factor is near the maximum value, this means the class will soon be
increasing the hash table size, and possibly re-hashing every single element. Here’s
the idea coded up:

 // Detect rehash risk

 std::unordered_map<int,string> h;

 int n_lookahead = 10;

 float load_estimate = (h.size() +

 n_lookahead) / (float) h.bucket_count();

 if (load_estimate >= h.max_load_factor()) {

 // Rehash is likely!

 }

In the case of a hash table, we can actually ensure that it won’t rehash by
manipulating the maximum load factor setting. The max_load_factor method
has overloads allowing us to both get and set the value.

Hence, a solution that defers rehashing: increase the maximum load factor setting,
insert our new object, and then reset the maximum load factor:

 float old_load_factor = h.max_load_factor();

 h.max_load_factor(old_load_factor * 2.0f); // Avoid rehash

 h.insert({ x, s }); // Insert the object without fear!

 h.max_load_factor(old_load_factor); // reset

Note that we have to be careful, lest we introduce another hidden slug: never-
resizing our hash tables. Don’t defer it forever!

If you forget to ever rehash your hash table, it won’t crash, but becomes a hidden
slowdown. The use of chaining means that the standard hash table containers won’t
fail if they never get auto-resized, but they will degrade to the linear performance
of a linked list for all operations.

David Spuler 48

Hand-Coding Containers

The standard containers are elegant and beautiful, but they are designed to be very
general. Hence, they can sometimes be slower than you could achieve on your own.
Some of the problems with standard container performance include:

• Too many allocations and deallocations with new and delete.

• Non-contiguous storage in dynamic containers (e.g., linked lists, binary
trees).

• No way to change the underlying container algorithm — e.g., you can’t
change std::unordered_map to not use linked list chaining for
collision resolution.

• General containers may not meet the requirements of your specific
application.

In short: sometimes you can do better!

49 Efficient Modern C++ Data Structures

3. Move Semantics

What are Move Semantics?

Whoever invented move semantics deserves the Nobel prize. Move semantics
refers to a beautiful and elegant addition to C++ class definitions added in C++11.
The syntax is concise and the internal definition is semantically consistent in many
ways. But the most beautiful part of move semantics: it’s all about making C++
even faster!

Move semantics were about making C++ more efficient at a very high level. The
issues were unnecessary calls to class constructors and copy assignment operators
in a number of situations, such as:

• Temporary object creation

• Returning a class type from a function

• Overloaded operator return types

Most of the changes in C++11 that brought in move semantics were done in a way
that maintained backward compatibility.

The new features available in classes included:

• Move constructors

• Move assignment operators

Whereas the new special members needed to be added to existing classes, there
were also a number of automatic compiler optimizations that were enhanced to take
advantage of move semantics:

• Copy elision

• Return Value Optimization (RVO)

• Named Return Value Optimization (NRVO)

Some parts of copy elision rely on move operations, whereas other cases of copy
elision and RVO are actually independent of move semantics, and can be used
without move special functions. The optimal choice is to use all of them together.

David Spuler 50

Copy Elision

Copy elision is an automatic C++ compiler optimization that “elides” (removes)
various “copy” operations on objects. I guess “copy removal” just didn’t have the
same ring to it?

Copy elision works in particular situations in the C++ language. These situations
include:

• Class-type return statements — the main situation.

• throw expressions (and handlers)

• Coroutines

The effect of copy elision is to avoid a full object copy. Instead, the place where the
new object is used simply refers to the old object, which would have been copied
without this optimization.

Technically, there are other unusual situations, and there are two variants of copy
elision:

• Removal of copying, or

• Downgrading copying to a move operation.

You don’t need to modify your code to get the benefits of copy elision. In fact, you
also don’t need to turn the optimizer up to eleven. Copy elision is a normal part of
the C++ standard.

Return Value Optimization

Returning an object type is a special case where the old code used to be inefficient.
The good news:

• Return Value Optimization (RVO) is an automatic compiler optimization.

• Nothing you need to do!

Well, actually you do need to declare a move constructor and a move assignment
operator to get the full benefits, but you were doing that already, right?

51 Efficient Modern C++ Data Structures

Why was RVO needed? Because return statements used to cause lots of copying in
objects. This could be worked-around by declaring a reference object parameter,
which was returned back, instead of having an object return type.

But that’s inconvenient, and there are also cases where it’s not possible:

• Binary operator overloads (non-assignment) — e.g., binary “+” operator.

• Unary operator overloads (non-increment/decrement) — e.g., unary “-”
operators.

• Postfix increment/decrement operators — must return the old object (not
the current one).

Operator overloading was one of the most beautiful parts of C++ signatures.
Shame that it used to be inefficient, but now it’s not.

Any function can return a class object, rather than a pointer or reference, but the
effect is that the function itself needs to declare a local object to be returned.
Consider this code:

 MyClass func(int x)

 {

 MyClass ret(x); // Create object

 return ret; // Copy object

 }

And then it gets copy constructed again when we call the function:

 MyClass m = func(3);

Move semantics solve this problem, in combination with copy elision. This special
case is called Return Value Optimization (RVO), and allows the compiler to do
“one-two-skip-a-few” for object copying.

To get even more technical, this situation is called Named Return Value
Optimization (NRVO), when a function returns a named local variable (i.e., “ret”
here). The non-named version of RVO occurs when the function returns an
unnamed object, such as a temporary object created as the result of a construction
or operator.

Some types of RVO are implementation-specific and optional for the compiler to
do. However, NRVO is “mandated” by the C++17 standard when returning a
named local object variable. I guess unnamed RVO will be mandated at some time
in the future, too.

David Spuler 52

RVO is very efficient in that it doesn’t just convert copying to moving, but can in
fact avoid the complete creation of temporary variables. The compiler can optimize
the above code so that the return statement constructs or moves the object
directly into the place where it was called from.

This means not only we avoid various copies/moves, but also the avoidance of that
temporary object’s constructor and destructor, too.

Moving Multiple Objects

Moving multiple objects arises as an inefficiency in C++ because there’s no multi-
move semantics. Some examples where you want to move multiple contiguous
objects to a different memory location include:

• Move capabilities for a custom multi-object container.

• Shuffling objects along in a sorted array on insertion or deletion.

• Auto-resizing a std::vector container (bigger or smaller).

There’s no multi-move constructors or assignment operators in the standard C++
language, so there’s only single object moving methods.

In practice, you can move multiple objects in various ways, such as:

• Moving them one-by-one

• std::move(begin, end, dest) overload

Note that this is the std::move overload that does real runtime work, not the
simpler version that’s just a type-cast to an R-value reference.

Unfortunately, all of these ideas are calling the move constructors for every single
object. This is fine for scalar types or classes with simple inlined versions, but it’s
still not optimal.

The workaround for your own class is simply to define a non-special member
function to do fast moving, which you can call explicitly. But this doesn’t solve the
general problem of using your new class in a container that may need to bulk-move
your objects at some point.

53 Efficient Modern C++ Data Structures

Generic Move Operator

Some types of objects are “relocatable” and can used an optimized move method.
The basic ideas of move semantics refer to the difference between a “shallow copy”
(also called a “bitwise copy” or a “byte copy”) versus a “deep copy”. The basic idea
is this:

• Copy assignment or constructor — deep copy

• Move assignment or constructor — shallow copy

The copy constructor has to make a full copy of every data member of the other
object to create a new object. The old object is unchanged.

The move constructor needs to transfer all of the data members from the old object
to the new object. And then the old object needs to be “cleared” in some way,
which leaves it in a “valid” state (so that its destructor doesn’t crash or deallocate
memory it no longer owns). Hence, why not do these steps in general as an
optimization:

• Shallow move old data members to new object — bitwise copy of all bytes.

• Clear old object’s data members — zero the old bytes.

This idea of a relocatable object is similar to the type trait:

 std::is_trivially_move_constructible (C++11).

However, this isn’t quite what we want, which is a way to specify that our object is
relocatable. The type trait instead only detects some cases where this is true. Perhaps
we could set this type trait to “true” for our own class, and the standard container
classes will honor this type trait setting, but I have my doubts.

Instead, let’s think about generalizing the idea to all relocatable class types. We can
even code up the idea:

 template<typename T>

 T& generic_move_assignment_buggy(T& newobj, T& oldobj)

 {

 memcpy(&newobj, &oldobj, sizeof(T)); // Move (bit copy)

 memset(&oldobj, 0, sizeof(T));

 return newobj;

 }

David Spuler 54

Well, that has an aliasing bug if the new and old object are the same. So, let’s fix
that first:

 template<typename T>

 T& generic_move_assignment_safer(T& newobj, T& oldobj)

 {

 if (&newobj != &oldobj) { // Avoid aliasing

 memcpy(&newobj, &oldobj, sizeof(T)); // Move (bit copy)

 memset(&oldobj, 0, sizeof(T));

 }

 return newobj;

 }

Does this idea work?

The short answer is: yes and no. Yes, this idea can be used very often, and is
efficient.

Let’s look at the good news first. This approach works for all these situations:

• Scalar types — moving an integer is a bitwise copy anyway.

• Simple object data members — if this move approach also works for the
sub-object.

• Virtual functions — yes, the hidden “vptr” pointer in the old object is
also moved by the bitwise copy.

However, technically the full answer is “no,” because there are some problem areas
when using this approach:

1. Self-referring pointer data members.

2. Virtual function problems — vptr is nulled in the old object.

3. Virtual destructor problems — a problematic special case.

4. External pointers into the old object (invalidated).

5. Obscure portability problems with zero byte representations.

Self-referencing data member problems. This is a problem when the object is
relying internally on its own address. Self-referring internal pointers (or references)
are data members inside the object that point to another part of the object. These
are uncommon, and seem like bad programming style anyway.

55 Efficient Modern C++ Data Structures

Note that pointers pointing outside of the object are just fine. In fact, that’s why
this copy-and-zero approach is efficient, because we don’t need to copy and
reallocate any pointer data members. A bitwise copy of a pointer or reference is still
pointing to the right place.

Virtual function problems. The memset() function has cleared every byte to
zero, including any of the hidden “vptr” pointers to the virtual function table.
When there’s any virtual function in a class, then it has a hidden pointer inside the
object. There are also other places that may have another vptr, including:

• Base class — but it usually shares a single vptr with the derived class.

• Multiple inheritance — requires multiple vptr’s in the object.

• Subobject data members — if they are of a class that has its own virtual
functions.

If your code calls any of these virtual functions after it’s been nulled, I’m betting
against you. Nevertheless, we might be able to work around this by simply not
calling any virtual functions after this move sequence.

Virtual function problems. Destructors make it a little more difficult, because it’s
hard to stop the C++ compiler from calling them. And every class with any other
virtual function is supposed to make its destructor also virtual. Just ask Scott Meyers
in the very first edition of his Effective C++ book, which was good advice in the
1990s, and still remains so.

Hence, if our object has a virtual destructor, it may try to access the null vptr at
some point. There’s no simple workaround to “just avoid calling the destructor,”
since it’s called implicitly.

External pointers into the object. I feel like we can live with this idea. If there
are any pointers or references to refer to the old object’s internal data, they are now
invalidated. But that’s true anyway, because the whole idea of a moved object is that
it’s going away.

All bytes zero portability. There’s a theoretical portability problem when
using memset to clear an object to have all its bytes equal to zero. I’m not sure it
even applies anymore, as I don’t know of any platform where this is a real problem.
The concern is whether clearing all the individual bytes to zero will actually clear
multi-byte data to its equivalent zero or null value.

David Spuler 56

In practice, these are all true:

• Characters — byte zero is always character zero.

• Integers (signed and unsigned) — all bytes zero is integer zero.

• Floating-point — all bits zero is floating-point positive zero in the IEEE
754 standard.

• Pointers — all bytes zero is the nullptr in any platform I know.

Hence, I’m not sure it’s a real problem, but every book on C++ portability I’ve read
has mentioned it, so now I have, too.

Workaround for fast move problems. I hate to give up on a really efficient idea,
so we can point to the limitations where we need to ensure:

• “Relocatable objects” with no internal pointers or references.

• No virtual functions

• No virtual destructor

Maybe we can work around the virtual function problems by not clearing the vptr.
Here’s the idea:

 memset((char*)&oldobj+sizeof(void*),0,sizeof(T)-sizeof(void*));

This assumes that there’s only one vptr, and it’s shared by the base class and
derived class. Unfortunately, this idea still fails for subobjects with their own virtual
functions and multiple inheritance where objects can have more than one
hidden vptr. Anyway, it’s a worthy try, and we could always ban virtual functions,
which aren’t that efficient anyway!

Multi-move generic function. This idea can be generalized to moving a
contiguous array of multiple objects at once. The need for such a “multi-move”
capability is less often required, but can arise when containers resize, and we also
need it to implement sorted array insertions and deletions.

The above “generic” version only works for one object. Let’s think about
generalizing the idea of bytewise moves and then clearing to zero:

1. The idea still generally works on a mult-object block, because it’s similar
to moving one object at a time.

2. Overlapping ranges of objects are a problem, because the memset will
wrongly clear some of the newly moved objects.

57 Efficient Modern C++ Data Structures

Amusingly, note that we did deal with the “overlapping blocks” problem in the
single-object generic move. It’s the same as the “aliasing” check!

Detecting overlapping ranges more generally is a bit more intricate to code. Here’s
my attempt at updating the generic move method to support multiple objects:

 template<typename T>

 T&generic_multimove_assignment(T * destarr, T* srcarr,int n)

 {

 if (destarr == srcarr) { // Same exact block

 // Nothing to do

 }

 else {

 T* enddest = destarr + n;

 T* endsrc = srcarr + n;

 if (enddest > src && enddest < endsrc) {

 // Overlapping (moving left)

 memmove(destarr, srcarr, n * sizeof(T));

 int num_overlap = enddest - src; // Ptr arith

 memset(enddest, 0, (n - num_overlap)

 * sizeof(T)); // Clear non-overlap part

 }

 else if (endsrc > dest && endsrc < enddest) {

 // Overlapping (moving right)

 memmove(destarr, srcarr, n * sizeof(T));

 int num_overlap = endsrc - dest; // Ptr arith

 // Clear non-overlapping part

 memset(src, 0, (n - num_overlap) * sizeof(T));

 }

 else {

 // Non-overlapping blocks

 memcpy(destarr, srcarr, n * sizeof(T));

 memset(srcarr, 0, n*sizeof(T)); // Clear old

 }

 }

 return newobj;

 }

Compiler support? Even with the restrictions to scalar and relocatable objects,
and other problems listed above, this idea of just moving memory blocks around is
so efficient that maybe the compiler should provide this as an option automatically?
Is this the default assignment operator? No, not quite, because the default move
constructor or assignment operator is a “member-wise move” of all of the data
members.

This is the same as a bitwise move if all data members are trivial, but any complex
classes as subobjects will need their own move constructors called.

David Spuler 58

I like this whole idea a lot more than the normal move member functions, where
you have to fiddle endlessly with every single data member. Come on, the single
object version is only two statements!

Hence, I’m hereby recommending to the standards committee that, like the
“=default” specifier, there needs to be a new “=fast” specifier added to the
C++26 language.

59 Efficient Modern C++ Data Structures

4. String Optimizations

Efficient Strings

The C++ std::string class is a beautiful and elegant class that has been well-
designed and near-optimally implemented. Its main advantages include:

• High-level abstraction of string coding

• Automates management of memory buffer allocation

• Safety (e.g., no buffer overflows when appending or concatenating)

• Moderately efficient

Note that I only said efficiency was “moderate”! As classes go, it’s one of the most
efficient, with lots of inline member functions and implementations super-
optimized by compiler engineers.

Some of the fast parts of the standard string class include:

• Small String Optimization (SSO)

• Fast to copy

• Fast move semantics

But it’s still not as efficient as bypassing the string interfaces and doing low-level
string processing directly with char* pointers and arrays.

So, here we have a perfect example of the maxim: don’t optimize prematurely!

I’m not advocating to replace all strings with C-style string operations, but if your
profiler finds a hot-spot in a C++ string operation, you can do better. Furthermore,
if you’re doing a very string-intensive application, such as text processing, the lowest
level kernels that spin through the document probably shouldn’t use the string class.

David Spuler 60

Common String Operations

If you have a string, and you want to do some work on that string, the
standardized std::string class is often very fast. In the situations where it’s
not, you can also revert to optimization using old-style coding on char* pointers
by using the data() or c_str() methods to get to the raw character array.

String length. The length() method is extremely fast, and always so. The
comparison goes like this:

• length() — always blazingly fast.

• strlen() — slow on very long strings.

Since the string class maintains the string length incrementally as a data member,
it’s already been precalculated. Hence, it’s an inlined access to an already-computed
integer.

In comparison, C-style null-terminated strings must scan for the null byte.
Hence, strlen() is slow on very long strings, whereas length() is still fast.

String Equality Comparisons. Which method is faster is unclear, depending on
the implementation of operator==, but my money’s on the string class. In
particular, it can compare the lengths quickly, since it has that precomputed for
both strings. The full list of ways to compare strings:

• operator==() — fast version.

• compare() — explicit method version.

• strcmp() — old-style string comparisons.

Case-Ignoring String Equality Comparisons. There’s not a standard case-
ignoring version of the compare() method. However, there are non-standard
implementations:

• stricmp() — Windows (MSVS)

• strcasecmp() — Linux (GCC)

String Search. This is a very simple and long-standing requirement. Your options
are pretty obvious:

• find() — simple and fast!

• strstr() — the old C function.

61 Efficient Modern C++ Data Structures

Case-Ignoring String Search. There’s not a standard method function named
“ifind” or “stristr”, but there are ways to get there:

• strcasestr() — Linux

• StrStrIA() on Windows in shlwapi.h

Reverse String Search. There the string class method rfind() for reverse string
searching. There’s not really a good alternative in the older C-style libraries.

Character Search. Searching a string for the first occurrence of a string characters.
The options include:

• find(char) — string class overload.

• strchr() — old-style C function.

Reverse Character Search. The options here are:

• rfind(char) — another class overload.

• strrchr() — reverse long-standing C function.

Note that the rfind() version is likely faster than the older function on very long
strings, because it has the string length precalculated in the string object and can
jump straight to the end, whereas strrchr() has to scan from the very beginning
of the string.

Multi-Character Search. If you want to search for a prefix or suffix of a set with
characters, rather than just one, then the C++ string class has what you need:

• find_first_of() — first character from a set.

• find_first_not_of() — first character not in the set.

The suffix versions are:

• find_last_of()

• find_last_not_of()

Prefix and Suffix Tests. The standard C++ methods on the string class are:

• starts_with() (C++20)

• ends_with() (C++20)

David Spuler 62

Other options include:

• string::find() — search forwards

• string::rfind() — reverse search

• LastIndexOf — Win32 version

There’s also some other options:

• remove_prefix() in string_view (C++17)

• remove_suffix() in string_view (C++17)

You can always code your own versions:

 inline bool STRPREFIX(const char *s, const char *prefix) {

 return strncmp(s, prefix, strlen(prefix)) == 0;

 }

Here’s a modern C++ style version:

 inline bool string_prefix(const std::string& str,

 const std::string& prefix)

 {

 return str.find(prefix) == 0;

 }

And here’s the same idea for suffix, using the “reverse find” method:

 inline bool string_suffix(const std::string& str,

 const std::string& suffix)

 {

 return str.rfind(suffix)

 + suffix.length() == str.length(); // Buggy!

 }

Actually, that’s a bit careless of the failure return -1 from rfind(). Here’s a fixed
version:

 inline bool string_suffix(const std::string& str,

 const std::string& suffix)

 {

 int offset = str.rfind(suffix);

 if (offset == -1) return false; // not found

 return offset + suffix.length() == str.length();

 }

63 Efficient Modern C++ Data Structures

Note that rfind is needlessly inefficient here if the string is very long and the suffix
is not present. It keeps on scanning all the way to the start of the string, rather than
quitting early.

There’s certainly a faster way to do it, such as comparing the two lengths, using
them to compute the address of where the suffix would be, and then use basic string
equality testing.

Case-Ignoring Prefix and Suffix Tests. There’s not much help with this in the
standard libraries, so you’ll have to roll your own with strnicmp (Windows)
or strncasecmp (Linux).

Here’s an example:

 inline bool STRIPREFIX(const char *s, const char *prefix) {

 return strncasecmp(s, prefix, strlen(prefix)) == 0;

 }

Here’s my attempt at a fast suffix version, which mixes C++ and C coding, but
won’t be slow on a long string:

 inline bool string_strisuffix(

 const std::string& str,

 const std::string& suffix)

 {

 int strlen = str.length();

 int suffixlen = suffix.length();

 if (suffixlen > strlen) return false;

 int offset = strlen - suffixlen;

 const char* raw = str.c_str();

 raw += offset;

 // Find the suffix

 const char* suffixraw = suffix.c_str();

 return stricmp(raw, suffixraw) == 0;

 }

I’m sure that you could do better!

David Spuler 64

String Class Inefficiencies

What’s so bad about the standard string class? Nothing, unless you want to do a lot
of processing of strings.

Here’s a list of some of its problems:

1. It’s a large object (e.g., 40 bytes).

2. Sequences of binary + operators.

3. Too many calls to new and delete.

4. No way to use a larger non-allocated buffer.

5. Cannot use reference counting and copy-on-write.

A lot of these concerns can be summarized: it’s too easy to use!

Programmers tend to get comfortable with the very convenient ways
that std::string can be used in C++ programs. In comparison, doing C-style
string processing with low-level character buffers is painful! Hence, there’s a
tendency to forget that C++ strings are significant objects that invoke memory
allocation on all but the smallest of text strings.

String Memory Layout

The std::string class creates objects of a reasonable size, unlike C-
style char* The string class is quite complicated, although great compiler
engineers have made it look easy. Some of the main points about string efficiency
are:

• Small String Optimization (SSO) is standard (with a small internal buffer).

• Reference counting is not enabled (and nor is Copy-On-Write).

The use of SSO makes sense because otherwise even just declaring an empty string
object would cause a memory allocation call to the new operator:

 std::string s1; // No memory allocation!

65 Efficient Modern C++ Data Structures

We can interrogate the string objects about their features using standard member
functions such as data(). If the pointer to the data is inside the object itself, then
we’re using SSO. And if two objects created from each other (via copy constructor
and/or assignment operator) have the same data buffer address, then reference
counting is enabled.

Here is some code that uses standard string member calls to determine some details
about the layout of a string object.

 void print_string_details()

 {

 std::string str;

 cout << "Sizeof std::string = "

 << sizeof(std::string) << " bytes" << endl;

 int bytes = str.capacity() + 1;

 int header = (sizeof(str) - bytes);

 cout << "Capacity std::string = "

 << str.capacity() << " characters ("

 << bytes << " bytes)" << endl;

 const char* datastr = str.data();

 char* saddr = reinterpret_cast<char*>(& str);

 bool is_sso = datastr >= saddr

 && datastr < saddr + sizeof(std::string);

 cout << "Short String Optimization (SSO): "

 << (is_sso ? "yes" : "no") << endl;

 cout << "Reference counting: "

 << (string_is_reference_counted(bytes*100) ?

 "yes" : "no") << endl;

 int offset = (int)(datastr - saddr);

 if (offset == 0) {

 cout << "Char buffer at start offset=0" << endl;

 }

 else if (offset + bytes == sizeof(std::string)) {

 cout << "Char buffer at end (offset = "

 << offset << ")" << endl;

 }

 else {

 cout << "Char buffer in middle (offset = "

 << offset << ")" << endl;

 }

 cout << "Header block bytes = " << header << " ("

 << offset << " before buffer, "

 << (header - offset) << " after buffer)" << endl;

 }

David Spuler 66

And here are the results in MSVS on my Windows laptop:

 Sizeof std::string = 40 bytes

 Capacity std::string = 15 characters (16 bytes)

 Short String Optimization (SSO): yes

 Reference counting: no

 Character buffer in middle of string (offset = 8)

 Header block bytes = 24 (8 before buffer, 16 after buffer)

As to the 24 header bytes here, that could be 3 pointers (8 bytes or 64-bits each),
or maybe it’s 1 pointer to the buffer and 2 different 64-bit integers for length and
capacity. We can go exploring in the memory layout of the header block inside a
string object to try to answer that question. It’s non-standard coding that is
implementation-specific, but plenty of people have done it!

67 Efficient Modern C++ Data Structures

5. Object Instrumentation

What is Object Instrumentation?

The idea of using an “instrumented object” is for both debugging and performance
tuning. Performance profiling tools are more capable than this idea, but using your
own hand-coded instrumentation can be valuable:

• Dummy “Tester” class to track special functions.

• Intercepted new and delete operators to track memory usage.

These methods can be more effective than running profilers interactively in some
special cases. They also have the advantage that we can put it into unit tests that
validate the code in every nightly build.

Tester Class

One way to instrument is to create a “Tester” class that can be used with both
standard containers and any of your other templated classes or methods. We’ll
discuss the class here, and the full source code is in the Appendix.

The efficiency gain from using such a testing class is mostly about detecting
excessive calls to constructors and destructors, or too much copying or moving of
objects. These calls are too often hidden behind container operations or complex
templated functions.

The concept for this tool is to create a dummy class “Tester” that has these
features:

• Traces calls to the special functions

• Counts total calls to these functions

This can be helpful with both standard containers and our own complex classes.
It’s useful for multiple types of programming.

David Spuler 68

In terms of improving efficiency, the idea is useful for:

• Standard container resizes — detecting hidden large-scale object moves
and copies.

• Custom containers — checking your code is running move functions
rather than copying.

For more details, reference to the Appendix for full source modern C++ code of
the Tester class.

Link-Time Interception: new and delete

The idea of a tool to test memory allocations is to shine light on the hidden calls
that create and destroy allocated memory. This helps examine how containers are
using allocated memory, and it’s not usually pretty!

Macro interception does not work for the new and delete operators, because
they don’t use function-like syntax. Fortunately, you can use link-time interception
of these operators instead, simply by defining your own versions. This is a standard
feature of C++ that has been long supported.

Note that defining class-level versions of the new and delete operators is a well-
known optimization for a class to manage its own memory allocation pool, but this
isn’t what we’re doing here.

Instead, this link-time interception requires defining four operators at global scope:

• new

• new[]

• delete

• delete[]

There’s a pitfall in implementing our intercepted versions. You cannot use the
real new and delete inside these link-time wrappers. They would get intercepted
again, and you’d have infinite stack recursion.

However, you can call malloc and free instead, assuming they aren’t also macro-
intercepted in this code.

69 Efficient Modern C++ Data Structures

Here’s the simplest versions:

 void * operator new(size_t n)

 {

 return malloc(n);

 }

 void* operator new[](size_t n)

 {

 return malloc(n);

 }

 void operator delete(void* v)

 {

 free(v);

 }

 void operator delete[](void* v)

 {

 free(v);

 }

This method of link-time interception is an officially sanctioned standard C++
language feature since the 1990s. Be careful, though, that the return types and
parameter types are precise, using size_t and void*, as you cannot
use int or char*. Also, declaring these intercept functions as inline gets a
compilation warning, and is presumably ignored by the compiler, as this requires
link-time interception.

Memory Error Detection. I’ve always used this method for some self-testing
debug wrappers. Here’s an example of some ideas of some basic possible checks
you can do in these intercepted operators:

 void * operator new(size_t n)

 {

 if (n == 0) {

 AUSSIE_ERROR("new operator size is zero\n");

 }

 void *v = malloc(n);

 if (v == nullptr) {

 AUSSIE_ERROR("new: allocation failure\n");

 }

 return v;

 }

David Spuler 70

Note that you can’t use __FILE__ or __LINE__ as these are link-time intercepts,
not macros. However, you could use std::backtrace in C++23 instead.

Memory Performance Analysis. We can also use the idea of link-time
interception to do performance improvement on memory allocation. This helps us
find the slugs in both standard containers and our own code.

The modified version of these link intercepts is shown in the Appendix, with full
source code. The idea is that you can examine the behavior of code by wrapping
memory debug calls around it:

 memory_reset_counters();

 std::vector<int> v;

 memory_report();

This allows investigation of the memory characteristics of any sequence of code.
It’s quite enlightening to investigate what sort of actions in the standard C++
libraries will trigger memory allocations.

Unit Testing of Memory Allocation. Another useful idea is to add unit tests to
your build, so as to ensure that nobody’s accidentally added some memory
allocations to the code.

 memory_reset_counters();

 std::vector<MyClass> v;

 TEST(s_new_count == 0); // No memory allocations!

You know what I mean: trust but verify!

71 Efficient Modern C++ Data Structures

6. Timing and Benchmarking

Timing C++ Code

There are a number of reasons why it can be useful to time the execution of a
program. Timing C++ code can be useful in determining which statements should
be optimized whereas profilers may only indicate which functions are consuming
time. Timing code can also determine the relative efficiency of various operations
and give you valuable information about writing code for your machine (e.g., is
shifting faster than integer multiplication?).

There are several ways to time your C++ code, some of which have existed for
decades, and some that are newer and standardized.

Here’s a list of some options:

• time shell command

• time C++ function

• clock C++ function

• <chrono> standard C++ class

Another way to examine the efficiency of a C++ operation is to look at the
assembly code. This is examined later in the chapter.

If the full execution time for a program is all that is needed, the
Linux time command can be used to calculate the time required by a program.
There are two versions — a stand-alone utility in /bin and a command built
into csh.

The command to run is usually:

 time a.out

A different executable name could also be used and command line arguments can
also be specified.

David Spuler 72

The Chrono Class

The std::chrono library is an awesome piece of work, and has many features.
It’s been part of the C++ standard since C++11. I’m only going to touch on a
handful of basic measurements here.

Here’s an example of how to measure the duration between two events:

 auto before = std::chrono::high_resolution_clock::now();

 // ... Do something

 auto now = std::chrono::high_resolution_clock::now();

 auto diff =

 std::chrono::duration_cast<std::chrono::microseconds>

 (now - before).count();

 std::cout << "Time: " << diff << " ms" << std::endl;

There are other ways to do this, as the library is very flexible, with many capabilities.
Reading the documentation for this class is enough to make my head spin. Someone
had a lot of time to spend on time! Kudos to them.

But one way is good enough for timing our C++ code, so let’s move on and leave
the rest as an exercise for the reader (LOL!).

The Clock Function

If a more detailed speed analysis is needed, it is possible to add C++ self-
instrumentation code to your program to monitor its own performance. The basic
idea is to use the standard library functions to monitor the time before and after an
action.

The advantages of the standard older-style clock function over the new-fangled
modern std::chrono library:

• Measures CPU clock ticks, not wall clock time.

• Works in C, if you need it, not only C++.

• Only have to remember one function name!

The oldest useful function is the “clock” function which has existed since the C
programming language. The clock function counts the number of clock ticks
since the program began executing.

73 Efficient Modern C++ Data Structures

The “time” function, which keeps track of the real calendar time could also be
used, but it is not a true indication of processor time on a large multi-user system.
The clock function is correct for both single user and multi-user systems.

The clock function returns a value of type clock_t (typically long or int) that
counts the number of clock ticks. This value can be converted to seconds by
dividing by the constant CLOCKS_PER_SEC, also declared in <time.h>.

The basic idea of timing C++ code blocks is to call the clock function before and
after an operation and examine the difference between the number of clicks. The
code below examines the relative speed of shift and multiplication operations on
int operands.

 void profile_shifts()

 {

 const int MILLION = 1000000;

 const int ITERATIONS = 100 * MILLION;

 int x = 1, y = 2, z = 3;

 clock_t before = clock();

 for (int i = 0; i < ITERATIONS; i++)

 x = y << z;

 printf("%d Shifts took %f seconds\n", ITERATIONS,

 (double)(clock() - before) / CLOCKS_PER_SEC);

 before = clock();

 for (int i = 0; i < ITERATIONS; i++)

 x = y * z;

 printf("%d mult took %f seconds\n", ITERATIONS,

 (double)(clock() - before) / CLOCKS_PER_SEC);

 }

Clock Problems

clock Portability Pitfall. Note that some implementations on older Unix versions
don’t conform to the C++ standard and return the number of clock ticks since
the first call to the clock function. This means that a single call to clock at the
end of the program would always return zero. Hence, it is more portable to measure
the number of clock ticks between two calls to clock, one at the start and one at the
end. Obviously, you can also put the first call to “clock” at the start of the “main”
function to avoid this rare glitch.

David Spuler 74

Note that on implementations that are correct, a call at the start of “main” may be
non-zero due to the overhead of global and static C++ object instantiations (i.e.,
constructors for global objects), which occurs before entering main.

Clock Tick Integer Division Pitfall. Note that the standard C++ clock_t type
and CLOCKS_PER_SEC constant are both integers. Hence, here’s a bug:

 clock_t diff = clock() - before;

 double seconds = diff / CLOCKS_PER_SEC; // Bug!

The problem is that it’s integer division, so it inaccurately truncates to an integer.
You need a typecast to float or double on either side of the division operator.

 clock_t diff = clock() - before;

 double seconds = diff/(double)CLOCKS_PER_SEC; // Okay

Clock Tick Overflow Pitfall. The clock function also has a problem with
wraparound on some implementations. Because of its high resolution, the number
of clock ticks can quickly overflow the maximum value that can be stored by the
type clock_t.

On one system the clock function will wrap around after only 36 minutes. If the
program being timed runs for longer than this period, the use of clock can be
misleading.

One solution is to use the “time” function rather than “clock” when executions
are longer, but this usually only has resolution to the nearest second.

Benchmarking

Benchmarking is a slightly different concept to tuning, and refers to testing the
efficiency of certain operations, such as low-level operators, to find a more efficient
way to do an operation. For example, if you want to compare multiplication versus
addition, you write a program to run these operations a few million times.

When changing a program to increase efficiency, you shouldn’t assume that a
certain operation is clearly faster, but you should benchmark whether the changes
have noticeably increased the operation’s efficiency (or even decreased it!).

Techniques for measuring program efficiency range from the stop-watch method
to the use of sophisticated profiler software tools.

75 Efficient Modern C++ Data Structures

If no profiler is adequate, the programmer can gain timing information by adding
instrumentation statements to the program, although there are many pitfalls in
attempting to determine the time taken by a sequence of statements.

The measurement of the memory usage and space-efficiency of a C++ program is
a slightly more difficult problem. There are several types of memory: instruction
code, static memory, read-only string literals, initialization data, global/static
variables, the stack, and the heap.

Measuring the memory usage of the stack and heap is somewhat difficult because
of their dynamic nature. However, various tools exist to measure the different types
of memory, and clever use of C++ programming constructs can also yield
reasonable data.

Benchmark programs attempt to examine how quickly your machine executes
certain instructions, which is more useful for examining a single multiplication
operation. You mainly use benchmarking for code that’s running in low-level
kernels, such as CPU speedups (e.g., AVX intrinsics) or examining the advanced
use of different GPU primitives.

Consider benchmarking for timing of low-level arithmetic operations on your
platform. For example, how would you determine whether the integer
multiplication operation x*2 could be more efficiently replaced by x<<1?

How can you time these instructions? You obviously cannot just time a single
operation of each with the “clock” function, because a single click tick contains
many CPU cycles. So, you have to time thousands or even millions of such
operations.

 for (int i = 0; i < 100 * MILLION; i++) {

 x << 1;

 }

We’ve already noted one problem: there’s all this extra loop overhead time for the
for loop conditional test (the “<” operator) and its incrementer (i++). The loop
actually has three operations that are all about the same order-of-magnitude cost
(i.e., <, ++, <<).

To get at the operator cost, we’d need to subtract out the loop overhead. We could,
for example, try to time an empty loop without any loop body, and subtract that
from our final cost.

David Spuler 76

Benchmarking Problems

Null effect problems. Another problem is that we cannot easily time the operators
with these statements in the loop body:

 x << 1;

 x * 2;

The compiler is clever enough to notice that the x<<1 and x*2 statements have no
effect in the program above (and gives “null effect” warnings). The built-in
optimizer may even remove them completely. So, they won’t get timed properly, or
at all, even in a loop.

Add volatility? One possible solution is that maybe the compiler can be forced to
avoid this optimization on the original expressions by declaring x as a “volatile”
variable.

 volatile int x = 0;

The volatile qualifier tells the compiler that all accesses to x are important, and
that it should not remove any. The intended purpose of volatile is to allow the
declaration of addresses for memory-mapped I/O, debugger-modified variables, or
for variables modified by other programs (e.g., a semaphore modified by another
program running concurrently). However, we can use it here to force all accesses
to x to occur even if they appear pointless.

On the other hand, by doing this, we’ve lost the ability to see the “real” time cost
of these operations when they’re running in normal code. Most variables
aren’t volatile.

Anyway, it doesn’t even work properly. Unfortunately, the computations of
the << and * operators in x<<1 and x*2 are not being assigned anywhere, so the
computations themselves could be optimized out, even though the actual read
operations on x must occur because x is volatile.

To force the << and * operations to occur, it is necessary to use their result
somehow, such as by assigning it to the (volatile) variable x:

 x = x << 1;

77 Efficient Modern C++ Data Structures

Although all of the above improvements will enhance the previous version, a far
better method of improvement is to time a loop that runs a huge number of the
operations,. Hence, we have to use these assignment expressions inside a loop:

 x <<= 1;

 x *= 2;

The code given here examines the relative speed of 10,000 shift and multiplications:

 volatile int x = 0; // volatile prevents optimizations

 clock_t before = clock();

 for (int i = 0; i < ITERATIONS; i++) x = x << 1;

 printf("%d Shifts took %f seconds\n", ITERATIONS,

 (double)(clock() - before) / CLOCKS_PER_SEC);

 before = clock();

 for (int i = 0; i < ITERATIONS; i++) x = x * 2;

 printf("%d Mult took %f seconds\n", ITERATIONS,

 (double)(clock() - before) / CLOCKS_PER_SEC);

Loop Unrolling

Unfortunately, the above method of measuring the speed of operations is not
completely accurate, because it also includes the loop overhead (incrementing i
from 1 to 10,000) and the cost of the assignment of the result to x. The loop
overhead can be minimized by placing many operations within the loop, as below:

 volatile int x = 0; // volatile to prevent optimizations

 clock_t before = clock();

 for (int i = 0; i < ITERATIONS; i++) {

 x = x << 1; x = x << 1; x = x << 1; x = x << 1;

 x = x << 1; x = x << 1; x = x << 1; x = x << 1;

 x = x << 1; x = x << 1; x = x << 1; x = x << 1;

 x = x << 1; x = x << 1; x = x << 1; x = x << 1;

 x = x << 1; x = x << 1; x = x << 1; x = x << 1;

 }

 printf("%d Shifts took %f seconds\n", ITERATIONS * 20,

 (double)(clock() - before) / CLOCKS_PER_SEC);

 before = clock();

 for (int i = 0; i < ITERATIONS; i++) {

 x = x * 2; x = x * 2; x = x * 2; x = x * 2;

 x = x * 2; x = x * 2; x = x * 2; x = x * 2;

 x = x * 2; x = x * 2; x = x * 2; x = x * 2;

 x = x * 2; x = x * 2; x = x * 2; x = x * 2;

 x = x * 2; x = x * 2; x = x * 2; x = x * 2;

 }

 printf("%d Mult took %f seconds\n", ITERATIONS * 20,

 (double)(clock() - before) / CLOCKS_PER_SEC);

David Spuler 78

Unfortunately, the assignment operations are needed to prevent the optimizer
removing the computations, as discussed above. The only truly effective method of
removing the cost of the assignment from the measurement is to time another
separate loop, and subtract its time from that of the other loops, as below. This
method also automatically accounts for the loop overhead cost, so the multiple
operations inside each loop are not needed (and in fact would be incorrect). Our
final version of the benchmark program is also made more sophisticated to output
the relative magnitude of the two operations:

 void profile_shifts4()

 {

 const int MILLION = 1000000;

 const int ITERATIONS = 1000 * MILLION;

 volatile int x = 0; // volatile to prevent optimizations

 double time1, time2;

 // Time the loop overhead

 clock_t before = clock();

 for (int i = 0; i < ITERATIONS; i++)

 x = 1;

 clock_t loop_cost = clock() - before; // overhead

 double ovtime = (double)(loop_cost) / CLOCKS_PER_SEC;

 printf("%d overhead: %f seconds\n", ITERATIONS, ovtime);

 // Shifts

 before = clock();

 for (int i = 0; i < ITERATIONS; i++) {

 x = x << 1;

 }

 time1 = (double)(clock()-before-loop_cost)/CLOCKS_PER_SEC;

 printf("%d Shifts took %f seconds\n", ITERATIONS, time1);

 // Multiplications

 before = clock();

 for (int i = 0; i < ITERATIONS; i++) { x = x * 2; }

 time2 = (double)(clock()-before-loop_cost)/CLOCKS_PER_SEC;

 printf("%d Mults took %f seconds\n", ITERATIONS, time2);

 // Compare both times, and print percentage difference

 const float ACCURACY = 0.00001f; // maximum error

 if (fabs(time1 - time2) < ACCURACY) // (almost) equal?

 printf("Shift and multiplications: same time\n");

 else if (time1 < time2) {

 printf("Shifts faster by %5.2f percent\n",

 (time2 - time1) / time2 * 100.0);

 }

 else {

 printf("Multiplications faster by %5.2f percent\n",

 (time1 - time2) / time1 * 100.0);

 }

 }

79 Efficient Modern C++ Data Structures

Limitations of Benchmarking

Benchmarking of C++ using these timing methods is not perfect, but I’ve always
found it useful. There are various reasons why this type of benchmarking timing
results may not be fully correct.

• Hard to account for parallelism (e.g., GPU throughput)

• Single-threaded code is not always a true representation.

• Pipelining speedups often differ in production code (even for sequential
CPU code, such as AVX intrinsics).

• Loop overhead is hard to separate from the raw operations (as seen above!)

• Compiler optimizations might modify or even remove the operations
being benchmarked.

• Memory cache hit rates are too high because you’re running tight code
accessing only a few addresses.

• Optimization levels in test mode might not match your production version.

• Debug modes might not match production (e.g., if running in a debugger).

• Pipelining by the CPU of many instructions makes it appear better than
reality.

• Unrealistic non-production conditions are being tested.

Compiler optimizations. In this day and age of amazing optimization algorithms,
note that on some platforms the benchmarking code above may indicate that shifts
and multiplications cost exactly the same. This is most likely an indication that the
compiler automatically optimizes any multiplications by powers of two into left
shifts.

To get the true cost of a multiplication, the expression should be:

 x = x * x;

But even this might be optimized algebraically by a compiler. The only way to know
for sure what’s actually being benchmarked is to examine the assembly language.

Examining Assembly Output

Another way of examining the relative costs of particular operations for a particular
compiler is to examine the assembly language produced by the compiler. Many
compilers have an option to produce assembly language output.

David Spuler 80

For example, under Linux the command may be:

 gcc -S main.cpp

This will produce the assembly language listing for the C++ source file and store it
in a new file “main.s” as a human-readable text file. Without the -S option, the
assembly output would have been passed to the assembler to create the machine
code executable. GCC also has a “-masm” option that controls the different
“dialects” of assembly language (e.g., “intel” or “att”). GCC also has a verbosity
control on assembly output via “-fverbose-asm” and “-fno-verbose-asm”
options.

Another way to generate assembly with GCC is the “-save-temps” option. This
option tells GCC to save the temporary assembly language file that it used for the
real compilation.

Hence, this option can be used with the normal compilation mode to both build
the code as normal and also output a “.s” assembly file. The advantage of this
GCC “-save-temps” option over “-S” is that you don’t need to create a separate
build path for generating assembly text files.

Reviewing assembly code. Examining assembly language instructions produced
for C++ operations can be very enlightening. For example, you can determine
whether the compiler uses a special increment instruction for the ++ operator.
Whether or not the compiler is performing various optimizations can also be
examined.

Counting the number of assembly instructions is a simple measure and gives a
reasonable indication of how efficiently an operation will be performed. A better
method is to determine the number of cycles used by each instruction, but this
requires a rather more intimate knowledge of the assembly language being used.

Many useful things can be discovered by examining assembly output. For
example, does the expression x*2 generate a multiply instruction or a shift
instruction (or an addition instruction to do “x+x”)? Does the compiler notice
that x=x+1 can be replaced by x++? Is the integer % remainder operator
implemented by a sequence of instructions?

Consider the use of the relational operators (e.g., >, <) in expressions such as:

 flag = x > y;

81 Efficient Modern C++ Data Structures

This will often produce a sequence of instructions because of the need to assign
flag the value either 0 or 1. The instructions may well look like the following
pseudo-assembly language:

 LOAD 10($sp) # Load x (from stack)

 CMP 12($sp) # Compare with y (on stack)

 BGT $1 # Branch if greater than

 LOAD 0 # Result of > operation is 0

 JUMP $2

 $1:

 LOAD 1 # Result of > operation is 1

 $2:

 STORE 14($sp) # Store in flag (on stack)

However, review the assembler for the similar test in if statements, such as:

 if (x > y) ...

For an if statement, the instructions need not be as complex, because there is no
need to store the value 0 or 1 anywhere. The assembly language could be similar to
branches without computations:

 LOAD 10($sp) # Load x (from stack)

 CMP 12($sp) # Compare with y (on stack)

 BLE $1 # Branch if NOT greater than

 ... # Code for if statement body

 $1:

 ... # Statements after if statement

Examining Object Files

The objdump command is another useful tool on Linux for analyzing binary object
files. DUMPBIN is the comparable tool on Windows for MSVS (or you can use
the LINK command with the “/DUMP” option). These tools can get to the assembly
language text in reverse, by disassembling the binary instructions that are in the
object file, in combination with the various symbolic information.

objdump can be used to examine object files in various ways and there are various
useful options. The “-d” and “-D” options provide disassembly where you can
examine a full dump of the assembly code in printable form (as an alternative path
to the “-S” option). The “-h” option shows the headers of the object file and “-
g” shows debugging information in the file. There are numerous other options and
the “--help” option can be used to list all options.

David Spuler 82

The objdump command is part of Gnu Binutils, which also includes other useful
binary file tools such as nm, size, strip, and strings utilities.

DUMPBIN also has various options that can be used on the DOS command-line.
The default is “/SUMMARY” for a summary of the information about the object file.
The “/DISASM” command shows the disassembly of the object file, which is in
assembly language. Also useful is “/SYMBOLS” to show the symbolic names.

References

1. Linux Code, December 27, 2023, Measuring Execution Time with Microsecond
Resolution in C++, https://thelinuxcode.com/cpp-microseconds/

https://thelinuxcode.com/cpp-microseconds/

83 Efficient Modern C++ Data Structures

7. AVX SIMD Vectorization

What are AVX Intrinsics?

Hardware-assisted vectorization is a powerful optimization to processing
contiguous data structures. AVX intrinsics are SIMD parallel instructions for x86
and x64 architectures. They are actually machine opcodes supported by the x86/x64
CPU, but are wrapped in the intrinsic prototypes for easy access from a C++
program.

The main advantage of SIMD instructions is that they are CPU-supported parallel
optimizations. Hence, they do not require a GPU, and can even be used on a basic
Windows laptop. The main downside is that their level of parallelism is nowhere
near that of a high-end GPU.

There are multiple generations of AVX intrinsics based on x86/x64 CPU
instructions. Different CPUs support different features, and exactly which intrinsic
calls can be used will depend on the CPU on which your C++ is running. The basic
AVX types are:

• AVX — 128-bit registers = 4 x 32-bit float values

• AVX-2 — 256-bit registers = 8 x 32-bit float values

• AVX-512 — 512-bit registers = 16 x 32-bit float values

• AVX-10 — 512-bit registers (with speedups)

The AVX intrinsics use C++ type names to declare variables for their registers.
The float types used to declare the registers in AVX using C++ all have a double-
underscore prefix with “__m128” for 128-bit registers (4 floats), “__m256” for
256 bit registers (8 floats), and “__m512” for 512 bits (16 floats). Similarly,
there are also register type names for int types (__m128i, __m256i,
and __m512i), and types for “double” registers (__m128d, __m256d,
and __m512d).

AVX intrinsic functions and their types are declared as ordinary function
prototypes in header files. The header files that you may need to include for these
intrinsics include <intrin.h>, <emmintrin.h>, and <immintrin.h>.

David Spuler 84

Useful AVX SIMD vector intrinsics for float types include:

• Initialize to all-zeros — _mm_setzero_ps, _mm256_setzero_ps

• Set all values to a single float — _mm_set1_ps, _mm256_set1_ps

• Set to 4 or 8 values — _mm_set_ps, _mm256_set_ps

• Load arrays to AVX registers — _mm_loadu_ps, _mm256_loadu_ps

• Store back to float arrays — _mm_storeu_ps, _mm256_storeu_ps

• Addition — _mm_add_ps, _mm256_add_ps

• Multiplication — _mm_mul_ps (SSE), _mm256_mul_ps (AVX-2)

• Vector dot product — _mm_dp_ps, _mm256_dp_ps

• Fused Multiply-Add (FMA — _mm_fmadd_ps, _mm256_fmadd_ps

• Horizontal addition (pairwise) — _mm_hadd_ps, _mm256_hadd_ps

Note that the names of the intrinsic functions have meaningful suffixes. The “_ps”
suffix means “packed-single-precision” (i.e., float), whereas “_pd” suffix means
“packed-double-precision” (i.e., double).

AVX Operations

The main SIMD instructions are called “vertical” instructions, by convention. They
take one vector and a second vector (e.g., both are 128-bit), apply an operation
element-wise in parallel, and put the result into a third register. In other words, they
return the result of a “pair-wise” or “element-wise” operation on two vectors into
a third vector.

For example, vertical addition requires two input vectors and will output a third
vector with the sums. AVX-512 SIMD addition will add two 512-bit registers full
of float values on a paired element basis (i.e., adds 16 pairs of 32-
bit float values), yielding a third 512-bit vector with the result (16 float values).

Binary operations. The full list of binary AVX operations is very long. Supported
AVX operations include:

• Multiplication

• Addition

• Subtraction

• Division

• Maximum

• Minimum

• Fused Multiply-Add (FMA)

• Bitwise operations

85 Efficient Modern C++ Data Structures

Unary operations. AVX unary intrinsics apply a particular function to all elements
of an AVX register in parallel, and return the resulting register. Supported AVX
unary operations include:

• Clear to zero

• Set to a constant

• Casts

• Conversions

• Popcount (POPCNT)

• Leading-zero count (LZCNT)

Mathematical Functions. Simple float-to-float mathematical functions are
effectively a type of unary operator. AVX supports a variety of functions with
vector hardware instructions, such as:

• Absolute value: abs

• Error function: erf

• Reciprocal

• Rounding, ceiling, floor

• Roots: sqrt (square root), cube root

• Inverted roots (e.g., invsqrt)

• Exponential: exp, exp10

• Logarithm: log, log10

• Trigonometric functions

• Hyperbolic functions

• Statistics (e.g., Cumulative Distribution Function)

AVX Horizontal Intrinsics

Horizontal operations refer to arithmetic across the values within one vector. AVX
intrinsics exist to do “horizontal” operations across the same vector, such as adding
horizontal elements of a vector, or finding the maximum of pairs of elements within
a vector.

