C++ Ultra-Low
Latency

Multithreading and

Low-Level Optimizations

David Spuler

Aussie Al Labs

Copyright © David Spuler, 2025. All rights reserved.
Published by Aussie Al Labs Pty Ltd, Adelaide, Australia.
https://www.aussieai.com

First published: July 2025.

This book is copyright. Subject to statutory exceptions and to the provisions of any
separate licensing agreements, no reproduction of any part of this book is allowed
without prior written permission from the publisher.

All registered or unregistered trademarks mentioned in this book are owned by their
respective rightsholders.

Neither author nor publisher guarantee the persistence or accuracy of URLs for
external or third-party internet websites referred to in this book, and do not
guarantee that any content on such websites is, or will remain, accurate or
appropriate.

David Spuler 2

About the Author

David Spuleris a C++ expert and serial technology entrepreneur who has
combined his love of writing with Al technology in his latest venture: Aussie Al is
a suite of tools for writing and editing, with a focus on fiction from short stories to
full-length novels. His published works include three advanced C++ books (low
latency, data structures, and safety), two generative Al LLM books, two CUDA
C++ books, four non-fiction textbooks on C++ programming covering
introductory and advanced C++ programming, efficiency and optimization,
debugging and testing, and software development tools, and one application
management book.

Other than writing, he’s an avid Al researcher with a Ph.D. in Computer Science
and decades of professional experience. Most recently, Dr. Spuler has been
founding startups, including the current Aussie Al startup and multiple high-traffic
website platforms with millions of monthly uniques, including an e-health startup
acquired by HealthGrades, Inc. Prior roles in the corporate world have been as a
software industry executive at BMC Software, M&A advisor, strategy consultant,
patent expert, and prolific C++ coder with expertise in autonomous agents,
compiler construction, internationalization, ontologies and AI/ML. Contact by
email to research@Qaussieai.com or connect via LinkedIn.

3 C++ Ultra-Low Latency

About the Contributors

Michael Shatpeis an experienced technologist with expertise in AI/ML,
cybersecurity, cloud atrchitectures, compiler construction, and multiple
programming languages. He is currently Senior Software Architect at PROS Inc.,,
where he is a member of the Office of Technology focusing on developing and
evangelizing AL His Al expertise extends to monitoring/observability,
devops/MLOps, ITSM, low-resource LLM inference, Retrieval Augmented
Generation (RAG) and Al-based agents.

In along R&D career, Michael has been coding C++ for almost 30 years, with prior
roles at BMC Software, Attachmate (formerly NetlQ) and IT Involve. Michael has
a Bachelor of Science with First Class Honors in Computer Science from James
Cook University and holds several registered patents.

Cameron Gregory is a technology entreprencur including as co-founder of fintech
bond trading startup BQuotes (acquired by Moody’s), a Senior Data Scientist
focused on “big data” for hedge funds at fintech startup Advan Research
Corporation, co-founder and Chief Technology Officer (CTO) of Trademark
Vision with an Al-based image search product (acquired by Clarivate), and founder
of several image creation companies including FlamingText.com, LogoNut,
AddText, and Creator.me.

Cameron has been making code go fast since the 1990s at AT&T Bell Laboratories
in New Jersey, is used to working with real-world data at scale, and is proficient in
multiple programming languages, including C++, Java, and JavaScript. He holds a
Bachelor of Science with First Class Honors in Computer Science from James Cook
University.

David Spuler 4

Table of Contents

AbOUL the AULNOL ..o 3
ADOUL the CONIIDULOLS ..cecvreerieieecreecireeirecireeiree ettt sseseseescsseacs 4
TADlE Of CONLEILS ...evvrverieeiiecireecieeeireee et eae 5
PLEEACE ...t 21
Part I: Introduction to LOw Latencyeeeceeviennnunneeeciiiiiinnnnnneeeceencsnnsnnnenes 25
1. Low Latency Programming.......ccccuuuieeeeiiiiiiiinniiieeeiiininnnnieeeeeecssnsssnenes 27
What is Low Latency Programming?.........cccccceeieenieenieenieenieenieenienseeeseeenseees 27
C++ for Low Latency Programming ... 27
CPU versus GPU ... 28
AL ENGINES .ottt 29
High-Frequency Trading........occcveuriecurieeirieirieirieireeeisee e sseseseeaes 30
Intentional SIOWIESS.....cvvuivereiriieiciccee et 31

. Hardware ACCEleration.........ecueeeerueeeiueenreenenieeniieeeneeeesueeesseeesseeenssnsennes 33
Why Hardwatre ACCEleration?.........ccuiuiuieieeieiniiiiiieieieisiisseesseiesssssssessessesenans 33
Types of Hardware ACCEleration........cvueuveiueeiueeiureiieeieeiieeieeseeeeeeseeenseeenseeens 33
CPU Hardware ACCEIEration......c.oueiivcrereineieieietecce s sns 34
Detecting CPU Acceleration in CHucvieeieeeiieeieieeeeeeeeeeesieseenseaeneeens 34
GPU Hardware ACCELErationcevevereienieieiierieiieecce e sesens 35
Detecting GPU Support in Ch.iiiciirce e 37
Assembly Language versus INtrinsicscoeveivieinieinieinieinienieieceseenees 37
Inline Assembly Language........c..ccveunicirieiricireeiriereeree et sseseseeseseeaes 39

