CUDA C++ Debugging

Safer GPU Kernel Programming

by David Spuler

Aussie Al Labs

CUDA C++ Debugging: Sater GPU Kernel Programming
by David Spuler

Copyright © David Spuler, 2024. All rights reserved.
Published by Aussie Al Labs Pty Ltd, Adelaide, Australia.
https:/ /www.aussieai.com

First published: October 31, 2024.

This book is copyright. Subject to statutory exceptions and to the provisions of any
separate licensing agreements, no reproduction of any part of this book is allowed
without prior written permission from the publisher.

All registered or unregistered trademarks mentioned in this book are owned by their
respective rightsholders.

Neither author nor publisher guarantee the persistence or accuracy of URLs for
external or third-party internet websites referred to in this book, and do not
guarantee that any content on such websites is, or will remain, accurate or
appropriate.

Preface

Why a Book on Debugging CUDA C++?

NVIDIA’s CUDA C++ environment is an incredible platform that allows the
programmer to work at a much more productive level, far away from the low-level
details of parallel programming on a GPU. But sometimes, you just can’t avoid
getting back down into the weeds when something goes wrong. This book examines
a variety of techniques for debugging CUDA C++ programs, from beginner to
advanced, along with a catalog of common CUDA C++ errors to avoid, and
preventive methods for writing more resilient Al applications.

Who This Book is For

Anyone programming in CUDA C++ or trying to learn the language will benefit
from better debugging! This book examines bugs in coding from beginner to
advanced, starting with basic debugging techniques for simple errors. In the later
chapters, the book then covers a variety of advanced techniques for improving the
quality and resilience of production-quality CUDA C++ programs.

How This Book is Organized

The best way to read this book is to open all 400+ pages and then read them all at
the same time. That’s how a GPU would do it, and what’s good enough for silicon
should work in carbon.

Alas, no.

Sadly, the book is organized sequentially, because we are mediocre lifeforms limited
to reading one page at a time. Oddly, our brains can process a huge volume of input
signals in parallel, but without much retention when we’re trying to rationally learn
something,

iii CUDA C++ Debugging

Anyway, if I were you, I'd skip to the back of the book to the “Puzzles” appendix.
It’s the only part of the book that’s fun, and you can still bill hours for reading it.
Feel free to send ideas for more puzzles, or interesting bugs that you come across.

About Aussie Al

Aussie Al is a platform for the development of consumer Al applications, with a
special focus on Al-based writing and editing tools for fiction. Our premier
applications offer an extensive range of reports and error checks for both fiction
and non-fiction writing, from a full-length novel to a short report. Please try it out
and let us know what you think: https://www.aussieai.com

Our AI Research

The primary focus of research at Aussie Al is on optimizing LLM inference
algorithms (i.e., “running” the model after training or fine-tuning), and our research
is toward the following aims:

e TFast on-device model inference algorithms for smartphones and Al PCs.
e Scaling inference algorithms to large volumes of requests.

e Efficient GPU inference algorithms (hardware acceleration).

e Non-GPU inference optimization algorithms (i.e., software methods).

C++ Source Code
Most of the source code examples are excerpts from the Aussie Al C++ library, in

many of the C++ source code examples. Details about source code availability can
be found in the Aussie AI CUDA area: https://www.aussieai.com/cuda/overview.

Some code examples are abridged with various code statements removed for brevity
or elucidation. For example, assertions, self-checking code, or function argument
validation tests have sometimes been removed.

Most of the code is specific to CUDA C++, but should run across most platforms
supported by the CUDA Toolkit. Some chapters present generic C++
programming issues, which are not specific to CUDA, but nevertheless arise as
problems in CUDA C++ programs as well.

Disclosure: Minimal Al Authorship

Despite my being involved in the Al industry, there was almost no Al engine usage
in creating this book’s text or its coding examples. Some text has been analyzed and

David Spuler iv

https://www.aussieai.com/
https://www.aussieai.com/cuda/overview

reviewed using Aussie Al’s editing tools, but not even one paragraph was auto-
created by any generative Al engine. All of the CUDA C++ code is also human-
written, without involvement of any Al coding copilot tools. I mean, who needs
them?

However, Al was used in several ways. Al-assisted search tools, such as “Bing Chat
with GPT-4”, were very useful in brainstorming topics and researching some of the
technical issues.

More Debugging CUDA C++

A whole book on debugging CUDA C++ isn’t enough for you? You can find more
on our CUDA website https://www.aussieai.com/cuda/overview.

CUDA C++ Projects. Learn more about our CUDA C++ projects
at https://www.aussieai.com/cuda/projects:

e Aussie CUDA Debuglib — debug wrapper library for CUDA C++
primitives.

o Aussie CUDA Emulator — educational tool for CPU execution of a
limited CUDA subset.

e Aussie Lint — linter capability for CUDA C++.

Updates and Additions: Additional book materials, updates and errata will be
made available over time online at the Aussie Al website. Visit this
URL: https://www.aussieai.com/cuda/debug.

Errata: Any bugs or slugs that we learn about in this work will be posted online on
the Aussie Al website in the Errata section of Aussie Al research. Visit this URL
to view these details: https://www.aussieai.com/cuda/errata

AI Research Literature Review: Ongoing updates to the Al research literature
review are found in the Aussie Al Research pages, categorized by topic, starting at
the entry page: https://www.aussieai.com/research/overview. The main CUDA
research is available at: https://www.aussieai.com/research/cuda. If you have a
correction to a citation or a paper to suggest for a category, please
email research@aussieai.com.

Blog: Add a regular dose of CUD.A C++ to your feed. Review the Aussie Al blog
at https://www.aussieai.com/blog/index, with a variety of articles on Al and
CUDA programming.

v CUDA C++ Debugging

https://www.aussieai.com/cuda/overview
https://www.aussieai.com/cuda/projects
https://www.aussieai.com/cuda/debug
https://www.aussieai.com/cuda/errata
https://www.aussieai.com/research/overview
https://www.aussieai.com/research/cuda
https://www.aussieai.com/blog/index

Future Editions: Please get in touch with any contributions or corrections as
future editions of the book are planned. I welcome suggestions for improvement
or information on any errors you find in the book.

Disclaimers

Although I hope the information is useful to you, neither the content nor code in
this work is guaranteed for any particular purpose. Nothing herein is intended to
be personal, medical, financial or legal advice. You should make your own enquiries
to confirm the appropriateness to your situation of any information. Many code
examples are simplistic and have been included for explanatory or educational
benefit, and are therefore lacking in terms of correctness, quality, functionality, or
reliability. For example, some of the examples are not good at handling the special
floating-point values such as negative zero, NaN, or Inf.

Oh, and sometimes I’'m being sarcastic, or making a joke, but it’s hard to know
when, because there’s also a saying that “Truth is often said in jest!” Your Al engine
certainly won’t be able to help you sort out that conundrum.

Third-Party License Notices

Except where expressly noted, all content and code is written by David Spuler or
the contributors, with copyright and other rights owned by David Spuler and/or
Aussie Al

Additional information, acknowledgments and legal notices in relation to this book,
the C++ source code, or other Aussie Al software, can be found on the Aussie Al

Legal Notices page: https://www.aussieai.com/admin/legal-notices.

Acknowledgements

This book would not have been possible without the help of others. Thank you to
Michael Sharpe who lent his Al and C++ expertise to the project with industry
guidance and technical reviews. Data scientist and architecture expert Cameron
Gregory also provided much assistance with many contributions to various
chapters on coding, architecture, and DevOps.

I would like to acknowledge the many GPU hardware engineers and other Al
researchers and open source contributors who have made the Al revolution
possible. In particular, the advanced coding skills shown in the many CUDA C++
projects and examples are acknowledged with both admiration and appreciation.

David Spuler Vi

https://www.aussieai.com/admin/legal-notices

Please Leave a Review

I hope you enjoy the book! Please consider leaving a review on the website where
you purchased the book. Since few readers do this, each review is important to me,
and I read them all personally.

Feedback and Contacts

Feedback from readers is welcome. Please feel free to tell us what you think of the

book, the literature review, or our Aussie Al software. Contact us by email
via support@aussieai.com.

vii CUDA C++ Debugging

About the Author

David Spuler is a serial technology entrepreneur who has combined his love of
writing with Al technology in his latest venture: Aussie Al is a suite of tools for
writing and editing, with a focus on fiction from short stories to full-length novels.
His published works include satirical fiction novella, Awnimal Barn: A Cautionary Tail,
four non-fiction textbooks on C++ programming covering introductory and
advanced C++ programming, efficiency/optimization, debugging/testing, and
software development tools, and one application management ops book on BMC
PATROL.

Other than writing, he’s an avid Al researcher with a Ph.D. in Computer Science
and decades of professional experience. Most recently, Spuler has been founding
startups, including the current Aussie Al startup and multiple high-traffic website
platforms with millions of monthly uniques, including an e-health startup acquired
by HealthGrades, Inc. Prior roles in the corporate world have been as a software
industry executive at BMC Software, M&A advisor, strategy consultant, patent
expert, and prolific C++ coder with expertise in autonomous agents, compiler
construction, internationalization, ontologies and AI/ML. Contact by email
to research@qaussieai.com or connect via LinkedIn.

David Spuler viii

About the Contributors

Michael Sharpeis an experienced technologist with expertise in AI/ML,
cybersecurity, cloud architectures, compiler construction, and multiple
programming languages. He is currently Senior Software Architect at PROS Inc.,
where he is a member of the Office of Technology focusing on developing and
evangelizing AL His Al expertise extends to monitoring/obsetrvability,
devops/MLOps, ITSM, low-tesource LLM inference, Retrieval Augmented
Generation (RAG) and Al-based agents.

In along R&D career, Michael has been coding C++ for almost 30 years, with prior
roles at BMC Software, Attachmate (formerly NetlQQ) and IT Involve. Michael has
a Bachelor of Science with First Class Honors in Computer Science from James
Cook University and holds several registered patents. He made major contributions
to this book, especially in the chapters on GPU hardware acceleration, LLM
training, and RAG architectures, not to mention that he also technically-reviewed
the book in its entirety!

Cameron Gregory is a technology entrepreneur including as co-founder of fintech
bond trading startup BQuotes (acquired by Moody’s), previously co-founder and
Chief Technology Officer (CTO) of Trademark Vision with an Al-based image
search product (acquired by Clarivate), and founder of several image creation
companies including FlamingText.com, LogoNut, AddText, and Creator.me.
Currently a Senior Data Scientist focused on “big data” for hedge funds at fintech
startup Advan Research Corporation, he is used to working with real-world data at
scale.

Cameron has been making code go fast since the 1990s at AT&T Bell Laboratories
in New Jersey, and is proficient in multiple programming languages, including C++,
Java, and JavaScript. He holds a Bachelor of Science with First Class Honors in
Computer Science from James Cook University. His contributions to the book
included detailed suggestions for scaling a high-traffic cloud architecture
underpinning Al engines, and overall software development practices and tools.

ix CUDA C++ Debugging

Table of Contents

| g 72 PN iii
ADOUL the AULNOL c..eeeereireeeieerieerereeerreereesreereesneessessaressessaneesessansessesnseses viii
ADbout the CoNtriDULOLS. cueuueeiiriiiirieeneiieiriirtrmenssieesssieeemmnssssssssssessssssssssssssases ix
TaADIE Of CONTENTS .euuueeeeeeiiiiiiiiiiiirisrssessses X
1. CUDA INtroduUCtion ..cceeeeeeeeeeeeeeeeeeemmeeeeeeemmemmmmesesssssmssssssssssssssssssssssssssssssssses 1
WAt IS CUDA? ...ttt ettt ettt st b e b e st saee e s 1
WHhY USE CUDA?. ..ottt ettt e et e e e e ata e e e e eatae e e eanaeeesennaeeeens 1
Main Features of CUDAoio ittt ettt 2
Advantages Of CUDA CH...oviiiiiieecciieeeeiee e erree e s sree e s svee e e snvee e s savae e e s 3
Overall Limitations of CUDAcooiiiiiiiieieeeeeesee e 3
Other GPU Accelerator PIatforms.........coceevueeieereeneenee e 4
2. Debugging Hello Worldcceovviiieinniiieeniiiiieinniineinnieeennieeessnneeeesnne 7
Buggy First CUDA CH+ PrOBramcceiiiiiiiciiiieeeeeeenssiiineeeeessssninseeeeessssssnnnnnns 7
FIXiNg HElIO WOKId......oveii ettt et e e e e 10
Running Multiple Threadscccuviiieeee e 11
RUNNING MUIEiPIE BIOCKS ...cvveeeieiiiieeee ettt e 12
Why Are Blocks Needed? ...t e e 14

David Spuler X

3. CUDA for C++ Programmers....cccceeeeruueeeeeeeiesisiisnneeeeeeeesssssssssseeeesssssnns 17

Basics of CUDA C++ Programming........ceeecueeeercveeesrieeeesssieeesssreeesssseeeessnnes 17
Differences from Standard CH+c..eoiiiiiiiienieeieeee e 18
CUDA Dual Programming Model........cccueevvciieiiriiiiiieiiiee e eceee e 19
CUDA Programming Control Flow Model.......ccccccveeveiiieeiciieeeecieee e 21
GPU Program FIOWeeiiiiiiee ettt e e ettt e e 22
CUDA Parallel Execution Modelccooueeiiiiiiiiiniiceieenee e 23
Features of CUDA C++ Programmingccceeeeecueeeiiiieeeesiieeesssneeessseneessnnns 24
CUDA C SYNTAX.ciiiiiiiiiiiiiiiiieieieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeseseseseeeseseseeeeenes 25
Kernel Function Limitationscoceeieeiieieenienicceeeeeeece e 28
4. CUDA EMUIAtION....uuuttiiiiiiieriieieiiiieteeiesrteesecseeeseesesessessaseesessaseessssanes 29
CUDA CPU EMUIGHION ..eeiiiieeiiieieeeiee ettt ettt 29
CUDA CH++ EMUI@tion Librarycueeeeeciiee e ssvee e 29
Running CUDA in Google Colab........cueiiieiiiiiciie et 31
Troubleshooting Problems on Google Colab..........ccccoeeeiieieccieeeecieeeee, 34
5. Debugging Simple Kernelscccouuiieiiiiiiiiiniiiiiiiiiiiiiieeeccccccnnnnees 37
Grid DIMENSIONS ...eeiiiiieieeiieeeere ettt s 37
One-Dimensional Vector Kernelscccceveereenienienieeneenee e 38
Single Operation Kernel..........oeee e 39
Kernel Safety ChECKScocvveie ittt ettt 39
Two-Dimensional Matrix Kernelsccooceeveeeiiienieeeiee e 41
WaArPs @Nd LANESuueeieiiiieeciieeeettee st ree e e te e e e s vee e s e nbae e s e sabae e e enreeas 43

Xi CUDA C++ Debugging

6. Debugging Strategiescccceeeiiiiiiiniiiieeiiiiiiiiiiiieeeeccnieeeeeeeeenaaneees 45

General Debugging TEChNIQUESccovciieiiiiieeeciiee e 45
Serializing Kernel LaUuNChEScooociiiiiiiiiiecciee e 46
(e Yor-1 [74T o= d o V=T =Y oY O URPPROURPRE 48
Random NUMDEr SEEAS.......cceeiiiriiriieieeeeiee sttt 49
Making the CorreCtioN.........ceeiciieeiiciie ettt e ebae e e 51
7. CUDA Debugging TOOIScccvvuriiiiiiuiiiiinuieiinnnieeinnieeensnneessnsneeesnnes 53
CUDA TOOIS OVEIVIEW ..ccuviieiieeeiiieniiee ettt esiee sttt e sireesbeeesareesbeeesaeeesbeeesaseens 53
Command-Line Debugging TOOISccveeiriiiieiiiiiie et 54
(00 0] o UL I [oV u =] PPNt 55
Abnormal program terminationcccccceeeiieiiie e 56
FACECNECK ..ce ittt e st sab e st e s be e e sbeeenee 57
SYNCCRECK. ettt ettt e e et e e e s e e e e e aba e e e e areeas 58
TINTECNECK e 58
(U To =B ={o |« F PSP 59
Pre-Breakpointing Trickoococuieee et e 60
Postmortem DebUEEING.......coivviiieiiieie et 61
Valgrind fOr CUDA ..ottt e e e e e s e sabae e e e e 62
Warning-Free BUild.........ouviiiiieee et e e 64
LINEErs fOr CUDA CH ..ottt ettt sttt st s eee s 66
LiNtiNg deVICE COUEuviiiiiiiii ittt et e e ere e e e bae e e e eanes 67
FiIXiNg LINTer WarningsS «.ccoeeeevieiiiiiieeeeee e 68
RELEICNCES teeiuitiie ittt ettt e st e e e st e e s s e e e s e areeas 68

David Spuler Xii

8. Error ChecKing.....cuuuiiieiiiiiiiiiiiiiiieeiciiniiiieeeeccnsntieeeeececessnsssssseeeens 69

CUDA Error ChECKINGvveeieeieeeieiiieeeectiiee s esitee e ssreee s esireeeessivae e e eseaeessnanneeeens 69
CUDA Error Check IMacros......coocveeeieeeiiieeiee ettt 70
Checking After CUDA Callscooeciiiiiiiiiie et e e e esiaee e 71
Recursive Macro Error Checks.........ooveeeeieeiienieniceceeeeecesee e 72
Macro Intercepted Debug Wrapper FUNCHONScceveeeciieeiiciiee e 74
Limitations of Macro INterception.......cccecveeeveciieeiiciiee et 75
Reporting and Handling CUDA ErrOrS......ccuieeiecieeeieciiee e ccieee e eciee e ssveee e 76
Limitations of CUDA Error Checking.........ccveeevciieeiiiiiee et cieee e ecieee e 77
BT el 3 S) R 79
What are SHCKY Errors? ...ttt et 79
Detecting SHCKY ErTOrs ..ottt 80
What Causes SHCKY Errors? ...ttt 81
SHCKY ErTOr RECOVEIY.....uviiieeitiee ettt e ettt e ettt e et e e e are e e e e nbae e e e enbae e e enreeas 83
Multi-Process Fix for SHCky Errors.........ooucieeieciiee et 84
10. GPU Kernel Debuggingcccoovvuiiiieiiiiiiiiinniiiiiciicciineeeeccccccnsnenes 85
Kernel Debugging TEChNIQUESccocviiiiieiiiee et 85
Triggering BUES EQrlier.......cciiciieiiiiiee ettt e 86
De-SIUgEING KEINEIS......eviiieeee et e e e 88
11. Basic CUDA CH+ BUgSscciiiiiiiiiiiiiiiiniiieiiniieciiieccniseeccnsneseesnnes 89
Common Bugs in CUDA CH .. eeeeeeeeeeee e e e eeee s eeeeessesseeeeeees 89
Novice Kernel Launch Mistakes.........ccceceeveenieniinicnieeeeeeesee e 90
Wrong Block and Thread Computationscccceeeciieeiicieee e, 91
Threads-per-Block Multiple 0f 32......ciiiiieie s 91
TOO FEW BIOCKS ...t 92

Xiii CUDA C++ Debugging

TOO MaNY BIOCKSevieeeiiiee ettt e e e e evre e e 92

Wrong Kernel Index Calculations.........cccueeeeiiieiiiciieee e e 94
Array Bounds VIOIatioNsccccuvviiieiiie et 95
Mixing Host and Device POINTEIS......cuuiiiiciiei it 98
RETEIENCES ..ottt et e st e s bt e e sneeeaee 98
12. Advanced CUDA Bugs.......ccoouuiieiinniieiinniiieinniiiecnniieenniieecnnseeeennnes 99
Advanced Bugs in CUDA CH ...uuviiiciiee ettt eetee e et e et e s e 99
Python Brain IMOE........cccuiiiiiiiee ettt et rae e 101
Confusing Host and Device POINtErs.......cccoccveeeiiiieiiccieec e 103
Copy-Paste Bugs for cudaMemCPYccvveeeeciieeeiiiiiee et 104
Silent Kernel Launch Failures........coouerieeiieiieiienicecceeeeeeee e 106
Device Thread LIMitSc.coeeeeiiereeieesieesee et 108
13. Self-Testing Code ...ccivriiririiniiiriniiiinieniitiniieisitesieesiesseeseseesssees 1
What is Self-Testing CoAE? ...t 111
Self-Testing Code BlOCK........ccuviiiiiiieiiiiie et 111
Self-test Code BIOCK MaCIO.......covueiiiiriiiieeieeeiee et 113
Self-Test Block Macro with Debug Flagscccccoeevieeiiciiee e, 113
DL o T U= = Yol A - Lol RPN 115
Unified Address Self-TEStINGcvveeieciiieiciiee et 115
Kernel Launch Self-TEStINGcccviiieeciiie et 117

David Spuler Xiv

T4, ASSEITIONS. cvuiurerurernererereeeeeernerseessersscrsssssersscssssssesssessssssssssessssnsesnsessssnne 119

Why USE ASSEITIONS?....uuiiiiiciiii et criees et ssvee e s eree e e sree e e e sree e e snabeeas 119
Compile-Time Assertions: static_assertcccccvvcveereriieeeisiiieeeerieee e 120
DeVice COOE ASSEITIONS.cccueierieeeiieesitee sttt st e e te e st e et e e sareesneeesaree s 120
Custom ASSErtion MacCrOScoovviiiiiiiiieiiiiie e 123
Variadic Macro ASSEItIONS......ccuirueriieiteenteesiee ettt s 126
Assertless Production COde........oocueiiiiiiiiieniieiiieeee et 127
Generalized ASSErtIONS.......cociiiiiieriee ettt 128
Unreachable code assertion..........ceoveeeieeeniecniiieenieceee e 129
Once-only eXecution asSertioN.........cccceeeeeciieeeeciieeeeeiee e eecree e eeree e e v 130
Generalized Variable-Value AsSertions.........cccceveereenvieniienneeneeneenee e 131
Assertions for Function Parameter Validationccccceveverieniiiceenneenne. 133
Next-Level Assertion EXtENSIONSccoveervieeenieeiiieeeiie e sree e 135
15. Debug Wrapper FUNCHONSccuieiiniiiiiiiiiiieiiniieeiniieecnieeecnnneecenes 137
Why Debug Wrapper FUNCHONS?cccoeiiieiiiie et et 137
Fast Debug Wrapper COUEcouiiiiiiiiieeeciee ettt vre e e e 138
CUDA C++ Runtime Wrapper FUNCHIONScccuuviiieeeeiiiiiiiieceeee e sriiieeeeeees 139
Standard C++ Debug Wrapper FUNCHONSccovviiieiiiciiee e, 140
Example: memset Wrapper Self-Checkscccoeieeciiiiieiiiieicciee e, 142
Generalized Self-Testing Debug Wrappersccccceeeeecieeeeecieee e 143
Link-Time Interception: new and deleteccccovevevciieieccciiee e 144
RETEIENCES ...ttt sttt e 146

XV CUDA C++ Debugging

16. Debug TIACING «.eeiiiriuiiiiiiiiiiiiiiieiiitreeceiree et cssareeesssaseesessssesssaes 147

Debug TraCing IMESSAZESuueiircuriieeriiieeeriiieeesiireeessreeeesseaeeessseeeesssseeeens 147
Variable-Argument Debug Macroscccuvveieciiieiiiieee e ssciee e 149
Dynamic Debug Tracing Flag........cevvvciiiiiiiiiie et 150
Device Code Dynamic DebUgging........cccoecvveiieiiiiiiciiiee e 151
Multi-Statement Debug Trace MacCrOcueeeeeciiieeeiiiee e 152
Multiple Levels of Debug TraCing......cc.uevvveiieeiriiiieeeiiee e 154
Advanced DebUg TraCingccccuvveeieeeeeeeiiiireeee e e e e e e e eserrreeee e e e e esannens 156
17. CUDA PoOrtability ..ceeeeriiieceiiiiuiiininuiecininieciniiieennuieessmeeesssssesssns 157
Portability of CUDA C++ Applicationscccvveeeeciieeecciiee e 157
Summary of Commands and API Calls.........ccoceeeeiieeieciiee e, 158
Detailed CUDA Portability......c.ccccveeivciiieinciiie et evee e 159
Detecting Host versus Device COdeouuiiiiiriiiiiiiiiieeeeiiieeeeciveeeeeiveeeens 161
Detecting GPU Architectures in Device CH+ccveveecrieeeeciieeeeciiee e 163
IS CUDA INSTAll@A? ...ttt et 163
Detecting CUDA VErSiONccoevviiiiiieeeece e, 164
Mixing CUDA and NOoN-CUDA CH+cuviiiiiiiie ettt ssre e svvee e 165
CUDA POrtability Traps....cicccueeeeiciieeeeciieeesciree e esireeeesiree e esiree e s s sareeeessaveeas 166
C++ Operator Portability Pitfallsccooeeeeiiiieeceee e, 167
Order of EValuation EFTOrScoiuieiiiriieieeeeeieesicesite sttt 169
Data TYPE SIZES oo 171
Data Representation Pitfallsccoociiiiiiciiii e 173
Pointers versus INteger Sizescccvvvvviiiiiiii 174
REFEIENCES ..ttt sttt e e 174
Appendix: CUDA PUZZIesuuieeinriieinnniieinnniieenniieecnnieecnsssseesssseees 175
ADNSWELS..iiiiiiiiuiiiiiiiiiitiieee et eeetraeeee st ceeraaas s e s s et et saaassses st e eesssassssesseeees 191

David Spuler XVi

1. CUDA Introduction

What is CUDA?

CUDA is officially an acronym for Common Unified Device Architecture, which
is just so excruciatingly boring. Instead, I prefer to think of CUDA as a barracuda,
sleek and fast, shredding GPU chips with its gnashing teeth by sending them too
much work.

CUDA is a platform to program NVIDIA GPUs, consisting of many tools and
libraries. As a C++ programmer, I’'m going to focus on CUDA C++ capabilities,
but there is support for other programming languages, such as Fortran and Python.

CUDA is owned and maintained by NVIDIA, and used to write code for NVIDIA
GPUs. The basic idea is to write C++ for both the CPU and the GPU, and the
CUDA C++ compiler allows you to do both from the same soutce file. The CUDA
platform is not open-sourced, but is priced free to use (although the chips are not!).

Why Use CUDA?

Oh, come on! You know the answer to this one: AIl. NVIDIA GPUs are for Al,
and CUDA is NVIDIA’s answers to how you program a GPU. As for the C++
part, well, CUDA and C++ go together like Al and cat videos.

This book mostly assumes that you’re using CUDA for generative Al but there are
many use cases. They’re not as well-known as Al, but they’re making a lot more
money for companies than Al ever will.

Generally, any type of algorithm that needs to do a lot of number crunching can be
parallelized within an inch of its life with CUDA.

1 CUDA C++ Debugging

Use cases for CUDA include:

e Generative Al training and inference

e Physics computations

e Drug discovery algorithms

e Cryptography (Bitcoin mining)

e Linear algebra operations

e Optimization and search space computations

There are many more types of parallelizable algorithms. Feel free to add your own.

Main Features of CUDA

The CUDA environment is not just a C++ platform, but also an entire ecosystem.
This includes:

e Documentation ranging from introductory to reference manuals.
e Articles and technical blogs on the NVIDIA website.

e Multiple language support (e.g., C++, Fortran)

e Example code of various ilks on NVIDIA’s Github repo.

e Full implementations of Al backends.

e TForums and supportt platforms for questions.

e The annual GTC NVIDIA conference in California.

Generally, I have to say that everything I see on the NVIDIA website is
underpinned by a high level of technical competence. NVIDIA is an impressive
company.

Oh, yeah, I almost forgot. There is also some C++ stuff in CUDA:

CUDA C++ compilers
Debugging tools
Memory checkers

Synchronization checkers

Performance profiler tools

Many of the tools have both graphical and command-line interfaces. Personally,
I'm old-school and prefer the CLI versions, but many programmers prefer a nice
GUI for increased productivity.

David Spuler 2

Advantages of CUDA C++

CUDA is popular and the market leading interface for programming NVIDIA
GPUs. In fact, CUDA is regarded as a second level of value that helps NVIDIA
stay on top in the GPU arms race. Here are some thoughts on why.

C++ Syntax. Writing a CUDA program is just like writing a C++ program, and
everybody loves doing that. Personally, I've been doing that for 30 years, so we can
just stop here at this point.

Fast! The programs that you write in CUDA run fast. It’s probably not really about
the software at this point, but us programmers like to think it is. Let’s give CUDA
the credit!

Dual coding model. You write both the CPU code and the GPU code in the same
C++ program. This is very convenient, and keeps everything somewhat more
orderly than otherwise.

Capable. You can do all of the basic C++ stuff, such as all the arithmetic and
logical operators. There are also CUDA APIs for just about anything you could
think of, such as memory management and thread synchronization.

Libraries. At a higher level than the CUDA APIs, there are also CUDA libraries
for a lot of the common coding tasks, such as vector and matrix computations.
These have been coded by professionals, and it’s hard to write faster code than
you’ll find in these libraries, although many people keep trying.

Overall Limitations of CUDA

CUDA has been very successful and is often mentioned as a massive competitive
“moat” for NVIDIA. Nevertheless, there are areas where CUDA can be
problematic.

Steep Learning Curve. CUDA is not the easiest language to master. For starters,
you need to know C++, and then there are a number of CUDA-specific syntax
constructs and a lot of CUDA APIs and libraries to learn.

Even worse, the need to learn these new sets of C++ keywords and libraries is
compounded by the utterly brain-bending nature of SIMD parallel programming.
Hence, not all of the difficulty can be blamed on CUDA itself.

3 CUDA C++ Debugging

GPU specific. The use of CUDA C++ is limited to NVIDIA GPUs. Although
some attempts have been made to layer CUDA over other non-NVIDIA GPUs,
this does not work well, and is not supported by NVIDIA.

Proprietary License. The CUDA platform is not open-sourced by NVIDIA,
although it is free. This compares with other similar GPU platforms, such as AMD’s
ROCm, which has an open-source license.

However, much of the NVIDIA code examples are open-sourced, under various
licenses, so this limitation only applies to the core compiler and runtime platform.

Non-SIMD algorithms. Massive SIMD parallelism in GPUs only works to
optimize certain kinds of algorithms. This is not a limitation of the CUDA platform
itself, but moreso of GPUs in general.

Fortunately, there are plenty of demand for recurring vector calculations in
optimizing applications such as Al inference and training, not to mention Bitcoin
mining and video codec processing.

Other GPU Accelerator Platforms

CUDA is not the only way to program NVIDIA GPU chips, but it’s the best.
CUDA is widely regarded as a superior platform that helps sustain NVIDIA’s
dominance of GPU chips for Al applications, with a “software moat” that adds
another layer to its capabilities.

However, there is plenty of ongoing activity from competitors and also in open
source communities. Some of the other upcoming GPU software platforms are
discussed below.

Triton (OpenAl). The Triton platform was initially created by OpenAl, and has
been open-sourced as its own project. The goal of Triton is to make GPU
programming simpler, so as to write GPU applications in a Python-like language.
The idea is to hide a lot of the low-level issues, such as memory transfers, in a way
that does not impact performance.

ROCm (AMD). The ROCm software platform is for AMD GPU programming.
Unlike CUDA, the underlying code for ROCm has been open-sourced, and is
available for review. This is a fully-capable platform and has a long history of
development.

David Spuler 4

Intel OneAPI. The OneAPI platform was created by Intel, and initially focused
on their GPU chips. It has since become an open standard and its own project,
allowing OneAPI to be used to manage other vendors’ GPU hardware.

Apple hardware. Apple makes its own M-series chips, based on the Arm
architecture, for its PCs, tablets, and phones. To support developers of applications
for these devices, Apple has developed its own software acceleration platforms,
including CoreML, Apple Accelerate, Apple Metal, and the new “Apple
Intelligence” platform. Apple’s hardware chips are not as fully-capable as high-end
GPUs, and the focus of these software platforms is more for execution on Al PCs
(MacOS) and Al phones (iPhone/iOS).

Vulkan. The Vulkan API is a portable layer to operate across multiple types of
GPUs. A lot of its historical functionality is related to gaming and similar GPU
applications, but it has become focused more on Al lately. Vulkan is an open source
project that is supported by various corporate entities in this space.

SYCL (pronounced “sickle”). The SYCL platform is also an open-source multi-
GPU abstraction layer and standardization, backed by the Kronos Group. It allows
the development of GPU-based applications at a higher-level, allowing deployment
to different hardware stacks.

I’m not sure why you needed to know about all those platforms, because you really
only need one: CUDA. And most of the CUDA backends were written in C once

up on a time, but are now usually written in C++, so the best way to program GPUs
is CUDA C++.

5 CUDA C++ Debugging

David Spuler

2. Debugging Hello World

Buggy First CUDA C++ Program

Amusingly, a typical “Hello World” program written in CUDA C++ will have a
bug. How’s that for a nice introduction to the parallel programming world?

Talk about a steep learning curvel!

This chapter looks at a “hello world” program written in CUDA C++, that just
tries to print out a message. Such a humble goal, and yet it fails, of course, and then
the remainder of the chapter is trying to debug the code.

If you’re a beginner at CUDA C++, you’ll need to install the CUDA Toolkit on a
computer with a GPU. If you don’t have a GPU, you can use Google Colab without
a GPU (mostly for free), as discussed later in the chapter. And if you’re already an
advanced CUDA programmer, well, you’ll already have a GPU environment, but
why are you reading this chapter?

Let’s have a go at a basic program:

// Hello World, basic CPU version
#include <iostream>

int main ()

{
printf ("Hello CUDA!\n");

}
Yes, that runs just fine and the output is:

Hello CUDA!

There’s only one problem with this code: it’s not running on the GPU. You can’t
call yourself a CUDA programmer if you run code on a CPU. All of the advanced
CUDA programmers rip out the CPU from their computers, and run with just a
GPU and a bunch of ping pong balls instead.

7 CUDA C++ Debugging

Real programming. The basic idea with GPU programming in CUDA C++ is:

e Both CPU “host” code and GPU “device” code in the same C++ file.
e The default is that C++ code is for the CPU host.

e We mark GPU device code with the “ global ” specifier (yes, it has
four underscores).

The way your program runs on a GPU is:

e Execution starts in the CPU at the main function.

e The GPU function (called a “kernel”) is just sitting there, twiddling
thumbs, waiting,.

e 'The CPU “launches” a GPU function.

e 'The GPU then runs that kernel function.

Hence, to modify our C++ code to run on the GPU, we need to:

e Define a function

2

e Declareitas “ global
e Launch it using a weird syntax.

Here’s the very first attempt at a program that runs on a GPU:

// Hello World, buggy GPU version
#include <iostream>

__global void aussie cuda hello world()

{
printf ("Aussie CUDA says Hello World!\n");
}

int main ()
{
aussie cuda hello world <<< 1, 1 >>> ();

}

All this does is say “hello” without any other computations. The way that you know
it’s running on the GPU is the extra specifier “ global ” on the function
definition. Not only is this function rather dull, it’s also sluggy, because we really
don’t want the GPU to be calling print £, except for debug tracing.

David Spuler 8

Where’s the CPU code? Any function that does not have a CUDA specifier
like global or device is bydefaulta CPU function. It’s called “host”
code in the CUDA vernacular, since CPU is the “host,” and GPU is the “device.”
GPU code is called “device code” or a “kernel.” For our hello world example, the
CPU code is just the main function.

The strangest CUDA syntax is pretty obvious with the “triple chevron” tokens
“<<<” and “>>>” surrounding some numbers. This code is a “launch” or
“invocation” of the GPU “kernel.” It’s easier to visualize the function call without
the fancy CUDA syntax, which is basically a zero-parameter standard C++ function
call:

aussie cuda hello world();

However, it has some extra parameters inserted between the function name and the
function arguments:

<<< 1, 1 >>>

The meaning of the numbers is clearer if we do this:
<<< blocks, threads per block >>>

The modified kernel invocation would look like this:

int blocks = 1;
int threads per block = 1;
aussie cuda hello world<<< blocks, threads per block >>>();

This syntax launches multiple copies of the CUDA C++ GPU device kernel
function aussie cuda hello world, each of which is called a “thread.” How
many? In this case, we are launching 1 block of 1 threads-per-block each, so there
is a grand total of 1¥1=1 function calls to our kernel, which is not exactly “multiple
copies” of the kernel, as I vaguely promised above.

So, anyway, here’s our full CUDA “hello world” program. Let’s run it so we can
bask in glory. Here’s the output:

(sound of crickets)

What?!? There’s no output! How can there be a bug when there’s literally only two
statements?