Horizontal SIMD instructions are typically designated with a “h” prefix (e.g.,
“horizontal add” is “hadd”). More specifically, the intrinsic for 128-bit horizontal
add is “_mm_hadd_ps” and it is “_mm256_hadd_ps” for 256-bits.

However, do not make the mistake of assuming that these horizontal AVX
intrinsics are a “reduction” of a vector down to a single float (i.e., vector-to-scalar).
I mean, they really should do exactly that, but that would be too good to be true.

David Spuler 86

The horizontal intrinsic functions are still effectively “pairwise” operations for
AVX and AVX-2, except the pairs are within the same vector (i.e., horizontal pairs).
If you want to add all elements of a vector, or find the maximum, you will need
multiple calls to these intrinsics, each time processing pairs of numbers, halving the
number of elements you are examining at each iteration. Hence, for example,
summing all the float values in a vector with AVX or AVX-2 uses a method of
“shuffle-and-add” multiple times.

Thankfully, AVX-512 actually does have horizontal reductions that process all the
elements in their 512 bit registers. Hence, the 512-bit horizontal add uses a different
naming convention and uses the prefix of “reduce add” in the intrinsic name
(e.g., _mm512_reduce_add_ps is a summation reduction). In other words, this
reduction operates in parallel on all 16 float values in an AVX-512 register, and
the _mm512_reduce_add_ps intrinsic can add up all 16 float values in one
operation. This horizontal reduction summation is useful for vectorizing functions
such as average, and could be used for vector dot products (i.e., do an AVX-512
SIMD vertical multiplication into a third vector of 16 float values, then a
horizontal reduction to sum those 16 float values), although there’s an even
better way with FMA intrinsics.

Supported AVX horizontal operations for pairwise horizontal calculations (AVX
or AVX-2) or vector-to-scalar reductions (AVX-512) include floating-point and
integer versions, with various sizes, for primitives, such as:

• Addition

• Maximum

• Minimum

• Bitwise operations

Portability Checking of AVX Versions

The power of AVX support has changed over the years, with different CPUs having
different capabilities, not only with AVX, AVX-2 and AVX-512, but also their sub-
releases. And it’s also a little unclear into the future, with reports that some of the
newer Intel chips have AVX-512 disabled.

If you write some code using AVX-512 intrinsics, and compile your C++ into an
executable with the AVX-512 flags on, and then it runs on a lower-capability CPU
without AVX-512, what happens? Do the AVX-512 intrinsics fail, or are they
simulated somehow so that they’re slower but still work? Answer: kaboom on
MSVS. In the MSVS IDE, if you try to call these intrinsics on a CPU that doesn’t
support it, you get “unhandled exception: illegal instruction.”

87 Efficient Modern C++ Data Structures

In other words, the C++ compiler still emits the AVX-512 instruction codes, but
they aren’t valid, so it excepts at runtime.

Hence, the calls to AVX-512 are not emulated at run-time on lower-capability
CPUs. And they aren’t checked, either. That’s up to you!

Dynamic test required: Firstly, you cannot use the preprocessor. You can’t
test #if or #ifdef for whether you’ve got AVX-512 in the CPU or not. You can
use the preprocessor to distinguish between different platforms where you’ll
compile a separate binary (e.g., ARM Neon for phones or Apple M1/M2/M3
chipsets). But you cannot choose between AVX/AVX-2/AVX-512 at compile-
time, unless you really plan to ship three separate binary executables. Well, you
probably could do this if you really, really wanted to.

The other thing you don’t really want to do is low-level testing of capabilities. You
don’t want to test a flag right in front of every AVX-512 intrinsic call. Otherwise,
you’ll lose most of the speedup benefits. Instead, you want this test done much
higher up, and then have multiple versions of the higher-level kernel operations
(e.g., vector add, vector multiply, vector dot product, etc.)

What this means is that you have to check in your runtime code what the CPU’s
capabilities are, at a very high level in your program. Hence, it is important to check
your platform has the AVX support that you need, such as via the “cpuid”
intrinsic at program startup. Then you have a dynamic flag that specifies whether
you have AVX-512 or not, and you can then choose between an AVX-2 dot
product or an AVX-512 dot product, or whatever else, during execution.
Obviously, it gets a bit convoluted when you have to dynamically choose between
versions for AVX, AVX-2 and AVX-512 (not to mention all the AVX sub-
capabilities and also AVX-10 coming soon).

Example: Basic AVX SIMD Multiply

Let us do a basic element-wise SIMD multiply using AVX (version 1) and its 128-
bit registers. This will do a paired vector multiply an array of 4 float numbers (i.e.,
4 x 32-bit float = 128 bits). Each float in the resulting array is a pairwise
multiplication of the elements in the two operands.

This is how SIMD instructions work, by operating on each element of the array
(i.e., “pairwise” or “element-wise”). For example, a “vertical” multiply will take the
4 float values in one input array, and multiply each of them by the
corresponding float in the other input array of 4 float numbers, and then will
return a resulting output array with 4 float values.

David Spuler 88

For testing, let us assume with want to create an AVX function that multiplies
4 float values element-wise. The test code looks like:

 float arr1[4] = { 1.0f , 2.5f , 3.14f, 0.0f };

 float arr2[4] = { 1.0f , 2.5f , 3.14f, 0.0f };

 float resultarr[4];

 // Multiply element-wise

 aussie_multiply_vectors(arr1, arr2, resultarr, 4);

Testing the results of the multiply as an element-wise multiply of each pair in the
4 float values (using my home-grown “aussie_testf” unit testing function
that compares float numbers for equality):

 aussie_testf(resultarr[0], 1.0f*1.0f); // Unit tests

 aussie_testf(resultarr[1], 2.5f * 2.5f);

 aussie_testf(resultarr[2], 3.14f * 3.14f);

 aussie_testf(resultarr[3], 0.0f * 0.0f);

Here’s the low-level C++ code that actually does the SIMD multiply using the
“_mm_mul_ps” AVX intrinsic function:

 #include <xmmintrin.h>

 #include <intrin.h>

 void aussie_avx_multiply_4_floats(

 float v1[4], float v2[4], float vresult[4])

 {

 // Mult 4x32-bit float in 128-bit AVX registers

 __m128 r1 = _mm_loadu_ps(v1); // Load floats

 __m128 r2 = _mm_loadu_ps(v2);

 __m128 dst = _mm_mul_ps(r1, r2); // SIMD Multiply

 _mm_storeu_ps(vresult, dst); // Convert back

 }

Explaining this code one line at a time:

1. The header files are included: <xmmintrin.h> and <intrin.h>.

2. The basic AVX register type is “__m128” which is an AVX 128-bit
register (i.e., it is 128 bits in the basic AVX version, not AVX-2 or AVX-
512).

3. The variables “r1” and “r2” are declared as _mm128 registers. The
names “r1” and “r2” are not important, and are just variable names.

89 Efficient Modern C++ Data Structures

4. The intrinsic function “_mm_loadu_ps” is used to convert the arrays
of 4 float values into the 128-bit register types, and the result is “loaded”
into the “r1” and “r2” 128-bit types.

5. Another 128-bit variable “dst” is declared to hold the results of the
SIMD multiply. The name “dst” can be any variable name.

6. The main AVX SIMD multiply is performed by the “_mm_mul_ps”
intrinsic function. The suffix “s” means “single-precision” (i.e., 32-
bit float). This is where the rubber meets the road, and the results of the
element-wise multiplication of registers “r1” and “r2” are computed and
saved into the “dst” register. It is analogous to the basic C++
expression: dst = r1*r2;

7. The 128-bit result register variable “dst” is converted back to 32-
bit float values (4 of them), by “storing” the 128 bits into
the float array using the “_mm_storeu_ps” AVX intrinsic.

AVX Memory Alignment Issues

The above example glosses over the issue of managing “alignment” of memory
addresses on byte boundaries with the “alignas” specifier. Some of the AVX
SIMD intrinsic calls require that addresses are 16-byte aligned (i.e., this is effectively
128-bit alignment), which is not guaranteed by the C++ compiler. However, we’ve
tolerated non-aligned addresses by using the “_mm_storeu_ps” intrinsic, which
works with either aligned or non-aligned addresses.

Note that alignment restriction requirements of AVX are somewhat in flux. Not all
AVX intrinsics require alignment, and they are “relaxed” in many cases. There have
also been some bugs in compiler toleration of non-aligned addresses in C++
intrinsics. Where required, the alignment needs are:

• AVX-1 — 16-byte alignment (128-bit).

• AVX-2 — 32-byte alignment (256-bit).

• AVX-512 — 64-byte alignment (512-bit).

Since we can sort out alignment at compile-time using the C++ “alignas”
specifier and “aligned” type attributes, there is no performance penalty (except
in terms of space) for ensuring greater compatibility across CPU platforms and
compiler versions by preferring aligned addresses.

David Spuler 90

You can create your own macros to easily test pointer addresses for alignment by
checking their remainder with the % operator. These examples use bitwise-and to
replace the slow remainder operator:

 #define aussie_is_aligned_16(ptr) \

 ((((unsigned long)(ptr)) &15ul) == 0)

 #define aussie_is_aligned_32(ptr) \

 ((((unsigned long)(ptr)) &31ul) == 0)

Although our code to multiply 4 float values tolerates non-alignment, it’s a minor
slug. The “_mm_storeu_ps” AVX intrinsic is slower if the addresses are not
aligned, so we should fix the alignment for performance reasons. There’s also
another “store” intrinsic to convert from 128-bits to 4 floats called
“_mm_store_ps” (without the “u”) that runs faster, but does not tolerate non-
aligned float arrays. Actually, “_mm_storeu_ps” is supposed to be equally as
fast as “_mm_store_ps” if the address is correctly aligned, so we can still use that
intrinsic if we prefer safety, but we need to change the variables to be aligned on
16-byte boundaries for a speedup.

To ensure alignment in C++, there is an “alignas” specifier for variable
declarations. We can use “alignas(16)” to force C++ to create the variables
with 16-byte alignment of the address where they are stored. For example, our unit
test harness code could ensure 16-byte alignment of all memory addresses via:

 alignas(16) float arr1[4] = { 1.0f, 2.5f, 3.14f, 0.0f };

 alignas(16) float arr2[4] = { 1.0f, 2.5f, 3.14f, 0.0f };

 alignas(16) float resultarr[4];

There are various non-standard alternatives to “alignas” in the various
compilers. For example, MSVS has “__declspec(align(16))” with two prefix
underscores, and GCC supports “decltype(align(16))”.

The AVX code for an alignment-requiring version is not much different, with
minor changes to the names of the C++ intrinsics:

 void aussie_avx_multiply_4_floats_aligned(

 float v1[4], float v2[4], float vresult[4])

 {

 // Use 128-bit registers to mult 4x32-bit floats

 __m128 r1 = _mm_loadu_ps(v1); // Load floats

 __m128 r2 = _mm_loadu_ps(v2);

 __m128 dst = _mm_mul_ps(r1, r2); // Multiply

 _mm_store_ps(vresult, dst); // Aligned version

 }

91 Efficient Modern C++ Data Structures

Ideally we’d like to ensure that the function is only called with aligned addresses at
compile-time. The first attempt is to declare the array “vresult” above as
“alignas(16)” for type checking of alignment issues, but it fails for function
parameters. Fortunately, there’s another way using type attributes:

 __attribute__((aligned(16)))

Another method is to define our own assertion that uses bitwise tests on the address
instead:

 #define is_aligned_16(ptr) \

 ((((unsigned long int)(ptr)) & 15) == 0)

This tests the address is a number that is a multiple of 16 using bitwise-and with 15,
but this is at runtime and costs extra cycles.

AVX-2 SIMD Multiplication

Here is the AVX-2 version of pairwise SIMD multiply with intrinsics for 256-bit
registers, which is eight 32-bit float variables.

 void aussie_avx2_multiply_8_floats(

 float v1[8], float v2[8], float vresult[8])

 {

 // Multiply 8x32-bit floats in 256-bit registers

 __m256 r1 = _mm256_loadu_ps(v1); // Load floats

 __m256 r2 = _mm256_loadu_ps(v2);

 __m256 dst = _mm256_mul_ps(r1, r2); // Multiply

 _mm256_storeu_ps(vresult, dst); // Back to 8xfloat

 }

This is similar to the basic AVX 128-bit version, with some differences:

• The type for 256-bit registers is “__m256”.

• The AVX-2 loading intrinsic is “_mm256_loadu_ps”.

• The AVX-2 multiplication intrinsic is “_mm256_mul_ps”.

• The conversion to float uses AVX-2 intrinsic “_mm256_storeu_ps”.

David Spuler 92

AVX-512 SIMD Multiplication

Here is the 16 float SIMD vector multiplication using 512-bits in AVX-512.

 void aussie_avx512_multiply_16_floats(

 float v1[16], float v2[16], float vresult[16])

 {

 // Multiply 16x32-bit floats in 512-bit registers

 __m512 r1 = _mm512_loadu_ps(v1); // Load 16 floats

 __m512 r2 = _mm512_loadu_ps(v2);

 __m512 dst = _mm512_mul_ps(r1, r2); // Multiply

 _mm512_storeu_ps(vresult, dst); // Back to floats

 }

Note that AVX-512 will fail with an “unhandled exception: illegal instruction” (e.g.,
in MSVS) if AVX-512 is not supported on your CPU.

Example: AVX 128-Bit Dot Product

The AVX instruction set has a vector dot product intrinsic that wraps an x86 dot
product instruction. There are versions of the dot product intrinsic for AVX (128-
bit), AVX-2 (256-bit) and AVX-512 (512-bit).

For basic AVX (128 bits), this is a full vector dot product of two vectors with 4 x
32-bit float numbers in each vector. One oddity is that although the result is a
floating-point scalar (i.e., a single 32-bit float), it’s still stored in a 128-bit register,
and must be extracted using the “_mm_cvtss_f32” intrinsic. The example code
looks like:

 float aussie_avx_vecdot_4_floats(

 float v1[4], float v2[4])

 {

 // AVX dot product: 2 vectors of 4x32-bit floats

 __m128 r1 = _mm_loadu_ps(v1); // Load floats

 __m128 r2 = _mm_loadu_ps(v2);

 __m128 dst = _mm_dp_ps(r1, r2, 0xf1); // Dot product

 float fret = _mm_cvtss_f32(dst); // Extract float

 return fret;

 }

93 Efficient Modern C++ Data Structures

Example: AVX-2 256-Bit Dot Product

Here is my attempt at the 256-bit version of a vector dot product of 8 float values
using AVX-2 instructions, which seems like it should work:

 float aussie_avx2_vecdot_8_floats_buggy(

 float v1[8], float v2[8])

 {

 // AVX2 dot product: 2 vectors, 8x32-bit floats

 __m256 r1 = _mm256_loadu_ps(v1); // Load floats

 __m256 r2 = _mm256_loadu_ps(v2);

 __m256 dst = _mm256_dp_ps(r1, r2, 0xf1); // Bug!

 float fret = _mm256_cvtss_f32(dst);

 return fret;

 }

But it doesn’t! Instead of working on 8 pairs of float numbers, it does the vector
dot product of only 4 pairs of float values, just like the first AVX code.

The problem wasn’t related to alignment to 256-bit blocks, because I added
“alignas(32)” to the arrays passed in. It seems that the “_mm256_dp_ps”
intrinsic doesn’t actually do 256-bit dot products, but is similar to the 128-bit
“_mm_dp_ps” intrinsic that does only four float numbers (128 bits). These are
based on the VDPPS opcode in the x86 instruction for 32-bit float values and
there is VDPPD for 64-bit double numbers.

However, it seems that “_mm256_dp_ps” is not using the 256-bit version. Or
maybe my code is just buggy!

David Spuler 94

References

1. Intel (2023), Intel® 64 and IA-32 Architectures Optimization Reference Manual:
Volume 1, August 2023, 248966-Software-Optimization-Manual-V1-
048.pdf

2. Agner Fog (2023), Optimizing subroutines in assembly
language, https://www.agner.org/optimize/optimizing_assembly.pdf

3. Félix Cloutier (2023), x86 and amd64 instruction
reference, https://www.felixcloutier.com/x86/

4. Microsoft (2023), x86 intrinsics list, https://learn.microsoft.com/en-
us/cpp/intrinsics/x86-intrinsics-list

5. Intel (2023), Intel Intrinsics Guide, Version 3.6.6, May 10th,
2023, https://www.intel.com/content/www/us/en/docs/intrinsics-
guide/index.html

6. Intel (2023), Intel C++ Compiler Classic Developer Guide, version
2021.10, https://www.intel.com/content/www/us/en/docs/cpp-
compiler/developer-guide-reference/2021-10/overview.html,
PDF: https://cdrdv2.intel.com/v1/dl/getContent/781922?fileName=cp
p-compiler_developer-guide-reference_2021.10-767249-781922.pdf

https://www.agner.org/optimize/optimizing_assembly.pdf
https://www.felixcloutier.com/x86/
https://learn.microsoft.com/en-us/cpp/intrinsics/x86-intrinsics-list
https://learn.microsoft.com/en-us/cpp/intrinsics/x86-intrinsics-list
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-10/overview.html
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-10/overview.html
https://cdrdv2.intel.com/v1/dl/getContent/781922?fileName=cpp-compiler_developer-guide-reference_2021.10-767249-781922.pdf
https://cdrdv2.intel.com/v1/dl/getContent/781922?fileName=cpp-compiler_developer-guide-reference_2021.10-767249-781922.pdf

95 Efficient Modern C++ Data Structures

8. Memory Optimizations

Memory Reduction in C++

This chapter discusses the general techniques for reducing the memory
requirements of a C++ program. The more general AI memory management issues
of reducing the size of an AI model (e.g., model compression, quantization,
pruning, etc.) or improving the memory access bottleneck in AI models (e.g.,
pipelining and marshaling data for a GPU) are discussed in a separate chapter.

These techniques herein aim to reduce memory usage of a program so that:

(a) your C++ does not waste too much time on memory management
activity, such as allocating too much memory, and

(b) your C++ code can execute on a low-memory platform, such as an IoT
embedded device.

In these days of cheap gigabytes of memory in every PC, memory reduction
techniques are perhaps not as important as those for increasing speed. However,
there are certainly situations when reducing space requirements is far more
important than increasing the speed of a program. This section discusses a number
of general techniques for reducing C++ memory requirements.

Unfortunately, reducing space requirements can also lead to loss of speed. There is
often a trade-off between space efficiency and time efficiency. Every C++ program
uses memory for a number of different purposes, and each of these areas needs to
be attacked separately.

The memory usage of the program can be divided into the following memory
sections:

• Executable instructions

• Static storage

• Stack storage

• Heap storage

David Spuler 96

The executable instructions for a program are usually stored in one contiguous
block of memory. Static storage refers to the persistent memory used by global and
local static variables, string constants and (possibly) floating-point constants.
Stack storage refers to the dynamic storage of non-static local variables. Heap
storage refers to the memory that is dynamically allocated using
the new/delete operators and the malloc/calloc/free standard library
functions.

The memory requirements for the executable instructions are largely independent
of the other memory areas, whereas the techniques for reducing the memory
required for the other three areas are often similar. However, care must be taken
that applying a technique to reduce data space does not increase the amount of
C++ code too greatly, thus increasing the executable size.

Compact Data Representation

Different algorithms may store data differently and thereby reduce memory
requirements. There are many ways to represent data, and all have varying space
usage. For example, storing all the primes less than 1000 can be done with a list of
integers, a list of the incremental differences between successive primes, or a bit
vector with one bit for each integer up to 1000.

Different data structures. The program should be examined to determine if a
large space reduction can be achieved by changing to different data structures. For
example, the program could use arrays instead of linked lists or binary trees to avoid
the extra space due to pointer storage. However, this also wastes more space if the
array is not full, and it is even better to use dynamic arrays, which do not waste any
storage, as exactly the right amount of memory is allocated. Unfortunately, using
different data structures can sometimes reduce the time-efficiency of programs.

Data compression. Compressing data can reduce space requirements when large
amounts of data are involved. Hmm, let’s pause for a moment and try to think of
an example application with lots of data. Just jump in whenever you’re ready.
Billions or trillions of weights in an LLM are a good candidate.

Model compression is the theoretical term and involves either using smaller data
sizes (e.g., 8-bit integer weights instead of 32-bit float data) or “pruning” of
weights we don’t need. More generally, data compression algorithms have been
used in research on AI models, such as sparsity, run-length encoding and Huffman
encoding.

97 Efficient Modern C++ Data Structures

Proceduralization. Another data representation technique is to use a function to
represent data. Instead of a list of the first 1,000 primes, you could create an
“is_prime” function that contains a big C++ switch statement, with all the
primes as case values, which return true. You could also write a piece of code to
create this source code automatically.

Recomputation. Another example of proceduralization, consider the storage of
several images generated by a fractal algorithm: the simplest method of storing the
images is to store them as large image files. But a much more space-efficient method
is simply to store the values of any arguments passed to the function creating the
fractal images. This way, the images can be recreated by calling the fractal generation
function with the correct arguments. The only space used is a small block of values
containing the arguments and the code instructions for the function. However, the
recalculation of an image by this method is extremely time-inefficient.

Reducing Data Size

There are many techniques for reducing the size of program data. These techniques
apply to all three types of memory — static, stack and heap storage. In some cases,
a method may increase the memory storage in one area to decrease the memory
usage in another, which is valid only if the total storage requirements decrease.

Use char arrays not std::string. The use of std::string is very
convenient, but if your program has many strings, the extra storage used by
the string objects can add up. Consider managing your own raw char arrays as
C-style strings if you really need the space.

Avoid max-size arrays or buffers. When using an array data structure or buffer,
there is temptation to be lazy and just make it bigger than it will need to be. Avoid
this temptation and optimize the memory usage properly. Change an oversize array
into a dynamically allocated array, if size can be determined easily at runtime.

Smart buffers or smart array classes. An alternative to using an oversize array or
buffer is to create “smart” classes that manage this, by automatically extending the
array or buffer if more elements are needed. The std::vector class is a good
way to do this.

Bit vectors. These can be used where information can be reduced to a single
Boolean value, such as bit flags or masks. The use of bit vectors is very compact in
terms of space, and there are standard C++ libraries to implement these efficiently.

David Spuler 98

Unions. When using a lot of structures, space can be reduced by overlaying the
data fields. This can only be done if the fields to be overlayed are mutually exclusive
(i.e., they never have active data in them at the same time). There is a special C++
data type for this purpose: the union.

Linearize multi-dimensional dynamic arrays. Use the simpler and smaller size
of a one-dimensional array, with the two-dimensional structure mapped onto it with
index calculations. This adds more runtime cost, but saves space over multiple
levels of dynamic array allocations.

Reusing space. One way to conserve memory is to reuse the space used by a
variable. The union data type is an example of this general idea, and another is
reusing variables for different purposes. For example, rather than letting several
functions each have a local temporary buffer, they could all use the same global
variable (although this is a very dangerous practice). As another example, if a
program uses two similar arrays, examine whether the two arrays can share the same
storage (possibly as a union). Note that I don’t recommend any of these
approaches: too dangerous!

Small data types: short, char. Instead of using arrays of int, use arrays
of short, char or unsigned char. There is no problem with this method,
provided large integer values are not being stored (e.g., larger than 127 for char,
or larger than 255 for unsigned char).

This technique is also worthwhile when applied to int fields in objects although
alignment restrictions may limit the improvement — use the sizeof operator to
determine if the size of the object has been reduced.

Smaller local variables could also be declared as a smaller type, but this may increase
the executable size due to type conversions.

Note that speed can be compromised by using smaller data types because of the
type conversions that often result. Similarly, use float instead of double, where
the greater precision of results is not important (e.g., an AI model).

Bit-fields in objects. When storing small integers in objects or structures, there is
a way to specify exactly the number of bits required. These types are called “bit-
fields” and can only be used for fields inside objects, structures or unions. You
cannot declare a local variable with a bit-field type. When using bit-fields, small
integers or Boolean flags are automatically packed into a struct or union. This
reduces storage requirements significantly, but reduces speed because it is necessary
to pack and unpack bits.

99 Efficient Modern C++ Data Structures

Parallel arrays versus arrays of objects or structures. Because of alignment
restrictions, an object or structure may have unusable extra padding bytes. The
number of padding bytes can be determined by using the sizeof operator, and
subtracting the sizes of each individual field from the size of the object. If there are
padding bytes, replacing an array of struct with a number of “parallel” arrays
removes the need for this padding.

Packing. When dealing with large arrays of small integers, it can be more efficient
to pack them together (i.e., more than one value per word), particularly when the
information is binary (true or false), because only one bit per value is needed. The
easiest way in C++ is to use std::bitset. Note that bit-fields are also packing
provided by the compiler that can support more than one bit. They are also much
easier to use than coding it yourself.

Packing object arrays with #pragma pack. Microsoft compilers support the
“#pragma pack” preprocessor directive, which can specify the packing or
alignment characteristics of an object. This can allow arrays of these objects to be
packed more closely into storage.

Reordering fields in objects and structures. Because of the word alignment on
some machines, the order of fields in an object or structure can change the size of
the object. This only applies to objects containing different size fields. A general
rule for minimizing the space is to order the fields from largest to smallest.

This heuristic may not give the best ordering — examine the size of a few different
orderings using the sizeof operator, if space is crucial. This is a machine-
dependent optimization, and may not work well on some machines.

Store integer codes instead of string names. If you’re storing a string to
represent some particular type or a limited set of names, or something with a finite
set, then you can use an enum instead. If you need to generate the actual string
name, use an array lookup or a switch statement to return the equivalent string
constant.

For example, when dealing with AI word tokens, which are indeed fixed and finite,
use the integer token code without storing the word as a string, while maintaining
a single copy of the vocabulary strings (which you need anyway for the tokenizing
algorithm).

David Spuler 100

Measuring Code Size and Static Storage

In general, it is more difficult to measure how much space a program is using than
to measure how much time it is using. However, most environments provide some
means of determining the size of instructions and static data in an executable
program. If nothing else, the size of the executable file in overall bytes can be a
reasonable guide.

The size command. Under Linux and UNIX, a useful command is the “size”
command, which examines an executable program and reports the memory used
by its instructions and its global or local static variables. However, it does not
(and cannot) report the stack or heap usage because the amount of such memory
used is dynamic, and hence cannot be found by analyzing the executable. The
command is simply:

 size a.out

This produces output similar to the following:

 text data bss dec hex

 20480 8192 0 28672 7000

The “text” value refers to the machine code instructions for the program code.
Both the “data” and “bss” areas refer to global and local static variables.

The “data” area refers to variables which have been explicitly initialized with values
(e.g., string literals or initialized global variables); the “bss” area refers to variables
with implicit initialization which defaults to zero (e.g., global variables or arrays
without non-zero initializers).

Function Code Sizes: If the code size is needed on a per-function basis, Linux
and most other UNIX environments support the “nm” command. Windows also
supports the nm command.

 nm a.out

The nm command differs slightly across older UNIX variants, but will usually print
out information including the start and end address of a function, from which the
size of a function can be trivially computed.

101 Efficient Modern C++ Data Structures

Link Maps: Window users may be able to use a “link map” report. This allows to
find out about executable size by examining the output produced by some C++
compilers at the link stage (although not all compilers will produce useful output).
For example, the DOS “link” command with the “/map” option can be used
when linking the object files:

 link /map *.obj

Code Bloat

The size of the executable depends on the size of your C++ source code. Hence,
the obvious way to reduce executable size is to go to the beach. Take a day off! Stop
writing code, for goodness sake!

Remove unnecessary code. Methods to reduce the number of executable
statements in your program could involve deleting non-crucial functions from the
program, and eliminating any dead code or old redundant code that has been “left
in” for various reasons. The use of compile-time initialization of global
and static variables instead of assignment statements is another means for
reducing code size. Turning off debug code such as assertions, debug tracing, and
self-testing code can also work, but this loses the supportability benefit of shipping
a fully testable version.

Compile-for-space options. Another possibility is that your compiler may
support an option that causes the optimizer to focus on space reduction. This
causes it to generate executable instructions that are as compact as possible, rather
than being as fast as possible.

Avoid using large libraries. Pay attention to what code libraries you are linking
with. Some of them are quite extensive, and may be much more than you need. Try
to use the basic standard libraries as much as possible.

Template overuse. Templates are a common cause of “code bloat” and their
usage should be reviewed. This is particularly true if you are using an integer-
parameterized template in order to gain compile-time efficiency, or an approach
such as Template Meta-Programming (TMP).

If these templates are used with a large number of constant values, many copies
with the template’s executable code will be generated.

David Spuler 102

Avoid large inline functions. Overuse of inline functions has the potential
to create more executable code. Try to limit your use of inline to small functions
where the overhead of the function call is significant compared to the relatively low
runtime cost of the function body. Don’t inline large functions that do lots of
processing each call.

Inline tiny functions. Although inlining large functions can cause code bloat, the
reverse is usually true for very small functions. All of those getter and setter member
functions have about one instruction. The code generated from an inlined call to
these tiny functions may be much smaller than the instructions to call a real
function.

constexpr is inline, too. Remember that constexpr functions are also
effectively a type of inline function. Again, try to limit these to relatively small
functions. If a constexpr function is called with non-constant values, or is
beyond the compiler’s ability to properly inline, then multiple copies of the
executable code may result.

Library linkage. The size of the executable depends not only on the C++ code,
but also on the extra library functions that are linked by the linker. Although it may
seem that the programmer has no control over this, there are some techniques for
reducing the amount of linked code. The techniques depend largely on how “smart”
your linker is — that is, whether the linker links only the functions you need.

Use DLLs for common libraries. Dynamic link libraries (DLLs) are one way to
reduce the size of the executable, because the library executable code is loaded at
runtime. If the DLL is a commonly used library, such as the standard C++ runtime
libraries, not only will your executable smaller, but it’s also efficient at runtime
because it will be loaded only once into memory, even if many programs are using
the code. However, making your own special code into a DLL isn’t likely to offer
much memory benefit at runtime, since it will simply be loaded dynamically rather
than immediately at load-time. However, if it’s a library that isn’t needed in many
invocations of your program, you can save memory by deferring loading of the
library until you can determine whether it will be required.

Remove executable debug information. Executable size can be reduced by
avoiding generation of the “debug” information and symbol table information. For
example, with GCC don’t use the “-g” debugging information or “-p” profiling
instrumentation options. Linux programmers can also use the “strip” utility
which strips symbol table information from the executable after it has been created.
However, the extra symbol table information is more relevant to the amount of
disk space the executable file uses than to the amount of memory it uses during
runtime execution.

103 Efficient Modern C++ Data Structures

Reducing Static Storage

Static storage refers to the memory for global and local static variables, string
constants and floating-point constants. All of the general size-reduction above can
reduce the size of the global and static variables.

String literal static memory. The space requirements for string constants can be
reduced if the compiler has an option to merge identical string constants (which
arise quite frequently). If there is no such option, or the option does not merge
string constants across object files (which is quite likely), merging string constants
can be achieved by the programmer, although the method is far from elegant. For
example, including this variable in a header file and using it in multiple files may
create multiple copies of the string literal:

 #define TITLE "A very long string ... "

Instead, a global variable can be declared to hold the string constant and the name
of this char array is used instead of the string constant. In modern C++ you can
use “inline variables” to avoid linker problems with multiple definitions.

inline const char TITLE[] = "A very long string ... ";

This change is unlikely to reduce the speed of the program, nor does it increase
memory requirements even if TITLE is used only once (there may seem to be an
extra 4 bytes to hold a pointer value pointing at where the string of characters is
stored, but this is not so).

Large global variables. If there is a large global or static variable or array, the
amount of static storage can be reduced by allocating the memory on the heap
using malloc or the new operator, or by making it an automatic variable.

This is particularly useful if the object has a short “lifetime”, in the sense that it is
used only briefly (e.g., the array is used as temporary storage inside a function).

If the variable is used all the time, this change doesn’t reduce the overall space
problem, but simply moves the problem to another area.

David Spuler 104

Stack Usage

Stack storage refers to memory storage used for function calls, and includes (non-
static) local variables, function parameters and system information used to keep
track of function calls. Hence, the basic methods of reducing stack storage are:

• Use fewer and smaller automatic local variables.

• Use fewer and smaller function parameters.

• Use “const&” to pass objects by reference.

• Use global or static local variables instead.

• Reduce the depth of function call nesting.

• Avoid recursion (always).

Data sizes. The size of parameters and local variables can be reduced using the
general methods of using smaller data types. Another method is to avoid passing
large objects and to only large objects by reference (which is faster anyway). Don’t
use large arrays or buffers as local variables, but prefer allocated buffers or global
buffers, or declare them as local static variables.

Fewer parameters. The number of parameters can be reduced by using global
variables, or by packing a number of parameters into an object and passing the
whole object (which is often faster, too).

Fewer local variables. The number of local variables can be reduced by re-using
local variables, although this can introduce bugs if not enough care is taken.
Common examples of reusable variables are scratch variables, such as temporaries
or for loop index variables. Another method of reducing the number of local
variables is to use parameters as if they were local variables (this is safe because of
call-by-value). Overall, most of these suggestions are minor improvements, unless
you’re using very large arrays or objects as local variables.

Flatten call hierarchies. Reducing the depth of function call nesting (especially by
avoiding recursion) also reduces stack space requirements. This can be achieved by
using preprocessor macros or inline functions (but this may increase code size).
You can also refactor your code to avoid too many layers of wrapping functions in
interfaces.

Naturally, recursion should be avoided as much as possible by using iterative loop
algorithms or tail recursion elimination.

105 Efficient Modern C++ Data Structures

Reducing Heap Usage

Your C++ IDE should support tools that track heap or stack usage dynamically.
For example, MSVS has a “heap profiler” tool that you can enable. Linux tools such
as Valgrind can be very usual to examine heap memory usage.

The amount of heap storage used depends on the size of blocks, the number of
blocks and how quickly allocated blocks are deallocated. The size of blocks can be
reduced using the general techniques of reducing data sizes (e.g., small data types,
packing, unions).

Fewer allocation calls. The number of heap blocks affects heap usage in the
obvious way (more blocks means more memory) and because of the fixed space
overhead of a few hidden bytes to store information about the block (so
that delete or free can de-allocate it). When small blocks are used, it can be
useful to pack more than one block together to avoid this fixed overhead.

Avoid small frequent allocations. If your frequently-used class allocates a small
amount of memory in a constructor and then deallocates it in the destructor,
consider ways to avoid this pattern. Small amounts of data could possibly be
stored in extra fields of the object.

Memory leaks waste memory. Obviously, avoiding memory leaks which are
never returned to the heap is important to reducing heap memory usage. There are
many tools and debug libraries available to detect leaks, and ongoing use of these
tools will reduce overall heap fragmentation.

Early deallocation of memory. It’s a win if you have avoided leaking the memory,
but that’s not the end of the story. All allocated memory should be returned to the
heap as early as possible. If memory is not deallocated, unused memory (called
“garbage”) can accumulate and reduce the available memory.

Avoid realloc. Measure and manage any calls to realloc, as they can be a
significant cause of heap memory fragmentation. And they’re also not time-
efficient, so reducing them is a win-win.

Manage std::vector sizes via “reserve”. The resize operations
in std::vector can lead to extra unnecessary allocation requests.

Linearize multi-dimensional allocated arrays. One big allocation of a linear
array is much more efficient on the heap than allocating separate blocks for rows
or lower-dimensions of the array.

David Spuler 106

An array of pointers into the linearized large block is only one more allocation, and
has the same efficiency as having each pointer be a separate dynamically allocated
subarray.

Smart buffers. Use objects that contain a limited amount of memory, which is used
for the typical cases. If a longer string, or larger array is required, it needs to allocate
memory and manage that process. Overall, this can massively reduce the number
of allocated blocks.

Memory fragmentation. Reduce memory fragmentation by reducing both
allocations and deallocations. It’s also important to manage the different sizes of
allocations, as varying block lengths cause more fragmentation.

Per-class allocators. In severe situations, take control of your class’s dynamic
objects by defining your own per-class allocators. Since the allocators knows that
all block requests will be the same size, it can not only be faster, but also better at
reusing memory blocks and avoiding memory fragmentation. But this method can
also be a big fail if coded lazily to first allocate one huge chunk of memory. These
allocators should dynamically manage their requests for more storage, using some
reasonable incremental block size, rather than attempting to guess their maximum
requirements up front.

References

1. Ulrich Drepper (2007), What Every Programmer Should Know About Memory,
November 21, 2007, http://people.redhat.com/drepper/cpumemory.pdf

2. Agner Fog (2023), Optimizing software in C++: An optimization guide for
Windows, Linux, and Mac platforms,
PDF: https://www.agner.org/optimize/optimizing_cpp.pdf

3. Kurt Guntheroth (2016), Optimized C++: Proven Techniques for Heightened
Performance, O’Reilly Media, https://www.amazon.com/dp/1491922060

4. Wikibooks (2023), Optimizing C++/Writing efficient code/Performance
improving features,
Wikibooks, https://en.wikibooks.org/wiki/Optimizing_C%2B%2B/Wri
ting_efficient_code/Performance_improving_features

5. Bjorn Andrist, Viktor Sehr (2020), C++ High Performance: Master the art of
optimizing the functioning of your C++ code, 2nd Edition, Packt Publishing, Dec
2020, https://www.amazon.com/dp/1839216549,
Code: https://github.com/PacktPublishing/Cpp-High-Performance-
Second-Edition (Chapter 7 is on memory management.)

http://people.redhat.com/drepper/cpumemory.pdf
https://www.agner.org/optimize/optimizing_cpp.pdf
https://www.amazon.com/dp/1491922060
https://en.wikibooks.org/wiki/Optimizing_C%2B%2B/Writing_efficient_code/Performance_improving_features
https://en.wikibooks.org/wiki/Optimizing_C%2B%2B/Writing_efficient_code/Performance_improving_features
https://www.amazon.com/dp/1839216549
https://github.com/PacktPublishing/Cpp-High-Performance-Second-Edition
https://github.com/PacktPublishing/Cpp-High-Performance-Second-Edition

107 Efficient Modern C++ Data Structures

Part II: Contiguous Data

Structures

“Life moves pretty fast.
If you don’t stop and look around
once in a while, you could miss it.”

— Ferris Bueller’s Day Off, 1986.

David Spuler 108

109 Efficient Modern C++ Data Structures

9. Arrays

Arrays are wonderfully efficient! They’re the most basic data structure known to
humanity. The main features to note about an array include:

• Contiguous memory storage — great for cache locality.

• Single type of data — no need to be worried about the type.

In modern C++, there are several ways to create an array data structure:

• std::array

• std::vector

• std::inplace_vector (C++26)

There are also some older methods of using arrays that still work in modern C++
code:

• Fixed-size array variable: int arr[10];

• Allocated fixed-size array: new int[10];

• Old-style allocated array: malloc(sizeof(int)*10);

Note that the size of arrays in these examples don’t need to be a compile-time
constant in C++. They can be a variable, where the size of the declared array is
sorted out at run-time.

Array Operation Complexity

There are two main types of arrays to store objects: sorted and unsorted. Well,
actually, there’s other types of arrays with different semantics (e.g., stacks, queues,
heaps, ring buffers), but let’s just look at searching and sorting for now.

Are they fast?

David Spuler 110

Here’s the 10,000 foot view:

• Unsorted arrays — very fast insertions/deletions, but slow searches (linear)
and even slower to sort the data.

• Sorted arrays — faster search (logarithmic), slower insertions/deletions,
and great if you need sorted data.

In more detail, here’s the overall complexity analysis of the basic searching methods:

• Searching — unsorted is O(n) (linear search) and O(log n) for sorted (binary
search).

• Inserting — unsorted is O(1) (add to the end), but O(n) if sorted (shuffle
required).

• Deleting — this is O(1) if unsorted (tricky swap method!), but O(n) if
sorted (also shuffles).

• Print unsorted — both are O(n) with a linear scan of the array.

• Print sorted — unsorted is O(n log n) because it requires an array sort, but
only O(n) if already sorted.

And some other algebraic operations:

• Maximum/minimum — unsorted is O(n) because it requires a scan, but
only O(1) if already sorted (choose first or last element).

• Top-k elements — unsorted requires an O(n log n) sort or at least a “partial
sort”; only O(k) for a sorted array.

• Sum or average — both are O(n) because the whole array must be scanned.

Modern C++ Arrays

We’re going to implement our own sorted and unsorted arrays to examine the
algorithms. Standard C++ already has two types of standard unsorted arrays
in std::array and std::vector. We could just wrap around those types, but
I’m going to use low-level raw arrays to show the algorithms in more detail.

Sorted arrays are trickier. Note that there’s no “sorted array” class in the standard
C++ library. However, there are some primitives we can use to achieve sorted
arrays:

• std::sort() — modern C++ version with a hybrid quicksort/heapsort
algorithm.

• qsort() — old quicksort with function pointers (not recommended).

111 Efficient Modern C++ Data Structures

There is also some builtins for “binary search” on a sorted array:

• std::binary_search() — modern C++ implementation for a sorted
array.

• std::equal_range() — binary search that handles duplicate elements
in the array.

• bsearch() — old-style binary search with function pointers (not
recommended).

If we are inserting into a sorted array, we don’t need binary search exactly,
because we’re assuming the element isn’t already in the array. Instead, we need a
“binary-like search” method of finding the index location to insert a new item. In
other words, we need to find the spot where the item fits in the array, but do it
logarithmically, rather than using a slow linear scan.

Writing a binary-like search algorithm to find the insertion point is very fiddly
coding! Fortunately, the standard C++ library has two methods that code it for us:

• std::lower_bound() — generalizes binary search for use with
insertions.

• std::upper_bound() — similar version that finds the location above.

Strictly speaking, std::binary_search() in the C++ standard only requires a
“partitioned” array rather than a “sorted” array. But for a scalar type with well-
defined comparisons, this is the same thing.

Custom Array Implementation

Anyway, let’s look at some of the basic operations in our custom versions of array
algorithms. We’ll examine the unsorted array version, but the sorted version is
almost identical. Here’s the overall class members:

 template<typename T, int N>

 class UnsortedArray {

 private:

 T arr_[N];

 int capacity_ = N;

 int count_ = 0;

 //...

 };

David Spuler 112

Note that “capacity_” is somewhat redundant if we’re templating based on a
compile-time array size, but useful if dynamically constructing our arrays at runtime.

Here are some of the basic “getter” functions:

 int size() { return count_; }

 int count() { return count_; }

 int capacity() { return N; }

And here are some of the basic utility functions:

 bool empty() { return count_ == 0; }

 bool full() { return count_ == N; }

Sorted Arrays

There is no standard C++ sorted array class, so we’ve got to implement our own.
A sorted array has a good search lookup cost, being logarithmic in the number of
elements, by using the “binary search” lookup algorithm. However, it’s not as good
as a hash table (e.g., std::unordered_map), which has O(1) average search cost.

Insertions and deletions have a poor O(n) theoretical complexity, although the first
phase of finding where to insert or delete is also logarithmic, using an algorithm
very similar to binary search. The linear cost arises because once they find the
location, they then need to shuffle elements:

• Make a gap (insertion), or

• Close a gap (deletion).

If we’re using a class object for our array, such as std::array or std::vector,
we can use the insert() method. This is doing a shuffle behind the scenes.

The main advantage of a sorted array is that it’s, well, sorted, so if we want to
process the array elements in sorted order, then it’s already done for us. That’s
desirable because sorting an unsorted array is expensive with an O(n log
n) complexity (e.g., std::sort typically uses a quicksort-heapsort hybrid).

If we need sorted data, there are other options in C++ containers.
The std::map container is implemented as a balanced binary tree, called a “red-
black tree,” and this has logarithmic complexity for all major operations: search,
insertions and deletions. However, a sorted array has good memory cost because it
used contiguous storage, so it should not be underestimated!

113 Efficient Modern C++ Data Structures

Shuffling Array Elements

Shuffling of array elements along by one location is required for both insertion and
deletion in sorted arrays. Shuffle right to create a gap for a new insertion, and shuffle
left to close a gap after deletion. We can also use this idea for unsorted arrays, but
there are faster tricks, as examined later in this section.

In practice, shuffling of sorted arrays is quite efficient for scalar types via a memory
block copy, using the memmove() standard function. Note that memmove() is an
older function that does a bytewise copy of the memory that ignores object
constructors and move operators. Presumably, the standard insert() method is
using fast byte copies for scalar types.

Here’s an obscure pitfall: we cannot use various other copying methods because
the shuffle involves overlapping source and destination memory blocks. There does
not seem to be a version of C++ copying that permits overlaps. These functions
would be incorrect and lead to undefined behavior on overlapping memory blocks,
which is definitely true of any array shuffle:

• std::memcpy (old C-style)

• std::copy_n

However, we can use the overloads of the std::move function that work on
ranges of multiple objects. These version of std::move have a real runtime cost,
unlike the basic version, which is a compile-time type-cast that converts to a
movable R-value reference (with no runtime code generated). We also need to pay
attention to whether we are shuffling to the left or right, because these functions
don’t work for all overlapping arguments.

• std::move or std::copy — moving or copying left (i.e., close a gap
for deletion).

• std::move_backward or std::copy_backward — move or copy to
the right (i.e., create a gap for insertion).

Note that using std::copy or std::copy_backward functions also work
here, but copying is slower than moving for non-scalar types. Hence,
the std::move versions are more general, but still have some downsides:

• Expensive for non-scalar objects.

• Iterators are invalidated on the array.

• Invalidates any pointers or references to specific objects.

David Spuler 114

Unfortunately, the shuffle cost is terrible for complex objects that will require their
move operators called for every single object. I can’t say that I recommended sorted
arrays for those types. Note that there are also various types of objects where we
could still use a memory block move to do a “shallow move” of the objects (i.e.,
“relocatable objects”), rather than individually moving each element. However, this
needs tricks to prevent C++ from doing its move thing, such as raw array type.

Binary-Like Sorted Array Insertion

Sorted arrays are logarithmic for searches, but not quite as good for insertions and
deletions. Inserting a new element into a sorted array is a three-phase algorithm:

1. Find the location to insert,

2. Shuffle elements to the right (create a gap), and

3. Insert the new element at the location.

There are three ways to find the location in a sorted array:

1. Linear search from the front.

2. Linear search from the back.

3. Binary-like search (faster!)

Linear search over a sorted array doesn’t use equality, but finds the first element the
bigger than the new element. Or to go in reverse, starting at the end.

The advantage of starting at the end is that we can shuffle as we go, but it’ll have
terrible cache locality problems in accessing memory addresses in reverse. CPU
memory prefetch algorithms usually assume a forward access order.

Anyway, neither of the linear algorithms are fast and they aren’t typically used. But
binary-like search for the insertion point is faster, with logarithmic complexity.

Binary-like search for insertion involves splitting up the array into two intervals,
and choosing between the two based on the midpoint value. This is not exactly the
same as binary search, because we’re assuming that the element is not already in the
array. Hence, it’s like binary search, but we’re looking for smaller versus bigger
elements in comparison to the new element, rather than seeking equality.

115 Efficient Modern C++ Data Structures

Sorted Array Deletion

Deletion of an element in a sorted array is easier than insertion. There are two major
phases:

1. Find the element using binary search.

2. Shuffle the elements left to close the gap.

Note that we’re using real binary search, not the binary-like search for insertion,
because we assume the element is present. We can’t delete an element that’s not in
the array. Hence, we can use std::binary_search to find the element.

The deletion phase is a left shuffle of all the array elements. As discussed above, we
can do a byte copy such as memmmove() or std::move, which both are well-
defined with overlapping memory blocks.

These methods can be efficient for scalar and other trivial types where bitwise
shallow copying is allowed, but may trigger a cascade of move constructors or move
assignments on complex classes. Thus, sorted arrays can be potentially inefficient
for non-scalars because of the hidden costs of shuffling objects.

Unsorted Arrays

Unsorted arrays are not an all-star data structure, and don’t get a lot of use for basic
search requirements. The main features include:

• Slow search lookups in cases like associative arrays or sets (linear scan cost).

• Fast insertions and deletions (constant cost, without any “shuffle”).

• Sorting an unsorted array is costly with O(n log n) complexity.

Unsorted arrays are very useful if we want fast insertions and deletions, but rarely
need to search or sort the array. Insertion is very fast with constant time, just by
adding the new element at the end of the array. Deletions can also be implemented
in constant time, but only via a trick of swapping the to-be-deleted element with
the last element.

Interestingly, we can always fix our unsorted array by sorting it, and that turns out
to be a decent idea. Let’s examine the two ways to get a sorted array:

David Spuler 116

• Build an unsorted array, then sort it, or

• Incrementally maintain a sorted array.

The first plan costs O(n) in total to do all the n insertions (unsorted), and then
costs O(n log n) to sort it with std::sort. The second plan costs O(n) for every
one of the n insertions into a sorted array, and so we get to O(n^2) quadratic
complexity for the incremental sorted array approach. In summary, our analysis
suggests:

• Unsorted array (sort it later) — complexity of O(n log n).

• Sorted array (incremental) — quadratic O(n^2) complexity.

An unsorted array might be the way to go? However, as discussed above, it’s not as
bad as that sounds if we have scalar types in a sorted array, because the “shuffle” is
a single memory block copy.

Note that an unsorted array is actually sorted in a weird way: by the order of
insertions. Hence, if you have an ordered sequence of data, they are mapped into
the array sequence according to the order in which they are processed. If these
objects have an associated timestamp, your supposedly unsorted array may well be
sorted implicitly according to the timestamp field.

Unsorted arrays are underestimated, and can be efficient in practice. An array that
is unsorted functions as a list of items, but is stored in contiguous memory, which
can make scanning the array efficient in terms of cache locality (e.g., faster than
linked lists in std::list or red-black binary trees in std::map).

Unsorted arrays can be useful for semantics other than basic search lookups. An
array can efficiently implement a fixed-size stack, but a fixed-size queue is better
implemented using a ring buffer that progresses around the array in a circular
fashion. You can also put a balanced binary tree or a heap data structure into an
array, but we’re getting far away from a basic unsorted array in doing that.

Linear Search of Unsorted Arrays

Linear search is the worst part of unsorted arrays. There’s not really a better way to
search an unsorted array. Here’s a simple hand-coded linear search of the array to
demonstrate the algorithm that’s happening:

 int find_linear_search(const T &item)

 {

 for (int i = 0; i < count_; i++) {

117 Efficient Modern C++ Data Structures

 if (item == arr_[i])

 return i; // found

 }

 return -1; // not found

 }

The above assumes we’re stored our data in a raw array type as the data member.
If we choose to store the data as std::array or std::vector, we could use
standard member functions to search the array, such as find().

Note that if we were doing a lot of searches of an array without many insertions or
deletions, here’s an idea: pre-sort the array! This gives us this approach:

1. Pre-sort the array with std::sort

2. Use binary search on our newly sorted array.

The use of binary search reduces our searches to logarithmic complexity, which is
much faster than linear search.

Template Value vs Reference Parameters

Templating based on a type has a common conundrum about how to choose
between passing function parameters by reference or value. The desirable efficient
that we want is usually:

• Small integer types — pass-by-value.

• Large class types — pass-by-reference.

Which signature should we use?

 int find_linear_search(const T &item) // Const ref

 int find_linear_search(T item) // Pass-by-value

Which one we desire for larger non-class types, such as long or double, is
somewhat implementation-dependent and you need to benchmark it!