5 C++ Ultra-Low Latency

3. System OptimiZationS....ccccuuueereeriiiiiiiiiiiiieeeiiiiiiireeeeeeesaeeeeeeeesssnnns 41

Optimizing the Whole SyStem.........cciuveiuriivenieiieieieeeeeeeeeeeeeaes 41
Low Latency System COMPONENLSveveeiurerimreaimriiirisiieeseieeeseeseseessseessseessaeesesenns 41
Combining Multithreading and SIMD CPU Instructions........ecveeeurecrrecureecuenne 42
Combining Multithreading and GPU Vectorization........cc.cccuvecuveiurecreecueennnn. 42
Going for the THPle-DOUDIEc.oviveeiieeiieiecceeee et eeeeeaees 43
Advanced Linux O/S OptmiZationsceeeeeeereerueurerereriessensersereesesersersenes 44
Serving and Deployment OptimizZations..........cuueeeeveeeieininiesinieiesississeessssens 44
Network OPtMIZAtION.c.evcveeiurieiiseeriseeeeeeeeseieeseeeseseess s essse s seeseseeas 45
RELCICIICES ..ot 46
Part IT: HFT & Algo Trading.......ccceeeeviuieeiniiiieinnniieiiniieeiniieecnnneecennne, 47
4. Trading Engine COMPONENTSeeeirirureiiissureiiissneeiiiniseeeninuneeisssneessssne 49
Overview of Trading ENgINescoiuveiivenivenieiciceeeeeeeeeseeeeeeeaes 49
SOftWare COMPONEILS «...evuiverrieeiiierieeieieereee et essseeas 49
Low-Level INfrastruCture. .. senes 51
RELEICICES c.nviniieeiccec e 53
5. Hotpath OptimiZationsS........ceeiiiiiiiiniiiieiiiiiiiiiieeeccccnnreeecccceesssneees 55
What is Hotpath OptimiZation?c..ccveeereeurieemricureenseeireesseesseesseseseeesseeseenns 55
Hotpath Optimization Techniques ..o, 55
Network OPtiMIZAIONScecveerueeerercereeeeieeeseeeeeeeeesese s essseeseseeas 57
COLe PINNING ..ot 58
In-Memoty LOG@ING ... 59
REFEIENCES vttt 60
0. OFAEIS coounrererrririnirinieeieirenetreetteeeteesstreesaeseanesssssesssnsssssnssssssssssnsssssnsens 61
OFAELS oot e 61
Market Data FEeds.....ouiiiceeeeeee e 62
OFdEr ODBJECLS....cuvieiiiiiiiiiiiiiiir e ees 62
INtE@EL PLICES .ot s 64
Consistency Checks 0n OLdErs ...c.cviereiricerrniicierrieereeeterenseeeeesensesceenenes 65

David Spuler 6

7. Order Book & Matching ENgineceeeeeeieciinnniiieeeeiiiiiinnneeneeeeeennnnnnnnns 67

What is an Order BOOK?coviiiiiiiiriccccieeeesece s 67
Order BOOK MESSAZESvvuiviriiiiiiiieieiieeie s 68
Market Data Feed ISSUEScvviriiireiiriiecieeticeeeieeeneieeeeseiesseaenseaeseaens 69
Order Book versus Matching ENgine ..o 70
Matching Engine LOGIC ..ot 70
Data Structures for the Order BOOK.......ooieiiiviiciicicicicicicceees 71
FIFO Ofder LIStS....cuiiieiiciiiiiiiieiciicieisiieisisisscss s ssssssssse e sssssssssessesssnns 72
Price-Level FIFO Ladders.......ccveueiniciniciniciicirceereeireereeeisee e seeoeseesenenes 73
Heap Data StrUCULEScuveevciiiiiceicct e 74
Ordering Out-0f-Ordetr Ofders......oviemureiireiireiieeieieeie e eeeesesenns 75
Incremental Max-Buy and Min-Sell PLCEsccocviririviciiiniiricicciirisieenns 77
RELEICIICES ..o 79
8. Iceberg Orders ...cuuuuuiiiiiiiiiiiiitiiiieeeccctrreee e 81
What are Iceberg Orders?......oooiicinieiieriereireeee et neens 81
Iceberg Replenishment SCENALios.cvvieiieciieciiiciiiciice e 82
Iceberg Algorithm Optimizations for Exchangesc.occcvecuvcincineccivcccincecincans 83
Trader Detection of Hidden Icebergscciiiniviviciniininiciccieeceenne 84
ProObING STIALEZIESuvuevieirieirieeirieeire et seeaes 85
EXECNSIONS ..ttt et 86
9. Rate LImiteruueeeeeriiiiiiiiiiiieeeiiinniiiiieeeeeeeeiintieeeeeeesssssssssssseseesssssssssnnns 87
What is 2 Rate LIMITEr?cvviiiiiiiiiiiiiiiiceesse e sseesseens 87
Client vs Server Rate LIMIters......covivieiiiiciie e 88
Rate Limiter OptimiZations......coceueeeirieeiieeiieeiieesrieeiiessisessesessesessesessesessssessssessenns 39
Advanced Client Rate Limiting ISSUES.......cevueviueeiueeniueeienieeniieeeieneeseeenseeeneeens 92
EXEENSIONS ..ttt 93
REEIENCES couviviieititctc s 93

7 C++ Ultra-Low Latency

10. Slowpath Removal........uuuiiiieiiiiiiiiiiiiieiiiiiiiieeeccccnneeee e cccseanneees 97

What is Slowpath RemovalP........cccciiiiiiiiiciccececeeeene 97
Error Handling SIOWPAthscoceuieiiciiiciiciricricc s 98
Deferting Error CheCKS ... ssesesseseens 98
Removing Error Checks ... 100
Never-Failing FUnCONS ..ot e 101
REEIENCES vttt s 102
Part ITI: Low-Level Techniquesccovuieiiiiieeininnieeiniiecinneecnnneeens 103
11. Branch PrediCtion......uueeeeeeeeieeniieenieeeieeceieeceeeeteeeeteeeeeeeseeeennees 105
What is Branch Prediction?.........cvcveceecneceencieeieeeeeeeeeeeeseeeeeeessesesneaens 105
Types Of BLranChes ... eaees 106
Branch Compiler HINtS.....cocoiiiiiiiiiiiii e 106
Branch Profiling.......ccooevviiiiniiiiiicic e 107
Branch HEuriStics. ..o 108
Branch EEMINAtiON ...cceuviiieiiicicicceceeeees e 108
Branchless Programming THICKSc.vevrieiriernieinicrcireireeree e eeseeseeeeneeees 109
RELCICIICES ..t 116
12. Instruction-Level Parallelismccooovuiiiiinniiiiiniiiieiinnnieeinnieeennnnieeen, 117
What is Instruction-Level ParallelismPr........cccceuviviicinininiccininiicericceecnes 117
Instruction Reordering OptiMIiZationsccceeeueeeeureserreeueeeueeeueesesemeseeeseeesenne 117
Out-of-Order Execution OptiMiZations.........ceuveeevieeirieeirimeirieiineiieisiessinessiaens 119
Multiple Accumulator OptimIZAtIONS......c.cveuevrieeerieerrieirieenreeesreesreeesseeesseeesseaesseaes 120
13. Cache LoCality....ccuviueeeiniiireiniiiieeinitieeinnniieennieeesssnsseessssseessssssessns 123
What is Cache LOCAlity? ..o 123
Instruction Cache LOCALLY .c.cveeieeueiriieiiciiiieieccerrcee e 124
Data Cache LOCALILYc.oveueeieeiiciiciicriereeree et neaes 125
Memory HICTarChy ..ottt ssenees 126
Thread-Local STOTAZEcvvuevicuiciricrecirecireeeeie et saes 127