9 CUDA C++ Debugging

Fixing Hello World

Okay, here’s the problem, in simple terms: the CPU didn’t wait for the GPU’s
output. The whole program finished on the CPU before the GPU output anything.

The solution is simple: make the CPU wait. The simplest way to do this is to
call cudaDeviceSynchronize:

aussie cuda hello world<<< 1, 1 >>> ();
cudaDeviceSynchronize () ;

This forces the CPU to wait for all the GPU kernel threads to finish, which is called
“synchronization.” Hence, cudaDeviceSynchronizeis a “blocking” or
“synchronous” type of CUDA call.

One nice feature of nvcc compiler is that you don’t need any #include of a the
CUDA C++ runtime header file to call cudaDeviceSynchronize. This is

because nvcc automatically includes “cuda_runtime.h” at the top of the
CUDA C++ file.

More Details on GPU Output Buffering

This section is optional and quite advanced, but if you really want to know (and
maybe you don’t), here’s a deeper look at why the output disappeared. In more
detail, there’s actually three problems:

1. CUDA ketnel launches with “<<<...>>>” are asynchronous.
2. Kernel output is buffered, rather than immediately output.
3. Buffered GPU kernel output is discarded on CPU host program exit.

That’s rather a mouthful. Let’s try to break it down:

e The CPU didn’t hang around for the GPU to do anything, because it
doesn’t wait for GPU kernels to finish.

o But the C++ code inmain had no further statements, so the whole
program immediately exited (the CPU part).

e The GPU still did its work, and called printf correctly inside the GPU
code,

e The weird part is that printf inside the GPU is not actually printed out
immediately by the GPU. Instead, it’s stored (“buffered”) for the CPU to
print out later.

David Spuler 10

e Buffered GPU output doesn’t get printed until the CPU runs again
afterwards.

e But the CPU had already exited, so the CPU wasn’t still there anymore to
print out any of the GPU output.

e So, the GPU just gave up and threw it all away instead, and then the GPU
quit too.

Any clearer? Maybe made it worse? I told you this section was optional for a reason.

Running Multiple Threads

Every call to the function in each block starts in a new thread at the same time, and
runs in lock-step over the same set of statements. All of parallel calls to the kernel
function have the same function parameters (i.e., none in this case).

This is also a rather dull kernel invocation, because it only runs 1 single instance of
the GPU kernel. That’s not parallel! It’s only running 1 copy of the kernel at a time,
which is something that a real CUDA programmer would never, ever do.

Let’s run 5 threads, so we have 5 versions of the kernel running instead. Here’s our
updated code, including the bug fix call to cudaDeviceSynchronize:

// Hello World, 5 threads version
#include <iostream>

__global void aussie cuda hello world()

{
printf ("Aussie CUDA says Hello World!\n");

}

int main ()
{
int blocks = 1;
int threads per block = 5;
aussie cuda hello world<<<blocks, threads per block>>>();
cudaDeviceSynchronize () ;

Here’s the output:

Aussie CUDA says Hello World!
Aussie CUDA says Hello World!
Aussie CUDA says Hello World!
Aussie CUDA says Hello World!
Aussie CUDA says Hello World!

11 CUDA C++ Debugging

This runs 5 threads, because we have launched 1 block, and each block has 5
threads. Now let’s modify it so that it tells you which threads are running. We can
do this with a statement:

int tid = threadIdx.x;
Our new kernel is this:

__global void aussie cuda_hello world()
{
int tid = threadIdx.x;
printf ("GPU thread %d says Hello World!\n", tid);

Here’s the output:

GPU thread 0 says Hello World!
GPU thread 1 says Hello World!
GPU thread 2 says Hello World!
GPU thread 3 says Hello World!
GPU thread 4 says Hello World!

As you can see, the 5 threads are numbered 0..4 for their “thread index” value. Also,
don’t be misled by the fact that they appeared in sequential order from 0..4, because
that’s an idiosyncrasy of the printf handling in GPU kernel code. All five threads
are actually running in parallel!

Running Multiple Blocks

We’ve only had a single “block” of threads so far. Let’s try running two blocks by
changing our CPU code:

int blocks = 2; // Hooray!

int threads per block = 5;

aussie cuda hello world<<< blocks, threads per block >>>();
cudaDeviceSynchronize () ;

And we can also make each thread figure out what block it’s in using
the blockIdx “block index” variable.

David Spuler 12

Here’s our updated GPU kernel code:

__global void aussie cuda hello world()
{
int tid = threadIdx.x;
int bid = blockIdx.x;
int id = blockIdx.x * blockDim.x + threadIdx.x;
printf ("GPU block %d thread %d says Hello World!\n",

bid, tid);
}
The output is:

GPU block 1 thread 0 says Hello World!
GPU block 1 thread 1 says Hello World!
GPU block 1 thread 2 says Hello World!
GPU block 1 thread 3 says Hello World!
GPU block 1 thread 4 says Hello World!
GPU block 0 thread 0 says Hello World!
GPU block 0 thread 1 says Hello World!
GPU block 0 thread 2 says Hello World!
GPU block 0 thread 3 says Hello World!
GPU block 0 thread 4 says Hello World!

There were two blocks of five threads each, so 10 threads ran in total, and they all
ran in parallel.

Here we can see that the two blocks had a “block index” of 0 and 1, and they

printed in reverse order. Also note that the thread index was always 0..4 in both
blocks (i.e., not 0..4 and 5..9).

Finally, let’s show how to get two blocks of five threads to propetly count to 10.
The way to work out the “index” of a thread in the whole “grid” (multiple blocks),

is to use this CUDA code, which is the most common statement you’ll see every
day in CUDA C++:

int id = blockIdx.x * blockDim.x + threadIdx.x;

Note that “blockDim.x” means “block dimension” and is a builtin variable that
is the “threads-per-block” value, so it will equal 5 here.

13 CUDA C++ Debugging

Hence, this is the new GPU kernel C++ function:

__global void aussie cuda hello world()
{
int tid = threadIdx.x;
int bid = blockIdx.x;
int id = blockIdx.x * blockDim.x + threadIdx.x;
printf ("GPU index %d block %d thread %d says Hello!\n",
id, bid, tid);

Here’s the output:

GPU index 5 block 1 thread 0 says Hello!
GPU index 6 block 1 thread 1 says Hello!
GPU index 7 block 1 thread 2 says Hello!
GPU index 8 block 1 thread 3 says Hello!
GPU index 9 block 1 thread 4 says Hello!
GPU index 0 block 0 thread 0 says Hello!
GPU index 1 block 0 thread 1 says Hello!
GPU index 2 block 0 thread 2 says Hello!
GPU index 3 block 0 thread 3 says Hello!
GPU index 4 block 0 thread 4 says Hello!

Okay, so it worked! Even though it looks messy, our 10 kernels counted from 0..9
in parallel.

Why Are Blocks Needed?

Why do you need blocks to run CUDA ketnel functions on the GPU at all? I mean,
they complicate the index calculations.

Why can’t you just always use 1 block, and then specify as many threads as you
want? Then every thread could just get its thread index number from the
threadIdx builtin kernel variable. It would work properly without that weird
calculation involving, blockIdx and blockDim.

Here’s the idea for using single blocks:
int blocks = 1;

int threads = 16384; // Too many!
aussie cuda hello world<<< blocks, threads >>>();

David Spuler 14

Over 1024 threads is not allowed! Here’s a more CUD A-style use of multiple blocks
with thread sizes typically 256 or 512 threads-per-block.

int blocks = 64;
int threads = 256; // 64x256=16384
aussie cuda hello world<<< blocks, threads >>>();

Why do we do need to multiple blocks? Wouldn’t all the threads run in parallel
cither way?

Short answer: no, the GPU does not actually run all threads in parallel. It depends.

Longer answer: The answers about blocks being needed are mainly relevant to more
advanced CUDA C++ programming, but here are some:

e The GPU has hard limits on the block size (i.e., 1024).
e Shared memory with the “ shared 7 specifier has block scope.
e Scheduling on the GPU is at a block level.

Okay, so the GPU has a fixed limit on threads-per-block. But even if we could use
an unlimited number of threads in each block, we shouldn’t do so.

But why?

Shared memory is an important optimization discussed later. This faster memory
has block scope, so we need to control the block size so as to maximize this benefit
from speedy shared memory.

Scheduling is also a low-level GPU issue whereby the Streaming Multiprocessors
(SMs) only work on complete blocks. And there is an underlying scheduling issue.

The hardware scheduler tries to allocate as many blocks in parallel as it can, but
sometimes it cannot fit all of them onto a single multiprocessor, because it’s got
too many other workloads.

This refers to production usage of a GPU, where it’s overheating from doing other
important computation work (e.g., serving Taylor Swift companion bots), not just
the cold, lazy GPU under your desk that’s only been playing FortNite.

15 CUDA C++ Debugging

The scheduler on the GPU does not necessarily run all the blocks in parallel, but
has to guarantee that all the threads in a single block do. Hence, a big block will
have to wait longer for enough space to be free on the GPU, whereas smaller blocks
can get scheduled more easily.

David Spuler 16

3. CUDA for C++ Programmers

Basics of CUDA C++ Programming

CUDA C++ is similar to C++, but with many extensions and idiosyncrasies. Here
are some of the salient differences.

Parallel programming C++ features. These capabilities are the main superpower
of CUDA and the reason it exists. The idea is to take SIMD to the extreme, and
send the same computations to the GPU in massive groups (e.g., 10,000+
operations in parallel). This requires not just a syntax change, with GPU function
“ global 7 declarations and triple-angle-brackets for “<<<.>>>”
invocations, but an entirely new way of thinking about how to optimize the
algorithms.

Filename suffixes. Most programs in CUDA C++ are written with “. cu” as the
filename suffix for source code. CUDA header files often use ““. cuh” but can also
simply use “.h” or “.hpp” rather than a CUDA-specific filename. The
intermediate PTX assembly files, created by nvcc, have a “. ptx” suffix, if you like
that low-level kind of programming.

CUDA Development Tools. Some of the development tools include:

e nvcc — NVIDIA C++ compiler.

e cuda-gdb — CUDA’s gdb-based debugger.

e compute-sanitizer — CUDA’s memory-checker (like valgrind)
and three other error detection tools: racecheck, synccheck,
and initcheck.

¢ ncu— Nsight Computer CLI command-line performance profiler.

e nvprof — NVIDIA performance profiler (although deprecated).

There are various tools with graphical interface and extensive IDE integration. This
offers many ways to be productive in coding CUDA C++.

17 CUDA C++ Debugging

Differences from Standard C++

By now you’ve probably noticed that CUDA C++ programming is a lot like C++
programming, but with some extra stuff. The main things are:

e Extra #include directives for CUDA header files.
e global _ specifier (equivalently, device means device-only).
® <<< blocks, threads per block >>>kernellaunch syntax.

A lot of standard C++ code can be run on the GPU in the way that you’d expect,
such as:

e (C++ operators

e Expressions

e if statements

e Loops

® switch statements
e Types

e Local variables

e Assignments

® printf output

I don’t know what you think, but I find this quite weird! When I was learning
CUDA, I expected it to be launching special SIMD instructions and intrinsic
function calls to do vector operations. But, no, it’s more like just normal C++
programming, which makes it much easier to learn. They must have some very
smart compiler design engineers at NVIDIA working on the CUDA Toolkit (and
obviously a lot of brainy hardware engineers there, too).

Auto-included CUDA header files. An interesting and also rather pleasant
improvement to the CUDA C++ programming environment is that CUDA doesn’t
need many #include directives. Your CUDA C++ “hello world” program
doesn’t need to actually include <cuda runtime.h>or various others,
because nvce does it auto-magically for you, if it’s processing a “.cu” file. You
can call CUDA C++ APIs like cudaMemcpy and cudaMalloc without an
explicit header file include.

This is not a hidden Easter egg that Al programmers whisper about, but an officially
documented feature. The CUDA C++ programming guide explicitly says
that nvee "implicitly includes cuda_runtime.h” at the top of the source file.

David Spuler 18

Really, wouldn’t it be nice if every C++ compiler did this? Why do we need this
boilerplate at the top of every C++ program, when the compiler could almost
always guess which header files we want when it sees the functions we’ve called?

Unfortunately, even nvce doesn’t guess a header file for everything non-CUDA.
If you want to call printf, you still have to include <iostream> or <stdio.h>.
And various CUDA add-on libraries still need to be explicitly included.

Kernel Limitations. Although the GPU code does look like ordinary C++, there
are some important limitations on the device “kernel” functions that run on the
GPU.

e No return type — the kernel above has type void for a reason.
e No pass-by-reference — don’t use & parameters for kernels.

e main cannot be device code — the program always starts in the CPU host
code.

There’s quite a lot of other limitations for kernel code on the GPU, but we’ll get to
them later.

However, the host code is not restricted! There’s much fewer C++ limitations on
the host code, because it runs on the CPU. In fact, CUDA uses the underlying
platform’s C++ compiler, such as GCC, so there are a lot more things possible in
the CPU code.

CUDA Dual Programming Model

To create a CUDA program, you need parts that run on the CPU, and parts that
run on the GPU. You’re probably fairly familiar with how to compile code to run
on a CPU, and the CUDA C++ program is very similar.

But how do you write code for the GPU?

The answer couldn’t be simpler: you just write C++ in the same file. CUDA has a
“dual” programming mode in its C++ files (by which I mean its “. cu” files). The
two patts are:

e Host code — runs on the CPU
e Device code — runs on the GPU

19 CUDA C++ Debugging

Host code versus device code. Your CUDA C++ code specifies both of these
two distinct types of code. Host code runs on the CPU of the computer that “hosts”
the GPU (or GPUs), and is intended to prepare data for the GPU, process the
computed results, and other such high-level tasks. Device code is the optimized
low-level code that actually runs on the GPU in a massively parallel SIMD manner,
and it’s typically called a “kernel.”

How does the compiler know which is which? The short answer is:

e CPU host codes — the default meaning of ordinary C++ functions.

e GPU device code — extra global keyword (with double
underscores)

The only other trick is when the CPU code launches a kernel on the GPU code. It’s
like a function call, but it’s called a “launch” and it uses a special triple-chevron
syntax. A simple example of a “CPU-to-GPU” execution launch of a GPU device
function would look like this:

my gpu_kernel<<<1l,1>>>(parameters);

The two numbers inside the angled brackets are the number of blocks to launch,
and the threads-per-block. Note that advanced calls can have four parameters.

In more detail, a normal function without extra keywords is for the CPU, whereas
device code for the GPU has a new CUDA-specific keyword, the “ global ”
specifier, on the C++ function declaration. One keyword is all that’s needed to tell
the compiler to run a function on the GPU rather than the CPU.

«

There are also other specifiers: “ device ”and “ host . They can be
useful to indicate functions that run on either the GPU device or the CPU host,
and can be combined if both are true (e.g., a low-level utility function). However,
note that “ device ” GPU functions cannot be launched or called from host
code, so only “ global ” is used for kernel entry points. The meaning of
“global” is effectively that control flow can cross over from the CPU host to the
device GPU kernel function.

CUDA’s mixing of host code and device code together is sometimes called
“heterogenous computing.” A single CUDA C++ source file can contain code for
both the host CPU and the GPU device. The host code is more like the usual type
of non-GPU programming and uses mostly the standard C++ features. The device
code typically runs across multiple GPU “threads” in parallel, uses a combination
of basic C++ syntax with various SIMD builtin extensions, and you have to think
in “vectorized logic” to write these device functions.

David Spuler 20

CUDA Programming Control Flow Model

When I was first learning CUDA, I thought it would be very focused on SIMD
operations. What I mean is that adding two vectors would be done by uploading
the data for both vectors, and then sending an opcode for “add” so that the GPU
would do a parallel SIMD addition on the vectors. In other words, I thought it
would be somewhat “declarative” or like assembly language or similar to AVX
SIMD instructions on x86 chips.

Not at all!

The CUDA programming model is almost like a full CPU-based computing
environment, multiplied by a thousand, on the GPU. It works like a thousand mini-
programs running in multiple threads on the GPU. The top-level features include:

e Instructions (i.e., GPU-specific machine-code)
e Data
e Storage (for computed results)

You write an entire C++ function for each kernel computation, and then this
function gets run in parallel across lots of “threads” on the GPU. In particular, each
CUDA thread has its own versions of:

e Program counter (instruction pointer)

e Function call stack

e Variables (on the “stack” or in “registers” underneath)
e Local memory (e.g., for local variables)

You write your kernel in almost full C++ capabilities. For example, some of the
basic stuff you can use includes:

e Sequences of statements
e [f statements

e Loops

e Arithmetic expressions
e DParameter passing

e Variables

There are some limitations, however. For example, you can’t use recursion, or
overloaded operator functions, and template usage is somewhat restricted.

21 CUDA C++ Debugging

Turing completeness. If you like your obscure Computer Science theory (and
who can honestly say they don’t), you can see that this covers all of the three key
control flow capabilities:

e Sequence
e Selection
e [teration

And the fourth requiring of data storage is also covered by variables and various
layers of memory. This means that GPU threads are “Turing complete”
computation models. Hence, the GPU runs your CUDA kernel code almost like a
thousand tiny fully-complete computers, all running the same code in parallel.
Declarative that!

GPU Program Flow

A typical CUDA program has a conceptual sequence something like this:

e Initialization

e Copy data from CPU memory to the GPU

e Launch the GPU kernel (execute it)

e Copy the results back from GPU memory to the CPU
e (leanup

Let’s analyze these steps in more detail.

Initialization. The program initialization in the host code may have all the usual
program initialization, but it also usually has one more step: allocating memory on
the GPU. This is often done via the cudaMalloc function with the direction
parameter set to cudaMemcpyHostToDevice. Addresses from malloc refer to
host memory and are called “host pointers.”” Similarly, the return
from cudaMalloc points into GPU device memory and is called a “device
pointer.”

Copy to GPU memory. Copying data between the host memory and the GPU
memory uses the cudaMemcpy function. This runs in the host code, but affects
the memory on the device. The “unified memory model” that is handled by CUDA
means that an address for the GPU memory can be managed in the host code. The
host code can allocate and free memory on the GPU.

David Spuler 22

Kernel launch. The host code that does the launching of the kernel uses
the <<<...>>> triple-angle-bracket syntax. This starts the code running in the GPU.
The kernel code itself is also defined in the CUDA C++ program, as a function
witha “ global 7 specifier.

Copying data from GPU memory. Copying the result data back from the GPU
uses the cudaMemcpy function again, but with a twist. This function has an extra
parameter that specifies whether to perform a host-to-GPU or GPU-to-host
memoty copy operation. Hence, the reverse copy just uses the other parameter,
via cudaMemcpyDeviceToHost rather than cudaMemcpyHostToDevice.

Cleanup. The final program cleanup code is all of the standard program-ending
logic. One final step may be to call free for host pointers, and cudaFree to
release any device pointers with addresses of GPU memory objects, thereby
avoiding memory leaks in either host or device memory.

CUDA Parallel Execution Model

CUDA has various layers of parallelism, some of which map to hardware
components in NVIDIA GPUs, and some are more of a software abstraction.
These are relevant to the GPU portion of the C++ code, i.e., the device code. This
model specifies how many parallel invocations of the device code get launched for
your kernel.

Threads. A thread is the lowest level of compute execution. CUDA threads are
more of a software abstraction than a direct mapping to hardware.

Blocks. Multiple threads are organized into “blocks” of combined execution. Each
block has a fixed number of threads.

Grids. The “grid” is the total span of all the blocks, which contain all the threads.
Since threads-per-block is a fixed number (for each invocation, not for everyone),
the structure of all the blocks is somewhat “rectangular” in shape.

Streaming Multiprocessors (SMs). The streaming multiprocessors, sometimes
just called “multiprocessors” or “SMs,” are a top-level execution unit on a GPU.
There are not many of them, and execution of grids (i.e., multiple blocks of threads)
is allocated onto parts of a SM, or sometimes across multiple SMs on the same

CPU.

These are the four main conceptual structures: threads in blocks in a grid in a
“multiprocessor” (i.e., SM). However, there are some other terms used.

23 CUDA C++ Debugging

Warps. A warp is a group of threads, usually 32 threads on NVIDIA chips. Blocks
are actually organized into warps, each of 32 threads, so warps are a structure that
sits awkwardly between threads and blocks in size.

Clusters. NVIDIA’s H100 chip introduces a fourth major category: thread
clusters. This allows some particular programming of threads that can span
different blocks.

Why do we care about all this hardware stuff? In some sense, we don’t cate that
much about these abstractions of the GPU hardware layers when programming
CUDA, since our C++ only does a small amount of logic related to them. A lot of
the issues of scheduling execution across different threads, blocks, and cores are
hidden from us by the CUDA C++ compiler. However, there are some reasons to
pay attention.

Thread computations. The main aspect of CUDA coding is to write the C++
function for each thread (i.e., each invocation of a “kernel” in a separate thread),
and we only care about blocks, grids, and SMs because we want to be sure that
enough threads are launched to perform all of our computations in parallel. Hence,
every CUDA kernel launch involves some arithmetic computations about blocks,
warps, and threads. We need enough for full parallelism!

Sharing data. Another reason arises when transferring data between different parts
of our CUDA code. There are various different levels of memory and caches in a
GPU. Some of these memory structures are limited to within a warp, within a block
or within an SM. Hence, if we want our algorithm to share intermediate results
across different threads running different parts of the kernel, and we want to use
the fastest type of memory to achieve this, then we have to pay attention to which
threads can access which data from which other threads, via shared memory and
memory caches.

Features of CUDA C++ Programming

Non-blocking asynchronous kernel calling. When the host code calls a GPU
kernel (e.g, a function declared as global), the invocation via
the <<<..>>> syntax does not block and wait. It runs asynchronously, launching
the GPU kernel, but continuing the execution of the host code immediately after
the call. Hence, it will return before the results are available from the GPU kernel.

Maybe you want to wait until the results are available from the GPU? One way to
make the host code block to await the completion of a kernel is
the cudaDeviceSynchronize API, which blocks the host code on the CPU

David Spuler 24

until all prior threads have completed. This is a useful safety catch, but can also be
a performance slug if you’re needlessly waiting.

Unified memory model. CUDA allows programmers to use a “unified memory
model” whereby the same block of memory is available to both host and device
code. The same memory address space is abstracted so that both the CPU code and
the GPU kernels can access the same memory. This simplifies some aspects in
sharing data between the main program and the GPU acceleration kernels. The
same memory can even be shared across multiple GPUs, but that’s jumping ahead
a little bit.

Device memory management. The GPU memory can be managed via the host
code using builtin functions. The main builtin functions for managing GPU device
memory ate:

e cudaMalloc — allocated GPU memory (equivalent to malloc).

e cudaFree — de-allocate GPU memory (equivalent to free).

e cudaMempcy — copy bytes in device memory (i.e., GPU memcpy).
e cudaMemset — set all bytes to the same value (i.e., GPU memset).

There isn’t a cudaCalloc function to zero the memory, but you can
combine cudaMalloc with cudaMemset to create your own.

Memory transfer costs. An important point in using CUDA code for Al engines
is that various Transformer inference algorithms are memory-bound, rather than
compute-bound. Generally speaking, for inference tasks, the initial “prefill” phase
(or “prompt processing”) before the first token is emitted is compute-bound (i.e.,
a very busy GPU), whereas the subsequent decoding phase of token-by-token
generation (i.e., “autoregressive decoding”) is memory-bound.

Hence, the cost of transferring data between the different memory cache levels, or
sending data up to the GPU, or pulling the results down from the GPU to the CPU,
can be a bottleneck. Although the unified memory model is very convenient, it
hides a lot of the data transfers between the CPU and GPU code, which must be
optimized for faster Al kernels.

CUDA C++ Syntax

CUDA C++ is an extension of C++ syntax, and many features are the same. The
CUDA extensions are many, mostly aimed at parallel programming support.
However, CUDA lags in the adoption of some of the advanced standard features,
so not everything is available.

25 CUDA C++ Debugging

Comments. Comments are supported via the “//” single-line and /*...* / multi-
line C++ comment styles. As with C++, the /*..*/ comments do not nest.

Host code versus device code. The syntax is slightly different for the (non-GPU)
“host code” versus the GPU-executed “device code” in a CUDA program.

Device code for the GPU is specified via two syntax differences:
(@) “ global ”identifier, which declares a GPU-executable function, and

(b) “<<<..>>>” triple-angle-bracket syntax, which is akin to calling the GPU
function (with parameters).

Starting execution on the GPU is conceptually more involved than a function call
in a sequential C++ program, but the invocation of a kernel on the GPU is the
effect. The “ global 7 specifier allows the function to be called not just from
the host, but also from the GPU itself (i.e., from the host or the device). There is
also “ device 7 for a GPU function only callable from the GPU, and
“ host 7 for a non-GPU host-executed function only callable from the host
program.

Note that each of these function types runs on either the host or the device, but
not both. However, you can declare a function as both “ device ” and
“ host__”and there’s a preprocessor macro “ CUDA ARCH _” which can be
used to define different blocks of code that execute on the host versus the GPU,
or indeed for different types of GPU architectures.

The default meaning for a function without any specifier is the same as
“ host__” where the function only runs on the CPU (not the GPU) and can
only be called from the host code.

Hence, you don’t usually need to use any of the specifiers except for the tight GPU
kernel code.

inline functions. There are extra specifiers that control inlining optimizations of
functions:

° forceinline
e noinline
° inline hint

David Spuler 26

Builtin variables. There are various builtin variables or constants that are available
to device programs.

e threadIdx — thread index in a block

¢ DblockIdx — blockindexin a grid

e gridDim — grid dimensions (blocks-per-grid)

¢ DblockDim — block dimensions (threads-per-block)

e warpSize — size of a warp (how many threads; usually 32)

Memory address specifiers. The CUDA memory model has an extended, shared
address space. There are various C++ specifiers that can be applied to variables or
addresses:

e device

e constant

e shared

e grid constant
e managed

Pointer Specifiers. The CUDA language supports various extended specifiers for
pointers:

e restrict__ for non-aliased restricted pointers to allow the auto-
vectorizer to do more.
e const can be used at two levels in pointer declarations.

Thread synchronization functions. There are various ways to synchronize
parallel execution of multiple threads. The builtin functions include:

e cudaDeviceSynchronize ()
e synchthreads()

e syncwarp()

Device time functions. These functions are GPU equivalents of the standard
C++ clock timing functions:

e clock()
e clocko4d ()

27 CUDA C++ Debugging

Kernel Function Limitations

There are a number of limitations when writing GPU kernels in CUDA C++. Some
limitations apply to the initial kernel launch and some apply more generally to any
code running on the GPU. Note that the GPU-executed device portion of your
C++ code is the functions with _global or device specifiers.

Some of the limitations of kernel launches and device functions include:

e Stack memory size is limited to 32K (for function parameters and local
variables).

e DPass-by-reference disallowed for kernel launches.
e Variable-argument functions disallowed in kernel launches.

e Copy constructor calls for kernel launches — bitwise-copy applies to
object parameters.

e staticlocal variables disallowed in any kernel functions (use shared
memory instead).

e Global variables not available in the normal sense (use global memory,
constant memory, or shared memory instead).

Some other capabilities are somewhat limited in device code:

¢ Function pointers

e Recursion (not recommended anyway!)
e friend functions

e operator functions

e template usage (some limits, but also powerful).

That’s not even the full list, but there are far more C++ features that are supported,
compared to these restrictions (e.g., basic operators, mathematical functions,
control flow, etc.). Overall, these limitations are not central to coding up an
algorithm in CUDA’s version of SIMD parallelism on a GPU. Most of these are
coding features that you can live without!

David Spuler 28

4. CUDA Emulation

CUDA CPU Emulation

Is it possible to run a CUDA program without a GPU? This is desirable for playing
around to learn CUDA, or teaching a class of students about CUDA programming,

There was a CUDA emulator as part of the main toolkit, but it’s since been
removed. It’s only supported as far back as the CUDA Toolkit 3.0 version, using a
“~deviceemu” option.

Once upon a time there was also a PGI compiler that ran CUDA programs on a
CPU. This company was acquired by NVIDIA in 2013, and the PGI compiler has
since been merged into the NVIDIA HPC SDK and the PGI name and products
were subsequently retired.

However, here’s a solution in the cloud: Google Colab offers a free tier whereby
you can run CUDA C++ code on a virtual machine. It’s not really an “emulation”
but more like a full GPU for free up in the cloud.

You can set up a Linux virtual environment with a real GPU attached and CUDA
installed, and it’s free for low-end T4 GPUs (as of this writing). You have to pay
for some more advanced capabilities like A100 GPUs, but the low-end tier is fine
for learning and experimenting with CUDA. I’'ve described how to set that up
further below.

CUDA C++ Emulation Library

At Aussie Al, we have implemented a CUDA wrapper library in basic C++ for
emulation of a very small subset of CUDA on CPU. This is primarily useful as a
learning and teaching tool, but does not support enough CUDA primitives for
production usage. Find more details at https://www.aussieai.com/cuda/projects.

The idea is to run basic CUDA C++ code without a GPU, so that they can be
tested in non-CUDA platforms like Microsoft Visual C++ on Windows and GCC
on Linux.

29 CUDA C++ Debugging

https://www.aussieai.com/cuda/projects

The main advantages:

e No GPU needed!
e Does not need the CUDA Toolkit installed.
e Non-CUDA C++ compiler support.

This library is primarily for educational and basic testing purposes. You can run
some simple kernels in a simple C++ environment, and learn some of the basics.
The emulation will also detect some common failures in your basic CUDA kernels,
as part of the emulation mode on CPU.

Main features. The emulator works by intercepting the CUDA primitives in basic
C++, and then calling emulation versions of them.

The main capabilities include:

e Emulates several basic CUDA primitives (e.g., cudaMalloc)

e Runs in standard C++ on Microsoft Visual Studio on Windows
and gcc on Linux.

e Launches CUDA kernels in emulation mode that runs the threads
sequentially (simpler to debug).

e Detects various common CUDA primitive kernel errors (e.g., memory
errors, double deallocation).

e Detects common kernel programming errors (e.g., array bounds violations
in threads).

How it works. The basic architecture for the emulation library is:

e Source code interception in a basic C++ compiler (i.e., not NVCC).

e Preprocessor macro interception of CUDA primitives (e.g., cudaFree).

e Emulation of these basic CUDA primitives in simplified C++ coded
versions.

e Preprocessor macro interception of C++ primitives (e.g., malloc, free).

e Link-time interception of C++ new and delete operators.

e Various error checks performed inside the emulated C++ and CUDA
C++ functions.

David Spuler 30

Limitations. This emulation library is not a production-grade CUDA emulator by
any means! Its value is more in the educational domain for learning CUDA basic
concepts. Some of the main problems include:

e Limited subset of CUDA APIs are intercepted.

e Most CUDA library calls are not emulated.

e Syntax is not identical (e.g., the <<<...>>> kernel launch syntax must be
modified).

e Synchronization across threads in CUDA kernels is not propetly emulated.

e Shared memory usage in threads is not emulated.

This emulation library may be extended or modified. Feel free to use it to learn
CUDA with my best wishes on your success.

Running CUDA in Google Colab

An alternative to using CUDA Toolkit on your own machine is to run it in the
cloud on someone else’s GPU. Google Colab is a free online environment for
running and testing code in a virtual Linux box.

It’s not really an “emulation” but it can feel like it. You can test CUDA C++
programs using nvce compiler and real GPU hardware somewhere underneath the
virtual layers.

And did I mention: for free!
The steps are basically:

Open a new notebook in Google Colab

Change the “runtime” to be a GPU (e.g., T4 GPU)

Upload a CUDA C++ file to Google Colab (e.g., “testl.cu”)
Run the nvce compiler.

Run a.out (the executable)

Save your notebook.

SRR ol

More details on each step are given below.

31 CUDA C++ Debugging

1. Open a new Google Colab virtual notebook. You need to follow these steps:

¢ You'll need to be signed in to your Google Gmail account, or create a
Google account.

e Navigate your browser to Google Colab:
https://colab.research.google.com

e C(lickonFile > New Notebook

2. Change the Notebook’s Runtime to GPU. The steps in more detail:

e (lick on Runtime > Change runtime type

e Choose a GPU, such as “T4 CPU” (free). Or you can pay more for A100
GPU environment. But you don’t need more than the free one to test
simple CUDA C++ code.

e C(Click “Save” to confirm your choice of GPU mode.

e Now you have a virtual Linux box which is setup for GPU, including with
the CUDA Toolkit installed virtually.

e Youdon’t need to do any steps to install CUDA or nvcc.

3. Upload a CUDA C++ file. The steps to upload your source code file:

e Store your CUDA C++ code on your PC in a single file (for simple
examples), ready for upload.

e Ensure the file suffix is “. cu” or “. cpp” (e.g.,, testl.cu)

e Click on the “Folder” icon in Google Colab (an icon on the LHS vertical
panel).

e This will expand out a view of your virtual files and folders.

e By default, you are probably in the “/content” directory on the virtual
Linux filesystem.

e (lick on the “Upload” icon (top LHS icon, with an up arrow on top of a
file icon).

e Choose your “testl.cu” file from your local PC drive.

e Confirm your upload choice in the file browser (e.g., click “Open” on
Windows).

e The newly uploaded file should, after a brief delay, appear in the files and
folders view on Google Colab.

David Spuler 32

https://colab.research.google.com/

4. Run nvcc to compile your CUDA C++ file. Here are the steps:

e Create a new “+Code” cell in Google Colab.
e Edit the new cell to have a command like: !nvcc testl.cu

e Note that “I” is required, and means to run the command in a Cell. Also,
use lower case letters.

e Note that “nvecc” in lower case letters is the command for the NVIDIA
C++ Compiler NVCC).

e Click on the “Play” (triangle) button or “run cell” to execute this new cell.

e This should run the nvec CUDA C++ compiler to create your executable
file into “a.out”.

e Wait for the Cell to finish executing (i.e., wait for the button icon to stop
spinning).

e After a brief delay, you should see a new file called “a.out” appearing in
the Files/Folders view.

Failed compilation. If your CUDA C++ code has a compilation
error, nvcec won’t create an executable file, and you’ll get some error messages
instead appearing inside the cell’s output area.

e If there’s not a new a.out file in the Folder view, nvce probably failed
to compile, because of a syntax error in your CUDA C++ code. Review
the warnings from nvcc.

e Edit your CUDA C++ source file to fix any errors.

® You can edit it in the virtual environment by double clicking on the
filename. This opens a text editor in your Google Colab notebook, but
note that you’ll lose any changes if your notebook shuts down.

e Alternatively, you can re-edit the file on your PC and re-upload the edited
file to Google Colab.

e Re-run the nvee cell to compile the newly edited CUDA C++ file and
create “a.out”.

5. Run your a.out executable.

e Create another “+Code” cell in Google Colab.
e Use command: 'a.out

e Note that “!”” means run the command, and “a . out” in lower case letters
is the name of the executable.

e C(lick on the “Play” (triangle) button to run the cell.
e The output from your CUDA C++ program should appear.
e Hooray!
33 CUDA C++ Debugging

6. Save your notebook (optional). Note that your uploads to Google Colab are
not automatically saved. That’s too much to expect for a free service. It will
eventually time out, and your uploaded files will also disappear from your notebook
folders if you close your browser. If you’ve edited these files inside Google Colab,
you lose your changes.

One partial fix is to create backups of your notebook, either on your PC or in
Google Drive. There is a “Download” option for your entire notebook. For Google
Drive backups, when inside Google Colab, use the “File > Save a copy in
Drive” menu. However, this doesn’t seem to save and restore your uploaded files,
but only the “notebook” part with all the cells.

A better fix to save all files and also avoid manually backup and restore of your
entire notebook is to map Google Drive into your folder hierarchy. The idea is to
“mount” your Google Drive files as a subdirectory inside your Colab notebook.
Then you can save the files into that folder in Colab, and they’ll then be stored in
Google Drive. Example command to run:

from google.colab import drive
drive.mount ('/content/gdrive")

After this, if you upload or edit files in the “gdrive” folder, then they’re in your
Google Drive.

You can upgrade to a paid version to get the capability to store a notebook in your
account. Alternatively, you can just repeat the steps each time you navigate to
Google Colab, assuming that your CUDA C++ files are being edited on your local
box, and not virtually in the notebook.