Unfortunately, there’s no way to alter the signature of a templated function
declaration according to a compile-time setting. I don’t think there’s even a way to
do it in type traits.

David Spuler 118

However, the most common modern C++ style is to use const reference
parameters. The reasons are:

• Large class types — const& references are much faster.

• Small integer types — it’s not much worse.

In one sense, I’m not sure about the last point, because:

1. It’s a micro-optimization, and

2. The compiler may auto-optimize it anyway.

But there is a simple solution whereby you can use const& reference parameters
for generic types, but use pass-by-value for small integers. Template specialization
to the rescue! Just define specialized versions of templated functions for the handful
of small integer types:

 int find_linear_search(int item) // Pass-by-value

 {

 // etc...

 }

Now you only have to define about 27 more versions for every single integral and
floating-point type.

Fast Linear Search

You’re thinking that this doesn’t exist, and the heading is an oxymoron. But there
are situations where linear search on an unsorted array can be faster than the
alternatives:

• Small number of elements

• Sentinel search optimization

• Low-level support for searching

• Parallel linear search

Let’s examine all of these techniques in turn.

Sentinel linear search optimization. This is an optimization attributable to
Knuth (1973) in the Mix programming language. The idea is to remove the
conditional test in the loop (i.e., removing “i < count”) by guaranteeing a

119 Efficient Modern C++ Data Structures

successful search. The trick is to add an extra element at the end of the array, which
equals what we’re searching for.

Note that this requires that we declare our array data member with one more item
than the capacity. We always need a spare element at the end, even if the array is
full to capacity.

 T arr_[N + 1]; // Extra dummy element

Sentinel-based searching is only good for arrays of scalar types, because it requires
making a copy of the search element, which is created at the end. The sentinel
search of an unsorted array still has linear complexity, but has a lower complexity
constant because each loop iteration is faster in practice.

Low-Level Search Support

Some types of CPU have explicit instructions that support scanning a memory
block for a value. If we’re using an array of characters or bytes, there are these
candidates:

• std::find — on an array, vector, or string type.

• strchr — old-style character strings (null-terminated)

• memchr — low-level memory blocks of bytes.

The modern C++ code using std::find looks something like this:

 bool find_standard(const T& item)

 {

 auto iter = std::find(arr_, item);

 return iter != arr_.end();

 }

The version that returns the integer index of the element in the array is:

 int find_standard_index(const T &item)

 {

 auto iter = std::find(arr_, item);

 if (iter == arr_.end()) return -1; // Fail

 return iter - arr.begin(); // Pointer arithmetic

 }

David Spuler 120

Note that this idea only works for arrays of contiguous memory. Pointer arithmetic
doesn’t work well on general iterators for dynamic memory containers.

Parallel Linear Search

There are multiple ways that we could parallelize our linear search algorithm. It just
depends on our budget! Here are some options:

• CPU SIMD instructions (e.g., AVX or ARM Neon)

• Multithreading (on CPU)

• GPU hardware

SIMD instructions allow use to test multiple values in parallel on a CPU. For
example, an x86 CPU from Intel or AMD allows the AVX sets of instructions, of
which there are a few versions:

• AVX — 128 bits (4 x 32-bit integers).

• AVX-2 — 256 bits (8 x 32-bit integers).

• AVX-512 — 512 bits (16 x 32-bit integers).

• AVX-10 — 1024 bits (32 x 32-bit integers).

CUDA C++ GPU linear search. If we have an NVIDIA GPU, the type of
parallelism is much more extensive. In fact, we can create 1024 threads, and each
thread can compare only a few elements with our search key. This sounds like an
almost constant-time algorithm on the GPU, but it’s not quite that good. In
practice, there are two phases:

1. Compare each loop element in parallel, and

2. Collate the results.

The GPU can compare all the array elements 1024 at a time. Hence, it’s not constant
time, but it’s still linear time divided by 1024.

Also, at the end we have a synchronization problem with detecting which of the
threads had a successful result of the comparison. It’s not quite as bad as a
“horizontal reduction” of the array (e.g., max or sum), but we have to synchronize
the results in shared memory or global memory. We could use “warp shuffle”
instructions that coordinate via faster GPU registers, but these only work within
each warp of 32 threads, so it ends up being like a horizontal reduction over each
warp.

121 Efficient Modern C++ Data Structures

Unsorted Array Insertions

Inserting into an unsorted array is very fast because we can just insert it at the end.
This is very efficient with constant time complexity. The code example for insertion
at the end:

 void insert_end(const T & obj)

 {

 if (full()) {

 throw overflow_error("Insert on full array");

 }

 else {

 arr_[count_++] = obj;

 }

 }

There’s nothing much to this code: only one statement! It’s very efficient to insert
at the end of an array.

Insertion at an Index

Inserting in the middle of an unsorted array seems to be an O(n) operation. If we
needed to insert into the middle, it would seem slower because of the need to
shuffle the other elements out of the way. And that would certainly be true of a
sorted array, where a shuffle is needed to maintain the sorted array.

But, no, we’re talking about an unsorted array here. Let’s ban the shuffle.

There’s a move trick to insert into the middle of an unsorted array at a given index
in O(1) time. The trick is to note that in an unsorted array we only need to move a
single element out of the way.

The idea is two short phases:

1. Move the existing element “out of the way” and to the end.

2. Insert the element at that location.

Here’s a coded version of the “move away to the end” optimization. One fast way
is to use std::move, which is like a type cast with no runtime code, and this causes
move assignment on a complex object (or simple byte copying on a scalar type).

David Spuler 122

Here’s the code:

 void insert_at_offset(const T & obj, int offset)

 {

 if (full()) {

 throw overflow_error("Insert on full array");

 }

 else {

 // Move to end

 arr_[count_ + 1] = std::move(arr_[offset]);

 arr_[offset] = obj; // Insert at location

 count_++;

 }

 }

Note that this only works for an unsorted array, not a sorted array. If we wanted a
sorted order, or we need the implicit order-of-insertion in an unsorted array, then
this “move to end” idea cannot be used as it will ruin the ordering.

Fast Unsorted Array Deletion

There’s a trick for deleting an arbitrary element from an unsorted array that is often
missed in articles. Unsorted array deletion need not be O(n) complexity, but can be
done in O(1) time.

Deletion of an item from an unsorted array is a two-phase operation: find and
destroy. Here’s the code to find the element, which uses linear search to find its
offset, and is thus O(n) unavoidably:

 void delete_key(const T& item)

 {

 int offset = find_linear_search(item);

 if (offset == -1) {

 throw invalid_argument("Delete not found");

 }

 else {

 delete_offset_swap(offset);

 }

 }

The naive idea for deleting from an unsorted array that we’ve found here is to
remove the element and “shuffle” the rest of the elements downwards (to the left)
so that there’s no “gap” in the array. Doing a shuffle isn’t so bad for scalar types,
where it’s probably just one call to memmove behind the scenes.

123 Efficient Modern C++ Data Structures

But for non-scalar objects, we’re moving a lot of objects. Either way, our unsorted
array deletion with a shuffle has cost complexity of O(n) time.

There is a faster way!

First, let’s get rid of the special cases: if there’s only one element in the array, just
erase it, and set the count to zero. And if the erase location is the end-most object,
just erase it there, and decrement the count. Otherwise, if the object we want to
remove is at the front or middle of the array, we do a tricky swap with the end
element:

• Swap arr[i] with arr[n-1]

• Erase at arr[n-1]

• Decrement n

This swap idea has changed our unsorted array deletion from O(n) time to the
optimal O(1) complexity. There’s no loops anywhere!

Note that we can use std::swap here, and we may need to explicitly run the
destructor of objects being destroyed (optional for scalar types). Here’s what the
code looks like:

 void delete_offset_swap(int offset)

 {

 if (empty()) {

 throw underflow_error("Delete empty array");

 }

 else if (count_ == 1) { // ***

 if (!std::is_trivially_destructible<T>::value) {

 arr_[0].~T(); // Expl destructor if needed

 }

 count_ = 0;

 }

 else {

 if (offset != count_ - 1) {

 // Swap with the end element

 std::swap(arr_[offset], arr_[count_ - 1]);

 }

 if (!std::is_trivially_destructible<T>::value) {

 arr_[count_ - 1].~T(); // Expl dest (at end)

 }

 count_--;

 }

 }

David Spuler 124

The above code uses “type traits” from modern C++ to detect whether or not we
need to explicitly run the destructor when destroying an object in the array. This is
very efficient because type traits are evaluated to compile-time constants, so the
compiler should optimize out the path if not needed (i.e., using “dead code
elimination”).

There are several options available in the type traits library, depending on exactly
what types we want to support in our array:

• std::is_trivially_destructible<T>::value

• std::is_destructible<T>::value

• std::is_scalar<T>::value

Actually, the above code has a minor inefficiency. The giveaway is that two code
sequences with is_trivially_destructible are similar. Can you see it? We
don’t need to expressly test for count==1 (marked with stars), because the general
code in the else clause also works for that special case as well.

And also, what was I thinking? There’s no need to swap the element to the end,
only to destroy it there. That’s two hidden moves inside std::swap, when we
only need one moved element. The better idea than swapping is to destroy the
object where it is, and then move the end element down:

 if (!std::is_trivially_destructible<T>::value) {

 arr_[offset].~T(); // Destroy in place

 }

 if (offset != count_ - 1) {

 // Move down the end element

 arr[offset] = std::move(arr_[count_ - 1]);

 }

 count_--;

Note that std::move() here is only a compile-time type cast operation. It will
ensure that the move assignment operator is used on complex class types, and is
also efficient for scalar and other trivial types.

Yes, moving the end element to the middle of the unsorted array changes some
addresses. It will certainly invalidate iterators over the container. But so would the
shuffle of elements, so we’re okay there.

Note that this only works for an unsorted array data structure. If we did this on a
sorted array, we’d ruin the sorting order in the array by moving the biggest element
into the middle of the sequence. Sorted arrays need to do the shuffle.

125 Efficient Modern C++ Data Structures

One final point is that this fast deletion trick with swapping will break the unofficial
ordering of the array by its insertion order. If we have timestamps associated with
our array elements, swapping the end element into the middle will ruin that implicit
ordering.

Container Deletion Pitfalls

While we’re on the topic of deletions, let’s look at some common mistakes with
deletions from C++ containers. There are at least two major pitfalls in using
the erase() method to remove an object from a C++ container.

Here’s the basic first attempt:

 for (auto iter : container) {

 if (want_to_delete(*iter)) {

 container.erase(iter); // Kaboom!

 }

 }

This will crash with a big mushroom cloud. The problem is that we’ve assumed the
iterator stays valid, whereas the erase() method actually returns an updated
iterator that we need to use. We can’t use a range for loop to do this, so we have
to use begin() and end() manually:

 for (auto iter = container.begin();

 iter != container.end(); ++iter) {

 if (want_to_delete(*iter)) {

 // Use return value

 iter = container.erase(iter);

 }

 }

This is not a crash, but still a major bug. The iterator loop skips over the next item
after the erased object. There are two increments in the deletion sequence:

1. erase() returns the next valid iterator (after the removed object), and

2. ++iter skips to the next element (again!).

David Spuler 126

To be correct, we need to change the idiom to avoid ++iter if we erase anything.

 for (auto iter = container.begin();

 iter != container.end(); /*Not here!*/) {

 if (want_to_delete(*iter)) {

 // Use return value

 iter = container.erase(iter);

 }

 else {

 ++iter; // Only if not erasing!

 }

 }

And now the code finally works!

Bypassing Interfaces

The std::array and std::vector classes are designed to allow you to get
access to the stored data via the data() member function. It’s also guaranteed that
the data is stored in contiguous memory locations. Note that this is also true
of std::string, which has a data() member and also c_str(), which
returns the same address.

The data() method allows direct access via pointers or low-level array types to
the data in the standard array or vector containers. Whether doing this is any faster
is unclear, and needs benchmarking, since many of the member functions are simple
pass-through inlined functions that work on the internal data anyway.

But there’s certainly a few pitfalls! The address returned by the data() member is
not guaranteed forever. There are at least two major types of bugs:

• Object is destroyed, or

• Object is moved or modified.

Since you have a pointer to an object’s data, you want that object to stick around.
But the object can disappear in a few ways:

• Stack object goes out of scope (triggering the destructor and unwinding
the stack).

• Allocated object is deallocated by the delete operator.

• Object is moved by a container (e.g., an auto-resize or other “iterator
invalidation” situation).

127 Efficient Modern C++ Data Structures

Even if the object stays around to watch your skills, there’s another problem. If the
underlying object is modified, then the internal address of the data that you have
may become invalid. The issues are very similar to the well-known “invalidated
iterator” problems with containers.

Changes to the container that probably invalidate the data() pointer include:

• Insertions and deletions

• reserve()

• resize()

• shrink_to_fit()

Any of these members that modify the object are allowed to move the data. For
example, they might allocate a different memory block, and move the whole array
away from your pointer. But there are a huge number of other situations under
which an iterator into a container may become invalidated, which presumably also
invalidates an old address returned from the data() member function.

Watch out!

Extensions

1. Benchmark the unsorted array implementation above using a raw array
type versus an alternative approach of using a std::vector member
object to store the data.

2. Benchmark the sorted array implementation with a raw array versus
using std::vector as the internal data array, especially to see if our
hand-coded binary search is fast or not.

3. Explore the use of “shallow copying” on sorted arrays containing
“relocatable objects” in the shuffle needed for insertions and deletions in
a sorted array data structure.

4. Explore the efficiency of calls to move constructors in a “shuffle” for a
sorted array implemented using std::vector or std::array.

5. Implement the binary-like search algorithm to find the insertion location
in a sorted array. (Note that deletion is just the normal binary search to find
the element.)

6. Benchmark inserting into an unsorted array and then sorting
using std::sort, because incrementally maintaining a sorted array. Do
the results differ for a scalar integer type versus arrays of an object
like std::string (which has move operators)?

7. Implement a hybrid binary-linear search where the binary search reverts to
linear search once the interval is small enough.

David Spuler 128

8. Implement an AVX SIMD version of linear search over integers that tests
a number of integers in the array at once.

9. Implement a “cache-aware” binary search that chooses the middle index at
the start of a cache line (where possible), and tests all values in that cache
line immediately using an unrolled linear search.

10. Implement a binary search that is both cache-aware and uses AVX SIMD
instructions to test all elements in the same cache line more efficiently.

129 Efficient Modern C++ Data Structures

10. Pointer Arithmetic

What is Pointer Arithmetic?

Pointer arithmetic is a tricky C++ optimization that allows us to do faster arithmetic
on arrays and other contiguous data. Some of the key points are:

• Pointer arithmetic is fast with low-level raw array types.

• References are like pointers that cannot be nulled.

• Iterators are similar to pointers in some cases.

When do you use them in modern C++? Here are some situations:

• Contiguous containers like std::vector can also be optimized with
pointer arithmetic.

• Iterator arithmetic on contiguous C++ containers is similar to pointer
arithmetic (also fast).

• Text processing with low-level character arrays and pointer arithmetic can
be faster than std::string.

One optimization is that pointer arithmetic can be used to get rid of incremented
variables in loops. Instead, a pointer can be incremented each loop iteration. This
changes an array access “arr[i]” into a pointer access “*ptr” and is usually
faster.

Arrays and pointers are besties in C++ and there’s a way that mathematical
arithmetic operators can work on both. Consider the declarations:

 int arr[10]; // Array

 int *ptr; // Pointer

To start with, we can cross over between pointers and arrays in both directions.
You can set the pointer to point at the array, and C++ allows us to use index
notation on a pointer:

 ptr = arr; // Use array like a pointer

 x = ptr[3]; // Use pointer like an array

David Spuler 130

Here, x will get the value of arr[3] via ptr[3]. The pointer and array are
equivalent. Note that the “&” address-of operator can be optionally used here. We
could have written “ptr=&arr” to copy the address, but it’s optional.

C++ allows array index accesses on pointers with “ptr[3]” as above. We can also
do this using “pointer arithmetic” with the “+” operator and the “*” pointer de-
reference operator:

 x = *(ptr + 3); // Same as ptr[3]

The expression “ptr+3” is the address of the third element in the array
(i.e., &arr[3]), and the “*” dereference operator gets the value pointed to by the
pointer (i.e., arr[3]).

Why does this work? If ptr is pointing to the start of an integer, shouldn’t
“ptr+3” be a weird address in the middle of an integer?

No, because C++ does “pointer arithmetic” on pointers. Because “ptr” is an
“int*” type pointer, the compiler knows to work on “int” data. With pointer
arithmetic, the “+” operation adds a multiple of the bytes of the size of int types.
So “ptr+1” is not the address 1 more than ptr, it’s actually 4 more than ptr for
a 4-byte int (assuming 32-bit integers). And “ptr+3” is actually the address
“ptr+12” in terms of bytes.

Details of Pointer Arithmetic

Which Operators Do Pointer Arithmetic? Pointer arithmetic works with a
number of arithmetic operators:

• Increment — ptr++ adds 1*size bytes to ptr.

• Decrement — ptr-- subtracts 1*size bytes from ptr.

• Addition — ptr + n adds n*size bytes.

• Subtraction — ptr-n subtracts n*size bytes.

• Assign-Add — ptr += n adds n*size bytes to ptr.

• Assign-Subtract — ptr -=n subtracts n*size bytes from ptr.

Note that there’s no pointer arithmetic multiplication or division. Actually, I was
told that C++37 was going to have a C++ pointer multiplication operator that
scanned down an array doing paired multiplications, adding them up as it went, and
all in one CPU cycle, but then someone woke me up.

131 Efficient Modern C++ Data Structures

Pointer Comparisons: You can also compare pointers, which isn’t really doing
any special pointer arithmetic, but works as normal comparisons on their addresses:

• Equality tests — ptr1 == ptr2 or ptr1 != ptr2

• Less than — ptr1 < ptr2 or ptr1 <= ptr2

• Greater than — ptr2 > ptr2 or ptr1 >= ptr2

Segmented Memory Model Pointer Comparisons: Note that there’s a weird
portability gotcha in relative pointer comparisons (i.e., less-than or greater-than).
They’re only guaranteed to work in very limited scenarios by the C++ standard,
such as when the pointers are both operating over the same array data.
Programmers tend to think of the address space as one huge contiguous range with
addresses, where you can compare all of the pointers in the program against each
other, and make some coding assumptions based on that. However, there are
architectures where pointer addressing is more complicated, such as where pointers
are a multi-part number pointing into different memory banks with a more
convoluted segmented addressing scheme. For example, pointers to allocated heap
memory might be separate from the pointers to global static data, and not easily
comparable.

Pointer Differences: You can subtract two pointers using the normal “-”
subtraction operator. The result is not the number of bytes between them, but the
number of objects. Hence, the two pointers must be of the same type (i.e., pointing
to the same type of object). Consider this code:

 int arr[10];

 int *ptr1 = &arr[1];

 int *ptr2 = &arr[2];

 int diff = ptr2 - ptr1;

The value of “diff” should be 1 in C++ (rather than 4 bytes), because the two
pointers are one element apart (i.e., 1 integer difference). Note that “diff” is a
signed integer here, and the value of subtracting two pointers can be negative (e.g.,
“ptr1-ptr2” above would be “-1” instead). Technically, the official type of the
difference between two pointers is “std::ptrdiff_t” which is an
implementation-specific integral signed type that you can use if you are the sort of
person who alphabetizes their pantry.

Adding Pointers Fails: Note that adding two pointers with “ptr1 + ptr2” is
meaningless and usually a compilation error. Also invalid are weird things like the
“+=” or “-=” operators on two pointers. Even though “-” is valid on two pointers,
“ptr1-=ptr2” fails to compile because the result of “ptr1-ptr2” is a non-
pointer type.

David Spuler 132

Char Star Pointers (Size 1 Byte): Note that if you want to avoid pointer
arithmetic, and see the actual numeric value of addresses, you can use a “char*”
type pointer (or “unsigned char*”). Since sizeof(char) is 1 byte, then all
of the pointer arithmetic will just add the expected number of bytes (e.g., ptr++ on
a char* pointer adds 1 to the address). If you want to know the actual number of
bytes between two pointers, then cast them to “char*” type before doing the
pointer subtraction.

 int diffbytes = (char*)ptr2 - (char*)ptr1;

Stride of an Array. A useful piece of terminology when processing lots of AI
model data in memory is the “stride” of an array. This means the number of bytes
between adjacent array elements. We can try to compute it as follows:

 int arr[100];

 int stride = &arr[2] - &arr[1]; // Wrong

Nope, that’s a fail. This isn’t the stride, because it did pointer arithmetic. The
addresses of array elements are really pointers, so the stride variable above is always
1 (the adjacent elements are 1 apart in pointer arithmetic). We need to convert
to char pointers to get the stride in bytes.

 int arr[100];

 int stride = (char*)&arr[2] - (char*)&arr[1];

Can’t we just use sizeof to get the stride? Isn’t the stride above going to equal 4,
which is sizeof(int)? Yes, in the example above the use of sizeof is correct,
but no, that is not true in general. The stride will often equal the element size, but
may be larger. For a simply packed array of integers or other simple types, the stride
is almost certainly the size of the array element type. But this is not always true,
such as if it’s an array of a larger object with an awkward size that requires padding
bytes for address alignment considerations.

Loop Unrolling Stride. The term “stride” also has a secondary meaning when
talking about array processing with loop unrolling. The stride of an unrolled loop
is how long of a segment is being processed in each section of loop unrolling code.
For example, if a loop is unrolled with AVX-2’s 256-bit registers (equals 8 32-
bit floats), then the stride when discussed in the literature is either 8 floats or
8x4=32 bytes.

133 Efficient Modern C++ Data Structures

Void Pointer Arithmetic Fails: Note also that pointer arithmetic on a generic
“void*” pointer should be a compile error, because it points to unknown size
objects. Some C++ compilers will allow pointer arithmetic on void pointers with a
warning, and pretend it’s a “char*” pointer instead.

Finally, I don’t think you can increment a “function pointer” in valid pointer
arithmetic, but you’re welcome to try.

Pointers and Arrays

There is a close relationship in C++ between arrays and pointers. Array names are,
in many ways, just pointers to the first element in the array. The array indexing
operation is identical to a pointer expression involving address arithmetic. The
following algebraic identities hold:

 array[exp] == *(array + exp)

 &array[exp] == array + exp

These relationships have a number of consequences. First, the commutativity
of + means that exp1[exp2] is equivalent to exp2[exp1], which leads to weird
syntax tricks like “n[ptr]” instead of “ptr[n]”.

Another consequence is that, in many situations, pointers can be used rather than
arrays. For example, it is legal to apply the array indexing operator (i.e., square
brackets) to a pointer. For example:

 x = ptr[3];

Just like arr[3], this sets x to equal the third element away from ptr,
where ptr is pointing into an array.

Array Function Parameters: The array and function relationship is complicated
when an array is a function parameter. When an array is passed to a function, the
address of the first element of the array is passed. An array formal parameter is
implemented as a pointer variable (i.e., a pointer pointing to the start of the array).

This explains why arrays are passed by reference, not by value. A local copy of the
array is not used inside the function. Instead, a pointer to the original array is used.
Hence, any change to an element of the local array variable is actually changing the
original array (i.e., pass-by-reference instead of pass-by-value).

David Spuler 134

The differences between pointers and arrays are few. The main one is that an array
name is not a variable, whereas a pointer is. Hence, an ordinary array name declared
as a local variable cannot be assigned to, or incremented, whereas a local pointer
variable can be. An array is similar to a constant pointer (e.g., int *const ptr).
Note that this is untrue when the array is a function parameter, when it can be
incremented or modified.

There are also the differences between pointers and array types in relation to their
initializations. Consider the two initializations:

 char *p = "hello";

 char arr[100] = "hello";

For the pointer p, the string literal ”hello" is stored in separate memory. Only
the required number of bytes are allocated (six, because of the extra character zero
added by the compiler to terminate the string). For the character array “arr”, 100
bytes are allocated, but only the first six are filled.

Pointer Arithmetic Loop Optimizations

The main way that we use pointer arithmetic for optimization is to change a loop
over an array into loop pointer arithmetic. Note that this is primarily a sequential
code optimization, and does not change anything in terms of vectorization for
parallel execution.

Pointer arithmetic is mainly used to get rid of an incrementer variable in sequential
code. Here’s a vector dot product with basic incremented loop variable i++ and
array index syntax v1[i] used inside the loop:

 float aussie_vecdot_basic(

 float v1[], float v2[], int n)

 {

 // Basic vector dot product

 float sum = 0.0f;

 for (int i = 0; i < n; i++) {

 sum += v1[i] * v2[i];

 }

 return sum;

 }

135 Efficient Modern C++ Data Structures

And here’s the same code when converted to pointer arithmetic:

 float aussie_vecdot_ptr(float v1[], float v2[], int n)

 {

 // Pointer arithmetic vector dot product

 float sum = 0.0f;

 float* endv1 = v1 + n; // v1 plus n*4 bytes

 for (; v1 < endv1; v1++,v2++) {

 sum += (*v1) * (*v2);

 }

 return sum;

 }

How does this work? We got rid of the temporary variable “i” by using pointer
arithmetic “*v1” instead of array indices “v1[i]”. We are also using the function
parameters “v1” and “v2” as temporary local variables, as permitted in C++, so
we don’t need an extra temporary pointer variable.

The way this works with pointer arithmetic is v1 and v2 are treated as pointers,
which works due to the near-equivalence of pointers and arrays in C++. Rather
than using an array index “i” we increment both these pointer-array variables:

 v1++,v2++

These for loop incrementers “v1++” and “v2++” are both adding 4 bytes (the size
of a 32-bit float) to the pointers. Also note these two increment statements are
separated by the C++ comma operator, not by a semicolon.

The “endv1” end marker is calculated as the address of “v1[0]” plus “n*4” bytes,
because the “+” operator in “v1+n” is pointer arithmetic addition, which is auto-
scaled by the size of the pointed-to object (i.e., 4 bytes for 32-bit float here), rather
than normal integer addition.

Note that a further micro-optimization is possible. We can change the less-than test
(“v1 < endv1”) to an inequality test (“v1 != endv1”), because equality tests
are slightly faster than less-than tests. Since this test is effectively inside the loop
and done every iteration, this might be worth doing.

The trade-off is safety: it’ll become an infinite loop if you get the pointer math
slightly wrong, but hey, your code has no bugs, right?

David Spuler 136

Smart Pointers

Smart pointers are a programming idiom to make C++ pointers safer. They are not
a speed optimization, and in fact, they are a wrapper that adds extra logic around
the use of a raw pointer, and will be marginally slower. However, they avoid many
C++ pointer pitfalls, thereby improving reliability, and will reduce total allocated
memory usage by avoiding memory leaks. There may even be an indirect benefit to
execution speed if overall memory management is improved.

Programmers have been defining their own smart pointer wrapper classes for
decades, but there is now standard support for the idea in the C++ library. In the
typical idiom, a smart pointer tracks the creation and destruction of the object it
points to, which ensures that the destructor is called. This helps avoid “memory
leaks” in standard C++ pointers where an object is allocated with “new”, but is
never deallocated by “delete”.

The C++ standard libraries have various templates to support smart pointers,
mostly since C++11, so they are longstanding features.

• std::shared_ptr

• std::unique_ptr

• std::weak_ptr

std::shared_ptr is a reference-counted shared pointer implementation. The
idea is that it tracks the total number of pointers to an object, and then automatically
destroys the object whenever there’s no more pointers to it. This occurs when the
last of the “shared_ptr” objects is itself destroyed, and then the reference count
for the underlying object is zero.

std::unique_ptr is a one-to-one mapping of a smart pointer to an object.
Whenever the unique_ptr object is destroyed (e.g., goes out of scope as a local
variable), then both the smart pointer and its underlying object are destroyed or
otherwise cleaned up. The unique_ptr object can refer to a single object
allocated by “new” or a single array-of-objects allocated by the “new[]” operator.

std::weak_ptr is a less commonly used type of smart pointer that has relevance
to std::shared_ptr in some complicated scenarios. It encodes the semantics
where the pointer has a weak association with an object, but not strong enough to
own it (i.e., as a shared pointer). However, later on, the weak pointer might get
ambitious and want to upgrade to a full owner-operator. Usually, you should choose
either of std::unique_ptr or std::shared_ptr, depending on how many
pointers will point to the underlying object.

137 Efficient Modern C++ Data Structures

Pointers vs References

Overall, pointers are a good and bad feature of C++. They are low-level variables
that allow efficient processing of memory addresses, so we can code some very fast
methods with pointers. They allow us to get very close to the machine.

On the downside, there are pointer pitfalls. Pointers trip up novices and
experienced programmers alike. There is an immense list of common faults with
pointer manipulation, and coding problems with pointers and memory
management are probably half of the causes of bugs in C++ (at least). There are
some tools that mitigate against pointer problems (e.g., Linux Valgrind) but it is a
never-ending battle against them.

Pointers and arrays were implemented very similarly, and came from the earliest
designs of the original C language. Basically, arrays are treated as a specific type of
pointer, with various differences depending on whether they are variables or
function parameters.

Then came C++ to the rescue. References arrived with the new-fangled
programming language (cleverly named as “C++”) and were thoughtfully designed
as a type of safe pointer that cannot be null. The part is that references are just as
efficient as a pointer, with the constraints on references enforced at compile-time.

C++ allows two ways to indirectly refer to an object without creating a whole new
copy: pointers and references. The syntax is either “*” or “&” for their declarations.

 MyVector *myptr = &mv; // Pointer to mv object

 MyVector &myref = mv; // Reference to mv object

Pointers and references are more efficient than spinning up a new copy of the
object, especially when the underlying object is a complicated object. And when
you have a function call, you should definitely avoid sending in a whole object.

 void processit(MyVector v) // Slow

 {

 //

 }

This is inefficient because the whole MyVector object will get copied, via whatever
copy constructor you have defined, which is slow. And if you haven’t defined a
copy constructor, then the compiler uses default bitwise copy of a structure, which
is not only slow, but also rarely what you want, and often a bug.

David Spuler 138

The faster reference version is to use a “const” reference (or non-const if you’re
modifying it inside the function):

 void processit(const MyVector & v) // Reference param

 {

 //

 }

The pointer version is:

 void processit(MyVector * v) // Pointer param

 {

 //

 }

Which is faster in C++ — pointers or references? The short answer of “not any
difference” is the general view, because references are implemented as pointers by
the compiler behind the scenes. The two functions above are not going to be
significantly different in terms of speed.

The slightly longer answer is that references can be faster because there’s no null
case. A reference must always be referring to an object for the duration of its scope.
The C++ compiler ensures that references cannot occur without an object:

 MyVector &v; // Cannot do this

 MyVector &v = nullptr; // Nor this

 MyVector &v = 0; // Nor this

A reference must be initialized from an object, and you cannot set references equal
to pointers, because you actually have to de-reference the pointer with the “*”
operator, which crashes if it’s a null pointer:

 MyVector &v = myptr; // Disallowed

 MyVector &v = *myptr; // Works if non-null

There’s no way in C++ to get a zero value into a reference variable (we hope). For
example, the address-of operator (&) applied to a reference variable returns the
address of the referenced object, not the memory location of the reference itself.

Hence, references are always referring to something and they cannot be equivalent
to the null pointer.

139 Efficient Modern C++ Data Structures

References are slightly faster: The guarantee of an object for a reference fixes all
those null pointer core dumps, and also relieves the programmer of the burden of
testing for null pointers. The compiler does this guarantee for references at compile-
time, so there’s no hidden null check being done by the compiler at run-time.

So, there’s a minor speed improvement from using references, by not having to add
safety checks for “ptr!=nullptr” throughout the function call hierarchy.

Pointers can be better than references if you need a “null” situation to occur. For
example, you’re processing an object that may or may not exist, and you need the
pointer to be allowed to be “nullptr” if there’s no object. This should occur
rarely, and references should be preferred in many cases.

And finally, references aren’t very useful when you’re trying to scan through the
data in vectors, matrices, or tensors in an AI engine. You can’t do pointer arithmetic
on a reference in C++.

Iterator Pointer Arithmetic

Modern C++ iterators are somewhat like pointers, but much more advanced.
Nevertheless, you can use pointer-like arithmetic on C++ iterator types for some
classes.

Generally, full pointer arithmetic only works properly when the objects are
“random access iterators” that have the raw data stored in contiguous memory.

This means it works on classes such as:

• std::vector

• std::array

• std::string

• std::inplace_vector (C++26)

Note that some simple operators work properly on more general classes (e.g.,
the ++ operator on iterators). But we’re talking about using integer subtraction to
find an array offset, or integer addition to move around an array or vector.

David Spuler 140

Here’s an example that uses pointer arithmetic to compute the index of an item in
a vector or array, based on the iterator returned by the std::find() function:

 int find_standard_index(const T& item)

 {

 auto iter = std::find(arr_, item);

 if (iter == arr_.end()) return -1; // Fail

 return iter - arr.begin(); // Pointer arithmetic

 }

Note that std::find also works on scalar array types. Hence, we can use raw
array types, but then it’s actually doing raw pointer arithmetic rather than iterator
arithmetic.

Restricted Pointers and Aliasing

Restricted pointer declarations help the compiler with advanced optimizations like
loop unrolling and vectorization by telling the compiler to ignore potential
“aliasing” of pointers, allowing much more powerful code transformations on
loops. The possible benefit for memory block algorithms is that restricted pointer
specifications might help the compiler do auto-vectorization of loops into parallel
hardware-assisted code.

The portability of the “restrict” keyword is still somewhat lacking. The C99
standard added the “restrict” keyword to the C language, but it was not added
to C++, and has not been widely supported by C++ compilers. The reason
that restrict is standard in C and not C++ is not an oversight; there are a large
number of problematic issues in merging it into various C++ language features.

Nevertheless, various non-standard features have been added to C++ compilers
and can improve their levels of vectorization optimizations. GCC has supported
two different keywords, __restrict__ and __restrict, with the same
intended meaning. MSVS has __declspec(restrict) which defines a
restricted storage class, and also supports __restrict.

Some compilers have other related keywords for different types of aliasing.
Microsoft also has __declspec(noalias) which has a slightly different
meaning to restricted pointers, in that it tells the optimizer that a function does not
modify global state in a hidden way, other than via its parameters, which is a
different type of aliasing. GCC also has a “mayalias” attribute that permits a
pointer to be aliased to suppress some warnings (and presumably also won’t be
optimized very much!).

141 Efficient Modern C++ Data Structures

11. Contiguous Memory Blocks

Why Contiguous Memory Blocks?

A critical part of optimizing low-latency engines is to store data in a contiguous
memory block so that they have a sequential address space. Processing chunks with
data in parallel is the main optimization used in both GPU and CPU SIMD
acceleration. All of the vectors, matrices, and tensors need their underlying data in
a block for efficiency.

Processing data that is in adjacent addresses is much faster than jumping all over
the place. Vectors should obviously be stored in a simple contiguous array of
memory. Less obviously, similar comments apply to the memory storage of
matrices and tensors.

The use of contiguous memory is an important optimization for both sequential
and parallel algorithms. The reasons that memory blocks are more efficient include:

• Data locality (cache hits)

• Data block GPU uploads (model weights from memory-to-cache)

• Predictive cache pipelining (in CPU sequential accesses)

Data locality refers to using data in the same or similar address locations. This is
helpful for the cache hit rate because data that is already in the cache is much faster
to access that a non-cached RAM memory address.

GPU uploads from CPU RAM to the GPU’s Video RAM (VRAM) is done in
blocks. Obviously, we don’t want to be uploading random bits of data from
different parts of the RAM.

Non-GPU architectures also benefit from the use of contiguous memory. This is
obviously true of CPU SIMD instructions (e.g., AVX on x86), but even in
sequential execution, the CPU has its own RAM caching methods and often has
other optimizations of memory accesses. Predictive cache pipelining is where the
CPU attempts to predict what the next memory location will be, and load it in a
pipelined speedup, before being asked. This pipelining of memory accesses is much
faster than doing completely sequential address lookups.

David Spuler 142

Typically, predictive cache pipelining uses the simple heuristic that the next address
is the most likely next request, which assumes that data is being processed in order
of the addresses. Hence, scanning an array in reverse is the worst possible order for
these CPUs. Similarly, jumping around to different memory addresses, such as
scanning the column of a matrix using a large “stride,” is also inefficient.

Low-Level Memory Block Functions

Memory block operations in the standard C++ libraries are implemented using fast
assembly language behind the scenes. The main functions in the standard C++
library that operate at a low level on binary bytes in a memory block are:

• memset(): set bytes to a value, usually used to clear bytes to zero.

• memcpy(): copy bytes.

• memmove(): copy bytes, but tolerates overlapping regions.

• memcmp(): compare a sequence of bytes.

• memchr(): search for a byte in a sequence.

These functions are lower-level than the modern C++ versions, such
as std::copy, std::move(), and their “backward” versions. The above listed
memory block functions are not aware of object-level semantics, and won’t run any
of the special functions on memory containing objects.

Note that unlike the standard string functions (such as strlen), these functions
do not assume a block is null-terminated by a zero byte. Zero is simply a binary
value, and these functions don’t stop at a zero byte. All of these functions operate
on a block of memory with a known maximum byte length.

Each compiler environment typically offers some extra non-standard byte-wise
functions that are also fast. Some of the less standardized C++ intrinsics that
operate on memory blocks include:

• _memccpy(): copy bytes up to a specified sentinel byte.

• memicmp() or _memicmp: compare bytes ignoring letter case.

• bcopy(): copy bytes

• bzero(): clear bytes to zero.

• bcmp(): compare bytes.

• _byteswap_uint64() (Microsoft intrinsic): Swap the bytes of an
integer.

• __builtin_bswap16(): GCC function to swap the bytes in an integer.
There are versions for 32-bit and 64-bit.

143 Efficient Modern C++ Data Structures

Fast Memory Block Operations

The slow way to do things in arrays is one element at a time. The faster way is to
use the standard memory block functions on the whole array. There are a number
of standard functions that operate on array data or memory blocks and they are
very fast.

Initialize with memset byte fill. The memset function sets all of a memory block
to a byte value. It is widely used as a fast way to initialize a block of memory to all
zeros.

 memset(&x, 0, sizeof(x));

Almost all usages of memset will be for the zero byte. The only other usage I’ve
seen is to fill memory with a dummy non-zero byte as a form of mutation testing
to catch uses of uninitialized memory.

 memset(&x, 0x55, sizeof(x));

Fast array copying with memcpy. The fast way to copy an entire array is
with memcpy. Rather than copy each element of an array, one at a time, in a loop,
the memcpy standard library function can be used to copy the entire array in one
statement:

 memcpy(destarr, srcarr, sizeof(srcarr));

Note that this is a bitwise copy of the array intended for simple data types. For
example, it won’t run copy constructors if applied to an array of objects.

The memcpy function does a very fast memory block copy. It is like strcpy in
that the destination is the first parameter. memcpy will copy everything, even null
bytes and hidden padding bytes. It keeps going even if it finds a null byte, so it is
not like strcpy, and will always copy a fixed number of bytes. memcpy is a super-
fast byte copy, but is unsafe, because it does not have well-defined behavior if the
source and destination blocks overlap.

Safer byte copy with memmove: The memmove function is a safer version
of memcpy, which also works correctly if the memory blocks overlap. If the source
and destination blocks don’t overlap, it’s the same as memcpy, except probably
slightly slower. If they do overlap, then memmove conceptually will copy the source
to a temporary area, and then copy it to the destination block.

David Spuler 144

Copying arrays using struct assignment. An alternative method of copying
arrays is to make use of struct assignments. This is similar to
how std::array works, which could also be used in a similar vein, but this
example totally avoids any constructor, copying or move costs (and also works in
C).

This method is not portable, is very unreadable and uses pointers incorrectly by
converting between two different pointer types. However, it can be faster
than memcpy because it makes use of the assignment operator rather than calling a
function. On the other hand, memcpy is an intrinsic function that might be inlined
to assembler instructions by the compiler, so this trick might be a waste of time.
Benchmarking is recommended here.

To copy an array using this method it is necessary to declare a new
dummy struct type that is the same size as the array that is to be copied. Then
we use type casting to fool the compiler into thinking it is copying structures when
really it is copying arrays. The method is illustrated below:

 struct dummy_transfer { // The new struct type

 int a[MAX]; // This field gives the right size

 };

 int a[MAX], b[MAX]; // The array variables being copied

 static_assert(sizeof(struct dummy_transfer) == sizeof(a));

 *(struct dummy_transfer *)a = *(struct dummy_transfer *)b;

The assignment statement first type casts both “a” and “b” to be pointers to the
new struct type, and then dereferences these pointers so that the compiler
believes it is assigning between two structures. The assertion is an efficient compile-
time safety net to ensure that the copying statement will work.

Of course, a better way entirely is probably to put the array inside a class object,
with lovely encapsulation and modularity, and then we can simply copy the objects.

memcmp byte comparisons. The memcmp function does a byte-wise comparison
of a memory block. Its return value is like strcmp, returning 0 for equality, and a
negative or positive value otherwise.

Note that memcmp is not like strcmp, and will not stop when it finds a zero byte.

145 Efficient Modern C++ Data Structures

Memory Block Function Pitfalls

The standard memory block functions are fast, but they are not always safe. Here
are some of the common pitfalls that commonly occur in everyday coding.

memset sizeof problem. Here’s another glitch in using memset inside functions:

 void zero_array(int arr[10])

 {

 memset(&arr, 0, sizeof(arr)); // Bug

 }

The problem is not memset, but the sizeof operator on function parameters. An
array parameter in a function is like a hologram and isn’t really there. It’s not really
an array, but a pointer, and sizeof(int[10]) is the same as sizeof(int*).
Hence, sizeof(arr) is probably only 4 or 8, rather than 40 or 80, leaving most
of the array uninitialized. Personally, I recommend a memset debug wrapper
function to catch this kind of problem at runtime, or maybe a tricky preprocessor
macro can detect it at compile-time with a static_assert somehow.

memset portability issue. Even though it’s a fast zeroing method, the use
of memset to zero bytes has an obscure portability problem on any architecture
where all-bytes-zero is not the same as all data types zero. However, on most
standard platforms, all-bytes-zero is correct for all types: integer zero (ignoring
endianness), floating-point zero (positive zero is all bits zero), and the null pointer.

memcpy overlapping blocks error: The only downside with memcpy is that it can
fail with overlapping ranges for the source and destination blocks, so if you are
shuffling arrays up or down one element using memcpy, then you have to be
careful, because the results on overlapping ranges are undefined. Here’s a buggy
example of using memcpy to remove the first character of a string in place:

 memcpy(s, s+1, strlen(s+1)+1); // Bug

The problem is that the blocks starting at “s” and “s+1” are overlapping. It is
implementation-defined whether it will be correct. The fix is simply to
use memmove, which always works correctly for overlaps:

 memmove(s, s+1, strlen(s+1)+1); // Correct

David Spuler 146

memcmp return value. A pitfall with memcmp is that you cannot assume that it
returns 1 or -1, but must compare the return result to zero (like
the strcmp function).

 if (memcmp(&a, &b, sizeof(a)) == 1) // Bug

 if (memcmp(&a, &b, sizeof(a)) > 0) // Correct

memcmp object equality testing. Looking at the memcmp function, you might
think of it as an opportunity to do a fast equality/inequality test on large objects by
simply doing a byte-wise test. You would not be the first to think that.

Consider if you have a complex number class:

 class MyComplex {

 float real,imag;

 // .. etc

 }

The brute-force equality test is:

 bool is_equal(const MyComplex &a, const MyComplex &b)

 {

 return (a.real == b.real && a.imag == b.imag);

 }

Our idea to optimize this with memcmp looks like:

 bool is_equal(const MyComplex &a, const MyComplex &b)

 {

 return memcmp(&a, &b, sizeof(MyComplex)) == 0; // Bug!

 }

Unfortunately, there are multiple obscure pitfalls with this approach:

• Padding bytes

• Two types of floating-point zero

• Multiple types of floating-point NaN (not-a-number)

• Bitfields

Padding byte problems. If float is 4 bytes, but the machine has 8-byte alignment,
then the “real” and “imag” data members will be stored on 8-byte alignment
addresses, and there will be another 4 bytes each of dummy padding.

147 Efficient Modern C++ Data Structures

It doesn’t even have to be on a machine with alignment issue, but can occur with a
bigger object if we’ve mixed different size objects (e.g., char, int, and pointers).
The padding bytes will be uninitialized (e.g., for local objects or if allocated with
“new”), in which case they can contain random values. Since memcmp does not skip
the padding bytes, its test will fail. Now, we could possibly work around this
portability issue via the use of memset in the constructor, or calloc memory
allocation, to zero all of the bytes of an object including the padding bytes.

Negative zero problems. Unfortunately, the next problem is not a portability
problem, but a fundamental issue with floating-point numbers. There are two zeros!
There’s the normal zero with all bits zero, and negative zero, with sign bit set, but
other bits zero. Hence, bitwise testing of float numbers fails for a negative zero.

NaN problems. Similarly, but perhaps less seriously, the representation
of NaN (Not-a-Number) in floating-point is also not fixed. There are multiple
values of NaN, both positive and negative. So, memcmp would say the float values
differ, even if both are NaN.

Bitfield problems. If our structure has bitfield data members, this memcmp idea
fails too. Bitfields are a standard C++ feature that is defined with a colon syntax:

 unsigned int myflag:1; // Boolean bitfield with 1-bit

With bitfields it’s implementation-defined how this is represented numerically, and
there might be undefined bits in the same byte, or extra padding bytes again.

Still want your memcmp speedup? I’ve just shown you about 15 pitfalls, but
maybe you still want to live on the edge and get that speedup? You can
use memcmp to do fast array or object comparisons if you’re really sure you have:

• Zero byte initializations. All allocated arrays or objects must be first zero’d
by memset or calloc. You cannot rely on constructors, and it’s hard to
put a memset as the first action of the constructor due to initializer lists
and the various defined base classes. You might also have to intercept all
of the new and new[] allocation operators with your own wrapper that
does memset on the block, rather than use constructor tricks. It’s also
unclear if you can actually rely on static or global variable initialization
to carefully zero all the padding bytes in an array or object. Probably it
works on most platforms, but I doubt it’s fully portable. To be sure,
use memset on the global variables during program startup.

• No bit-fields used. That’s easy, at least.

• Floating point computations should avoid negative zero and NaN.

David Spuler 148

Raw Subarray Memory Blocks

Passing raw subarray types to functions can be a fast alternative to some of the
modern C++ contiguous containers (i.e., std::array, std::vector).
However, the passing of a container object by reference with “const&” parameters
is also very fast, so don’t assume that raw arrays are always faster.

If a function accepts a raw array type, it is possible to pass it any array as an
argument, or any pointer of the right type. In this way, it is possible to pass memory
blocks or “sub-arrays” to a function by passing the address of a particular array
element. A function to operate on a particular type of array can be written, and used
to operate on various arrays.

 void clear(int a[], int n)

 {

 int i;

 for (i = 0; i < n; i++)

 a[i] = 0;

 }

 void test_subarrays()

 {

 int a[100];

 clear(a, 10); // clear first ten, 0..9

 clear(a + 50, 10); // clear 50..59

 clear(&a[50], 10); // clear 50..59 (equivalent)

 }

Multidimensional subarrays. It is also legal to pass multi-dimensional arrays to
functions. However, the sizes of all but the first dimension must be specified in the
function receiving the array. For example, to pass a two-dimensional array to a
function, the function header would look like:

 void fn(int a[][SIZE2]);

The reason for this restriction is that the compiler cannot determine the address of
an arbitrary array element if it does not know the sizes of all but one of the
dimensions.

Because the sizes of most of the array dimensions must be specified in the function
declaration it is very difficult to write a function to act on sub-arrays of multi-
dimensional arrays. For example, this idea would be useful to define library
functions to operate on matrices with different dimensions.

149 Efficient Modern C++ Data Structures

Ideally, we would like one function to calculate the determinant of a matrix for any
dimension (i.e, an n-by-n matrix where n varies). Consider how we would like the
determinant function to look:

 double determinant(double matrix[][], int n); // No!

Ideally, the dimensions of the matrix are not specified at compile-time, but are
specified at run-time by the n argument. This is not possible as a simple C++
declaration because the second dimension (i.e., n) needs to be specified in the
definition of the two-dimensional array type. The best solution is to use dynamic
multi-dimensional arrays.

Cache Warming

Cache warming is a specific type of prefetching optimization on memory blocks
aimed at keeping the various memory caches fresh. It typically involves scanning
through all the memory data required for the “hot path,” even though there’s no
real intention to use the data (until later). The hot path maintains a warm cache, so
that when the hot path is executed for real, then memory accesses are very fast.

There are multiple ways to trigger the prefetching of data needed to keep the cache
warm:

• Low-level C++ prefetching primitives.

• Copy to volatile temporary variables.

• Explicit dry-run parameters in the code.

Unlike other types of CPU prefetching, cache warming is something your C++
code does directly, rather than a hardware-enabled feature. It’s up to you to
determine what data is needed the most in hot path computations, and then pre-
load that data on every pass-through. You effectively do a “dry run” of the hot path,
but access the memory to ensure it’s maintained in the cache.

Note that cache warming is not always a guaranteed win. Using the “dry run”
approach can end up with a lot of extra conditional tests:

 if (!dry_run) {

 // Do something

 }

David Spuler 150

This can negatively impact performance in two ways:

• Runtime cost of testing the flag, and

• Extra branches of code that slow down CPU branch prediction.

As with everything in coding, you really need to time it to see if these costs are less
than the gain from faster memory cache accesses.

Memory Prefetch Primitives

Although you can “manually” prefetch data in basic C++ code, there are also some
builtins that are convenient for larger amounts of data. Some of the C++ primitives
to use for cache warming include:

• __builtin_prefetch (GCC)

• _mm_prefetch (GCC)

Prefetching is more effective on some data structures than others, with a general
preference for contiguous data blocks. Cache locality issues with the “cache lines”
of size 64-256 bytes are another reason. As a practical example, contiguous arrays
are better than dispersed data structures liked links lists and trees. This means
that std::vector contiguous memory layouts can be more effectively prefetched
than the spread-out memory used by std::list objects.

Volatile Temporary Variables

Another approach for manual prefetching is the use of volatile specifier on
temporary variables. By assigning data to a volatile temporary variable, the
optimizer cannot remove an apparently unused assignment. For example, consider
if we do this:

 int temp = my_data[0];

The C++ compiler may notice that “temp” is not used anywhere else, so it can
helpfully throw away that entire assignment statement. The solution is to use
the volatile specifier:

 volatile int temp = my_data[0];

151 Efficient Modern C++ Data Structures

The compiler is forced to load the data into memory even when it seems to be
unused by the remainder of the code block, because assigning any data to
a volatile variable is itself a side-effect.

Note that we only want to declare temporary variables as volatile, but not the
shared global data arrays we’re trying to prefetch. We don’t want the main data
structures to have this status. If our main global variables or arrays were declared
as volatile, this would actually interfere with having them loaded from the
memory caches. They would be uncached!