David Spuler 8

14. Cache Warmingcccuuuuiiieeiiiiiiiiiiiiieeiiiitiiieee s e ceessnsaneees 131

What is Cache Warming?.......c.occcveeurieinieinieinieinierieseieseesseeesseeessese s 131
Memory Prefetch PrimitiVeS c.c.cvcccreercerererrenieereeneeerenseierenseeeesereesessecsessessecnen 132
Volatile Temporaty VAriablescccceirieiricinienieieneereeeenseeesseeesneaesseaens 132
Dry-Run EXECULIONS ...cvvrereererererererereereeeseese ettt saeaeaeseaeaeaennes 133
Double Data TLOUDIEccuieiiciriciricirereereeinee ettt sseaesseaens 134
Problems with Cache Warming ..ot 135
Further Optimizing Cache Warming........c.ccoceveeieiciicininnieececce e, 136
RELEICIICES .. 138
15. AVX INHNSICS wuvveereiurreiniiireiinitieinniiieeinniieeenniteesesieeeessssesesssssnessns 139
What are AVX INHINSICSP...uvuiieerieeiieeirieeireieireieireees st eaessaens 139
AVX OPELALONS w.vvvrviiiiiisciesisisssssie s sss s sa s sseseaes 140
AVX Horizontal INtrNSICS v 141
Portability Checking of AVX Versions ... 142
Example: Basic AVX SIMD MUultiplycccveeiueeiieieeieieieeeeseeeeeeeseeeeeees 143
AVX Memory Alignment ISSUEScccveiiiiiiiiiiiniicie e 145
AVX-2 SIMD MultipliCation ... 147
AVX-512 SIMD Multiplcationccceuvieiniiniiiniiiieieeeeecescens 148
Example: AVX 128-Bit DOt PLrodUCEvuveeieeeciciiceiceeeeeeeeeeeeeeaes 148
Example: AVX-2 256-Bit Dot Product........cccvevieiciciniininiccicniniccccenne 149
RELEICIICES vt 150
16. Contiguous Memory BlOCKSuuuueriiiiiiiiiinniiiiiiiiiieiieeecccccnnnees 151
Why Contiguous Memory BIOCKS?........cccviiiiiiiiiisiens 151
Low-Level Memory Block FUNCHONScevveiecuciriiccririicercereccereeenes 152
Fast Memoty Block OPerationsc.ccueecureeureeureiueeiieeiieesieesienssienseenssaessenens 153
Memory Block Function Pitfalls.........ccoeuieinicinicinieinicnieneereeneeneeseeneaes 155
Raw Subarray Memory BLOCKS......c.coiiereiniiceiiiciericeeceesecesenseeeenen 158
Dynamic Memory Management Pitfalls.......c.occveuncrnicinicincincnecnieneenneaens 159
Pitfalls for Non-Dynamic Memory BlOckS.......coovecueirniccrinnicernniccrenneeenen 161

9 C++ Ultra-Low Latency

17. MemoOry PoOlS.......ccuviiereirieiiiiiiiiiiiiiiiiiiiiiiiii.. 163

What ate Memory POOIS?cccviiereiriicerrcierereeeerseseeeie e nsesessaesensenees 163
Why MemOty POOISPoucviiiicieiriieieierceeneencsieneesesteeiensesesseesesseseecsensesessaesessences 164
Memory Control Block Overheadc.ocveuneincinicinicinicncnecneeeersecinenes 165
Fixed-Size Memory Pool AIZOfIithmsc.cccveiiveiiriiviiirececceccecne 166
Boolean Flag Memoty Pool ...t 170
Disadvantages of Boolean Flag Method. ..o 166
Boolean Flag Array Method.......cociiiiiiniiiiiccieceeenns 167
Index Array Memory POOL ... 168
Memory Pools Versus CONAINELS. ..ot 170
Advanced Memory POOLSccvviuiiiiiiiiiciceeeeeeeeeeeeseeseeeeeeeaes 174
EXEENSIONS. ..ttt 175
18. Data COMPIESSION...ceierureeerrrertrererireeiteeeiteeesteeseseeestseeeseessssesessasesssees 177
What is Data COMPILESSIONT ... 177
Related Data AIGOTItNMSvuvieiiiricicieee e 178
Low Latency Data COMPIESSION.....c.ocvivieiiieiiieiiiciiiiiiicie e sesessesssenines 179
Data Compression AIGOLIthmS ... 179
Parallel Data Compression AlZOfithms ..o 181
Part IV: Low Latency Data Structurescccoueeieeeeiiiiciinnnneeeeeicicinnnnnenes 185
19. Modern C++ CONtAINELS c...eeeerreererieenirreerrennirenitreenneessnessseeersneesnnes 187
Standard CH+ CONAINETScuvevvevciircriie s 187
General Container OptimiZationS ... 190
ChooSINg CONTANELScuimiiieiiieiiiiiieiisisse s seseseens 191
Linearizing CONtAINELS ..o 192
Changing CONLAINELS ...t seens 192
Useful Membet FUNCHONS ..ot 193
Hidden Auto-Resize SIUGS........ccoiuiimriiiriiiriiiicicccceeeeeeseens 194
Hand-Coding CONLAINELS......cciueeiueirireeeieeeieeeieeeieeseieeseseese e esesesseseeseseeseseens 198