Troubleshooting Problems on Google Colab

I had a few problems with the CUDA source file getting uploaded to the wrong
virtual directory in Google Colab, sometimes ending up in the parent directory
(probably user error). This result was this sort of error from nvece:

cclplus: fatal error: testl.cu: No such file or directory
compilation terminated.

Maybe you’ve used the wrong filename, or maybe it’s in a different subdirectory.

David Spuler 34

You can check where your “testl.cu” file is in the file hierarchy on the LHS by
clicking on the Folder icon.

To see your current directory where nvcc is running in a Cell, create a new Code
cell with “!pwd” command and run it (“pwd” is the Linux command for “print
working directory”).

You can also run “! 1s” (without any quotes) to list the files in the current working
directory in your virtual notebook.

If you somehow get nvcce running in “/content” but the “. cu” file in a higher
directory, use this command in the cell to get nvcce to find the CUDA file in the
parent directory:

'nvece ../testl.cu

You might also get this type of error message:

nvcc fatal : Don't know what to do with 'testl.cu.txt'
This error is the wrong file suffix given to nvcc (e, “. txt” rather than “. cu”
here), which is a reminder of the joyful experience of Windows protecting me from
things.

It’s hard to rename the file suffix in File Explorer from “.txt” to “.cu” and
usually I have to resort to the DOS “ren” command in a command shell, but I

digress.
No output appeared. Did any output appeat?

If absolutely nothing appears from your CUDA “hello world” program (i.e.,
with printf in the GPU kernel), and there’s no compile errors from nvcce, and
no errors or runtime output from a. out, maybe you’ve made a common mistake
of not calling cudaDeviceSynchronize, as discussed earlier in the chapter.

At the risk of repeating myself, CUDA kernel launches are asynchronous
and main does not wait for your GPU code to finish, unless you force it to. Also,
any printf inside a CUDA kernel on the GPU does not ever appear if the CPU
code has already exited.

35 CUDA C++ Debugging

The code has run so fast that it all finished before any output got generated
propetly, so it shows nothing.

The solution is to add a call to cudaDeviceSynchronize after the kernel
launch, or at the end of main, which forces the CPU to wait for the GPU kernel
to finish.

David Spuler 36

S. Debugging Simple Kernels

Grid Dimensions

One of the most common parts of a kernel is to check its own position in the grid.
The builtin variables to use are:

e gridDim — grid dimension (how many blocks in the grid)

e blockDim— block dimension (how many threads per block)
¢ DblockIdx — blockindex (in a grid)

e threadIdx — thread index (in a block)

Each thread in a grid has a unique pair of values for the block index and thread
index.

The typical CUDA idiom for the starting offset into a linear grid looks like this:

int starti = blockDim.x * blockIdx.x + threadIdx.x;

The above computation has a unique value in each thread, which ensures that each
thread is working on a different index, such as when processing a vector or other
linear array.

Note that the thread and block index values start at zero, rather than one, like C++
array offsets. The thread index ranges from zero to blockDim.x~-1, and the block
index ranges from zero to gridDim.x~-1. These values are different within each
thread (or block), and also stay constant within each thread until completion.

Dimension values are non-zero and fixed during execution of a thread. Neither the
block dimension (threads-per-block) nor grid dimension (blocks-per-grid) can be
zero.

All blocks in a grid have the same number of threads, so these dimension values

should be the same for all of the threads executing a given kernel, and not change
while executing the kernel.

37 CUDA C++ Debugging

For a fixed-size operation on an Al model, these builtin dimension functions could
actually be replaced by a numeric constant. However, this micro-optimization is not
usually worth doing. The optimizer in the nvcc compiler or the ptxas assembler
is presumably handling this behind the scenes anyway.

The kernel in each thread may not need to know this, but the total number of
threads in a grid can be calculated by multiplying gridDim (how many blocks in
the grid) and blockDim (how many threads per block):
int total threads = blockDim.x * gridDim.x;

Usually, the “. x” attribute is accessed from these builtin variables to get the value.
However, these variables are all objects of type “dim3” and have three
parameters: x, y, and z.

The most common type of grid is a “linear grid” which has an x value, but

the v and z values are zero. However, advanced grids can be two-dimensional or
three-dimensional, with non-zero values for y and/or z.

One-Dimensional Vector Kernels

Let’s consider a vector addition kernel doing an in-place operation:
y =y + x

There are many ways to do so with different kernel functions:

e Single addition per kernel

e Single addition with a protective if statement
e Single block with a block-stride loop

e Looping over a strip

e Looping with a general grid stride

Generally, the main way that experienced CUDA programmers will handle this is a
“orid stride” loop. But let’s have a look at some of the other methods.

David Spuler 38

Single Operation Kernel

In this simple type of kernel, each thread does the addition on a single vector
element. No loops. The main point is to launch enough threads for cover all
the n elements in the vectors.

__global

void aussie vector add(float *x, float *y, int n)

{
int id = blockDim.x * blockIdx.x + threadIdx.x;
y[id] = x[id] + y[id];

}

int threads per block = 256;
int blocks = n / threads per block;
aussie vector add<<< blocks, threads per block >>>(x, y, n)

Bug! This code actually has an error if n is not an exact multiple of 256, due to
integer division truncation. We launch one block too few, and the last few “extra”
elements of the vectors won’t get added.

One fix is to ensure we account for the extra cases to launch one more block, with
the modified computation:

int blocks = (n + threads per block - 1) / threads per block;

But this has another insidious and non-obvious bug, as discussed below.

Kernel Safety Checks

The problem with the basic single-operation kernel show above is that sometimes
the value of 1d exceeds n. This occurs because if n is not an exact integer multiple
of “threads per block” value. The above code launches one more block to
handle the extra cases, but the problem is that it launches 256 threads for that block,
even if there aren’t 256 extra cases. These threads don’t know any better, and try to
run, with the index computation:

int id = blockDim.x * blockIdx.x + threadIdx.x;

In these problematic threads, this creates an index value for id that is larger than
or equal to n. Then the accesses y[1i] and x[1] are array bounds violations in
global memory.

39 CUDA C++ Debugging

Kaboom!

One way to solve this is to always ensure the n is a multiple of a reasonable block
size, such as 256. Note that this should be a multiple of the warp size, which is
usually 32.

This is quite a viable plan in Al, because most of the Transformer operations can
be chosen so that vectors, matrices and tensors have fixed dimensions that are
multiples of 32.

That trade-off comes with some risks, and defensive coding says to do more to
protect against crashes. Hence, another safer solution to the array bounds error is
to add a protective if statement in every thread:

__global void aussie vector add(float *x, float *y, int n)

{
int id = blockDim.x * blockIdx.x + threadIdx.x;

if (id < n) { // Safety!
yl[id] = x[id] + yl[id];

}

int threads per block = 256;
int blocks = (n + threads per block - 1) / threads per block;
aussie vector add<<< blocks, threads per block >>>(x, y, n)

All of the threads now must execute an extra “if” comparison. In the problematic
threads, the i f statement ensures that no work is done in the extra threads. This is
a waste of GPU resources in launching unnecessary threads, but at least it doesn’t
crash.

One possible compromise solution is to change the if statement to an assertion,
which you allow to run live during test runs:

__global void aussie vector add(float *x, float *y, int n)

{
int id = blockDim.x * blockIdx.x + threadIdx.x;

assert (id < n);
yl[id]l = x[id] + yl[id];

This will actually prevent the crash because the builtin kernel assert primitive
stops the thread. However, it’s probably not fault-tolerant for the entire application,
because the kernel launch will return a cudaErrorAssert runtime errot.

David Spuler 40

Then, for performance reasons, you can remove the assertions from production
builds by defining the special macro NDEBUG and ship that to customers (fingers
crossed!). You should also add some assertions at the kernel launch to ensure that
the total number of threads you need is an exact multiple of the block size:

[}

assert(n % threads per block == 0);

Note that there’s no way in CUDA to launch blocks of different sizes. We can’t
launch most of the blocks with a fixed thread size like 256, and then launch one
extra block with a few extra threads. If we try to work around this by launching two
kernels with the same function (i.e., the main blocks and one “extra” block), the
block index (blockIdx) and block dimension (blockDim) will have values that
are wrong in the threads for the second one. Hence, we need to either guarantee at
the algorithmic level an exact multiple of the thread size (fast), or add safety checks
inside the kernel (slow).

Two-Dimensional Matrix Kernels

Things get trickier in two-dimensional kernels, such as for matrix operations. Let’s
look at a matrix addition operation, which generalizes the vector addition idea.

Vector kernels need only use the “. x” attributes, but matrix kernels also need to
look at the . y” values as well. Here is the two-dimensional index calculation:

int x = blockIdx.x * blockDim.x + threadIdx.x;
int y blockIdx.y * blockDim.y + threadIdx.y;

However, you can’t do this with dynamic array sizes:
m3[x][j] = ml[x][y] + m2[x][y];
On the other hand, this array syntax works for fixed-size matrices, if the dimensions

are known at compile-time. And if you can guarantee that, the above operation
would very fast, so don’t let me discourage youl!

Instead, for dynamic arrays in two dimensions, you need to “linearize” the matrix
offsets into a single flat one-dimensional array, which contains all the matrix
elements, ordered one row at a time.

The calculation is:

int id = x + y * nx;

41 CUDA C++ Debugging

Our full kernel for matrix addition looks like this:

~_global void matrix add(
float *m3,
const float *ml,
const float *m2,
int nx, int ny)

int x = blockIdx.x * blockDim.x + threadIdx.x;
int vy blockIdx.y * blockDim.y + threadIdx.y;
int id = x + y * nx; // Linearize

m3[id] = ml[id] + m2[id];

Again, we have a problem with unsafe array bounds violations if there are extra
threads launched.

The safer version is:

__global void matrix add safe(
float *m3,
const float *ml,
const float *m2,
int nx, int ny)

int x = blockIdx.x * blockDim.x + threadIdx.x;
int v = blockIdx.y * blockDim.y + threadIdx.y;
if (x < nx && y < ny) {

int id = x + y * nx; // Linearize
m3[id] ml[id] + m2[id];

This is safe but marginally inefficient if there are extra cases.
As before, there are other options such as using assertions, or being extra careful

to ensure that our matrix dimensions are fully consistent with the grid dimensions,
so that there aren’t any extra threads.

David Spuler 42

Warps and Lanes

So far, we’ve been talking about blocks and threads, but let’s add another wrinkle.
There’s a reason that the number of threads should be divisible by 32: warps.

What do you call a group of 32 threads?

No, it’s not a block, but a “warp.” Typical CUDA blocks run multiple warps, each
containing 32 threads, which is why block sizes need to be a multiple of the warp
size, which is 32,

Hence, our revised terminology is:

e Threads — single execution unit.

e Warp — 32 threads.

e Block — multiple warps (of 32 threads each).
¢ Grid — multiple blocks.

The GPU kernel code sometimes needs to know the details of which warp it’s in,
just like we’ve already seen it work out its thread offset. You can calculate which
warp a kernel thread is in by examining the thread index in a block.

int warpid = threadIdx.x / 32;

If the block size is 64 threads, there are 2 warps, and the first 32 threads will get 0
here, and the latter 32 threads will get 1 as the warp index.

Lanes. Within a warp, the 32 threads are actually numbered 0..31. These are called
the “lanes” for a warp, and you can calculate each thread’s lane from the thread

index using the integer remainder operator:

int laneid = threadIdx.x % 32;

This will compute the “lane” from 0..31. Each thread in a warp has a different lane,
but multiple threads across a block can have the same lane.

If you want to be cleaner in your coding, use a named constant for the warp size:

const int WARP THREADS = 32;
int warpid = threadIdx.x / WARP_THREADS;
int laneid = threadIdx.x % WARP_THREADS;

43 CUDA C++ Debugging

Or if you want dirtier coding that bets against the compiler design engineers, you
can needlessly micro-optimize:

int warpid threadIdx.x >> 5;
int laneid = threadIdx.x & O0x1F;

Lanes are not needed for simple kernels, but they are very important when doing
more complex kernels. For example, using the warp shuffle operations to optimize
a kernel to avoid shared memory will require careful tracking of the lane index
within each of the threads.

David Spuler 44

6. Debugging Strategies

General Debugging Techniques

A lot of the work in debugging CUDA programs is nothing special: it’s just C++
mistakes. Most of the errors in coding are ordinary, boring coding errors that every
C++ programmer is prone to.

These can occur in the host code and the device code, although problems in the
host code are more common.

On the other hand, if you get a bug in a CUDA C++ kernel, it’s usually a nasty one.
And there are a variety of ways to go wrong in handling pointers and addresses in
the kernel, from basic beginner mistakes to traps that can catch the experienced
CUDA practitioner.

The best way to catch a bug is to try to make it happen eary.

We want the program to crash in the lab, not out in production. In this regard,
some of the best practices are about auto-detecting the failures in your code, rather
than waiting for them to actually cause a crash:

e Check every CUDA API return code (even the harmless functions that can
“never” fail).

e Use macro wrappers to help handle errors.

¢ Add debug wrapper functions and enable them while testing.

e Run compute-sanitizer on your code regulatly.

e Thrash the code in many ways in the nightly builds.

If you mess up, and a bug happens in the production backend of your Al training
run, I suggest this: blame the data scientists. Surely, the problem was in the training
data, not in my perfect CUDA C++ code. And if that doesn’t work, well, obviously
the GPU was overheating.

45 CUDA C++ Debugging

Very Difficult Bugs. Some bugs are like roaches and keep coming out of the
woodwork. General strategies for solving a tricky bug include:

e (Can you reproduce it? That’s the key.
e Write a unit test that triggers it (if you can).
e Try to cut down the input to the smallest case that triggers the fault.

e Gather as much information about the context as possible (e.g., if it’s a
user-reported error).

Your debugging approach should include:

e Run compute-sanitizer to check for CUDA memory glitches.
e Run the other compute-sanitizer tools (it has four modes).

e Think about what code you just changed recently (or was just committed
to the repo by someone else!).

e Memory-related failures often cause weird errors nowhere near the cause.

e Review the debug trace output carefully (i.e., may be that some other part
of the code failed much earlier).

e Step through the code in cuda-gdb bout ten more times.
e Run a static analysis (“linter”) tool on the code.
e Run an Al copilot debugger tool. I hear they’re terrific.

e Refactor a large module into smaller functions that are more easily unit-
tested (often you accidentally fix the bug]).

If you really get stuck, you could try talking to another human (gasp!). Show your
code to someone else and they’ll find the bug in three seconds.

Serializing Kernel Launches

Both beginner and advanced CUDA C++ programmers can make debugging easier
via serialization of thread execution. Some basic strategies are:

e Serialize the kernel launches.
e Launch only one thread (i.e., kernel<<<1l,1>>>)

Serialized kernel launches. The advantage of a serialized kernel launch is that
only one kernel is running at a time.

David Spuler 46

This doesn’t mean that the threads are running sequentially within that one kernel,
but at least you don’t have two things happening on the GPU at once. This is a
great help in localizing the cause of any CUDA Runtime errors, which can come in
asynchronously from any active kernel.

Serializing kernel launches is possible in several ways. One simple way is to manually
add a call to cudaDeviceSynchronize immediately after every kernel launch.
Since beginner programmers often already do this in their code, it’s not going to
add much benefit to a debugging session in the learning lab.

CUDA kernel launches are usually asynchronous, but you can make them
synchronous or “blocking” using the settings to auto-serialize every kernel launch.
You can set the environment variable “CUDA LAUNCH BLOCKING” to 1.

cuda-gdb serialized kernels. There are additional options when debugging your
code in the cuda-gdb symbolic debugger. There are various flags you can set
within an interactive debugging session. The one to serialize all kernel launches so
they are “blocking” is to enable the “launch_blocking” setting:

set cuda launch blocking on

Another useful cuda-gdb option is to set an auto-breakpoint on every kernel
launch in your program with the “break on_ launch” setting.

The command is:
set cuda break on launch application

Single-thread kernels. Launching only a single thread
with kernel<<<1,1>>>is also not really for beginners. If your kernel is really
simple, such as a basic vector addition with one “+” operation on a single element,
then your program simply won’t work anymore. If you run only one thread, your
kernel will only process one vector element.

The advice to launch a single thread is more relevant to advanced kernels that use
a grid-stride loop. A single kernel like that will check the value of blockDim. x,
which will now be 1, and will adjust the loop to iterate over every element of a
vector. But, again, using a grid-stride loop is not for beginners.

47 CUDA C++ Debugging

Localizing the Error

One of the basic techniques in debugging for large and complex CUDA programs
involves localizing the error. The problem arises because of these factors:

e CUDA kernel launches are asynchronous, so the host code keeps running.
e The CUDA Runtime API does not report GPU kernel errors immediately.
e Multiple kernels may be running in parallel.

The result of asynchronous kernel launching is a weird sequence, whereby a GPU
error report can come back to the host code at any time. This assumes that the CPU
kept going after launching the kernel launch, rather than blocking on
a cudaDeviceSynchronize call

Here’s an example sequence of events:

e Host code launches a kernel (triple chevrons and all that).

e The CPU code keeps moving ahead (because the launch is non-blocking).
e The device code for that kernel starts running on the GPU.

e Stuff happens (on both CPU and GPU).

e An error occurs in the GPU kernel (for some reason).

e The GPU cannot interrupt the host code on the CPU.

e Instead, the GPU buffers the error code.

e The next call to the CUDA Runtime library on the host will return this
error code.

Hence, there’s some weird problems:

e The error code might cause a failure in some CUDA APIs that you think
should never fail
(e.g., cudaSetDevice, cudaGetDeviceProperties, or whatever).

e The error code might appear to be from setting up a new kernel
(e.g., cudaMemcpy fails), but in fact, it’s an error from the prior kernel
launch.

e The error code might occur after a second kernel is launched, and you
might think it’s from the second kernel, when it’s actually from the first
kernel.

David Spuler 48

Random Number Seeds

Neural network code often uses random numbers to improve accuracy via a
stochastic algorithm. For example, the top-£decoding uses randomness for
creativity and to prevent the repetitive looping that can occur with greedy decoding.
And you might use randomness to generate input tests when you’re trying to thrash
the model with random prompt strings.

But that’s not good for debugging! We don’t want randomness when we’re trying
to reproduce a bug!

Hence, we want it to be random for users, but not when we’re debugging. Random
numbers need a “seed” to get started, so we can just save and re-use the seed for a
debugging session.

This idea can be easily applied in the code for old-style rand/srand functions ot
to all the newer <random> libraties like std: :mt19937 (stands for “Mersenne
twister”).

Seeding the random number generator in old-style C++ is done via the “srand”
function. The longstanding way to initialize the random number generator, so it’s
truly random, is to use the current time:

srand (time (NULL)) ;

Note that seeding with a guessable value is a security risk. Hence, it’s safer to use
some additional arithmetic on the time return value.

After seeding, the “rand” function can be used to get a truly unpredictable set of
random numbers. The random number generator works well and is efficient.

A generalized plan is to have a debugging or regression testing mode where the seed
is fixed.

if (g _aussie debug srand seed != 0) {
// Debugging mode
srand(g_aussie debug srand seed); // Non-random!
}
else { // Normal run
srand (time (NULL)) ;
}

49 CUDA C++ Debugging

The test harness has to set the global debug variable:
g_aussie debug srand seed

This is set for a regression test. For example, either it’s manually hard-coded into a
testing function, or it could be set via a command-line argument to your test harness
executable, so the program can be scripted to run with a known seed.

This is better, but if we have a bug in production, we won’t know the seed number.
So, the better code also prints out the seed number (or logs it) in case you need to
use it later to reproduce a bug that occurred live.

if (g _aussie debug srand seed != 0) {
srand(g_aussie debug srand seed); // Debug mode
}

else { // Normal run

long int iseed = (long)time (NULL) ;

fprintf (stderr, "INFO: Random number seed: %1d 0x%1x\n",
iseed,
iseed

)

srand (iseed) ;

An extension would be to also print out the seed in error context information on
assertion failures, self-test errors, or other internal errors.

There’s one practical problem with this for reproducibility: what if the bug occurs
after a thousand queries? If there’s been innumerable calls to our random number
generator, there’s not really a way to reproduce the current situation.

One simple fix is to instantiate a new random number generator for every query,
which really isn’t very expensive.

David Spuler 50

Making the Correction

An important part of the debugging phase that is often neglected is actually making
the correction. You’ve found the cause of the failure, but how do you fix it? It is
imperative that you actually understand what caused the error before fixing it; don’t
be satisfied when a correction works and you don’t know why.

Here are some thoughts on the best practices for the “fixing” part of debugging:

e Test it one last time.

e Add a unit test or regression test.

e Re-run the entire unit test or regression test suite.
e Update status logs, bug databases, change logs, etc.
e Update documentation (if applicable)

Another common pitfall is to make the correction and then not test whether it
actually fixed the problem. Furthermore, making a correction will often uncover (or
introduce!) another new bug. Hence, not only should you test for this bug, but it’s
a very good idea to use extensive regression tests after making an apparently
successful correction.

Level Up Your Post-Debugging Routine. Assuming you can fix it, think about
the next level of professionalism to avoid having a repetition of similar problems.
Consider doing followups such as:

e Add a unit test or regression test to re-check that problematic input every

build.

e Write it up and close the incident in the bug tracking database like a Goody
Two-Shoes.

e Add safety input validation tests so that a similar failure is tolerated (and
logged).

e Add a self-check in a C++ debug wrapper function to check for it next
time at runtime.

e Is there a tool that would have found it? Or even a grep script? Can you
run it automatically? Every build?

51 CUDA C++ Debugging

As with all applications, there’s another level needed to get the code out the door
into production. Some of the issues for fully production-ready CUDA C++ code
include:

e Validate function parameters (don’t trust the caller or the user).

e Check return codes of all CUDA primitives.

e Handle memory allocation failure (e.g., graceful shutdown).

e Kernels should correctly scale for large values (e.g., vector dimensions).
e Choose block/thread sizes for best occupancy

e Don’t exceeding GPU device specifications.

e Add unique error message codes for supportability

Let’s not forget that maybe a little testing is required.

High-quality coding requires all manner of joyous programmer tasks: write unit
tests, warning-free compilation, static analysis checks, add assertions and debug
tracing, run cuda-memcheck, write useful commit summaries (rather than “I
forget”), don’t cuss in the bug tracking record, update the doc, comment your code,
and be good to your mother.

David Spuler 52

7. CUDA Debugging Tools

CUDA Tools Overview

Compiler and IDE tools for programming CUDA include:

e NVIDIA C++ Compiler NVCC) — the nvce command-line compiler.

e Nsight Eclipse Edition — integration with the Eclipse IDE.

e Nsight Visual Studio Edition (VSE) — CUDA’s Microsoft Visual Studio
integration.

e Nsight Visual Studio Code Edition (VSCE) — Visual Studio Code
integration.

Debugging tools include:

e cuda-gdb — command-line debugging on Linux (very similar to gdb).

e Compute Sanitizer — command-line debugging tool with four sub-
tools: memcheck for ~ memory debugging, racecheck for race
conditions, synccheck for synchronization checking, initcheck for
initialization checks.

e cuda-memcheck — discontinued tool, replaced by compute-
sanitizer and its memcheck default tool.

Optimization and performance profiling tools include:

e NVIDIA Visual Profiler — performance profiling with a GUI interface.

e Nsight Systems — system profiling and tracing.

e Nsight Compute — performance profiling for CUDA kernels.

e Nsight Graphics — specialized profiling for graphics applications.

e Nsight Deep Learning Designer — profiler focused on AI/ML
applications.

e nvprof — command-line profiler (now deprecated)

53 CUDA C++ Debugging

In-code debugging libraries and CUDA C++ code-related tools that you might
need include:

e Debug wrapper library for CUDA C++
e Emulation test library
e Linter for CUDA C++

These three major ideas are active coding projects for us here at Aussie Al
(see https://www.aussieai.com/cuda/projects).

There are also some advanced APIs and SDKs available from NVIDIA if you want
to get ambitious and do some very deep integrations into the CUDA tools:

e Compute Sanitizert APl — create a new “tool” for compute-
sanitizer.

e CUDA Debugger API — cuda-gdb API integration on Linux.
e NVIDIA Tools Extension SDK (NVTX) — tool integration APL.

e CUDA Profiling Tools Interface (CUPTI) — profiling and tracing
integration APIL.

e Nsight Aftermath SDK — postmortem crash debugging.
e Nsight Perf SDK — performance profiling for graphics applications.

e Nsight Tools JupyterLab Extension — extension for profiling of Python
applications.

The remainder of this chapter focuses on the debugging tools and their capabilities.

Command-Line Debugging Tools
The main command-line debugging tools to use are:

e cuda-gdb (interactive debugger on Linux or Windows WSL)
e compute-sanitizer —including four sub-tools:

a) memcheck,
b) initcheck
¢) racecheck
d) synccheck

David Spuler 54

https://www.aussieai.com/cuda/projects

Profiling tools you can use on the command-line include:

e ncu (Nsight Compute CLI)

e nvprof — useful, but it’s deprecated, and will be riding off into the
sunset.

e gprof — the standard Linux profiler is useful for host code.

Compute Sanitizer

Compute Sanitizer is an NVIDIA tool that has four sub-tools to detect different
problems. In addition to multiple tool capabilities, it also supports multiple
platforms: Linux and Windows.

The most frequent usage of the compute-sanitizer command-line tool is
likely to be memory debugging. If you have an error in a CUDA C++ application
on Linux, and you can reproduce it, then just re-run the application with the
Compute Sanitizer tool:

compute-sanitizer a.out

This is equivalent to:

compute-sanitizer --tool memcheck a.out

You can also supply command-line arguments to your application after the
executable name, or additional options to Compute Sanitizer before the executable
name.

The default tool for compute-sanitizeris “memcheck” for memory fault
detection, and you don’t need a specific option to run it. This mode is very similar
in usage to valgrind on Linux, which does similar memory checking functions
on standard CPU C++ applications, but compute-sanitizer knows more
about GPU memory problems. There also used to be a cuda-memcheck tool,
which this has now superseded.

Compute Sanitizer does not require any re-compilation, and can run on your
program just after it has crashed. However, its reports can be clearer to read if there
is debug symbol information available in the executable, such as compilation with
“~g” (host) or “~G” (device) debug information options to nvcc. Hence, it may be
advisable to maintain these debug-enabled versions of executables in your build
systems, as they are useful for both cuda-gdb and compute-sanitizer.

55 CUDA C++ Debugging

The error reported by the memory checking tools include:

e Memory access problems (including device-side)

e Errors withmalloc and free

e Double free

e Memory leaks (especially with the “~-leakcheck=full” option)

However, it is not limited to memory etrors, and also finds:

e CUDA runtime errors
e Hardware exceptions

There are various additional options that you can turn on for additional error
checking,

Abnormal program termination

One of the things about compute-sanitizer that can be tricky is that it doesn’t
fully detect the cause of actual crashes of your application. Instead, sometimes you
only get a report like this:

========= Error: process didn't terminate successfully
========= Target application returned an error
========= ERROR SUMMARY: 0 errors

The last line is misleading, as there weren’t zero errors, but the second-last line is
more useful: “Target application returned an error”. This often
means that your program crashed in the host code.

cuda-gdb batch mode. You can detect this host program crash better in cuda-
gdb as it will trap the signals, so just run an interactive debugging sessions.
Alternatively, if you have a simple reproducible case, you can automate this with
batch mode, where the command to run is like this:

cuda-gdb --batch --command=cuda-gdb-test.txt a.out
The batch input file is a set of cuda-gdb commands:

run
where
exit

David Spuler 56

Here’s an example output (abridged):

Thread 1 "a.out" received signal SIGSEGV, Segmentation fault.
0x00007ffff7cdfade in ?? () from /lib/x86 64-gnu/libc.so.6

#0 O0x00007ffff7cdfade in 2?() from /lib/x86-gnu/libc.so.6

#1 0x000055555555fdb5 in aussie cudaMalloc (void**, int) ()

#2 0x0000555555562ea9 in aussie run clearvec generic(int) ()
#3 0x00005555555633aa in main ()

A debugging session is active.

Inferior 1 [process 5143] will be killed.

Quit anyway? (y or n) [answered Y; input not from terminal]

There are various other useful things that can be automated using batch cuda-

gdb and various script commands. For example, you can use it as a trace
mechanism that prints out the stack trace at every call to a certain function.

racecheck

The racecheck tool is a sub-tool of Compute Sanitizer for detecting “race
conditions” or “data races.” The command to run the tool is:

compute-sanitizer --tool racecheck a.out

This tool detects problems in thread accesses to shared memory, but won’t help
with any race conditions involving global memory accesses.

It works by detecting “hazards,” which means conditions that indicate the potential
for a race condition occurring. This is more effective than trying to detect actual
race conditions, as they are transient and often non-reproducible.

The types of hazards found include:

o Write-write
o Write-read
e Read-write

Obviously, the accessed must be occurring to the same memory location for a
hazard to exist. Also, note that a “read-read” sequence is never going to be a hazard
for a race condition, but is just normal parallelism!

57 CUDA C++ Debugging

synccheck

The synccheck tool is a sub-tool of Compute Sanitizer that detects
synchronization issues. It looks for “hazards” that indicate thread synchronization
problems in GPU kernels. Here is the execution command:

compute-sanitizer --tool synccheck a.out
This tool focuses on synchronization issues in device code, such as with the APIs:

e syncthreads()
e syncwarp ()

Some of the errors found by synccheck include:

e Invalid arguments
e Thread divergence (warp-level or block-level)

initcheck

The initcheck toolis a sub-tool of Compute Sanitizer for detecting initialization
issues in device accesses to device global memory.

Execution is performed by:
compute-sanitizer --tool initcheck a.out

Note that this only examines global memory, so it won’t find other types of
uninitialized memory accesses in kernels. The default memcheck tool
in compute-sanitizer can find other similar problems.

The main issues found by initcheck are:

e Accesses to uninitialized device global memory.
e Unused device global memory (never accessed).

David Spuler 58

Fixing an uninitialized memory access issue found by initcheck is usually to
initialize your device memory propetly, such as by:

e Device-side array initialization code
® cudaMemset
® cudaMemcpy

If initcheck reports on unused device global memory, this may indicate some
sort of algorithm error, whereby some of the global memory is not being used.

cuda-gdb

I’m a big fan of gdb for debugging standard C++ on Linux, and cuda-gdb is even
better. The platform support for cuda-gdb is primarily Linux, but also Windows
WSL2, and also MacOS in a “host only” mode for remote debugging.

The cuda-gdb tool is a source-code modification of the open source gdb code to
add NVIDIA GPU support, and you can actually find the cuda-gdb source code
on Github at https://github.com/NVIDIA /cuda-gdb/.

Hence, cuda-gdb has most of the gdb features, and NVIDIA tries to keep up
with new features. The basic commands from gdb are all supported:

e ror run — run the code (with optional arguments), or restart if already
tunning.

e cor continue — continue running (after stopping at a breakpoint).

® s or step — stepping through statements (also just Enter).

e where — stack trace (also aliased to “bt” for backtrace).

e list — source code listing

® porprint — print a variable or expression.

° up

® nornext

Some of the CUDA-specific commands inside cuda-gdb include:
info cuda

To see the list, run the help command:

help info cuda

59 CUDA C++ Debugging

https://github.com/NVIDIA/cuda-gdb/

Examples of some of the many CUDA debugging sub-commands include:

info cuda devices
info cuda sms
info cuda warps
info cuda lanes
info cuda blocks
info cuda threads

Pre-Breakpointing Trick

One advanced tip for using cuda-gdbis to define a function called
“breakpoint” in your C++ application. Here’s an example:

void breakpoint ()

{
volatile int x = 0;
x = 0; // Set breakpoint here

It looks like a silly function, but it serves one useful purpose. The idea is that when
you start an interactive debugging session in cuda-gdb, or automatically in your
“.cuda-gdbinit” resource file, you can set a breakpoint there:

b breakpoint

Why do that? The reason is that you also add calls to your “breakpoint” function
at relevant points in various places where failures can occur:

e CUDA error check macros

o Assertion macros

e Debug wrapper function failure detection
e Unit test failures

Hence, if any of those bad things happen while you’re running interactively in the
debugger, you’re immediately stopped at exactly that point. If you’re not running in
the debugger, this is a very fast function (though admittedly, it can’t be inlinel),
so it doesn’t slow things down much.

David Spuler 60

You can even consider leaving this debugger breakpoint in production code, since
the breakpoint function is only called in rare situations where a serious failure
has already occurred, in which case execution speed is not a priority.

This technique is particularly useful because don’t have to go back and figure out
how to reproduce the failure, which can be difficult to do for some types of
intermittent failures from race conditions or other synchronization problems.
Instead, it’s already been pre-breakpointed for you, with the cursor blinking at you,
politely asking you to debug it right now, or maybe after lunch.

Postmortem Debugging

Postmortem debugging involves trying to debug a program crash, such as a “core
dump” on Linux. In this situation, you should have a “core” file that you can load
into cuda-gdb.

The command to use is:
cuda-gdb a.out core

Unfortunately, not all errors in a CUDA application will trigger a core dump, so
you might have nothing to debug if it doesn’t. One way to ensure that you get
a core file is to set the environment variable:

CUDA_ ENABLE COREDUMP ON EXCEPTION

This will cause the CUDA Runtime to produce a core file on various additional
failures.

Sometimes in large environments, it’s hard to know where a core file came from.
An advanced feature of this environment variable is that you can format the
filename to be more useful than just “core.” You can specify the format to include
things like the time/date and the name of the executable.

Programmatic C++ core dumps. If you’re wanting to have your CUDA C++
take control of its own core dumps (e.g., exceptions, assertion failures, etc.), there
are various points:

e You can always fork-and-abort on Linux.

e Maybe putenv ("CUDA_ENABLE COREDUMP ON_ EXCEPTION") migh
t work?

e Surely you can write some code to crash!

61 CUDA C++ Debugging

On the other hand, maybe you’re only thinking about core dumps because you want
to save debug context information. Doing this might obviate the need for a core

dump:

e Use std: :backtrace or another backtrace library.
e Print error context information (e.g., user’s query)
e Print platform details

Customer core dumps. One of the supportability issues with postmortem
debugging is that you want your customers to be able to submit a core file that
they have triggered on your CUDA-based application. These are usually large files,
so there are logistical issues to overcome with uploads.

Another issue is that in order to run cuda-gdb ona core file, the developer needs
to have exactly the right executable that created the core dump. Hence, your build
and release management needs to maintain available copies of all executable files in
versions shipped to customers or in beta testing (or to internal customers for in-
house applications). And there needs to be a command-line option whereby the
phone support staff can instruct customers to report the exact version and build
number of the executable they are using. It’s easy to lose track!

Valgrind for CUDA

Can you use the Linux Valgrind tool to detect memory errors in CUDA C++
programs? More specifically, this refers to the Memcheck tool that is part of
Valgrind.

In short, you can run Valgrind on your host code, but you’re probably better off
using compute-sanitizer for CUDA C++ programs. Valgrind does run both
the host and the device code, and can be used to find errors.

The CUDA Toolkit used to include a tool called “cuda-memcheck” but it has
since been deprecated and removed in favor of compute-sanitizer.
Interestingly, there’s an old research paper [Baumann and Gracia, 2013] on using
Valgrind with CUDA, called the “CudaGrind” tool. There’s even a Github repo for
this tool, although it hasn’t been edited in 9 years, so I’'m not sure it’s still valid.

In any case, the basic Linux version of Valgrind Memcheck is still very well
supported. The method to use Valgrind for Linux on a CUDA application is simply
to run the executable:

valgrind a.out

David Spuler 62

If Valgrind is not installed in your Linux environment, you’ll need to do something
like this:

apt install valgrind

The start of the Valgrind output is like this:

==1143== Memcheck, a memory error detector

==1143== Copyright (C) 2002-2017, and GNU GPL'd, by Julian
Seward et al.

==1143== Using Valgrind-3.18.1 and LibVEX; rerun with -h for
copyright info

==1143== Command: ./a.out

As it executes your program, the output from your program will be interleaved with
error reports from Valgrind. Hopefully, there won’t be any!

The end of the Valgrind execution gives you a nice summary of memory leaks and
errors.