Pros and Cons of Cache Warming

The advantage of the use of cache warming is that all the various data structures are
kept warm in the memory caches (i.e., the L1/L2/L3 CPU memory caches). The
downside is extra processing that occurs whenever you’re not using the memory
again. In other words, there are extra computations done on the “cold path” every
time, just to keep the “hot path” all snuggly and warm.

The code to traverse all the memory data structures can be a significant cost in itself,
although it hopefully only occurs during the cold path. There are several advanced
tweaks to optimize your cache warming code:

• Exploit cache line sizes for quicker loading of contiguous data.

• Limit cache warming to the total L1/L2/L3 cache size.

A further optimization of cache warming is to use “cache lines” to your advantage.
The L1/L2 caches don’t work on individual bytes, but on blocks of memory called
“cache lines”, which are usually sized between 64 bytes and 256 bytes (e.g., Intel is
usually 64 bytes, Apple M2 is 128 bytes, some other CPUs are 256 bytes). Hence,
to load a “cache line” of 64 bytes on an Intel CPU, you only need to load one byte
from the 64-byte block. Your C++ code doesn’t need to explicitly touch every
element of a vector to have the entire vector hot as a fresh-baked oven loaf in the
cache. Admittedly, this doesn’t speed up the hot path itself, but only the preliminary
cache warming code.

An important limitation of cache warming is the maximum sizes of the L1, L2, and
L3 caches. If you’re trying to warm up the CPU cache for your 7B AI model, that’s
7 billion floating-point numbers, and trying to keep them all in the CPU cache isn’t
going to work. On the other hand, you can probably preload an entire 7B model
into the CPU RAM (i.e., global memory, not the caches), or into the GPU’s VRAM,
but that’s preloading not cache warming, and it’s a slightly different story.

David Spuler 152

If you know your CPU’s cache size, you can optimize your cache warming strategy
by only trying to prefetch that much data. If you load more data than the cache size,
the newly warmed data is just evicting other data from the cache that you prefetched
earlier in the warming code. Hence, prefetching exactly the amount of data equal to
your CPU cache size is the optimal cache warming strategy.

Dynamic Memory Management Pitfalls

Memory management is really not the strong suit of C++. If your program is
crashing or behaving badly, it’s highly likely to be some kind of memory problem.
There are so many pitfalls in C++ dynamic memory management, and even in static
or global (non-dynamic) memory, that it’s hard to list them all.

C++ programs have access to a large block of free memory, called the heap. The
actual size of the available memory depends on the system. This memory is available
to a C++ program which can allocate itself chunks of memory from this heap. This
is useful when a C program does not know beforehand how much data is being
stored, and hence, how much memory is required. Instead of allocating a large array
to cater for the worst case, the program can allocate itself blocks of memory as
required.

Blocks of dynamic memory can be allocated in two main ways:

• The C++ style “new” or “new[]” operators

• The older style malloc() and calloc() functions (inherited from C)

Other ways to allocate dynamic memory include:

• strdup(): make an allocated copy of a string.

• realloc(): a companion to malloc/calloc that is rarely used.

Once the memory is no longer needed it is “freed” back to the heap. Again, there
are two main ways:

• The C++ style “delete” and “delete[]” operators

• The older style “free” function

Some of the main memory problems in a C++ program can include:

Uninitialized new memory. The new operator does not initialize the
new chunk of allocated memory. Accidentally using it is a common bug.

153 Efficient Modern C++ Data Structures

Uninitialized malloc memory. The malloc function also does not
initialize its allocated memory. Again, use of a memory block that is
allocated by malloc but hasn’t been properly cleared is a common bug.
One of the mitigations is to use calloc instead, because calloc does
zero the bytes of every block it allocates.

Mismatched new/delete with malloc/free. Memory allocated
with new should be deallocated by delete, but malloc’d memory
should be free’d. Never the twain shall meet, or else kaboom.

Mixing new/new[] and delete/delete[]. Memory allocated
by new should be released by delete, but memory allocated by the array
version “new[]” should be freed by the delete[] array version. Again,
they’re not supposed to mix.

free(nullptr) is harmless. If it’s so harmless, why is it a pitfall?
Sure, free(nullptr) is officially defined by the standard to do nothing.
But if your coding is doing this, it sure walks and talks and quacks like a
buggy duck.

strdup(nullptr) is not harmless. This is probably a crash, but even
on systems where it’s not, it’s clearly a bug in your code if you’re trying to
duplicate a null pointer.

Pitfalls for Non-Dynamic Memory Blocks

There’s so many pitfalls in management dynamic memory, with either new/delete
or malloc/free, that surely we’ve run out? No, don’t worry, it’s comforting to know
that there are still a bunch more insidious problems in other types of non-allocated
memory.

Here’s a list of some more fatal memory stomps that aren’t about allocated blocks
on the heap:

• Buffer overrun of a global, local, static, or stack buffer variable.

• Returning the address of an automatic local variable on the stack (i.e., non-
static variable).

• Trying to write to addresses of string literals (often a crash if they’re non-
writable, but maybe worse behavior if it can be modified).

• Modifying arr[10] in an array of size 10 (raw arrays or std::array).

• Uninitialized local variables or local buffers on the stack (non-static).

David Spuler 154

• Using an uninitialized local pointer variable to access some random address
in Timbuktu.

• Null pointer dereferences. Oh, well, at least you initialized it.

• Returning the address of a “static” local variable (aliasing problems).

• Using a negative array index.

• Modifying a string literal (they’re in read-only memory on Linux).

The standard C++ library functions can also have problems:

• strcpy() on overlapping string arguments: strcpy(s, s+1);

• strncpy() can leave strings without a null byte terminator.

• memcpy() on overlapping memory blocks (use memmove instead).

• Trying to free() or delete a global, static, stack or instruction
address will crash.

• Double fclose() on file pointers from fopen.

• Ignoring the return value of erase() in an iterator loop.

References

1. Paul Bilokon, Burak Gunduz, 8 Sep 2023, C++ Design Patterns for Low-
latency Applications Including High-frequency
Trading, https://arxiv.org/abs/2309.04259,
Code: https://github.com/0burak/imperial_hft

2. Edelweiss Global Markets Oct 14, 2024, Cache-
Warming, https://edelweissgm.github.io/hft/2024/10/14/CacheWarmin
g.html

3. Ibrahim Essam, Jul 19, 2024, Cache warming and memory
access, https://ibrahimessam.com/posts/cache/

4. Daniel Lemire, April 2018, Is software prefetching (__builtin_prefetch) useful for
performance? https://lemire.me/blog/2018/04/30/is-software-
prefetching-__builtin_prefetch-useful-for-performance/

5. Johnny’s Software Lab, March 31, 2024, The pros and cons of explicit software
prefetching, https://johnnysswlab.com/the-pros-and-cons-of-explicit-
software-prefetching/

6. Katecpp, Oct 5, 2015, Improve performance with cache
prefetching, http://katecpp.github.io/cache-prefetching/

https://arxiv.org/abs/2309.04259
https://github.com/0burak/imperial_hft
https://edelweissgm.github.io/hft/2024/10/14/CacheWarming.html
https://edelweissgm.github.io/hft/2024/10/14/CacheWarming.html
https://ibrahimessam.com/posts/cache/
https://lemire.me/blog/2018/04/30/is-software-prefetching-__builtin_prefetch-useful-for-performance/
https://lemire.me/blog/2018/04/30/is-software-prefetching-__builtin_prefetch-useful-for-performance/
https://johnnysswlab.com/the-pros-and-cons-of-explicit-software-prefetching/
https://johnnysswlab.com/the-pros-and-cons-of-explicit-software-prefetching/
http://katecpp.github.io/cache-prefetching/

155 Efficient Modern C++ Data Structures

12. Loop Optimizations

Sequential vs Parallel Loop Optimizations

Loop optimizations are the basic of many speedups to the processing of contiguous
array data. Loops are often sources of inefficiency and can be optimized in
numerous ways, such as:

• Cache locality — processing data in the fastest order for CPU caches
(sequential).

• Parallelization — allowing vectorization via CPU SIMD instructions or a
GPU.

Not all loop transformations are created equal. Some of them are best for sequential
code optimizations, whereas other loop transformations are used to parallelize
loops for vectorization.

Loop transformations that are good for both sequential and parallel loop
optimization include:

• Loop unrolling — repeat the loop body to reduce loop test overhead and
parallelize the loop body.

• Loop peeling — unroll the first few iterations.

• Loop coalescing — flatten nested loops.

• Loop splitting — split out subportions of the iteration range.

• Loop collapsing — another way to flatten nested loops.

• Loop interchange — switch the inner and outer loop iterators of nested
loops.

• Loop reordering — change the ranges and arrangements of inner/outer
nested loops.

Some loop transformations are mainly for sequential improvements, and are not
parallelization in themselves. However, these techniques can sometimes help with
parallelization if they enable another followup loop parallelization optimization.

David Spuler 156

Loop transformation optimizations which tend to be good for sequential code
optimizations but not parallelization include:

• Loop fusion — combine or “fuse” the bodies of two loops.

• Duff’s device — amusing but impractical coding trick for loop unrolling.

• Loop code motion — move or “hoist” loop-invariant calculations from
the loop body to pre-loop initialization.

• Loop perforation — randomly skip a subset of loop iterations; it’s really a
thing.

• Loop sentinel — fake it till you make it.

• Loop iterator strength reduction — change “*” to “+” if you can.

• Loop reversal — going backwards, and yet, still making progress!

Parallelizing loop optimizations with a main goal of vectorization of the loop body
include:

• Loop fission — opposite of loop fusion; split a single loop body into two
loops.

• Loop tiling — process sub-parts of contiguous data in separate loops.

• Loop distribution — split two sub-parts of a loop body into two simpler
separate loops.

Loop Fusion

Loop fusion is a well-known code optimization where two separate loops are
merged into a single loop. This does not change the amount of in-loop computation
in either loop body, but reduces the loop overhead of the exit test by half. There is
also often a benefit from data locality that reduces data movement and temporary
data storage, which can also improve overall speed.

Note that loop fusion is not great at vectorization, because complicated loop bodies
are actually harder to parallelize. Most of the benefits arise in traditional sequential
code execution, which is why its theory dates back many decades. For modern
parallel execution on GPUs, loop fusion is often a poor choice, and more benefits
may arise from loop fission (the opposite of fusion) and loop vectorization.

Example: Loop Fusion: The general idea is to combine the body of two loops
into a single loop. Here is a simplistic example with the (non-fused) loops for
initializing two vectors using two sequential loops:

 for (i = 0; i < n; i++) v1[i] = 0;

 for (i = 0; i < n; i++) v2[i] = 0;

157 Efficient Modern C++ Data Structures

And here is the version with loop fusion:

 for (i = 0; i < n; i++) {

 v1[i] = 0;

 v2[i] = 0;

 }

Note that the loop fusion version incurs the same number of assignments for
initialization, but only half of the loop overhead cost (i.e., half of the “i < n” and
“i++” operators have been optimized away).

For the sake of argument, let’s pretend we don’t know a fast way to clear a vector
in C++ like memset or calloc or load-time static variable initialization.

Loop Perforation

The intentional introduction of randomness to code is known as a “stochastic”
algorithm. Personally, I’m more familiar with unintentional introduction for
randomness, otherwise known as a “bug,” but now when it happens you can tell
your boss that you were adding “stochastic functionality.”

Code perforation is an optimization technique that trades accuracy for speed, by
randomly (ahem, I mean, stochastically) skipping some computations. Essentially,
using loop perforation is similar to an approximation with a random element, but
in a generalized way for any iterative code.

It’s kind of like how teenage children randomly skip their homework.

Loop perforation skips iterations of a loop in a probabilistic manner. Randomly
skipping some percentage of the loop bodies doesn’t sound like a good plan, but it
has its merits. In some types of applications, such as an AI inference computation,
there’s so much going on that no-one’s going to notice a few missed beats.
Apparently it can even be useful.

Well, at least it’s faster to do nothing.

David Spuler 158

Example: Loop Perforation: Here is an example of adding loop perforation to a
vector dot product computation. This is an incredibly slow version, and is not
recommended, but is just to give the idea of skipping a percentage of the iterations:

 float aussie_vecdot_perf(

 float v1[], float v2[], int n, int pc)

 {

 // Loop perforation -- vector dot product

 float sum = 0.0;

 for (int i = 0; i < n; i++) {

 if ((rand() % 100) + 1 <= pc) {

 // This iteration is perforated...

 continue; // Skip it...

 }

 sum += v1[i] * v2[i];

 }

 return sum;

 }

Loop Unrolling

Loop unrolling is a code optimization where the body of a loop is repeated in
sequential code. This speeds up the algorithm because the overhead of both the
incrementer and the loop iteration test is avoided. In some cases, the entire loop
can be unrolled, usually when the loop iterations are finite and known at compile-
time. In other cases of partially unrolling, the loop body can be repeated multiple
times, and thereby the loop test only occurs every few iterations.

Example: C++ Loop Unrolling of Vector Dot Product. Here is the basic C++
non-unrolled vector dot product code:

 float aussie_vecdot_basic(float v1[], float v2[],int n)

 {

 // Basic vector dot product

 float sum = 0.0;

 for (int i = 0; i < n; i++) {

 sum += v1[i] * v2[i];

 }

 return sum;

 }

159 Efficient Modern C++ Data Structures

If we know the value of n, e.g., that n=5, then we can completely unroll it:

 return v1[0] * v2[0]

 + v1[1] * v2[1]

 + v1[2] * v2[2]

 + v1[3] * v2[3]

 + v1[4] * v2[4]

 ;

If we don’t know the value of n, we can still unroll multiple iterations. Here’s an
example of 4-level loop unrolling of vector dot product in C++ by assuming
that n is a multiple of 4:

 float aussie_vecdot_unroll4(float v1[], float v2[],int n)

 {

 // Loop-unrolled Vector dot product

 if (n % 4 != 0) {

 aussie_assert(n % 4 == 0);

 return 0.0; // fail

 }

 float sum = 0.0;

 for (int i = 0; i < n;) {

 sum += v1[i] * v2[i]; i++;

 sum += v1[i] * v2[i]; i++;

 sum += v1[i] * v2[i]; i++;

 sum += v1[i] * v2[i]; i++;

 }

 return sum;

 }

And here’s a generalization of that 4-level unrolling with extra code to handle the
leftover cases if n is not a multiple of 4. Although the extra cases look messy, they
are not actually the main performance bottleneck.

 float aussie_vecdot_unroll4b(

 float v1[], float v2[], int n)

 {

 // Better loop-unrolled Vector dot product

 int i = 0;

 float sum = 0.0;

 if (n % 4 != 0) {

 // Handle the extra cases...

 switch (n % 4) {

 case 1:

 sum += v1[i] * v2[i]; i++;

 break;

David Spuler 160

 case 2:

 sum += v1[i] * v2[i]; i++;

 sum += v1[i] * v2[i]; i++;

 break;

 case 3:

 sum += v1[i] * v2[i]; i++;

 sum += v1[i] * v2[i]; i++;

 sum += v1[i] * v2[i]; i++;

 break;

 default: aussie_assert_not_reached(); break;

 } // end switch

 // Keep going with rest of the vector

 }

 for (; i < n;) { // Unrolled 4 times...

 sum += v1[i] * v2[i]; i++;

 sum += v1[i] * v2[i]; i++;

 sum += v1[i] * v2[i]; i++;

 sum += v1[i] * v2[i]; i++;

 }

 return sum;

 }

This code is just an example for explanation. There are various further code
optimizations that can be done for production-level efficiency. For parallelization,
the loop body should call an intrinsic function to vectorize the method.

For many applications, we could choose our data structure sizes as multiples of the
loop unrolling factor, and thereby avoid ever having any of the “leftover” cases.

For sequential code, we could change it to use pointer arithmetic rather than array
indices, we might try replacing the four i++ operators with i+=4, change the
integer modulo operator (%) to a bitwise-and operator test (i.e., use “n&3” not
“n%4”, which works since 4 is a power-of-two), and it also might be better to use
“+” rather than the “+=” operator.

Finally, if we carefully code the leftover cases, the main loop could be unrolled to
many more levels than just four.

161 Efficient Modern C++ Data Structures

Duff’s Device for Loop Unrolling

There’s a neat coding trick called “Duff’s Device” for loop unrolling, which uses
a switch with case fallthrough to mimic assembler coding style. However, it’s
not great for vectorization as it’s likely to confuse the compiler, so may be mostly
of theoretical interest.

 float unroll4_duff(float v1[], float v2[], int n)

 {

 // Unrolled dot product with Duff’s Device

 int i = 0;

 float sum = 0.0;

 switch (n % 4) {

 for (; i < n;) {

 case 0: sum += v1[i] * v2[i]; i++;

 case 3: sum += v1[i] * v2[i]; i++;

 case 2: sum += v1[i] * v2[i]; i++;

 case 1: sum += v1[i] * v2[i]; i++;

 default:;

 } // end for

 } // end switch

 return sum;

 }

What’s happening here? My brain hurts looking at this code! The trick is that the
outside switch branches into a case that is inside the body of a for loop. This
is not normal everyday coding, because there’s a loop inside a switch, and the
loop body control flow crosses over several of the case statements. Also, none in
the case statements has a “break” statement and they instead rely on fallthrough
semantics. Similarly, the “default” clause is mainly just to avoid getting a spurious
compilation warning (i.e., “missing default”), and also has no “break” with only
a lonely semicolon. Note also that the case labels are written in reverse order from
top to bottom (3..2..1), except for 0 at the top.

How does this even work? The first point is that it does. This code performs the
exactly correct number of iterations for any value of n (except n==0), and similar
versions with an unrolling factor of more than 4 will also work (i.e., if you change
“n%4” and add more case constants). The code looks like a hack, but actually uses
standardized C++ semantics of case fallthrough and switch multi-way control
flow and should work on all platforms. Branching into the middle of a loop with a
switch is valid in C++ provided it doesn’t bypass any local variable initialization
(hence, don’t put “sum” into the switch).

David Spuler 162

Also, the case fallthrough semantics (i.e., without a “break” ending each
“case”) are standard for C and C++ since inception. Finally, note that this code is
buggy for n==0, because it incorrectly does 4 iterations, so it ideally needs a
parameter validation assertion at the start.

Bug alert! Note that you cannot tweak the “i++” instruction using the standard
idiom:

 sum += v1[i] * v2[i++]; // Bug!

The obscure problem is that the “*” operator doesn’t guarantee left-to-right
evaluation of its operands. The code assumes evaluation order
of: v1[i], v2[i], *, i++, starting from the left. However, the C++ optimizer can
legally do this order of operations: v2[i], i++, v1[i], *, which is not what you
intended and gets the wrong array element for v1[i]. This code might be
unreliable across platforms, or it might work in the debugger mode, but fall over
once you turn on high levels of optimization. So, there is an “order of evaluation”
pitfall if you put “++” in an operand of the “*” operator or many other binary
arithmetic operators.

Is Duff’s Device any faster? The short answer is “not really,” although it looks
very appealing (or appalling). Firstly, note that this trick is not actually very useful
for vectorization, because a switch cannot branch into the middle of a vectorized
intrinsic (i.e., if you replace the loop body with a SIMD instruction). Furthermore,
although I haven’t tested it, I doubt many optimizers will be able to auto-optimize
that complex control flow with SIMD instructions. In sequential code, this method
also isn’t much faster, as it doesn’t really have any fewer operations than a basic
unrolled loop (i.e., with extra cases handled separately before or after the main
loop). The above example of Duff’s Device can be further sped up using pointer
arithmetic and “looping down to zero” optimizations, but so can the other unrolled
versions. However, there is a minor speed advantage in terms of “instruction
locality” because the above code is very concise.

The main advantage of Duff’s Device is to bamboozle your colleagues. You can
use Duff’s Device with any unrolling factor, not just 4 as in the example shown
above (e.g., change to 8 by using “n%8” and adding cases for 4, 5, 6, and 7, ordered
from 7 down to 1, leaving 0 on top). Actually, the unrolling factor needn’t be a
power-of-two. Make it a prime number for extra bonus points. If you want more
of this kind of coding trickery, also search up Jensen’s device and Pigeon’s device.

163 Efficient Modern C++ Data Structures

Loop Tiling or Blocking

When you hear about a “tiled MatMul” or a “blocked GEMM,” this is the “tiling”
or “blocking” optimization method it refers to. MatMul is matrix multiplication and
GEMM is General Matrix Multiplication (i.e., the same thing). Tiling is the
optimization that most applies to speeding up matrix or tensor multiplications.

This optimization is for two-dimensional data (e.g., matrices). When you hear
“tiles” or “blocks,” think squares or rectangles of data. For example, if you have a
512x512 matrix, then a tiled algorithm might act on 16x16 sized chunks, one at a
time. Loop tiling is an optimization of two-dimensional or three-dimensional data
such as matrices or tensors. The one-dimensional equivalent of processing sub-
parts of a one-dimensional array is called “strip mining”, “loop sectioning” or often
simply “vectorization.”

In other words, tiling means operating on small subsections of a matrix. If you hear
“tiled tensor” that could mean two-dimensional data (i.e., just a fancy name for a
matrix), or alternatively it might refer to three-dimensional data, in which case, don’t
think anything or else your head will hurt.

Loop tiling is a method of executing sub-parts of nested loops in a way that
maximizes data locality, increases cache utilization, and improves parallel execution.
This is also called “loop blocking” because it processes the data a “block” at a time,
although the term “tiling” is more widely used in research. The two-dimensional
sub-partitions of the data that are square or rectangular are called “tiles” or
“blocks”.

The same number of arithmetic operations are performed in a tiled versus non-tiled
algorithm. However, there should be fewer loads of the data into memory with
tiling. The downside is that tiling introduces additional loop overhead. In fact,
rather than flattening nested loops over a 2-D array (e.g., 512x512), tiling often
introduces additional levels of nesting! The two small loops that spin through the
16x16 square shape of a single “tile” or “block” are often newly added inner loops.
So, loop tiling often adds two new layers of nested loops inside your already-nested
loops. It makes you wonder how it can even be faster!

Example: Tiled Matrix Clear: For these examples, there is a type “ymatrix”
type:

 typedef float ymatrix[ROWS][COLUMNS];

David Spuler 164

If we forget about memset, here is the simple code to clear a matrix one element
at a time in a brute-force nested loop (non-tiled):

 void aussie_clear_matrix(ymatrix m)

 {

 for (int i = 0; i < ROWS; i++) {

 for (int j = 0; j < COLUMNS; j++) {

 m[i][j] = 0.0;

 }

 }

 }

Now we decide to add a 4x4 square tile optimization to this code. The result is an
extra two levels of nested loops. Here is the basic code which assumes that the row
and column dimensions are exact multiples of the tile size, so there’s no extra
leftover cases to handle:

 void aussie_clear_matrix_tiled(ymatrix m)

 {

 const int TILEX = 4; // 4x4 tile size

 const int TILEY = 4;

 static_assert(ROWS % TILEX == 0, "Exact X");

 static_assert(COLUMNS % TILEY == 0, "Exact Y");

 for (int i = 0; i < ROWS; i += TILEX) {

 for (int j = 0; j < COLUMNS; j += TILEY) {

 // Do the 4x4 tile...

 for (int tx=i; tx < i+TILEX; tx++) {

 for (int ty=j; ty < j+TILEY; ty++) {

 m[tx][tiley] = 0.0f;

 }

 }

 }

 }

 }

Unrolled Tiles. One followup optimization trick with a tiled loop algorithm is to
apply loop unrolling to the two inner loops. This avoids the extra overhead of the
two extra inner loops, but retains the data locality benefits of tiling. This
optimization results in a fully “unrolled tile” computation without any extra inner
loops. In the above example, the two inner loops of a 4x4 tile would be replaced
with 16 unrolled computations in sequence. Or for a vectorized version, a fully
unrolled tile would be 4 sequential calls to vectorized intrinsics that each do 4
operations in parallel (e.g., AVX intrinsics each do 4 float operations in parallel).

165 Efficient Modern C++ Data Structures

Example: Tiled Matrix Multiplication: Tiling techniques are widely used to
improve the efficiency of MatMul’s and thereby get better throughput of tensor
calculations from a GPU. Matrix multiplication is a good candidate for this
optimization because it has O(n^3) arithmetic calculations, but uses
only O(n^2) data. Hence, a naive matrix multiplication algorithm that doesn’t
address cache locality will re-load the same data into memory many times, whereas
a tiled algorithm can reuse the same data more efficiently.

A tiled version of MatMul processes “tiles” or “blocks” of each matrix one at a time
(i.e., small square or rectangular sections), with the aim of keeping small subparts
of the matrix in the memory cache while they are processed. The algorithm
progresses across the matrix a tile/block at a time, rather than scanning all the way
down one dimension (row or column). The same number of multiplication
operations are performed as a non-tiled MatMul, but data locality and cache
freshness should improve the overall speed.

Loop Fission

Loop fission is an optimization that is the opposite of loop fusion. Instead of fusing
two loops into one, we take one loop and split parts of it into two loops. Loop
fission also been called other names such as “loop splitting” or “loop distribution.”

Loop fission can be more efficient for parallel execution (e.g., vectorization for
GPUs), but is often slower for sequential execution. Whereas loop fusion aims to
remove the overhead of one of the loops, loop fission tolerates an increased loop
overhead in return for simpler loop bodies that can be parallelized. The kernel
optimization of “kernel fission” is based on loop fission, and loop fission is one
technique used to achieve vectorization for GPUs.

The main reason to use loop fission is hardware acceleration via loop parallelization.
A complicated single loop can often run faster if split into two simpler loops, when
hardware acceleration can be accessed. This is true even if the two resulting loops
must run sequentially, because the iterations of each loop are parallelized, but
there’s a double benefit if the two whole loops can also run in parallel.

Example: Loop Fission in BatchNorm: A good example arises in part of the
code for batch normalization. Each element of the vector needs to have two
operations performed on it: subtract the mean (re-centering) and multiply by a
variance factor (re-scaling).

David Spuler 166

The naive implementation of the second half of BatchNorm looks like this:

 float denom = sqrtf(varc + eps); // Scale factor

 for (int i = 0; i < n; i++) {

 // Normalize: re-center and scale

 v[i] = (v[i] - fmean) / denom;

 }

This is difficult to hardware accelerate because it’s unlikely that there’s a combined
“subtract-and-then-divide” operation to apply to all elements of a vector in parallel.
The first point is that maybe there’s an “add-and-then-multiply,” in which case we
can use the negative of the additive factor and the reciprocal of the scaling factor.
However, assuming there’s not, loop fission can be used to split the single
complicated loop into two sequential loops.

 float negmean = -fmean; // Use negative for addition

 float denom = sqrtf(varc + eps); // std. deviation

 float recip = 1.0f / denom; // reciprocal multiply

 // Loop 1: Re-center using mean

 aussie_vector_add_scalar(v, n, negmean);

 // Loop 2: Re-scale by factor

 aussie_vector_multiply_scalar(v, n, recip);

Each of the two loops is now easy to hardware accelerate, because they are both
very simple vector operations: “multiply-by-scalar” and “add-scalar.” Every
platform is likely to have hardware acceleration APIs for those simpler operations.
So, to summarize, we got an explosive boost to hypersonic rocket speed using
atomic operations with loop fission. Isn’t that just the bomb?

Loop Reversal

Loop reversal is the optimization of making the loops go backwards. It does the
same number of arithmetic operations, but in reverse order, so there is no change
in the total arithmetic operations.

This goal is a speedup by “looping down to zero” with a faster loop test, but it is
often a de-optimization even for sequential execution. Typical CPU processors rely
on ascending order of memory accesses for predictive cache pipelining, and reverse
array access is a worst case for that.

Loop reversal is also not a useful parallelization method in itself. Vectorization for
GPU computation doesn’t really work in reverse.

167 Efficient Modern C++ Data Structures

However, reversing a loop can sometimes be useful as an initial transformation on
nested loops if reversing the inner loop’s direction allows another followup loop
vectorization technique.

Example: Reversed Vector Dot Product: Loop reversal can be used on vector
dot product, as below, but it probably shouldn’t be. Here’s the basic idea:

 float vecdot_reverse(float v1[], float v2[], int n)

 {

 float sum = 0.0;

 for (int i = n - 1; i >= 0; i--) {

 sum += v1[i] * v2[i];

 }

 return sum;

 }

Note that there are several coding pitfalls to avoid. The loop variable “i” cannot
be “unsigned” or “size_t” type, because the test “i>=0” would never fail,
creating an infinite loop. Also, the reversed loop needs to start at “n-1” and must
use “i>=0” (not “i>0”) to avoid an off-by-one error. The above code also craters
for “n<=0” and needs a safety test.

Loop Code Motion

Loop code motion is moving loop-invariant code from inside the loop body to the
pre-initialization code for the loop. Any code that has the same value should not be
performed inside the loop body. Instead, it should be pre-calculated before the
loop, and stored in a temporary variable. This is sometimes called “hoisting” the
code out of the loop.

Example: Loop Code Motion: One common example of unnecessary
recalculation of loop-invariant values is in the loop test. The code in the Boolean
test for the loop is actually part of the loop body.

An example of code that re-calculates the loop limit:

 for (i = 0; i < vec.num_elements(); i++) {

 // ...

 }

David Spuler 168

The “num_elements” call is probably loop-invariant, assuming the vector doesn’t
change size during processing. Maybe the “num_elements” function is declared
“inline” and the C++ compiler will fix it anyway. Nevertheless, this is a candidate
for loop code motion, using a temporary variable instead:

 int n = vec.num_elements(); // Loop-invariant value

 for (i = 0; i < n; i++) {

 // ...

 }

Loop Distribution

Loop distribution is type of loop code motion that creates two loops from a single
loop that contain an “if” statement. The hoisted code is a conditional test. Some
early papers in the 1990s called it “loop unswitching.” Some papers use the term
“loop distribution” with the different meaning of splitting a loop into two loops,
which we call “loop fission.”

The goal of loop distribution is to move an “if” test out of the loop body, by
creating two loops, and ends up creating two separate loops on two pathways. This
sounds similar to loop fission, but loop distribution is a more general optimization
that doesn’t require parallelization to get a speed improvement (whereas loop
fission does). Instead, loop distribution gets a benefit in ordinary sequential
execution because it moves the if-test computation out of the loop body to a once-
only pre-initialization test (i.e., “hoisted”). Note that only one of the two loops is
executed each time, and these two loops are never executed in parallel, so this
technique is not really a type of loop fission.

Example: Loop Distribution: Here’s a dummy example of implementing an
“add-or-subtract” function using a passed-in Boolean flag.

 void aussie_vector_addition_slow(

 float v[], int n,

 bool do_add, float scalar)

 {

 for (int i = 0; i < n; i++) {

 if (do_add)

 v[i] += scalar; // Add

 else

 v[i] -= scalar; // Subtract

 }

 }

169 Efficient Modern C++ Data Structures

The problem is that the test “if(do_add)” is computed for every loop iteration,
and yet “do_add” is a loop-invariant flag variable. The faster version is to use loop
distribution to move the if-test into the loop initialization, and then split the two
pathways inside the loop to instead have two separate loops. Here’s the faster
version:

 void aussie_vector_addition_loop_distribution(

 float v[], int n,

 bool do_add, float scalar)

 {

 if (do_add) { // Add scalar

 for (int i = 0; i < n; i++) {

 v[i] += scalar; // Add

 }

 }

 else { // Subtract scalar

 for (int i = 0; i < n; i++) {

 v[i] -= scalar; // Subtract

 }

 }

 }

This example is still far from optimal. For starters, it should be using pointer
arithmetic rather than array indices.

Loop Reordering

Loop reordering is the general class of optimizations that involves reordering loops
or their iterations. In complex algorithms, there are many loops, and many ways for
nesting them, or running them in sequence. Such optimizations can involve
changing the ordering of two sequential loops or two nested loops.

The reordering optimization to reverse the inner and outer nested loops is more
precisely called “loop interchange.” A single loop can also be reordered with “loop
reversal.”

Loop reordering is an optimization that doesn’t actually reduce the total
computations, because it always executes the same number of iterations as the
original version. However, loop reordering may have several benefits:

• Vectorization. Putting the loop in a different order may make it more
vectorizable, or may allow other loop transformations to be applied before
vectorization.

David Spuler 170

• Data locality. Reordering the loops may improve data locality and cache
access speed by doing the operations in a different order. This reduces the
cost of accessing the data into memory (or low-level caches), rather than
the cost of the arithmetic. It is therefore related to memory/dataflow
optimizations and pipelining optimizations.

• Reduced loop overhead. Both loop interchange and loop reversal can
reduce the general overhead of loop testing. Loop interchange allows the
shorter loop to be on the outside. Loop reversal allows “looping down to
zero” which reduces overhead.

Loop Iterator Strength Reduction

Loop strength reduction is the arithmetic optimization of “strength reduction”
applied to loop iteration variables. For example, strength reduction aims to replace
multiplication with addition. Consider this loop:

 for (int i = 0; i < n; i++) {

 a[i] = 10 * i;

 }

This can be optimized to change the multiplication into an incremental addition:

 for (int i = 0, x = 0; i < n; i++) {

 a[i] = x;

 x += 10;

 }

Note that the loop strength reduction optimization isn’t a good choice for loop
parallelization. Although it would be desirable to change a vectorized multiplication
to addition, this optimization has changed to an incremental algorithm. This makes
each loop iteration dependent on the prior one, with the results dependent on the
previous computation, so they cannot be done in parallel.

Loop Coalescing

Loop coalescing is a loop optimization that involves flattening two nested loops
into one non-nested loop. Typically, loop coalescing will still operate on a 2-
dimensional array, whereas flattening both the nested loops and the array is called
“loop collapsing.”

171 Efficient Modern C++ Data Structures

As a dummy example, consider a matrix initialization via nested loops:

 for (int i = 0; i < n; i++) {

 for (int j = 0; j < m; j++) {

 arr[i][j] = 0.0f;

 }

 }

Loop coalescing involves changing to a single loop, but still using two indices i and
j, which are calculated from the main linear index.

 int maxx = n * m;

 for (int x = 0; i < maxx; x++) {

 int i = x / n;

 int j = x % m;

 arr[i][j] = 0.0f;

 }

The benefit in speed from loop coalescing can arise by simplifying the loop, which
makes it easier to parallelize via hardware acceleration, and also maybe a different
data access pattern which might improve data locality and cache freshness.

This optimization is not always possible, as nested loop logic is often quite
complicated, and flattening a nested loop may actually worsen data locality in many
instances. However, the linear nature of a simple loop can make the code to send
off chunks to a GPU much easier.

Loop Collapsing

Loop collapsing is closely related to loop coalescing, since both aim to flatten nested
loops, but loop collapsing is a special situation where the array is also flattened to
one dimension.

Consider a matrix initialization via nested loops over a 2-dimensional array:

 for (int i = 0; i < n; i++) {

 for (int j = 0; j < m; j++) {

 arr[i][j] = 0.0f;

 }

 }

David Spuler 172

The loop collapsed version has one big loop over a different one-dimensional array:

 int maxx = n * m;

 for (int x = 0; x < maxx; x++) {

 arr2[x] = 0.0f;

 }

This loop transformation to a single loop is obviously more amenable to
vectorization.

Loop Peeling

Loop peeling is a type of loop unrolling that involves unraveling only the first few
iterations of a long loop. This is also similar to “loop splitting” with two sections,
where the first section is over the early range, and the second range is the main
section of all remaining iterations.

Loop peeling is beneficial to the overall loop efficiency if there is code in the loop
body that is only required for one or two early iterations, which can then be
removed from the main loop body. Similarly, there can be benefit in unraveling the
last few iterations of a loop, which is a similar technique.

One common case of loop peeling is when the first iteration is different from the
rest, so peeling off a single iteration is valuable.

 for (int i = 0; i < n; i++) {

 arr[i] = (i == 0) ? 0.0f : 1.0f;

 }

In this case, we can peel off the first “i==0” iteration into a single unrolled
instruction, and change the main loop to start at 1. This is also a trivial form of
“loop distribution,” where we are hoisting an “if” conditional test out of the loop.
The new code becomes:

 arr[0] = 0.0f; // Peeled

 for (int i = 1 /*not 0*/ ; i < n; i++) {

 arr[i] = 1.0f;

 }

This peeled version is faster in terms of both sequential or parallel execution. The
loop body has less computation and is also more amenable to vectorization.

173 Efficient Modern C++ Data Structures

Loop Splitting

Loop splitting refers to splitting the sequential iterations of a loop into two loops,
which each perform part of the original loop’s iterations. Loop splitting is closely
related to “loop sectioning” (“strip mining”), but often relates to more complex
arithmetic in the loop body.

Note that “loop peeling” is a special case of loop splitting where the first section is
a small range of a few initial iterations, but these few iterations are unrolled rather
than looped.

Loop splitting takes a single loop and transforms it into at least two “split-out”
loops, one for the early iterations, and one for the remainder. However, loops can
also be split out into more than two loops.

In loop splitting, each split-out loop is shorter than the original loop. Unlike loop
fission, the two loops operate over different subportions of the iterator variable
range, executing the same number of total iterations, rather than double iterations
as in loop fission.

Example: Loop Splitting: Here’s some example code to “sqrtize” a vector, using
a cached optimization for the numbers up to 100.

 void aussie_vector_do_sqrt(float v[], int n)

 {

 for (int i = 0; i < n; i++) {

 if (i < 100) { // Fast cases

 v[i] = aussie_sqrt_optimized(v[i]);

 }

 else { // General case

 v[i] = sqrtf(v[i]);

 }

 }

 }

However, we can use loop splitting to split this big loop into two shorter disjoint
ranges. Instead of 0..n-1, we do 0..99, and then 100..n-1.

Each loop is over part of the range, and has a simpler loop body. Note that this
code fails with an array bounds violation for small values of n less than 100.

David Spuler 174

 void vector_do_sqrt_loop_splitting(float v[], int n)

 {

 for (int i = 0; i < 100; i++) { // Fast cases

 v[i] = aussie_sqrt_optimized(v[i]);

 }

 for (int i = 100; i < n; i++) { // General cases

 v[i] = sqrtf(v[i]);

 }

 }

The loop splitting optimization is beneficial if the loop body has different sections
of code that only relate to a subset of the iterator range. Hence, the loop bodies of
the two loops can be reduced to execute less code. Overall, there is still the same
number of iterations performed in the two loops combined, but each loop performs
only a proportion of the original iterations on a simpler loop body. This optimizes
sequential execution and the simpler code in each loop body may make
vectorization of one or both subloops easier. Furthermore, both subloops could
run in parallel.

Loop Interchange

Loop interchange is an optimization of nested loops that switches the inner and
outer loops. In a typical nested loop, the outer loop body and loop test is executed
rarely, almost lazily, whereas the inner loop body is scrambling along in a frantic
mess. Loop interchange simply switches them, reversing their roles.

Why is this an optimization? Although the same number of loop iterations still
occur in total, and the newly-made inner loop body is also thrashed, various
improvements can arise from reversing the iterator variables, usually to make the
innermost loop the longest. Possible optimizations result from:

• Fewer outside computations. A shorter outside loop reduces the arithmetic
operations of the outer loop, whereas the inner loop’s number of
computations is unchanged in either loop structure.

• Data locality. Another possible improvement is in data locality, which can
reduce cache misses and speeds up the overall execution. Note that this
benefit is not guaranteed just by switching loops, and sometimes loop
interchange can worsen data locality; careful analysis is needed.

• Inner loop vectorization. Another important possibility is that reversing
nested loops can create opportunities to apply other loop optimizations to
the new inner loop, notably to vectorize the inner loop.

175 Efficient Modern C++ Data Structures

Shortest loop outside, longest innermost loop: One of the considerations of
loop interchange is the optimization of putting the shortest loop on the outside,
and making the innermost loop with the longest range of iterations. This is an
optimization for both sequential or parallel execution. For sequential execution,
there is less overhead from the outer loop, because it is shorter. For parallelization,
there is improved vectorization of the inner loop, which now has a longer range.

Consider this example:

 for (int i = 0; i < 1000; i++) {

 for (int j = 0; j < 50; j++) {

 // ...

 }

 }

The current loop nesting has the longest loop (to 1000) on the outside, and the
shorter loop (to 50) as the innermost loop. Loop interchange simply makes it the
reverse nesting:

 for (int j = 0; j < 50; j++) {

 for (int i = 0; i < 1000; i++) {

 // ...

 }

 }

Considering sequential execution, the inner loop body is executed the same number
of times, so there’s no difference. This also includes the inner loop’s conditional
test and incrementer, which are different variables in the two examples, but also
execute the same number of times (50,000 times). However, consider the different
outer loops. The first example is 1000 iterations, whereas the second example’s
outer loop is only 50 times. Hence, the loop reordering optimization of “shortest
outer loop” and “longest innermost loop” has saved 950 of the outer loop’s
calculations (i.e., loop test and incrementer). Any extra code that’s in the outer loop,
either before or after the inner loop, would also be executed fewer times.

There is also an advantage for vectorization. In the first example, we could possibly
have 1000 vectorized operations of data size 50. In the interchanged loops, there
are 50 operations on vectors size 1000. Hence, there is more opportunity for much
larger vectorization gains in the second format with the longest inner loop.

David Spuler 176

Loop Sentinel

Loop sentinels are an optimization that removes the overhead of checking an array
index or pointer scanning an array or pointer chain. The technique does this by
adding a pretend extra element onto the end of the array, in a way that we can
pretend to succeed. And since we’re guaranteed to always succeed, we don’t need
to check for failure while scanning the loop.

This technique is not particularly useful for vectorization, but is quite powerful for
long sequential scanning of arrays. It also has the downside of requiring at least one
writeable array element, so it cannot run on read-only arrays.

Example: Check Vector Negatives: Here’s a sentinel with a dummy in v[n]:

 bool vector_has_negative_sentinel(float v[], int n)

 {

 v[n] = -99.0; // Dummy negative (BUG!)

 int i = 0;

 for (; /*GONE!*/; i++) {

 if (v[i] < 0.0) break; // Found negative

 }

 if (i == n) return false; // Fake success

 return true; // Found a negative (for real)

 }

However, this is actually buggy, since “v[n]” is potentially an array overflow. A
better version can manipulate the last valid element “v[n-1]” instead of modifying
“v[n]”. Then, we have to remember to fix it before we leave town. We also have
to check the last vector element that we temporarily overwrote wasn’t a real success.

 bool vector_has_negative_sentinel2(float v[], int n)

 {

 float save = v[n - 1]; // Save it!

 v[n - 1] = -99.0; // Dummy negative at end

 int i = 0;

 for (; /*GONE!*/; i++) {

 if (v[i] < 0.0) break; // Found negative

 }

 v[n - 1] = save; // Restore it!

 if (i == n - 1) { // At the dummy (fake success)

 if (save < 0.0) return true; // Must check

 return false;

 }

 return true; // Found a negative (for real)

 }

177 Efficient Modern C++ Data Structures

Loop Strip Mining (Loop Sectioning)

Loop strip mining is a loop optimization that scans or “mines” various “strips” of
an array. It is related to “loop tiling” on arrays in two dimensions, but strip mining
only applies to processing one-dimensional arrays. Loop strip mining is also called
“loop sectioning” because it breaks an array up into sections that are operated on.

For a basic example, consider a simple array initialization:

 for (int i = 0; i < n; i++) {

 arr[i] = 0.0f;

 }

Let’s assume we can parallelize this with 16 elements at a time (e.g., 512 bits total
parallel processing, which is 16 separate 32-bit float variables). So, we want to
process “strips” of length 16. For simplicity, let us assume that n is divisible exactly
by 16, so there’s no leftover work after the main loop.

 for (int i = 0; i < n; i += 16) {

 // Initialize arr[i]...arr[i+15] in parallel

 }

Obviously, this is a dummy example, where memset would do better for zeroing
the array. Also, this really looks exactly like “vectorization” to me, where we are
vectorizing 512 bits at a time (16 floats), and indeed the research mentions
vectorization as one application.

But loop strip mining and vectorization are not exactly the same techniques,
because loop strip mining is a more general idea with other applications.

Loop Spreading

Loop spreading is an optimization of two non-nested sequential loops that have
different iteration ranges. Typically, this refers to where the end ranges differ
significantly. If the loop ranges only differ by an off-by-one issue, then only loop
normalization is required.

Loop spreading modifies one of the loops, so that part of this loop fully overlaps
with the other loop (i.e., ideally one loop “spreads out” further to match the other
loop’s end bounds). Hence, after loop spreading has occurred, this subloop can be
fused with the other loop, and possibly parallelized.

David Spuler 178

The remaining iterations that are not overlapping then have to be addressed in a
followup partial loop (only for one of the loops).

Loop spreading mainly enables loop fusion as a followup optimization. For using
loop fission on the two loops, it is not necessary to do loop spreading, since the
two loops are already split apart, and each loop could already potentially be
vectorized independently.

Loop Normalization

Loop normalization is not directly an optimization, but is a preliminary loop
transformation that can make further loop optimizations easier. Followup
optimizations might be to fuse the two loops with loop fusion, or to parallelize each
loop, such as with loop fission or vectorization.

The goal of loop normalization is to make the loop iteration variables act across the
same range. This applies to two sequential loops, rather than nested loops.

Hence, loop normalization is needed when two loops in sequence are starting at
different offsets (e.g., one is i=1 and another starts at i=0), or are finished at
different endpoints (e.g., n versus n-1).

If two loops have the same number of computations, but with different ranges,
then one loop can be changed with an offset. For example, these loops differ with
ranges 0..n-1 and 1..n:

 for (int i = 0; i < n; i++) a[i] = 0;

 for (int j = 1; j <= n; j++) b[j] = 0;

These can be adjusted to the same ranges with a “j+1” index offset, as follows:

 for (int i = 0; i < n; i++) a[i] = 0;

 for (int j = 0; j < n; j++) b[j+1] = 0;

If the two loops have a different number of iterations, typically off by 1 or 2, then
“loop peeling” can be used to unroll and split off one or two iterations and shorten
the longer loop, so that both loops have the same number of iterations over the
same range.

179 Efficient Modern C++ Data Structures

For example, in this example, one loop is 0..n-1 and another is 0..n:

 for (int i = 0; i < n; i++) a[i] = 0;

 for (int j = 0; j <= n; j++) b[j] = 0;

The way to normalize the loop ranges is to “peel” off the last iteration of the “j”
loop:

 for (int i = 0; i < n; i++) a[i] = 0;

 for (int j = 0; j < n; j++) b[j] = 0;

 b[n] = 0; // Peeled

This example has peeled the longer loop to make it shorter.

An alternative would be “loop spreading” to lengthen the shorter loop, such as by
adding an extra padding element into the array.

Normalizing two loops doesn’t change the number of arithmetic computations.
However, once two loops have normalized ranges, it becomes easier to see
opportunities for further optimizations such as loop fusion or loop fission.

Loop Skewing

Loop skewing is a somewhat mind-bending method to change nested loops to make
them more parallelizable. This technique applies to two nested loops, where the
inner loop is difficult to parallelize because of a dependency on the outer loop.

The performance advantage from loop skewing is not directly its usage, but because
skewing changes then make possible other loop optimizations, especially loop
interchange, which reorders the inner and outer loop.

The loop skewing solution is far from obvious. The range bounds of the inner loop
are changed by “skewing” them by a factor based on the outer loop variable. And
then, by some magical potion, this somehow breaks the dependence on the outer
loop, and then the inner loop can run fast on a GPU. Who knew?

David Spuler 180

As a simplistic example, consider two nested loops:

 for (int i = 0; i < 1000; i++) {

 for (int j = 0; j < 50; j++) {

 arr[i][j] = something;

 }

 }

We can skew the inner loop by adding a skew factor based on the outer loop
variable (e.g., “i” or “i+1” or something similar). Add this skew factor to the
ranges of j, but then subtract the skew factor (“i”) from any usages of the index
“j” inside the inner loop’s body.

 for (int i = 0; i < 1000; i++) {

 for (int j = i; j < 50 + i; j++) {

 arr[i][j - i] = something;

 }

 }

Hence, j has changed from the range (0...50) to the skewed range (i...i+50), by
adding the skew factor “i” to the start and end. The use of “j” in the inner loop
body has changed from “j” to “j-i” (i.e., subtracting the skew factor “i”).

The result is a kind of skewed and “triangular” shape of i and j indices, but the
actual arithmetic calculations are unchanged.

This newly skewed code isn’t any faster, does exactly the same calculations on the
50,000 elements of array arr, and indeed is actually worse because of the extra
“50+i” and “j-i” computations.

However, in some cases, doing this weird skewing transformation then allows us to
follow up with a loop interchange optimization, switching the inner and outer
loops. And I’m not even going to pretend to understand this, but there are
situations where the non-skewed inner loop cannot be vectorized or interchanged,
but after we’ve skewed the loop, then we can interchange it, and then we get via
hocus pocus a different inner loop that can then be vectorized.

Hopefully, the GPU knows what’s going on.

181 Efficient Modern C++ Data Structures

References

1. Allen, F. E., and Cocke, J. 1972. A catalogue of optimizing transformations. In
Design and Optimization of Compilers, Prentice-Hall, Englewood Cliffs,
N.J., pp. 1–30.
PDF: https://www.clear.rice.edu/comp512/Lectures/Papers/1971-
allen-catalog.pdf

2. D. F. Bacon, S. L. Graham, and O. J. Sharp. 1994. Compiler transformations
for high-performance computing . ACM Computing Surveys 26, 4 (1994), 345–
420. https://dl.acm.org/doi/10.1145/197405.197406,
PDF: https://people.eecs.berkeley.edu/~fateman/264/papers/bacon.pd
f (Paper with extensive coverage of numerous compiler auto-
optimizations of program code.)

3. Paul Bilokon, Burak Gunduz, 8 Sep 2023, C++ Design Patterns for Low-
latency Applications Including High-frequency
Trading, https://arxiv.org/abs/2309.04259,
Code: https://github.com/0burak/imperial_hft

4. Eric LaForest, March 19, 2010, Survey of Loop Transformation Techniques,
ECE 1754, http://fpgacpu.ca/writings/SurveyLoopTransformations.pdf

5. B Qiao, O Reiche, F Hannig, 2019, From loop fusion to kernel fusion: A
domain-specific approach to locality optimization, 2019 IEEE/ACM
International Symposium on Code Generation and Optimization
(CGO), https://ieeexplore.ieee.org/document/8661176 (Theory of loop
fusion generalized to graph kernel fusion for image processing.)

6. Kathryn S. McKinley, Steve Carr, Chau-Wen Tseng, 1996, Improving data
locality with loop transformations, ACM Transactions on Programming
Languages and Systems, Volume 18, Issue 4, pp 424–
453, https://dl.acm.org/doi/10.1145/233561.233564

7. B Blainey, C Barton, JN Amaral, 2002, Removing impediments to loop fusion
through code transformations, International Workshop on Languages and
Compilers for Parallel Computing, LCPC 2002: Languages and Compilers
for Parallel Computing pp 309–
328, https://link.springer.com/chapter/10.1007/11596110_21

https://www.clear.rice.edu/comp512/Lectures/Papers/1971-allen-catalog.pdf
https://www.clear.rice.edu/comp512/Lectures/Papers/1971-allen-catalog.pdf
https://dl.acm.org/doi/10.1145/197405.197406
https://people.eecs.berkeley.edu/~fateman/264/papers/bacon.pdf
https://people.eecs.berkeley.edu/~fateman/264/papers/bacon.pdf
https://arxiv.org/abs/2309.04259
https://github.com/0burak/imperial_hft
http://fpgacpu.ca/writings/SurveyLoopTransformations.pdf
https://ieeexplore.ieee.org/document/8661176
https://dl.acm.org/doi/10.1145/233561.233564
https://link.springer.com/chapter/10.1007/11596110_21

David Spuler 182

183 Efficient Modern C++ Data Structures

13. Parallel Vectorization

What is Vectorization?