David Spuler 10

20. MOVE SEMANTICS .evuevrrernerrnerneereeerecrnserserssersecsscsssessosssssssessssssssssessssssssnsns 199

What are MOVe SEMANTICS? ..o sssssss s 199
COPY BLSION .t 200
Return Value OptimiZationccccucuriiiicininiicininiiesice e 200
Moving Multiple ObBJECEScucviuiiuiiiciiicirieirieirereee e eeessaens 202
Generic MOVE OPEIALOL ..ottt 203
21, ALTAYS eveeiiinnieeiniiiieeiniiieeinniteeesiteecesatee e e sate e sssaaae s e s sabaa e se s abaesesaaaaees 209
Array Operation COMPLEXILY ... ssssssesssessesesas 209
Modernn CAa ALLATS ..ottt saees 210
Custom Array Implementation ... 211
Container Deletion Pitfalls ..o 212
Bypassing INterfaces ... 213
22, UNSOLted ALTayS...ecccciiieiirrrsuneeeeiiiiisssssnneeeeesessssssssreeeeessssssssssssessssssssssns 215
Unsorted ALrays OVEIVIEW ..o ssssssssssessesess 215
Linear Search of Unsorted ALTays........ccvverencireiieeieenieeieeieeseeeneeensesensenns 216
Fast Linear SEarch... ..ot 218
Low-Level Search SUPPOLtccuviueeciieieciitieeieeieesieeeeeseesieessae e ssaensaees 218
Parallel Linear SEarchcccviicieininiicciriiceecceeeee e 219
Unsorted Array INSEItioNSccuvecueecurecurecireeieecieetieesieeeseeseesessesessesesssseseaees 220
Insertion at an INAEX c.c.vvcurecirecinecirecrcieeceeeieecieetie ettt sseaeseaeseaees 221
Fast Unsorted Array Deletion.......c.occuvecuveiureeireieeeiieeieeeeeeeeeeeseeeseeessaeneaens 222
23. SOLted ALTAYS cevvurreeiriuireiiiiiieeiniiieeienitieeesiiteesssstseeesssasessssssssesssssanens 225
Sorted ALrays OVEIVIEWccuvcueecurieeirieieeeieeeieeeie e sssiessaesssaessssessaesssaes 225
Shuffling Array EIEMENLSc.ovivieiiriiiiiiiiiiiieesce s 226
Binary-Like Sorted Array INSEItiONcvveeuieeurieerienrieirierieieeeeeeseeeeee e 227
Sorted Array DElEtion ..o eaees 228
Batched Multiple Insertions in Sorted Arfays ... 229
Batched Multiple Deletions in Sorted ALfays.......ceeericeereerreerneerneerreennenens 230
Deferred Deletions with Vector Defragmentationccveevvicinicenicinicnnnane 232
Mixing Many Searches, Insertions & Deletions..........ccvicueiriniciciiiniicicininnnnes 234

11 C++ Ultra-Low Latency

24, Order Of INSEITHON ..vvuieuiirerieeruiereerriererernersserseesecrssessessscssscssssssessssssessnes 237

Hash Table with Order-of-INSErtion ... 237
Contiguous Afay VEISION....ccvuiuiimreiiriimrisiisiseieisessiseseesessessssessssessseessseessseessseens 238
Doubly-Linked List VELSION c.c.veuieerieeirieirieirieirieireeirieiseeenseeesseeessesesseaessesesnenes 240
25. LRU Cache Data StrucCtUrecccuieeiiniiieeiniiieeinniineeininieecnsnseecesssseees 243
What is an LRU Cache?cccouviiiiiiiiiiiiiiniicccseeeeeisnines 243
Not a QUete Of DEqUE ... 243
Array Implementation Fails ... 245
Doubly-Linked List LRU Cachec.occcvieiicinieiriciriciricireerereereeseereeeneenes 246
RELCICIICES ..t 248
26. Fast Ring BUfferscccceviuiiiiiniiiiiininiiiiiiiiciieeccineccnieeccnnnneees 249
What is a Ring Buffer? ... 249
Simple Ring BUffercooviiiiiiceccc e 249
Pros and Cons of Ring Buffers........ccccvviviviiininininicciiiiececeenns 251
Incremental Count OptiMIZAtiOn.......ccueeeeureeureemrecieeeieeeseeeeeseieeseseeseseeeseesesenns 252
Avolding Three INtegers. ..o 253
Modulo Arithmetic OPtMIZATIONS ...cecvreerreeerrieeerieeirieireeenreeesseee e ssesesseeessesenseees 255
MOVE SEMANLICS ..ttt 258
Constructor Problems.. ... s 260
Standard Vector Problemsceieeiireiieecneceecnecieecseceeeieeeseesesseseseens 261
Explicit DestructOr Callscoiueeiireiiriiireeieeeecieceeeeecceesee e seeseseens 262
Class Interface Bypass.......cccoviiiiiniiniiiiiccccessessesseesenens 263
EXEENSIONS. ...ttt 264
27. Perfect Hashingooocvueeiiiiiiiiiiiiiiiiiicciicntiecc e 265
What is Perfect Hashing?.......ccocivniiicsns 265
Disadvantages of Perfect Hashing.......c.occvveuneinicinicinicincncnecreereeseenenes 266
Perfect Hash FUNCHONSucvvivivieiicicic e 266
Further Optimizations of Perfect Hashing.......ccceccveeuveneueevcinencieeneececeeenn. 267
Example: ANSI C KeyWords.....coviiiiiriieiceesecsscseesenens 270
Perfect Final TROUZRLS ...occuiiiiciicirecirciececeece e 274

David Spuler 12

28. Matrix MultipliCationueeeeeeiiiiiinniiiieeiiiniiiiieeeecccnnieeeeeeecesnnns 275

Matrix-Vector MUultipiCationcccveuieeeieciricinieinienriesieeeesseeesseeesseeesseeessaens 275
Optimizing Matrix-Vector MultipliCationcoecuvecuricuriecrricmrecirieneeenseenreens 276
Tiled Matrix-Vector MultipliCationc.cceeeureeurecurierniernieireeineenseeeseeeseaesseaens 277
Matrix-Matrix MultipliCation......c.ceuiueuieeirieeirieinieirieeesee e seeseaens 280
Vectorized MatiMUl.......cccviiiniiiiiiiiicesssssse s 285
Loop Tiled/Blocked MatMul.........c..ocueueveeieriuerereriniireicsieseeeieseseseesisessesessessns 286
Fast Matrix Multiplication Theory ... 287
Multiplying by TLaNSPOSEcuuvreurrieiiecrrieeirieeirieeiseeenreeesseeesseae e eaesssans 288
RELCICIICES ...t 289
Part V: Multithreading OptimizZations.........ceveeereeeerierecrveeeseeesseeeesneennnees 291
29. Multithreading OptimiZationsccccueeeeeeiiiiiiiiniieeeeeiiiiiiieeeeeeeeeeens 293
C++ Multithreading OptimiZations........ccceeeeuriirieriereeieiniiisiesieesisseesseesesenns 293
What is MUltitht@ading?cceuvveemieimriciricieeeieee e 293
How Not to Multitht@ad.......cccovieueiriniiiiiiiccricecceeceeeee e 294
High-Level Multithreading OptimiZationcecueeeeeeieeeniueeieersiemsieenieenseaenseaens 294
Low-Level Multithreading OptimiZationc.eceeeeeeeuneiniinimeceeeeneisinsieeeeeensens 295
Sequential C++ Code OPMIZAIONS ...e.vuveeeeruemieeemireeseeeeeieesieeeeeeseeeesseeeeaeeseaes 296
RELCICIICES .ottt 297
30. Common Multithreading Bugs & SIugsccccevuviriiiinieiiisineeeciinenee 299
Multithreading Bugs OVerview ... 299
Main Thread Exits Early......ccveieiicineiccnenereeeeeeeeeesseeesseaeseaens 300
Linux Linking Problem ... 301
Volatile Misunderstanding........cccveeueeerierrieerieiniennierienseeeseesseesseeessesessesesseaens 302
Advanced Multithreading Bugsccccviiiiiiiniiniiiiccccccen, 303
Multithteading SIUGSc.vucvieeiieiiciicrereerere et eaees 303
Fake Multithteading........ccvvciiiiiiiiniiiiiiceee s 304
RELEICIICES vt taes 305