==1143== HEAP SUMMARY:

==1143== in use at exit: 12,710,766 bytes in 10,810 blocks
==1143== total heap usage: 15,851 allocs, 5,041 frees, 47,396,077 bytes
==1143==

==1143== LEAK SUMMARY:

==1143== definitely lost: 0 bytes in 0 blocks

==1143== indirectly lost: 0 bytes in 0 blocks

==1143== possibly lost: 30,965 bytes in 199 blocks

==1143== still reachable: 12,679,801 bytes in 10,611 blocks
==1143== suppressed: 0 bytes in 0 blocks

==1143== Rerun with --leak-check=full to see details of leaked memory
==1143==

==1143== For lists of detected and suppressed errors, rerun with: -s

==1143== ERROR SUMMARY: 0 errors from O contexts (suppressed: 0 from 0)

Running CUDA programs in Valgrind is obviously slower because of the
instrumentation, but this is also true of similar tools like compute-sanitizer.

There is also a problem with “ioct1” where you get errors like these from Valgrind
(abridged):

==1143== Warning: unhandled ioctl 0x30000001 no size/direction hints.
==1143== This could cause spurious value errors to appear.
==1143== See README MISSING_SYSCALL OR IOCTL for guidance

These warnings are probably indicative of Valgrind having problems understanding
the CUDA primitives related to GPU kernel code. Valgrind is fine for checking
your host code for C++ memory usage errors, but lacking for device code checking,.
Hence, compute-sanitizer is preferred overall.

63 CUDA C++ Debugging

Warning-Free Build

Don’t ignore compiler warnings! A very good goal for C++ software quality is to
get to a warning-free compile. You should think of compiler warnings as doing
“static analysis” of your code. To maximize this idea, turn on more warning options,
since the warnings are rarely wrong in modern compilers, although some are about
harmless things.

Harmless doesn’t mean unimportant. And anyway, the so-called “harmless”
warnings aren’t actually harmless, because if there’s too many of them in the
compilation output, then the bad bugs won’t get seen. Hence, make the effort to
fix the minor issues in C++ code that’s causing warnings. For example, fix the
“unused variable” warnings or “mixing float and double” type warnings, even
though they’re rarely a real bug. And yet, sometimes they are! This is why it’s
powerful to have a warning-free compile.

Tracking compilation warnings. One way to take warning-free compilation to
the next level is to actually store and analyze the compiler output. It’s like log file
analysis in DevOps, only it’s not for systems management, but for debugging. On
Linux, I typically use this idea:

make build |& tee makebuild.txt
Here’s an actual example from a Makefile in an Aussie Al project on Linux:

build:
-@make build2 |& tee makebuild.txt
-@echo 'See output in makebuild.txt'

The Makefile uses prefix “~” and “@” flags, which means that it doesn’t echo the
command to output, and doesn’t stop if one of the steps triggers an error.

When the build has finished, then we have a text file “makebuild.txt” which
can be viewed for warning messages. To go further, I usually use grep to remove
some of the common informational messages, to leave only warning messages.

Typically, my Linux command looks like:

make warnings

David Spuler 64

Here’s an example of the “warnings” target in a Makefile for one of my Aussie
Al projects:

warnings:
-@cat makebuild.txt | grep -v '"r -' \
| grep -v '"“g++ ' | grep -v '“Compiling' \
| grep -v '“Making' | grep -v '“ar ' \
| grep -v '"make\[' | grep -v '“ranlib' \
| grep -v '"7INFO:' | grep -v 'Regressions failed: 0' \
| grep -v 'Assertions failed: 0' | grep -v SUCCESS \
|more

Note that this usesgrepto remove the informational messages
from g++, ar, ranlib, and make. And it also removes the unit testing success
messages if all tests pass (but not if they faill). The idea is to show only the bad stuff
because log outputs with too many lines get boring far too quickly and then
nobody’s watching,.

One annoying thing about using grep with make is that you get these kind of error
messages:

make: [annoying] Error 1 (ignored)
Here’s a way to fix them in a Makefile on Linux:
-@grep tmpnam *.cu *.cpp || true
The “true” command is a shell command that never fails. Note that this line uses
the double-pipe “| | ”” shell logical-or operator, so it only runs “true” if grep fails.

But don’t accidentally use a single “|” pipe operator, which would actually be a
silent bug!

This idea makes the line calling grep return a non-zero status, and then make is
silent.

Finally, your warning-free tracking method should ideally be part of your “nightly
builds” that do more extensive analysis than the basic CI/CD acceptance testing.

You should email those warnings to the whole team, at about 2am ideally, because
C++ programmers don’t deserve any sleep.

65 CUDA C++ Debugging

Linters for CUDA C++

Linters, or “static analyzers,” are tools that examine your source code for errors or
stylistic concerns. General advice in regard to using linters for CUDA C++
programming is:

e Use compiler warnings as free linting.

e Use a separate linter build sequence.

e Have two linter paths (one for bugs, one for style).

e Use multiple compilers and linters for extra coverage.
e Automate linting into the nightly build.

Note that we have an active project for a CUDA C++ linter. Find more information
about Aussie Lint at https://www.aussieai.com/cuda/projects.

Using gcc as a linter. If you want more warnings, and who doesn’t, you can enable
more warnings in gcc on Linux. You can either do this in your main build by
enabling more compiler warnings, or use a separate build path (e.g., choose an
inspiring name like: “make 1int”) so that the main build is not inundated with
new warnings. The way to do this is via the “~-compiler-options” command-
line option to nvee, which specifies pass-through options for the undetlying C++
compiler.

By default, this compiler is gcc on Linux and c1.exe on Windows.
Since nvee uses source-to-source compilation for the host code, these options will
be running on most of your CUDA C++ host code, except for the parts
that gcc wouldn’t understand (e.g., the <<<..>>> kernel launch syntax will be
modified before being passed through).
An example command with extra linting power would be:

nvcc —--compiler-options="-Wall" aussie-test-crashes.cu
Some useful gcc warning flags include:

e -Wall — “all” warnings (well, actually, some).

e -Wextra — the “extra” warnings not enabled by “~wWall”.
e -Wpedantic — yet more of the fun ones.

David Spuler 66

https://www.aussieai.com/cuda/projects

Hence, a longer command is:
nvcc —--compiler-options="-Wall -Wpedantic -Wextra"

You know, I really cannot say that I am a fan of endlessly scrolling warnings from
the “pedantic” mode. Maybe, turn that one off, and pick-and-choose from the list
of flags in the “pedantic” list. For example, I have used “~Wpointer-arith”in
projects.

Linting device code

Device code is directly compiled by nvce, rather than via source-to-source
compilation, so the device code won’t get linted this way. We could try to
bypass nvcce and use gec directly, such as this:

gcc -I/usr/local/cuda/include -Wall myfile.cu
But there’s at least two problems:
(a) the file suffix “. cu” needs to be changed to “. cpp” or similar, and

(b) code sequences like “<<<” and “ global ” won’t be understood
by gcc.

Hence, you need to have a separate linting build sequence that renames files. You
may also need source code changes to wrap kernel launch syntax
with #1f statements, or alternatively, use some fancy sed replacement tricks.

Code that is both host and device code will presumably go through both paths, and
thus will be linted. This inspires another idea of a linting strategy to get device code
covered, too, which is:

e Use a separate linting path.
e Use nvcc as the compiler, but with the gcc compiler warnings on.
e Mark all the device C++ code as also “ host ” code.

But we don’t want to change this in our main code base that is processed by nvcc.
Hence, this requires tricks like a macro that’s only enabled in linting mode, or
asedtrick to add host wherever there’s a _device specifier. This
starts getting into murky territory, and I’'m going to say it’s probably not worth the
effort, but maybe it has some value.

67 CUDA C++ Debugging

Fixing Linter Warnings
Here’s some advice about fixing the code to address linter concerns:

e Aim for a warning-free compilation of bug-level messages.
e Don’t overdo code changes to fix any stylistic complaints.

Fix the bugs found by warnings (obviously), but as far as the stylistic type warnings
are concerned, be picky. I say, aim for code quality and resilience, not code aesthetic
perfection.

Warning-free linting. As with the main build, if you’re not fixing the less severe
linter warnings, turn them off, or have two separate build sequences for the main
anti-bug linting versus stylistic linting. You want any newly found serious problems
to be visible, not lost in a stream of a hundred other spurious warnings. Hence, high
quality code requires achieving a warning-free linting status for the main warnings.

On the other hand, you don’t want programmers doing too much “busy work”
fixing minor coding style warnings with little practical impact on code reliability.
Hence, you might find that your policy of “warning-free linting” needs to suppress
some of the pickier warnings. And that’ll be a fun meeting to have.

References

1. GNU, Sep 2024 (accessed), 3.8 Options to Reguest or Suppress Warnings
(GCC warning options), https:/ /gcc.gnu.org/onlinedocs/gec/Warning-
Options.html

2. Thomas M. Baumann, Jose Gracia, 3 Oct 2013, Cudagrind: A 1V algrind
Extension for CUDA, https://arxiv.org/abs/1310.0901,
https://github.com/dpc-gtindland/Cudagrind (Valgrind Memcheck for
CUDA C++, but over 10 years old)

David Spuler 68

https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
https://arxiv.org/abs/1310.0901

8. Error Checking

CUDA Error Checking

Everyone’s always known that it’s good programming style to check all error return
codes. It’s extra work, but everyone does it anyway, because it’s so important. I've
been coding in C++ for years, and I’ve never seen a printf or fopen without
an if statement immediately after it.

CUDA puts all your good intentions to a much stronger test, because literally every
CUDA API function can fail, at random times, with any possible error code. One
of the issues is that a CUDA kernel can fail asynchronously, and then report its
error at the next available opportunity, with timing unrelated to the host code on
the CPU.

The solution is that after every CUDA function call, you add an if statement.
Here’s an example for manually checking cudaMemcpy calls:

errval = cudaMemcpy (device v, v, sz,
cudaMemcpyHostToDevice) ;
if (errval != cudaSuccess) {

// CUDA error...
AUSSIE ERROR (errval, "cudaMemcpy host-to-device");

But then your fingers eventually get tired from too many keystrokes, and you start
making copy-paste errors, too. Maybe you should try an Al copilot?

Alternatively, let’s define a macro for that.
The main styles I've seen for CUDA error checking macros are either:

e Wrap every CUDA function call in a macro, or
e Test after CUDA function calls.

There are pros and cons of each approach, but they both suffer from a major
limitation: manual code changes.

69 CUDA C++ Debugging

I have suggestions of two ways to automate it:

e Recursive preprocessor macro intercepts.
e Macro intercepts to debug wrapper functions.

These are all explained in detail further below.

CUDA Error Check Macros

The use of a CUDA error check macro works as a replacement for manual error
checking. Here’s an example usage of a macro:

AUSSIE CUDA ERRORCHECK (cudaDeviceSynchronize());

Note that you can also wrap the assighment of the error code to a variable for
further analysis.

cudaError t errval = cudaSuccess;
//
AUSSIE CUDA ERRORCHECK(errval = cudaDeviceSynchronize());

Here’s one version of what the mactro can look like:

#define AUSSIE CUDA ERRORCHECK (codeexpression) \

do { \
cudaError t err = codeexpression ; \
if (err '= cudaSuccess) { \

fprintf (stderr, \
"CUDA ERROR: %d (%s) in %s at %s:%d\n", \
(int)err, cudaGetErrorString(err), \
_ func_, FILE , LINE); \
FA
} while (0)

This macro definition uses the do..while (0) common C++ idiom to make the
macro fully like a statement. This style avoids some problems with semicolons that
would arise if you just use curly braces, so don’t add a semicolon at the end of this
macro, or all that work is in vain. This also avoids a serious “dangling-else” bug
if you only used the if statement alone.

But don’t forget the extra inside pair of parentheses in the calls:

AUSSIE CUDA ERRORCHECK (cudaDeviceSynchronize); // Wrong!
AUSSIE CUDA ERRORCHECK (errval = cudaDeviceSynchronize);

David Spuler 70

Here’s another more elegant method of doing the macros in combination with
an inline function in a header file:

#define AUSSIE CUDA ERRORCHECK2 (codeexpression) \
aussie cuda check function((codeexpression), \
__func_, FILE , _LINE)

inline void aussie cuda check function(cudaError t err,
const char *func, const char *fname, int lnum)
{
if (err != cudaSuccess) {
fprintf (stderr,
"CUDA ERROR: %d (%s) in %s at %s:%d\n",
(int)err, cudaGetErrorString(err),
func /*_ func_ */,
fname /* FILE */,

lnum /* LINE_*/);

Checking After CUDA Calls

The alternative method is to check after the CUDA API calls. The macro includes
a call to cudaGetLastError or cudaPeekAtLastError. The use of the
macro looks like:

AUSSIE_CUDA_CHECKAFTER(); // calls cudaGetLastError

Here is one way to define it:

#define AUSSIE CUDA CHECKAFTER () \
do { \
cudaError t err = cudaGetLastError(); \
if (err !'= cudaSuccess) { \
fprintf (stderr, \
"CUDA ERROR: %d (%s) in %s at %s:%d\n", \
(int)err, cudaGetErrorString(err), \
__func__, _FILE , __LINE); \
FA
} while (0)

An equivalent method that is perhaps clearer is to do one of these methods instead
after a kernel launch:

AUSSIE CUDA ERRORCHECK2 (cudaPeekAtLastError());
AUSSIE CUDA ERRORCHECK2 (cudaGetLastError());

71 CUDA C++ Debugging

Kernel launch special case. I’ve got some better ideas for the error check macros,
but there’s one situation where you definitely must use the “check after” style:
kernel launches.

The <<<...>>> kernel invocation syntax does not return a status code, so there’s
nothing to check. Also, there’s also an obscure situation whereby synchronous
kernel launch errors (e.g., threads-per-block size more than 1024, or too much
shared memory requested) can get missed, unless they are immediately checked for
using either cudaGetLastError or cudaPeekAtLastError.

Hence, the best solution for kernel launch error detection, at least in non-
production mode, is something like this:

mykernel <<< blocks, threads >>> (v, n);
AUSSIE_CUDA_ERRORCHECK2(cudaPeekAtLastError ()):;

Alternatively, maybe one day in the distant future this will work:

err = mykernel <<<blocks,threads>>>(v, n); // FAILS!
AUSSIE_CUDA_ERRORCHECK2(err);

Recursive Macro Error Checks

C++ allows macros to be recursive in the sense that they can use their own name.
It’s not actually “recursive” and is actually limited to a once-only expansion, rather
than an infinitely recursive expansion. This feature is a longstanding feature of C
and C++ languages since they were created, so you can rely upon it. For example,
these would be harmless:

#define cudaMemset (a, b, c) cudaMemset (a, b, c)
#define cudaMemcpy (a,b,c,d) cudaMemcpy(a,b,c,d)

The idea is to automatically add the error check macros:

#define cudaMemset (a,b,c) \

AUSSIE CUDA ERRORCHECK (cudaMemset (a,b,c))
#define cudaMemcpy(a,b,c,d) \

AUSSIE CUDA ERRORCHECK (cudaMemcpy (a,b,c,d))

But that doesn’t quite work, when used with this type of call:

errval = cudaMemcpy(....);

David Spuler 72

The do..while (0) trick expands out to give a compilation syntax etror:

errval = do { ... // etc.

Similatly, the version with a combined macro and inline function also gets a
different type of compilation error:

errval = aussie cuda check function(....)

The problem is that the return type of the inline function is void. Hence, we’d
need to go back and fix any code that uses the return value
of cudaMemcpy or cudaMemset, which would be a good job for a coding copilot,
if only I didn’t have so many trust issues.

Instead, we can just fix the return type to be cudaError t and use a pass-through
of the error code:

#define AUSSIE CUDA ERRORCHECK3 (codeexpression) \
aussie cuda check function2((codeexpression), \
__ func_, FILE , LINE_)

inline cudaError t aussie cuda check function2 (
cudaError t err,
const char *func, const char *fname, int lnum)

if (err != cudaSuccess) {
fprintf (stderr,
"CUDA ERROR: %d (%s) in %s at %s:%d\n",
(int)err, cudaGetErrorString(err),
func /*__ func_ */,
fname /* FILE */,
lnum /*__LINE__*/);
}

return err; // pass through!

And we really should add a ridiculous number of round brackets around the macro
parameters, and also use #undef for total macro safety:

#undef cudaMemset // safety
#undef cudaMemcpy
#define cudaMemset (a,b,c) \
(AUSSIE CUDA ERRORCHECKS3 (cudaMemset ((a), (b), (c))))
#define cudaMemcpy (a,b,c,d) \
(AUSSIE CUDA ERRORCHECK3 (cudaMemcpy ((a), (b), (c), (d))))

73 CUDA C++ Debugging

Voilal

Now we have a set of macros that automatically adds CUDA return code error
checking around all calls to cudaMemcpy and cudaMemset. And it should work
irrespective of whether their returned values are used or not in the calls.

To use them propetly, we just need to #include a header file near the top of every
CUDA C++ soutce file. But it has to be after any CUDA toolkit header files like
“cuda_runtime.h” because those system header files have prototype
declarations of functions like cudaMemcpy that our tricky macros will break.

Now we only have to add similar recursive macros for all 1,657 of the CUDA
Runtime API functions. No, relax, I’'m just kidding. The number is 50 according to
this command:

grep cudaError t /usr/local/cuda/include/cuda runtime.h| wc -1

Yeah, I could probably have used “grep -c” but I just don’t want to, and you
can’t make me.

Macro Intercepted Debug Wrapper Functions

Is there any way you can level up? We’ve already auto-added the error checking
macros around all the CUDA Runtime API calls. Can we do better?

Of course, we can!

One extension is to build debug wrapper function versions for the main API calls.
These functions can then perform more extensive error self-checking than is
petrformed within the CUDA Runtime.

#undef cudaMemcpy
cudaError t aussie cudaMemcpy wrapper (void *destp,
const void *srcp, size t sz, enum cudaMemcpyKind mode)
{
cudaError_t err =
AUSSIE CUDA ERRORCHECK3 (cudaMemcpy (
destp, srcp, sz, mode)) ;
return err;

}

#define cudaMemcpy (a,b,c,d) \
aussie cudaMemcpy wrapper (a,b,c,d) // Intercept!

David Spuler 74

Note that the #undef is really important here, and must be before the wrapper
function body. If we’re not careful, our wrapper function can wrap itself, and
become infinitely recursive.

The above example doesn’t do any extra error checking, other than what we’ve
already put into the CUDA error checking macro
(i.e., AUSSIE CUDA ERRORCHECKS3), which checks for the cudaSuccess return
code. However, we could add extra self-checking code for common errors that arise
from cudaMemcpy copy-pasting:

e Destination or source pointers are null
e Destination or source pointers are the wrong address scopes
e Destination pointer equals source pointer

The CUDA Runtime already finds a lot of those errors, and compute-
sanitizer would find even more. However, we could go further with our
analysis. For example, some more extensive error checks possible could be:

e DPointer allocated by cudaMalloc but never copied by cudaMemcpy.
e DPointer allocated by cudaMalloc only partially copied by cudaMemcpy.
e cudaMemcpy size argument is zero or negative (after conversion
to size t).
e cudaMemset arguments appear to be in reverse order.

The possible error checks from this type of API interception are discussed further
in the full section on debug wrapper functions.

Limitations of Macro Interception

Two of these methods rely on preprocessor macro interception to auto-wrap the
calls with debug checks. Unfortunately, macro interception isn’t a perfect solution,
and some of the problems that macros may have include:

e No way to auto-intercept the <<<...>>> kernel launch syntax.

e Problematic for device code (e.g., CUDA Dynamic
Parallelism, fprintf not available).

e Interception of new and delete operators is only possible at link-time,
and even this trick won’t work for device code.

e Namespace-scoped calls fail:
e.g., cuda: :cudaMemcpy (. ..) or std:::malloc(...)

e Use of CUDA API names as function pointers won’t work.

e Non-standard calling syntax: e.g., parentheses around the function name.

75 CUDA C++ Debugging

Much better than macro interception would be a way to link to a debug version of
the CUDA Runtime library. If only it were open source code! Many more complex
error checks are possible than are performed, and this would significantly improve
the timeframe to detect many types of coding errors.

Alternatively, tools such as compute-sanitizer could link with a debug
runtime library version that contained a more extensive set of checks. Maybe this is
feasible to do via the callback methods in the Compute Sanitizer API, which is an
official part of the CUDA Toolkit.

Reporting and Handling CUDA Errors

What should an error checking macro do on failures? Some of the many options
include:

e Print an error message

e Print the error code number and its name with cudaGetErrorString
e Give source code context information

e Exit the program (or not?)

That’s not the full list, and some more advanced ideas for production-grade error
handling include:

e Throw an exception and hope someone’s listening.

e Full stack trace (e.g.,, std: :backtrace in C++23).

e Report a full error context for supportability in the wild.

e Log information to a file, not just to stderr.

e Try to recover if it’s a non-sticky error.

e Gracefully crash if it’s a sticky error.

e Try to localize if it’s a current failure or from a prior kernel launch.
e Call a debug breakpoint function to help with interactive debugging.
e Abort the program to generate a “core” file.

A key aspect of reporting the error context is the CUDA C++ statements that
triggered the issue.

David Spuler 76

The basics of error context are these macros:

e func
e FILE
e LINE

I don’t know why one is lower case and two are upper case, but it’s called
international standardization. That’s an example of what makes C++ programming
so fun.

However, I have to say that I think these source code context macros are on their
way out. Once reporting the full stack trace in C++23 with std: :backtraceis
widespread, why would we need those macros? Also gone would be various
preprocessor macro tricks that only exist in order to report the source code context.
Instead, use an inline function and std: :backtrace.

More advanced error context that can help with supportability includes things like:
e Date and time of error.
e User query that triggered the failure.
e Random number seed (for reproducibility of Al errors).

e Full stack trace (if available)

I feel like there should be an LLLM for this. Maybe I’ll go look on Hugging Face.

Limitations of CUDA Error Checking

Some problem areas include:
e No return code for kernel launches.
e Sticky errors.
e Some odd idiosyncrasies in the CUDA Runtime API (are they bugs?)
e Notall types of bugs are raised as runtime errors.
e Limited possibilities in device code

But I have to say that the really major limitation is this:

Remenbering to add it every time!

77 CUDA C++ Debugging

I’ve given a few suggestions for auto-fixing that issue above, but they’re far from
perfect. Maybe the CUDA Runtime API needs a callback mechanism, or some
other method whereby programmers can ensure that they never miss an error
return.

Error checking in device code. It used to be that you only needed this error
checking in the host code, because none of the runtime APIs worked in device
code. And then someone at NVIDIA decided to change that with nested kernel
launches, and then someone else in marketing decided to give it a trendy name and
a three-letter acronym: CUDA Dynamic Parallelism (CDP).

The downside is that the C++ features are much more limited in device code. For
example, you can’t easily use global variables or write to files. You can’t even
use fprintf, for heaven’s sake, so you can only print to stdout.

Which is great news, because it means you get to have the fun of defining an error
checking macro all over again!

David Spuler 78

9. Sticky Errors

What are Sticky Errors?

There is a subset of the error codes that are called “sticky,” which is another way
of saying “really bad.” They’re called “sticky” because they get stuck in the CUDA
error code, and cannot be cleared (not even by cudaGetLastError). Even
wortse, they stop any other CUDA API from working, so you can’t launch another
kernel, and functions like cudaMemcpy just fail immediately.

The list of sticky errors on the GPU is short, but includes the worst kinds of error:

e Invalid address — cudaErrorIllegalAddress 700.

e lllegal instruction — cudaErrorIllegalInstruction 715.
e Kernel time-out — cudaErrorLaunchFailure 719, but later.
e Misaligned access — cudaErrorMisalignedAddress 716.

e Null dereference — cudaErrorLaunchFailure (later).

Note that some of these sticky errors will return cudaErrorLaunchFailure,
but not as synchronous errors at the time of the kernel launch. They are triggered
later asynchronously by kernel code execution and can thus occur much later, at
any point between kernel launch and the first synchronization after the failure. The
name of the error code is somewhat misleading!

If you’re wondering where are “segmentation fault” or “core dumped” on this list,
that’s “CPU thinking” and you really need to get your head into GPU world. The
problematic coding errors that trigger a segfault in C++, when run on a GPU, will
cause some of the above sticky errors with a cudaErrorLaunchFailure error
code, or in some cases, won't trigger a CUDA runtime error at all in device code
(except they can be found by compute-sanitizer).

There’s no easy recovery from sticky errors, as the GPU won’t accept further work
from the CPU. The rest of your host code will keep running on the CPU, but
anything GPU-related will fail with an error code from CUDA sent to the host.

The good news is that you can intercept all these error codes with your glorious
“CUDA error check” macro, but the bad news is there’s no way to fix it. They’re
called “sticky” errors because you’re stuck!

79 CUDA C++ Debugging

Detecting Sticky Errors

How do you detect a sticky error? Unfortunately, you cannot just check the numeric
code value for a few specific enum values, because some codes can be both sticky
and non-sticky. For example, cudaErrorLaunchFailure could be a
synchronous launch failure from too many threads-per-block (non-sticky) or an
asynchronous error from a null pointer dereference in a kernel (sticky).

Since cudaGetLastError returns the current error, but also clears the error flag
for the next call, you might think this would work:

bool aussie is sticky error FAILS(bool warn) // Buggy!
{

cudaError t err = cudaGetLastError(); // Clear prior error
err = cudaGetLastError(); // Twice
if (err != cudaSuccess) { // Sticky error?

if (warn) fprintf (stderr, "CUDA STICKY ERROR: %d %s\n",
(int)err, cudaGetErrorName (err));
return true;

}

return false; // not sticky

Actually, this won’t report a sticky error. The function cudaGetLastError will
return cudaSuccess the second time, even if you’re in a sticky error state. It
seems that sticky errors are not sticky for this CUDA Runtime API function.

Unfortunately, the only reliable way to detect a sticky error is to issue a dummy call
to the CUDA runtime, like using cudaMemcpy or cudaMalloc, such as this:

bool aussie is sticky error (bool warn)
{
// Do a dummy cudaMalloc to see if it's a sticky error...
void *vdummy = NULL;
cudaError t err = cudaGetLastError(); // Clear prior
err = cudaMalloc (&vdummy, 1); // Sticky error?
if (err != cudaSuccess) {
if (warn) fprintf (stderr, "CUDA STICKY ERROR: %d %s\n",
(int)err, cudaGetErrorName (err));
return true; // Yes, sticky..
}

return false; // not sticky

Probably it would be better to use a dummy cudaMemcpy call than the above,
which needlessly fragments device allocated memory.

David Spuler 80

Actually, here’s a cleaner way to detect sticky errors suggested on the NVIDIA
Forums: call cudaDeviceSynchronize twice, although this has the inefficiency
that it causes synchronization, which would invalidate any gain if you’re using data
transfer overlapping optimizations.

bool aussie is sticky error SYNCHRONIZED (bool warn)
{

// Call cudaDeviceSynchronize twice to test stickiness

cudaError t err = cudaDeviceSynchronize(); // First call
if (err != cudaSuccess) {

err = cudaGetlLastError(); // Clear it

err = cudaDeviceSynchronize(); // Second call...

if (err != cudaSuccess) { // Sticky error?

if (warn)
fprintf (stderr, "CUDA STICKY ERROR: %d %s\n",
(int)err, cudaGetErrorName (err));
return true; // Yes, sticky..
}
}

return false; // not sticky

What Causes Sticky Errors?

Which kernel device errors cause sticky errors? 1 wrote some dummy kernels to
trigger crashing code.

__global void null deref local(float *f, int n)
{

int *ptr = NULL;

*ptr = 1;
}

__global void array underflow write(float *f, int n)

—~—

__global void array overflow write(float *f, int n)
{

fln + 1] = 0.0;
}

__global void array underflow read(float *f, int n)

{
volatile int x = f[-1];
X = X;

81 CUDA C++ Debugging

__global wvoid array overflow read(float *f, int n)

{
volatile int x = f[n + 1];
X = X;

}

__global void cudamalloc uninit read(float *f,
{

volatile int x = f£[3];

X = X;

}

int n)

__global void do nothing kernel (float *f, int n)

{
volatile int x = 0;
X = X;

The idea with “volatile” is to prevent the CUDA compiler from optimizing my
bad code away. Maybe I'm giving it too much credit, because it didn’t even remove

my blatantly obvious null dereference.

Additionally, I used a test harness to launch the kernels:

fnptr<<<l,1>>>(dest v, n); // Launch kernel

// Check for CUDA synchronous launch errors
err = cudaPeekAtLastError(); // Any error?

if (err != cudaSuccess) {
// ... etc... (did not occur)
}
err = cudaDeviceSynchronize(); // Wait for completion
if (err == cudaSuccess) {

fprintf (stderr, "%s: no error\n", name);

}

else {
if (aussie_ is sticky error(false)) {
fprintf (stderr, "%s: CUDA sticky error: %d %s\n",
name,
(int)err,

cudaGetErrorName (err)) ;
}

else {

fprintf (stderr, "%$s: CUDA non-sticky error:

name,
(int)err,
cudaGetErrorName (err)) ;

David Spuler 82

$d %s\n",

Here’s the results, abridged from multiple invocations (because of the sticky onel):

Null dereference: CUDA sticky error: 719 cudaErrorLaunchFailure
Array underflow write: no error

Array underflow read: no error

cudaMalloc uninitialized read: no error

Array overflow write: no error

Array overflow read: no error

Just between you and me, I did initially have a “cudaMalloc uninitialized write”
and it didn’t fail. But then I removed it.

Compute Sanitizer did a lot better at finding problems than the basic CUDA
runtime. For example, here’s the output from the “array underflow write” kernel:

========= Invalid global write of size 4 bytes

========= at 0x20 in array underflow write(float *, int)
————————= by thread (0,0,0) in block (0,0,0)

========= Address 0x7b5cf32001fc is out of bounds
========= and is 4 bytes before the nearest allocation at
0x7b5c£3200200 of size 400 bytes

========= Saved host backtrace up to driver entry point at
kernel launch time

Overall, these results constitute a non-peer reviewed, statistical sample of one,
based on one GPU on one particular platform at one time of year in one country.
Totally guaranteed results!

Sticky Error Recovery

The main way to “recover” from this situation is to shut down the whole
application, such as by calling exit or abort. You can print a nice, helpful
message to your users for good supportability, but that’s about all you can do. Your
host code looks like this:

if (aussie is sticky error(false)) {
fprintf (stderr, "I apologize for my very existence!\n");
abort () ;

If you aspire to being a perfect programmer, you can close all your open files to
flush the buffers, and free all your allocated memory, but the operating system will
do that anyway.

83 CUDA C++ Debugging

In the category of facts you didn’t want to know, this situation is analogous to the
old-school Unix crashes in CPU code that cause core dumps, such as segmentation
faults and illegal instructions. You can try to register a signal handler function to
intercept the SIGSEGV or SIGILL signals, and then try to return from your signal
handler, because you want to keep going. Unfortunately, this fails because the CPU
will just re-raise the same signal, so it spins, and you can’t recover. Just like GPU
sticky errors, the best you can do is register a signal handler that prints a grovelling
message and then aborts.

Multi-Process Fix for Sticky Errors

This is in the category of fixes that don’t really fix it: There is a way to try a more
extensive recovery of an application that fails with a CUDA sticky error. The
solution is: abort your process, and try again. This idea works if:

e Parent process is the main controlling application on the CPU.
e Parent process launches a sub-process (e.g., fork and exec).
e Child sub-process launches the CUDA kernel.

If the child process detects a sticky error in a CUDA error code, then the child
process can shut itself down, telling the parent that it failed, before it shuts itself
down. Then the parent can detect the child’s failure status, and try again by
launching a new child process to re-do this entire kernel.

The advantage of this method is that a single failed kernel doesn’t kill your entire
application, which can be resilient to a transient failure on the GPU. The downside
is that it has to re-do the entire kernel, with no partial results available.

The extra work you have to do for this includes:

e Parent: Fiddly file descriptor work in fork-exec sequences (like it’s 1990
all over again).

e Child: Detect sticky errors in your CUDA error check macros (making
them even more spectacular).

e Child: Report success or failure status back to the parent process from the
child process.

e Parent: Check the child sub-process return status and re-try (but not
infinitely).

It’s a certain kind of fun.

David Spuler 84

10. GPU Kernel Debugging

Kernel Debugging Techniques

The kernels running on the GPU are the most important C++ code you’ll ever
write, but also the most difficult to debug. When you’re focused on getting the most
speed out of the silicon, it’s far too easy to introduce an insidious bug.

We’ve already examined some of the main techniques that look at the kernel from
the “outside” in the host code:

e Error checking CUDA Runtime API calls in the host code.
e Managing sticky errors to the extent possible.

Tools are also something that should be top of the list. Some of the NVIDIA
debugging tools are amazing in terms of resolving device issues:

e cuda-gdb for interactive debugging.
e compute-sanitizer and all four of its sub-tools.

There are also two important builtin methods that work in the kernel C++ code:

e printf (butnot fprintf)
e assert

Technically, these are part of CUDA Runtime and defined without an explicitly
included header file, but sometimes you may need to include <stdio.h>/
<iostream> or <assert.h>.

Do not underestimate what you can achieve with just these two methods! The main
strategies are:

e Add tracing with printf and use cudaDeviceSynchronize to ensure
you see the output messages (beware the dreaded kernel buffer overflow!).

e Add lots of assert calls peppered throughout (afterwards, you can
remove them or leave them, at your discretion).

85 CUDA C++ Debugging

Some additional techniques can be helpful in finding the cause of a failure:

e Serialize kernel launches (e.g., set variable CUDA LAUNCH BLOCKING, ot
use the command “set cuda launch blocking on” inside cuda-
gdb, or via added calls to cudaDeviceSynchronize after launches).

e Launch asingle thread or a single warp, if your kernel uses grid-stride loops.

e Add cudaSynchronizeDevice to serialize, and also to flush the kernel
output buffers (printf and assert).

Triggering Bugs Earlier

Many kernel bugs can be found using the techniques already mentioned. The above
methods are very powerful, but they can be limited in some less common situations:

e Intermittent bugs — hard to reproduce bugs.
e Silent bugs — how would you even know?

You can’t really find a bug with cuda-gdb or the compute-sanitizer memory
checker if you can’t reproduce the failure. On the other hand, an intermittent failure
might be a race condition or other synchronization error, so you probably should
run racecheck and synccheck.

Silent bugs are even worse, because you don’t know they exist. I mean, they’re not
really a problem, because nobody’s logged a ticket to fix it, but you just know it’ll
happen in production at the biggest customer site in the middle of Shark Week.

How do you shake out more bugs? Here are some thoughts:

e Set the CUDA ENABLE COREDUMP ON EXCEPTION variable (because
the code won’t core dump on some GPU errors, but can quietly continue).

e Add more assertions on arithmetic operations in device code (e.g., more
tests for floating-point NaN or negative zero).

e Auto-wrap CUDA API calls in host code with error checking for a// calls.

e Fast self-checks for simple kernel launch mistakes via asserting simple
checks (e.g., nthreads%$32==0 and nthreads<=1024).

e Arithmetic overflow or underflow is a very silent bug for both integers and
floating-point (e.g., check unsigned integers aren’t so high they’d be
negative if converted to int).

e Index safety tests in kernels hide bugs (use printf messages or assertions
instead, assuming you’re managing sizes to avoid extra wasted threads).

e Addaunittestkernel to test device utility functions brick-by-brick.

David Spuler 86

There are also some changes to the host code that can help detect several common
types of kernel bugs:

e Add self-testing code with more complex sanity checks for kernel launches.
e Consider debug wrapper functions with extra self-testing.
e Add more function parameter validation

With all of these things, any extra runtime testing code requires a shipping policy
choice: remove it for production, leave it in for production, only leave it in for beta
customers, leave in only the fast checks, and so on.

If you’re still struggling with an unsolvable bug, here are a few “hail Mary” passes
into the endzone:

e Add a call to cudaGetLastError immediately after kernel launches
before having any call to cudaDeviceSynchronize or other implicit
synchronizations (otherwise, synchronous kernel launch failures, such as
more than 1024 threads or too much shared memory, may be silent;
admittedly, you can see the kernel’s not running in a debugger).

e You can run valgrind on CUDA C++ executables, though it’s not any
better than compute-sanitizer;there may be a few rare things.

e Review the latest code changes; it’s often just a basic mistake hidden by
“code blindness” (e.g., check your “. x”” and ““. y” attributes).

e Mixing up the indices of square matrices is a silent, nasty bug in your
algorithm that’s hard to detect with most debugging approaches.

e Add more calls to synchronization primitives like syncthreads (this
may help prove it’s a synchronization error, but won’t help you find it).

e Add acudaMemset call after every cudaMalloc (and variants) to see if
initializing the memory fixes it (admittedly, tools should find this anyway).

e Similarly, try memset after malloc or new, or change to calloc (note
that there’s no cudaCalloc!).