Vectorization is the name given to transforming a software loop from running
sequentially on an array of data to performing the same computation fully in
parallel, by sending the data to a GPU or CPU SIMD extensions. This is a powerful
way to optimize the processing of contiguous data structures such as arrays and
vectors.

Vectorization uses techniques from loop optimizations to transform loops into
faster parallelizable versions, such as “unrolling” a loop into all its element-wise
actions, and loop distribution (also called “loop sectioning”), which breaks the array
into segments that are the right size to fit in parallel into your GPU or CPU SIMD
extensions.

In theory, a good optimizing compiler can do vectorization optimizations
automatically for simple loops, but often you have to do it yourself.

A powerful way to do vectorization of contiguous data processing is to use the
AVX SIMD instructions for CPU-based parallelism. The AVX intrinsics are C++
built-in functions that wrap around SIMD instruction codes in the x86 instruction
set.

The basic AVX intrinsics are 128-bits (4 float values of size 32-bits), AVX-2 is
256 bits (8 float values), and AVX-512 is 512 bits (surprise!), which is
16 float numbers. The upcoming AVX-10 (announced in July 2023) is also 512
bits, but with extra capabilities.

Obviously, since the largest number of floating-point values that can be parallelized
is 16, the AVX SIMD intrinsics cannot fully vectorize a larger vector with
many float values, such as an AI model with dimension 1024. Instead, we can
use AVX intrinsics on segments of vectors, and thereby vectorize chunks of the
right size to get a speedup.

David Spuler 184

Example: AVX Vectorized Dot Product

Here is the basic non-vectorized dot product computation without any
optimization attempts.

 float vecdot_basic(float v1[], float v2[], int n)

 {

 // Basic FLOAT vector dot product

 float sum = 0.0;

 for (int i = 0; i < n; i++) {

 sum += v1[i] * v2[i];

 }

 return sum;

 }

To use AVX to vectorize it, we need to unroll the loop first. Here’s a simple vector
dot product with its inner loop unrolled 4 times. This version assumes that n is a
multiple of 4 rather than handling odd cases:

 float vecdot_unroll4(float v1[], float v2[], int n)

 {

 // Loop-unrolled Vector dot product

 if (n % 4 != 0) {

 aussie_assert(n % 4 == 0);

 return 0.0; // fail

 }

 float sum = 0.0;

 for (int i = 0; i < n;) {

 sum += v1[i] * v2[i]; i++;

 sum += v1[i] * v2[i]; i++;

 sum += v1[i] * v2[i]; i++;

 sum += v1[i] * v2[i]; i++;

 }

 return sum;

 }

So, now we can change those 4 unrolled multiplications into one AVX computation
of the vector dot product of 4 float numbers.

185 Efficient Modern C++ Data Structures

 #include <intrin.h>

 float vecdot_unroll_AVX1(float v1[], float v2[],int n)

 {

 // AVX-1 loop-unrolled (4 floats) dot product

 if (n % 4 != 0) {

 aussie_assert(n % 4 == 0);

 return 0.0; // fail

 }

 float sum = 0.0;

 for (int i = 0; i < n; i += 4) {

 // AVX1: Vector dot product of 2 vectors

 // ... process 4x32-bit floats in 128 bits

 __m128 r1 = _mm_loadu_ps(&v1[i]); // Load

 __m128 r2 = _mm_loadu_ps(&v2[i]);

 __m128 dst = _mm_dp_ps(r1, r2,0xf1); // Dot prod

 sum += _mm_cvtss_f32(dst);

 }

 return sum;

 }

This basic AVX sequence of code to do the 4 float dot product has been analyzed
in a separate chapter. The main dot product computation is “_mm_dp_ps” which
is an AVX intrinsic and multiplies 4 pairs of 32-bit float numbers, and then sums
them, all in one call to an intrinsic. Note that the loop now iterates 4 at a time
through the array of float values (i.e., “i+=4”) and then the AVX intrinsic does
the rest.

Here’s the benchmark analysis showing that the AVX-vectorized version is more
than twice as fast:

 FLOAT Vector dot product benchmarks:

 Time taken: Vecdot basic: 2805 ticks (2.81 seconds)

 Time taken: Vecdot AVX1 unroll (4 floats, 128-bits):

 1142 ticks (1.14 seconds)

Fused Multiply-Add (FMA) in AVX-2. The AVX-2 FMA intrinsic takes 3
vectors, each of size 256-bits, multiplies two of them pair-wise, and then adds the
third vector. Both the multiplication and addition are done in element-wise SIMD
style. At first blush this sounds like doing a vector multiply and then adding a “bias”
vector, and hence doesn’t sound like a good optimization for the vector dot
product. The SIMD pairwise multiplication is the first step of dot products, but the
vector addition seems the opposite of what we want, which is “horizontal” addition
of the products that result from the multiplications.

David Spuler 186

The default idea is doing a dot product of 8 float values, and then another one,
and then adding each individual sum at the end. With that idea, the vertical addition
in FMA is not what we want, and it looks like using SIMD multiplication and an
extra horizontal addition would be better than using a single FMA intrinsic.
However, we can make like Superman III...

 Reverse it!

If you think about FMA not as a multiplication and then addition, but as “adding
multiplications” in the reverse order, then there is a eureka moment: put the
addition first. The idea is that we can maintain a vector of running sums, and then
only do a single horizontal addition at the very end. It’s kind of mind-bending, but
here’s the code:

 float vecdot_FMA_unroll_AVX2(float v1[], float v2[], int n)

 {

 // AVX2 vecdot using FMA (Fused Multiply-Add) primitives

 if (n % 8 != 0) {

 aussie_assert(n % 8 == 0);

 return 0.0; // fail

 }

 __m256 sumdst = _mm256_setzero_ps(); // Zero accumulators

 for (int i = 0; i < n; i += 8) {

 // AVX2: process 8x32-bit floats in 256 bits

 __m256 r1 = _mm256_loadu_ps(&v1[i]); // Load floats

 __m256 r2 = _mm256_loadu_ps(&v2[i]);

 sumdst = _mm256_fmadd_ps(r1, r2, sumdst); // FMA 3 vect

 }

 // Add the final 8 accumulators manually

 float* farr = (float*)&sumdst;

 float sum = farr[0] + farr[1] + farr[2] + farr[3]

 + farr[4] + farr[5] + farr[6] + farr[7];

 return sum;

 }

How does this work? Well, we declare “sumdst” as a vector of 8 float numbers
that maintains the 8 parallel accumulators, which is first initialized to all-zeros via
the “_mm256_setzero_ps” intrinsic. In the main loop, we use “sumdst” to
maintain a running sum in all 8 of those parallel accumulators across multiple
segments of the vector. One accumulator sums the products in array indices
0,8,16,..., and the next accumulator sums the products for indices 1,9,17,... We use
the FMA intrinsic (“_mm256_fmadd_ps” in AVX2) to do the SIMD
multiplication, but rather than trying to add the 8 resulting products together, we
add each product to a separate accumulator. This works very neatly, because the
AVX-2 FMA intrinsics does this all in SIMD parallelism with the combined FMA
intrinsic. Only at the very end, after the main loop, we do a horizontal add of the 8
parallel accumulators to get the final sum.

187 Efficient Modern C++ Data Structures

This idea works surprisingly well, and is gratifying since I couldn’t get the AVX-2
256-bit version with the dot product “_mm256_dp_ps” intrinsic to run correctly
on 8 float values. Here’s the benchmarking, which shows that AVX-2 using FMA
on 8 float values in parallel runs much faster than the AVX1 unrolled vector dot
product using the intrinsic “_mm_dp_ps” with 4 float values.

 FLOAT Vector dot product benchmarks: (N=1024, Iter=1000000)

 Vecdot basic: 2961 ticks (2.96 seconds)

 Vecdot AVX1 unroll (4 float, 128-bit): 1169 ticks (1.17 sec)

 Vecdot AVX1 FMA (4 float, 128-bit): 1314 ticks (1.31 seconds)

 Vecdot AVX2 FMA (8 float, 256-bit): 783 ticks (0.78 seconds)

Note that we can improve on the horizontal addition at the very end. The example
code just uses basic C++ with 7 additions and 8 array index computations. Instead,
this last computation should really use some AVX “hadd” intrinsics instead (it
needs 3 calls to horizontal-pairwise add 8 float values).

Example: AVX Vector Sum Reduction

Let us suppose we need to calculate the sum of all the elements of a vector. This is
a “reduction” that has dimensions “vector-to-scalar.” Here is a basic naive C++
version without any optimizations:

 float vector_sum(float v[], int n) // Summation

 {

 float sum = 0.0;

 for (int i = 0; i < n; i++) {

 sum += v[i];

 }

 return sum;

 }

AVX vector reductions have some issues in the early releases. Although AVX has
SIMD instructions to add two vectors in parallel, it struggles to do a “reduction”
operation like this. AVX and AVX-2 do have “horizontal add” (“hadd”) intrinsics,
but these only do pairwise additions within the single vector, rather than adding all
elements. AVX-512 has a “reduce add” intrinsic (“_mm512_reduce_add_ps”)
for horizontally adds 16 float numbers, which works a lot better.

For AVX and AVX-2, are we stuck with doing multiple calls to the pairwise “hadd”
intrinsics? No, there’s a non-obvious way to use the “vertical add” intrinsics in
parallel. We can do “in parallel” squared. It’s almost like we’re doing math inside a
computer.

David Spuler 188

The trick is to use the AVX registers as a set of 4 parallel accumulators (AVX 128
bits) or 8 parallel accumulators (AVX-2’s 256 bits). In this way, we can defer the
“hadd” until the very end, and since it’s not in the critical loop, its performance
hardly matters. Here’s the code for AVX-1 with 128-bit registers:

 float vector_sum_AVX1(float v[], int n)

 {

 // Summation (horizontal) of a single vector

 if (n % 4 != 0) { // Safety

 aussie_assert(n % 4 == 0);

 return 0.0; // fail

 }

 __m128 sumdst = _mm_setzero_ps(); // Zero accums

 for (int i = 0; i < n; i += 4) {

 __m128 r1 = _mm_loadu_ps(&v[i]); // Load float

 sumdst = _mm_add_ps(r1, sumdst); // SUM=SUM+V

 }

 // Add the final 4 accumulators manually

 float* farr = sumdst.m128_f32;

 float sum = farr[0] + farr[1] + farr[2] + farr[3];

 return sum;

 }

The AVX-2 version is faster, because it processes 8 float values at a time. This
uses the same strategy of 8 parallel accumulators and a loop unrolling factor of 8
(i.e., the loop incrementer is now “i+=8”). Here’s the C++ code:

 float aussie_vector_sum_AVX2(float v[], int n)

 {

 if (n % 8 != 0) { // Safety check (no extra cases)

 aussie_assert(n % 8 == 0);

 return 0.0; // fail

 }

 __m256 sumdst = _mm256_setzero_ps(); // Clear acc

 for (int i = 0; i < n; i += 8) {

 __m256 r1 = _mm256_loadu_ps(&v[i]); // Load 8

 sumdst = _mm256_add_ps(r1, sumdst); // SUM=SUM+V

 }

 // Add the final 8 accumulators manually

 float* farr = sumdst.m256_f32;

 float sum = farr[0] + farr[1] + farr[2] + farr[3]

 + farr[4] + farr[5] + farr[6] + farr[7];

 return sum;

 }

189 Efficient Modern C++ Data Structures

I’ve been lazy not bothering to optimize the final horizontal addition. A small extra
speedup is probably available using the “hadd” intrinsics 3 times in a row to drop
it down from 8 accumulators to a single float. If this was AVX-512, we could use
the horizontal reduction “_mm512_reduce_add_ps” intrinsic for summation at
the end (for adding 16 partial sums of type float).

Loop Peeling Optimization: Another inefficiency with these AVX addition
routines it that they needlessly perform an addition with zero in the first iteration.
Effectively, we need to do “loop peeling” to handle the first loop iteration
differently. This is the slow first iteration of AVX2 vector sum:

 __m256 sumdst = _mm256_setzero_ps(); // Clear 8

 for (int i = 0; i < n; i += 8) {

 // ...

 }

Loop peeling says to replace the initialization with zero with loading the first 8
values from the vector. The loop starts its first iteration at i=8 instead of i=0,
skipping what had been the first addition:

 // Get first 8 values

 __m256 sumdst = _mm256_loadu_ps(&v[0]);

 for (int i = 8 /*not 0!*/; i < n; i += 8) {

 // ... same

 }

AVX Vector Max and Min Reductions

The need to find a minimum or maximum of a vector’s elements is similar to a
summation reduction. Again, AVX1 and AVX2 don’t have proper “reduction”
intrinsics for max or min, but we can compute them in parallel by keeping a
running min or max value of 4 or 8 float values (i.e., analogous to parallel
accumulators when doing summation).

The AVX intrinsics are:

• MIN: _mm_min_ps, _mm256_min_ps

• MAX: _mm_max_ps, _mm256_max_ps

David Spuler 190

Here is the AVX1 version of MAX vector reduction:

 float aussie_vector_max_AVX1(float v[], int n)

 {

 // Maximum (horizontal) of a single vector

 assert(n % 4 == 0);// Safety check (extra cases)

 __m128 sumdst = _mm_loadu_ps(&v[0]); // Init value

 for (int i = 4 /*not 0*/; i < n; i += 4) {

 __m128 r1 = _mm_loadu_ps(&v[i]); // Load float

 // dst = MAX(dst, r1)

 sumdst = _mm_max_ps(r1, sumdst);

 }

 // Find Max of the final 4 accumulators

 float* farr = sumdst.m128_f32;

 float fmax = farr[0];

 if (farr[1] > fmax) fmax = farr[1];

 if (farr[2] > fmax) fmax = farr[2];

 if (farr[3] > fmax) fmax = farr[3];

 return fmax;

 }

And here is the analogous AVX2 version of MAX vector reduction:

 float aussie_vector_max_AVX2(float v[], int n)

 {

 // Maximum (horizontal) of a single vector

 assert(n % 8 == 0);// Safety check (extra cases)

 __m256 sumdst = _mm256_loadu_ps(&v[0]); // Init

 for (int i = 8/*not 0*/; i < n; i += 8) {

 __m256 r1 = _mm256_loadu_ps(&v[i]); // Load

 // dst = MAX(dst, r1)

 sumdst = _mm256_max_ps(r1, sumdst);

 }

 // Find Max of the final 8 accumulators

 float* farr = sumdst.m256_f32;

 float fmax = farr[0];

 if (farr[1] > fmax) fmax = farr[1];

 if (farr[2] > fmax) fmax = farr[2];

 if (farr[3] > fmax) fmax = farr[3];

 if (farr[4] > fmax) fmax = farr[4];

 if (farr[5] > fmax) fmax = farr[5];

 if (farr[6] > fmax) fmax = farr[6];

 if (farr[7] > fmax) fmax = farr[7];

 return fmax;

 }

191 Efficient Modern C++ Data Structures

The MIN versions are very similar. They use the “min” AVX intrinsics, and the final
steps use “<” not “>” operations. Here’s the AVX1 version of a MIN vector
reduction:

 float aussie_vector_min_AVX1(float v[], int n)

 {

 // Minimum (horizontal) of a single vector

 assert(n % 4 == 0); // Safety check (extra cases)

 __m128 sumdst = _mm_loadu_ps(&v[0]); // Init

 for (int i = 4 /*not 0*/; i < n; i += 4) {

 __m128 r1 = _mm_loadu_ps(&v[i]); // Load

 // dst = MIN(dst, r1)

 sumdst = _mm_min_ps(r1, sumdst);

 }

 // Find Min of the final 4 accumulators

 float* farr = sumdst.m128_f32;

 float fmin = farr[0];

 if (farr[1] < fmin) fmin = farr[1];

 if (farr[2] < fmin) fmin = farr[2];

 if (farr[3] < fmin) fmin = farr[3];

 return fmin;

 }

This is the AVX2 version of a MIN vector reduction:

 float aussie_vector_min_AVX2(float v[], int n)

 {

 // Minimum (horizontal) of a single vector

 assert(n % 8 == 0); // Safety check (extra cases)

 __m256 sumdst = _mm256_loadu_ps(&v[0]); // Init

 for (int i = 8/*not 0*/; i < n; i += 8) {

 __m256 r1 = _mm256_loadu_ps(&v[i]); // Load

 // dst = MIN(dst, r1)

 sumdst = _mm256_min_ps(r1, sumdst);

 }

 // Find Min of the final 8 accumulators

 float* farr = sumdst.m256_f32;

 float fmin = farr[0];

 if (farr[1] < fmin) fmin = farr[1];

 if (farr[2] < fmin) fmin = farr[2];

 if (farr[3] < fmin) fmin = farr[3];

 if (farr[4] < fmin) fmin = farr[4];

 if (farr[5] < fmin) fmin = farr[5];

 if (farr[6] < fmin) fmin = farr[6];

 if (farr[7] < fmin) fmin = farr[7];

 return fmin;

 }

David Spuler 192

These versions are not especially optimized. AVX-512 would allow us to further
vectorize to 16 float values. Also, the final computation of the maximum or
minimum of 8 float numbers is far from optimal.

The AVX horizontal min/max intrinsics could be used (pairwise, multiple times).
Or we can at least avoid some comparisons by doing it pairwise sequentially.

Here’s the alternative for AVX1 minimum computation:

 // Find Min of the final 4 accumulators

 #define FMIN(x,y) ((x) < (y) ? (x) : (y))

 float* farr = sumdst.m128_f32;

 float fmin1 = FMIN(farr[0], farr[1]);

 float fmin2 = FMIN(farr[2], farr[3]);

 float fmin = FMIN(fmin1, fmin2);

 return fmin;

These functions can also have their main loops further improved. Other basic
optimizations would include using loop pointer arithmetic to remove the index
variable “i” and also unrolling the loop body multiple times.

Vectorized Sum-of-Squares Reduction

The sum of the square of an element of a vector has various applications in our AI
Engine. Firstly, it can be used to compute the magnitude of a vector.

Secondly, the sum-of-squares is used in various normalization functions, as part of
computing the variance from the sum-of-squares of the difference between values
and the mean. The RMS factor in RMSNorm is also the square root of the sum-of-
squares.

The method to add up the sum-of-squares for a vector reduction to a
single float is very similar to a simple summation reduction.

The idea for AVX1 and AVX2 is to keep 4 or 8 running sum accumulators, and
then add them up at the final step.

193 Efficient Modern C++ Data Structures

Here is the AVX1 version of sum-of-squares of a vector:

 float aussie_vector_sum_squares_AVX1(float v[], int n)

 {

 // Summation of squares of all elements

 assert(n % 4 == 0); // Safety check (extra cases)

 __m128 sumdst = _mm_setzero_ps(); // Zero accum

 for (int i = 0; i < n; i += 4) {

 __m128 r1 = _mm_loadu_ps(&v[i]); // Load

 __m128 sqr = _mm_mul_ps(r1, r1); // Sqr (V*V)

 sumdst = _mm_add_ps(sqr, sumdst); // SUM+=V*V

 }

 // Add the final 4 accumulators manually

 float* farr = sumdst.m128_f32;

 float sum = farr[0] + farr[1] + farr[2] + farr[3];

 return sum;

 }

And here is the AVX2 version of sum-of-squares:

 float aussie_vector_sum_squares_AVX2(float v[], int n)

 {

 // Summation of squares of all elements

 assert(n % 8 == 0); // Safety check (extra cases)

 __m256 sumdst = _mm256_setzero_ps(); // Zero accum

 for (int i = 0; i < n; i += 8) {

 __m256 r1 = _mm256_loadu_ps(&v[i]); // Load

 __m256 sqr = _mm256_mul_ps(r1, r1); // (V*V)

 sumdst = _mm256_add_ps(sqr, sumdst); // SUM+=V*V

 }

 // Add the final 8 accumulators manually

 float* farr = sumdst.m256_f32;

 float sum = farr[0] + farr[1] + farr[2] + farr[3]

 + farr[4] + farr[5] + farr[6] + farr[7];

 return sum;

 }

Various optimizations can be further applied to these versions. Like the summation
reduction, these loops needlessly add zero at the first iteration, and loop peeling
should be used for split out the first iteration separately. The final horizontal
addition of 4 or 8 float values should be optimized. AVX-512 should be used for
greater parallelism to 16 float numbers. Finally, basic loop optimizations with
pointer arithmetic and loop unrolling could be applied.

David Spuler 194

Vectorized Multiply Vector by Scalar

The requirement to multiply a vector by a scalar is common when using scaling
vectors. Division by a scalar is also handled by multiplying by the reciprocal (e.g.,
needed for Softmax). Multiplication by a scalar is amenable to vectorization because
the naive C++ version is very simple:

 void vector_multiply_scalar(float v[], int n, float c)

 {

 // Multiply all vector elements by constant

 for (int i = 0; i < n; i++) {

 v[i] *= c;

 }

 }

Loop Pointer Arithmetic. First, we can try the basic C++ optimization of pointer
arithmetic:

 void vector_multiply_scalar_pointer_arith(

 float v[], int n, float c)

 {

 // Multiply all vector elements by constant

 for (; n > 0; n--, v++) {

 *v *= c;

 }

 }

AVX1 multiply-by-scalar: There is no special scalar multiplication opcode in
AVX or AVX-2, but we can populate a constant register (128-bit or 256-bit) with
multiple copies of the scalar (i.e., _mm_set1_ps or _mm256_set1_ps), and we
need do this only once. We can then use the SIMD multiply intrinsics in the
unrolled loop section. The AVX 128-bit vector multiplication by scalar becomes:

 void vec_mult_scalar_AVX1(float v[], int n, float c)

 {

 // Vector of scalars

 const __m128 rscalar = _mm_set1_ps(c);

 for (int i = 0; i < n; i += 4) {

 __m128 r1 = _mm_loadu_ps(&v[i]); // Load floats

 __m128 dst = _mm_mul_ps(r1, rscalar); // Mul scalars

 _mm_store_ps(&v[i], dst); // cvt to float (aligned)

 }

 }

195 Efficient Modern C++ Data Structures

AVX2 multiply-by-scalar: Even faster is to use 8 parallel multiplications with
AVX-2’s 256-bit registers. The AVX-1 version is simply changed to use the
“__m256” type and the analogous AVX-2 intrinsics. The new code looks like:

 void vector_mult_scalar_AVX2(float v[], int n, float c)

 {

 const __m256 rscalar = _mm256_set1_ps(c); // Scalars

 for (int i = 0; i < n; i += 8) {

 __m256 r1 = _mm256_loadu_ps(&v[i]); // Load floats

 __m256 dst = _mm256_mul_ps(r1, rscalar); // Multiply

 _mm256_store_ps(&v[i], dst); // cvt floats (aligned)

 }

 }

Combining AVX-2 with pointer arithmetic. Finally, we can get a small extra
benefit by adding pointer arithmetic optimizations to the AVX-2 parallelized
version. The new code is:

 void aussie_vector_multiply_scalar_AVX2_pointer_arith(

 float v[], int n, float c)

 {

 // Multiply all vector elements by constant

 const __m256 rscalar = _mm256_set1_ps(c); // scalars

 for (; n > 0; n -= 8, v += 8) {

 __m256 r1 = _mm256_loadu_ps(v); // Load floats

 __m256 dst = _mm256_mul_ps(r1, rscalar); // Multiply

 _mm256_store_ps(v, dst); // cvt to floats aligned

 }

 }

Benchmarking results. In theory, the AVX-2 intrinsics could parallelize the
computation by 8 times, but benchmarking showed that it only achieved a 4-times
speedup.

 Vector-scalar operation benchmarks (N=1024, ITER=1000000):

 Vector mult-scalar C++: 1412 ticks (1.41 seconds)

 Vector mult-scalar pointer-arith: 995 ticks (0.99 seconds)

 Vector mult-scalar AVX1: 677 ticks (0.68 seconds)

 Vector mult-scalar AVX2: 373 ticks (0.37 seconds)

 Vector mult-scalar AVX2 + ptr arith: 340 ticks (0.34 sec)

David Spuler 196

Vectorized Add Scalar

The code to vectorize an “add-scalar” operation is almost identical to “multiply-
scalar” operations, except that “add” intrinsics are used. Here is the AVX-1 version
with “_mm_add_ps”:

 void vector_add_scalar_AVX1(float v[], int n, float c)

 {

 // Add scalar constant to all vector elements

 const __m128 rscalar = _mm_set1_ps(c); // scalars

 for (int i = 0; i < n; i += 4) {

 __m128 r1 = _mm_loadu_ps(&v[i]); // Load floats

 __m128 dst = _mm_add_ps(r1, rscalar); // Add scalars

 _mm_store_ps(&v[i], dst); // store back to floats

 }

 }

And this is the analogous AVX-2 version using the “_mm256_add_ps” intrinsic:

 void aussie_vector_add_scalar_AVX2(

 float v[], int n, float c)

 {

 // Add scalar constant to all vector elements

 const __m256 rscalar = _mm256_set1_ps(c); // scalars

 for (int i = 0; i < n; i += 8) {

 __m256 r1 = _mm256_loadu_ps(&v[i]); // Load floats

 __m256 dst = _mm256_add_ps(r1, rscalar); // Add

 _mm256_store_ps(&v[i], dst); // convert to floats

 }

 }

Vectorized RELU with Max Intrinsics

The RELU activation function is an important piece of code in AI engines.
However, it’s very simple, arithmetically converting negatives to zero, leaving
positives unchanged. This is algebraically equivalent to max(x,0), which can be
implemented in AVX like a “max-scalar” operation.

To vectorize RELU applied to a whole vector of float elements, we are
effectively doing a SIMD max operation with a scalar zero (i.e., 0.0). Hence, the
code is very similar to vectorization of add-scalar, but uses the “_mm_max_ps”
intrinsic.

197 Efficient Modern C++ Data Structures

The AVX1 version of vectorized RELU looks like:

 void aussie_vector_reluize_AVX1(float v[], int n)

 {

 // Apply RELU to each element (sets negatives to zero)

 if (n % 4 != 0) {

 aussie_assert(n % 4 == 0);

 return; // fail

 }

 const __m128 rzeros = _mm_set1_ps(0.0f); // zeros...

 for (int i = 0; i < n; i += 4) {

 __m128 r1 = _mm_loadu_ps(&v[i]); // Load floats

 __m128 dst = _mm_max_ps(r1, rzeros); // MAX(r1,0)

 _mm_store_ps(&v[i], dst); // store back to floats

 }

 }

And here is the AVX2 version doing 8 float elements at a time using the
“_mm256_max_ps” intrinsic:

 void aussie_vector_reluize_AVX2(float v[], int n)

 {

 // Apply RELU to each element (sets negatives to zero)

 if (n % 8 != 0) {

 aussie_assert(n % 8 == 0);

 return; // fail

 }

 const __m256 rzeros = _mm256_set1_ps(0.0f); // zeros...

 for (int i = 0; i < n; i += 8) {

 __m256 r1 = _mm256_loadu_ps(&v[i]); // Load floats

 __m256 dst = _mm256_max_ps(r1, rzeros); // MAX(R1,0)

 _mm256_store_ps(&v[i], dst); // store to floats

 }

 }

Vectorization of Exponentiation

The expf function is very expensive to call, but exponentiation of entire vectors
of float values are required in several parts of AI engines, such as activation
functions and Softmax normalization. Surprisingly, in x86 there are CPU opcodes
to do exponentiation in hardware, and there are matching AVX intrinsics for SIMD
exponentiation operations on small vectors (i.e., 4 float values for AVX-1 and
8 float values for AVX-2).

David Spuler 198

The basic C++ version to apply expf to every element of a vector, and store the
result in the original vector, looks like this:

 void aussie_vector_expf(float v[], int n)

 {

 // Apply EXPF (exponential) to each element

 for (int i = 0; i < n; i++) {

 v[i] = expf(v[i]);

 }

 }

Loop Pointer arithmetic. Applying the basic C++ optimization of pointer
arithmetic, the new code is:

 void vector_expf_pointer_arith(float v[], int n)

 {

 for (; n > 0; n--, v++) {

 *v = expf(*v);

 }

 }

AVX1 SIMD exponentiation of 4 values: There is an AVX intrinsic called
“_mm_exp_ps” to exponentiate 4 float values in parallel using the 128-bit
registers.

Here’s the new vector exponentiation code with loop unrolling every 4 elements
and AVX1 vectorization:

 void aussie_vector_expf_AVX1(float v[], int n)

 {

 for (int i = 0; i < n; i += 4) {

 __m128 r1 = _mm_loadu_ps(&v[i]); // Load float

 __m128 dst = _mm_exp_ps(r1); // Exponent (expf)

 _mm_store_ps(&v[i], dst); // convert to floats

 }

 }

AVX2 SIMD exponentiation of 8 floating-point values: The AVX2 intrinsic is
“_mm256_exp_ps” to exponentiate 8 elements in parallel using the 256-bit
registers.

199 Efficient Modern C++ Data Structures

The new code with loop unrolling every 8 values and AVX-2 intrinsics becomes:

 void aussie_vector_expf_AVX2(float v[], int n)

 {

 // Apply EXPF (exponential) to each element

 for (int i = 0; i < n; i += 8) {

 __m256 r1 = _mm256_loadu_ps(&v[i]); // Load

 __m256 dst = _mm256_exp_ps(r1); // Exponentiate

 _mm256_store_ps(&v[i], dst); // cvt to floats

 }

 }

Benchmarking results. The results of optimization of exponentiation are striking!
AVX1 is massively faster, cutting out 97% of the original computation time, and
then AVX2 is faster still. It’s almost like hardware is faster than software. Who
knew?

 Vector-exponentiation benchmarks (N=1024, ITER=100000):

 Vector expf basic: 6695 ticks (6.70 seconds)

 Vector expf pointer-arith: 6395 ticks (6.39 seconds)

 Vector expf AVX1: 260 ticks (0.26 seconds)

 Vector expf AVX2: 124 ticks (0.12 seconds)

Vectorization of Lookup Tables

The use of lookup-tables is already a powerful speed optimization, but we can
double down by adding vectorization. The AVX SIMD instruction sets include a
variety of “gather” intrinsics that perform parallel array lookups from a vector with
integer indices, using a base address. The basic algorithm we’re going to use for
AVX SIMD optimizations of a LUT precalculation of some mathematical function
is as follows:

• Offline: Precalculate a big LUT for 24 bits with 2^24 elements using non-
AVX basic C++ methods.

• Input: vector of 4 float values (AVX-1) or 8 float values (AVX-2).

• Use a cast to treat these float arrays as arrays of integers.

• Load these “int” arrays into an AVX register.

• AVX shift right by 8 with the AVX-2 “_mm_srli_epi32” intrinsic,
which shifts right and adds zero bits, so that they are now 24-bit numbers
in 32 bits, with a zero sign bit (hence, all indices are positive integers).

• AVX “gather” with the LUT array, and scale of 4 (i.e., float byte size).

• Store the AVX register results back into an array of float values.

• Output: vector of 4/8 float values with the LUT-calculated function.

David Spuler 200

Note that we can use a smaller (or bigger) LUT than 24 bits simply by modifying
the bitshift counts.

LUTs with AVX Shuffle. Another way to implement a LUT in AVX is to use
“shuffle” operations on another register. This only works for small lookup tables,
that have few enough elements to fit inside AVX registers. In other words, this can
be fast, but only for 16 or 32 elements in the LUT for AVX-2, or more if you use
AVX-512. This optimization is unlikely to be relevant to computing the massive
16-bit or 24-bit LUTs that we need for AI mathematical functions.

AVX SIMD Pointer Dereferences. A corollary to the AVX LUT “gather”
functionality is they can possibly be used to vectorize arrays of pointers, where the
pointers are directly aimed at the data without any intervening lookup-table. For
example, suppose we have an array of pointers to float (i.e., rather than an array of
integer indices), and we want to access these addresses to generate the
corresponding array of float. This is analogous to using a lookup table, but with a
base address of zero. Hence, we could potentially use AVX “gather” intrinsics with
a zero base address, and the integer offsets equal to the address (i.e., the pointers
converted to integer). The x86 platform has 64-bit pointers, so 64-bit integer index
offsets are required in the “gather” intrinsic. For example, the AVX2
“_mm256_i64gather_epi32” and “_mm256_i64gather_ps” intrinsics seem
to be along these lines with 64-bit indices. I haven’t actually tested this approach to
check if it works.

Auto-Vectorization and Restricted Pointers

Modern C++ compilers attempt to automatically vectorize simple loops. Basic loop
structures can be unrolled by optimizers, either partially or fully, and then sent to
hardware acceleration automatically.

One of the most important hints to the compiler is a “restrict” designation on
pointer variables. Ironically, the benefit of restrict is to limit what you can code,
but also to allow unrestricted use of the pointers by the optimizer.

The purpose of the restrict attribute is a type specifier to tell the C++ compiler
that a given pointer or array variable is not an “alias” for any other pointer. There
are various loop transformations and vectorization optimizations that cannot be
performed if the compiler has to be conservative and assume that aliasing could
occur.

201 Efficient Modern C++ Data Structures

One of the main uses of restrict is on pointer or array function parameters,
because arrays are pointers in this context. For example, if we have two function
parameters (e.g., vector addition), declaring both parameters as restrict tells the
compiler that the two pointers will never point to the other vector.

Note that this use of the word “aliasing” refers to two pointers referring to the same
object or array (i.e., the pointers are aliases of each other). There is another
unrelated but similar use of the term in C++ “aliases” for declarations, which means
one function or type with two alias names.

The “restrict” keyword is merely a hint to the optimizer, and recalcitrant C++
compilers are free to ignore the advice. In fact, “restrict” isn’t even valid C++,
because it’s part of C, but not yet in the C++ standard. Nevertheless, various
compilers support it or similar extensions like __restrict__, so it can be used
in C++ programs.

Restricted pointers don’t always need to be marked as such. In some usages, the
use of “const” can allow the compiler to infer non-aliasing of parameters, but it
probably doesn’t hurt to declare it with “restrict” as well. Note also that the
C++ compiler is free to assume non-aliasing of pointers of different types, because
it is undefined behavior if they are aliases. This is known as the “strict aliasing rule”
and this assumption can be disabled in GCC via the option “-fno-strict-
aliasing”.

The C++ compiler doesn’t really check if you are lying (to yourself). If you tell the
compiler that pointers are restricted, and then pass in two aliased pointers, the
behavior of your program is “undefined” and there aren’t likely to be any
compilation errors or runtime warnings. So, don’t do that.

The correct declaration of a “restrict” pointer is:

 int * restrict ptr; // Correct

This is actually incorrect:

 int restrict * ptr; // Wrong

 restrict int * ptr; // Also wrong

The syntax for array parameters has the keyword inside the square brackets:

 void myfunc(int arr[restrict]);

David Spuler 202

Read-only functions. Note that read-only functions don’t really need to use
the restrict keyword. For example, the calculation of a vector dot product of
two arrays doesn’t really have an aliasing problem, since neither of the vectors are
changed.

Restricted references. The “restrict” type specifier can be used on references,
as well as pointers and arrays. This is helpful for some of the issues with aliasing
between references in pass-by-reference function parameters. But this usage
of restrict for references isn’t very important for auto-vectorization
optimizations.

Restricted “this” pointer. GCC also supports specifying that the class object
“this” pointer is unaliased by marking the function body with the
“__restrict__” keyword. This is placed after the closing right parenthesis of
the function parameters (i.e., similar to a const member function declaration). The
declaration looks like:

 void MyClass::myfunc(int x) __restrict__;

Overall, it’s unclear how much all these restricted pointer specifiers help the
compiler to optimize, but it certainly won’t harm the performance!

203 Efficient Modern C++ Data Structures

14. Lookup Tables &

Precomputation

Precomputation with Lookup Tables

Look-up tables (LUTs) are a well-known simple data structure for optimizing code.
They have been used to optimize algorithms in various ways. Some examples
include:

• Precomputed activation functions

• Zero-multiplication networks

• Approximation of non-linear functions

Precalculation or precomputation is a code optimization where results are partially
or fully calculated ahead of time. This method is similar to caching and computation
reuse but refers to calculations being performed long before they are needed, often
at program startup or compile-time, and stored in lookup tables. Like caching, this
method trades extra space for time.

Vectorization of LUTs is possible with hardware acceleration primitives that
support parallel memory accesses using integer indices. For example, the x86 CPU
with AVX intrinsics has a set of “gather” instructions for doing indexed lookup
that can be used to load from a LUT into the internal registers, and “scatter”
instructions for storing the registers back to an indexed LUT.

Typical precalculations are those where the results are computed at program
initialization or compile-time. The best methods generate the results at compile-
time, and are simply loaded as data, such as numeric constants or pre-initialized data
arrays. There are multiple ways to do this:

• Program startup initialization

• Lazy evaluation

• Binary data file

• Precompiled source code

David Spuler 204

One method for precomputation of larger amounts of data in an array or lookup
table is to perform the initialization dynamically at program startup. A lookup table
can be populated with the required results, before the main logic of the program
begins. Or alternatively, the idea of “lazy evaluation” allows storing the
precomputation into a lookup table only when the program first needs the data.

A faster alternative is to calculate all this data offline before program startup, and
store the results in a binary data file. This data file can then be loaded into an array
at program startup, without needing to perform any of the arithmetic computations.
Whether this is beneficial depends on the cost of the computations versus the cost
of file loading.

The logical extension of the precomputation method for a large number of numeric
results is to write special C++ code that performs these calculations, but then
outputs the results into a text file in the exact format of a C++ source code file
(rather than a data file), that declares a global array name and the numeric values.
This auto-created C++ code is then linked with your program.

Example: LUT Precomputation for sqrt

Let’s say that you want to optimize a slow non-linear function like “sqrtf” (or
“expf” or “logf”). These are good candidates for optimization because of their
non-linearity.

The first point is that you’d better do a really good job, because there are actually
hardware instructions for these common math functions, even in x86 architectures.
So, you could easily optimize this into a table lookup, and find that your C++ code
is still slower than the single CPU instruction that’s called by the standard C++
library versions. Hence, investigate the C++ intrinsic functions for common math
functions before you assume that you can do better than electrons zipping through
silicon.

This example investigates precomputing “sqrtf” even though that may not be as
fast as hardware-acceleration. However, the same ideas apply to precomputing
more sophisticated derivative functions, such as Softmax and activation functions,
which are not hardware-supported (or not yet, anyway). The same general ideas
apply.

205 Efficient Modern C++ Data Structures

The basic method for table lookup optimization is:

• Declare a big array (the bigger the better).

• Run a loop sending every value to the real “sqrtf” function.

• Store each result in the big array.

• Now you have a precomputed table of all possible values.

• Later, use an array index lookup to compute the function fast.

How is than any faster? I mean, we’ve just called “sqrtf” a bazillion times with
numbers that we probably won’t ever need. Yes, there is extra cost, and we are
running slower during program initialization. There are at least two ways to fix this:

1. Load the array values from a pre-built binary data file instead, or,

2. Precompile the array data into a C++ source code file.

However, this complaint underestimates just how many times the code may call
these functions. Even with this startup cost, once that is all done and dusted, we
have a big array of precomputed data that we can use to speed up the program
execution, which is our main goal. And in a production environment, any extra
startup cost is hopefully amortized over many executions.

Example: Precomputing sqrt of integer: For simplicity, we’re going to first
assume that we’re computing a float square root of integers. The function we are
precomputing is “int-to-float” type. This makes it easier, because the int can
be used as an array index.

Here’s my big array with about 65,000 entries:

 #define AUSSIE_SQRT_PRECOMP_MAX (1u<<16)

 float g_sqrt_precomp_table[AUSSIE_SQRT_PRECOMP_MAX];

Here’s the unoptimized function “int-to-float” version of “sqrtf” that we are
planning to precompute:

 float aussie_sqrtf_basic_int(int x)

 {

 return sqrtf((float)x);

 }

David Spuler 206

Here’s the initialization call to the precomputation routine, sending in the array, the
size N, and the function pointer:

 aussie_generic_precompute_int(

 g_sqrt_precomp_table, // Big array

 AUSSIE_SQRT_PRECOMP_MAX, // N

 aussie_sqrtf_basic_int // Function pointer

);

And here’s the code to run the big precomputation loop:

 void aussie_generic_precompute_int(

 float arr[], unsigned int maxn, float (*fnptr)(int))

 {

 for (unsigned int i = 0; i < maxn; i++) {

 arr[i] = fnptr(i);

 }

 }

So, that’s all there is to initialize the LUT. Once this function returns, we now have
a big array full of data. Here’s what the new optimized “sqrtf” looks like:

 float aussie_table_lookup_sqrt(int i)

 {

 return g_sqrt_precomp_table[i];

 }

And we can make that function “inline” or use a C++ preprocessor macro:

 #define AUSSIE_TABLE_LOOKUP_SQRT_BASIC(i) \

 (g_sqrt_precomp_table[(i)])

So, here are a few provisos about this code:

1. Might be slower than sqrt in hardware (needs benchmarking).

2. Unsafe array index accesses (e.g., crashes on negatives or large numbers).

3. unsigned int types can overflow and then spin infinitely for
precomputing tables of size “1<<32” (change to unsigned long).

4. The memory size of the precomputed table for 1<<16 is already about
262k (65k times 4 bytes).

207 Efficient Modern C++ Data Structures

Float-to-Float Precomputation

Using a precomputed table lookup for a float-to-float function is more complicated
than integers. However, this is also the main approximation needed for non-linear
functions, or even the basic math library functions like sqrtf or expf or logf.

Why is it tricky? The reason that float inputs are more difficult is that we need to
convert a float into an array index in order to look it up. For example, we could
try type casts:

 int offset = (int)f;

But that limits us to only precalculating values for 1.0, 2.0, 3.0, etc. Our
approximation works poorly on any fractions, and we also haven’t limited the array
index to a fixed finite range, so it won’t work for any negative values or very large
positive values. And the type cast of a float is also slow!

Scaled Multiple: Another idea is that we could scale it upwards to get more
decimals:

 int offset = (int) (f * 1000.0f);

This approach at least gives us 3 decimal places: e.g., 1.234 or 23.456, or similar.
We will still have to check for negatives and large values to bound it. But again, this
is even slower!

Bitwise Floating-Point Truncations: The above truncation via a floating-point
scaled multiple is not very fast. Twiddling the bits is much faster. For example,
when we have a standard 32-bit float type, it has 1 sign bit, 8 exponent bits, and
23 mantissa bits. This is from left-to-right, with the sign bit as the most significant
bit, and the low-end mantissa bits are the least significant bits. Remember that this
is like Scientific notation:

• Number = Mantissa x 2 ^ Exponent

Also, the sign bit makes it all negative, if set. Note that exponent in 8-bits encodes
the numbers -128 to +127, so that ranges from very small 2^-128 near-zero values,
to very huge 2^127 sized values. If the mantissa was in decimal, and it was
“1234567” and the exponent was “17”:

• Number = 1.234567 x 10^17

David Spuler 208

If the mantissa was 23 bits, it’s actually binary digits, with about 3 binary digits per
decimal digit, so a 23-bit mantissa is about 7 or 8 decimal digits. Note that the
mantissa is actually 24 bits, not 23, because there’s an “implicit one” mantissa bit,
not that it changes the calculation; you needed to know that for C++ trivia night.

So, if we think about it for a year or two, it becomes obvious that the rightmost bits
of the mantissa are simply the rightmost digits in “1.234567”, and if we truncate
some of the rightmost bits, it’s like truncating a very small fraction (e.g., “1.234567”
becomes “1.2345” or whatever).

Hence, a first idea is just to cut off 2 of the 4 bytes of a 32-bit float. This leaves
us with 1 sign bit, 8 exponent bits, and 7 mantissa bits (plus 1 implied bit makes 8
mantissa bits). In decimal, the 8-bit mantissa now encodes only about 2 or 3 decimal
digits, as if we’ve truncated “1.234567” to “1.23”.

Incidentally, congratulations, you’ve created “bloat16” type, which is what Google
did with TPUs, making a 2-byte float format with 1 sign bit, 8 exponent bits, and
7 stored mantissa bits. So, now you can get into your blue telephone booth, time
travel back a decade, file a patent, and retire on your royalties. If you’re ever a
contestant on Wheel of Fortune you probably won’t need to know that the “b” in
“bfloat16” stands for “brain float” and that is such a great name. But I digress.

Anyhow, this idea actually works for the precomputation. A 2-byte integer value
in bloat16 format is easy to extract from a 4-byte FP32 float (i.e., the uppermost
two bytes). The trick for bitwise processing is to convert the float to unsigned
int, because the bitwise shift operators don’t work on float (it’s planned for
C++37, as I heard at my fungus collector’s club trivia night).

 float f32 = 3.14f;

 unsigned u32 = *(unsigned int*)&f32;

Extracting the top-most 2 bytes (16 bits) is simply a right bitshift:

 unsigned ubf16 = (u32 >> 16);

Note that here’s a good reason that we had to use “unsigned” integer type. The
right bitshift operator (>>) has undefined behavior on negatives, so “int” type
wouldn’t work predictably (or portably) if the floating-point sign bit was set.

The result is a 16-bit unsigned integer to use as the array index. Hence, there are
only 1<<16=65,536 entries in our precomputation table. Assuming we store
results as 4-byte float values, this makes the precomputation array’s memory size
about 262kb.

209 Efficient Modern C++ Data Structures

What’s more, it works for negative float numbers, because the sign bit is still part
of that shemozzle, and we also don’t need to check any minimum or maximum
bounds, because it works for all 32-bit float numbers.

Precomputing with 24-Bit Lookup Tables: Interestingly, none of the above
code is especially tied to 16-bit sizes. The bfloat16 version truncates 32-bit float
to 16-bit by truncating the rightmost 16 mantissa bits. But we can actually choose
to keep however many mantissa bits we like. The trade-off is that more mantissa
bits increase accuracy, but at the cost of needing a much bigger precomputation
array (doubling the storage size for each extra bit).

Let’s try only cutting the rightmost 8 mantissa bits, leaving us with 24 stored bits
total (i.e., 1 sign bit, 8 exponent bits, and 15 stored mantissa bits). The mantissa bits
reduce from 23 to 15 (plus one implied bit makes 16), so this now stores about 5
decimal digits (e.g., “1.2345”), giving quite good precision on our results. When I
tested the 16-bit version, it had some reasonably large errors of almost 0.1 in
computing sqrt, whereas this 24-bit version has much lower errors, as expected.

Code changes are minor. The bitshift operations simply change from 16 bits to 8
bits (i.e., 32-24=8 bits). This is the precomputation loop for 24 bits:

 void aussie_generic_precompute_24bit_float(

 float farr[], unsigned int maxn,

 float (*fnptr)(float))

 {

 for (unsigned int u = 0; u < maxn; u++) {

 unsigned int unum = (u << 8u); // 32-24=8 bits!

 float f = *(float*)&unum;

 farr[u] = fnptr(f);

 }

 }

And this is the call to the precomputation function in the startup phase:

 aussie_generic_precompute_24bit_float(

 g_sqrt_float_24bit_precomp_table, // Big array

 (int)AUSSIE_SQRT_24bit_MAX, // 1 << 24

 aussie_sqrtf_basic_float // Function pointer

);

David Spuler 210

The table lookup routine also similarly shifts 8 bits, rather than 16, but is otherwise
unchanged:

 float aussie_table_lookup_sqrt_24bit_float(float f)

 {

 unsigned u = *(unsigned int*)&f;

 u >>= 8; // 32-24=8 bits

 return g_sqrt_float_24bit_precomp_table[u];

 }

Note that this only works if we are sure that both “float” and “unsigned int”
are 32-bits, so we should check that during startup with some assertions
via static_assert. If we are sure of that fact, then not only will it work, but we
don’t also need to check the array bounds. It won’t try a negative array index, and
won’t overflow no matter what bit pattern we send it in as a float.

But there is one problem. If we send the fast table lookup version the
special float value of NaN (“not a number”), then the table lookup routine will
actually return a valid numeric answer, which probably isn’t what we want. Maybe
we need to add a check for that special case, and this needs more testing.

The new size of the precomputation array is 2^24=16,777,216, so we have
about 16.7 million results available. If our results are 32-bit float values,
our bloat16 precomputed array above requires about 262kb, and the new size
with 24-bits is a lookup table (array) of about 67 megabytes. It wouldn’t have
worked on my old TRS-80 CoCo in 1986, but it’ll work nowadays.

Precalculating C++ Source Files

One way to improve on the precomputation of a big array is to skip it entirely during
startup by writing a lot of code. It’s like using an AI coding copilot, only it’s not
really. I mean, come on, the day an AI writes better code than me is the day that I
retire to the hologram beach with my robot dog companions.

The idea here is to write a program to generate a C++ source file that contains the
global precomputed lookup table. Yes, it’s a C++ program that creates part of a
C++ program, which is almost like your AI has become self-aware, only one step
away from Skynet. Well, maybe not, it’s just a dumb C++ program written by a
dumb human creating some dumb data.

211 Efficient Modern C++ Data Structures

Anyway, this auto-generated C++ code can be compiled and linked into your C++
program, and used like a global array of data in other parts of the program. Zero
calculations are required at runtime, and the data can be read-only.

The benefit is that this auto-generated code method does not even require the time
cost of startup initialization for any precomputations. There’s not even the cost of
data file loading. Instead, the data is auto-loaded by the linker-loader during
executable file instantiation (i.e., when the user starts the app). The only downsides
for the user are that the size of the executable program increases, which means
more disk space usage, and that application program startup may take longer and it
will use more memory (regardless of whether it ever needs this precomputed data).
Also, various offline tasks take longer for the software developers, such as
compilation and linking for testing, which is why we bill per hour.

I tried this out for precalculating GELU with a 24-bit table. The C++ source file
was size 514k for 24-bit precomputation table of size 1<<24. This is what the auto-
generated source code should look like:

 // Precomputed table source code: GELU

 // "gelu_precomp_24bits.cpp"

 float g_gelu_table_precompute_24bits[] = {

 0f,

 1.793662034335765850782373866611092648039e-43f,

 3.587324068671531701564747733222185296077e-43f,

 5.380986103007297552347121599833277944116e-43f,

 7.174648137343063403129495466444370592155e-43f,

 ...

 ...

 };

Here’s the code to generate the code to generate the code to generate the code:

 // Print C++ of 24-bits GELU precomputed table

 void aussie_generic_setup_table_FP32_24bits_PRINT_SOURCE(

 char* nickname,

 char* outfname,

 float (*fnptr)(float), // e.g., GELU

 int maxn, // eg. 1<<24

 float arrout[] // array to store (can be nullptr)

)

 {

 if (!fnptr) {

 aussie_assert(fnptr);

 return;

 }

 // Generate C++ source code so we can

 // pre-compile the precomputed GELU table (24-bits)

 // There are 2^24 = 16.7 million numbers...