13 C++ Ultra-Low Latency

31. Thread Overhead... . iueiieeeiiieiieiiieicireceereeeteeeeneeeeseeceseeessssessssessssens 307

What is Thread Overhead?........ciiivinii e 307
Measuring Basic Thread Overhead.......occvevciicinicincincicrccrccrceae 307
Synchronization and Context Switch Overhead.......ccocouviviviviciniiinivinicnn, 311
32. Thread Poolsccovuiinuieiiiiiiieiniieiieiincnie e cssnecsseesnns 313
What are Thread POOIS? ..ot ssaeseaees 313
Work Queue Implementation.........covcueurieinieirieirieirieiriesee e nseesseseneees 313
Thread Pool EXAMPIE ... 314
Advanced Thread Pool Features.........occviviveiiveicenieieieeeseeeseseeneees 317
Task GIaphs ... 318
RELEICICES ..ttt 319
33. Fine-Grained vs Coarse LocKingcccceiiiiinniiiiieiiiiniinnneeeeeecccninnn, 321
What is Coarse LOCKING?c.occcuviimriiiriiiiiiiciccieceeeeeeeees e eeseesaees 321
Adding Coarse LoOCKINGovuvvviciiiniiiiicicic s 322
Disadvantages of Coarse LOCKING........couevriemrierricirieiricirereeree e eereeeneees 325
Coarse Locking Overhead........ooociiviniciniiniiecneeeeeceeens 326
Fine-Grained LOCKING ..o 327
Granular Data Structure LOCKINg.......cccocvviiiiiiiiiiiiciiciccccccences 328
LOCK SEEPING w.veveieiieieeirecrce s seens 329
Lock Segmenting ... 330
Higher-Level Concurtency Problems ..o 331
Read-Write LOCKING.......coviiiiiiiiiiiiic s 332
RELEICIICES c.nvvreiieiieciicieec e 334
34. Core Pinningccveeieiiuiieiiiiiieeiniiiieinnniieeinniieeienieeesnmieeesmsseesssssee 335
What is Cote PINDINGP......cciiiiiiiiiii s 335
PrOs A0d COMS cecvrveiieiicieciecieie e 335
CoUuNtING COLES ...uviieiiiiiiiiiiii s 336
Setting Up Core PINNiNg. ..o 337
Linux Cote PINNING ... 338
Isolating Linux COTes ... 339

David Spuler 14

35. False Sharingeeeeeiiiiiiiiiiiiiiiiitiiieeecccctniieec et seens 341

False Sharing and Cache Line SiZescoovveeiuveiiveiiviiicinicieieseeececaes 341
Example of False Shating ..o 342
Detecting False Shafing ..o 344
Solutions for False Sharing..........cccveuviiiriiiriininirireieeeseece s 344
RELEICIICES ouvivreiriecieiciiecictec et eaees 346
36. LoCk CONtENHON......uvtieenrerernreeeteeeiteeesteeeteeeetesesaesesaseeesesesssaesssnsennes 347
What is Lock CONENTONT ..ottt enes 347
Optimizing Lock CONtENTION......c.ievieericiricirieireireeireetree et seeaenenes 347
Avoid Lock Guard Delayed Unlocking.........ccoviviviciniininicicicineniisiciciennns 349
Fine-Grain vs Coarse-Grain LOCKINgc.ovvuveiueeiieeicicieeccececeeaes 350
Lock-Free AIGOIithms ... sssseessessesenans 351
Thead POOIS.....ccuieiiciicirecrcrece et saees 352
RELCICIICES ...t 353
37. Atomics & Memory Orders......ccovvvnmumeeeeiiiiiiiinnnneeecciininnmnneeeeeesssnnens 355
What are ALOMICS? ..uviviiecieieeiiieieie et es 355
Standard AtOMIC ClaSSvcueecueeciriciieiieieee e saees 355
Basic Atomic OPErators........coviieiiniieniiiciiiiie e ssssesssaens 356
Advanced Atomic OPErationscweereeeerieeerieeerieemriesrienreeereeeseesseeessesessesesseaens 357
MEMOLY OLACLS ...ttt 359
UsINg MemMOTY OLAELS ..uuvreeiieiieciieciieieeeieeeieeeie e sssaesssae s saessaees 360
EXEENSIONS ..t 363
RELEICIICES vt 363
38. Lock-Free Data StrUCtULEScccivveiiuemiieiiiiiiinnreecccccesenneeee e 365
What are Lock-Free Data StrUCTULES?.....c.cuvcueiceeeeieeeieecieeeieeeie e 365
Implementing Lock-Free Methodsccceiueeiieeniieeniceicieeieeeeeeeeneees 366
Example: Lock-Free Stack Array......ccccviviiviiniiiiiiciiciccecees 368
CAS VELSIONS ...ttt sttt eaesseacs 370
Difficulties with Lock-Free Codingccoveurieiricinicinieinieirieirienceesceneees 373
EXEENSIONS ..ttt 377

15 C++ Ultra-Low Latency

Part VI: Sequential C++ Optimizations.......ccueeeeeeeeiiiiiiinnnieeeeeeeiciinnnnnnes 379

39. Timing and BenchmarKking.......ccceeueirvuiiinininnieinnieinieennieinnieineenn. 381
TIMING CAF COdE..nniiiiiiiiiicicce e saees 381
The Chrono ClIass ... 382
The Clock FUNCHOMN. ... vuciieiiciiiciriccc e saens 382
Benchmarking.......ccviiiiiiiiic e 384
Benchmarking Problemsc..cveiciicinicnicicicncccnecceeeeseeneees 385
Loop UNfOllNg.....c.vviiiiiiiiiiiiii s sssssinen 387
Limitations of Benchmarkingcccocvirinnienieieieceeeeeceeceeeenene 389
Examining Assembly OUPULcccviviiiiriericiiiicce e 389
Performance Tuning PractiCes......omimriireniieeiieieeeeieeceeeeeeseeesecseseeseneene 392
Tuning Trade-0ffs.. ..o 393
RELEICICES c.evvieiieieci e 394