And some other practical housekeeping tips can sometimes help with detecting new
bugs as soon as they enter the source code and planning ahead for future failures:

e Examine compiler warnings and have a “warning-free build” policy.

e Have a separate “make 1lint” build path with more warnings enabled.

e Keep track of random number generator seeds for reproducibility.

e Add some portability sanity checks, such as confirming the size of data
types: static_assert (sizeof (float)==4);

I guarantee that last one will save your bacon one day!

87 CUDA C++ Debugging

De-Slugging Kernels

Your code has just slowed down and you don’t know why? Well, first thing is to
run one of the various CUDA profiling tools.

Some ideas for slugs in your code include:

e You left self-testing code in the source when you were trying to fix a bug]

e Logicaround cudaSetDevice is broken, and the code is now reduced to
only running on one GPU.

e Launching too few blocks, so each thread is doing a lot of work.

e The “~0” or “~-dopt” optimization flag was removed or changed.

e Too much synchronization with cudaDeviceSynchronize.

e Environment variable CUDA_ LAUNCH BLOCKING is enabled.

e New control flow paths caused serious branch divergence in threads.

e Your grid-stride loop has “i++” instead of “i+=stride” and every
thread is computing every element (endless redundant computation).

e The build process lost the “~DNDEBUG” flag and assertions are live again.

e You're running on a non-NVIDIA GPU for some strange reason.

Some general areas of sluggish execution include:

e Non-coalesced memory access patterns are slower.

e Thread divergence (warp or branch divergence).

e Implied synchronization in various CUDA Runtime APIs (on host).

e Non-aligned memory accesses are slower (aim for 128-byte alignment).
e Shared memory contention (“bank conflicts”).

e Nested kernels can balloon runtime cost.

e cudaMemcpy with non-pinned host memory (causes paging).

e Register spills (and “register pressure”).

e Instruction locality issues (instruction cache misses).

That’s enough for here, but CUDA C++ optimization can be the next book.

David Spuler 88

11. Basic CUDA C++ Bugs

Common Bugs in CUDA C++

Some of the main classes of bugs include:

e General C/C++ types of bugs (many!)
e Synchronization errors
e Memory errors and other resource problems

An empirical study of CUDA bugs found that “general” errors in C++ are the most
common cause of GPU kernel coding errors, moreso than the CUDA-specific
capabilities (Wu et.al, 2019). C++ is a difficult language to get right!

Dual programming mode errors in the control of device versus host code include:

e Kernel notdefinedas global or device (basic mistake)
e Device kernel code calling a host-only function.

Memory access errors. Memory-related errors can include:

e Mixingmalloc/free with cudaMalloc/cudaFree addresses

e Uninitialized device global memory

e Address alignment errors

e Array bounds access errors in device memory often arising from
incorrect computations involving thread index and dimensions.

Synchronization errors. Parallel programming can have a variety of errors in the
synchronization of multiple threads. Some examples include:

e Host code not waiting for asynchronous device kernel to complete
e Race conditions

e Barrier-related issues

e Early device call reset

89 CUDA C++ Debugging

Novice Kernel Launch Mistakes

There are many common CUDA idioms and they exist for a reason. Break the
pattern, and you might trigger a bug or a slug. There are problems including.

e Not enough threads

e Not enough blocks

e Not enough threads per block

e Too many blocks (each with threads)
e Vector underflows (silently)

e Vector buffer overflows (gasp!)

All these combinations can make your head spin! Let’s examine some of these.

Run multiple threads. This is the most beginner issue when you’re creating your
first CUDA program. Using this style is not really a bug, but more of a slug:

mykernel<<<1l,1>>>(dv,n); // SEQUENTIAL!
It’s not parallel programming if you’re only running one thread!
Kernel launch syntax. Here’s another simple bug in a kernel launch:
mykernel<<l, 32>>(dv,n) ;

We’ve fixed the number of threads to be 32, so that’s no longer the problem. To
help you out, here’s the compiler error from nvece:

error: expression must have integral or unscoped enum type
mykernel<<l,1>>(dv, n);

Well, that’s not much help. It’s hard to see the bug. The error is “<<” should be
“<<<” (three less-than characters). Unfortunately, the compilation error for that is
not very clear, because C++ thinks the “<<” is the bitwise left shift operator that
works on integers, which is why it wants an “integral” or “enum” value.

David Spuler 90

Wrong Block and Thread Computations

The first part of launching a GPU kernel is to work out how many blocks and
threads we need. This is called calculating the “grid dimensions.”

There are many ways to go wrong:

e Threads-per-block should be a multiple of 32
e Too few blocks
e Too many blocks

Threads-per-Block Multiple of 32

The number of threads per block (aka the “block size”) should be a multiple of the
warp size, which is 32 threads. Hence, it can be as low as 32, but commonly

recommended block sizes in real-world kernels are often 256 or 512. The maximum
permitted by CUDA is 1024 threads per block. This is not good:

int n = 54;
mykernel<<<2, 27>>>(dv, n); // BAD

This might work, but it’s inefficient, and offends the sensibilities of any experienced
CUDA programmer, for reasons discussed below. But first, note that this is worse:

mykernel<<<54, 1>>>(dv, n); // BAD

If the threads per block is not 32, or a multiple of 32, there will be odd threads in a
warp that aren’t propetly utilized (or might be doing the wrong thing). The reason
is that CUDA allows threads in “warps” that contain exactly 32 threads. With the
threads per block of 27, there were 5 extra threads, and for 1 thread per block, there
were 31 wasted threads. So, instead, you want something more like this:

int n = 64;
mykernel<<<2,32>>>(dv,n); // BETTER

Or you can do this:
mykernel<<<1l, 64>>>(dv,n); // BETTER

CUDA can only schedule 32 threads (a warp) at a time, and if you schedule fewer,
other threads in the warp still run (a bug or a slug), or are unavailable to run (a slug).

91 CUDA C++ Debugging

Too Few Blocks

You don’t always know the incoming size N of your vector data structure (well,
actually, you often do in Al engines, because they have static dimensions, but
anyway). Let’s try to generalize our computation of how many blocks with each
having a fixed number of threads. There’s a few basic points:

e Each block has the same number of threads (i.e., the threads-per-block)
e You can’t run half a block (all threads run, even if you don’t need them).

In our block calculations, we have a Goldilocks problem: it’s easy to get too many
or too few, when we need it to be exactly right. Let’s generalize our computations:

int n = 33;

int threads per block = 32; // or 64 or 256...
int blocks = n / threads per block; // BUGGY!
mykernel<<<blocks, threads per block>>>(dv,n);

Does this work? No, because the “/” operator is integer division of “33/327,
which truncates to 1, and we can’t get fractions of a block. The result is:

threads per block == 32
blocks ==

We’re only running 32 threads, but our vector has 33 elements. Hence, if each
kernel is processing one vector element, we’ve missed one of the extra elements.
This is a code logic bug. It won’t crash CUDA, and nobody’s going to whisper in
your ear that the end of your vector didn’t get processed.

Now, maybe the kernel code has a loop to handle the extra vector elements, which
would fix the code logic bug, but it’s still a slug. But I'm jumping ahead by
mentioning a loop, when your kernel probably doesn’t even have an if statement
yet. It would be better just to use better block size computations.

Too Many Blocks

The previous section had too few blocks, so let’s add an extra block:

int threads per block = 32;
int blocks = (n + threads per block)/threads per block; // BUG!

David Spuler 92

This is actually the same as:

int threads per block = 32;
int blocks = (n / threads per block) + 1; // BUGGY!

This seems to work better because “(33+32)/32” or “(33/32)+1” both
evaluate to 2 blocks, which is what we want. However, we want the computation
to work for all values of n, and it’s actually wrong if n==32 because it needlessly
uses 2 blocks when 1 block of 32 threads is enough. We have a whole extra block
doing nothing, or maybe crashing stuff. You’d think the GPU would be thrilled by
an extra block, but not so much. The trick is to use 2 common CUDA idiom:

// CORRECT!
int blocks = (n + threads per block - 1) / threads per block;

The subtraction of 1 in the numerator fixes it using the power of mathematics.
For n==32, we get 1 and for n==33 there are correctly 2 blocks. It also works
correctly for n==63 or n==64, although I feel like I should add a unit test.

Odd Vector Sizes. All of this fuss about the number 32 being special because it’s
the warp size might suggest something: all your data should be in size 32 arrays (or
matrices or tensors). It’s hard to fix it if N is a prime number or other oddity.
That’s why a lot of the Al engines have parameters and “hidden dimensions” and
“context window sizes” that are a multiple of 32 (e.g., 4096 or 32k or whatever).
You won'’t see this in ChatGPT’s source code:

float mytensor[27][1531]1[17]; // Weird
Better would be:

float mytensor[4096][256][32768]1; // The power of 32!

Now you know: it’s all CUDA’s fault. Which is more true than we like to admit,
since all of this Al frenzy might not have happened without CUDA’s blazing speed.

93 CUDA C++ Debugging

Wrong Kernel Index Calculations

Okay, so now that our computations of blocks and threads are sorted, let’s now
actually show a very simple kernel. All good kernels start with the special
“ global ” keyword, which means that it runs on the GPU. Here’s a vector
clearing to zero kernel, which is a great piece of work if we pretend we don’t know
about functions like memset or cudaMemset.

Anyway, here’s the kernel code for the GPU to run lots of times in parallel:

__global void aussie clear buggyl (float* v, int n)
{

int id = threadIdx.x; // BUG!

v[id] = 0.0; // Clear one vector element..

And the host code that runs on the CPU, only once, looks like this:

int n = 33;

int threads per block = 32;
int blocks = (n + threads per block - 1)/threads per block;
aussie clear buggyl<<<blocks, threads per block>>>(dv, n);

I've left out a lot of the details on the CPU side before and after the
fancy <<<..>>> syntax (it’s called “triple chevron” syntax). The host code also has
to allocate memory (twice) and set up the vectors and copy them from the CPU to
the GPU, and back again. But for now, let’s just look at the blocks and threads.

Is there a bug? Umm, well, there is the word “BUG” in the comments, and also in
the function name, so maybe I gave it away a little bit. But why is it a bug? First,

let’s look at how many blocks and threads-per-block we’ve got:

threads per block == 32
blocks ==

We’ve now got 32¥2=064 total threads, each setting one element in a vector of size
33. Aha! Obviously, it’s a buffer overflow inside the kernel when we access v[id]!

Nice try, but no cigar. Actually, the problem is this statement:

int id = threadIdx.x; // BUG!

David Spuler 94

What is threadIdx.x when it’s at home (on a GPU)? Well, the variable
“threadIdx” stands for “thread index” and the “. x” part means the offset in the
x-dimension (i.e., 1D vectors). There’s also a “. y” for 2D (matrices) and “. z” for
3D (tensors), but we’re just using a vector, so the “. x” part is correct.

The problem is the “thread index” means the offset of a thread within the current
block of threads, not across all the total threads in multiple blocks. We have set
blocks-per-thread as 32, so each block launches 32 threads. Hence, the offset of
any thread in its current block has the range 0..31 only.

By launching 2 blocks of size 32 threads each, we get this sequence. The first block
launches 32 threads, each having a “threadIdx.x” value of 0.31, so they
correctly set all the first 32 vector elements to zero (in parallel). Our second block
launches another 32 threads at the same time, also in parallel to our first block, but
even though they’re in the second block, their “threadIdx.x” value only relates
to their own block, so they also have offset values of 0..31. Hence, we get another
32 threads running the kernel function, setting exactly the same values in the vector.

Overall, the outcome is a logic bug in the vector clearing function. The vector
elements v[0].v[31] all get cleared correctly (twicel), but the 33rd
element v[32] is not touched. This CUDA kernel will only work correctly
if n<=threads per block.

Array Bounds Violations

Like the six-million dollar man, we can rebuild the kernel. We need our first block
to have values 0..31 and our second block to have values 32..63. But how do we
know which block we’re in?

The answer is another CUDA builtin variable called “blockIdx” which stands for
“block index” and has value 0 for the first block, 1 for the next, and so on. It also
has fields x, y, and z, but we only care about the “. x” values for a vector. By the
way, the CUDA type is named “dim3” for these three-dimensional builtin object
variables, but you don’t need to declare them yourself.

Using the block index can compute indexes higher than threads-per-block:

int id = blockIdx.x * 32 4+ threadIdx.x; // BETTER

95 CUDA C++ Debugging

This is workable, but inelegant, and we could define a global constant:

const int threads per block = 32; // PRETTIER
int id = blockIdx.x * threads per block + threadIdx.x;

This looks like good C++ code, but the CUDA idiom is actually to use another
builtin variable called “blockDim” which stands for “block dimension” and in this

case that means threads-per-block (in the x direction). Hence, the fully correct
CUDA code, which is somewhat uglier, looks like:

// CORRECT
int id = blockIdx.x * blockDim.x + threadIdx.x;

The full GPU kernel function looks like this:

__global
void aussie clear buggyl (float* v, int n)

{

// CORRECT
int id = blockIdx.x * blockDim.x + threadIdx.x;
v[id] = 0.0; // Clear one vector element.. OKAY?

Now you can run your corrected kernel, and it will clear all the elements of your
vector, rather than only the first 32. But if you’re running it in production, might
want to get your mop and bucket ready to clean up the mess, because this kernel is
going to segfault all over the place.

Remember that array bounds violation you were worried about before? Now it’s
happening for real.

The blockIdx.x value is 0..1, blockDim.x is 32 here (because that was our
threads per block), and threadIdx.x has range 0..31 here. If you crank through
all the options (sequentially since you don’t have a GPU in your head), you’ll find
out the id array index variable has range 0..63, which all run in parallel.

Which isn’t great for computing v [id] on a vector of size 33. You get 31 array
bounds violations, in 31 different threads, all at the same time.

The correction is another common CUDA kernel idiom: the safety if statement.
Yes, you can use control flow statements like i f statements and loops inside the
kernel.

David Spuler 96

The non-crashing version of the kernel looks like this:

__global void aussie clear buggyl (float* v, int n)

{
int id = blockIdx.x * blockDim.x + threadIdx.x;

if (id < n)
v([iid] = 0.0; // Clear vector element.. Safely!

For some reason, most of the CUDA examples write it as above, without curly
braces, because adding braces would slow it down or something. I’d personally
prefer this minor tweak to the C++ styling:

if (1id < n) {
v[id] = 0.0;

Finally, it works! This safety test stops any of the 31 threads that would have
overflowed the vector from writing to bad memory, and they simply do nothing.
The other 33 threads correctly clear all the elements of the vector, 32 of them in
the first block, and 1 in the second block.

This code won’t crash, but it’s somewhat sluggy for two reasons:

e Redundant threads — the extra 31 threads run but do nothing.
e Warp divergence — some threads take different paths at the i f statement.

The redundant threads don’t actually slow anything down, since they run harmlessly
at the same time in parallel with the useful threads. However, they waste electricity,
and prevent the GPU from having better utilization of its silicon wafers to do other
computations.

Warp divergence or “branch divergence” refers to the fact that GPUs like all their
threads to follow exactly the same instruction path in parallel. Adding
an if statement or a loop is problematic for performance, because some threads
go left or right, and this slows down the whole process.

97 CUDA C++ Debugging

Mixing Host and Device Pointers

CUDA has two main classes of pointers to allocated memory: host pointers and
device pointers. Host pointers are your regular pointers from malloc or new on
the CPU, whereas device pointers are allocated on the GPU by functions such
as cudaMalloc. The two cannot mix!

Here’s a common bug:

float *vdest;
err = cudaMalloc ((void**)&vdest, n * sizeof (float));
if (err != cudaSuccess) {
fprintf (stderr, "cudaMalloc failed: %d\n",
(int)n* (int) sizeof (float)) ;
return;

}
vdest[0] = 0.0; // Oops!

What’s wrong with that? Isn’t it good style to initialize newly allocated memory,
especially since cudaMalloc does not initialize the memory block for you?

Unfortunately, this is a pointer mix-up. The cudaMalloc function allocated a
block of memory on the device, and I've just tried to initialize it on the CPU.
Accessing the device vector in host code will literally crash the program.

There are two main ways to correct this:

(a) use cudaMemset to initialize the device pointer, called from your host
code on the CPU, or

(b) allocate a host memory block with the normal C++ malloc function,
initialize that newly allocated host vector (like the assignment used above),
and then copy the host vector up to the GPU device using cudaMemcpy.

Both of these methods are host code that you run on the CPU. The second one is
rather a mouthful, but it’s the normal sequence for advanced kernel functions.

References

1. Mingyuan Wu, Husheng Zhou, Lingming Zhang, Cong Liu, Yuqun
Zhang, 29 May 2019 (v3), Characterizing and Detecting CUDA Program
Bugs, https:/ /arxiv.org/abs/1905.01833.

David Spuler 98

https://arxiv.org/abs/1905.01833

12. Advanced CUDA Bugs

Advanced Bugs in CUDA C++

Mastery of CUDA means no bugs, right? Alas, no, it just means a better class of
bugs. Here are some of the things that might go wrong:

e Scaling beyond the GPU’s maximum thread count.

e Exceeding shared memory size with over-large blocks.

e Race conditions and other synchronization errors

e Using up too many registers and spilling into local memory.

o Kernel calls overflowing the GPU device’s stack (esp. if using alloca).
e Shared memory access synchronization errors across threads.

e Cross-compilation on a different architecture to execution.

Some specific errors in CUDA runtime API usage:

e cudaSetDevice return error code needs to be checked, even at startup
on a single GPU machine (it can fail sometimes).

e Calling host-only functions from device code.

e Kernel printf output buffer overload due to buffer not flushed.

e Warp shuffle when the target thread is inactive is undefined behavior (the
returned value is undefined).

e Using assume, builtin assume,
or builtin unreachable, when it’s actually false (oops!).

e Unsupported obscure printf formats (it’s not exactly the same as the
standard library).

o Kernel printf buffered output missing at program termination (needs
synchronizing call, such
as cudaDeviceReset or cudaDeviceSynchronize).

e Thread group blocks must have all threads patticipating.

e Trying to extend CUDA namespaces is undefined (e.g., “cuda::” or
“nv::”).

e Not checking for CUDA error return codes after every CUDA runtime
call, and after every kernel launch with cudaGetLastError, which can
miss errors or at least give a misleading appearance of where the error is
occurring,

99 CUDA C++ Debugging

CUDA-specific arithmetic problems include:

e Kernel-called math functions are silent on etrors (e.g., do not set errno or
emit floating-point exceptions).

e Integer division by zero does not cause an exception in device code (and
integer remainder operator).

e Integer overflow does not cause an exception (which is also normal for
standard C++!)

e Tloating point to integer conversion overflow is INT MAX (or equivalent
constant for other types) in device code.

Memory access errors include:

e Mixing malloc/free and cudaMalloc/cudaFree.

e DModifying constant address data.

e Accessing device addresses in host code.

e Local memory access outside that thread.

e Shared memory address (“ _shared) accessed in host code (probably
a crash).

e Shared memory access outside the block that defined it on the device (i.e.,
thread block scope).

e Tensor fragment mismatches.

e Kernel invocation parameter sends a local address (it should be
from cudaMalloc, newor device addresses)

e Streams or events created by host code accessed in device code.

e Event accessed outside the kernel block that created it (e.g., another block,
in host code or a child grid).

e Streams created in device code accessed outside that block.

e Virtual alias synchronization problems with cuMemMap.

e cudaFreeAsync synchronization issues with its allocation
(cudaMallocAsync) or other usage of the address.

e Synchronization issues with cudaMalloc (non-async version)
and cudaFreeAsync.

e Accessing constant addresses in host code (likely segfault or other
crash).

e Address from cudaGetSymbolAddress can only be used in host code.

e Mismatched virtual function call in host versus device code (i.e., object
created in one, virtual function called in the other).

David Spuler 100

Portability and compatibility issues include:

e Generally, use of unsupported compute capability features is undefined.

e Arithmetic operations of the GPU may differ from x86 in areas undefined
by the IEEE 754 standard.

e Unified Memory usage on a device lacking full support is undefined
(compatibility issue).

And don’t forget the slugs:

e Low occupancy rates on SMs.

Poor load balancing across cores and SMs.

e Memory transfer costs

Non-coalesced memory access patterns.

Redundant barriers (unnecessary synchronization).

Shared memory bank conflicts.

Kernel output with printf (useful for tracing, not production).
Register spills

Poor cache management

There’s also some common plain old bugs in Al algorithms that are fairly common:

e Tensor shape errors
e Mixing the offsets in square matrices (e.g., image data)

And since CUDA C++, is really just C++ plus a layer on top, there’s still a boatload
of low-level C++ coding mistakes. But don’t fret too much, because soon you’ll
just be writing the comments and your Al copilot will write all the C++ statements.

Python Brain Mode

What’s wrong with this CUDA C++ kernel code for GPU vector addition?

__global void aussie add vector kernel buggy python (
float* vl1l, float *v2, float *destv3, int n)
{
// BUGGY: Add vectors, but C++ ain't Python!!
int id = blockIdx.x * blockDim.x + threadIdx.x;
if (id < n)
float ftmpl = v1[id]; // Put into registers
float ftmp2 = v2[id];
destv3[id] = ftmpl + ftmp2;

101 CUDA C++ Debugging

C++ is not Python! This is what happens when a programmer is forced to learn
Python, and then has to context switch to a real programming language like CUDA
C++.

Whereas indentation is used by Python for semantics, the C++ compiler does not
use indentation for anything other than tokenization, and almost completely
discards all whitespace.

The above 1f statement without braces around its body is actually trying to do this
control flow in C++:

if (id < n) {
float ftmpl = v1[id];
}
float ftmp2 = v2([id];
destv3[id] = ftmpl + ftmp2;

Hence, the safety test is not actually safe. In fact, it won’t even compile,
because ftmpl in declared inside the if statement branch, and has limited scope,
so it can’t be used in the addition operator at the end.

The corrected code is simply to add cutly braces:

if (id < n) {
float ftmpl = v1[id];
float ftmp2 = v2[id];
destv3[id] = ftmpl + ftmp2;

The other way to fix it is to remove the temporaries so that it’s only one statement:
y p y

if (id < n)
destv3[id] = v1[id] + v2[id];

Incidentally, I'm not convinced that using temporary variables in this way to force
GPU register usage is really an optimization. The nvcec compiler probably puts
them into registers anyway.

David Spuler 102

Confusing Host and Device Pointers

When there’s a lot of different pointers to vectors and matrices floating around, it’s
easy to get confused. What’s the bug in this code to clear a vector? Note that this is
host code and various error checking has been removed for clarity.

// Set up the host vector
float* v = (float*)malloc(n * sizeof(float)); // Dynamic

// Set up the self-test data...
aussie set vector(v, n, 3.0); // Set non-zero (test)

// Set up the device vector...
float* device v = NULL;

int sz = n * sizeof (float);
cudaMalloc ((void**) &device v, sz);

// Copy to device vector
cudaMemcpy (device v, v, sz, cudaMemcpyHostToDevice);

// Kernel launch

int threads per block = 32;

int blocks = (n + threads per block - 1)/threads per block;
aussie clear basic <<< blocks, threads per block >>> (v, n);

// Copy GPU data back to the CPU host vector....
cudaMemcpy (v, device v, sz, cudaMemcpyDeviceToHost);

// Cleanup allocated memory
cudaFree (device v); // Free the device vector
free (v); // Free the host vector

It’s hard to see, but the kernel launch won’t do what it’s asked, but will fail with a
CUDA error code. Hopefully this is being checked by the host code, but not in the
code fragment above, though! If a kernel fails in a GPU forest, and there’s no error
check to hear it fail?

Anyway, this doesn’t crash, but if you call cudaGetLastError anywhere, you’l
see that this gets CUDA error 700, which is cudaErrorIllegalAddress. The
error first appears after the kernel launch, so it’s happening in the device code.

If you’re stumped, one way to find out the cause of error 700 would be to run it
with the compute-sanitizer tool, which finds memory access errors. It’s part
of the CUDA Toolkit and is free to use.

103 CUDA C++ Debugging

On Linux or a Google Colab virtual version of Linux, the command would be:

command-sanitizer a.out

The error report would be something like this:

========= Invalid global write of size 4 bytes

========= at 0x40 in aussie run clear basic (float *, int)
========= by thread (0,0,0) in block (0,0,0)

========= Address 0x583fefd3e950 is out of bounds

========= and is 37,289,833,797,296 bytes before the nearest
allocation at 0x7a2a27200000 of size 131,072 bytes

I particulatly enjoy the fact that the faulty address is 37 quadzillion bytes away from
where it should be. And that is actually quite a useful hint as to the cause. To narrow
our focus, here’s the kernel launch with the mistake:

aussie clear basic<<<blocks, threads per block>>>(v, n);

Your first thought is that something’s wrong in the blocks and threads calculations.
But actually, the culprit is simply v, which is a host vector allocated by malloc on
the CPU, not a kernel vector allocated by cudaMalloc. The GPU cannot access
memory on the host, unless it’s been specially marked as “global” or similar. So,
we’ve passed the kernel a host vector that device code isn’t allowed to touch! The
fix is to use the correct vector device v, which is a device vector:

aussie clear_basic<<< blocks, threads per block >>>
(device v /*FIX!*/ , n);

Copy-Paste Bugs for cudaMemcpy

It seems a little ironic that humans make copy-paste bugs when using
the cudaMemcpy APIL. However, it’s almost always used twice, before and after a
kernel launch, and there are many ways to go wrong.

Firstly, here are the two main ways to write them correctly:

// Before (CPU-to-GPU)
cudaMemcpy (device v, v, sz, cudaMemcpyHostToDevice);

// ... launch the kernel here

// After (GPU-to-CPU)
cudaMemcpy (v, device v, sz, cudaMemcpyDeviceToHost);

David Spuler 104

Below are the many ways to call it incorrectly. In fact, I coded up some tests
of cudaMemcpy to see which ones return a2 CUDA error status, and which are
silent errors. Here are the ways to go wrong:

// device-to-host to a device pointer

cudaMemcpy (device v, v, sz, cudaMemcpyDeviceToHost);

// host-to-device to a host pointer

cudaMemcpy (v, v, sz, cudaMemcpyHostToDevice);

// host-to-device from a device pointer

cudaMemcpy (device v, device v, sz, cudaMemcpyHostToDevice);

// device-to-host to a device pointer

cudaMemcpy (device v, device v, sz, cudaMemcpyDeviceToHost);

// device-to-host from NULL pointer

cudaMemcpy (v, NULL /*dv*/, sz, cudaMemcpyDeviceToHost) ;

// device-to-host to NULL pointer

cudaMemcpy (NULL/*v*/, device v, sz, cudaMemcpyDeviceToHost) ;

// device-to-host too few bytes

cudaMemcpy (v, device v, n /*sz*/, cudaMemcpyDeviceToHost) ;

// device-to-host zero bytes

cudaMemcpy (v, device v, 0 /*sz*/, cudaMemcpyDeviceToHost) ;

// host-to-device too few bytes

cudaMemcpy (device v, v, n /*sz*/, cudaMemcpyHostToDevice);

// host-to-device zero bytes

cudaMemcpy (device v, v, 0 /*sz*/, cudaMemcpyHostToDevice);

// reverse sz and mode params

cudaMemcpy (device v, v, (int)cudaMemcpyHostToDevice /*sz*/,
(cudaMemcpyKind) sz /*cudaMemcpyHostToDevice*/) ;

// host-to-host from device pointer

cudaMemcpy (v, device v, sz, cudaMemcpyHostToHost);

// host-to-host to device pointer

cudaMemcpy (device v, v, sz, cudaMemcpyHostToHost);

// host-to-host same host pointer

cudaMemcpy (v, v, sz, cudaMemcpyHostToHost);

// device-to-device from host pointer

cudaMemcpy (device v, v, sz, cudaMemcpyDeviceToDevice);

// device-to-device to host pointer

cudaMemcpy (v, device v, sz, cudaMemcpyDeviceToDevice);

// device-to-device same device pointer

cudaMemcpy (device v, device v, sz,cudaMemcpyDeviceToDevice);

// device-to-device too many bytes

cudaMemcpy (device v,device v,sz*2,cudaMemcpyDeviceToDevice) ;

// host-to-host too many bytes");

cudaMemcpy (v, v, sz*2, cudaMemcpyHostToHost) ;

// host-to-device too many bytes

cudaMemcpy (device v, v, sz*2, cudaMemcpyHostToDevice);

// device-to-host too many bytes

cudaMemcpy (v, device v, sz*2, cudaMemcpyDeviceToHost);

105 CUDA C++ Debugging

And here is the output of my test program (abridged over multiple runs):

CUDA ERROR: 1 (invalid argument) -
CUDA ERROR: 1 (invalid argument) -
NO error detected - host-to-device
NO error detected - device-to-host
CUDA ERROR: 1 (invalid argument) -

device-to-host to a device pointer
host-to-device to a host pointer
from a device pointer

to a device pointer

device-to-host from NULL pointer

CUDA ERROR: 1 (invalid argument) -
NO error detected - device-to-host
NO error detected - device-to-host
NO error detected - host-to-device
NO error detected - host-to-device
CUDA ERROR: 21 (invalid copy dir
NO error detected - host-to-host
NO error detected - host-to-host
NO error detected - host-to-host
CUDA ERROR: 1 (invalid argument) - device-to-device from host pointer
CUDA ERROR: 1 (invalid argument) - device-to-device to host pointer
NO error detected - device-to-device same device pointer

CUDA ERROR: 1 (invalid argument) - device-to-device too many bytes

NO error detected - host-to-host too many bytes

CUDA ERROR: 1 (invalid argument) - host-to-device too many bytes

CUDA ERROR: 1 (invalid argument) - device-to-host too many bytes

device-to-host to NULL pointer

too few bytes

zero bytes

too few bytes

zero bytes

memcpy) - reverse sz and mode params
from device pointer

to device pointer

same host pointer

Some of the silent errors may be detected by compute-sanitizer when it runs,
but I ran this test, and it didn’t seem to find any more of the “too many bytes”
overflows, except for the ones that emitted a CUDA error code.

Note that the compute-sanitizer tool also helpfully reports any of the CUDA

error return statuses that get triggered by the CUDA runtime AP, along with any
other memory address failures detected.

Silent Kernel Launch Failures

This is another weird oddity about the CUDA Runtime APIL. If the kernel launch
fails in a synchronous way, such as from too many threads-per-block or other grid
dimension error, the error code gets lost.

Rather surprisingly, this lost error code occurs in a very common CUDA idiom:

e Kernel launch with <<<...>>> syntax.
e cudaDeviceSynchronize immediately thereafter.

David Spuler 106

Here’s an example of code that will show this silent kernel launch failure:

int BADTHREADS = 32 + 1024; // More than 1024 is illegal
int blocks = (n + BADTHREADS - 1) / BADTHREADS;

// Launch failing kernel
aussie clear vector <<<blocks,BADTHREADS>>> (device v, n);

errval = cudaDeviceSynchronize();
if (errval != cudaSuccess) {
// CUDA error...
AUSSIE CUDA ERROR(errval, "cudaDeviceSynchronize fail");

In this case, cudaDeviceSynchronize will incorrectly return cudaSuccess.
And since kernel launches cannot return an error code, the failure code is lost. The
kernel will never run any threads, and also never again report any error code. It’s a
silent kernel launch failure, and our poor clueless CPU probably thinks that the
kernel is running,.

It’s not just cudabDeviceSynchronize that fails to detect the error code, but
also other calls with implicit synchronization. For example, if we
use cudaMemcpy just after the kernel launch, it too will
return cudaSuccess after such a failed kernel launch.

The solution and apparently the only way to detect this kernel launch etror is to
call cudaGetLastError or cudaPeekAtLastError before any call
to cudaDeviceSynchronize.

In any case, an example of the code that works is:

// Launch failing kernel
aussie clear vector basic<<<blocks,BADTHREADS>>>(dv, n);
errval = cudaGetLastError(); // Correct!
if (errval != cudaSuccess) {

// CUDA error...

AUSSIE_CUDA_ERROR(errval, "cudaGetLastError fail"):;
}

errval = cudaDeviceSynchronize();
// etc.

Hence, we probably should update our preferred CUDA idiom to:

e Kernel launch with <<<..>>> syntax.
e C(Call cudaGetLastError or cudaPeekAtLastError afterwards.
e Optionally call cudaDeviceSynchronize.

107 CUDA C++ Debugging

And one final oddity: if we call cudaPeekAtLastError just after a failed kernel
launch, the error code is returned correctly, but is somehow missed by subsequent
calls such as cudaMemcpy. It’s like it gets cleared, even though it was only
supposed to be a “peek”

Device Thread Limits

You have to feel sorty for the poor little hapless GPU chips. For a while they get
to run mission-critical Al queries, like suggesting recipes using ingredients that start
with ‘P’ and other important stuff. But then they overheat a little, and get sent to
the remote camps to do Bitcoin mining.

There are several ways that you can exceed a GPU’s limits:
y y

e More than 1024 threads
e Too many blocks

The block size limit to 1024 is a hard limit, and you really should add an assertion
before every kernel launch to assure that. The problem with launching too many
blocks, and thus too many threads, on a GPU is more insidious.

Launching Far Too Many Blocks. Just when you thought it was safe to go back
into the water, here’s the news: this apparently safe and very simple kernel is actually
broken:

__global
void aussie clearvec basic(float* v, int n)
{
int id = blockIdx.x * blockDim.x + threadIdx.x;
if (id < n)
v[id] = 0.0; // Clear vector element.. Safely!

This is not production-grade CUDA C++ code. The kernel fails if N is too large,
because it tries to always create exactly one thread per item. Hence, a very large
value of N means a large number of blocks.

This can blow the little GPU’s mind. If you try to work on a vector with a billion
elements, that’s a billion divided by 32 warps. Even the amazing NVIDIA GPUs
have their limits. For example, 2 V100 tops out at 16,384 threads, which is a lot less
than a billion.

David Spuler 108

Actually, I underestimated CUDA! When I ran this code in a test just now, it worked
just finel CUDA just schedules lots and lots of blocks, and takes care of it. The
program takes a few seconds to run, so I guess it’s not doing all those blocks in
parallel, but there’s no crashing or CUDA error codes. Even the unit tests passed.
Amazing.

It does eventually fail, but I had to use N=1<<30, which is a huge value. And the
error is not even in the block scheduling, it’s that we get to the level of integer
overflow, and this messes with the CUDA memory addressing scheme. Here is
what compute-sanitizer finds:

Invalid global write of size 4 bytes
at 0x80 in aussie clearvec basic(float *, int)
by thread (0,0,0) in block (0,0,0)
========= Address 0x0 is out of bounds
========= and is 140,236,623,642,624 bytes before the
nearest allocation at 0x7£f8b62230000 of size 65,536 bytes

It actually reports errors about addresses 0x0, 0x4, 0x8, and so on. This looks like
some kind of integer overflow in the memory address logic. I guess it finally
stretched CUDA’s memory model to breaking point!

No, that’s wrong! But then, no, after further investigation I’ve discovered that it’s
my bug, not CUDA’s. I mean, address 0x0 is the null pointer, not some random

address, so I should have twigged earlier.

I added a lot of assertions and error return checks to the caller code, and here’s
what I found:

e The device vector passed as a kernel parameter was null.
e The cudaMalloc vector was null.

Here’s the culprit:
int sz = n * sizeof (float);
It turns out that if n==1<<30 and size (float)==4, then 1<<32is zero, by
integer overflow. Hence, the size parameter passed to cudaMalloc was zero, and
it was failing. My code was effectively doing:
int sz = 0;

cudaMalloc ((void**)sdevice v, sz); // sz==

109 CUDA C++ Debugging

There were no runtime warnings or CUDA error codes. If I'd declared the
variable n as const, I would have got a compiler warning about integer constants
overflowing, but at runtime there are no checks for integer overflow.

Anyway, this mistake has some important points:

e Humble pie for me!

e cudaMalloc does not return a CUDA error code if its size is zero.

e But cudaMalloc does return a null address, and I wasn’t checking for
that (i.e., “allocation failure”).

e cudaMalloc will act oddly if the size overflows to a negative integer,
because its parameter type issize t, which is typically
an unsigned type, so a negative integer value will overflow to become a
very large positive unsigned integer (silently).

e Device pointer operations don’t crash from a null dereference on the GPU,
nor for an invalid address of v [id] that is based on a null pointer, such
as 0x4 from v[1], 0x8 from v[2], etc.

e I should have safety-checked or asserted that “device v != NULL”
before passing it as a kernel launch parameter.