David Spuler 212

 FILE* fp = stdout;

 bool writingfile = false;

 bool add_commented_number = true;

 if (outfname && *outfname) {

 fp = fopen(outfname, "w");

 if (!fp) {

 aussie_assert(fp); // file write failed

 return; // fail

 }

 writingfile = true;

 add_commented_number = false; // Not for files

 }

 unsigned int u = 0;

 fprintf(fp, "// Precomputed table source code: %s,

\"%s\"\n", nickname, outfname);

 fprintf(fp, "float g_gelu_table_precompute_24bits[] = {

\n");

 char numbuf[5000] = "";

 for (; u < maxn /*1<<24*/ ; u++) { // For 2^24=~16.7M

 // zeros in least significant 8 mantissa bits

 unsigned int uval = u << 8;

 float f = AUSSIE_UINT_TO_FLOAT(uval);

 float g = fnptr(f); // Call GELU or whatever

 if (arrout) arrout[u] = g; // Store data

 // Format: %g means the smaller of %e or %f

 // ... %e is exponent format (scientific-like)

 char* buf = numbuf;

 // Format %g (Number)

 // ... and suffix "f" (float constant type)

 sprintf(buf, "%40.40gf", g);

 if (strchr(buf, 'n')) {

 // Nan or "-nan" ... Dummy value

 strcpy(buf, "0.0 /*nan*/");

 }

 // Remove prefix padding spaces...

 while (buf[0] == ' ') buf++;

 // Remove suffix zeros ...

 int len = (int)strlen(buf);

 if (buf[len - 1] == 'f') len--; // skip suffix f

 if (buf[len - 1] == '0') {

 while (len > 5) {

 if (buf[len - 1] == '0'

 && isdigit(buf[len - 2])) {

 if (buf[len] == 'f') {

 buf[len - 1] = 'f'; // leave f

 buf[len] = 0;

 }

 else {

 buf[len - 1] = 0; // remove

 buf[len] = 0;

 }

 len--;

213 Efficient Modern C++ Data Structures

 }

 else break;

 }

 }

 if (add_commented_number) {

 fprintf(fp, "%s // (%40.40f) [%u] \n", buf,f,u);

 }

 else { // No comments...

 fprintf(fp, "%s,\n", buf);

 }

 // Progress update

 if (u % 100000 == 0 && u != 0) {

 if (writingfile) fprintf(stdout, "%u -- %s\n",

u, buf); // Progress

 fprintf(fp, "// U= [%u]\n", u); // Comment

 }

 }

 fprintf(fp, "}; \n"); // Close initializer...

 if (fp && fp != stdout) fclose(fp);

 }

Conclusions on Source Code Generation: Does it work? Yes and no. It builds
the output file quite quickly, zipping through 1<<24 computations and writing to
disk. But I can’t get this 24-bit version with its 500k CPP source file to actually
compile in the Microsoft Visual Studio IDE. Maybe it works on Windows
command-line or Linux GCC, but I haven’t tried.

Anyway, this self-generating code idea is certainly quite workable for table lookups
of approximations for FP16 numbers (16-bit half-precision floating-point), because
the lookup table needs to “only” contain 2^16=65,536 numbers. This is about a
200k C++ source file in plain text, and creates linked data of about 65k times 4
bytes equals about 256k space usage. This would use half that space if you also store
the computation as 16-bit numbers rather than 32-bit floats or integers.

References

1. Nils Graef, 12 Mar 2024 (v3), Transformer tricks: Precomputing the first
layer, https://arxiv.org/abs/2402.13388 Code: https://github.com/Open
Machine-ai/transformer-tricks (Because the first layer only depends on
the embeddings, it can be precomputed.)

2. SZ Lin, YC Chen, YH Chang, TW Kuo, HP Li, 2024, LUTIN: Efficient
Neural Network Inference with Table Lookup, ISLPED ’24, August 5-7, 2024,
Newport Beach, CA,
USA, https://dl.acm.org/doi/pdf/10.1145/3665314.3670804

https://arxiv.org/abs/2402.13388
https://github.com/OpenMachine-ai/transformer-tricks
https://github.com/OpenMachine-ai/transformer-tricks
https://dl.acm.org/doi/pdf/10.1145/3665314.3670804

David Spuler 214

3. S Fanning, Fixed Point Multiplication-Free Implementation of Deep Neural
Networks for Embedded Systems, Masters Thesis, School of Electrical and
Electronic Engineering, University College Dublin
2018, https://seanfanning.eu/posts/projects/low-bitwidth-neural-
networks/Thesis_SeanFanning_13360951.pdf

4. Mohammad Samragh Razlighi; Mohsen Imani; Farinaz Koushanfar;
Tajana Rosing LookNN: Neural network with no multiplication, Design,
Automation & Test in Europe Conference & Exhibition (DATE), 27-31
March 2017, https://ieeexplore.ieee.org/document/7927280 (Lookup-
table based multiplication.)

5. Covell M, Marwood D, Baluja S, Johnston N., Table-based neural units: Fully
quantizing networks for multiply-free inference, 2019, arXiv preprint
arXiv:1906.04798, http://arxiv.org/abs/1906.04798

6. Joonsang Yu, Junki Park, Seongmin Park, Minsoo Kim, Sihwa Lee, Dong
Hyun Lee, Jungwook Choi, Dec 2021, NN-LUT: Neural Approximation of
Non-Linear Operations for Efficient Transformer
Inference, https://arxiv.org/pdf/2112.02191

7. Neelesh Gupta, Narayanan Kannan, Pengmiao Zhang, Viktor Prasanna, 8
Apr 2024, TabConv: Low-Computation CNN Inference via Table
Lookups, https://arxiv.org/abs/2404.05872

8. Darshan C. Ganji, Saad Ashfaq, Ehsan Saboori, Sudhakar Sah, Saptarshi
Mitra, MohammadHossein Askari Hemmat, Alexander Hoffman, Ahmed
Hassanien, Mathieu Léonardon, 18 Apr 2023, DeepGEMM: Accelerated
Ultra Low-Precision Inference on CPU Architectures using Lookup
Tables, https://arxiv.org/abs/2304.09049

9. Grigor Gatchev, Valentin Mollov, 4 Apr 2021, Faster Convolution Inference
Through Using Pre-Calculated Lookup
Tables, https://arxiv.org/abs/2104.01681

10. Han Guo, William Brandon, Radostin Cholakov, Jonathan Ragan-Kelley,
Eric P. Xing, Yoon Kim, 15 Jul 2024, Fast Matrix Multiplications for Lookup
Table-Quantized LLMs, https://arxiv.org/abs/2407.10960

11. Davis Blalock, John Guttag, 21 Jun 2021, Multiplying Matrices Without
Multiplying, https://arxiv.org/abs/2106.10860

12. Gunho Park, Hyeokjun Kwon, Jiwoo Kim, Jeongin Bae, Baeseong Park,
Dongsoo Lee, Youngjoo Lee, 10 Mar 2025, FIGLUT: An Energy-Efficient
Accelerator Design for FP-INT GEMM Using Look-Up
Tables, https://arxiv.org/abs/2503.06862

https://seanfanning.eu/posts/projects/low-bitwidth-neural-networks/Thesis_SeanFanning_13360951.pdf
https://seanfanning.eu/posts/projects/low-bitwidth-neural-networks/Thesis_SeanFanning_13360951.pdf
https://ieeexplore.ieee.org/document/7927280
http://arxiv.org/abs/1906.04798
https://arxiv.org/pdf/2112.02191
https://arxiv.org/abs/2404.05872
https://arxiv.org/abs/2304.09049
https://arxiv.org/abs/2104.01681
https://arxiv.org/abs/2407.10960
https://arxiv.org/abs/2106.10860
https://arxiv.org/abs/2503.06862

215 Efficient Modern C++ Data Structures

Part III: Multidimensional Data

Structures

“Bad programmers worry about the code.
Good programmers worry about

data structures and their relationships.”

— Linus Torvalds

David Spuler 216

217 Efficient Modern C++ Data Structures

15. Matrix Multiplication

Matrix-Vector Multiplication

Matrix multiplication by a vector gives another vector. Let us consider the simple
case first, where the matrix is square with dimensions NxN and the vector is also
of size N. The matrix has N rows and N columns, and the input vector
has N elements. The resulting output vector will also have the same N elements.

Conceptually, in pseudocode:

 MAT[N][N] * VIN[N] -> VOUT[N]

It’s not immediately obvious, or at least, I don’t remember my High School Math
teacher mentioning it, but matrix-vector multiplication is a bunch of vector dot
product computations. We need to do a vector dot product for each of the elements
of the output vector. Each element is a dot product of a matrix row times the input
vector.

Note that the dimensions match for a dot product, with N matrix rows
and N elements in the input vector.

Rectangular matrices. The general case of a rectangular matrix multiplied by a
vector is a little trickier, but not a lot. If our matrix is MxN and the vector is size N,
then the output vector has size M. Note the two of the dimensions must match: the
columns of the matrix and the elements of the input vector are both N. However,
this dimension N “disappears” and the output vector has size only dependent
on M. The pseudocode:

 MAT[M][N] * VIN[N] -> VOUT[M]

The rectangular matrix-vector multiplication is almost identical to square matrix-
vector computations. Each element of the output vector is a dot product of a matrix
row with the input vector.

David Spuler 218

Again, we note that the dimensions of the matrix rows (N) must match the size of
the input vector (N), or else we cannot compute it. I mean, we could still compute it
with mismatched dimensions, such as by assuming that the shorter one (matrix row
or input vector) had zeros in the missing elements, but that sounds a little buggy.

Complexity of Matrix-Vector Multiplication. The algorithmic complexity of
matrix-vector multiplication is quadratic in N, whereas matrix-matrix multiplication
is cubic in N. The basic matrix-vector multiplication scans N rows of the matrix,
with each row element performing a computation against each of the N elements
of the vector, giving two nested loops with an overall O(N^2) cost.

Memory layout: One important point for the efficiency of matrix-vector
multiplication is that the default memory layout has contiguous addresses for both
the matrix row and the vector. Obviously, a vector is just a sequence of memory
with all the elements in series. Not so obviously, a row of a matrix, when stored as
a C++ two-dimensional array, is also a contiguous set of data (i.e., a matrix row is
like a vector).

Hence, the dot product multiplication of a matrix row and the input vector is simply
scanning forward along contiguous addresses for both of its inputs, which makes it
easy to vectorize.

Spot the Buggy MatMul

Have a look at this code for a matrix-vector multiplication using vector dot product.
It took me a long time to realize what was wrong with this. Can you spot the bug?

 void matmul_vector_basic1_buggy(ymatrix m, float v[], int n)

 {

 // Basic matrix-by-vector using vector dot products..

 for (int i = 0; i < n; i++) {

 float* rowvector = &m[i][0];

 float sum = aussie_vecdot_basic(rowvector, v, n);

 v[i] = sum;

 }

 }

The bug is a kind of aliasing problem here:

 v[i] = sum; // Bug!

219 Efficient Modern C++ Data Structures

It looks correct, but it’s wrong. The computation of v[i] is setting its value in the
middle of the loop, and then going around for the next matrix row, which will then
use that newly calculated v[i] value as if it was part of the input vector. Because
I’m misusing “v” as both the input and output vector, parts of the output vector
will get used as the input vector. It’s a very insidious type of aliasing bug, and many
of my simple unit tests with zero matrices and identity matrices were still
succeeding. It’s my fault for trying to do matrix-vector multiplication as an element-
wise vector method.

The solution is simple: matrix-vector multiplication needs a third operand for the
output vector.

Optimizing Matrix-Vector Multiplication

The fixed-up version of matrix-vector multiplication with row-wise vector dot
products simply outputs to another separate destination vector operand.

 void aussie_matmul_vector_basic_out1(

 const ymatrix m, const float v[], int n, float vout[])

 {

 // Basic matrix-by-vector using vector dot products..

 for (int i = 0; i < n; i++) {

 const float* rowvector = &m[i][0];

 float sum = aussie_vecdot_basic(rowvector, v, n);

 vout[i] = sum;

 }

 }

Nested Loop Matrix-Vector Version: The same matrix-vector multiplication
algorithm in the form of two nested loops is below. This is flattening the call to the
lower-level vector dot product function and putting its inner summation loop
directly inside the outer main loop. The basic C++ code looks like:

 void aussie_matmul_vector_basic_out2(

 const ymatrix m, const float v[], int n, float vout[])

 {

 // Basic matrix-by-vector using nested loops..

 for (int row = 0; row < n; row++) {

 float sum = 0.0f;

 for (int col = 0; col < n; col++) {

 sum += (m[row][col] * v[col]);

 }

 vout[row] = sum;

 }

 }

David Spuler 220

Optimizations of matrix-vector multiplication. Various ways to optimize the
naive nested loop matrix-vector multiplication suggest themselves:

• Hoisting loop-invariant code (also called loop code motion) of the
“m[row]” expression.

• Loop pointer arithmetic for both loops.

• Loop unrolling of the inner loop to unroll 4, 8 or more iterations.

• Loop tiling to unroll a 2x2 tile/block.

• Vectorization using the AVX1/AVX2 vector dot product versions we
already examined.

I tried coding several more of these optimizations and here are the benchmarks:

 Matrix-Vector mul (MatMulVec) benchmarks (N=2048, ITER=300):

 Matrix-vector nested loops: 3480 ticks (3.48 seconds)

 Matrix-vector nested loops hoisted: 3489 ticks (3.49 seconds)

 Matrix-vector nested ptr-arith: 3415 ticks (3.42 seconds)

 Matrix-vector unrolled inner (4): 1166 ticks (1.17 seconds)

 Matrix-vector unrolled inner (8): 938 ticks (0.94 seconds)

 Matrix-vector nested tiled 2x2: 1995 ticks (2.00 seconds)

 Matrix-vector vecdot AVX1 DP: 1414 ticks (1.41 seconds)

 Matrix-vector vecdot AVX2 FMA: 929 ticks (0.93 seconds)

Interestingly, code hoisting and loop pointer arithmetic were a waste of effort. Loop
tiling did better than the original, but probably its speedup is primarily from the
effect of loop unrolling rather than data locality or cache hit rates, since simpler
loop unrolling did better.

Note that the AVX1 version used the “dot product” intrinsic but AVX-2 used the
FMA intrinsic, for reasons covered in Chapter 13. Simple loop unrolling also did as
well as AVX2 hardware vectorization, probably because the versions of AVX1 and
AVX2 were simply calling the vector dot product functions, so they still had
function call overhead.

Hence, this algorithm can be further optimized by inlining to fix the AVX function
call overhead, combining AVX intrinsics with unrolling of the inner loop, and then
some minor final tweaks such as pointer arithmetic.

221 Efficient Modern C++ Data Structures

Tiled Matrix-Vector Multiplication

A more detailed analysis of the matrix-vector algorithm shows that it is not optimal
in at least three areas:

• Data locality

• Pipelining AVX intrinsic arithmetic

• Redundant loads

The data locality of the 2x2 tiled version is better, but more improvement is
possible, starting with the use of AVX intrinsics inside the “sub-kernel” for the tile.

The AVX instruction sequences of “load, calculate, store” in the earlier non-tiled
AVX-optimized versions are not allowing for the natural instruction pipelining with
the AVX intrinsics to calculate multiple sums or FMA operations with near-parallel
pipelining. And the entire input vector is getting re-loaded repeatedly for every row
of the matrix. So, we need to examine improvements on three aspects.

A tiled sub-kernel is the main way to fix data locality and pipelining. Improving data
locality is somewhat inherent to tiling. The pipelining can be improved by unrolling
the tiled sub-kernel and reordering the loads and stores so they don’t block the
arithmetic of AVX intrinsics.

Can we avoid redundant vector loads?

Since it’s unavoidable to access every element of every row at least once, the
redundant loads of the vector suggest that we should modify the algorithm so as to
work on a subsection of the vector for each of the matrix rows.

This suggests an inversion of the main nested loops of the algorithm. However,
that runs into the major problem that it destroys cache locality, by scanning down
the column of the first matrix. I benchmarked this loop interchange idea, and it
actually increased execution time. Maybe we should use the transpose of the first
matrix, so that it’s in column-major order when scanning its columns? No, that’s
actually just going back to the original algorithm without the loop interchange.

Anyway, a better plan seems to be to reduce the redundant loading by using
temporary calculations inside the tile sub-kernel.

David Spuler 222

Here is what a basic tiled/blocked algorithm using 2x2 tiles looks like in basic
sequential C++:

 void aussie_matmul_vector_tiled_2x2_better(

 const ymatrix m, const float v[], int n, float vout[])

 {

 // Tiled/blocked matrix-by-vector using 2x2 tiling..

 aussie_assert(n % 2 == 0);

 for (int row = 0; row < n; row += 2) {

 vout[row] = 0.0f;

 vout[row + 1] = 0.0f;

 for (int col = 0; col < n; col += 2) {

 vout[row] += (m[row][col] * v[col]) // row+0, col+0

 + (m[row][col + 1] * v[col + 1]) // row+0, col+1

 ;

 vout[row + 1] +=

 (m[row + 1][col] * v[col]) // row+1, col+0

 + (m[row + 1][col + 1] * v[col+1]) // row+1,col+1

 ;

 }

 }

 }

One minor improvement would be to use memset to clear the whole output vector
to zero, rather than individual assignments, which I added to the 4x4 tiled version.
There is another minor improvement is removing the “common sub-expressions”
of v[col] and v[col+1] and I tried this with no improvement noted in the 2x2
tiled version, but about 10% improvement in the 4x4 tiled version. The
computations of m[row] and m[row+1], etc., can also be hoisted out of the inner
loop, giving another 10% gain for the 4x4 tiled version.

223 Efficient Modern C++ Data Structures

The C++ code for the 4x4 tiled version with a fully unrolled 4x4 sub-kernel now
looks like:

 void aussie_matmul_vector_tiled_4x4_CSE2(

 const ymatrix m, const float v[], int n, float vout[])

 {

 // Tiled/blocked matrix-by-vector using 4x4 tiling

 aussie_assert(n % 4 == 0);

 memset(vout, 0, sizeof(float) * n);

 for (int row = 0; row < n; row += 4) {

 const float* rowvec = &m[row][0];

 const float* rowvec1 = &m[row + 1][0];

 const float* rowvec2 = &m[row + 2][0];

 const float* rowvec3 = &m[row + 3][0];

 for (int col = 0; col < n; col += 4) {

 float fcol0 = v[col];

 float fcol1 = v[col + 1];

 float fcol2 = v[col + 2];

 float fcol3 = v[col + 3];

 vout[row] +=

 (rowvec[col] * fcol0) // row+0, col + 0

 + (rowvec[col + 1] * fcol1) // row+0, col + 1

 + (rowvec[col + 2] * fcol2) // row+0, col + 2

 + (rowvec[col + 3] * fcol3) // row+0, col + 3

 ;

 vout[row + 1] +=

 (rowvec1[col] * fcol0) // row+1, col + 0

 + (rowvec1[col + 1] * fcol1) // row+1, col + 1

 + (rowvec1[col + 2] * fcol2) // row+1, col + 2

 + (rowvec1[col + 3] * fcol3) // row+1, col + 3

 ;

 vout[row + 2] +=

 (rowvec2[col] * fcol0) // row+2, col + 0

 + (rowvec2[col + 1] * fcol1) // row+2, col + 1

 + (rowvec2[col + 2] * fcol2) // row+2, col + 2

 + (rowvec2[col + 3] * fcol3) // row+2, col + 3

 ;

 vout[row + 3] +=

 (rowvec3[col] * fcol0) // row+3, col + 0

 + (rowvec3[col + 1] * fcol1) // row+3, col + 1

 + (rowvec3[col + 2] * fcol2) // row+3, col + 2

 + (rowvec3[col + 3] * fcol3) // row+3, col + 3

 ;

 }

 }

 }

David Spuler 224

Matrix-Matrix Multiplication

Now let’s look at matrix-matrix multiplication, whereas above we looked at matrix-
vector multiplication. The proper MatMul and GEMM kernels are coded for full
matrix-matrix multiplication.

Matrix multiplication results in another matrix as the output. For the simple case of
two square matrices of the same size, the resulting output matrix is also of the same
dimensions. In pseudocode:

 M1[N][N] * M2[N][N] -> MOUT[N][N]

For multiplying two rectangular matrices, or sizes MxN and NxP, we get an output
matrix of size MxP (i.e., the inner N dimensions disappear).

In pseudocode style:

 M1[M][N] * M2[N][P] -> MOUT[M][P]

Note that P=1 is the case of matrix-vector multiplication, because an Nx1 matrix
is actually a vector with N rows of a single element (i.e., one column).

Algorithmic Complexity. The naive implementation of a matrix-matrix
multiplication via three nested loops is a cubic algorithm, with O(N^3) complexity.
The well-known Strassen algorithm has complexity about O(N^2.7), which looks
like such a massive improvement.

Other algorithms such as the Coppersmith-Winograd algorithm and numerous sub-
variants have better asymptotic complexity, but with a high constant overhead,
making them impracticable for anything but very large values of N.

Basic Matrix-Matrix Multiplication. The basic algorithm for matrix
multiplication is three nested loops. There is nothing fancy here: this is just coding
up the basic matrix multiplication method that you forgot the second you finished
your Senior math exam.

If you don’t believe me, check it out on Wikipedia.

225 Efficient Modern C++ Data Structures

Here’s the C++ code:

 void aussie_matmul_matrix_basic(

 const ymatrix m1, const ymatrix m2,

 int n, ymatrix mout)

 {

 // Matrix-Matrix mult basic naive n^3 algorithm...

 for (int row = 0; row < n; row++) {

 for (int col = 0; col < n; col++) {

 float sum = 0.0f;

 for (int k = 0; k < n; k++) {

 sum += (m1[row][k] * m2[k][col]);

 }

 mout[row][col] = sum;

 }

 }

 }

The two outer loops are scanning the rows of the first matrix, and the columns of
the second matrix. The innermost of the three loops is doing a vector dot product
computation over the “k” index variable. However, it’s not a normal vector-
vector dot product. Instead, it’s the dot product of one “horizontal” vector, which
is a row of the first matrix, and of a second “vertical” vector, which is a column of
the second matrix. Hence, the number of rows in the first matrix must equal the
columns of the second matrix, which is true here because we’re assuming that
both matrices are square. Hence, the “k” variable is spinning down the n elements
of a row and a column at the same time. Every element of the NxN output matrix
requires a vector dot product calculation like this.

Vectorization. None of these matrix multiplication algorithms are especially good,
because they are all sequential, rather than parallel algorithms. Neither the naive cubic
version nor the Strassen algorithm are what we need. What we need for GPUs and
CPU SIMD intrinsics are vectorizable algorithms for matrix-matrix multiplication.
Unfortunately, the above simple triple-nested matrix multiplication algorithm
is not one of them, because non-contiguous storage of the second matrix hampers
vectorization.

Memory layout problems for matrix-matrix multiplication: The layout for
memory with matrix-matrix multiplications is not as fortuitous as it was for matrix-
vector multiplications. Each computation in matrix-matrix multiplication is a vector
dot product of a row of the first matrix with a column of the second matrix. Each
row of the first matrix is happily stored in contiguous memory, but the columns in
the second matrix are not. In fact, the “stride” between two elements of a column
of a matrix is a very large number of bytes in the default memory layout.

David Spuler 226

The default storage of matrices and two-dimensional arrays in C++ is called “row-
major” storage layout. Row-major storage has each row in contiguous memory. The
rows are stored one at a time, top to bottom, and adjacent elements in a row are
also adjacent memory addresses. Columns are a second-class citizen in row-major
layout, and you have to jump around to find adjacent elements of a column vector.

The alternative storage method is “column-major” storage layout where the
columns are stored in contiguous memory, and it’s the rows that are in the smoker’s
carriage at the back of the train. However, column-major is not the default C++
storage mode.

Hence, to vectorize a matrix-matrix multiplication, we want to keep the first matrix
in row-major storage, but we need to rearrange the storage of the second matrix to
be column-major storage, rather than the default row-major storage. Column-major
storage would help vectorize the columns with each column element in adjacent
memory locations. The first matrix is fine, but we want the second matrix to be
stored in a mirror image of itself.

Hmm, a mirror and a matrix. What does that sound like? A transposed matrix.

Pseudo-Transposed Second Matrix. The simplest way to get column-major
order of a matrix (especially if square) is to use the transpose of the matrix, and
modify the internals of the matrix multiplication function to pretend that the
transpose is actually the column-major storage of the original second matrix. I call
it the “fake transpose” method, which is a bit of a misnomer because it is the actual
transposed matrix, but we modify the matrix multiplication code to access it with
reversed logic indices.

Confusing? Yes, I felt the same way, but if you follow it through carefully, you can
see that the transpose is really very similar to storing the original matrix in column-
major order, where each column element is stored in adjacent memory. The
columns of the original problematic matrix become fake rows in the fake transpose,
stored in sequential memory addresses. So, for square matrices, we can take the
transpose of a matrix, and it’s like the matrix has been converted into column major
storage. However, we also need to change the C++ code in the matrix
multiplication kernel, because it assumes row-major order storage of both matrices,
but now we’ve got row-major storage only for the first matrix, and column-major
storage for the second one (our fake transpose).

The main point of optimization with a transpose is that the column becomes a
contiguous vector from a row in the transposed matrix.

227 Efficient Modern C++ Data Structures

Here’s what the matrix multiplication algorithm looks like when it’s working on a
“fake” transpose:

 void aussie_matmul_matrix_fake_transpose(

 const ymatrix m1, const ymatrix m2, int n, ymatrix mout)

 {

 // Matrix-Matrix naive n^3 algorithm on a TRANSPOSE...

 for (int row = 0; row < n; row++) {

 const float* rowvec = &m1[row][0];

 for (int col = 0; col < n; col++) {

 float sum = 0.0f;

 const float* colvec = &m2[col][0]; // Row!

 for (int k = 0; k < n; k++) {

 sum += (rowvec[k] * colvec[k]);

 }

 mout[row][col] = sum;

 }

 }

 }

Note that the above code assumes the transpose has already been computed.
However, it is viable to compute a new transpose matrix in a preliminary step and
still be faster, because transposing a matrix only adds an extra O(N^2) time to
compute the transpose (and N^2 storage space to store it temporarily), whereas the
main matrix multiplication is O(N^3) time.

Perhaps surprisingly, this transpose method is much faster even without any
vectorization. Because the column vectors are accessed in sequential order from
contiguous memory, there is much better data locality for the memory cache, and
also for any predictive pipelining happening in the cache. Here’s the benchmark
comparison:

 Matrix-Matrix (MatMul) benchmarks (N=2048, ITER=1):

 Matrix-matrix mult basic: 69479 ticks (69.48 seconds)

 Matrix-matrix fake transpose: 47469 ticks (47.47 sec)

The transpose method is 31% faster with an unchanged basic MatMul algorithm.
And all we did was permute two indices in a two-dimensional array. This code does
exactly the same arithmetic computations as the naive version, but accesses memory
in a different order, giving us a cache speedup.

There are various other small coding optimizations that can improve the transposed
MatMul method further. The loop body could be partially unrolled by 4 or 8
iterations (or more).

David Spuler 228

Here’s the C++ code of the version with an unrolling factor of 8 iterations:

 void aussie_matmul_matrix_fake_transpose_unrolled8(

 const ymatrix m1, const ymatrix m2, int n, ymatrix mout)

 {

 // Transpose Matrix-Matrix mult with 8 iter unroll

 aussie_assert(n % 8 == 0);

 for (int row = 0; row < n; row++) {

 const float* rowvec = &m1[row][0];

 for (int col = 0; col < n; col++) {

 float sum = 0.0f;

 const float* colvec = &m2[col][0];

 for (int k = 0; k < n; k += 8) {

 sum += (rowvec[k] * colvec[k])

 + (rowvec[k + 1] * colvec[k + 1])

 + (rowvec[k + 2] * colvec[k + 2])

 + (rowvec[k + 3] * colvec[k + 3])

 + (rowvec[k + 4] * colvec[k + 4])

 + (rowvec[k + 5] * colvec[k + 5])

 + (rowvec[k + 6] * colvec[k + 6])

 + (rowvec[k + 7] * colvec[k + 7])

 ;

 }

 mout[row][col] = sum;

 }

 }

 }

Here are the benchmark results:

 Matrix-Matrix mul (MatMul) benchmarks (N=2048, ITER=1):

 Matrix-matrix fake transpose unroll 4: 15221 ticks (15.22 s)

 Matrix-matrix fake transpose unroll 8: 12151 ticks (12.15 s)

Further tweaks are possible. The internal loop could be fully unrolled for a known
vector size. Also, the initialization “sum=0.0f” could be removed by peeling the
first iteration and starting the loop at “k=1”.

Pointer arithmetic could be used to avoid loop indices and the double bracket
accesses.

However, these are small fry, and we’re now on the hunt for the Spanish mackerel
of MatMul optimizations: vectorization.

229 Efficient Modern C++ Data Structures

Vectorized MatMul

Cache speedup is not the only benefit of the transpose method. Once we have
column-major storage for the second matrix, then both the rows of the first matrix,
and the columns of the second matrix are in contiguous memory. The computation
is a normal vector dot product again on two vectors stored as arrays in memory
(i.e., “rowvec” and “colvec” in the C++ code above). Hence, we can use all our
standard vector dot product speedups again, including vectorization and hardware
acceleration.

As an example, here’s the AVX-2 vectorization of the transpose method using the
FMA 256-bit intrinsics to do the vector dot product in parallel (see Chapter 13 for
this AVX vector dot product code). This parallelizes the dot product by 8 elements
at a time:

 void aussie_matmul_matrix_fake_transpose_vecdot_AVX2(

 const ymatrix m1, const ymatrix m2, int n, ymatrix mout)

 {

 // AVX2 Matrix-Matrix multiplication

 aussie_assert(n % 8 == 0);

 for (int row = 0; row < n; row++) {

 const float* rowvec = &m1[row][0];

 for (int col = 0; col < n; col++) {

 const float* colvec = &m2[col][0];

 mout[row][col] = vecdot_FMA_unroll_AVX2(

 rowvec, colvec, n);

 }

 }

 }

Here are the benchmark results:

 Matrix-Matrix mult (MatMul) benchmarks (N=2048, ITER=1):

 Matrix-matrix fake transpose AVX1: 19522 ticks (19.52 s)

 Matrix-matrix fake transpose AVX2: 12747 ticks (12.75 s)

If anything, these AVX results are disappointing. Basic loop unrolling techniques
(in the prior section) did better than AVX1 and the same as AVX2 vectorization.
However, we haven’t used AVX optimally inside the sequential code here. The
AVX intrinsic calls should be moved up into the loop body without any function
call overhead (i.e., inlining the function manually). I coded up that idea, and it made
almost zero difference! I guess the C++ compiler is already inlining it, or function
call overhead is a tiny percentage.

David Spuler 230

Further parallelization speedups would include using AVX-512 or AVX-10
intrinsics for vectorizing 16 elements in parallel. Also desirable are various further
optimizations of the sequential code around any AVX intrinsics. The inner “col”
loop could be fully or partially unrolled with multiple AVX sequences and/or
optimized with pointer arithmetic.

Loop Tiled/Blocked MatMul

The triple-nested MatMul version with the vectorized inner loop is still nowhere
near what is possible. There are three more ways to increase throughput:

• Data locality within the matrices.

• Pipelining of the SIMD instructions.

• Avoiding repeated loads of the same data.

The data locality of the basic AVX transposed MatMul algorithm is still far from
optimal, although we fixed the most egregious problem by using the transpose. The
algorithm is simply scanning down all of the dimensions, without really any attempt
to maintain data locality.

The method of calling AVX intrinsics is simply doing “load, FMA, store” repeatedly
along blocks of 4 or 8 elements, which does not allow for the natural pipelining of
the FMA instructions. The loads and stores are interrupting the flow of
computation.

Secondly, if you look carefully at the “load” operations that are happening in the
sequence, you realize that it is repeatedly loading the same regions of the matrices.

Tiling or blocking the MatMul loops are far more effective. The basic idea is that
instead of scanning sequentially, we process smaller square or rectangular “tiles” or
“blocks” of the data, one at a time. Refer to Chapter 12 for the basic idea of
tiling/blocking optimizations of nested loops. Data locality is the main aim of a
tiled algorithm, but it also helps us achieve better pipelining of SIMD instructions,
because we can load all the data in, and then perform multiple arithmetic operations
on it without any intervening loads or stores. And since a tiled MatMul is iterating
more carefully over smaller blocks of data within the matrices, there’s also less
redundant loading of the data overall.

231 Efficient Modern C++ Data Structures

Fast Matrix Multiplication Theory

The main techniques for faster matrix multiplication of general matrices include:

• Strassen’s algorithm

• Winograd’s algorithm

• Fast Fourier Transform (FFT) methods

Matrix multiplications can also be sped up by restricting our algorithm to only use
matrices that are of special types:

• Low-rank matrix factorization

• Sparse matrices

• Special matrix methods (e.g., Butterfly matrices, Monarch matrices, etc.)

Each of these specialized matrix types can have a faster matrix multiplication kernel
than using the all-purpose GEMM kernel. For example, sparse matrices can be
stored in a compacted permuted-tuple format, with parallelization of permutation
arrays for computation.

Approximate Matrix Multiplication. Approximate Matrix Multiplication (AMM)
refers to a variety of complicated model optimization techniques that replace matrix
multiplications with various approximations that avoid the cost of arithmetic
multiplication, trading off some accuracy. These methods are usually distinct from
quantization methods, are not specific to certain subclasses of matrices, and evoke
more advanced mathematics in the theory of matrices.

Note that these algorithms apply at the high-level of how matrices are multiplied
with other matrices or with vectors (e.g., avoiding some vector dot products),
whereas there are also low-level optimizations of the arithmetic operation when
multiplying two numbers. These two classes of approximation research are not the
same, and are actually orthogonal to each other.

Multiplying by Transpose

The transpose of a matrix is commonly used in matrix multiplications, both as part
of the algorithms and as a speedup. For example, this occurs in AI engines with the
QKV matrix computations inside the attention heads, where the transpose of K is
used, usually denoted as KT in the algebraic formula.

David Spuler 232

Note that this is the actual algebraic use of the real transpose, as opposed to the idea
of using a “fake transpose” to get column-major storage of matrices for easier
vectorization. The code to compute the transpose of a matrix is shown below for a
square matrix:

 void aussie_matrix_transpose_basic(

 const ymatrix m1, int n, ymatrix transpose)

 {

 // Transpose: in output matrix (square matrix)

 for (int i = 0; i < n; i++) {

 for (int j = 0; j < n; j++) {

 transpose[j][i] = m1[i][j];

 }

 }

 }

The funny thing is that if we want to multiply a “real” transpose as the second
matrix in some computation, then the original non-transposed matrix is the “fake
transpose” of the “real” transpose. How awkward! But it’s actually good, because
we usually already have the original matrix in memory, and we don’t even need to
compute the (real) transpose. Instead, to do a MatMul of a matrix with this real
transpose, we can instead use the original matrix as the second operand in the kernel
that is based on the column-major storage of a fake transpose. Oh, dear, I feel like
it’s all circular and I’m digging myself into a word pit here! But it all works out in
the end, and it’s fast, which is really the one and only thing.

References

1. Ulrich Drepper (2007), What Every Programmer Should Know About Memory,
November 21, 2007, http://people.redhat.com/drepper/cpumemory.pdf

2. Kazushige Goto (2008), Anatomy of High-Performance Matrix Multiplication, ACM
Transactions on Mathematical Software, Volume 34, Issue 3, Article No.: 12,
May 2008, pp 1–25, https://doi.org/10.1145/1356052.1356053,
PDF: https://www.cs.utexas.edu/~flame/pubs/GotoTOMS_revision.pdf

3. Harald Prokop (1999), Cache-Oblivious Algorithms, Masters Thesis, MIT, June
1999, http://supertech.csail.mit.edu/papers/Prokop99.pdf

4. Intel (2023), Intel® 64 and IA-32 Architectures Optimization Reference Manual: Volume
1, August 2023, 248966-Software-Optimization-Manual-V1-048.pdf

5. Agner Fog (2022), Vector Class Library
(VCL), https://www.agner.org/optimize/vcl_manual.pdf

6. Sergey Slotin (2022), Matrix Multiplication,
Algorithmica, https://en.algorithmica.org/hpc/algorithms/matmul/ Code: https
://github.com/algorithmica-
org/algorithmica/blob/master/content/english/hpc/algorithms/matmul.md

http://people.redhat.com/drepper/cpumemory.pdf
https://doi.org/10.1145/1356052.1356053
https://www.cs.utexas.edu/~flame/pubs/GotoTOMS_revision.pdf
http://supertech.csail.mit.edu/papers/Prokop99.pdf
https://www.agner.org/optimize/vcl_manual.pdf
https://en.algorithmica.org/hpc/algorithms/matmul/
https://github.com/algorithmica-org/algorithmica/blob/master/content/english/hpc/algorithms/matmul.md
https://github.com/algorithmica-org/algorithmica/blob/master/content/english/hpc/algorithms/matmul.md
https://github.com/algorithmica-org/algorithmica/blob/master/content/english/hpc/algorithms/matmul.md

233 Efficient Modern C++ Data Structures

16. Tensors

What are Tensors?

Tensors are terrifying at first! I avoided learning about them for ages. All those
nested loops are scary. But eventually it dawned on me that they’re just three-
dimensional arrays, and the computations are nothing harder than multiplication
and addition.

An important point is that “tensors” in Computer Science are much different to
the mathematical forms used in Physics. AI tensors are used in “linear algebra” for
LLMs and are much more basic than the 4-D space-time tensors in Einstein’s
theory of general relativity. Which may explain why all those brainy physicists are
so smug, despite being unable to predict if it’ll rain tomorrow.

Tensors are simply multi-dimensional arrays, and are usually 3-dimensional. Each
slice of a 3-D tensor is a two-dimensional matrix. And like vectors and matrices,
tensors have these basic properties:

(a) Each element stores a single number (i.e., no strings or objects).

(b) All elements have the same data type (e.g., int or float).

(c) Elements may be positive, negative or zero.

(d) There are no missing elements. The concept of “missing” can only be
represented by zero in a normal tensor.

There are exceptions, of course. There are “sparse tensors” that can represent
elements as missing. Also, you can technically store strings or objects in a C++
three-dimensional array, but then it’s more of a misuse of a tensor. Numbers are
where it’s at.

Tensors are technically the superset of all of the computational structures, and the
number of dimensions is called the “rank” or “dimension” or “axes” of a tensor.
Matrices are rank-2 tensors, vectors are rank-1 tensors, and even scalars are rank-0
tensors.

David Spuler 234

Conceptually, there’s a hierarchy of complexity for tensor operations:

• 3-D tensor operations break down into 2-D matrix multiplications.

• 2-D matrix multiplications break down into vector dot products.

• 1-D vector dot products break down to a single float number (a scalar).

• 0-D scalars are single numbers.

Another way to think about tensors is in terms of nested loops. Scanning a vector
requires one loop, and a matrix needs two nested loops. Tensor operations require
three or more nested loops to process all their data.

Neural Network Tensors

I’m not going to take you in detail through the theory of how neural networks
function. But in broad strokes, there are “neurons” in layers, where each neuron
has a “signal,” and there are also connections between neurons that forward the
strength of a signal on to the next layer of neurons. So, each neuron in connected
to every neuron in the previous layer by an “arc” and on that arc is a “weight” that
says how strong or weak to consider the incoming neuron’s signal.

But how do we get to tensors from that? Not obvious.

Let’s step back a little and be one with the neuron. So, we are just one neuron in a
layer of 100 neurons. And the previous layer has 100 neurons, and we are “fully
connected” with arcs from every one of those 100 prior neurons. With 100 neurons
in the previous layer, our little lonely neuron has to consider the signals from all of
the 100 neurons in the prior layer, with 100 weights on the arcs to help decide how
much attention to pay to each of the 100 prior neurons.

If we consider the previous layer of 100 neurons as a “vector” of each neuron’s
computed values. What this means is that every one of the 100 prior neurons has a
number of its computed signal, so we have a vector of 100 signal numbers from the
prior layer (i.e., a vector full of 100 neuron computed values).

Again, our little neuron has to receive a computed signal value from every one of
the 100 prior layer neurons, so we have 100 arcs coming into our little neuron, each
with a different number, that is the “weight” of that arc. The computed value of a
prior neuron is multiplied by the “weight” that’s on each arc (i.e., there’s 100
weights, one for each arc). So, every one of the arcs from the 100 neurons in the
prior layer has a weight, and what does that sound like? A vector of weights.

235 Efficient Modern C++ Data Structures

So, we have a bunch of 100 prior-layer neuron’s computed values in a vector, where
each one of those 100 signal values is multiplied by a weight that’s in a vector with
100 weights. Hence, we’ve got to pairwise multiplication, where we multiply 100
neuron values times 100 associated weights. Hence, we’ve got a bunch of element-
wise multiplications of two vectors (100 values times 100 weights), which creates a
vector of 100 multiplication computations.

But our little neuron cannot have 100 computed values, but can really only have
one number, the total computed signal for our current neuron. There are various
things we could do to “reduce” our interim vector of 100 multiplications, but the
simplest is to add them all up, and this gives us one number. Now we have one
number, and it’s the computed signal value for our current neuron.

Umm, I remember that from High School. If we multiply two vectors together with
the numbers in pairs, and then add it all up: vector dot product.

In summary, we have a vector dot product for our single neuron in the current
layer, based on two vectors from the prior layer (the vector of 100 calculated neuron
values, and the vector of 100 weights).

But this is just for our one lonely neuron. Except, it’s not lonely, since it has 99
friends, because it’s in a layer of 100 neurons itself. So, our neuron and its 99 friends
in the current layer, all have to do a different dot product computation because the
weights are different for each set of arcs into each neuron. We have a whole vector
of 100 neurons in the current layer, for which we have to compute dot products
with 100 values times 100 weights (i.e., using the prior layer). So, we have to do 100
vector dot products to calculate the result for our neuron and its 99 friends. If we
do 100 repetitions of vector dot products, this sounds like...matrix multiplication.

But that’s not all. There’s a third dimension based on the “tokens” in the prompt,
which is represented by an “embeddings” vector. And with this third dimension
thrown in, well, then it’s a whole vector worth of matrix multiplications, and we get
to a 3-D operation called a “tensor product.” Tensors are three-dimensional blocks
full of numbers (i.e., cubes or rectangular prisms), which generalize two-
dimensional matrices, which generalize one-dimensional vectors, which generalize
zero-dimensional scalars. And if you have any common sense, you’ve stopped
reading this section by now, so I’m not going to try explaining this mind-bending
tensor stuff any further.

David Spuler 236

Tensor Arithmetic

Tensors are a convenient and efficient representation of multi-dimensional data.
Since complex computations may involve a lot of matrix multiplications, it is useful
to represent a sequence of matrix operations as a tensor operation.

Importantly, the arithmetic performed is the same. Using a tensor is
computationally efficient for parallelization of algorithms, and also mathematically
concise for theoretical analysis, but is not some fantastically amazing matrix
algorithm. It’s just crunching lots of numbers with the standard matrix
multiplication methods. Usually, it’s the same as an array of matrices, where you do
matrix multiplication on each one.

In practice, tensor kernels will send out different chunks of that computation all
over the place for parallel speedup, but it’s still computing the exact same numbers
as if you did it all brute-force in nested loops. You could even follow along with a
pen and paper, except that the computer is better because it won’t forget to carry
the negative sign.

Tensor shape. Another point is the shape of a tensor. I’m sure you know that
matrices may be square or rectangular in shape, but can’t be a skewed parallelogram
or a circle. Yes, you’re right, there are triangular matrices, but now you’re messing
up my nice clean point.

Anyway, a 3-D tensor can have different sizes on each of its three dimensions.
Hence, a 3-D tensor can be a cube if all three sizes are identical, but usually they
have the shape of a more general rectangular prism. And it still has a brick-like
shape, and can’t really represent a triangle, cone, or sphere. Tensors are much less
scary if you sing Everything is Awesome while you code the nested loops.

Unary Tensor Operations

Like a 2-D matrix, there are various simple operations we can define on a single
tensor. The various element-wise operations apply individually to each tensor item.

• Clear or set to a value

• Add or subtract a scalar

• Multiply or divide by a scalar

Similarly, we could apply a particular unary mathematical function to each element
separately: square root, exponentiation, natural logarithm, and more.

237 Efficient Modern C++ Data Structures

Binary Elementwise Tensor Operations

Adding two matrices means simply adding each pair of elements in the matrix,
which only works if the two matrices have the same size and shape. The same idea
generalizes to the addition of tensor elements of two tensors with the same size
(i.e., all three dimensions are the same). Hence, we can do element-wise binary
arithmetic on each element in two tensors to create a third tensor of the same size:

• Addition or subtraction

• Multiplication or division

• Maximum or minimum

Note that element-wise multiplication of tensor elements is not “tensor
multiplication” in the same way that matrix multiplication isn’t just paired
multiplications of the elements in two matrices. Such an element-wise
multiplication is called the “Hadamard product” of matrices, and is so useless that
I don’t think I was ever taught that in High School. The Hadamard product is not
what is used by normal multiplication computations, but I’ve seen a few research
papers where it was proposed as an optimization (probably unsuccessfully). Matrix
multiplication is more complex, with its row-by-column vector dot product
multiplications, and so is generalizing that to tensors.

That’s how we get to “tensor product” of two tensors. It’s really just nested loops
doing matrix multiplications on slices of each tensor. And then matrix
multiplications are just nested loops doing vector dot products. Like I said, tensors
are just three-dimensional arrays doing multiplication and addition.

Sparse Tensors

Sparse tensors occur when most of the values are zero. These are a generalization
of sparse vectors and sparse matrices, and offer the same advantages: compressed
storage and faster arithmetic operations (by skipping operations involving zero).

The level of sparsity required for optimization usually means 80-90% of the weights
are zero. With so few non-zero values, tensor arithmetic involves fewer operations
and the memory requirements are low (i.e., store only the non-zero weights). Such
sparsity is often the result of a “pruning” optimization, but there are also obscure
theoretical means to get sparse tensors using tensor algebra (let’s not even go
there!).

When there is a high degree of sparsity, such as when 80-90% of the values are
zero, it becomes more efficient to use alternative algorithms.

David Spuler 238

Sparse tensors can be stored in a permutation index format, where only the index
locations of non-zero items are stored (e.g., storing a four-tuple with the non-zero
value and the three indices at which it is located in the tensor). Operations on sparse
tensors can use the alternative storage format to create much more efficient kernels
that avoid most of the computations involving the missing zero values.

Parallelization of sparse tensor operations is a double optimization, because there
are fewer operations (only on non-zero weights), and you can parallelize them as
well. Although a permuted index data format is not the usual contiguous memory
space amenable to vectorization, there are other methods to vectorize permutation
indices, such as with “gather” and “scatter” SIMD operations.

239 Efficient Modern C++ Data Structures

Part IV: Advanced Data Structures

“Design is the fundamental soul of a human-made creation
that ends up expressing itself in successive outer layers

of the product or service.”

— Steve Jobs.

David Spuler 240

241 Efficient Modern C++ Data Structures

17. Algorithm Speedups

Algorithm Optimization Techniques

Changing the underlying algorithms used by the program is often the only real way
to gain a large speed increase. In particular, the algorithms and data structures used
can often be modified to give a significant speed increase. Is there a better way to
do what your program does? Is it doing too much unnecessary calculation?
Although much depends on the programmer’s ingenuity, there are some common
techniques for improving performance of algorithms.

• Parallelization and vectorization

• Precomputation (save time by using space)

• Recomputation (save space by using time)

• Caching and computation reuse

• Greedy algorithms (immediate computation)

• Skipping algorithms

• Arithmetic strength reduction

• Integer arithmetic

• Change recursion to loops

• Incremental algorithms

• Choose a better data structure

The idea of “skipping” computations also has various sub-methods:

• Lazy algorithms (delay computation until needed)

• Common case first

• Simple case first

• Approximate tests first

David Spuler 242

Lookup Table Precomputation

Lookup tables are so widely used in latency-critical programs that they’re usually
abbreviated as LUTs. The aim is to precompute results and replace frequently called
costly function evaluations with table lookup (i.e., array references). Note that this
use of precalculation is only worthwhile if some calculations are repeated and
computing the same result.

As an example, we can replace a call to “sqrtf” with a precalculated table of square
roots. In the subsequent calculations where square root is needed, a call to
the sqrtf function is replaced by a table lookup.

The precalculation uses two separate functions: one to perform the precalculation,
and another to access the values by table lookup. The precalculate function must
be called once via a global initialization routine for the class. Alternatively, every
call to the square_root function could self-check a static Boolean flag indicating
whether the values have been precalculated yet, and call the precalculate function if
not, but this is needlessly slower for every access.

Even more efficient is to use “offline precomputation” before your program even
runs. This is a more efficient method whereby the data is not precalculated during
initialization of the program, but is done earlier in an “offline” mode (e.g., as part
of your build process). For example, the precomputed results are either stored to a
data file, or converted to a C++ source file that is linked.

Another good example of precalculation is the Boolean functions on characters
(e.g., isupper). To improve performance, it is possible to implemented these
functions as a precomputed array of 256 bool values, or 256 bytes with 0
if isupper is false, and 1 if isupper is true. Then isupper is evaluated by
indexing the character into the precomputed table:

 #define isupper(ch) (precomputed_array[ch])

In fact, many C++ compilers implement isupper and other functions
in <ctype.h> as a table lookup over the 256 characters (plus an extra one
for EOF), with a precalculated single bit flag per function — that is, one bit
indicating isupper, another bit for islower, etc.

243 Efficient Modern C++ Data Structures

Lazy Evaluation

The idea of lazy evaluation is a slight amendment to precalculation or data structure
augmentation. Full precomputation during program startup can be inefficient when
only some of the values are needed.

Lazy evaluation works in a “lazy” manner, by only doing work when asked. Instead
of precalculating every result, results are calculated only as needed. To use this
method, some way is needed of indicating whether a result is already in the table.
When seeking a result, it is necessary to check if the required value is already present.
If so, table lookup is used to get the result. If not, the value must be calculated,
stored in the table and that entry marked as present.

The precomputation of sqrtf can be modified to become lazy evaluation by
adding another array of Boolean flags, indicating which of the square roots have
been computed. When calculating a square root, the function checks if it has been
computed, and calculates it if not.

 float square_root_lazy_eval(int n)

 {

 static float sqrt_table[NUM_PREC + 1]; // values

 static bool precalc[NUM_PREC + 1]; // flags

 if (!precalc[n]) { // precalculated?

 sqrt_table[n] = sqrtf((float)n); // real sqrt

 precalc[n] = true; // Mark as computed

 }

 return sqrt_table[n];

 }

The use of lazy evaluation is slower than complete precalculation if all of the values
are eventually calculated, because of the overhead of checking whether calculation
is needed. Also, there’s only an efficiency gain for values that are calculated twice
or more. However, lazy evaluation can make the program faster overall if not all
calculations are needed, but some are needed many times. Any unnecessary
calculations are avoided.