40. Bitwise OPerations.......ccceeeeeiiiiiiiiuiiiieeiiiiiiiniiieeeeeenneieeeecceesssssssenes 395
CA Bitwise OPEratorscccviiiiciiiiiiiiiiisiie s seses 395
Bit FIag Basicsccovviiiiiiiiiiiic e 397
Bt SEtS .o 398
Bitwise Intrinsic FUNCHONS.c.cuviiiieieiiiceiceceee e 399
Example: Integer POPCOUNt ...t 401
Example: Bitwise Log2 on INteZers.......ccoiviviiviiiiiniiiiiccscsns 402
Example: Highest Integer POWer-of-TWOccoeeueeiireiivecrricieieeeccecceeeene 404
Integer Overflow and Underflow ..o, 404
Missing Bitwise Operators: NAND, NOR, XNORcccocccovverrvervcrricrricnnenas 408
Bitwise AL APPLCAtIONS ...ovuiviiiiiiiiciiiceire e 410
References on Bitwise OPErationsecueeeuveeueecieeeueeeueeeieeeieeseseeeseesesenesenns 411

41. Floating-Point COmMPUtationsccecveeieiireriiiisiieiinnnineeeinnneeeennneeens 413
What are Floating-Point NUumbers?.........cccviviiiiiiininiiiciceecees 413
Bit Representations of Floating-Point Numbers........c.occveureerreccrreerreerreennenes 414
RePIESENUNG ZETO .uecviieiieiieiiiciiciisie s 417
Representing Special NUMDELS ... 418

David Spuler 16

Undetflow and OVErflOWoouveiiiiiieieeieeieeieeeeeeet ettt ettt ettt 420

FTZ and DAZ CPU MOES......oviiiririniieiiiininiicsnns s ssssennes 421
NEGALVE ZIELO c.ueivrieiiieiieiriieiriee ettt sans 422
Getting to the Bits in CH e 424
Floating-Point Bit Tricks for Al......cccoociviiriniriciciceeeeeeeaes 427
Example: Add-as-int Approximate Multiplyc.cccoeeeveeenieenreenicnicenieniennenens 429
Example: Float Bitshift via Integer Additioncccceieeniveivenicnicricrienens 430
Example: Log?2 of Floating-Point is the Exponent ... 431
References on Floating-Pointccveuveiureimreiieiieeieieeieeeeeseeeceseseneaens 432
42. Arithmetic OptimiZations.......cccuvvuurieeiiiiiiiiiiiiieeeiiiiieeeeeceeeaneeens 433
Types of Arithmetic OPtMIZAONSuveevreeerieeerieerrieeerieereeereeeseeeeseaeeseseeseaesseans 433
Operator Strength RedUCHON. ... 433
Reciprocal MUltipHCAtIONvcueecueecmicieecieecieeeieecieeseieesie e saensaens 437
Integer AfItHMEHIC. ..viiiiiiieiiciii b 438
Expression Transformations.........cvcueecueeeureeieeneieeiieeieeeeieesieesseeseseesesenssseseans 439
Float Type CONVELSIONScuviuimiviiiniiiiiiisiiiiisisssssssssssssessss s sssessans 441
43. Compile-Time OptimizZationscccuvveeieiiieeiiiiiieeinniieeiinnnieeennneeee 443
C++ Compile-time TechNIqUESccoevviiiciiiiiii e 443
CH OPLMIZELS oo 444
People Helping Parsers ...t 446
INlNE FUNCHOMNS «.ovevrieiiceieeieciceieeee s saees 447
Inline Variables ... e 449
CONSLANT SPECIHIELS w.eevreereiieieieireie ettt eaes 450
Constant Expressions SPecifier ... 452
TEMPLALES ..t 456
44. Zero Runtime Cost OPerations......couveeeerinereiiiinieeinisineeeinnnneecnnneeeees 459
Free Type Cast OPErationsccveiimiimiiiiiiiiiisiieeisssessessssessssesssssssans 460
OPMIZEd AWAY ..oocviivieiiiiiii s sas s 461
Standard Container OPerationscccuveeureimreimreiureieeiieiseeseesseeeseesssesssaes 462
The OPPOsite Of FLEE.... ittt eaens 463

17 C++ Ultra-Low Latency

45. String OPtimiZationsS.......eeeeeeiiiiiiiiiiieeeeiiiniiiiieeeeeecnieeeeeeeessssnssenes 465

EAfICIENt STNES ..o 465
Common String OPErations.........ceueueeiureeimreiireieeeiieeeseeeseesseessseessseessseessseeseseens 466
String Class INEffiCIENCIES c.uvuvuivemiueincieeeiecieeeieecieeeie et seene 470
String MemOry LAYOUL ...c.vcuieiiiiiicicciceceee s 470
46. Pointer ArithmetiC....ccceveerereineiuieiniiiieeiniieeencieeeneieee e cseaeeeenens 473
What is Pointer Afithmetic? ... 473
POINLErS ANd ALTAYS c.vreeerieeiieciecireieeieree ettt seae s sneae 477
Pointer Arithmetic LOOp OptiMiZations........ceeeueeeeureeemreemrecueeeieeeseeeneeseseeseneens 478
SMALt POINLELS ...ttt 479
Pointers vs REFEIENCESvuiuiuimriiiiiicic e 480
47. Algorithm Speedups........eeeeeiiiiiiiiiiiiiiiiiiiitiiiiereee e 483
Algorithm Optimization TechNIQUES.........cveeureiireiireiieieieeeseeeeeeeeeeaes 483
Lookup Table PrecOMpUtation ... ssessnes 484
Lazy EValUation.......cccveucinicircieceecicceeeeesee e seesesenns 485
Soutrce Code Precomputation. ... esssssssesaessesens 486
Incremental AIGOLItIMSc.vuiuieiiiiiicircee e 487
CommON CaSe FILStu.c.iuiiiiiiiiiieiiicece et senes 488
SIMPle Case FILSE v 488
APPLOXIMALE TESES cuvvvvirviiriiiiriieieseter st 490
Augmenting Data STIUCTULES.....c.cuiuevieerieeirierieree et seeenseaes 492
48. Memory Reduction Optimizations......cceceeeeeeiiieeiniuieeinniieeenninnenennnn, 493
Memory Reduction in G ... 493
Compact Data Representation..........cviiiiiniiiiiicsessesssssssesssssseneens 494
Reducing Data SIZe......vcuveceecerieicireeieeceeeeee e 495
Measuring Code Size and Static STOrageccvvevreeurieerieirieiricrecreereeseeeaes 497
COde BlOAt ...ttt s 499
Reducing Static StOLrage.......cvviueiuricireciricieeeeeeeeee e seene 501
SACK USAZE ... 502
Reducing Heap USAE ...t seeseseens 503