Solution: Use fewer blocks. The solution is obviously to modify the kernels so
that they process more than one vector element, so that we can use fewer blocks
overall (and don’t need to overflow any integers!). If you’re only a little too high,
you can maybe manually modify the kernel so that each thread sets 2 vector
elements by doing two assignments in sequence.

For a more general case, you actually need to add a loop into the kernel function,
and do the calculations to work out how many elements each kernel needs to
process, which is basically N divided by the maximum number of allowed threads.

There’s nothing wrong with a kernel like this, and it just looks like an ordinary C++
loop, but we’re getting a bit too advanced now. We'll defer the discussion of how
to do loops in kernels, because there are scary things like “grid-stride loops” and
“coalesced data accesses” to think about.

David Spuler 110

13. Self-Testing Code

What is Self-Testing Code?

Instead of doing work yourself, get a machine to do it. Who would have ever
thought of that?

Getting your code to test itself means you can go get a cup of coffee and still be
billing hours. The basic techniques include:

e Unit tests

e Regression tests

e Error checking

e Assertions

e Self-testing code blocks

e Debug wrapper functions

The simplest of these is unit tests, which aim to build quality brick-by-brick from

the bottom of the code hierarchy. The largest techniques are to run full regression
tests suites, or to add huge self-testing code blocks.

Self-Testing Code Block

Sometimes an assertion, unit test, or debug tracing printout is too small to check
everything. Then you have to write a bigger chunk of self-testing code.

The traditional way to do this in code is to wrap it in a preprocessor macro:

#if DEBUG
// block of test code
#endif

111 CUDA C++ Debugging

Another reason to use a different type of self-testing code than assertions is that
you’ve probably decided to leave the simpler assertions in production code.

A simple test like this is probably fine for production:
assert (ptr != NULL); // Fast

But a bigger amount of arithmetic may be something that’s not for production:
assert (aussie vector sum(v, n) == 0.0); // Slow

So, you probably want to have macros and preprocessor settings for both

production and debug-only assertions and self-testing code blocks. The simple way
looks like this:

#if DEBUG
assert (aussie vector sum(v, n) == 0.0);
#endif

Or you could have your own debug-only version of assertions that are skipped for
production mode:

assert debug(aussie vector sum(v, n) == 0.0);
The definition of “assert_debug” then looks like this in the header file:

#if DEBUG

#define assert debug(cond) assert(cond) // Debug mode
#else

#define assert debug(cond) // nothing in production
#endif

This makes the “assert debug” macro a normal assertion in debug mode, but
the whole coded expression disappears to nothing in production build mode.

The above example assumes a separate set of build flags defining the preprocessor
macros for a production build.

David Spuler 112

Self-Test Code Block Macro

An alternative formulation of a macro for installing self-testing code using a block-
style, rather than a function-like macro, is as follows:

SELFTEST {
// block of debug or self-test statements
}

The definition of the SELFTEST macro looks like:

#if DEBUG

#define SELFTEST // nothing (enables!)
#else

#define SELFTEST if(l) {} else // disabled
#endif

This method relies on the C++ optimizer to fix the non-debug version, by noticing
that “i f (1) ” invalidates the else clause, so as to remove the block of unreachable
self-testing code that’s not ever executed.

Note also that SELFTEST is not function-like, so we don’t have the “forgotten
semicolon” risk when removing SELFTEST as “nothing”. In fact, the nothing
version is actually when SELFTEST code is enabled, which is the opposite situation
of that earlier problem.

Furthermore, note that we cannot use the “do-while (0)” trick in this different
syntax formulation.

Self-Test Block Macro with Debug Flags

The compile-time on/off decision about self-testing code is not the most flexible
method. The block version of SELFTEST can also have levels or debug flag areas.

One natural extension is to implement a “flags” idiom for areas, to allow
configuration of what areas of self-testing code are executed for a particular run
(e.g., a decoding algorithm flag, a normalization flag, a MatMul flag, etc.). One
Boolean flag is set for each debugging area, which controls whether or not the self-
testing code in that module is enabled or not.

113 CUDA C++ Debugging

A macro definition of SELFTEST (flagarea) can be hooked into the run-time
configuration library for debugging output. In this way, it has both a compile-out
setting (DEBUG==0) and dynamic runtime “areas” for self-testing code.

Here’s the definition of the self-testing code areas:

enum selftest areas {
SELFTEST NORMALIZATION,
SELFTEST MATMUL,
SELFTEST SOFTMAX,
// ... more

}i
A use of the SELFTEST method with areas looks like:

SELFTEST(SELFTEST_NORMALIZATION) {
// ... self-test code
}

The SELFTEST macro definition with area flags looks like:

extern bool g aussie debug enabled; // Global override

extern bool DEBUG_FLAGS[100]; // Area flags
#if DEBUG
#define SELFTEST (flagarea) \
if (g_aussie debug enabled == 0 || \
DEBUG_FLAGS[flagarea] == 0) \

{ /* do nothing */ } \

else
#else
#define SELFTEST if (1) {} else // disabled completely
#endif

This uses a “debug flags” array idea as for the debugging output commands, rather
than a single “level” of debugging.

Naturally, a better implementation would allow separation of the areas for debug
trace output and self-testing code, with two different sets of levels/flags, but this is
left as an extension for the reader.

David Spuler 114

Debug Stacktrace

There are various situations where it can be useful to have a programmatic method
for reporting the “stack trace” or “backtrace” of the function call stack in C++.

Some examples where it’s useful include:

e Your assertion macro can report the full stack trace on failure.
e Self-testing code similarly can report the location.

e Decbug wrapper functions too.

e Writing your own memory allocation tracker library.

C++ has a standard call stack trace capability with its standardization in C++23.
This is available via the “std: : stacktrace” facility, such as printing the current
stack via:

std::cout << "Stacktrace: "
<< std::stacktrace::current ()
<< std::endl;

The C++23 stacktrace library is already supported by GCC and eatly support
in MSVS is available via a compiler flag “/std:c++1latest”. There are also two
different longstanding implementations of stack trace capabilities:
glibc backtrace and Boost StackTrace.

Note that the C++23 standardized version is actually based on the original Boost
version of stack trace functionality.

Unified Address Self-Testing

Pointers are doubly complicated in CUDA C++, because they can be host or device
pointers, not to mention shared or constant memory. Adding some self-testing code
can be beneficial to quality.

You can use the cudaPointerGetAttributes function to query information
about any address.

115 CUDA C++ Debugging

Here’s an example utility function:

bool aussie is device pointer (void *ptr)
{
cudaPointerAttributes attrib;
cudaError t err = cudaPointerGetAttributes (&attrib,
if (err != cudaSuccess) {
printf ("ERROR: %s: cudaPointerGetAttributes fail:
__func_ , ptr);
return false;
}
if (attrib.type/*memoryType*/==cudaMemoryTypeDevice)
return true; // Device pointer

}

ptr);

sp\n",

{

else if (attrib.type/*memoryType*/==cudaMemoryTypeHost) {

return false; // Host pointer

}

printf ("ERROR: %s: pointer neither device nor host:
__func__, ptr);

return false;

A few points about this idea:

e This runs in host code.

$p\n",

e Host pointer address detection is not as simple (discussed below).
e The documentation says the structure field name is “memoryType” but I

had to use “type” instead (after scouring the header file).

Host pointer issues. Defining an aussie is host pointer would seem to
be just reversing two return values, but that doesn’t work as well as you might think.

The type of cudaMemoryTypeHost only applies to host pointers in Unified
Addressing, so this method fails for ordinary malloc or new pointers on the host.
These basic addresses will get another setting value for “type” with value 0,
whereas cudaMemoryTypeHost is 1, and cudaMemoryTypeDevice is 2.

Various extensions of this idea are possible. For example, you can also get the

device details if it is a device pointer, and other details for host

pointers.

Unfortunately, ’'m not aware of any way to get more detailed information, such as
whether it’s a cudaMalloc block, and its allocated byte size. But I can dream.

David Spuler 116

Kernel Launch Self-Testing

Calculations of grid dimensions such as block counts and block sizes can be error-
prone. One idea is to add some self-testing code to auto-validate the calculations.
This may be particularly beneficial for novice CUDA acolytes, but less so for
experienced programmers.

Here’s an example of the types of self-tests that are possible for a one-dimensional
vector kernel:

#define AUSSIE ERROR (mesg) \
printf ("ERROR: %s: %s\n", _ _func__ , (mesq))

bool aussie check kernel dimensions_1D(
int blocks,
int threads,
int n

)

if (n == 0) {
AUSSIE ERROR("N is zero");
return false; // fail

if (n < 0) {
AUSSIE ERROR("N is negative");

return false; // fail

}

if (blocks == 0) {
AUSSIE ERROR("Zero block count");
return false; // fail

if (blocks < 0) {
AUSSIE ERROR ("Negative block count");
return false; // fail

if (threads == 0) {
AUSSIE ERROR("Zero thread count");
return false; // fail

if (threads < 0) {
AUSSIE ERROR ("Negative thread count");
return false; // fail

if (blocks == 1 && threads == 1) {
AUSSIE ERROR("WARN: Sequential execution!”);
// It's allowed (for beginners), drop down...

if (threads > 1024) {

AUSSIE ERROR ("Thread count more than 1024 max");
return false; // fail

117 CUDA C++ Debugging

if (threads %32 != 0) {
AUSSIE ERROR("WARN: Threads not multiple of 327);
// Allow for novice ... drop down to keep going

}

// Note: Some total thread count checks assume

// ... 1 operation per thread (i.e., no loops)
// ... so this is really mainly for educational use
// ... in checking of simple kernels.

int num = blocks * threads;
if (num == n) {
// Perfection...
return true;
}
if (num < n) {
// NOTE: Error in simple kernel,
// ... but could be valid grid-stride loop usage...
AUSSIE_ERROR ("WARN: Thread total is lower than n (not enough
threads or grid-stride loop)"):;
if (n % threads != 0) {
AUSSIE ERROR("WARN: Grid-stride loop kernel would have
wasted iterations");
}
return true; // allow it
}
if (num > n) {
AUSSIE ERROR ("WARN: Thread total > n (wasted threads)");
return true; // allow it
}

return true; // No serious errors found...

Note that this self-checking idea can be extended to a lot of CUDA Runtime C++
calls. This is discussed in detail in the debug wrapper function chapter.

David Spuler 118

14. Assertions

Why Use Assertions?

Of all the self-testing code techniques, my favorite one is definitely assertions.
They’re just so easy to add! The use of assertions in CUDA C++ programs can be
a very valuable part of improving the quality of your work over the long term. They
ensure that you find bugs early in the life cycle of code, and they don’t have much
impact on performance (if used correctly). I find them especially useful in getting
rid of obvious glitches when I’'m writing new code, but then I usually leave them in
there.

The standard C++ library has had an “assert” macro since back when it was
called C. In CUDA C++, things are a little more complex, because there are two
aspects of using assertions:

e Device code assertions — use the assert builtin function or printf.
e Host code assertions — lots of options!

The use of assertions in kernel C++ code is very limited, but host code runs on
standard C++ compilers on the CPU, so you can use the many available techniques
for host platforms.

The simplest idea is just to use the builtin assert macro, which works in both
device and kernel code. The assert macro is a convenient method of performing
simple tests. The basic usage is illustrated to validate the inputs of a simple vector
kernel:

#include <assert.h>

__device vector_ sum(float v[], int n)

{
assert (v != NULL); // Easy!
// ... etc

119 CUDA C++ Debugging

Compile-Time Assertions: static_assert

Runtime assertions have been a staple of C++ code reliability since the beginning
of time. However, there’s often been a disagreement over whether or not to leave
the assertions in production code, because they inherently slow things down.

The modern answer to this conundrum is the C++ “static_assert” directive.
This is like a runtime assertion, but it is fully evaluated at compile-time, so it’s supet-
fast. Failure of the assertion triggers a compile-time error, preventing execution,
and the code completely disappears at run-time.

Unfortunately, there really aren’t that many things you can assert at compile-time.
Most computations are dynamic and stored in variables at runtime. However,
the static assert statement can be wuseful for things like blocking
inappropriate use of template instantiation code, or for portability checking such
as:

static assert(sizeof (float) == 4, "float is not 32 bits");
This statement is an elegant and language-standardized method to prevent

compilation on a platform where a “f1loat” data type is 64-bits, alerting you to a
portability problem.

Device code assertions
There are two basic methods to implement assertions on device code:

e CUDA assert primitive
e Custom macro with printf

Note that you can also use static assertin both host and device code,
assuming you have a compile-time condition (e.g., const or constexpr result).

CUDA assert method for devices. Since compute capability 2.0, there has been
an “assert” primitive in the CUDA runtime library that works on devices. It’s in

the C++ Programmer Guide, with declaration:

void assert (int expression);

David Spuler 120

If the assertion is successful with a non-zero expression value, nothing happens. If
the assertion fails with a zero value, there are a few effects:

e Thread termination for all threads where it fails.
e Sets the cudaErrorAssert return error code (value 710).
e Error message printed to standard error (after kernel completion).
e Next CUDA call with synchronization with fail with
error cudaErrorAssert

Here’s an example of an assertion failure message:

aussie-clear-vector-test-assertions.cu:40:

void aussie clear vector kernel basic(float *, int):
block: [0,0,0], thread: [5,0,0]

Assertion “id < 5° failed.

An important point is that the assertion failure message does not appear
immediately. Rather, the assertion message appears when the kernel has finished, at
the next synchronization with the host code. This behavior is the same as the built-
in printf function, when executed in kernel code. It gets buffered until the CPU
is ready to print it out. However, note that printf output goes to stdout,
whereas assertion failures print to stderr.

I’m not sure if assertion messages are printed if the host code on the CPU has
already exited (i.e.,, didn’t wait to synchronize). The behavior for buffered
device print £ messages is they are discarded in this situation, so maybe assertions
use the same mechanism.

Removing device assertions from production code. This method is very similar
to the original standard C assertions, which were declared in <asserth>. As with
the old-school C assertions, you can remove CUDA assertions from device code
by defining the “NDEBUG” preprocessor macro at compile-time. Hence, the
production build needs re-compilation of all CUDA C++ source files, not just re-
linking.

Should you leave assertions in production code? There’s a school of thought that
it’s worth the expense of extra assertion checking to get the supportability benefits
of having your users finding your bugs for you. However, CUDA kernels are
probably not the right place for this idea, since efficiency is critical in these code
sections, but you might want to consider this policy for host code.

121 CUDA C++ Debugging

Custom printf assertions for device code. Since printf statements are allowed
in device code, you can also declare your own custom assertion macro. For example,
you might want an “assert warning’”” macro that doesn’t abort the thread, or perhaps
have a more graceful shutdown of the kernel in some way.

On the other hand, a custom device assertion is not really the preferred method in
general, because CUDA assert failures are more propetly handled, and meshed
into the CUDA return code handling. If a CUDA device assertion fails, the error
code cudaErrorAssert (710) is returned by the next synchronization primitive
on the host.

Note that you can’t even use fprintf in device code, but only printf, so it’s
hard to print to stderr. Here’s an error message for device code:

aussie-clear-vector-test-assertions.cu(4l): error:

calling a _ _host function("fprintf") from a global
function

("aussie clear vector kernel basic") is not allowed

If you want to define your own custom assertion macro for device code, make sure
it has these features:

e Prints a message (obviously)
e Compiles to nothing if NDEBUG is declared.
e Aborts the thread (optionally), such as

by assert (0) or asm("trap;").

Assertions for both host and device code. If you want consistent assertion
handling in both types of CUDA C++ code, there are a few options:

e assert primitive
e Custom assertion macro with printf

The builtin CUDA assert macro is a little idiosyncratic across device versus host
code. For example, assert works fine in device code without any header include,
but gets a compilation error in host code, and <assert.h> is needed in host code.

Note that it’s somewhat difficult to define your own custom assertion macro in a
way that it works on both device and host code. For example, I don’t know of an
easy way to get your custom assertion failure message to appear on stderr, since
you’re limited to using printf on devices. You could launch your kernels in a
subprocess and use freopen to redirect the file pointers, but that seems a bit
extreme to me.

David Spuler 122

Note that trying to define two different versions of the same assertion macro on
device versus host code is very difficult to do with the same macro name. There are
at least two obstacles:

(a) you can’t use the CUDA ARCH macro to separate them, because
this macro is actually undefined in host code, and

(b) nvecce is always in host compilation mode in header files.

You can, of course, declare two different assertion macros with different names for
device and host C++ code.

#define aussie assert HOST (cond) // etc...
#define aussie assert DEVICE (cond) // etc...

If you want to ensure they get used in the right code, just trigger compiler errors by
putting fprintf in the host version, and CUDA_ARCH___ in the device version.
Actually, no, that idea of using CUDA ARCH _ to prevent misuse didn’t quite
work, but you can instead use assertion macros that includes calls to wrong cross-
mode functions, by declaring two “assertion failure” functions to call, which are
declared as either _device or host .

Custom Assertion Macros

An important point about the default “assert” macro on both host and device
code is that its failure handling may not be what you want. The default device code
assertion failure will trigger a cudaErrorAssert CUDA Runtime error when the
condition fails. And the default C++ assert macro on the host CPU code will
literally crash your program by calling the standard “abort” function, which
triggers a fatal exception on Windows or a core dump on Linux.

That is fine for debugging, but it isn’t usually what you want for production code.
Hence, most professional C++ programmers declare their own custom assertion
macros instead.

For example, here’s my own “aussie assert” macro in my own header file:

#define aussie assert (cond) \
((cond) || \
aussie assert fail (#cond, FILE , LINE))

123 CUDA C++ Debugging

“l |>7

This tricky macro uses the short-circuiting of the operator, which has a
meaning like “or-else”. So, think of it this way: the condition is true, or else we call
the failure function. The effect is similar to an if-else statement, but an
expression is cleaner in a macro.

The FILE and LINE preprocessor macros expand to the current
filename and line number. The filename is a string constant, whereas the line
number is an integer constant. The expression “#cond” is the “stringize” operator,
which only works in preprocessor macros, and creates a string constant out of its
argument.

Note that you can add “_ func__” to also report the current function name if
you wish. There’s also an older non-standard FUNCTION _ version of the
macro. Note that the need for all these macros goes away once there is widespread
C++ support for std: :stacktrace, as standardized in C++23, in which case a
failing assertion could simply report its own call stack in an error message.

When Assertions Fail. This aussie assert macro relies on a function that is
called only when an assertion has failed. And the function has to have a dummy
return type of “bool” so that it can be used as an operand of the | | operator,
whereas a “void” return type would give a compilation error. Hence, the
declaration is:

// Assertion failed
bool aussie assert fail (char* str, char* fname, int 1n);

And here’s the definition of the function:

bool aussie assert fail(
char* str, char* fname, int 1n)
{
// Assertion failure has occurred...
g_aussie assert failure count++;
printf ("AUSSIE ASSERTION FAILURE: %s, %s:%d\n",
str, fname, 1n);
return false; // Always fails

This assertion failure function must always return “false” so that the assertion
macro can be used in an 1 f-statement condition.

David Spuler 124

Assertion Failure Extra Message

The typical assertion macro will report a stringized version of the condition
argument (i.c., #condis the special stringize operator), plus the source code
filename, line number, and function name. This can be a little cryptic, so a more
human-friendly extra message is often added. The longstanding hack to do this has
been:

aussie assert (fp!=NULL && "File open failed"); // Works

The trick is that a string constant has a non-null address, so && on a string constant
is like doing “and trne’ (and is hopefully optimized out). This gives the extra message
in the assertion failure because the string constant is stringized into the condition
(although you’ll also see the “&&” and the double quotes, too).

Note that an attempt to be tricky with comma operator fails:
aussie assert (fp!=NULL, "File open failed"); // Bug

There are two problems. Firstly, it doesn’t compile because it’s not the comma
operator, but two arguments to the aussie assert macro. Even if this worked,
or if we wrapped it in double-parentheses, there’s a runtime problem: this assertion
condition will never fail. The result of the comma operator is the string literal
address, which is never false.

Optional Assertion Failure Extra Message: The above hacks motivate us to see
if we could allow an optional second parameter to assertions. We need two usages,
similar to how “static_assert” currently works in C++:

aussie assert (fp != NULL);
aussie assert (fp != NULL, "File open failed");

Obviously, we can do this if “aussie assert” was a function, using basic C++
function default arguments or function overloading.

If you have faith in your C++ compiler, just declare the functions “inline” and
go get lunch. But if we don’t want to call a function just to check a condition, we
can also use C++ variadic macros.

125 CUDA C++ Debugging

Variadic Macro Assertions

C++ allows #define preprocessor macros to have variable arguments using the

“...7and VA ARG 7 special tokens. Our aussie assert macro changes
to:
#define aussie assert(cond, ...) \
((cond) [I \

aussie assert fail (#cond, \
__FILE _, LINE , VA ARG))

And we change our “aussie assert fail” to have an extra optional
“message” parameter.

bool aussie assert fail(
char* str, char* fname, int 1n, char *mesg=0);

This all works fine if the aussie assert macro has 2 arguments (condition and

extra message) but we get a bizarre compilation error if we omit the extra message

(e, just a basic assertion with a condition). The problem is

that VA ARG expands to nothing (because there’s no optional extra message
[T

argument), and the replacement text then has an extra “, ” just hanging there at the
end of the argument list, causing a syntax error.

Fortunately, the deities who define C++ standards noticed this problem and added
a solution in C++17. There’s a dare-I-say “hackish” way to fix it with
the VA OPT _ special token. This is a special token whose only purpose is to
disappear along with its arguments if there’s zero arguments to VA ARG (i.e.,
it takes the ball and goes home if there’s no-one else to play with). Hence, we can
hide the comma from the syntax parser by putting it
inside VA OPT parentheses. The final version becomes:

#define aussie assert(cond, ...) \
((cond) |[|I] \
aussie assert fail (#cond, \
__FILE , LINE \
VA OPT__(,) VA ARG))

Note that the comma after LINE is now inside of a VA OPT _ special
macro. Actually, that’s not the final, final version. We really should add
“ func__” in there, too, to report the function name. Heck, why not
add DATE and TIME while we’re at it? Why isn’t there a
standard DEVELOPER _ macro that adds my name?

2

David Spuler 126

Assertless Production Code

Not everyone likes assertions, and coincidentally some people wear sweaters with
reindeer on them. If you want to compile out all of the assertions from the
production code, you can use this:

#define aussie assert(cond) // nothing

But this is not perfect, and has an insidious bug that occurs rarely (if you forget the
semicolon). A more professional version is to use “0” and this works by itself, but
even better is a “0” that has been typecast to type
accidentally used in any expression:

‘void” so it cannot be

#define aussie assert(cond) ((void)O0)

The method to remove calls to the aussie assert variadic macro version uses
the “. . .” token:

#define aussie assert(cond, ...) ((void)O)

Personally, I don’t recommend doing this at all, as I think that assertions should be
left in the production code for improved supportability. I mean, come on, recycle
and reuse, remember? Far too many perfectly good assertions get sent to landfill
every year.

Assertion Return Value Usage

Some programmers like to use an assertion style that tests the return code in
their assert macro:

if (assert(ptr != NULL)) { // Risky
// Normal code
ptr->count++;

}

else {
// Assertion failed
}

This assertion style can be used if you like it, but I don’t particularly recommend it,
because it has a few risks.

127 CUDA C++ Debugging

The risks include:

1. The hidden assert failure function must return “false” so that “if” test fails
when the assertion fails.

2. Embedding assertions deeply into the main code expressions increases the
temptation to use side effects like “++” in the condition, which can quietly
disappear if you ever remove the assertions from a production build:

if (assert(++i >= 0)) { // Risky
//

2

3. The usual assertion removal method of ““ ((void) 0)” will fail with compilation
errors in an if statement. Also using a dummy replacement value of “0” is
incorrect, and even “1” is not a great option, since the
“if (assert (ptr!=NULL))” test becomes the unsafe “if (1) ”. A safer removal
method is a macro:

#define assert (cond) (cond)
Or you can use an inline function:
inline void assert (bool cond) { } // Empty

This avoids crashes, but may still leave debug code running (i.c., a slug, not a bug).
It relies on the optimizer to remove any assertions that are not inside an “if”
condition, which just leave a null-effect condition sitting there. Note also that this
removal method with “(cond) ” is also safer because keeping the condition also
retains any side-effects in that condition (i.e., the optimizer won’t remove those!).

Generalized Assertions

Once you’ve used assertions for a while, they begin to annoy you a little bit. They
can fail a lot, especially during initial module development and unit testing of new
code. And that’s the first time they get irritating, because the assertion failure
reports don’t actually give you enough information to help debug the problem.
However, you can set a breakpoint on the assertion failure code when running
in cuda-gdb, so that’s usually good enough.

David Spuler 128

The second time that assertions are annoying is when you ship the product. That’s
when you see assertion failures in the logs as an annoying reminder of your own
imperfections. Again, there’s often not enough information to reproduce the bug.

So, for your own sanity, and for improved supportability, consider extending your
own assertion library into a kind of simplified unit-testing library. The extensions
you should consider:

e Add std::stacktrace capabilities if you can, or use Boost Stacktrace
or GCCbacktrace as a backup. Printing the whole stack trace on an
assertion failure is a win.

e Add extra assertion messages as a second argument.

e Add func to show the function name, if you haven’t already.

And you can also generalize assertions to cover some other common code failings.

e Unreachable code assertion

e “Null pointer” assertion

e Integer value assertions

e Floating-point value assertions
e Range value assertions

Creating specialized assertion macros for these special cases also means the error
messages become more specific.

Unreachable code assertion

This is an assertion failure that triggers when code that should be unreachable
actually got executed somehow. The simple way that programmers have done this
in the past is:

aussie assert(0); // unreachable

And you can finesse that a little with just a better name:

#define aussie assert not reached() \
(aussie assert (false))

aussie assert not reached(); // unreachable

129 CUDA C++ Debugging

Here’s a nicer version with a better error message:

#define aussie assert not reached() \
(aussie assert fail(\
"Unreachable code was reached", \
__FILE_, LINE))

Once-only execution assertion

Want to ensure that code is never executed twice? A function that should only ever
be called once? Here’s an idea for an assertion that triggers on the second execution
of a code pathway, by using its own hidden “static” call counter local variable
(only works in host code):

#define aussie assert once() do { \
static int s _count = 0; \
++s_count; \
if (s_count > 1) { \
aussie assert fail ("Code executed twice", \
__FILE_, LINE); \
FA
} while (0)
Restricting any block of code to once-only execution is as simple as adding a
statement like this:

aussie assert once(); // Not twice!
This can be added at the start of a function, or inside any if statement
or else clause, or at the top of a loop body (although why is it coded as a loop if
you only want it executed once?). Note that this macro won’t detect the case where
the code is never executed. Also note that you could customize this macro to return
an error code, or throw a different type of exception, or other exception handling
method when it detects double-executed code.

Function Call Counting

The idea of once-only code assertions can be generalized to a count. For example,
if you want to ensure a function isn’t called too many times, use this code:

aussie assert N times(1000);

David Spuler 130

Here’s the macro, similar to aussie assert once, but with a parameter:

#define aussie assert N times(ntimes) do { \
static int s _count = 0; \
++s_count; \
if (s_count > (ntimes)) { \
aussie assert fail(\

"Code executed more than " \
#ntimes " times", \
__FILE_, _LINE_); \
PN
} while (0)

This checks for too many invocations of the code block. Checking for “too few” is
a little trickier, and would need a static smart counter object with a destructor.
Again, this only works in host code, as we don’t have static local parameters in
device code, and we’d need some other approach.

Detecting Spinning Loops

Note that the above call-counting macro doesn’t work for checking that a loop isn’t
spinning. It might seem that we can use the above macro at the top of the loop
body to avoid a loop iterating more than 1,000 times. But it doesn’t work, because
it will count multiple times that the loop is entered, not just a single time. 1f we want
to track a loop call count, the counter should not be a “static” variable, and it’s
more difficult to do in a macro. The simplest method is to hand-code the test:

int loopcount = 0;
while (...) {
if (++loopcount > 1000) { // Spinning?
// Warn...

The upside of using a simple approach: this should work on both device and host
code.

Generalized Variable-Value Assertions

Various generalized assertion macros can not only check values of variables, but
also print out the value when the assertion fails. The basic method doesn’t print out
the variable’s value:

aussie assert(n == 10);
131 CUDA C++ Debugging

A better way is:
aussie assertieq(n, 10); // n == 10
The assertion macro looks like:

#define aussie assertieqg(x,y) \
(((x) == (v)) |\
aussie assert fail int (#x "==" #y, \
(X)r "=="I (Y), \
__FILE_, LINE))

The assertion failure function has extra parameters for the variables and operator
string:

bool aussie assert fail int(char* str, int x,
char *opstr, int y, char* fname, int 1ln)
{
// Assert failure has occurred...
g aussie assert failure count++;
fprintf (stderr, "ASSERT FAIL: %s, %d %s %d, %s:%d\n",
str, x, opstr, y, fname, 1ln);
return false; // Always fails

If you don’t mind lots of assertion macros with similar names, then you can define
named versions for each operator, such as:

e aussie assertneq—!=
e aussie assertgtr —>
e aussie assertgeqg-—>=
e aussie assertlss —<
® aussie assertleqgq—<=

If you don’t mind ugly syntax, we can generalize this with an operator parameter:
aussie_ assertiop(n, ==, 10);
The macro with an “op” parameter is:

#define aussie assertiop(x, op, y) \
(((x) op (v)) |1 N\
aussie assert fail int (#x #op #y, \
(x), #op, (y), \
__FILE_, LINE))

David Spuler 132

And finally, you have to duplicate all of this to change from int to float type
variables. For example, the simplistic way is to define new macros named
“aussie assertfeq”’ and “aussie assertfop”, and then also a failure
function named “aussie assert fail float”.

There’s probably a fancy way to avoid this using function overloading with different
types, or C++ templates and compile-time type traits, but only if you’re smarter
than me.

Assertions for Function Parameter Validation

Assertions and toleration of exceptions have some tricky overlaps. Consider the
modified version of vector summation with my own “aussie assert” macro
instead:

__device float vector sum(float v[], int n)
{

aussie assert (v != NULL);

// etc..

What happens when this assertion fails in a custom assertion macro? In both host
and device code, the execution will progress after the assertion, in which case any
use of v will be a null pointer dereference.

This code is not very resilient!

Hence, the above code works fine only if your custom “aussie assert”
assertion macro throws an exception on the host. This doesn’t work on the host,
but your custom macro could call the builtin assert primitive on the device. This
requires that you have a robust exception handling mechanism in place above it,
for the caught exception on the host, or the cudaErrorAssert code from the
device, which is a significant amount of work.

The alternative is to both assert and handle the error in the same place, which makes
for a complex block of code:

aussie assert (v != NULL);
if (v == NULL) {
return 0.0; // Tolerate

133 CUDA C++ Debugging

Slightly more micro-efficient is to only test once:

if (v == NULL) {
aussie assert(v != NULL); // Always triggers
return 0.0; // Tolerate

This is a lot of code that can get repeated all over the place. Various copy-paste
coding errors are inevitable.

Assert Parameter and Return

An improved solution is an assertion macro that captures the logic “check
parameter and return zero” in one place. Such a macro first tests a function
parameter and if it fails, the macro will not only emit an assertion failure message,
but will also tolerate the error by returning a specified default value from the
function.

Here’s a generic version for any condition:

#define aussie assert and return(cond,retval) \
if (cond) {} else { \
aussie assert fail (#cond " == NULL", \
__FILE , LINE); \
return (retval); \

The usage of this function is:

float aussie vector something(float v[], int n)

{

aussie assert and return(v != NULL, 0.0f);

The above version works for any condition. Here’s another version specifically for
testing an incoming function parameter for a NULL value:

#define aussie assert param tolerate null (var,retval) \
if ((var) !'= NULL) {} else { \
aussie assert fail (#var " == NULL", \
__FILE , LINE); \
return (retval); \

}

David Spuler 134

The usage of this function is:

aussie assert param tolerate null(v, 0.0f);

If you want to be picky, a slightly better version wraps the “if-else” logic inside
a “do-while (0)” trick. This is a well-known trick to make a macro act more
function-like in all statement structures.

#define aussie assert param tolerate null2(var,retval) \
do { if ((var) != NULL) {} else { \
aussie assert fail (#var " == NULL", \
__FILE_, _LINE_); \
return (retval); \
}} while (0)

The idea of this macro is to avoid lots of parameter-checking boilerplate that will
be laborious and error-prone.

But it’s also an odd syntax style to hide a return statement inside a function-like
preprocessor macro, so this is not a method that will suit everyone.

Next-Level Assertion Extensions
Here are some final thoughts on how to further improve your assertions:

e Change any often-triggered assertions into proper error messages with fault
tolerance. Users don’t like seeing assertion messages. They’re kind of like
gibberish to ordinary mortals.

e Add extra context information in the assertion message (i.e., add an extra
information string). This is much easier to read than a stringized
expression, filename with line number, or multi-line stack trace.

e Add unique codes to assertion messages for increased supportability.
Although, maybe not, because any assertion that’s triggering often enough
to need a code, probably shouldn’t remain an assertion!

e inline assertion function? Why use macros? Maybe these assertions
should instead be an inline function in modern C++? And it could
report context using std: :backtrace. All I can say is that old habits die
hard, and I still don’t trust the optimizer to actually optimize much.

135 CUDA C++ Debugging

The downside of assertions is mainly that they make you lazy as a programmer
because they’re so easy to add. But sometimes no matter how good they seem, you
have to throw an assertion into the fires of Mordor.

The pitfalls include:

e Don’t use assertions instead of user input validation.

e Don’t use assertions to check program configurations.

e Don’t use assertions as unit tests (it works, but bypasses the test harness
statistics).

e Don’t use assertions to check if a file opened.

You need to step up and code the checks of input and configurations as part of
proper exception handling. For example, it has to check the values, and then emit
a useful error code if they’ve failed, and ideally it’s got a unique error code as part
of the message, so that users can give a code to support if they need. You really
don’t want users to see the dirty laundry of an assertion message with its source file,
function name, and line number.

David Spuler 136

15. Debug Wrapper Functions

Why Debug Wrapper Functions?

The idea of debug wrapper functions is to fill a small gap in the self-checking
available in the CUDA ecosystem. There are two types of self-testing that happen
when you run CUDA C++ programs:

e FError checks in the CUDA Runtime API (i.e., when an API doesn’t
return cudaSuccess in host code).
e compute-sanitizer detection of numerous run-time errots.

Both of these methods are highly capable and will catch a lot of bugs. To optimize
your use of these capabilities in debugging, you should:

e Testall error return codes (e.g., a fancy macro method), and
e Run compute-sanitizer on lots of unit tests and regression tests in

your CI/CD approval process, or, when that gets too slow, at least in the
nightly builds.

But this is not perfection! And there’s two main reasons that some bugs will be
missed:

e CUDA Runtime doesn’t detect all the bugs (because the main aim is fas).
e You have to remember to run compute-sanitizer on your code.

Okay, so I'm joking about “remembering” to run the debug tests, because you’ve
of joking g 8 ¥
probably got them running automatically in your build. But there’s some real cases
where the application won’t ever be run in debug mode:

e Many internal failures trigger no visible symptoms for users (silent failures).

e Customers cannot run compute-sanitizer on their premises (unless
you ask nicely).

e Your website “customers” also cannot run it on the website backends.

e Some applications are too costly to re-run just to debug an obscure error
(I'm looking at you, Al training).

137 CUDA C++ Debugging

Hence, in the first case, there’s bugs missed in total silence, never to be fixed. And
in the latter cases, there’s a complex level of indirection between the failure
occurring and the CUDA C++ programmer trying to reproduce it in the test lab.
It’s much easier if your application self-diagnoses the errox!

Fast Debug Wrapper Code

But it’s too slow, I hear you say. Running the code with compute-sanitizer is
much slower than without. We can’t ship an executable where the kernels have so
much debug instrumentation that they’re running that much slower.

You’re not wrong, and it’s the age-old quandary about whether to ship testing code.
Fortunately, there are a few solutions:

e Use fast self-testing tricks like magic numbers in memory.

e Have a command-line flag or config option that turns debug tests on and
off at runtime.

e Have “fast” and “debug” versions of your executable (e.g., ship both to
beta customers).

At the very least, you could have a lot of your internal CUDA C++ code
development and QA testing done on the debug wrapper version that self-detects
and reports internal errors.