How lazy!

David Spuler 244

Source Code Precomputation

The examples of the precomputation of square roots in the previous two sections
are not particularly efficient because they must still call the sqrtf function a
number of times. A far more efficient alternative is to use C++’s compile-time
initialization of arrays to set up the precomputed sqrt_table array inside the
C++ source code. Hence, the square_root function becomes a simple lookup into
an array variable as follows. Note that the array is declared as “static” so that the
initialization occurs at compile-time.

 float square_root_precalc(int n)

 {

 const int NUM_PRECALC = 100; // Precalc to 100

 static float sqrt_table[] = {

 0.000000f, 1.000000f, 1.414214f, 1.732051f,

 2.000000f, 2.236068f, 2.449490f, 2.645751f,

 2.828427f, 3.000000f, 3.162278f, 3.316625f,

 //... etc

 };

 if (n >= NUM_PRECALC) return sqrtf((float)n);

 return sqrt_table[n];

 }

The simplest way to produce the values for the precomputed array is to write
another program to produce them. Once the values are produced, this program
could be discarded, or it could be left in the build process. The following program
was used to produce the declaration of sqrt_table used in the square_root
function given above. The output from the following program was copy-pasted into
the source code for the program above.

 void generate_sqrt_table()

 {

 const int NUM = 100; // Precalculate to 100

 printf("static float sqrt_table[] = {\n");

 for (int i = 0; i < NUM; i++) {

 printf("%ff", sqrtf((float)i));

 if (i + 1 < NUM)

 printf(", "); // comma after all but last

 if (i % 4 == 3 && i + 1 < NUM)

 printf("\n"); // newline every 4 numbers

 }

 printf("\n};\n"); // finish off declaration

 }

245 Efficient Modern C++ Data Structures

Source code precomputation should always be more efficient than lazy evaluation
and run-time precomputation. However, source code precomputation is only
applicable when the function can be computed at compile-time (e.g., any
“constexpr” function).

If the computation involves any variables whose values are known only at run-time,
either lazy evaluation or run-time precomputation may be needed.

Incremental Algorithms

It is often easier to modify what has already been done than to start from scratch.
This idea can be used to write faster algorithms. However, changing an existing
algorithm to use incremental calculations will usually require a total redesign of the
algorithm.

A simple example of an incremental algorithm is counting the number of symbols
in a hash table. The non-incremental way to count them is to traverse the hash table,
counting the number of entries along each hashed chain. The incremental method
is to keeping a running count — increment it when a symbol is inserted; decrement
it when a symbol is deleted. The incremental method is better if the count will be
required many times. If the count is not required, there has also been a small amount
of unnecessary overhead.

Another good example appears in graphics animation when managing the buffers.
When displaying a new screen, it is usually more efficient to change the existing
screen buffer than to redraw the whole screen. The idea is to set only those pixels
that need to be changed.

For another example, a chess-playing program uses a game tree and the minimax
algorithm with a static evaluation function. This function usually analyses the
material balance (i.e., how many pieces each side has), along with other chess
strategy factors. A simple but inefficient method of computing the material value
of a position is to add the values of each piece on the 64 squares. The efficient
incremental algorithm is to subtract the value of the piece from a running count
whenever any piece is captured by the opponent.

David Spuler 246

Common Case First

When testing for a number of different conditions, it is best to test the most
common case first. If it is true, the other tests are not executed. When using
multiple if-else-if statements, place the common case first. For example,
consider the binary search function:

 if (key > a[i]) {

 // ...

 }

 else if (key < a[i]) {

 // ...

 }

 else { // equality

 // ...

 }

Equality is least likely of all the three conditions, and hence it goes last. Greater-
than and less-than are more common, so they go first.

The idea of common case first also appears in Boolean expressions using && or ||.
The short-circuiting of these operators makes them very efficient when the
common case is first. For ||, the most likely condition should be placed first (i.e.,
most likely to be true). For &&, the most unlikely condition should be placed first
(i.e., most likely to be false).

Simple Case First

This method is similar to common case first — the idea is to test the simplest
condition first. More complicated and time-consuming computations can be
avoided if the first test succeeds (or fails, depending on the context). This idea
appears in two main situations:

• if-if construct (nested if statements), and

• logical operators (&& and ||).

The simplest test should be the first of a pair of nested if statements and should
also be the first operand of a && or || operator. In the examples below, the sub-
expression “x!=0” is evaluated first because it is the simplest and hence the least
expensive to evaluate.

247 Efficient Modern C++ Data Structures

This is the nested-if example:

 if (x != 0) {

 if (expensive_fn(x) != 0) {

 // ...

 }

 }

This is the && short-circuiting method:

 if (x != 0 && expensive_fn(x) != 0) {

 // ...

 }

Special Solution of Simple cases

In addition to putting a simple case first, it can also be efficient to solve simple cases
differently to the general case. When solving a problem, simple cases can often be
solved by specially designed fast functions. These “special solutions” can involve
table lookup of precalculated values (e.g., storing the first ten factorials in an array)
or just a fast algorithm for small cases (e.g., sorting less than five numbers quickly).

In general, the special solution of simple cases will give some speed increase if the
simple cases are fairly common. The advantage of simple case precalculation over
full precalculation is flexibility — it is not limited to those values that can be stored
in a fixed size table.

The use of table lookup for simple cases for the factorial function is shown below.
The use of the method here gives speed increase for all cases, not just the simple
ones, because the recursive definition of factorial eventually breaks the problem
down to a simple case.

 int factorial_precalc(int n)

 {

 const int NUM_PRECALC = 5; // How many

 static int s_precalc[NUM_PRECALC + 1] =

 { 1, 1, 2, 6, 24, 120 };

 if (n <= NUM_PRECALC)

 return s_precalc[n];

 else

 return n * factorial_precalc(n - 1);

 }

David Spuler 248

Approximate Tests

Many algorithms can be improved by avoiding complex calculations with a fast
preliminary test that is often successful. This is a special type of common and simple
case optimization combined. This method is only worthwhile when avoiding the
complicated test is highly probable; if avoiding it is unlikely, the extra simple test
reduces efficiency because it adds (slightly) to the run-time cost.

Zero skipping. A common example of an approximation is “zero skipping.” A
low-cost test of a weight against zero can avoid the complexity of computing vector
and matrix operations with that weight.

Bounding Sphere Tests in Ray Tracing. As an example in 3D graphics, to
implement a ray tracing algorithm for graphical image rendering, it is necessary to
determine whether a ray strikes an object. Since the objects are often complex and
more often than not the ray will miss an object by a large amount of space, a simple
test can be used to quickly identify rays that are close enough to the object to
intersect with it. A good simple test is to determine if the ray intersects with the
bounding sphere of an object, as it is relatively efficient to determine this. If the ray
does intersect the sphere, the more expensive tests are applied to determine if the
ray intersects with the object. If the ray does not intersect with the sphere, the cost
of the more expensive tests has been avoided. Interestingly, the simplicity of testing
the intersection of a ray with a sphere helps explain why there are so many ray-
traced images of spherical objects.

Bounding-box 2D collision detection. The similar idea of a bounding rectangle
is useful for collision detection in coding 2D arcade games. Collision detection
usually involves testing many pairs of objects in a two-dimensional setting, and the
tests are complicated because of the different shapes of the objects. The more
complicated tests can be avoided by examining whether the bounding rectangles of
each object are intersecting. If they do intersect, then a closer examination of
whether the objects have pixels that overlap is carried out.

Rectangle Shapes. For yet another example of using a simple test to avoid
complicated tests, consider the problem of a GUI-based drawing program.
Typically, the user can select a vertex (e.g., the end of a line segment) by clicking
“close” to the vertex. In other words, the user must click the mouse within a
specified radius of the point. Hence, when the mouse is clicked, the program must
compare the mouse location with all the currently active vertices.

249 Efficient Modern C++ Data Structures

The obvious method is to use the distance formula for two points and apply the
following test on the x and y coordinates of the mouse and all points:

 const float DISTANCE = 2.0f;

 float diffx = xMouse - xPoint;

 float diffy = yMouse - yPoint;

 float distance = sqrtf(diffx * diffx + diffy * diffy);

 if (distance <= DISTANCE) {

 // clicked! ...

 }

Firstly, the efficiency of this test can be improved simply by avoiding the calculation
of the square root. Squaring both sides of the equation gives the equivalent test:

 float distance_squared = diffx * diffx + diffy * diffy;

 if (distance_squared <= DISTANCE * DISTANCE) {

 // clicked! ...

 }

However, the multiplications involved in computing the squares of the two sub-
expressions on the left are quite expensive, although the square on the right-hand
side will be a compile-time constant. A simple test can be used to avoid the
expensive multiplications in most cases. If the difference between either the x or
the y coordinates is greater than DISTANCE, then the points cannot be close
enough. Although the cost of these tests is quite high because the absolute value
over the difference must be found, it should still cost less than two multiplications,
and will be more efficient if there are many widely spaced points to be tested. The
code using this idea is:

 bool check_pt_clicked(int xm, int ym, int xp, int yp)

 {

 const float DISTANCE = 2.0f;

 int xd = xp >= xm ? xp - xm : xm - xp;

 if (xd > DISTANCE) return false;

 int yd = yp >= ym ? yp - ym : ym - yp;

 if (yd > DISTANCE) return false;

 return xd * xd + yd * yd <= DISTANCE * DISTANCE;

 }

Of course, algorithm improvements are more effective. The best way of improving
the efficiency of this program is to avoid the need for multiplications entirely, by
changing the program specifications (!) so that the definition of clicking “close
enough” to a vertex with a mouse refers to clicking within a square around the point,
instead of a circle. Squares don’t need multiplication.

David Spuler 250

Augmenting Data Structures

An interesting type of caching is where the data is stored inside the main data
structure, rather than in a separate cache. Instead of recalculating derivative data
every time you need it, a faster way is to store the data in the data structure. This is
a form of caching that saves the time of recalculation, which need be done only
once. If the data ever changes, the calculations must be redone and stored again.
Hence, this method works best where data is unchanging, but can also tolerate
modifications.

As an example of augmentation, consider a struct defined to represent a line
segment (e.g., in a CAD drawing program). The struct contains four fields, for the
x and y coordinates of the start and end points:

 struct line_segment {

 int x1, y1; // Start point

 int x2, y2; // End point

 };

Consider the computation of the length of the line segment, using:

 float flen = sqrtf((y2 - y1) * (y2 - y1)

 + (x2 - x1) * (x2 - x1));

If the length is a common calculation, it can be beneficial to cache the length of the
line segment as an extra field in the struct:

 struct line_segment {

 int x1, y1; // Start point

 int x2, y2; // End point

 float length; // Length of line segment

 };

Whenever this length is needed during calculation it is immediately available as a
field member. However, it is important to be careful that there is no consistency
problem (where the length field is not the true length of the line segment). The
main danger is that the length field won’t be recalculated every time one of the
other fields change.

251 Efficient Modern C++ Data Structures

18. Vector Algorithms

Vector Dot Product

Vector dot product is an algorithm that has received a lot attention lately, because
it’s the most basic computation algorithm in an AI engine. All tensor operations
and matrix multiplications break down into many dot product calculations.

The dot product is so-named because its mathematical notation is a dot. It is also
known as the “scalar product” because its result is a scalar, rather than a vector.

The vector dot product takes two vectors as input, and computes a
single float number. The algorithm is a product of the elements of each vector,
added together. Here’s the code:

 float vecdot_basic(float v1[], float v2[], int n)

 {

 float sum = 0.0;

 for (int i = 0; i < n; i++) {

 sum += v1[i] * v2[i];

 }

 return sum;

 }

Properties of the dot product include:

• Two vectors as input.

• Scalar output (single number).

• Can be positive or negative.

• Is zero if either vector is all zeros.

• Can also be zero for two non-zero vectors (e.g., if the vectors are
“perpendicular” in 2-D or 3-D space).

• Has a physical meaning related to the “angle” between the two vectors.

• Is an integer if both vectors contain integers.

• Dot product of a vector with itself is the square of the vector’s magnitude
(equivalently, the vector’s L2-squared norm).

• Is very slooow. Dot product-based operations inside matrices and tensors
are the main culprit for AI needing all those GPUs.

David Spuler 252

The dot product differs from the “vector product” of two vectors (also called
“cross product”) that returns a vector, and is a completely different mathematical
operation. The vector cross product is interesting mathematically in that it
computes a vector perpendicular in 3 dimensions, but it’s not very useful in practical
applications. The dot product is where the action’s at in big tensors.

Vector Norms

Vector norms are measurements of vectors that indicate features of a vector. For
example, we can measure if two vectors are “close” to each other. Again, these used
to be obscure linear algebra algorithms, but are now widely used in various AI
algorithms.

Vector norms map vectors to a single number. Note that vector norms are not the
same thing as the “normalization” layer in a Transformer (i.e., LayerNorm or
BatchNorm). Note also that a vector “norm” is not at all related to the similarly-
named “normal vector” (a vector perpendicular to a surface). The norm is a number,
whereas the normal is a vector, and they’re not on speaking terms since that incident
last summer.

L2 Norm: The basic norm of a vector is the level-2 (L2) norm, and you probably
already know it. This is the length of the vector in physical space, also called the
vector’s “modulus” or “magnitude” in Mathematics 101. If you treat a vector as a
“point” in space, the L2 norm is its straight-line distance from the origin.

The calculation of the L2 norm of a vector is a generalization of Pythagoras’s
Theorem: sum the squares of all the vector elements, and then take the square root.
The code looks like:

 float aussie_vector_L2_norm(float v[], int n)

 {

 float sum = 0.0f;

 for (int i = 0; i < n; i++) {

 sum += (v[i] * v[i]); // Square

 }

 return sqrtf(sum);

 }

Because we square every element, they all get turned positive. Zero squared is still
zero. Once we’ve summed all the squares, we usually get a big positive number,
which we then square root to get a smaller positive number. Hence, the result of
the L2 norm is compressing a whole vector down to a single positive floating-point
number.

253 Efficient Modern C++ Data Structures

The properties of the L2 norm are:

• Floating-point number (e.g., 0.567 or 5.6789 or 3.0 or whatever)

• Positive number (not ever negative)

• Zero only if the whole vector is zero.

• Represents the “length” (or “modulus” or “magnitude”) of a vector, called
the “Euclidean distance”.

• Usually a non-integer, even if the vector was all integers.

For a simple 2-D or 3-D vector in Senior Math, the L2 norm is the physical length
of the vector in 2-D or 3-D space (or the length of the line from the origin to the
equivalent point). For AI, which has vectors in 1024-dimensions, or N-dimensional
vectors for whatever N is being used, there’s not really a physical explanation of the
L2 norm that’s easy to visualize, but it’s kind of a measure of the length of the
vector in N-dimensional space. The value of the L2 norm can be zero, but only if
all the vector’s elements are zero.

Note that the value of the L2 norm is not unique. Two different vectors can have
the same value for the L2 norm. In fact, an infinite number of vectors can have the
same value, and those vectors are the set of vectors with the same length
(magnitude), which will define a sphere in N-dimensional space.

L2-squared norm: A minor modification of the L2 norm is the “squared L2
norm”, which is, as you may have guessed, the square of the L2 norm. To put it
another way, it’s just the L2 norm without the square-root at the end. The code
looks like:

 float aussie_vector_L2_squared_norm(float v[], int n)

 {

 float sum = 0.0f;

 for (int i = 0; i < n; i++) {

 sum += (v[i] * v[i]); // Square

 }

 return sum; // NOT sqrtf(sum);

 }

The value of the L2-squared norm is a positive number, but a much larger one. The
physical meaning is the square of the physical/Euclidean length of the vector. The
L2-squared norm also equals the vector’s dot product with itself.

Why use the L2-squared norm? Because it’s faster to skip the square-root operation,
of course. Also, if the vector contains integers, then the L2-squared norm is also an
integer, which can make it even faster to compute in integer-only mode.

David Spuler 254

The L2-squared norm is just as good as basic L2 for some uses. The properties of
L2 and L2-squared norms are very similar except that one is a much larger number.
Both are positive and related to Euclidean distance, and both increase
monotonically the further the vector is away from the origin.

Level 1 Norm: As you can guess from my calling it the L2 norm, there’s also an
L1 norm, and there’s L3 norms, and more. Let’s look at the L1 norm, because it’s
even simpler, although it’s not usually something that’s covered when studying
vectors in Math class.

The L1 norm is simply the sum of the absolute values of all the vector elements.
We don’t square them. We don’t take the square root. We just make them positive
and add them up. The code looks like:

 float aussie_vector_L1_norm(float v[], int n)

 {

 float sum = 0.0f;

 for (int i = 0; i < n; i++) {

 sum += fabsf(v[i]); // Absolute value

 }

 return sum;

 }

Using the absolute values of elements reverses any negative vector elements to
positive. The absolute value ensures the whole total can’t go negative, and any
negative value also adds to the total. A zero element is fine in the vector, but does
nothing. The result of the L1 norm is a single positive float number, which can be
fractional or whole, ranging from zero to as high as it goes (i.e., if you have big
numbers in the vector elements, then the L1 norm will also be large).

The properties of the L1 norm are:

• Floating-point number (fractional or whole).

• Positive number (never negative).

• Zero only if all vector elements are zero.

• Physical meaning is an obscure distance measure (the “Manhattan
distance”).

• Will be an integer if the vector elements are integers.

What does an L1 norm mean? It’s kind of like the distance you’d travel if you walked
the longest way by going along each element/dimension of the vector, one at a
time, and not going backwards (no negatives).

255 Efficient Modern C++ Data Structures

So, the L2 norm was the fastest diagonal direct way to get to a point, but the L1
norm is going the scenic route, and the L1 norm is usually bigger than the L2 norm.

Like the L2 norm, the L1 norm is not unique. Multiple vectors can have the same
L1 norm. For example, the vectors (1,2) and (0.5,2.5) will have L1 norm
value of 3.0. I’m not really sure what the set of all the vectors with the same L1
norm means. Maybe it’s this: all the points that you can walk to from the origin
when you travel a certain distance (going forwards-only)?

L3 Norms and Above: The mathematical vector norms can be generalized to L3
and higher norms, even to infinity. For an L3 norm, you cube all the vector elements
(made positive by absolute value), and take the cube root at the end. It’s tricky to
find the cube root in C++ until you remember that a cube root is exponentiation
to the power of 1/3 (from Year 10 math), so we can use the “powf” function.
Here’s the code:

 float aussie_vector_L3_norm(float v[], int n)

 {

 float sum = 0.0f;

 for (int i = 0; i < n; i++) {

 sum += (v[i] * v[i] * v[i]); // Cube

 }

 const float frac_third = 1.0f / 3.0f;

 return powf(sum, frac_third);

 }

Can you guess what an L4 norm is? The higher order versions are really fun and
interesting if you wear socks with your sandals, but not very useful in any practical
applications of AI coding.

Matrix Norms

There are norms for matrices, but they’re not really that often used. Taking a
“measurement” of a matrix via a “norm” (or a “metric”) to compare it to other
matrices isn’t a common task.

The silly ones are element-wise matrix norms. You can define an L1 or L2 norm
on a matrix using the same algorithm over all its elements. You can also find the
maximum element inside a matrix, and call that the “max norm” if you like to sound
math-ish. The reason I say these are dumb? Because they ignore the structure in the
matrix, so it’s a kind of “pseudo-norm” of a matrix. It’s really just treating a matrix
like it’s a big, flat vector, and to me it seems more like misusing a vector norm on a
matrix.

David Spuler 256

More sensible matrix norms consider the rows or columns of the matrices as
separate vectors. An NxN matrix has N column vectors or N matrix vectors, so
there are N vector norms. Should we add them up? No, taking the maximum of the
vector-wise L1 or L2 row/column vector norms has a more useful meaning as a
matrix norm than the element-wise matrix L1 or L2 pseudo-norms. You can do
this maximum-of-vector-norms either for rows or columns, but not both.

Vector Min and Max

Finding the maximum or minimum element of a vector is useful, and somewhat
relevant to the L1/L2 norms. The maximum is a kind of “metric” of the size of a
vector. Also, the maximum function over a vector is used in “greedy decoding” to
pick the word with the highest predicted probability, which is then output. The
minimum function would give us the least likely word, which might also be
interesting if useless.

The simple linear code for vector max is:

 float aussie_vector_max(float v[], int n) // Maximum

 {

 float vmax = v[0];

 for (int i = 1 /*not 0*/; i < n; i++) {

 if (v[i] > vmax) vmax = v[i];

 }

 return vmax;

 }

The vector minimum function looks similar in sequential C++ code:

 float aussie_vector_min(float v[], int n) // Mininum

 {

 float vmin = v[0];

 for (int i = 1 /*not 0*/; i < n; i++) {

 if (v[i] < vmin) vmin = v[i];

 }

 return vmin;

 }

These simple linear functions are crying out for optimizations: loop unrolling,
pointer arithmetic, etc. However, what they really need is vectorization. There are
parallelized max and min primitives in GPUs and CPU-based AVX intrinsics that
you can use.

257 Efficient Modern C++ Data Structures

Top-K Vector Algorithm

The top-k algorithm is more complicated than vector max or min: find the
largest k elements in a vector. Note that “maximum” is the same as top-k with k=1.
If you want the short version of the top-k story in C++, there’s
a std::partial_sort function that sorts the top k elements, and there’s
also std::sort for a full array sort.

However, let’s hand-code some top-k algorithms for more clarity.

Note that the top-k algorithm is a somewhat obscure algorithm that used to be
rarely used, but now it’s a very important piece of code in AI engines. It gives us
“top-k decoding” which is how to choose which word to output. The whole
encoder-decoder computes a vector giving us the probability that each word should
be output next. Using the maximum probability word gives us “greedy decoding”
which always outputs the most likely word. But that’s kind of boring and
predictable, so top-k randomly chooses between the k most likely words (e.g., top-
50), which is still accurate and more interesting because it has creative variation.

Example: Hand-coded top-2 algorithm: Since top-1 is the maximum of a vector,
we can also find a fairly simple linear scan for k=2. The basic idea is to scan through
and keep track of the two largest values as we go.

 void aussie_vector_top_k_2(float v[], int n, float vout[])

 {

 // Order the first 2 elements

 float vmax1 = v[0], vmax2 = v[1];

 if (v[1] > v[0]) {

 vmax1 = v[1]; // Reverse them

 vmax2 = v[0];

 }

 for (int i = 2 /*not 0*/; i < n; i++) {

 if (v[i] > vmax2) { // Bigger than the smallest

 if (v[i] > vmax1) {

 // Bigger than both (shuffle)

 vmax2 = vmax1;

 vmax1 = v[i];

 }

 else { // In the middle (fix 2nd only)

 vmax2 = v[i];

 }

 }

 }

 vout[0] = vmax1; // Biggest

 vout[1] = vmax2; // 2nd biggest

 }

David Spuler 258

Note that the above top-2 algorithm is still impractical for our word decoding
algorithm. We need to know not only the top probabilities, but also which two
indices in the vector had those probabilities, because that’s how we know which
words map to which probabilities. So, we’d need to modify the above code to track
and return the two array indices as well (or instead).

Shuffle Top-K Algorithm

For a larger value of k the code becomes more complicated. The above code
for k=2 motivates the general idea for a brute-force algorithm: shuffle sort the
first k elements, and then scan the rest, shuffling any larger items up into place. We
can merge the two shuffling phases into one block of code that handles both the
startup and ongoing scan.

 void aussie_vector_top_k_shuffle(

 float v[], int n, int k, float vout[])

 {

 aussie_assert(n >= k);

 vout[0] = v[0];

 int nout = 1;

 for (int i = 1 /*not 0*/; i < n; i++) {

 float fnew = v[i];

 int maxj;

 if (nout < k) {

 vout[nout++] = fnew;

 maxj = nout - 2;

 }

 else {

 maxj = nout - 1;

 }

 maxj = nout - 1;

 for (int j = maxj; j >= 0; j--) {

 if (fnew > vout[j]) { // Shuffle & insert

 if (j + 1 < k) // Shuffle down

 vout[j + 1] = vout[j];

 vout[j] = fnew;

 // Keep going

 }

 else { // Done.. insert it

 if (j != maxj) {

 if (j + 1 < k)

 vout[j + 1] = vout[j];

 vout[j] = fnew;

 }

 break;

 }

 } // end for j

 } // end for i

 }

259 Efficient Modern C++ Data Structures

The above example is a simplistic and inefficient top-k algorithm, not to mention
that it was horribly fiddly and failed my unit tests for hours (i.e., it’s a special kind
of “fun”). Several loop optimizations suggest themselves: loop sectioning for the
outer i loop to do the first k iterations as a separate loop (avoiding lots of tests
against k), and loop peeling of the first iteration of the inner j loop (i.e., j==maxj).
This version also should be extended to track the indices from where the top-k
values came.

Theoretical Top-K Algorithms

There’s a lot of theory about computing the top-k function of an array for
large k values. These theoretical top-k algorithm papers mainly consider sequential
processing, rather than vectorization. Even so, it’s not a simple linear scan
like max or min functions, but doesn’t need to be as slow as shuffling.

Example: Top-k with qsort sorting: The simplest method for large k is to sort
the array with a fast method (e.g., the quicksort algorithm) and then pick off the
top k elements from the sorted array. In C++ there are the std::sort methods
or the older style qsort function. Here’s an example using the C++
standard qsort function:

 int aussie_top_k_qsort_cmp(

 void const* addr1, void const* addr2)

 {

 float f1 = *(float*)addr1;

 float f2 = *(float*)addr2;

 if (f1 < f2) return +1; // Reversed (descending)

 else if (f1 > f2) return -1;

 else return 0;

 }

 void aussie_vector_top_k_qsort(

 float v[], int n, int k, float vout[])

 {

 // Top-k with general k (qsort algorithm)

 // Sort the array

 qsort(v, n, sizeof(vout[0]),

 aussie_top_k_qsort_cmp);

 // Copy top-k elements

 for (int i = 0; i < k; i++) vout[i] = v[i];

 }

David Spuler 260

Top-k with qsort and permutation array: We really need a version that returns
the indices of the probabilities, rather than just their values. So, I coded up
a qsort version that sorts via a permutation array, and then returns the top-k of
these permutation indices.

 void aussie_permutation_identity(int permut[], int n)

 {

 for (int i = 0; i < n; i++) permut[i] = i;

 }

 float* g_float_array_for_qsort = nullptr;

 int aussie_top_k_qsort_permutation_cmp(

 void const* addr1, void const* addr2)

 {

 int index1 = *(int*)addr1;

 int index2 = *(int*)addr2;

 float f1 = g_float_array_for_qsort[index1];

 float f2 = g_float_array_for_qsort[index2];

 if (f1 < f2) return +1; // Reverse (descending)

 else if (f1 > f2) return -1;

 else return 0;

 }

 void aussie_vector_top_k_qsort_permut(

 float v[], int n, int k,

 float vout[], int permut_out[]

)

 {

 // Create a dynamic permutation array

 int* permut_arr = ::new int[n];

 // Identity permutation

 aussie_permutation_identity(permut_arr, n);

 // Sort the array (by permutation)

 g_float_array_for_qsort = v;

 qsort(permut_arr, n, sizeof(permut_arr[0]),

 aussie_top_k_qsort_permutation_cmp);

 // Copy top-k elements

 for (int i = 0; i < k; i++) {

 permut_out[i] = permut_arr[i];

 vout[i] = v[permut_arr[i]];

 }

 delete[] permut_arr;

 }

261 Efficient Modern C++ Data Structures

Top-k without sorting: Sorting the whole array is somewhat wasteful if we only
want the top 50 elements. There are various faster top-k algorithms that don’t fully
sort the array. These algorithms are called a “partial sort” and can achieve the top-
k output with better performance

Standard C++ top-k libraries: As mentioned earlier, the standard C++ libraries
have support for sorting algorithms in std::vector, such as with:

• std::sort — full array sort (simplest idea).

• std::partial_sort — partial sort of k elements (faster).

There is a top-k specialized version in the modern C++ libraries
called std::partial_sort, which sorts the top k elements of an array, which
can then be selected for the top-k algorithm.

Presumably, the std::partial_sort function is a faster algorithm
than std::sort, by not fully sorting the whole array, but I haven’t tested it. There
is also std::nth_element, which is similar to top-k.

David Spuler 262

263 Efficient Modern C++ Data Structures

19. Perfect Hashing

What is Perfect Hashing?

Perfect hashing is the extreme of hashing, where we guarantee that there’s no
collisions. Hence, the hash function is “perfect” because no pair of two keys map
to the same hash value. This makes for a super-fast hash lookup with
guaranteed O(1) search performance, and no need to look up a second hash
location ever.

Perfect hashing is faster than normal hash tables. Regular hashing is fast on average,
with O(1) average search, but collision resolution mechanisms like linear chaining
or probing can have worst case O(n) search cost. Perfect hashing has
guaranteed O(1) search complexity for best, average, and worst case. In fact, we
don’t even code up a collision resolution method at all.

Unfortunately, the good news stops there, because this only works in a very special
situation: where the set of keys is known at compile-time. This hash table can only
contain a fixed set of keys that we know whenever we build the perfect hashing
code.

If there are any insertions or deletions, this idea doesn’t work at all, and may require
us to re-run and re-compile our perfect hashing engine if they occur. Thus, we can
tolerate insertions and deletions but only if they are rare. Some examples of rarely
changing sets of strings we might want to look up with perfect hashing include:

• Special keywords in a programming language tokenizer (e.g., 100 reserved
words).

• Common English words in a grammar checker (e.g., 1,000 basic words).

• Stock tickers on an exchange’s market data feed (e.g., about 5,000).

• Vocabulary words of an AI model (often 50,000 to 100,000 words).

Yes, the last one is a bit tricky, because tickers might change daily, in which case we
might need to re-run our perfect hashing in every overnight build. Also, finding a
perfect hash function for 100,000 LLM vocabulary strings in a reasonable amount
of time might be a struggle.

David Spuler 264

Disadvantages of Perfect Hashing

We already mentioned the main disadvantage of perfect hashing, which is that it
requires a known set of keys, or at least a very rarely changing set of keys. Other
disadvantages include:

• Cost to build — expensive to scan the search space for a perfect hash map.

• Scalability problems — cannot handle a large number of keys because the
search space becomes too large.

• Static data — insertions and deletions invalidate the hash map.

• Recomputations — increasing the key set requires a total re-run of the
whole shemozzle.

Perfect hashing also has some of the disadvantages of a basic hash map
like std::unordered_map, such as:

• Unsorted data

• Scanning all data is somewhat inefficient (and in unsorted order)

• Cache locality issues because objects are stored randomly in the hash table.

Perfect hashing is not perfect for every case. Some alternatives data structures to
consider for search lookup optimization include:

• Bloom filters

• Tries

• Automata (precomputed)

Or you could put all your keys in an array and use a GPU to check all in parallel.

Perfect Hash Functions

Special hashing algorithms can be used in any situation where the search data is
known at compile-time. The most efficient solution is to use hashing with a specially
developed hash function, designed to prevent all collisions. This is called a perfect
hash function and can only be developed for unchanging data.

If a perfect hash function can be found, the symbol table can be searched with one
computation of the hash function and one key comparison to determine if the key
is actually there at the index.

265 Efficient Modern C++ Data Structures

The most difficult aspect of using this method is the search for a perfect hash
function for a particular set of data. There are a few common methods of doing so:

• Inspired guesswork

• Brute-force computation

• Use a perfect hashing tool (e.g., GNU gperf)

In some cases, the programmer can work out a function that has no collisions by
guessing at a function. For example, if the programmer notices that all keys have a
different first letter then it is easy to compute a perfect hash function as a mapping
from the 26 letters to a different unique integer, the hash value. There’s a curious
fact unknown to most AI engineers, that humans are very resourceful and this
method of “guessing” the function works surprisingly well. However, the average
human might have a little trouble with 100,000 distinct keys.

The brute-force approach involves trying to generate the hash function using a
computer which tries a number of different hash functions of a particular meta-
pattern, applies the hash function to each key, and reports when a function that
produces no collisions is found.

Further Optimizations of Perfect Hashing

The general complexity of perfect hashing is O(1), which is true of the best case,
average, and worst case complexity. Hence, it’s fast for large sizes, but we still might
want to optimize it a little more! There are two places to try to speed up:

• Lookup function (online)

• Perfect hash function creation (offline)

The basic method of perfect hashing can be optimized so that lookup is even faster.
Some of the ways that we might super-optimize the search phase of the perfect
hash function include:

• Not checking the key is present.

• Using a power-of-two hash table size.

• Larger hash table size.

David Spuler 266

Avoiding string comparisons. The computation sequence for a perfect hash
lookup goes like this:

1. Calculate the perfect hash function.

2. Find that location in the hash table.

3. Compare the string at that location with our search key.

But why are we doing this string comparison at the end? That’s quite slow. Well,
sometimes we don’t need to, and it depends on context. For a grammar checker or
LLM tokenizer, we need to detect whether or not the key is there, because multiple
words could map to the same hash location.

On the other hand, a market data feed from a US stock exchange might only contain
our set of ticket names, so we can assume that only one string could possibly be at
the hash table location. In other words, we’re assuming that every string is found,
and there are zero failed searches, so our hash table is mapping of the string to a
set of data structures (e.g., our order book for that stock). That’s all fine, and it will
go faster, but the code will break completely if the exchange adds a new stock ticker!

Another way we could avoid the string comparison is to use two or more perfect
hash functions. This data structure is known as a Bloom filter, and combines
multiple bit vectors with multiple hash functions. Bloom filters are a probabilistic
data structure that can confirm 100% that a key is invalid, but can only confirm that
a key is likely to be valid, but not with 100% certainty.

Power-of-two hash table size. The size of the array that is our hash table is one
of the parameters for a perfect hash function, so we have some control over it.
Note this basic point: the hash table size must be more than the number of keys,
or else it’s a little hard to avoid collisions! In fact, it’s easier to find a perfect hash
function if the size is significantly more than the number of keys, so that there are
some empty slots.

But what size? For some reason lost in the mists of time, everyone wants to choose
a prime number, preferably a Mersenne prime, because that supposedly makes hash
maps more evenly spread. But in the case of perfect hashing, we are looking for
exact mappings with zero collisions, so it’s perhaps not so important to use a prime.

Instead, we should use a power-of-two hash table size, because that allows the
arithmetic in our perfect hash function to be faster.

267 Efficient Modern C++ Data Structures

The reason is that most perfect hash functions look like this:

 offset = some_big_number(key) % N;

The % remainder operator is extremely slow, even on integers. The only reason it is
used here is to ensure that the hash function maps to between 0 and N-1,
where N is the hash table size. We can use “strength reduction” to use a faster
arithmetic operation, such as:

• Bitwise-and (&) operator — if N is a power-of-two (e.g., for x%16 use the
bitwise operation x&15).

• Type cast to unsigned char — if N is 256 (8 bits)

• Type cast to unsigned short — if N is 65,536 (16 bits).

• Overflow of unsigned char — if N is 256 (8 bits)

• Overflow of unsigned short — if N is 65,536 (16 bits).

We’ve already examined a lot of these optimizations to modulo arithmetic in detail
for the discussion of ring buffers in Chapter 21.

Larger hash table size. An important point about hash table sizes is that bigger
can be better. This is true for both the offline computation of the perfect hash
function, and the online search lookup. Bigger hash tables have more “gaps” and
are an easier search space to find a solution. In terms of online search performance,
a bigger table worsens cache performance, but that’s not likely to be great for a hash
table anyway. Furthermore, these extra gaps also mean that unsuccessful searches
will be faster on average, because those keys that map to a gap can avoid the string
comparison at the end. And memory is cheap, after all.

Offline search optimizations. The search for a perfect hash function can be very
expensive, and even impossible. Some of the ways to speed things up include:

• All of the hash function optimizations.

• Splitting up the search space (partitioning).

The first point is that any optimization to the perfect hash function computation
applies a thousand-fold to the offline search. For example, we also get faster
computations possible in the offline search for a hash function if we only look at
power-of-two table sizes. In fact, our offline code does a lot more of those
computations.

David Spuler 268

Search space partitioning optimizations. The search space is combinatorial and
explodes with large key sets. One approach is to split the keys into multiple perfect
hash tables, such as by partitioning the key sets. Some of the ways to consider
partitioning include:

• First letter — we can use 26 different perfect hash tables.

• Two letters — this gives 26*26=676 separate hash tables.

• Length of keys — e.g., stock tickers are at most 5 letters long.

• Preliminary hash — a simple hash function to start with (e.g., first two
letters modulo a size smaller than 676).

Note that this means running the perfect hash engine multiple times to find a
different perfect hash function for each partitioned set of keys. However, running
26 searches for smaller sets of keys will often run faster overall than trying to find
one super-perfect hash function for every single key.

Example: ANSI C Keywords

As an example of the various approaches, let us attempt to develop a perfect hash
function for a set of C’s 32 keywords for a programming language tool:

 auto break case char

 const continue default do

 double else enum extern

 float for goto if

 int long register return

 short signed sizeof static

 struct switch typedef union

 unsigned void volatile while

Using my own version of “inspired guesswork”, involving a couple of hours of
poring over ASCII tables, I managed to come up with a reasonable perfect hash
function. The basic approach I took was to break up the words into groups of about
five keys by using a test of the string length, and also by making single character
comparisons on the larger groups of keys with the same length. Once the group
was small enough I looked for letters in the keys that were unique, often the first
or second letter, and then examined the ASCII binary values of these letters. This
way, the hash function extracts certain bits from each letter, and generates a small
integer, which is then mapped into an “interval” of values for that particular group.

269 Efficient Modern C++ Data Structures

The function, which produces hash values in the range 0..36, is as follows:

 int my_hash(char* s)

 {

 switch (strlen(s)) {

 case 2: // Only "if" and “do”

 return (s[0] & 01) + 2; // 2..3

 case 3:

 return (s[0] & 01) + 8; // 8..9

 case 4:

 if (s[1] == 'o') // goto, long, void

 return (s[0] & 03) + 26; // 26..29

 else // auto, case, char, else, enum

 return ((s[1] & 14) >> 1) + 30;

 case 5: // break, const, float, short, union, while

 // First letter is unique

 return (s[0] & 07) + (s[0] == 'c') + 10; // 10..16

 case 6: // signed,sizeof,static,struct,switch

 if (s[0] == 's')

 return (s[5] & 03) + ((s[5] & 8) >> 3)

 + ((s[5] & 16) >> 2) + 18; // 18..22

 else // First not ’s’ - double, return, extern

 return (s[0] & 03) + 23; // 22..24

 case 7: // "typedef", "default"

 return (s[0] & 16) != 0;

 case 8: // continue, register, unsigned,volatile

 // First letter is unique

 return ((s[0] & 04) >> 1) + (s[0] & 01) + 4; // 4..7

 default: // Can’t be a C keyword

 return 0; // Pick any number

 }

 }

The second approach is to make the computer perform a brute-force search for a
perfect hash function. The following program takes a set of keys from a file and
develops a hash function of the following form:

 (Σ C[i] * key[i]) mod N

The code attempts brute-force computations with many combinations of the
constants C[i] and N. If one of these hash functions produces no collisions, a
perfect hash function has been found.

David Spuler 270

The source code below implements this concept.

 //---

 // PERFECT HASH FUNCTION BRUTE-FORCE SEARCH

 //---

 #include <stdio.h>

 #include <stdlib.h>

 #include <string.h>

 #include <ctype.h>

 #define LEN 10 // Maximum length of a word

 char words[MAX][LEN]; // words being hashed

 int C[LEN]; // coefficients of hash function

 #define MAX_MULTIPLIER 1 // Let C[i] range 0..MAX_MULTIPLIER

 // 0 means skip, 1 --> use addition

 #define MAX_MODULUS 1000

 int G_MODULUS;

 int G_MODULUS_START_MULTIPLIER = 5;

 int G_MODULUS_TOP;

 // Apply the hash function coefficients to a key

 int compute_hash_perfect(char* s, int modulus)

 {

 unsigned int hash = 0;

 for (int i = 0; i < LEN && s[i] != 0; i++) {

 hash += s[i] * C[i];

 }

 return hash % modulus;

 }

 //---

 // Try all the combinations of coefficients

 // This function finds the perfect hash function!

 //---

 void perfect_hash_find_best(int nwords, int nstart)

 {

 bool done = false;

 bool flags[MAX_MODULUS]; // has a key hashed here yet?

 int modulus = nstart * G_MODULUS_START_MULTIPLIER;

 do {

 // Do one possible modulus (table size)

 for (int i = 0; i < LEN; i++) C[i] = 0; // Clear coef

 do {

 // Update C[i] coefficients for next attempt

 C[0]++;

 for (int i = 0; i < LEN; i++) {

 if (C[i] <= MAX_MULTIPLIER) break;

 C[i] = 0;

 if (i + 1 < LEN) { C[i + 1]++; }

 }

 memset(&flags, 0, sizeof flags);

 // Scan all strings to count collisions...

 bool collision = false;

 for (int num = 0; num < nwords; num++) {

 int val = compute_hash_perfect(words[num], modulus);

 if (flags[val]) {

271 Efficient Modern C++ Data Structures

 collision = true;

 break;

 }

 flags[val] = true;

 }

 if (!collision) { // report success!!

 printf("NO COLLISION: ");

 for (int i = 0; i < LEN; i++) {

 printf("%2d ", C[i]);

 }

 printf(", MODULUS = %d ", modulus);

 if (modulus == nstart)

 printf(" PERFECT!!! (n=%d)", (int)nstart);

 printf("\n");

 break; // exit do loop. Do next MODULUS

 }

 done = true;

 // Finish when all coef are up to MAX_MULTIPLIER

 for (int i = 0; i < LEN; i++) {

 if (C[i] < MAX_MULTIPLIER) {

 done = false;

 break;

 }

 }

 } while (!done);

 if (done) {

 printf("FAILED with MODULUS %d\n", modulus);

 }

 modulus--; // Try the next modulus value

 } while (modulus >= nstart);

 }

As shown in the source code above, the program is set to find all hash functions
where the coefficient is either 0 or 1. These functions are a useful special case, as
no multiplications are actually needed (all the characters with a 1 coefficient are
simply added). When the program is run as shown on the ANSI C keywords as
inputs, the best hash function it produces has modulus 134 (i.e., hash table size 134)
and the following coefficients:

 NO COLLISION: 1 0 1 1 1 1 1 0 0 0 , MODULUS = 134

This information can be coded up into a simple perfect hash function.
Unfortunately, the memset and strncpy calls are necessary to ensure that characters
beyond the end of the string are considered zero, as is assumed by the hash function
generator.

 int computer_hash(char* s)

 {

 char s2[10];

 memset(s2, 0, 7); // zero the first 7 letters

 strncpy(s2, s, 7); // copy up to 7 letters

 return ((int)s[0] + (int)s[2] + (int)s[3]

 + (int)s[4] + (int)s[5] + (int)s[6]) % 134;

 }

David Spuler 272

This is not a minimal perfect hash function for these 32 keys. If the records to be
stored with these keys are quite large, the space wastage of 134 hash table entries
may be too large. A simple method of overcoming this is to add an array of 134
small integers (i.e., using the char type), where each entry in this array sets each C
keyword to a unique value in the range 0..31. On the other hand, this may be a de-
optimization as a sparse hash table can be more efficient than a minimal perfect
hash function. If the table is large, it becomes likely that an unsuccessful search will
map to a location containing a null pointer entry, and this avoids the need for the
key comparison.

Perfect Final Thoughts

These computations we found here are not minimal perfect hash functions. If the
stars align, you can sometimes find a mapping that works with the hash table size
exactly equal to the number of keys. It might take a lot of CPU juice to find one,
though. Good luck with that!

All of the hash functions in this section (both human and computer-generated) have
multiple limitations, such as:

• ASCII-specific — not portable to the EBCDIC set or other character sets.

• Little endian — I haven’t checked portability to big endian machines.

Finally, if you’d rather use a tool for perfect hashing than have as much fun as I just
did, you can use the GNU gperf tool, which is a perfect hash function generator.
GNU gperf will output the perfect hash function in C++ for you, and is highly
customizable.

Extensions

1. Generalize the perfect hash functions to use parallel arithmetic in the hash
function computation, such as AVX or ARM Neon SIMD instructions on
a CPU or GPU kernel calculations.

2. Parallelize the search for a perfect hash function on either a CPU (e.g.,
AVX or ARM Neon functions) or on a GPU (e.g., in CUDA C++).

3. Implement multiple perfect hash functions on the same set of keys to get
a Bloom filter data structure, where the string comparison can be omitted
during lookup.

4. Try out the GNU gperf tool for one of the data sets.

273 Efficient Modern C++ Data Structures

20. Memory Pool Optimizations

What are Memory Pools?

Memory pools are a C++ optimization where you take control of the memory
allocation used for a class of objects. The basic idea is to store all objects of the
same type in a big array, next to each other, rather than being spread out over the
heap wherever the new operator decides to put them.

Memory pools are a general optimization that can be used in C++ with
the new operator, and also in C with malloc. Related data structures include:

• Bucket array

• Hive

A bucket array is like a memory pool, in that it’s a big memory block, and you put
your objects in there. However, a bucket array usually handles erasing an object by
simply marking it as invalid using a Boolean flag. The memory for an erased object
is not usually re-used when you insert a new object.

A hive is a generalization of a bucket array, whereby a hive can dynamically expand
and contract the number of buckets. Notably, there’s a std::hive class to use in
C++26, which would make a good basis for an advanced type of memory pool.
However, we’re going to examine some of the simpler types of memory pools first.

Why Memory Pools?

Other than being a fun and gritty project in low-level C++ coding, the goal is speed,
and this is achieved in various ways:

• Preallocation — no need to allocate memory on a low-latency hotpath.

• Fewer allocation calls — one big chunk rather than lots of small ones.

• Fewer deallocation calls — reusing memory addresses within the pool.

• No memory fragmentation —don’t mix small and large allocations.

• Less memory overhead — hidden “control blocks” are not needed.

• Cache locality — all objects are stored contiguously.

David Spuler 274

In fact, you can even get the number of memory allocations for your class down to
zero, if you really want to, by using a global memory pool object. Even the memory
pool is not on the heap! But this only works for a fixed-size memory pool, and thus,
only if you’re really sure you won’t need too many objects.

Memory fragmentation is also a slowdown that can be avoided or reduced with
memory pools. The problems with fragmentation arise in two ways:

• Frequent allocations and de-allocations, and

• Different-sized memory blocks.

A memory pool is helpful in both respects. The memory pool avoids lots of
allocations by using one big block, and avoids deallocations by re-using the
locations inside the block. And because the memory block stores lots of blocks of
the same size, we aren’t mixing up different size allocations.

Disadvantages of Memory Pools

Firstly, this whole idea of memory pools is only about reducing allocated memory
on the heap. This optimization is not relevant for objects stored on the stack (i.e.,
local variables), or static objects, such as global scope objects or static data
members.

The other disadvantages of memory pools include:

• Fixed maximum number of objects (in the basic versions).

• Only works for single-sized objects (e.g., one class).

• Need one memory pool object for each type of object (via templating).

• Not useful for optimizing variable-sized objects (e.g., strings).

• Allocating too much memory in one massive chunk.

However, we can work around a lot of these disadvantages by using a templated
class for our memory pool. The optimization of memory pools is a general
algorithm that works for all types of objects.

Memory Control Block Overhead

Whenever you allocate memory on the heap, using the new operator or the old-
style malloc function, it returns you the address of the block. But that’s not actually
the start of the real memory block.

275 Efficient Modern C++ Data Structures

There’s actually an extra memory control block stored before that address. It
contains meta-information about the memory block, which is used by the C++
standard library to keep track of things. For example, the size of the memory block
is stored in that control block.

Whenever you deallocate a memory block by sending the address to delete or
the free function, the standard library knows to look backwards a few bytes.
Hence, it can find the size of the memory block, which helps it to deallocate the
full block of memory. You don’t need to worry about it, because the standard library
takes care of it.

Hence, if you create a memory pool from one big chunk to contain 100 objects,
rather than 100 separate calls to the new operator, there are 99 fewer memory
control blocks. This is why memory pools reduce the memory overhead from your
objects.

Fixed-Size Memory Pool Algorithms

For simplicity, we’re going to limit our first memory pools to just one huge block
of memory. This means that we can choose the overall capacity of the memory
pool, but we can’t increase it later by adding a second big block. This makes our
memory pool more like a vector or array, rather than a dynamic bucket array or
hive.

Even with these restrictions, there are still quite a few choices to make about
designing our memory pool algorithm. Some of the alternatives include:

• Boolean flag — storing an “active” flag in each object.

• Index array — maintaining a list of indices of free blocks as a “free list”
(instead of a per-object flag).

• Pointer array — tracking the free list via pointers.

• Permutation-based free list approach.

In the first case, we only have one array, and each block contains the “active” flag
along with the stored user objects. In the other cases, we maintain two arrays, one
of the user’s objects, and another as the free list (with either indices, pointers, or
permutations).

David Spuler 276

Boolean Flag Memory Pool

This is the simplest approach, but not the fastest. Let’s examine it to get some of
the basic ideas.

Some of the interesting features of this code include:

• Boolean flag — stored as a data member in every memory pool record.

• Pointer arithmetic — used in computing the offset when erasing an object.

• Incremental count — increment on allocation, decrement on release.

• Compile-time size —the simpler std::array not std::vector.

Here’s the basic layout of the memory pool class.

 template<typename T, int N>

 class MemoryPool {

 struct Node {

 T data;

 bool active;

 };

 private:

 std::array<Node, N> arr_;

 int nextfree_;

 int ct_;

 // ...

 };

The constructor has to set all the “active” flags (although using memset would
be faster than a loop):

 MemoryPool() : arr_(), nextfree_(0), ct_(0) {

 for (int i = 0; i < N; i++) arr_[i].active = false;

 }

The code maintains the index of the “next free” object. Initially, it’s increasing as
the first blocks get used, but later it’s necessary to scan linearly.

 int find_next_free(int offset) {

 if (offset == -1) offset = 0;

 int i = offset;

 do {

 if (!arr_[i].active) return i; // Found

 i = (i + 1) % N;

 } while (i != offset);

 return -1; // It’s full!

 }

277 Efficient Modern C++ Data Structures

Here’s the code for the allocation of a memory pool block:

 T* alloc() {

 if (full()) return nullptr; // fail!

 assert(nextfree_ != -1);

 int oldindex = nextfree_;

 arr_[oldindex].active = true; // Not free

 nextfree_ = find_next_free(nextfree_);

 ct_++; // Incremental count

 return reinterpret_cast<T*>(&arr_[oldindex]);

 }

And here’s the code whereby a block is released by the caller. Note that the index
computation requires pointers converted to the correct type. This code has some
safety checks that are quite expensive, and might later be removed for production
usage.

 void erase(T* addr) {

 assert(ct_ >= 0);

 Node* nptr = reinterpret_cast<Node*>(addr);

 if (nptr >= reinterpret_cast<Node*>(&arr_[0])

 && nptr <= reinterpret_cast<Node*>(&arr_[N - 1])

) {

 // Valid pointer...

 int offset = nptr - &arr_[0]; // Ptr arith

 assert(nptr->active);

 nptr->active = false; // Free now

 ct_--; // Incremental count

 if (nextfree_ == -1) { // Was full?

 nextfree_ = offset;

 }

 }

 else { // Invalid pointer...

 assert(false);

 }

 }

Constructor inefficiency. This implementation has a high-level slug if the
memory pool is instantiated for use with a non-trivial class type. The definition
of std::array will cause the constructors for every single object to run
needlessly on the empty storage bytes, when the memory pool is first created or
defined.