David Spuler 18

49. LoOPp VeCtOriZationuuueeeeeeeiiiiiiiinniiieeeiiiiinniiieeeeeenssnnneeeeeeeesssssssnnnes 505

Sequential vs Parallel Loop OptimiZationsc.ceeeeiueeiueeimeeieeeniensinenseeensenens 505
LoOP FUSION.....iiiiiiici e 506
LOOP PetfOration ...c.c.eecueecuieciiciniciricineereeiseenee ettt seaessaees 507
LoOP UNLOIING ...ttt saens 507
Duff’s Device for Loop Untollingc.oceeurieunicinieenicnnieineeineenseeeseaenseeenseaens 510
Loop Tiling of BIOCKING........ccoveirieiriciiciriciiciricriceeee e sceescaens 512
LoOP FISSION ettt 514
LOOP REVELSAL.....orieiiiiieiieciicircre e saees 516
Loop Code MOtOMN ...t sassssssessenas 517
LOOP DISHIDULION c..uveeecieeiieiceireeeee s saees 517
LoOP REOLACIINGuveiieiiiiiiiiiiii s 519
Loop Iterator Strength RedUuction........ccvecuveiurecirciieeniieieieeeeceeceneaens 519
Loop CoalesCing.......coceuiiiiiiiiiiiiiii s 520
LOOP COLAPSING ...cevvrveirieiieciieciieeireeeiee e saees 521
Loop Peeling......ccuviiiiiiciiiiiici s 521
LOOP SPIELNZ ...t saees 522
Loop Interchange........covciiciiniiciiciii s 524
LOOP SENHNEL.....oieiiiiiiicicrcree e saees 525
Loop Strip Mining (LoOp SECHONING) ...cocvivvimriieiiiiiiiiieie e 527
LOOP SPLeadifigc.cueeuieciieciiciccirecrece e saees 527
Loop Normalizationccveiieiiciniciieiicnicieiee e ssseescens 528
LOOP SKEWING ...oriviiviiiiiiiiiiii s ssss s 529
REEIENCES covvviviirititect s 530
50. Parallel Data StruCtUreS......ceeerueeeerurerssueeernenesnessseressnessssnesssnesessnsesanes 533
Bit VECLOLS ..o 533
Permutation ATTAYS.....ccvieeereiriiereiririieieereeee e res et seesessaesessessassesessessacaen 534
Vector Hashing.......cciiiiiiiiiiiiicc s 536
Perfect Hashing......coccuviciiiiiiiiiiicccceeee s 537
Bloom FIIters ..o 537

19 C++ Ultra-Low Latency

51. Lookup Tables & Precomputationcouueeeeernreeinssnneeenssnneeeesnsneeenns 539

Precomputation with Lookup Tables..........ccccoviviriirininiinieececcecenen, 539
Example: LUT Precomputation fOr SQft.......cvemreimreimreimriiireiiresieeeneecneesenens 540
Float-to-Float Precomputation.........coccucueiiicininiicicisiiseesise e sessessaesenes 543
Precalculating C++ Soutce Files.......oiiiniciccieececeecceceeens 547
RELEICIICES covuvevuieeieniicieece e 550
Appendix A: Long List of Low Latency Techniquescccceeueinnueeinnneen. 553
Appendix B: C++ Slug Catalog.......ccceeieeunnniiiiiiiiiiiinniiiieecccccinneeeeeeens 577
Slug Hunting AdVICEc.cueeeueeiiieiicirecicee e seens 577
CH Class SIUGS......cciiiiiiiii s 579
FUNCHON SIUZS ...t 599
Medium-8ized SIUGSccvviiiiiirici s 608
Morte SIug REPEllenitc.cueuiueuieeiiiciiiciicierieseeree e 615
RELCICIICES ..t 618
Appendix C: Source Code......iiinniiiinnniieiininiiiiinnieeiieecneeeeees 619
Tester Object Instrumentation Class...........cccveivieiniciniciciciceeenes 619
Intercepted New and dEleteoviuiimriiireiicieeececee e 623

David Spuler 20

Preface

Why a Book on Ultra-Low Latency?

What a silly question! I mean, come on, why not? Everyone loves code that runs
fast, and low latency programming is the epitome of all that. I’ve been optimizing
C++ code for over 30 years now, and I wrote a book on C++ efficiency back in
the 1990s. There’s so much more in the newer versions of C++11 onwards, and
that means even more ways to go faster!

Please Leave a Review

I hope you enjoy the book! Please consider leaving a review on the website where
you purchased the book. Since few readers do this, each review is important to me,
and I read them all personally.

Feedback and Contacts

Feedback from readers is welcome. Please feel free to tell us what you think of the
book, the literature review, or our Aussie Al software. Contact us by email
via support@aussieai.com.

Other Books by the Author
If you want fast code, here are a number of other books on efficient C++ coding:

e Advanced C++ Memory Techniques: Efficiency and Safety

e Efficient C++ Multithreading: Modern Concurrency Optimization

e Efficient Modern C++ Data Structures: Container and Algorithm
Optimizations

e (C++ Low Latency: Multithreading and Hotpath Optimizations

e Safe C++: Fixing Memory Safety Issues

21 C++ Ultra-Low Latency

https://www.amazon.com/dp/B0FFJ1V1YS/
https://www.amazon.com/dp/B0FBK56XRM/
https://www.amazon.com/dp/B0F88FPV7L/
https://www.amazon.com/dp/B0F88FPV7L/
https://www.amazon.com/dp/B0F2SNYS3L
https://www.amazon.com/gp/product/B0DK9LM8H3

And some more with a particular focus on Al and fast LLM backends in C++:

e RAG Optimization: Accurate and Efficient I.ILM Applications

e Generative Al Applications: Planning, Design, and Implementation
e Generative Al in C++: Coding Transformers and I.I.Ms

And if you're a fan of going super-parallel with GPU chips:

e CUDA C++ Optimization: Programming Faster GPU Kernels
e CUDA C++ Debugging: Safer GPU Kernels

About Aussie Al

Aussie Al is a platform for the development of consumer Al applications, with a
special focus on Al-based writing and editing tools for fiction. Our premier
applications offer an extensive range of reports and error checks for both fiction
and non-fiction writing, from a full-length novel to a short report. Please try it out
and let us know what you think: https://www.aussieai.com

Our AI Research

The primary focus of research at Aussie Al is on optimizing LLM inference
algorithms (i.e., “running” the model after training or fine-tuning), and our research
is toward the following aims:

e Fast on-device model inference algorithms, specifically for smartphones
and Al PCs.

e Scaling inference algorithms to large volumes of requests.

e Efficient GPU inference algorithms (hardware acceleration).

e Non-GPU inference optimization algorithms (i.e., software methods).