As the first point states, there are “layers” of debugging wrappers (also ogtes, like
Shrek). You can define very fast or very slow types of self-checking code into debug
wrapper code. These self-tests can be as simple as parameter null tests or as
complex as detecting memory stomp overwrites with your own custom code. In
approximate order of time cost, here are some ideas:

e Parameter basic validation (e.g., null pointer tests).

e Address type validation (e.g., via cudaPointerGetAttributes).

e Magic values added to the initial bytes of uninitialized and freed memory
blocks.

e Magic values stored in every byte of these blocks.

e Tracking 1 or 2 (ot 3) of the most recently allocated/ freed addresses.

e Hash tables to track addresses of every allocated or freed memory block.

I’ve actually done all of the above for a debug library in standard C++, which I'm
now working on updating for CUDA C++. Make sure you check the Aussie Al
website to see when it gets released.

David Spuler 138

CUDA C++ Runtime Wrapper Functions

You can use macros to intercept various CUDA Runtime API calls. For example,
here’s a simple interception of cudaMalloc:

// intercept cudaMalloc

#undef cudaMalloc

#define cudaMalloc aussie cudaMalloc

cudaError t aussie cudaMalloc(void** addr of v, int sz);

Once intercepted, the wrapper code can perform simple validation tests of the
various parameters. Here’s a simple wrapper for the cudaMalloc function in a
debug library for CUDA C++ that I'm working on:

cudaError t aussie cudaMalloc simple(void** addr of v, int sz)

{ // Debug wrapper version: cudaMalloc ()
AUSSIE DEBUGLIB TRACE ("cudaMalloc called");
AUSSIE DEBUG PRINTF ("%s: == cudaMalloc: addr=%p, sz=%d\n",

~_func_ , addr of v, sz);
g aussie cuda malloc count++;
if (laddr of v) { // null pointer...

AUSSIE CHECK(addr of v != NULL, "AUSOO06",

"cudaMalloc null address");

return cudaErrorInvalidValue ;
}
AUSSIE CHECK(sz!=0, "AUS007", "cudaMalloc size zero");
AUSSIE CHECK(sz>=0, "AUS008", "cudaMalloc size negative");
// Call the real cudaMalloc
void *new v = NULL;
cudaError t err = cudaMalloc(&new v, sz);
if (err != cudaSuccess) {

AUSSIE ERROR ("AUS200", "ERROR: cudaMalloc error");

}
*addr _of v = new_v; // Store it for return to caller
AUSSIE CHECK(new_ v != NULL, "AUS009", "cudaMalloc fail");
return err;

This actually has four levels of tests:

e Validation of called parameter values.

e Detection of CUDA runtime errors (pass-through).
e Detection of memory allocation failure.

e Builtin debug tracing macros that can be enabled.

A more advanced version could check pointer addresses are valid and are not been
previously freed, and a vatiety of other memory errors. Coming soon!

139 CUDA C++ Debugging

Standard C++ Debug Wrapper Functions

In addition to wrapping the CUDA Runtime API calls, it can be helpful during
debugging to wrap some standard C++ library function calls with your own
versions, so as to add additional parameter validation and self-checking code. Some
of the functions which you might consider wrapping include:

e malloc
e calloc
e memset
e memcpy
® memcmp

If you’re doing string operations in your code, you might consider wrapping these:

e strdup
e strcmp
e strcpy
e sprintf

Note that you can wrap the C++ “new” and “delete” operators at the linker level
by defining your own versions, but not as macro intercepts. You can also intercept
the “new[]” and “delete []” array allocation versions at link-time.

There are different approaches to consider when wrapping system calls, which we
examine using memset as an example:

e Leave “memset” calls in your code (auto-intercepts)
e Use “memset wrapper” in your code instead (manual intercepts)

Macro auto-intercepts: You might want to leave your code unchanged
using memset. To leave “memset” in your code, but have it automatically call

“memset wrapper” you can use a macro intercept in a header file.

#undef memset // ensure no prior definition
#define memset memset wrapper // Intercept

Note that you can also use preprocessor macros to add context information to the
debug wrapper functions.

David Spuler 140

For example, you could add extra parameters to “memset wrapper” such as:

#define memset (x,vy,z) \
memset wrapper ((x), (y), (z), FILE , LINE , func)

Note that in the above version, the macro parameters must be parenthesized even
between commas, because there’s a C++ comma operator that could occur in a
passed-in expression.

Also note that these context macros (e.g., FILE) aren’t necessary if you have
a C++ stack trace libraty, such as std: : stacktrace, on your platform.

Variadic preprocessor macros: Note also that there is varargs support in
C++ #define macros. If you want to track variable-argument functions
like sprintf, printf,or fprintf, or other C++ ovetrloaded functions, you can
use “...”7and “ VA ARGS__” in preprocessor macros.

Here’s an example:

#define sprintf (fmt,...) \
sprintf wrapper ((fmt), \
__FILE , LINE , func_, _ VA ARGS)

Manual Wrapping: Alternatively, you might want to individually change the calls
to memset to call memset wrapper without hiding it behind a macro. If you’d
rather have to control whether or not the wrapper is called, then you can use both
in the program, wrapped or non-wrapped.

Or if you want them all changed, but want the intercept to be less hidden (e.g., later
during code maintenance), then you might consider adding a helpful reminder

instead:

#undef memset
#define memset dont use memset please

This trick will give you a compilation error at every call to memset that hasn’t been
changed to memset wrapper.

141 CUDA C++ Debugging

Example: memset Wrapper Self-Checks

Here’s an example of what you can do in a wrapper function called
“memset wrapper” from one of the Aussie Al projects:

void *memset wrapper (void *dest, int val, int sz) // Wrap
{
if (dest == NULL) {
aussie assert2(dest != NULL, "memset null dest");
return NULL;

if (sz < 0) {
// Why we have "int sz" not "size t sz" above
aussie assert2(sz >= 0, "memset size negative");
return dest; // fail

if (sz == 0) {
aussie assert2(sz != 0,
"memset zero size (reorder params?)");

return dest;

if (sz <= sizeof (void*)) {
// Suspiciously small size
aussie assert2(sz > sizeof (void*),
"memset with sizeof array parameter?");
// Allow it, keep going

if (val >= 256) {
aussie assert2(val < 256, "memset value not char");
return dest; // fail

}

void* sret = ::memset (dest, val, sz); // Call real one!
return sret;

It’s a judgement call whether or not to leave the debug wrappers in place, in the
vein of speed versus safety. Do you prefer sprinting to make your flight, or arriving two
hours early? Here’s one way to remove the wrapper functions completely with the
preprocessor if you’ve been manually changing them to the wrapper names:

#if DEBUG
// Debug mode, leave wrappers..

#else // Production (remove them all)
#define memset wrapper memset
//... others

fendif

David Spuler 142

Compile-time self-testing macro wrappers

Here’s an idea for combining the runtime debug wrapper function idea with some
additional compile-time tests using static assert.

#define memset wrapper (addr,ch,n) (\
static assgrt(n '=0), \
static_assert(ch == 0), \
memset_wrapper((addr),(ch),(n),\

__FILE_, LINE , func_))

The idea is interesting, but it doesn’t really work, because not all calls to

the memset wrapper will have constant arguments for the character or the number

of bytes, so the static assert commands will fail in that case. You could use
standard assertions, but this adds runtime cost.

Note that it’s a self-referential macro, but that C++ guarantees it only gets
expanded once (i.e., there’s no infinite recursion of preprocessor macros).

Generalized Self-Testing Debug Wrappers

The technique of debug wrappers can be extended to offer a variety of self-testing
and debug capabilities. The types of messages that can be emitted by debug
wrappers include:

e Input parameter validation failures (e.g., non-null)
e Failure returns (e.g., allocation failures)

e Common error usages

e Informational tracing messages

e Statistical tracking (e.g., call counts)

Personally, I’ve built some quite extensive debug wrapping layers over the years. It
always surprises me that this can be beneficial, because it would be easier if it were
done fully by the standard libraries of compiler vendors.

The level of debugging checks has been increasing significantly (e.g., in GCC), but
I still find value in adding my own wrappers.

143 CUDA C++ Debugging

There are several major areas where you can really self-check for a lot of problems
with runtime debug wrappers:

e File operations
e Memory allocation
e String operations

These are left as an exercise for the readet!

Link-Time Interception: new and delete

Macro interception works for CUDA APIs like cudaMalloc, and for standard
C++ functions likemalloc and free, but you can’t macro-intercept
the new and delete operators, because they don’t use function-like syntax.
Fortunately, you can use link-time interception of these operators instead, simply
by defining your own versions.

Note that defining class-level versions of the new and delete operators is a well-
known optimization, but this isn’t what we’re doing here. Instead, this link-time
interception requires defining four operators at global scope:

e new
e newl]
e delete

o deletel]

Note that you cannot use the real new and delete inside these link-time
wrappers. They would get intercepted again, and you’d have infinite stack recursion.
However, you can call malloc and free instead, assuming they aren’t also macro-
intercepted. Here’s the simplest versions:

void * operator new(size_ t n)

{

return malloc(n);

}

void* operator newl[] (size t n)

{

return malloc(n);

}

David Spuler 144

void operator delete (void* v)

{

free (v);

void operator delete[] (void* wv)

{

free (v);

This method of link-time interception is an officially sanctioned standard C++
language feature since the 1990s. Be careful, though, that the return types and
parameter types are precise, using size tandvoid*, as you cannot
use int ofr char*.

Also, declaring these functions as inline gets a compilation warning, and is
presumably ignored by the nvcc compiler, as this requires link-time interception.

This code runs fine with nvcc compilation, but the above example isn’t much of a
debugging wrapper, more like just a “wrapper,” because it does no error checking.

However, when I started adding more self-tests, I triggered warnings about
“calling a _ host function from a _ host = device
function.” It seems that nvcc compiles these functions as both host and device
code, which makes sense.

Unfortunately, when I tried to work around this by declaring the operators as host-
only versions using the host specifier, it triggered compilation errors.
Declaring two versions, one with _host and the other with device |
also didn’t work (nordid global).

Maybe there’s a workaround possible by putting these operator definitions into
standard C++ code that’s only processed by gcc, not by nvece, and then link it in.

In the absence of a solution for now, this means that we’re limited to using the
subset of C++ that can run on the device inside these link-time interceptions.
Hence, there are significant problems trying to generalize this into a useful
debugging wrapper library, because any use of host-specific aspects such as global
variables triggers compilation errors.

145 CUDA C++ Debugging

Here’s an example of some ideas of some basic possible
with printf outputting:

#define AUSSIE ERROR (mesg, ...) \
(printf((mesg) VA OPT (,) __ VA ARGS))

void * operator new(size t n)
{
if (n == 0) {
AUSSIE ERROR ("new operator size is zero\n") ;
}
void *v = malloc(n);
if (v == NULL) {

checks

AUSSIE ERROR ("new operator: allocation failure\n");

}

return v;

Note that you can’tuse FILE or LINE as these are link-time intercepts,
not macros. Maybe you could use std::backtrace instead, but I have my

doubts.

References

Note that Aussie Al has an active project for a CUDA C++ debug wrapper library
with support for intercepting a wide range of CUDA C++ functions. Find more

information at https://www.aussieai.com/cuda/projects.

David Spuler 146

https://www.aussieai.com/cuda/projects

16. Debug Tracing

Debug Tracing Messages
Ah, yes, worship the mighty printf!

A common debugging method is adding debug trace output statements to a
program to print out important information at various points in the program.
Judicious use of these printf statements can be highly effective in localizing the
cause of an error, but this method can also lead to huge volumes of not particulatly
useful information.

One desirable feature of this method is that the output statements can be selectively
enabled at either compile-time or run-time.

Debug tracing messages are informational messages that you only enable during
debugging. These are useful to software developers to track where the program is
executing, and what data it is processing.

The simplest version of this idea looks like:

#if DEBUG
printf ("DEBUG: I am here!\n");
#endif

A better solution is to code some BYO debug tracing macros. Here’s a macro
version:

#define aussie debug(str) \
(printf ("DEBUG: %s\n", (str)))

aussie debug< ("I am here!");

147 CUDA C++ Debugging

Device output limits. The output from printf on the GPU is limited to a buffer
size. Firstly, this means that GPU trace output may not appear immediately.
Secondly, it means that some output can get lost.

If the CPU does not synchronize often enough, or the GPU emits far too much
output, then tracing messages will overflow the circular buffer and overwrite the
first output. Hence, the earlier trace messages will be lost forever. Consider carefully
the volume of output needed when debug tracing, and also add more frequent host
calls to synchronize with the device.

You can also check or change the size of the circular buffer by
calling cudaDeviceGetLimit or cudaDeviceSetLimit using the
property cudaLimitPrintfFifoSize. The GPU and CPU clear the output
buffer in some behind-the-scenes magic whenever they synchronize. Remember
that the output is only stored in a buffer on the GPU, and is actually coming to the
screen from the CPU!

Output to stderr. Note that we could use fprintf to stderr if we were sure it
wasn’t needed to run on the device, which only supports print £. And here’s the
C++ stream version, which also won’t work in device code:

#define aussie debug(str) \
(std::cerr << str << std::endl)

aussie debug ("DEBUG: I am here!");

In order to only show these when debug mode is enabled in the code, our header
file looks like this:

#if DEBUG
#define aussie debug(str) \
(std::cerr << str << std::endl)
#else
#define aussie debug(str) // nothing
#endif

Missing Semicolon Bug: Professional programmers prefer to use “0” rather than
emptiness to remove the debug code when removing it from the production
version. It is also good to typecast it to “void” type so it cannot accidentally be
used as the number “0” in expressions. Hence, we get this improved version for
removing a debug macro:

#define aussie debug(str) ((void)0) // better!

David Spuler 148

It’s not just a stylistic preference. The reason is that the “nothing” version can
introduce an insidious bug if you forget a semicolon after the debug trace call in
an if statement:

if (something) aussie debug("Hello world") // Missing!
x++;

If the “nothing” macro expansion is used, then the missing semicolon leads to this
code:

if (something) // nothing
X++;

Can you see why it’s a bugr Instead, if the expansion is “ ((void) 0)” then this
missing semicolon typo will get a compilation error.

Variable-Argument Debug Macros

A neater solution is to use varargs preprocessor macros with the special tokens
“...”7and “ VA ARGS__ 7, which are standard in C and C++ (since 1999):

#define aussie debug (fmt,...) \
printf ((fmt), VA ARGS)

aussie debug ("DEBUG: I am here!\n");
That’s not especially helpful, so we can add more context:

// Version with file/line/function context
#define aussie debug(fmt,...) \
(printf ("DEBUG [%s:%d:%s]: ", \
__FILE , LINE , func), \
printf ((fmt), VA ARGS))

aussie debug ("I am here!\n");

This will report the source code filename, line number, and function name. Note
the use of the comma operator between the two printf statements (whereas a
semicolon would be a macro bug).

Also required are parentheses around the whole thing, and around each use of the
“fmt” parameter.

149 CUDA C++ Debugging

Here’s a final example that also detects if you forgot a newline in your format string

(how kind!):

// Version with newline optional

#define aussie debug(fmt,...) \
(printf ("DEBUG [%s:%d:%s]: ", \
__FILE_, LINE , func__), \
printf ((fmt), VA ARGS), \
(strchr ((fmt), '\n') != NULL \
|| printf("\n")))
aussie debug ("I am here!"); // Newline optional

Dynamic Debug Tracing Flag

Instead of using “#if DEBUG”, it can be desirable to have the debug tracing
dynamically controlled at runtime. This allows you to turn it on and off without a
rebuild, such as via a command-line argument or inside a cuda-gdb session. And
you can decide whether or not you want to ship it to production with the tracing
available to be used. Your phone support staff would like to have an action to offer
customers rather than “turn it off and on.”

This idea of dynamic control of tracing can be controlled by a single Boolean flag:
extern bool g aussie debug enabled;
We can add some macros to control it:

#define aussie debug off () \
(g _aussie debug enabled =

#define aussie debug on() \
(g _aussie debug enabled = true)

false)

And then the basic debug tracing macros simply need to check it:

#define aussie dbg(fmt,...) \
(g _aussie debug enabled && \
printf ((fmt), VA ARGS))

So, this adds some runtime cost of testing a global flag every time this line of code
is executed.

David Spuler 150

Here’s the version with file, line, and function context:

#define aussie dbg(fmt,...) \
(g_aussie debug enabled && \
(printf ("DEBUG [%s:%d:%s]: ", \
__FILE , LINE , func__), \
printf ((fmt), VA ARGS)))

And here’s the courtesy newline-optional version:

#define aussie dbg(fmt,...) \
(g_aussie debug enabled && \
(printf ("DEBUG [%s:%d:%s]: ", \
__FILE_, LINE , _ func), \
printf ((fmt), VA ARGS), \
(strchr ((fmt), '\n') != NULL \
[printf("\n"))))

Device Code Dynamic Debugging

That all sounds great, except when you realize that device code can’t just create a
global flag. Accesses to the “g_aussie debug enabled” global variable inside
a kernel are a compile error.

To use this idea in device code, you would have to do this:
__device bool g aussie debug enabled;

Whenever this variable is accessed by device code in a debug macro, it triggers a
global memory access, which is a very expensive access. An alternative would be to
use constant _ to have the value in the “constant cache,” which should be
faster, but it’s still slower than kernel local variables.

Furthermore, the mechanics of enabling or disabling this debug flag’s value on the
device based on a command-line argument in the host code are quite difficult. The
host code can’t just set the global variable on the device.

The performance cost of either device or constant may not be
worth the value from the extra tracing flexibility. Another way that’s fast, but
requires code changes, is to pass a debug flag around as a parameter to kernel
functions.

151 CUDA C++ Debugging

Alternatively, the simpler debug trace methods with #1f can be used. Similatly, you
could use these basic C++ constant styles:

#define g aussie debug enabled true
const bool g aussie debug enabled = true;

However, these methods now require a re-compile to change, so we haven’t
achieved the “dynamic debug tracing” that we wanted!

Multi-Statement Debug Trace Macro

An alternative method of using debugging statements is to use a special macro that
allows any arbitrary statements. For example, debugging output statements can be
written as:

DBG(printf ("DEBUG: Entered print list\n");)
Or using C++ iostream output style:

DBG(std::cerr << "DEBUG: Entered print list\n";)

This allows use of multiple statements of debugging, with self-testing code coded
as:

DBG (count++;)

DBG(if (count != count elements (table)) {)

DBG (aussie_ internal error ("ERROR: Count wrong");)
DBG(})

But it’s actually easier to add multiple lines of code or a whole block in many cases.
An alternative use of DBG with multiple statements is valid, provided that the
enclosed statements do not include any comma tokens (unless they are nested inside
matching brackets). The presence of a comma would separate the tokens into two
or more macro arguments for the preprocessor, and the DBG macro above requires
only one parameter:

DBG (
count++;
if (count != count elements(table)) { // self-test

aussie_internal error ("ERROR: Count wrong");

}

David Spuler 152

The multi-statement DBG macro is declared in a header file as:

#1f DEBUG

#define DBG(token list) token list // Risky
#else

#define DBG(token list) // nothing

#endif

The above version of DBG is actually non-optimal for the macro etrror reasons
already examined. A safer idea is to add surrounding braces and the “do-
while (0)” trick to the DBG macro:

#if DEBUG
#define DBG (token list) do { \

token list } while(0) // Safer
#else
#define DBG(token list) ((void)0)
#endif

Note that this now requires a semicolon after every expansion of the DBG macro,
wheteas the earlier definition did not:

DBG(std::cerr << "Value of i is " << 1 << "\n";);

Whenever debugging is enabled, the statements inside the DBG argument are
activated, but when debugging is disabled they disappear completely. Thus, this
method offers a very simple method of removing debugging code from the
production version of a program, if you like that kind of thing.

This DBG macro may be considered poor style since it does not mimic any usual
syntax. However, it is a neat and general method of introducing debugging
statements, and is not limited to output statements.

Yet another alternative style is to declare the DBG macro so that it follows this
statement block structure:

DBG {

// debug statements
}

Refer to the implementation of a block “SELFTEST” macro in the prior chapter
for details on how to do this.

153 CUDA C++ Debugging

Multiple Levels of Debug Tracing

Once you’ve used these debug methods for a while, you start to see that you get
too much output. For a while, you’re just commenting and uncommenting calls to
the debug routines. A more sustainable solution in a large project is to add numetic
levels of tracing, where a higher number gets more verbose.

To make this work well, we declare both a Boolean overall flag and a numeric level:

extern bool g aussie debug enabled;
extern int g aussie debug level;

As for running this in device code, the same provisos about global memory access
on the GPU apply, except doubly so. This method is probably more likely to be
considered for host code, and general application code running on the CPU.

Here’s the macros to enable and disable the basic level:

#define aussie debug off () (\
g _aussie debug enabled = false, \
g _aussie debug level = 0)

#define aussie debug on() (\
g _aussie debug enabled = true, \
g _aussie debug level = 1)

And here’s the new macro that sets a numeric level of debug tracing (higher number
means mote verbose):

#define aussie debug set level(lvl) (\
g_aussie debug enabled = (((1vl) != 0)), \
g_aussie debug level = (1lvl))

Here’s what a basic debug macro looks like:

#define aussie dbglevel (1vl, fmt,...) (\
g_aussie debug enabled && \
(lvl) <= g aussie debug level && \
printf ((fmt), VA ARGS))

aussie dbglevel (1, "Hello world");
aussie dbglevel (2, "More details");

David Spuler 154

Now we see the reason for having two global variables. In non-debug mode, the
only cost is a single Boolean flag test, rather than a more costly integer “<”
operation.

And for convenience we can add multiple macro name versions for different levels:

#define aussie dbglevell (fmt) \
(aussie debuglevel (1, (fmt)))

#define aussie dbglevel2 (fmt) \
(aussie_debuglevel (2, (fmt)))

aussie dbglevell ("Hello world");
aussie dbglevel2 ("More details");

Device debug levels. As with the simpler debug flag earlier, controlling an integer
setting for a dynamic debug level is difficult in device code. Options include:

__device int g aussie debug level = 3;
__constant int g aussie debug level = 3;
const int g _aussie debug level = 3;

#define g aussie debug level 3
All of the above options are either relatively inefficient, or require a re-compile.

A workable solution is passing a debug level as a parameter to all kernel launches
from the host, and between device function calls within the device code. The host
code can get the debug level (e.g., from a command-line argument), and pass its
debug setting to the device via kernel launches. This is a relatively efficient way to
achieve a dynamic level of debug tracing. In this way, both you and your customers
could run your application with different tracing levels, but without needing a
different binary for each debug level.

Very volatile. Note that if you are altering debug tracing levels inside a symbolic
debugger (e.g., cuda-gdb) or IDE debugger, you might want to consider declaring
the global level variables with the “volatile” qualifier. This applies in this
situation because their values can be changed (by youl) in a dynamic way that the
optimizer cannot predict. On the other hand, you can skip this, as this issue won’t
affect production usage, and only rarely impacts your interactive debugging usage.

BYO debug printf: All of the above examples are quite fast in execution, but heavy
in space usage. They will be adding a fair amount of executable code for each
“aussie debug” statement. I’'m not sure that I really should care that much
about the code size, but anyway, we could fix it easily by declaring our own variable-
argument debug print f-like function.

155 CUDA C++ Debugging

Advanced Debug Tracing

The above ideas ate far from being the end of the options for debug tracing. The
finesses to using debug tracing messages include:

e Environment variable to enable debug messages.

e Command-line argument to enable them (and set the level).

e Configuration settings (e.g., changeable inside the GUI, or in a config file).

e Add unit tests running in trace mode (because sometimes debug tracing
crashes!).

e Extend to multiple sets or named classes of debug messages, not just
numeric levels, so you can trace different aspects of execution dynamically.

Supportability Tip: Think about customers and debug tracing messages: are there
times when you want users to enable them? Usually, the answer is yes. Whenever a
user has submitted an error report, you'd like the user to submit a run of the
program with tracing enabled to help with reproducibility. Hence, consider what
you want to tell customers about enabling tracing (if anything). Similarly, debug
tracing messages could be useful to phone support staff in various ways to diagnose
or resolve customer problems. Consider how a phone support person might help a
customer to enable these messages.

David Spuler 156

17. CUDA Portability

Portability of CUDA C++ Applications

The portability model of CUDA programs to multiple architectures is quite
complicated. Hence, let’s start with the most basic point about CUDA:

Only NVIDLA GPUs are supported.

Beyond that, things get more complicated. There are two specific issues for the
portability of your code:

1. Host code portability (CPU), and
2. Device code portability (GPU).

If you’re trying to run an Al application in the data center, then it’s probably
running the host code on Linux and the device code on a H100 GPU.

But if you’re using CUDA to write an application for gaming or video editing on a
desktop PC, then the host code is running on an x86 CPU, and the GPU is a
graphics card like a GeForce RTX 4090 or whatever is the latest chip as you read
this.

Forget portability in AI! This simplest case is where you don’t have to worry
about any of this. And this is often the case for an Al workload, where you have
control over all of the Linux machines with their eight-pack of H100’s. You only
need to compile for this one platform.

Hence, stop reading this section, because you don’t care about portability: just
compile it for your one platform and go to lunch.

157 CUDA C++ Debugging

Summary of Commands and API Calls

There’s a lot of details in the discussion below, but let’s do a quick summary of the
things that you might need.

Here are some of the Linux commands you might use:

e nvcc --version
e nvidia-smi

e whereis cuda

e which nvcc

Here are some of the many nvce compiler flags:

e -gor--debug — CUDA compiler flag for compilation in debug mode,
with extra debug information put into the executable (i.c., similar to “~g”
flag for GCC).

e -Gor--device-debug — CUDA compiler option for “device debug”
mode, when compiling CUDA C++ code that runs on the GPU.

e -lineinfoor --generate-line-info— NVCC generates extra
information for profiling.

e -pgor--profile— generates profiler information for use
with gprof.

Here are the CUDA C++ preprocessor macros defined during nvcc compilation,
which mostly have a double underscore as both prefix and suffix:

e NVCC__ — predefined preprocessor macro when compiling in nvece.

e CUDACC__ — another preprocessor macro when compiling CUDA
C++.

e CUDART VERSION — CUDA Runtime version as a number
(preprocessor macro).

e CUDA ARCH _ — GPU architecture preprocessor macro as a constant

number (but be warned that this works in device code only and is
undefined in host code).

e CUDACC DEBUG _— preprocessor macro set when compiling in
debug mode.

David Spuler 158

Here are the CUDA Runtime C++ API calls:

e cudaRuntimeGetVersion — CUDA Runtime version (C++ function
call).

e cuDeviceGetAttribute — get attributes of the current GPU device.

e cudaGetDeviceCount — how many GPUs on this box?

e cudaGetDeviceProperties — get properties of the current GPU.

e cudaSetDevice — set the current GPU device, so you can query its
properties.

e cudaDriverGetVersion — CUDA driver version details.

I won’t be insulted if you stop reading now and hit Stack Overflow instead.

Detailed CUDA Portability

CUDA compilation model. Multiple platforms are more complicated to support.
The compilation model in CUDA has support for several types of files:

e Executable files (e.g., Linux executables)
e Binary files (“. cubin”)

e PTX assembly files

e Non-CUDA C++ source files

e CUDA C++ files (“.cu”)

I’ve mixed some host and device code issues together here, but I don’t feel bad
because that’s what CUDA does inside its C++ programs. Anyway, let’s split it out.

Host code portability. The host code is like a normal non-CUDA C++ program.
You need it to compile into a native binary, just as you would any other C++
program on Linux or Windows. The output from compiling host code is a native
executable file (not a “. cubin” file).

The nvce compiler can do this, but it’s not really doing everything itself. Behind
the scenes, it actually calls another non-CUDA C++ compiler, such as g++ on
Linux.

For the host code, nvcc generates an intermediate C++ format, with all the CUDA

syntax removed (e.g., global and the “<<<..>>” triple chevron syntax).
Hence, nvcec acts like a cross compiler that outputs C++ as its target language.

159 CUDA C++ Debugging

Beyond this, the portability issues for getting the host code running on Linux versus
Windows versus MacOS are the same types of concerns as for a non-CUDA C++
program. There are literally whole books on C++ portability, so we’ll be here for a
while if I get started.

Device code portability. Where CUDA really shines is its support for multiple
GPU chips. I mean, only NVIDIA ones, but it’s still great. You can use nvcc to
output two low-level formats:

e CUDA binary files (““. cubin”)
e PTX assembly language files

The binary files are specific to each GPU, and are machine code for the GPU chip.
Hence, you cannot just copy a “. cubin” file from one to the other. You have to
specify the target GPU architecture when you create a binary file.

To support multiple GPU types in your application, you’ve got two main options
for your build process:

e Manage lots of “.cubin” files (not recommended), or
e Compile to PTX assembly language

PTX is a text-based assembly language format that’s much lower level than C++.
The PTX assembly language files are further compiled to binary code by the GPU’s
device driver. What this really means is that every GPU device driver contains an
assembler, and does “just-in-time compilation” to create machine code from PTX
(really, shouldn’t it be called “just-in-time assembling”?). The command-line
version of the PTX assembler is called ptxas.

Note that the PTX language is not fully compatible across all GPU architectures.
There are some options that control which level of “compute compatibility” need
to be supported in the output PTX files. Hence, this adds another wrinkle to the
build process, although maybe you won’t be using any of the less powerful GPUs.

And just to confuse matters, there’s a third option call “just-in-time compilation”
of C++. This is where you can actually distribute the device code’s CUDA C++
source code to multiple GPUs, rather than using binary or PTX assembly files. The
NVRTC library can compile CUDA C++ files to PTX on the fly, which can then
be assembled to binary code by the GPU device driver.

David Spuler 160

Summary. Let’s wrap up this portability discussion with an overview of the various
options.

e One CPU, one GPU — just use nvcc to build Linux executables and
“.cubin” device binary files.

¢ One CPU, many GPUs — compile to PTX, or to binaty, or use just-in-
time NVRTC C++ compilation.

e Many CPUs, many GPUs — my head hurts; let’s outsource.

Detecting Host versus Device Code

The simplest way to separate host and device code is to use different functions. It’s
a basic separation with “ global or“ device ” for device functions,

and either no specifier or “ host _” for host code.

An even purer method is to separate the host code into its own source code file. In
some cases, you could even have the basic C++ functions for host code in a non-
CUDA C++ source file, or even link in a simple C++ non-CUDA library (e.g.,
via g++ options).

But none of that is CUDA style! After all, the “U” in CUDA means “Unified” and
we’re supposed to smash it all into one source file. Hence, if you want to do
different things on the host and the device, you need to detect it in the C++ code
itself.

Preprocessor macro method. Whether the code is run on the host or the device
can be detected at compile-time. The simplest way is to use a preprocessor macto.

#if CUDA ARCH
// Device code
#else
// Host code
#endif

Another alternative way is:

#ifdef _ CUDA ARCH
// Device code
#endif

161 CUDA C++ Debugging

And for host code:

#if !defined(CUDA ARCH)
// Host code
#endif

Build your own symbols. Maybe you want it to look clearer in the code?

#if IS _DEVICE CODE
// kernel

#else
// host

#endif

To permit this, you can define your own macros to hide these details.

Note that this idea won’t work in a header file:

#ifdef CUDA ARCH // Fails!
#define IS DEVICE CODE 1

#else

#define IS DEVICE CODE 0

#endif

This above idea fails because the value of CUDA ARCH _ will be evaluated
by nvcce within your header file, where it is always host code, and the macro will
always be empty.

Instead, this should work in a header, by making the expansion of your macro
happen later:

#define IS DEVICE CODE (_ CUDA ARCH > 0) // Better
#define IS HOST CODE (_ CUDA ARCH == 0)

Note that these will work in preprocessor expressions (e.g., #1£), but not at runtime
in “if” tests, where a compilation error will result. The undefined value of
the CUDA ARCH macro name in host code defaults to zero in preprocessor
conditional expressions, but not elsewhere in C++ statements.

David Spuler 162

Detecting GPU Architectures in Device C++

You can detect the “compute capability” of your NVIDIA GPU within device code
using the “ CUDA ARCH_” preprocessor macro. This macro is not set in host
code, which can be used to distinguish host versus device code, as already discussed
above.

The main use of this macro is to use different code for more capable GPUs. Here’s
an example of how to use faster code with a higher compute capability, but also
have code for a lower one on an older GPU. An example of the compile-time
method:
#if CUDA ARCH >= 800
/7_Compate cggability 8.0 and above
#else

// Less capable GPU
fendif

Is CUDA Installed?

You can check on a Linux box whether the CUDA Toolkit software is installed in
various ways. Here’s a selection of commands you can use. First, you can just try to
run the compiler:

nvce

Here’s the output:

nvcc fatal: No input files specified; use option
--help for more information

Use the whereis command on Linux:
whereis cuda
The output is:
cuda: /usr/local/cuda
You can list the CUDA file directory:

ls /usr/local/cuda/
163 CUDA C++ Debugging

Here’s the output file listing:

bin compute-sanitizer extras include nvml res src
compat doc gds 1ib64 nvvm share targets

If CUDA is not installed, you get an error with most of these commands. Simples.

Detecting CUDA Version

sin e nvce compilet’s version flag is one way:
Using th mpilet’s version flag i y

nvcc —--version

If you’re running in Google Colab, you’ll need to add a prefix “!” to the Cell
command to run any of these Linux shell commands propetly. The command in a
new “+Code” cell is simply:

'nvcc —--version

Here’s the output I get, which shows “12.2” in various ways:

nvcc: NVIDIA (R) Cuda compiler driver

Copyright (c) 2005-2023 NVIDIA Corporation
Built on Tue Aug 15 22:02:13 PDT 2023

Cuda compilation tools, release 12.2, V12.2.140
Build cuda 12.2.r12.2/compiler.33191640 0

version.txt disappeared. According to the internet (i.e., Stack Overflow), the
installed version of CUDA Runtime is stored in a text file on Linux:

cat /usr/local/cuda/version.txt

But it doesn’t work. Although there is a directory /usr/local/cuda/, here’s
what I get on my Google Colab virtual box running CUDA 12:

cat: /usr/local/cuda/version.txt: No such file or
directory

So, it looks like version. txt is gone, at least by CUDA version 12.

nvidia-smi command. You cannot really also use the nvidia-smi command
for this issue, because that is inspecting your GPU chip’s capabilities, rather than
the CUDA Toolkit software install.

David Spuler 164

The command is simply:
nvidia-smi

Here’s the output:

| NVIDIA-SMI 535.104.05 Driver Version: 535.104.05 CUDA Version: 12.2 |
[ettt Rt et T e R e L e e et +
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
0 Tesla T4 Ooff	00000000:00:04.0 Off	0
N/A 35C P8 ow / 70w	OMiB / 15360MiB	0% Default
		N/A
o
B et e e e e e B e e e +
Processes: |
GPU GI CI PID Type Process name GPU Memory |

|
|
| D D Usage |
|
|

Although it says “CUDA Version 12.2” this is talking about the hardware, not
software. It’s not a reliable indicator of the software install, as it can refer to what
version the GPU requires, rather than what’s currently installed. (And wow,
someone at NVIDIA really took some time to make the columns line up and pretty
up the ASCII layout, because coding this is fiddly work!)

Mixing CUDA and Non-CUDA C++

There are times when you want to use the same shared C++ code in both CUDA
and non-CUDA applications. How can you tell which type of compiler is running?
One way is to detect preprocessor macros:

e NVCC__ isset when nvcc is compiling.

e CUDACC__ is also set when a CUDA C++ compiler is compiling
(.e., nvce).

e CUDA ARCH _ specifies host mode or various device architectures.

Hence, you can detect CUDA versus non-CUDA compilation via methods such as:

fifdef _ NVCC__
// CUDA C++
#else
// Non-CUDA C++
#endif

165 CUDA C++ Debugging

There are a number of other supporting preprocessor macros that can be used to
further identify compiler versions:

e CUDACC_VER MAJOR _ is the major version of the nvcc compiler.
e CUDACC VER MINOR _ is the minor version number.
e CUDACC _VER BUILD _is the build number.

There are also some preprocessor macros that indicate the “modes” that nvcc is
compiling in:

e CUDACC_DEBUG _ for device-debug mode.
e CUDACC RDC__ for relocatable device code mode.
e CUDACC_EWP__ for extensible whole program mode.