David Spuler 278

The solution here is simply to use bytes instead of the class type for the storage
declaration:

 struct Node {

 unsigned char data [sizeof(T)]; // Raw object

 bool active;

 };

But we also need to be careful of memory alignment in this situation. The template
could be instantiated on any type, some of which will need aligned addresses.
Character addresses won’t get automatically aligned, so we have to
use alignas specifier. However, it’s hard to fix in this implementation, because I
cannot use alignas(alignof(T)). The extra “active” flag in the structure is
messing everything up. But that’s only one disadvantage of this method.

Disadvantages of Boolean Flag Method

The first point to remember is that this memory pool is a significant optimization.
It achieves all the advantages of a memory pool as outlined above: preallocation,
fewer allocations and deallocations, less memory fragmentation, and so on. Hence,
it’s a good start, and a worthy improvement to our classes.

We could stop now, and go home with a smile on our face.

However, it’s not optimal. There are even better ways to code up a memory pool.
The suboptimal features of this version of a memory pool include:

• Mixing hot and cold data

• Alignment issues for some types

• Extra padding bytes needed

• Slow insertions

One problem with the above approach is that it mixes “hot” and “cold” data. Your
objects are probably hot areas of processing that are doing whatever you need. The
Boolean flags are only used by the memory pool when inserting and deleting
objects, and are thus cold data for the main processing algorithms. It would be
better for cache locality if the cold data was separated from our hot objects.

Memory size is also not optimal. By adding a single Boolean variable to each object,
it’s not just 1 byte extra, because the compiler probably has to add a number of
padding bytes to meet the alignment requirements (depending on what’s inside your
objects).

279 Efficient Modern C++ Data Structures

This will increase the memory size, and worsen cache locality when processing
multiple objects.

However, the main problem with the Boolean flag approach is that it’s slow. In fact,
it has worst case O(n) performance for an insertion, because it might have to scan
the entire array to find a free block. This worst case won’t happen initially, but the
performance can degrade as the memory pool fills up, and we do lots of insertions
and deletions.

We can do better!

Boolean Flag Array Method

One way that we can address some of these issues is by separating all of the Boolean
“active” flags into a different array. Rather than storing a flag in each object, we
just store the user’s object in the main block, and have a second block that contains
the Boolean flags.

The advantages are that it fixes the hot-cold data problem, addresses alignment
concerns, and the compiler won’t need to add extra padding to the array of user
objects. The array of Boolean flags should be one byte per object, but stored in a
different array.

Firstly, we move the “active” flag out of the structures:

 struct Node {

 unsigned char data[sizeof(T)]; // Raw object

 };

And put it into a separate array:

 bool activearr_[N];

The handful of places that used the “active” flag need to be changed to the
“activearr_” array member.

We can also fix the alignment issues using the alignas and alignof specifiers:

 alignas(alignof(T)) std::array<Node, N> arr_;

David Spuler 280

Bit packing. This active flag array method can be further improved by using bit
packing. We only need one bit flag per object, rather than one byte each. Hence,
we can pack them all into an array of 64-bit unsigned long, and can check for
a free block using one integer comparison, testing 64 memory blocks at a time.

In practice, this version is pretty fast. Even so, it is technically still an O(n) worst
case algorithm for insertion or deletion with large numbers of objects. And there
are a few ways to fix that.

Index Array Memory Pool

The faster solution is to maintain an array of integer indices for the free locations.
The advantages of this index array approach over the earlier “active” flag method
include:

• Insertion and deletion always have O(1) complexity.

• Separates hot data from cold data.

• No extra padding bytes needed.

Here’s the basic definition of the class:

 template<typename T, int N>

 class IndexMemoryPool {

 struct Node {

 unsigned char data[sizeof(T)]; // Raw object

 };

 private:

 alignas(alignof(T)) std::array<Node, N> arr_;

 int freelist_[N]; // array free (stack-like)

 int ct_;

 int ctfree_;

 // ...

 };

Some of the basic primitives are simple:

 bool empty() { return ct_ == 0; }

 bool full() { return ct_ == N; }

 int capacity() { return N; }

 int count() { return ct_; }

 int count_free() { return ctfree_; }

281 Efficient Modern C++ Data Structures

The index array is a “free list” that tells us where to find a free memory block. After
a lot of insertions and deletions, if functions a lot like a stack of free locations. At
the start, it’s a fixed-size stack that’s full with the index of every element available.

 IndexMemoryPool() : arr_(), ct_(0), ctfree_(N) {

 for (int i = 0; i < N; i++) {

 freelist_[i] = i; // Store all indexes

 }

 }

When we allocate a new block, that’s a “pop” of the stack, because we’re removing
from the free list:

 int pop_free_index()

 {

 assert(ctfree_ > 0);

 int index = freelist_[ctfree_ - 1];

 assert(index != -1);

 freelist_[ctfree_ - 1] = -1; // Clear it

 ctfree_--;

 return index;

 }

The allocation of a block is mostly a call to this “pop” of the free list:

 T* alloc() {

 if (full()) return nullptr; // fail!

 int index = pop_free_index();

 assert(index != -1);

 ct_++; // Incremental count

 return reinterpret_cast<T*>(&arr_[index]);

 }

And the reverse is true when the caller releases a memory block. This is a push of
a newly free index onto the stack.

 void push_free_index(int index)

 {

 assert(ctfree_ < N);

 freelist_[ctfree_] = index;

 ctfree_++;

 }

David Spuler 282

And here’s the version to release the memory:

 void erase(T* addr) {

 assert(ct_ >= 0);

 Node* nptr = reinterpret_cast<Node*>(addr);

 if (nptr >= reinterpret_cast<Node*>(&arr_[0])

 && nptr <= reinterpret_cast<Node*>(&arr_[N - 1])

) {

 // Valid pointer...

 int offset = nptr - &arr_[0];

 push_free_index(offset);

 ct_--; // Incremental count

 }

 else { // Invalid pointer...

 assert(false);

 }

 }

In summary, both push and pop of the free list stack are very efficient with O(1)
complexity. Everything in this index array version has constant-time efficiency.

Memory Pools Versus Containers

Why do you need a memory pool? Why not just use the standard C++ containers
for your objects? Isn’t a memory pool about the same as std::vector?

Yes and no.

Yes, a memory pool for your objects is very similar to managing them all in a
standard vector. After all, the memory pool code can use a std::vector object
inside it as the big pool. So, yes, you can manage your objects in a standard vector
if you:

• Use a single reserve or resize call to allow the vector memory in one
call.

• Keep track of objects going in and out of the vector.

In other words, it’s almost the same thing as writing a memory pool, except it’s
mixed in the middle of your application’s main logic.

283 Efficient Modern C++ Data Structures

Hence, no, it’s not quite the same thing. There are two types of containers:

• Contiguous storage containers — it’s very similar.

• Maps, sets, hash tables — memory management performance gains.

We’ll examine vectors and arrays in a minute, but first let’s look at the other
containers. There are two aspects to use normal memory allocation and storing your
objects in these advanced containers:

• Allocating memory for your objects — you’ve improved nothing (it’s one
allocation call per object).

• Extra container allocations — the container also needs memory allocation
and a memory pool doesn’t help with that.

But for the containers based on contiguous memory, the issue is less clear cut. The
standard containers based on contiguous storage include:

• std::vector

• std::array

• std::inplace_vector (C++26)

When you compare a memory pool to using a standard vector of your objects, there
is less gain to performance. However, creating a memory pool as a standalone class
has several practical advantages:

• Separate memory management optimizations from business logic.

• Ensures only a single (huge) memory allocation occurs (or only a few if it’s
dynamic).

• Callers of the interface or API don’t need to know about the memory
management aspects.

Creating a memory pool as a separate idiom is good for encapsulating the
performance optimization aspects of memory management. It encourages
modularity by isolating high-level business logic from low-level resource
management.

David Spuler 284

Advanced Memory Pools

Higher-level improvements to the memory pool interface are also possible. Most
of the discussion here has been about a memory pool for one type of class, with a
focus on reducing the number of distinct blocks requested on the heap. More
advanced memory allocators are well-known, and they offer a variety of generalized
performance optimizations:

• Thread safety (e.g., a single mutex or a lock-free version).

• Multiple object types supported in the memory pool.

• Dynamic size of objects allowed by allocating multiple large “pools” or
memory chunks.

• Downsizing the memory pool if fewer objects are required.

• Intercepting the class-specific new and delete operators.

• Placement new operator — does not really allocate memory!

• Custom allocators — memory pools via allocator functor objects.

Even more general than memory pools is the concept of “custom allocators.” The
idea with custom allocators is not just to enhance the memory handling of a few
classes, but to take over the whole memory allocation shemozzle from the standard
library.

Extensions

1. Build your own simple memory pool templated class.
2. Add a memory pool to your object class by overloading a set of class-

specific new and delete operators, sending these requests to the
memory pool instead.

3. Code up multiple types of memory pools and measure their performance.
4. Generalize your memory pool class to dynamically manage multiple big

chunks of memory, rather than just one.
5. Implement an advanced dynamic memory pool using the new advanced

container std::hive (C++26) as the underlying data structure, rather
than a vector or array.

285 Efficient Modern C++ Data Structures

21. Fast Ring Buffers

What is a Ring Buffer?

A ring buffer is an array-like data structure where the data moves around in a “ring”
so that the end wraps around to the beginning. It’s also known as a “circular buffer”
and is often what is meant when people talk about a “fixed-size queue.”

A ring buffer is stored in a single array or vector of contiguous data, but is not
accessed in the same idiom. The data is processed in a FIFO (First-In-First-Out)
idiom, where items are added to the “tail” of the queue, and removed from the
“head” for processing.

Hence, a ring buffer is a good data structure for implementing a fixed-size queue
or dequeue (double-ended queue).

Some of the main design decisions when implementing a ring buffer involve error
handling:

• Overflow — inserting into a full buffer

• Underflow — removing from an empty buffer

Should the ring buffer throw an exception, or just return a Boolean failure status to
the caller?

Simple Ring Buffer

A basic ring buffer data structure has three main elements:

• Array or vector of objects (fixed-size)

• Head index (integer)

• Tail index (integer)

David Spuler 286

Here’s some code using std::array for a ring buffer:

 template<typename T, int sz>

 class RingBuffer {

 private:

 std::array<T, sz> arr; // Fixed-size array

 int head;

 int tail;

 //

 };

New objects are inserted at the tail, and retrieved for processing from the head. In
a typical implementation, the progression goes from left to write, using a “+1” idea
for the next location. Technically, the ring buffer data could be handled in reverse
order, but the forward progression around the ring is simpler and allows marginally
more efficient arithmetic because there are no negatives to handle.

Thus, the basic primitives needed by a ring buffer:

• Insert at the tail

• Remove at the head

Here’s the basic insertion method:

 bool push(const T& x) {

 int newtail = (tail + 1) % sz;

 if (newtail == head) {

 // Overflow (full)

 return false;

 }

 tail = newtail;

 arr[tail] = x;

 return true; // success

 }

And here’s the “top” method for an interface that allows “top” to access, and “pop”
to remove:

 T top() {

 if (is_empty()) {

 // Underflow

 return T(0);

 }

 return arr[head];

 }

287 Efficient Modern C++ Data Structures

The “pop” method actually removes the item from the ring buffer:

 void pop() { // Just remove (no return)

 if (is_empty()) {

 // Throw exception? (optional)

 return;

 }

 else {

 head = (head + 1) % sz;

 }

 }

And there are also various simple primitives:

• Capacity — the fixed-size of buffer.

• Empty — zero elements

• Full — fixed-size array is full.

The code is reasonably simple:

 int capacity() const { return sz; }

 bool is_empty() const { return head == tail; }

 bool is_full() const { return (tail+1) % sz == head;}

Pros and Cons of Ring Buffers

The main advantage of a ring buffer is that it has contiguous data. This means that
our fixed-size queue should be faster to access than one stored as a linked list
using std::queue.

The main disadvantage of a ring buffer is that it has a fixed size,
unlike std::queue, which grows dynamically.

This ring buffer size doesn’t necessarily need to be known at compile-time, but does
need to be set when you initialize the ring buffer. There are also more advanced
types of ring buffers which use multiple arrays, which can be dynamically grown in
size.

The other disadvantages are that the ring buffer is very specific to a FIFO access
pattern.

David Spuler 288

It’s not a fast data structure for these operations:

• Searching for a value

• Sorting data

• Inserting at a random location (rather than the tail)

• Deleting from a random location (rather than the head)

Insertions and deletions are slow because they require a “shuffle” of all objects.
Note that there’s an interesting wrinkle: we could make insertion and deletions fast
if we don’t mind violating the FIFO ordering and moving objects around
(invalidating any pointers or iterators referencing them). The idea is that the ring
buffer becomes like an unsorted array (with wraparound):

• Fast random insertion — move the current element at the insertion
location to a free location at the end of the ring buffer, then insert.

• Fast random deletion — move the last element to the location we are
deleting from.

It’s not all bad news. The data in a ring buffer is mostly stored contiguously, so
there are some operations that still have good cache locality properties:

• Scanning or visiting all data elements

• Random access of data by integer index

A linear scan of all the elements can be quite fast, provided you don’t mind that it’s
unsorted (or rather, it’s sorted by order-of-insertion). The data elements are always
in one or two contiguous data blocks, which is better than dispersed data structures
like linked lists or binary trees. However, it’s not quite as fast as an array or vector
of objects, which is always one contiguous block.

Accessing one of the objects via an integer ordinal is still quite fast (i.e., 0...n-1).
Mainly, it’s just some integer arithmetic with head and tail to find its array offset in
the ring buffer.

Incremental Count Optimization

Computing the count of how many elements are currently inside the ring buffer is
somewhat tricky: In the above computations, we can compute the “count” of how
many elements are in the buffer using arithmetic on head and tail indices.

289 Efficient Modern C++ Data Structures

 int count() const {

 return (tail >= head)

 ? tail - head

 : sz - (head - tail);

 }

An alternative that can be faster, if the count() method is called often, is to
maintain an incremental count, and store it in the ring buffer. The idea is pretty
simple:

• Insertions — count++ (except if full)

• Deletions — count-- (except if empty)

• Count — just return the count variable.

Hence, the computations during insertion and deletion are only a single integer
increment or decrement, and the count() function becomes a simple getter of an
integer data member. In addition, the availability of a “count” variable actually
allows some optimizations to some of the other methods:

• empty() — test count==0

• full() — test count==capacity

These are much faster than the earlier versions using head and tail index arithmetic.
Hence, these efficiency gains may override the extra costs from incrementally
computing the count during object insertions and removals.

Avoiding Three Integers

If we use an incremental count optimization for the number of items in the ring
buffer, we end up with three integer values:

• Head

• Tail

• Count

It turns out that we don’t need all three, because they are inter-related numbers.

David Spuler 290

We can calculate the “tail” variable from the “head” and the “count” value.

 tail = (head + count) %sz;

There are actually some other numbers that are also related, which we could also
use. For example, the total number of insertions and deletions of objects is related
to the head and tail values, and the count is simply the difference between them.

Alternative Variable Pairs. It turns out that a ring buffer can be defined by any
two variables from a set of several related calculations. Some of the possible pairs
include:

• Head and tail

• Head and count

• Tail and count

Note that there are two main implementations of the initialization of head and tail
values. These yield implementations that differ by one in all calculations, so you
have to consistently choose between them:

• head = tail = 0

• head = 1, tail = 0

The meanings of head and tail differ slightly in these two variants. Hence, the inter-
relationship with the count is also different by one. Care must be taken to avoid
off-by-one errors!

Combining Two Variables. The optimization ideas above reduced our three
variables (head, tail, and count) down to two variables. Any pair of them will do,
since they are inter-related.

But what about reducing it to one variable? Having only one integer variable in our
ring buffer might be desirable because:

• Efficient single arithmetic operations.

• One integer value as an atomic for lock-free versions.

Can it be done?

The key point to note is that we really do need two distinct values. However, we
can put them together into a single integer with encoding and packing ideas.

291 Efficient Modern C++ Data Structures

For example, we could store the head as 16 bits and the count as 16 bits, and put
both in a 32-bit unsigned integer. Note that this limits the capacity of the ring buffer
to 2^16 which is 65,536. We could also pack them into a 64-bit unsigned
long where we needed more capacity.

Modulo Arithmetic Optimizations

The % operator for modulo arithmetic (or remainders) is one of the slowest
operations in C++. The typical code we want to optimize in a ring buffer or fixed-
size queue uses this idiom:

 head = (head + 1) % N;

Modulo arithmetic is based on division, which is also slow, even on integers. Hence,
our ring buffer can be improved by getting rid of the percent!

How? There are several options:

• Bitwise arithmetic

• Type casts

• Ternary operator

• Branchless coding

• Unsigned arithmetic

Bitwise-and trick. Firstly, if we choose the buffer size N, to be a power-of-two,
then we can use bitwise arithmetic. A remainder of a power-of-two is the bitwise-
and of the number one less.

These are equivalent:

 head = (head + 1) % 16; // Modulo

 head = (head + 1) & 15; // Bitwise-and

Validating power-of-two. One thing you might want is a safety net to ensure
nobody uses the ring buffer for a size that’s not a power-of-two. We want this:

 static_assert(is_power_of_two(N)); // How?

David Spuler 292

We can use the Kernighan bit trick:

 static_assert((N & (N-1)) == 0); // Kernighan

How does this work?

It’s just magic, and let’s forget about it. No, actually, the Kernighan trick is that
“N&(N-1)” clears the value of the rightmost bit of a number. Hence, if the number
without the rightmost bit equals zero, then there’s only one bit set in the number.
And the set of numbers with only one bit set: powers of two.

Note that lots of parentheses are necessary around the bitwise operator to avoid an
operator precedence glitch. Also note that the Kernigan trick fails with a false
positive if N is zero or negative, so we should add some more safety checks at
compile-time:

 static_assert(N > 0);

Type casts. The use of bitwise-and is limited to powers of two, which is annoying,
but there’s an even more specific way to do this for some of them: type casts. If we
can choose the size as 256 (8-bits) or 65,536 (16=bits), we can do this:

 head = (unsigned char)(head + 1); // 8-bits

 head = (unsigned short)(head + 1); // 16-bits

Note that type casts are often effectively free after C++ does its optimization thing.
The register allocation algorithm can just choose to use a value in a different way,
and propagate that forward to other arithmetic. Thus, a type cast operation may
result in zero runtime instructions.

Ternary operator. But why are we using arithmetic in general, when there’s actually
only one case where we want to reset the value. Another way is to use the ternary
operator instead of arithmetic. The calculation becomes:

 head = (head + 1 == N) ? 0 : head + 1;

We can also implement this logic in two instructions, which is worth a try:

 head++;

 if (head == N) head = 0;

293 Efficient Modern C++ Data Structures

Or if you like short-circuiting operators, you can do this:

 (++head) == N && (head = 0);

The compiler probably treats that the same, but you never know, and you might
want to check the assembly output (e.g., using “gcc -S”).

Branchless coding tricks. Another trick is to notice that we just want to zero the
value in one specific case. Hence, we can use the branchless coding trick of using
logical operators as 0 or 1 integers. The goal of branchless coding is to remove all
control flow branches, so that the CPU’s branch prediction logic can run fast. Note
that the ternary operator is actually like an if statement, and it has two branches.
The branchless version with only fixed arithmetic is:

 head = (head + 1) * (head + 1 != N); // Branchless

The way this works is to multiple the value by 0 or 1, depending on the logical test.
Again, we can also try this as two statements:

 head++;

 head *= (head != N); // Branchless

Note that I doubt the branchless versions are very efficient, because they’ve added
a multiplication operation. The ternary operator version is likely better, and isn’t
that bad despite its branches, if you look at the assembly. Most compilers will
convert it to a single CMOV (conditional move) CPU instruction, which makes it
effectively branchless, too.

Unsigned arithmetic. One final trick is to note that we have modulo arithmetic
for free in the CPU: unsigned integer arithmetic. Overflow of unsigned integers is
not an exception in C++ and when you think about it, implements the exact
semantics of modulo arithmetic. Hence, here’s the idea:

 unsigned char head;

 ...

 head++;

It works! And there’s not a single percent operator anywhere! All this time and we
had cheap modulo arithmetic hiding in plain sight.

We really need to time this, because it isn’t 100% guaranteed to be faster. A lot of
the uses of head will involve converting it from unsigned char to an integer
offset, such as array indexing in the vector of objects that makes up the ring buffer.

David Spuler 294

A variation of this idea would be to store the head and tail as integers or unsigned
integers, so that they can be used as the fastest type of normal integer, but still use
unsigned arithmetic overflow tricks for modulo arithmetic. This is the idea for an
N=256 size ring buffer:

 int head;

 ((unsigned char*)&head)++;

This relies on the platform being “little endian” with the lowest-order byte stored
on the left, which is true in most modern CPUs (but not if you’re sending integers
over the network in “network byte order”). And, yes, you got me, I really should
use reinterpret_cast here rather than the old C-style type cast.

Obviously, these tricks of using head and tail as unsigned integers only work for
a limited set of sizes:

• N=256 — unsigned char (8-bits)

• N=65,536 — unsigned short (16-bits)

• N=4.7 billion — unsigned int (32-bits)

We can even do decrement and negative calculations this way, since underflow is
also not an exception, whereas the % operator and negatives don’t talk to each other
at parties.

Move Semantics

If our ring buffer contains complex objects, there are many more considerations
for making it efficient. One of the biggest inefficiencies in a ring buffer class is
inserting and deleting any non-trivial objects. If we do it wrong, we’re calling copy
assignment operators and copy constructors to make new objects in the array, and
running the destructor when we release an object.

Move semantics to the rescue!

The first point to note is that it doesn’t matter for simple data types in our ring
buffer. Any scalar values like integers or floating-point numbers don’t have any
copy constructors or destructors to worry about. In fact, this is also true of simple
structures and classes, so long as they are “plain-old data” or POD data types.

But anything more complicated than this will have costly calls to copy constructors
and copy assignment operators.

295 Efficient Modern C++ Data Structures

To optimize this, we need to talk about:

• Move constructor and move assignment operator

• R-value references

• Copy elision

• Return Value Optimization (RVO)

But these are covered in the separate chapter on move semantics, where there is an
explanation of the theory of move semantics.

In practice, the problems arise in both our “push” and “top” versions. The “pop”
routine causes a copy assignment operator invocation:

 bool push(const T& x) {

 //

 arr[tail] = x; // Copy assignment

 return true; // success

 }

And the “top” member has the problem of returning an object type, which will use
a copy constructor call at the return statement.

 T top() {

 // ...

 return arr[head]; // Copy constructor

 }

The automatic compiler optimization of “copy elision” might help improve the
performance of the “top” method. Returning an object is exactly the situation it’s
meant for. However, we can use move semantics explicitly to ensure it’s improved:

 bool pop_top_move(T& outobj) {

 if (is_empty()) { return false; }

 ct_incremental--;

 int oldhead = head;

 head = (head + 1) % sz;

 outobj = std::move(arr[oldhead]); // Move asst

 return true; // success

 }

Note that std::move() is a compile-time type-cast here, without any runtime
cost. And it’s required to convert to an R-value reference, as otherwise the
assignment statement would still call a copy assignment operator.

David Spuler 296

Constructor Problems

One of the performance problems with our ring buffer implementation is
that std::array calls the constructor for every object whenever a new ring
buffer object is defined or created. This occurs with this use of std::array for our
ring buffer:

 std::array<T, sz> arr; // Fixed-size array

How to avoid these constructor calls? After all, our ring buffer is supposedly empty
with zero objects initially. Some of the solutions that don’t work and will still call
constructors:

• Raw arrays

• Pointer to std::array

Using a raw array like this will still call all the constructors when our ring buffer is
created:

 T arr[sz];

Similarly, we could use an allocated copy of std::array, since it’s really an object
not an array. It works like this:

 std::array<typename T,sz> * arrptr;

 arrptr = new std::array<T,sz>; // in constructor

This allocates our big array in the constructor rather than as a non-allocated data
member. This adds an extra inefficiency from the extra allocated block, and doesn’t
work anyway. The new operator will still run all the individual object constructors.

What about using std::vector instead?

297 Efficient Modern C++ Data Structures

Standard Vector Problems

Using std::vector can be better than std::array, because it delays both its
memory allocation and its construction of objects,

 std::vector arr<T>;

Unfortunately, I’m not a big fan of this approach, because it has other difficulties:

• Extra memory allocation call (inefficient).

• Bounds checking failures in debug libraries.

The first point is that resize() has the same problem with too many constructor
calls. Doing this in the constructor will still call all the constructors:

 arr.resize(sz); // Constructors!

So, maybe we can call the reserve() function instead of resize(). That won’t
call constructors:

 std::vector arr<T>;

 //

 arr.reserve(sz); // No constructors!

This has hopefully allocated the memory for all the objects, without running their
constructors. But this can run into various problems when we try to use the vector
elements. The problem is on this type of statement in our push method:

 arr[tail] = x;

And the same problem still occurs with our code that gets items out of the ring
buffer. Note that the issue is not move semantics, because this has the same issue:

 outobj = std::move(arr[oldhead]); // Move assignment

The issue is bounds checking on the [] operator for std::vector. In theory, the
reserve() function has allocated valid memory for enough objects. However,
the size() function is still zero, so the runtime bounds checking will trigger on
any debug run of the code.

David Spuler 298

Yes, maybe some platforms this will work, with no bounds checking. But you can
run into portability problems. For example, it makes the code fail with spurious
runtime errors on any type of “hardened” standard C++ library.

Explicit Destructor Calls

Another problem with our ring buffer implementation when instantiated with class
types is destructor calls. Instead of too many constructor calls, we have too few
destructor calls. The problems include:

• Destructor calls missed after move assignments (e.g., popping).

• Destructor calls on destroying the whole ring buffer.

One solution: don’t bother. If the object that’s used in a ring buffer doesn’t have
important destructor actions after a move (and it shouldn’t), or if destroying the
whole ring buffer is in the shutdown sequence of the application, then you can
maybe just forget about this problem.

Another solution is to explicitly call the destructor ourselves. You can call the
destructor of a class like any other member function using the ~T() syntax. For
example, in the pop function, we can do:

 arr[head].~T(); // Explicit destructor

Basic types don’t need destructor calls, so we ideally want to distinguish trivial types
from fancy class objects. We can also use type traits to do this, which are
wonderfully efficient compile-time operators during instantiation of the template.

 if (!std::is_trivially_destructible<T>::value) {

 arr[head].~T(); // Explicit destructor

 }

The alternative is to note that trivial types have no-op destructors, and the compiler
would remove them anyway. Hence, the above type trait test may be unnecessary,
but it’s a fast compile-time test anyway, so either way is fine.

Note that we are assuming here that the class being used has a destructor that works
properly after an object has been moved away. In other words, it doesn’t do
something silly like assuming a pointer in the object is non-null. The move
assignment operator also needs to properly clear all the non-trivial data members,
such as pointers, to zero or null values, so that the destructor doesn’t access bad
memory after a move.

299 Efficient Modern C++ Data Structures

Class Interface Bypass

There are a couple ways to bypass the class interfaces, and thereby avoid the
inefficiencies of construction and destruction. This makes the caller of our ring
buffer manage when the objects are created and destroyed. The main ways are:

• Blocking non-trivial types

• Raw character buffer arrays

• Pointers to objects

Trivial types only. We can make our ring buffer, or other home-grown containers,
faster simply by disallowing their use with complex objects. We can efficiently
trigger compiler warnings with the type trails, so that users of the template know to
only use scalars or other POD types. Here’s some examples using the various
different settings:

 static_assert(std::is_pod<T>::value); // Plain-Old Data

 static_assert(std::is_trivial<T>::value); // Trivial type

Raw character-array memory buffers. The idea is to use a character array as a
raw buffer, rather than std::array or std::vector, for our container class
(e.g., our ring buffer). To bypass class constructions by using raw memory buffers,
we have choices like:

 char arr[sizeof(T) * sz]; // Static data member

 char *arr = new char[sizeof(T)*sz]; // Dynamic alloc

This raw byte idea is workable, but every use of the array has to involve index
calculations and type casts to object-type pointers. It’s fiddly and annoying, but it’s
faster, because it avoids constructor calls, and doesn’t need all the extra messing
around to avoid std::vector bounds checking. There are also concerns with:

• Uninitialized bytes in the buffer

• Alignment of addresses

We really should also initialize the bytes in our array buffer to all nulls in the
constructor using memset on the whole array. To do this, we also need to make
sure that all the classes using the ring buffer have properties like:

• All-bytes-null is a stable but invalid initial status of the object.

• Destructor doesn’t fail on an all-bytes-null object.

David Spuler 300

We also need to manually take care of alignment of the addresses, since the compiler
thinks we only have characters, which don’t have alignment issues. There’s
the alignas standard specifier and various non-standard implementations for
older language versions.

If we’re really careful, maybe the initialization is not needed and we can leave out
the memset call in the constructor. There’s some new “uninitialized memory”
primitives coming in C++26 that may also help to do so. You can maybe avoid
needing the null byte initialization, but I’m betting against you when I
run valgrind on your code.

Pointers. As much as I admire the design of move semantics, there is a simpler
way to avoid the overhead of objects moving in and out of our ring buffer. Old-
school coding still works: store pointers to the objects in the ring buffer instead of
full objects. The upside is avoidance of object copying and moving overhead.

The downside of pointers is the extra level of indirection, and double hit to memory
with poor cache locality because of that. And pointers have a few pitfalls with a bad
reputation as being unsafe, but I’m sure you’ve heard that before.

Extensions

1. Implement a reverse ring buffer that uses decremented indices for head
and tail, rather than addition, so that it grows from right-to-left instead of
left-to-write.

2. Implement a dequeue in a ring buffer by adding “insert-at-head” and
“remove-from-tail” operations for the ring buffer (rather than the normal
insert-at-tail and remove-from-head idiom). The trick is we’ll need to
subtract one from indices and go in reverse.

3. Implement a ring buffer with initialization of “head=1” and “tail=0”
(rather than “head=tail=0”). All calculations will differ by one, such as the
“empty” calculations is not “head==tail” anymore.

4. Implement a ring buffer using two full-size integers that count the number
of insertions and deletions. Note: the relationship between head and tail
versus insertions and deletions is not that difficult!

301 Efficient Modern C++ Data Structures

22. AI Data Structures

AI Engine Overview

The main data structures used in AI engines are vectors, matrices, and tensors.
Examples of how these are used:

• Vectors (1-D arrays): The input sequence of words is converted to a vector
of tokens. Each token is processed to create an embedding vector.

• Matrices (2-D arrays): The weights and activations are stored in matrices.
Applying a set of weights to an embedding vector (which is a vector with
probabilities) is a matrix multiplication of the weight matrix over the
vector, creating a new vector that has updated probabilities (with amazing
intelligence added).

• Tensors (3-D arrays): Every “slice” of a 3-D tensor is a 2-D matrix.
Because there are so many 2-dimensional matrix multiplications happening
in AI engines, it can be efficient to generalize this procedure into 3-
dimensional tensors. It is very mind-bending to try to understand what’s
happening, but at its core, it’s basically just doing a lot of 2-D matrix
multiplications, where the 3-D structure of tensors allows for some fancy
parallelizations.

Okay, we’re done. There’s more on vectors and matrices in Chapters 15 and 18,
and that’s all you need to know about data structures for AI. You can stop reading
this chapter.

I’m only half kidding, because AI inference and training does a whole lot of vector
and matrix operations (using tensors), and not a whole lot of anything else. In fact,
I’m struggling to think of where in an AI engine there’s even one hash table. Ah,
yes, there’s probably a small hash table in the tokenizer that maps 50,000 words to
token numbers, but there doesn’t need to be, because you could implement your
tokenizer as an automaton, and that’s more of an algorithm than a data structure.

So, I’m going to say it out loud:

 You don’t need classic data structures in AI.

David Spuler 302

I think it’s fair to say that a plain vanilla Transformer needs a lot of fancy coding of
algorithms, but doesn’t need all those obscure data structures you learned in
Computer Science 101. You need maybe one hash table in the tokenizer, but then
its vectors, vectors, vectors (e.g., embeddings, dot product, probabilities) and
matrices, matrices, matrices (e.g., FFNs, attention heads, GEMM/MatMul kernels),
some weird statistical math functions (e.g., activation functions, normalization,
Softmax), and some AI-specific algorithms (e.g., decoding algorithms,
parallelization, vectorization, tiling).

I’m not seeing any binary trees.

Where the data structures come out to play is when you try to optimize any of that
tensor stuff to go faster. Then the roster of data structures looks like:

• Lookup tables. Precomputed arrays are used to optimize activation
functions, Softmax, and other mathematical methods. If you work in AI
research for long enough, you’ll call it a LUT, and it’s your go-to data
structure for speedups (and not in the Edsger Dijkstra sense).

• Permutation arrays. Used to sort data without losing track of the indices
(e.g., for mappings between word tokens and their probabilities) and also
important for sparse matrices.

• Bit vectors. Can be a fast way to do masks, or to mark some items as
pruned.

• Locality-sensitive hashing (LSH). This is “vector hashing.” Can be useful
for optimizing weights and tracking previously seen inputs.

• KV Caching. This is a widely used optimization that needs a specific hand-
coded data structure.

• Inference caching. This overall cache of user input strings can potentially
be done using many data structures. Probably not a binary tree, though.

• Bloom filters. These are a probabilistic combination of hashing and bit
vectors. I’ve only seen these in research papers, although they look fast to
me, and deserve more consideration.

The reason that classic data structures are missing from AI engines seems simple:
parallelization. It’s much easier to do parallel arithmetic on the contiguous memory
blocks that underly vectors, matrices, and tensors. Similarly, lookup tables,
permutation arrays, bit vectors, and vector hashing also have good vectorization
characteristics.

303 Efficient Modern C++ Data Structures

Bit Vectors

Bit vectors are conceptually an array of N bits with 0 or 1 values. The term “bit set”
is almost synonymous, but has a slightly different meaning. A bit vector maps a
number at the index position to its binary bit value, whereas a bit set specifies
whether a number is in a set of numbers. Both interpretations are valid, depending
mostly on the application, and the underlying implementation of the data structure
is almost identical.

In AI applications, a bit vector may represent a set of weights with 0 or 1 values,
such as with binary quantization or XNOR neural networks. The operation with
vector dot product on two bit vectors can be performed arithmetically using bitwise
arithmetic.

Sparsity optimizations are another application of bit vectors. Pruning can often
create “sparse” weight matrices, with lots of zeros and very few non-zero weights.
A bit vector can then efficiently represent whether a weight in a vector has a non-
zero value, which is then used to avoid doing any computations on zero values. An
alternative to bit vectors for sparsity is to use permutation arrays of indices, as
discussed further below.

Another application of bit vectors occurs in Bloom filter data structures, which are
a probabilistic hybrid of hash tables and bit vectors. In this usage, a bit set represents
whether an input number is found in the set of already-mapped numbers.

In practice, bit vectors or bit sets are often implemented as arrays of unsigned
integers, with the bits packed into each integer. If the underlying unsigned type is
32-bits or 64-bits, then many bitwise operations on bit vectors can be performed
32 or 64 bits at a time, achieving significant parallelism without using any form of
hardware acceleration beyond basic CPU instructions. Use of AVX SIMD
instructions can then further vectorize many operations without a GPU. But it
absolutely flies if you use a GPU with bit vectors or bit sets, because that’s two
levels of parallelization.

There are several pre-built C++ bit set classes that can be considered:

• std::bitset<N> (in <bitset>)

• std::vector<bool>

• boost::dynamic_bitset<>

If the maximum size of the bit vector is known at compile-time, which is often the
case with AI models, then std::bitset is a good choice.

David Spuler 304

If not, then std::vector<bool> or boost::dynamic_bitset<> are good
choices for dynamic-sized bit vectors. Alternatively, you can build your own bit
vectors, if there is a particular need to hand-code them or if you just want some
fun.

Permutation Arrays

Most of the vectors in AI engines are not just random lists of numbers. Rather, they
are (conceptually) an array of the probabilities of output words, where the position
in the vector indicates which word. So, if we have our logits array,
then logits[0] is the probability of “the” whereas logits[1] is the
probability for “cat”, and so on, up to about 50,000, which is a common
vocabulary size for LLMs.

Problems arise if we want to sort our probabilities in the logit array, and we need
this for our decoding top-k algorithm. We can’t just sort the vector of probability
numbers, because we’ll lose track of which probability maps to which token
number.

Permutation arrays to the rescue! A permutation array is an array that is the same
size as some other array, but maps to the indices of the other array. A permutation
array for our vocabulary has 50,000 integers, each of which is the index into other
arrays.

The downside of permutation arrays is that they introduce inefficiency in both space
and time. Space usage is increased by having two vectors. The time cost to access a
vector element increases, too. Rather than just looking up the probability for the
nth word in the logits array (i.e., “prob=logits[n]”), we have a two-step
procedure:

1. Look up the index in the nth element of the permutation array (i.e.,
“i=permut[n]”),

2. Use that index to look up the probabilities in the main logits array
(i.e., prob=logits[i]”).

So, it’s bigger and slower. Some rescue.

However, permutations can be valuable if it allows us to do much less arithmetic
overall, which is the case with “sparse” arrays where most elements are zero. This
is why permutation arrays are used for LLM sparsity optimizations, but not in
normal practice.

305 Efficient Modern C++ Data Structures

Sorting with a Permutation Array: The way to sort another array, indirectly via a
permutation array, is shown in detail for the top-k decoding algorithm in Chapter
18. The basic idea is:

1. Set up the identity permutation.

2. Sort using an indirect procedure: (a) compare elements in the main array
indirectly accessed via the permutation array, (b) swap the indices in the
permutation array (not changing the main array).

So, the original array doesn’t actually get sorted with only the permutation array
changing. If we want to print out the main array in a sorted list, we have to do so
via the permutation array. The original main array is still unsorted if we access it
directly.

Sparsity with Permutation Arrays. Sparsity is an optimization where most of the
weights have been “pruned” to zero, and only a small percentage remain non-zero.
This saves a lot of storage space for the model, and can also run much faster. The
basic vector dot product kernel only needs to calculate with non-zero weights, so
we want a way to avoid processing all of the many zero weights. Again, permutation
arrays are the solution!

Sparse vectors (or matrices or tensors) can be stored as parallel arrays of:

• Non-zero weights only

• Permuted integer index of that non-zero weight in the original vector

These two arrays are much shorter than the original vectors if there is high sparsity.
If sparsity is 90%, then 10% of numbers are non-zero, and the permutation
approach uses two arrays, so it is 20% of the original size. The cost of doing a sparse
dot product has reduced from the full length of the original vectors, down to the
average sparsity factor (i.e., how many non-zero values). In other words, the
number of multiplication computations goes down to 10% FLOPs, although there’s
the extra permutation calculation, so it’s might seem like it’s 20%, but we can often
hardware-accelerate the permutation array step in CPU or GPU architectures.
Hence, sparse vector dot products are fast. Calculation of the vector dot product
for AI inference need only multiply using the much smaller number of non-zero
weights.

Can we vectorize permuted arrays for hardware acceleration? Short answer: yes.

David Spuler 306

Permutations can be vectorized with hardware acceleration in both CPU and GPU
versions. The C++ AVX “gather” (load) and “scatter” (store) intrinsics work for
x86 CPUs. Different GPU primitives are available for permuted arrays.

Sparsity doesn’t really work without permutations. A raw full-size vector containing
lots of zeros doesn’t vectorize well, because it still sends all of those zeros for
processing. A permuted index of sparse values works much better because it only
considers non-zero values.

Vector Hashing

Vector hashing is needed in various parts of an AI engine as a speedup. There are
various AI research papers on using hashing for various computations involving
vectors and tensors of higher dimensions. Implementations of such algorithms are
available in open source and commercial “vector database” products that you can
use. Some of the applications for LLMs include inference caching, embeddings, and
RAG architectures.

But how do you hash a full-length vector? Or a matrix? It’s a complicated theoretical
area. One of the main techniques is Locality-Sensitive Hashing (LSH), which is
hashing to find vectors that are “close” in n-dimensional space.

One of the interesting research areas for vector hashing is total precomputation of
vector dot products. Think about precomputation of vector dot products in AI
inference. If you could hash the two vectors, then you could replace the main
bottleneck in AI inference with two hash lookups. Is there a way to efficiently
convert a vector dot product operation on two vectors into a hash lookup, thereby
avoiding all those multiplications? What about speedup of matrix multiplication by
hashing?

Remember that you can pre-compute anything about the weights before inference,
because they don’t change during inference. Hence, one of the vectors could
potentially be pre-hashed offline. Maybe you could even use some type of “perfect
hashing” for those vector hashes, if you’ve got a big enough compute budget. But
you can’t pre-hash both of the vectors or pre-compute the dot product, because
the other vectors are dynamically calculated along the way, dependent on user
inputs. This is being examined by advanced researchers, and is still a work in
progress.

307 Efficient Modern C++ Data Structures

Perfect Hashing

Perfect hashing aims to achieve collision-free O(1) hashing at runtime, by investing
a lot of offline compute budget to find an optimal hash function for a set of static
data. There are many possible hash functions, and some are better than others.
Perfect hashing tries to find an optimal hash function within the search space for
possible methods. Mostly, it’s by trial-and-error. Searching for a perfect hash
function typically uses a brute-force and computationally expensive method for
simply trying multiple hash functions and testing them for collisions.

Perfect hashing only works in the situation where all of the possible keys are known
in advance (i.e., static data). Interestingly, this is exactly the situation with AI model
vocabularies!

Hence, the idea of perfect hashing can be used to improve the performance of a
hash table in the tokenizer. The general concept is that different hash tables are
tested with various different meta-parameters (e.g., the hash table size, and
multipliers in the hashing function). So, you can test various different hash
functions against the 50,000 known tokens in the vocabulary, until you find a
“perfect” one where there are no clashes. Amusingly, this longstanding algorithmic
method sounds exactly like doing Neural Architecture Search (NAS) to find the
best AI model hyper-parameters.

Bloom Filters

Bloom filters are a probabilistic data structure based on a combination of hashing
and bit vectors. Multiple hash functions are computed for each key, and this is used
to set bitflags, as described in more detail below. Bloom filters are mentioned in
various research papers on AI, but are not yet used much in industrial AI
applications. Perhaps they should be, as they seem very efficient.

Like hashing, Bloom filters have been used as a data structure to speed up neural
network inference. However, much of the research literature about Bloom filters is
about a different topic: Weightless Neural Networks (WNNs). WNNs have a
different type of neuron based on binary bits, rather than matrix multiplications.
These bitflag neurons can be approximated using Bloom filters. As such, that part
of the research is less relevant to optimization of Transformer inference, and has
not been examined in detail below.

David Spuler 308

How do Bloom Filters work? Given a key, multiple hash functions are calculated
for that key, and a binary flag is set in a bitflag table for each of those hash offsets.
In this way, an input key maps to a pattern of multiple bits.

The Bloom filter lookup for a key value works as follows: To test whether a key is
found, the multiple hash functions are computed, and then the bitflag table is
analyzed to see if all those bits are set. If any of the bits are missing, the key is not in
the Bloom filter. If all of the bits are found, the key is probably in the Bloom filter,
but it may also be that other keys have coincidentally set all those bits (a “false
positive”), so it is not 100% guaranteed to be present.

If a probabilistic speedup is good enough, then a Bloom filter is all you need. For a
100% accurate table lookup, adding a second different type of backup data structure
needs to be queried to confirm. Hence, the Bloom filter is a fast test to see if a key
is not in a set, but a slow test if the key is found. This makes it an example of a
“common case first” optimization, where fast computations may skip more
involved computations.

The computational complexity of Bloom filters is constant, but not as fast as
hashing. A hash filter uses only a single hash function, so it has O(1) lookup.
However, a Bloom filter uses multiple functions, k, so it has O(k) lookup
complexity.

309 Efficient Modern C++ Data Structures

Appendix 1. Source Code

Tester Object Instrumentation Class

This code is for “object instrumentation” that can be useful for performance
analysis, and also for debugging and unit testing.

Here’s a test usage to see what constructors and move operations are performed
by push_back in the std::vector class:

 Tester::reset_counters();

 std::vector<Tester> vectest4;

 for (int i = 1; i <= 100; i++)

 vectest4.push_back(i);

 Tester::print_report();

Here’s the full code:

 class Tester {

 private: // Static data members

 static bool traceall_;

 static int count_default_constructor;

 static int count_copy_constructor;

 static int count_move_constructor;

 static int count_copy_assignment;

 static int count_move_assignment;

 static int count_destructor;

 static int count_int_constructor;

 private: // Object data members

 int ival_;

 bool trace_;

 public:

 Tester() {

 ival_ = 0;

 count_default_constructor++;

 trace_ = false;

 if (traceall_) {

 cout << "Tester: default constructor: "

David Spuler 310

 << ival_ << endl;

 }

 }

 Tester(int val) {

 count_int_constructor++;

 ival_ = val;

 trace_ = false;

 if (traceall_) {

 cout << "Tester: int constructor: "

 << ival_ << endl;

 }

 }

 Tester(const Tester &other) // Copy constructor

 {

 ival_ = other.ival_;

 trace_ = other.trace_;

 count_copy_constructor++;

 if (trace_ || traceall_) {

 cout << "Tester: copy constructor: "

 << ival_ << endl;

 }

 }

 Tester(Tester&& other) noexcept // Move cons

 {

 ival_ = other.ival_;

 trace_ = other.trace_;

 other.ival_ = -1; // Invalidate moved data

 count_move_constructor++;

 if (trace_ || traceall_) {

 cout << "Tester: move constructor: "

 << ival_ << endl;

 }

 }

 Tester&operator=(const Tester& other) // Copy

 {

 count_copy_assignment++;

 if (this != &other) { // Avoid aliasing

 ival_ = other.ival_;

 if (trace_ || traceall_) {

 cout << "Tester: copy assignment: "

 << ival_ << endl;

 }

 }

 else {

311 Efficient Modern C++ Data Structures

 if (trace_ || traceall_) {

 cout << "Tester: copy asst aliasing: "

 << ival_ << endl;

 }

 }

 return *this;

 }

 Tester& operator=(Tester&& other) noexcept // Move

 {

 count_move_assignment++;

 if (this != &other) { // Avoid aliasing

 ival_ = other.ival_;

 if (trace_ || traceall_) {

 cout << "Tester: move assignment: "

 << ival_ << endl;

 }

 }

 else {

 if (trace_ || traceall_) {

 cout << "Tester: move asst aliasing: "

 << ival_ << endl;

 }

 }

 other.ival_ = -1; // Invalidate moved data

 return *this;

 }

 ~Tester()

 {

 count_destructor++;

 if (trace_ || traceall_) {

 cout << "Tester: destructor: "

 << ival_ << endl;

 }

 ival_ = -1; // Safety

 }

 // Equality operators

 bool operator==(const Tester& other) {

 return ival_ == other.ival_;

 }

 // Setters for object members

 void trace(bool bval) { trace_ = bval; }

 // Setters for static data members

David Spuler 312

 static void traceall(bool bval) {

 traceall_ = bval; }

 static void reset_counters() {

 count_default_constructor = 0;

 count_copy_constructor = 0;

 count_move_constructor = 0;

 count_copy_assignment = 0;

 count_move_assignment = 0;

 count_destructor = 0;

 count_int_constructor = 0;

 }

 static void print_report() {

 cout << "Tester Count Report" << endl;

 cout << "- Default constructor: "

 << count_default_constructor << endl;

 cout << "- Int constructor: "

 << count_int_constructor << endl;

 cout << "- Copy constructor: "

 << count_copy_constructor << endl;

 cout << "- Move constructor: "

 << count_move_constructor << endl;

 cout << "- Copy assignment: "

 << count_copy_assignment << endl;

 cout << "- Move assignment: "

 << count_move_assignment << endl;

 cout << "- Destructor: "

 << count_destructor << endl;

 }

 static void selftest() {

 // Constructors should equal destructors

 // ... but move constrs don’t increase count

 int errors = 0;

 int total_constructors =

 count_default_constructor

 + count_int_constructor

 + count_copy_constructor;

 if (total_constructors != count_destructor) {

 if (total_constructors>count_destructor) {

 cout << "Tester selftest: cons ("

 << total_constructors

 << ") more than destructors ("

 << count_destructor

 << ")" << endl;

 errors++;

 }

 else {

 cout << "Tester selftest: dest ("

313 Efficient Modern C++ Data Structures

 << count_destructor

 << ") more than constructors ("

 << total_constructors << ")"

 << endl;

 errors++;

 }

 }

 if (errors == 0) {

 cout << "Tester selftest: no errors found"

 << endl;

 }

 }

 };

 // Define Tester static data members

 bool Tester::traceall_ = false;

 int Tester::count_default_constructor = 0;

 int Tester::count_copy_constructor = 0;

 int Tester::count_move_constructor = 0;

 int Tester::count_copy_assignment = 0;

 int Tester::count_move_assignment = 0;

 int Tester::count_destructor = 0;

 int Tester::count_int_constructor = 0;

Intercepted new and delete

This source code is the global scope intercept functions for the memory
allocation new and delete operators. The library tracks basic statistics about calls
and bytes allocated.

 // Global counters

 unsigned long int s_new_count = 0;

 unsigned long int s_newarr_count = 0;

 unsigned long int s_delete_count = 0;

 unsigned long int s_deletearr_count = 0;

 unsigned long int s_new_bytes = 0;

 unsigned long int s_newarr_bytes = 0;

David Spuler 314

 void memory_reset_counters()

 {

 s_new_count = 0;

 s_newarr_count = 0;

 s_delete_count = 0;

 s_deletearr_count = 0;

 s_new_bytes = 0;

 s_newarr_bytes = 0;

 }

 void memory_report()

 {

 cout << "MEMORY CALLS REPORT" << endl;

 cout << "- new calls: " << s_new_count << endl;

 cout << "- new[] calls: " << s_newarr_count << endl;

 cout << "- delete calls: " << s_delete_count<< endl;

 cout << "- del[] calls: "<< s_deletearr_count<<endl;

 cout << "MEMORY SIZE REPORT" << endl;

 cout << "- new bytes: " << s_new_bytes << endl;

 cout << "- new[] bytes: " << s_newarr_bytes << endl;

 }

 void* operator new(size_t n)

 {

 s_new_count++;

 s_new_bytes += n;

 return malloc(n);

 }

 void* operator new[](size_t n)

 {

 s_newarr_count++;

 s_newarr_bytes += n;

 return malloc(n);

 }

 void operator delete(void* v)

 {

 s_delete_count++;

 free(v);

 }

 void operator delete[](void* v)

 {

 s_deletearr_count++;

 free(v);

 }