CUDA Portability Traps

There are a few traps in coding portable code:

e CUDA ARCH _ isan undefined macro in host code.
e Preprocessor macros are not checked in C++

To the point about undefined C++ preprocessor macros, here’s a bug:

#if NVCC // BUG!
// CUDA-only code
#endif

This is a typo of NVCC__, but it’s also a silent bug. C++ converts unknown
symbols in #1f expressions to 0, so this fails. Here’s a little trick for your header

file:

#define NVCC Maybe you meant _ NVCC ?

#define NVCC Maybe you meant _ NVCC_ 7?2
#define NVCC_ Maybe you meant _ NVCC 7
#define NVCC_ Maybe you meant _ NVCC ?
#define NVCC__ Maybe you meant _ NVCC ?

Now youll get compiler errors if you typo them in an #if expression.
Unfortunately, I don’t have a trick for #ifdef or the defined operator, so this
is still a silent bug:

#ifdef NVCC // Wrong!

David Spuler 166

An alternative strategy would be to tolerate accidental typos of macro names by
adding this in your header file:

#ifdef _ NvVCC__

#define NVCC _ NVCC_
#define NVCC__ NVCC
#endif

It might be easier to just use a grep command on your C++ source code files:
grep -r NVCC | grep -v _ NVCC

This doesn’t actually catch all cases, such as mixing them, but it’s probably good
enough. Alternatively, you can directly scan for all the badly written versions, using
regular expressions to avoid matching the correct one.

You need multiple versions for each of the other processor macros, such
as __ CUDA ARCH__ as well:

grep -r CUDA ARCH | grep -v _ CUDA ARCH
grep -r CUDAARCH

And then you have to add it to your build scripts.

C++ Operator Portability Pitfalls

Most of the low-level arithmetic code in C++ algorithms looks quite standardized.
Well, not so much. The general areas where C++ code that looks standard is
actually non-portable includes trappy issues such as:

e Arithmetic overflow of integer or float operators.

e Integer % remainder and / division operators on negatives.

e Right bitshift operator >> on a negative signed integer is not division.

e Divide-by-zero doesn’t always crash on all CPUs and GPUs.

e Order of evaluation of expression operands (e.g., with side-effects).

e Otder of evaluation of function arguments.

e Tunctions that should be Boolean are not always
(e.g., isdigit, isalpha)

e Functions that don’t return well-defined results (e.g., strcmp, memcmp,
etc.)

e Initialization order for static or global objects is undefined.

e memcmp is not an array equality test for non-basic types (e.g., structures).

167 CUDA C++ Debugging

Note that these errors are not only portability problems, but can arise in any C++
program. In particular, different levels of optimization in C++ compilers may cause
different computations, leading to insidious bugs.

Signed right bitshift is not division

The shift operators << and >> are often used to replace multiplication by a power
of 2 for a low-level optimization. However, it is dangerous to use >> on negative
numbers. Right shift is not equivalent to division for negative values. Note that the
problem does not arise for unsigned data types that are never negative, and for
which shifting is always a division.

There are two separate issues involved in shifting signed types with negative values:
firstly, that the compiler may choose two distinct methods of implementing >>,
and secondly, that neither of these approaches is equivalent to division (although
one approach is often equivalent). It is unspecified by the standard whether >> on
negative values will:

(a) sign extend, or
(b) shift in zero bits.

Different compilers must choose one of these methods, document it, and use it for
all applications of the >> operator. The use of shifting in zero bits is never equal
to division for a negative number, since it shifts a zero bit into the sign bit, causing
the result to be a nonnegative integer (dividing a negative number by two and
getting a positive result is not division!). Shifting in zero bits is always used for
unsigned types, which explains why right shifting on unsigned types is a division.

Divide and remainder on negative integers

Extreme care is needed when the integer division and remainder operators / and
% are applied to negative values. Actually, no, forgot that, because you should never
use division or remainder in a kernel, and if you must, then you choose a power-of-
two and use bitwise operations instead. Division is unsigned right bitshift, and
remainder is bitwise-and.

Anyway, another reason to avoid these operators occurs with negatives. Problems
arise if a program assumes, for example, that -7/2 equals -3 (rather than -4) . The
direction of truncation of the / operator is undefined if either operand is negative.

David Spuler 168

Order of Evaluation Errors

Humans would assume that expressions are evaluated left-to-right. However, in
C++ the order of the evaluation of operands for most binary operators is not
specified and is undefined behavior. This makes it possible for compilets to apply
very good optimizing algorithms to the code. Unfortunately, it also leads to some
problems that the programmer must be aware of.

To see the effect of side effects, consider the increment operator in the expression
below. It is a dangerous side effect.

y = (x++) + (x * 2);

Because the order of evaluation of the addition operator is not specified, there are
two orders in which the expression could actually be executed. The programmer’s
intended order is left-to-right:

temp = x++;
y = (temp) + (x * 2);

The other incorrect order is right-to-left:

temp = x * 2;
y = (x++) + (temp);

In the first case, the increment occurs before x*2 is evaluated. In the second, the
increment occurs after x*2 has been evaluated. Obviously, the two interpretations
give different results. This is a bug because it is undefined which order the compiler
will choose.

Function-call side effects

If there are two function calls in the one expression, the order of the function calls
can be important. For example, consider the code below:

x=1f0 + 90
Obur first instinct is to assume a left-to-right evaluation of the “+” operator. If both
functions produce output or both modify the same global variable, the result of the

expression may depend on the order of evaluation of the “+” operator, which is
undefined in C++.

169 CUDA C++ Debugging

Order of evaluation of assignment operator

Otrder of evaluation errors are a complicated problem. Most binary operators have
unspecified order of evaluation — even the assignment operators. A simple
assighment statement can be the cause of an error. This error can occur in
assignment statements such as:

ali] = i++; // Bug

The problem here is that “1i” has a side effect applied to it (i.e., ++), and is also used
without a side effect. Because the order of evaluation of the = operator is
unspecified in C++, it is undefined whether the increment side effect occurs before
or after the evaluation of i in the array index.

Function-call arguments

Another form of the order of evaluation problem occurs because the order of the
evaluation of arguments to a function call is not specified in C++. It is not
necessarily left-to-right, as the programmer expects it to be. For example, consider
the function call:

fn(a++, a); // Bug

Which argument is evaluated first? Is the second argument the new or old value
of a? It’s actually undefined in C++.

Order of initialization of static objects

A special order of evaluation error exists because the order of initialization of static
or global objects is not defined across files. Within a single file the ordering is the
same as the textual appearance of the definitions. For example, the Chicken object
is always initialized before the Egg object in the following code:

Chicken chicken; // Chicken comes first
Egg egg;

However, as for any declarations there is no specified left-to-right ordering for
initialization of objects within a single declaration. Therefore, it is undefined which

of c1 or c?2 is initialized first in the code below:

Chicken cl, c2;

David Spuler 170

If the declarations of the global objects “chicken” and “egg” appear in different
files that are linked together using independent compilation, it is undefined which
will be constructed first.

memcmp cannot test array equality

For equality tests on many types of arrays, the memcmp function might seem an
efficient way to test if two arrays are exactly equal. However, it only works in a few
simple situations (e.g., atrays of int), and is buggy in several cases:

e Tloating-point has two zeros (positive and negative zero), so it fails.

e Floating-point also has multiple numbers representing NaN (not-a-
number).

e If there’s any padding in the array, such as arrays of objects or structures.

e Bit-field data members may have undefined padding.

You can’t skip a proper comparison by looking at the bytes.

Data Type Sizes

There are a variety of portability issues with the sizes of basic data types in C++.
Some of the problems include:

e Fundamental data type byte sizes (e.g., how many bytes is an “int”).
e DPointer versus integer sizes (e.g., do void pointers fit inside an int?).
e size tisusuallyunsigned long, notunsigned int.

Typical Al engines work with 32-bit floating-point (float type). Note that for 32-
bit integers you cannot assume that int is 32 bits, but must define a specific type.
Furthermore, if you assume that short is 16-bit, int is 32-bit, and long is 64-bit,
well, you’d be incorrect. Most platforms have 64-bit int types, and the C++
standard only requires relative sizes, such as that 1ong is at least as big as int.

Your startup portability check should check that sizes are what you want:

// Test basic numeric sizes
aussie assert (sizeof (int) == 4);
aussie assert (sizeof (float) == 4);
aussie assert (sizeof (short) 2

171 CUDA C++ Debugging

Another more efficient way is the compile-time static_ assert method:
static_assert(sizeof (int) ==

static assert(sizeof (float) =

static assert (sizeof (short)

)

I

4) ;
2);

And you should also print them out in a report, or to a log file, for supportability
reasons. Here’s a useful way with a macro that uses the “#” stringize preprocessor
macro operator and also the standard “adjacent string concatenation” feature of
C++.

#define PRINT TYPE SIZE (type) \
printf ("Config: sizeof "™ #type \
" = %d bytes (%d bits)\n", \
(int) sizeof (type), 8* (int)sizeof (type)):

You can print out whatever types you need:

PRINT TYPE SIZE (int);
PRINT TYPE SIZE (float);
PRINT TYPE SIZE (short);

Here’s the output on my Windows laptop with MSVS:

Config: sizeof int = 4 bytes (32 bits)
Config: sizeof float 4 bytes (32 bits)
Config: sizeof short = 2 bytes (16 bits)

Standard Library Types: Other data types to consider are the builtin ones in the
standards. I’'m looking at you, size t and time t, and a few others that belong
on Santa’s naughty list. People often assume thatsize tis the same as
“unsigned int” butit’s actually usually “unsigned long”.

Here’s a partial solution:

PRINT TYPE SIZE(size t);
PRINT TYPE SIZE(clock t);
PRINT TYPE SIZE (ptrdiff t);

David Spuler 172

Data Representation Pitfalls
Portability of C++ to platforms also has data representation issues such as:

e Floating-point oddities (e.g., negative zero, Inf, and NaN).

e Whether “char” means “signed char” or “unsigned char”

e Endian-ness of integer byte storage (i.e., do you prefer “big endian” or
“little endian’’?).

e Whether zero bytes represent zero integers, zero floats, and null pointers.

Zero is not always zero? You probably assume that a 4-byte integer containing
“0” has all four individual bytes equal to zero. It seems completely reasonable, and
is correct on many platforms, but not all. There’s a theoretical portability problem
on a few obscure platforms. There are computers where integer zero or floating-
point 0.0 is not four zero bytes. If you want to check, here’s a few lines of code for
your platform portability self-check code at startup:

int 12 = 0;

unsigned char* cptr2 = (unsigned char*)&i2;
for (int i = 0; 1 < sizeof(int); i++) {
assert (cptr2[i] == 0);

Are null pointers all-bytes-zero, too? Here’s code to check NULL ina “char*” type:

// Test pointer NULL portability
char *ptrl = NULL;

unsigned char* cptr3 = (unsigned char*) &ptrl;
for (int i = 0; 1 < sizeof(char*); i++) {
assert (cptr3[i] == 0);

What about 0.0 in floating-point? You can test it explicitly with self-testing code:

// Test float zero portability
float f1 = 0.0f;

unsigned char* cptr4 = (unsigned char*)&fl;
for (int i = 0; i < sizeof(float); i++) {
assert (cptrd[i] == 0);

It is important to include these tests in a portability self-test, because you’re relying
on this whenever you use memset or calloc.

173 CUDA C++ Debugging

Pointers versus Integer Sizes

You didn’t hear this from me, but appatrently you can store pointers in integers, and
vice-versa, in C++ code. Weirdly, you can even get paid for doing this. But it only
works if the byte sizes are big enough, and it’s best to self-test this portability risk
during program startup. What exactly you want to test depends on what you’re (not)
doing, but here’s one example:

// Test LONGs can be stored in pointers
aussie assert (sizeof (char*) >= sizeof (long));
aussie assert (sizeof (void*) >= sizeof(long));
aussie assert(sizeof (int*) >= sizeof(long));
// ... and more

Note that a better version in modern C++ would use “static_assert” to test
these sizes at compile-time, with zero runtime cost.

static _assert(sizeof (char*) >= sizeof (long));
static_assert(sizeof (void*) >= sizeof(long));
static_assert(sizeof (int*) >= sizeof(long));

In this way, you can perfectly safely mix pointers and integers in a single variable.
But don’t tell the SOC compliance officer.

References

1. Horton, Mark, Portable C Software, Prentice Hall,

1990, https://www.amazon.com/Portable-Software-Mark-R-
Horton/dp/0138680507.

2. Jaeschke, Rex, Portability and the C Language, Hayden Books,

1989, https://www.amazon.com/Portability-l.anguage-Havden-Books-
library/dp/0672484285.

3. Lapin, . E., Portable C and UNIX System Programming, Prentice Hall,
1987, https://www.amazon.com/Portable-Systems-Programming-
Prentice-hall-Processing/dp/0136864945.

4. Rabinowitz, Henry, and SCHAAP, Chaim, Portable C, Prentice Hall,
1990, https://www.amazon.com/Portable-C-Prentice-Hall-
Software/dp/0136859674.

5. David Spuler, March 2024, Generative Al in
C++, https:/ /www.amazon.com/Generative-Al-Coding-Transformers-
LILMs-ebook/dp/BOCX]KCWX9/.

David Spuler 174

https://www.amazon.com/Portable-Software-Mark-R-Horton/dp/0138680507
https://www.amazon.com/Portable-Software-Mark-R-Horton/dp/0138680507
https://www.amazon.com/Portability-Language-Hayden-Books-library/dp/0672484285
https://www.amazon.com/Portability-Language-Hayden-Books-library/dp/0672484285
https://www.amazon.com/Portable-Systems-Programming-Prentice-hall-Processing/dp/0136864945
https://www.amazon.com/Portable-Systems-Programming-Prentice-hall-Processing/dp/0136864945
https://www.amazon.com/Portable-C-Prentice-Hall-Software/dp/0136859674
https://www.amazon.com/Portable-C-Prentice-Hall-Software/dp/0136859674
https://www.amazon.com/Generative-AI-Coding-Transformers-LLMs-ebook/dp/B0CXJKCWX9/
https://www.amazon.com/Generative-AI-Coding-Transformers-LLMs-ebook/dp/B0CXJKCWX9/

Appendix: CUDA Puzzles

Instructions: Here are some puzzles on CUDA C++ debugging for your full and
total enjoyment, or to use for tormenting CUDA C++ job applicants. The choice
is entirely yours to makel!

Every one of these code sequences has a bug in them, and usually a serious one.
Catch all the bugs if you can!

Mostly these are insidious run-time errors, but a few might get a helpful warning,
or even a compile-time error. Note that #include lines have been removed from
some for brevity, so that’s not the answet! Also excluded are common things such
as the definition of any idiomatic CUDACHK runtime error checking macros or other
types of runtime error checking code, or self-testing unit test functions that add up
vector elements. If a missing declaration is all you can find, keep looking]

CUDA Puzzle #1: Where’s the Bug?

Puzzle Code: Here’s the device kernel:

__global void aussie_ add vec puzzlel (
const float*vl,
const float*vz,
float* vout, int n

)

// Compute offset
int id = threadIdx.x;
if (id < n) { // Safety
vout[id] = v1[id] + v2[id]; // Add one element

And here’s the host code that launches the kernel:

// Kernel launch sequence

int nthreads = 256;

int blocks = (n + nthreads - 1) / nthreads;

aussie add vec puzzlel<<<blocks,nthreads>>>(dvl,dv2,dv3,n);
CUDACHK (cudaDeviceSynchronize());

175 CUDA C++ Debugging

CUDA Puzzle #2: Where’s the Bug?

Puzzle Code: Here is the device code:

__global void aussie vec scale puzzle2(
float* vout,
int n,
float scalar

)

// Compute offset
int id = blockIdx.x * blockDim.x + threadIdx.x;
if (id < n) { // Safety

vout [id] *= scalar; // Scale element

And here is the host code with kernel launch:

// Kernel launch sequence

float rec = 1.0f / divisor;

int nthreads = 2048;

int blks = (n + nthreads - 1) / nthreads;

aussie vec scale puzzle2<<<blks,nthreads>>>(dv, n, rec);
CUDACHK (cudaDeviceSynchronize ());

CUDA Puzzle #3: Where’s the Bug?

Puzzle Code: Here’s the device code for a 2D kernel:

__global void matrix add puzzle3(
float *m3, const float *ml, const float *m2,
int nx, int ny)

int x = blockIdx.x * blockDim.x + threadIdx.x;
int y = blockIdx.y * blockDim.y + threadIdx.y;

int id = x + y * nx; // Linearize
if (x < nx || yv < nx) { // Safety
m3[id] = ml[id] + m2[id];

David Spuler 176

CUDA Puzzle #4: Where’s the Bug?

Puzzle Code: Here’s the kernel code:

__global void matrix add safe puzzled(
float *m3, const float *ml, const float *m2,
int nx, int ny)

int x = blockIdx.x + blockDim.x + threadIdx.x;
int vy blockIdx.y + blockDim.y + threadIdx.y;
if (x < nx && y < ny) { // Safety

int id = x + vy * nx; // Linearize

m3[id] = ml[id] + m2[id];

CUDA Puzzle #5: Where’s the Bug?

Puzzle Code:

__global void matrix add safe puzzle5(
float *m3, const float *ml, const float *m2,
int nx, int ny)

int x = blockIdx.x * blockDim.x + threadIdx.x;
int yv = blockIdx.y * blockDim.x + threadIdx.y;
if (x < nx && y < ny) { // Safety

int id = x + y * nx; // Linearize

m3[id] = ml[id] + m2[id];

177 CUDA C++ Debugging

CUDA Puzzle #6: Where’s the Bug?
Puzzle Code: Here’s the code for the 2D kernel:

~_global void matrix add safe puzzle6 (
float *m3, const float *ml, const float *m2,
int nx, int ny)

int x = blockIdx.x * blockDim.x + threadIdx.x;
int vy = blockIdx.y * blockDim.y + threadIdx.y;
if (x < nx && y < ny) { // Safety

int id = x + y * ny; // Linearize

m3[id] ml[id] + m2[id];

CUDA Puzzle #7: Where’s the Bug?

Puzzle Code: Here’s the device code:

__global void aussie clearvec puzzle7(
float* v, int n)
{
// Compute offset
int id = blockIdx.x* blockDim.x + threadIdx.x;
if (id < n) { // Safety
v([id] = 0.0; // Clear element

And here’s the host code with the kernel launch:

// Kernel launch sequence

int nthreads = 32;

int blocks = 1;

aussie clearvec_puzzle7 <<< blocks, n>>>(dv, n);
CUDACHK (cudaDeviceSynchronize ());

David Spuler 178

CUDA Puzzle #8: Where’s the Bug?
Puzzle Code: Here’s the kernel code:

__global void matrix add safe puzzle8(
float *m3, const float *ml, const float *m2,
int nx, int ny)

int x blockIdx.x * blockDim.x + threadIdx.x;
int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x < nx /*X* / && y < nx /*Y*/) |

int id = x + vy * nx; // Linearize

m3[id] ml[id] + m2[id];

CUDA Puzzle #9: Where’s the Bug?
Puzzle Code: Here’s the kernel code:

__global void matrix hadamard safe puzzle9(
float *m3, const float *ml, const float *m2,
int nx, int ny)

int x blockIdx.x * blockDim.x + threadIdx.x;
int v = blockIdx.y * blockDim.y + threadIdx.y;
if (x < nx /*X*/ && y /*Y*/) { // Safety
int id = x + y * nx; // Linearize
m3[id] m2[id] * ml[id];

179 CUDA C++ Debugging

CUDA Puzzle #10: Where’s the Bug?
Puzzle Code: Here’s the kernel code:

__global void matrix diff safe puzzlelO(
float *m3, const float *ml, const float *m2,
int nx, int ny)

int x = blockIdx.x * blockDim.x + threadIdx.x;
int vy = blockIdx.y * blockDim.y + threadIdx.y;
if (x >= nx /*X*/ && y >= ny /*Y*/) {

int id = x + vy * nx; // Linearize

m3[id] = ml[id] - m2[id];

CUDA Puzzle #11: Where’s the Bug?
Puzzle Code: Here’s the kernel code:

__global void matrix add safe puzzlell(
float *m3, const float *ml, const float *m2,
int nx, int ny)

int x blockIdx.
int y blockIdx.
if (x nx /*X*/
int id = x + vy
m3[1id]

* blockDim.x + threadIdx.x;
blockDim.y + threadIdx.y;
< ny /*Y*/) |

nx; // Linearize

ml[id] + m2[id];

Al
X
* ok

CUDA Puzzle #12: Where’s the Bug?
Puzzle Code: Here’s the kernel code:

~_global void matrix clear safe puzzlel2(
float *m, int nx, int ny)

{

int x blockIdx.x * blockDim.x + threadIdx.x;
int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x < nx && y < ny) {

m[x][y] = 0.0;

}

David Spuler 180

CUDA Puzzle #13: Where’s the Bug?

Puzzle Code: Here’s the kernel code:

__global void aussie add vector puzzlel3(
const float*vl,
const float*v2,
float* vout,
int n

)

// Compute offset
int id = blockIdx.x * blockDim.x + threadIdx.x;
if (id <= n) { // Safety

vout[id] = v1[id] + v2[id]; // Add one element

CUDA Puzzle #14: Where’s the Bug?

Puzzle Code: Here’s the GPU kernel:

__global void aussie add vector puzzleli(
const float*vl,
const float*v2,
float* wvout,
int n

)

// Compute offset
int id = blockIdx.x * blockDim.x * threadIdx.x;
if (id <= n) { // Safety

vout[id] = v1[id] + v2[id]; // Add element

181 CUDA C++ Debugging

CUDA Puzzle #15: Where’s the Bug?
Puzzle Code: Here’s the kernel device code for the GPU:

~_global void aussie addvec puzzl5 (
const float*vl,
const float*v2,
float* vout, int n

)

// Compute offset
int lane = threadIdx.x & 1F;
int id = blockIdx.x * blockDim.x + lane;
if (id <= n) { // Safety
vout[id] = v1[id] + v2[id]; // Add element

And here’s the kernel launch code:

// Kernel launch sequence
int nthreads = 32;

int blocks = (n + nthreads - 1) / nthreads;
aussie addvec puzzl5<<<blocks,nthreads>>>(dvl,dv2,dv3,n);
CUDACHK (cudaDeviceSynchronize ());

CUDA Puzzle #16: Where’s the Bug?
Puzzle Code: Here’s the kernel device code for the GPU:

__global void aussie clear puzzlel6 (
float* v, int n)
{
// Compute offset
int id = blockIdx.x * blockDim.x + threadIdx.x;
if (! (id >= n)) { // Safety
v[id] = 0.0; // Clear element

And here’s the kernel launch code:

int nthreads = (1<<6);
int blocks = n + nthreads - 1 / nthreads;
aussie clear puzzlel6<<<blocks, nthreads>>> (dv, n);

David Spuler 182

CUDA Puzzle #17: Where’s the Bug?

Puzzle Code: Here’s the kernel device code for the GPU:

__global void aussie clearvec puzzlel7(
float* v, int n) {
// Compute offset
int id = blockIdx.x* blockDim.x + threadIdx.x;
if (id < n) // Safety
v([id] = 0.0; // Clear element

And here’s the kernel launch:

int nthreads = 27;
int blocks = (n + nthreads - 1) / nthreads;
aussie clearvec puzzlel7<<<blocks,nthreads>>> (dv, n);

CUDA Puzzle #18: Where’s the Bug?
Puzzle Code: Here’s some GPU code:

__global void aussie clear puzzlelS8(
float* vout, int n)
{
// Compute offset
int id = blockIdx.x * blockDim.x + threadIdx.x;
if (id < n) { // Safety
vout[id] = 0.0; // Clear element

And here’s the kernel launch:

int nthreads = 032;
int blocks = (n + nthreads - 1) / nthreads;
aussie clear puzzlel8 <<<blocks, nthreads>>>(dv, n);

183 CUDA C++ Debugging

CUDA Puzzle #19: Where’s the Bug?

Puzzle Code: Here’s the kernel code:

__global void aussie clear vector puzzlel9(
char* v,
int n

)

// Compute offset
int id = blockIdx.x* blockDim.x + threadIdx.x;

if (id < n) { // Safety
v[id] = 0.0; // Clear element

CUDA Puzzle #20: Where’s the Bug?
Puzzle Code: Here’s the kernel code:

__global void aussie clrv_puzzle20 (
float* v,
int n

)

int id = blockIdx.x* blockDim.x + threadIdx.x;
if (id < n) v[id] = 0;
'This is the host code:

int nthreads = 64;
int blocks = (n + (nthreads - 1)) / nthreads;
aussie clrv puzzle20<<<blocks, nthreads>>>(dv, sz);

David Spuler 184

CUDA Puzzle #21: Where’s the Bug?
Puzzle Code: Here’s the kernel:

__global void aussie clrv puzzleZl (
float* v,
int n

)

int id = blockIdx.x* blockDim.x + threadIdx.x;
if (id < n) { // Safety
v[id] = 0.0; // Clear element
}
else {
assert (id >= n);

}

And here’s the host C++ code:

int nthreads = 32;

int blocks = (n + nthreads - 1) / n;

aussie clrv puzzle2l<<<blocks, nthreads>>> (dv, n);
CUDA Puzzle #22: Where’s the Bug?

Puzzle Code: Here’s the kernel in 2D:

__global void matrix add safe puzzle22 (
float *m3, const float *ml, const float *m2,
int nx, int ny)

int x blockIdx.x * blockDim.x + threadIdx.x;
int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x < nx /*X*/ && y < ny /*Y*/) { // Safety
int id = x + y * nx; // Linearize
m3[id] = ml[id] + m2[id]; // Add

185 CUDA C++ Debugging

CUDA Puzzle #23: Where’s the Bug?
Puzzle Code: Here’s the kernel code:

__global void aussie clearvec puzzle23(
float* v, int n)
{
int id = blockIdx.x * blockDim.x + threadIdx.x;
(id < n || (v[id] = 0.0));

CUDA Puzzle #24: Where’s the Bug?
Puzzle Code: Here’s the kernel code:

__global void aussie clearvec puzzle24(
float* v, int n)
{
int id = blockIdx.x*blockDim.x + threadIdx.x;
assert(id < n && (v[id] = 0.0));

CUDA Puzzle #25: Where’s the Bug?
Puzzle Code: Here’s the kernel code:

__global void aussie clearvec puzzle25(
float* v, int n)
{
// Compute offset with lane
int lane = threadIdx.x & O0x1F;
int id blockIdx.x * blockDim.x + lane;
if (id < n) { // Safety
v[id] = 0.0; // Clear element

David Spuler 186

CUDA Puzzle #26: Where’s the Bug?
Puzzle Code: Here’s the kernel code:

__global void aussie clearvec puzzle26 (
float* v, int n)
{
// Compute offset with lane
int lane = threadIdx.x & Ox1F;
int id = blockIdx.x * blockIdx.x + lane;
if (id < n) { // Safety
v[id] = 0.0; // Clear element

And here’s the kernel launch:

int nthreads = 32;

int blocks = (n + nthreads - 1) / nthreads;
aussie clearvec puzzle26<<<blocks, nthreads>>>(dv, n);
CUDACHK (cudaDeviceSynchronize ());

CUDA Puzzle #27: Where’s the Bug?
Puzzle Code: The kernel code is:

__global void aussie clearvec puzzle27 (
float* v, int n)
{
int lane = threadIdx.x & Ox1F;
int id = blockIdx.x * blockDim.x + lane;
assert (id < n);
v[id] == 0.0;

And here’s the kernel launch:

// Kernel launch sequence
int n = 256*32; // multiple of 32
int nthreads = 32;

int blocks = (n + nthreads - 1) / nthreads;
aussie clearvec puzzle27<<<blocks, nthreads>>>(dv, n);
CUDACHK (cudaDeviceSynchronize ());

187 CUDA C++ Debugging

CUDA Puzzle #28: Where’s the Bug?
Puzzle Code: Here’s the GPU kernel:

__global void matrix add safe puzzle28(
float *m3, const float *ml, const float *m2,
int nx, int ny)

int x blockIdx.x * blockDim.x + threadIdx.x;
int vy = blockIdx.y * blockDim.y + threadIdx.y;
if (x < nx /*X*/ && x < ny /*Y*/) { // Safety
int id = x + vy * nx; // Linearize
m3[id] ml[id] + m2[id];

CUDA Puzzle #29: Where’s the Bug?
Puzzle Code: The kernel code is:

__global void aussie clearvec puzzle29(
float* v,
int n

)

// Compute offset using threadIdx
int id = blockIdx.x* blockDim.x + threadIdx.x;
if (id <=> n) { // Safety

v[id] = 0.0; // Clear element

David Spuler 188

CUDA Puzzle #30: Where’s the Bug?
Puzzle Code: Here’s the kernel code:

__global void aussie clearvec puzzle30 (
float* v, int n)
{
int id = blockIdx.x* blockDim.x + threadIdx.x;
if (id < n) { // Safety
v[id] = 0.0; // Clear element

And here’s the kernel launch code:

int n = 1>>12; // multiple of 32

int nthreads = 32;

int blocks = (n + nthreads - 1) / nthreads;

aussie clearvec puzzle30<<<blocks, nthreads>>>(dv, n);
CUDACHK (cudaDeviceSynchronize ());

CUDA Puzzle #31: Where’s the Bug?
Puzzle Code:

#define BITS 5

__global void aussie clearvec puzzle31 (
float* v, int n)
{
assert (blockDim.x == 32);
int 1id = blockIdx.x << BITS + threadIdx.x;
if (x < n) { // Safety
v[id] = 0.0; // Clear element

And here’s the launch code:

// Kernel launch sequence

int n = lu << 15; // multiple of 32

int nthreads = 1 << BITS; // 32

int blocks = (n + nthreads - 1) / nthreads;

aussie clearvec puzzle3l<<<blocks, nthreads>>>(dv, n);
CUDACHK (cudaDeviceSynchronize ());

189 CUDA C++ Debugging

CUDA Puzzle #32: Where’s the Bug?
Puzzle Code: Here’s the kernel code:

__global void aussie clearvec puzzle32(
float* v, int n)

{

// Compute offset

int id = blockIdx.x* blockDim.x

+ (threadIdx.x &0x1F);
if (id < n) { // Safety
v[id] = 0.0; // Clear element

And here’s the launch code:

// Kernel launch sequence

int n = lu << 15; // multiple of 32

int nthreads = 32;

int blocks = (n + nthreads - 1) / blocks;

aussie clearvec puzzle32<<<blocks, nthreads>>>(dv,
CUDACHK (cudaDeviceSynchronize ());

David Spuler 190

Answers

Answer #1: The kernel does not use blockIdx in the computation of the index,
so it won’t ever set the higher elements of a vector. This will only add vector
elements 0..31, probably many times over in parallel across different blocks and
warps. The kernel will not crash, but won’t work correctly for vectors with more
than 32 elements.

Answer #2: The block size in nthreads is 2048, but more than 1024 threads
exceeds the limits allowed for block size. Hence, the kernel will fail to launch, with
a synchronous failure.

Only part marks if you thought the only problem was that the divisor reciprocal
calculation ~ was not protected against divide-by-zero errors.
The blocks calculation should really be capped at a maximum, too, as this code
will exceed maximum limits for very large n values. But it won’t work with capped
blocks because there’s no loop in the kernel. Does the code need more comments?

Answer #3: The | | operator should be &&. The safety test is not very safe.

Answer #4: The index computation should use multiplication, blockIdx.x *
blockDim. x, not addition (+).

Answer #5: Typo. One of the blockDim. x should be blockDim.y.

Answer #6: Typo. ny should be nx in the 1d calculation. Works fine if it’s a square
matrix!

Answer #7: The launch uses n as the block size, rather than nthreads. This will

only work for vectors of sizes up to 1024. If n is ever larger, there will be more than
1024 threads, the hard limit on block sizes for a GPU. Hence, the kernel will fail to
launch with a synchronous error.

Answer #8: There’s a nested comment problem that will comment-out the “y <
nx” test, because there’s a space between “*” and “/”. You’d probably get a
compiler warning, and hopefully you pay attention to them!

Answer #9: Should be “s& y < ny” notjust “s& y”.
191 CUDA C++ Debugging

Answer #10: The two Boolean safety tests have the reverse condition
with >= operators, and the kernel will only do invalid assignments. If this is called
only with correct indices by correctly grid dimensions, it will simply do nothing.

Answer #11: Should be “s&” (logical-and operator) not “&” (bitwise-and operator),
with lots of operator precedence problems occurring in the if test. It would still
work if you added enough parentheses.

Answer #12: Two-dimensional array syntax v[x] [y] won’t work on a lineatized
array. The computation of the linearized index is also missing. Fortunately, this
should be a compiler error, albeit a confusing one.

Answer #13: Safety test is off-by-one, and should be “id < n” not “id <= n”.
Answer #14: Should be “+ threadIdx.x” (addition) not “*” (multiplication).

Answer #15: The constant “1F” is accidentally a float constant (1.0), but
should be “0x1F” (hexadecimal integer). Hence, it has the wrong value, and does
bitwise-and on a float type, which is a compile error (luckily!). Note that the use
of lane in this way is dubious (should use threadIdx.x), butit’s not a bug here
because nthreads is only 32.

Answer #16: Could you do 1<<6 in your head? But that’s not the bug. Thete’s
missing parentheses in the calculation of blocks. The code should be “(n +
nthreads - 1) / nthreads” calculation.

Answer #17: Surely, this is an easy one. The number of threads per block should
be a multiple of 32, not 27.

Answer #18: The initializer for nthreads is 032, which is an octal constant in
C++, and does not equal decimal 32.

Answer #19: The device parameter should be “float*” not “char*”. You'd get
a compiler error, but then, without thinking about it much, you might just add a
pointer cast to the argument, right?

Answer #20: Yes, it’s the wrong zero, but that won’t crash it. Kernel parameter
“sz” should be “n” and that will probably crash. Presumably, sz is the byte size
used for memory allocation and equals n*sizeof (float), which is too large.
The kernel could overflow its array bounds if n is not a clean multiple of 64, because
the safety test has a threshold that’s four times too high.

David Spuler 192

Answer #21: The assertion is wrong, but is harmless. The part that isn’t harmless
is that the calculation of “blocks” mixes up “nthreads” and “n” in the divisor.
The value for blocks will always be 1.

Answer #22: Specifier “ global” is invalid and should be “ global ”
(with suffix underscores). It’s a harmless problem as there’s a compiler error to
remind you.

Answer #23: It’s a tricky try, aiming to use an expression instead of a safety 1 f test.
Perhaps the idea is to avoid if statements for branch coherence? However, the
short-circuiting of the “| | ” operator is the wrong logic, with its “or else” meaning.
The assignment operator only executes invalid assignments. This idea would work
for “s&” (with “and then” logic), but it wouldn’t really do anything to change
branch divergence anyway (if that was the intention, rather than just showing off
fancy coding skills).

Answer #24: The assertion always fails because the second operand is equal to
zero. Furthermore, the kernel will do nothing if assertions are ever “compiled out”
for production mode. Also, this will return an error code for the whole kernel code
if even one of the threads fails the assertion, so it’s not really a good way to combine
the safety test with assertions.

Answer #25: If the block size is more than 32 threads, this will miss data for the
threads with a higher thread index, because “lane” is always 0..31 here. Portions
of the vector won’t be processed.

Answer #26: The second “blockIdx” should be “blockDim.” This use
of 1ane is dubious, but works here for a block size of 32.

Answer #27: No, the assertion should not fail. But the “==" operator
on v [1d] should be “=".1t’s a null-effect statement, not an assignment, and should
get a compiler warning,

€€ 0

Answer #28: The “1i£” condition is testing “x” twice.

Answer #29: The spaceship operator “<=>" (three-way compatison) should be just
“<”. But this is valid in modern C++ and should run.

Answer #30: “1>>12" is zero. Should be “1<<12” presumably.

Answer #31: Operator precedence error. Here, blockDim.xis 32,
and x<<5 would be the same as x*32, but the << operator has a lower precedence

193 CUDA C++ Debugging

than the + operator, whereas multiplication has higher precedence. Parentheses are
needed around “blockIdx.x << 57,

Answer #32: Typo. The variable blocks is actually used in its own initializer,
which is an uninitialized use with undefined results and could be a divide-by-zero.
In any case, it’s an incorrect calculation for the number of blocks required.

Final Words: How did you go with a full warp of puzzles? Was it fun? Or was it
fully warped? Remember that if you’re ever having trouble debugging your CUDA
kernels, make like an Aussie and turn your C++ code upside-down.

David Spuler 194