Disclosure: Minimal Al Authorship

Despite my being involved in the Al industry, there was almost no Al engine usage
in creating this book’s text or its coding examples. Some text has been analyzed and
reviewed using Aussie Al’s editing tools, but not even one paragraph was auto-
created by any generative Al engine. All of the CUDA C++ code is also human-
written, without involvement of any Al coding copilot tools. I mean, who needs
them?

David Spuler 22

https://www.amazon.com/dp/B0FCG29V4D/
https://www.amazon.com/dp/B0DMMVCMPQ
https://www.amazon.com/Generative-AI-Coding-Transformers-LLMs/dp/B0D14LHGZ6/
https://www.amazon.com/gp/product/B0DK21QQYD
https://www.amazon.com/gp/product/B0DK19V6NH
https://www.aussieai.com/

However, Al was used in several ways. Al-assisted search tools, such as “Bing Chat
with GPT-4”, were very useful in brainstorming topics and researching some of the
technical issues. The main cover art image was Al-generated, followed by human
editing.

Disclaimets

Although I hope the information is useful to you, neither the content nor code in
this work is guaranteed for any particular purpose. Nothing herein is intended to
be personal, medical, financial or legal advice. You should make your own enquiries
to confirm the appropriateness to your situation of any information. Many code
examples are simplistic and have been included for explanatory or educational
benefit, and are therefore lacking in terms of correctness, quality, functionality, or
reliability. For example, some of the examples are not good at handling the special
floating-point values such as negative zero, NaN, or Inf.

Oh, and sometimes I'm being sarcastic, or making a joke, but it’s hard to know
when, because there’s also a saying that “Truth is often said in jest!” Your Al engine
certainly won’t be able to help you sort out that conundrum.

Third-Party License Notices

Except where expressly noted, all content and code is written by David Spuler or
the contributors, with copyright and other rights owned by David Spuler and/or
Aussie Al

Additional information, acknowledgments and legal notices in relation to this book,
the C++ source code, or other Aussie Al software, can be found on the Aussie Al

Legal Notices page: https://www.aussieai.com/admin/legal-notices.

23 C++ Ultra-Low Latency

https://www.aussieai.com/admin/legal-notices

David Spuler

24

Part I: Introduction to Low
Latency

25 C++ Ultra-Low Latency

David Spuler

26

1. Low Latency Programming

What is Low Latency Programming?

Low latency programming is coding an algorithm so that it completes the task in
the fastest time. In many cases, this is effectively the “user response time” or the
“round-trip time” for a computation.

The main uses of low latency programming include:

e Al kernels — latency is the time between submitting a query, and starting
to get the answer back.

e Embedded devices — the system must respond quickly, in real time (e.g.,
autonomous self-driving cars are a large embedded device).

e High-Frequency Trading (HFT) — latency is the time it takes to submit,
execute, and complete a trade.

e Game engines — latency is ensuring that the characters or environment
moves fast enough to be responsive to user inputs and to keep up with the
frame rate.

The main programming language used for all of these low latency algorithms is my
favorite one. I’ve written books on it!

C++ for Low Latency Programming

I'm a fan of C++, so you can take this with some grains of salt. The main
programming languages for fast latency are:

e C++

e C

e Rust

e Assembly

e Hardware acceleration

27 C++ Ultra-Low Latency

The C++ is under the hood for most of the above cases. Most Al engines ate
Python at the top level, but C++ in the low-level kernels doing all those matrix
multiplications. Game engines have historically been written in C++, at least for all
the low-level stuff dealing with frame rates and 3D animation. Similarly, high-
frequency trading is usually running in C++ at the bottom level.

You can also use C, which is the longstanding precursor to C++. The C
programming language is obviously fast, as that was its key design point. C is not
necessatily any faster than C++, so if you used only a C-like subset of C++, the
two would be the same speed. However, using C does avoid the temptation to use
some of the slower features that are available in the higher levels of C++.

Rust is a language that we refuse to talk about much, if you’re any kind of C++
programmer. We’ll only learn Rust if absolutely forced to do so. Apparently, Rust
is also fast, and more memory safe than C++. But there’s also Safe C++, profiles,
hardened standard C++ libraries, and other variants of C++ to compete against
Rust, so it’s a whole big shemozzle.

Assembly language is faster than any of these higher-level languages. If you speak
directly to the machine, there are various ways to speed up code. But it’s a very low-
level way of programming, and harder to learn, so the best method is to focus on
optimizing only the main hot paths with assembly.

Hardware acceleration is the last option: just buy a better rig. Some of the main
silicon to consider include:

e GPUs— Al anyone? Data centers for cloud Al backends have the biggest
GPUs. Or there’s gaming desktop PCs with lower-end GPUs.

e FPGA — this is common in high-frequency trading and quant trading.

Plus, there’s always that CPU to consider.

CPU versus GPU

With all this fuss about NVIDIA GPUs for Al, you might think that a GPU is what
you need.

Not so fast!

David Spuler 28

The characteristics of Al engines and LLMs that make super-duper GPUs the
mainstay of acceleration are:

e Huge numbers of arithmetic computations, and
e Highly parallelizable algorithms.

Al engines are number-crunching beasts, mostly doing vector dot product, matrix-
vector and matrix-matrix multiplications. Here’s the thing about GPUs:

GPUs have throughput not low latency!

You didn’t hear this from me, but GPUs actually run s/w. The clock speed of a
high-end GPU is often around 1GHz, whereas a high-end gaming PC has a CPU
clock speed of 4GHz or more. So, if you couldn’t parallelize an algorithm, it would
run slower on a GPU than a CPU. The key point is this:

Throughput + Parallelization = Low Latency

Al algorithms are very amenable to parallelization. And GPUs have high
throughput of parallel operations on all those cores. A multi-core CPU has a dozen
cores, but a big GPU can have thousands. Hence, it crunches data in parallel with
high throughput, and the net effect is that a GPU runs Al algorithms with very low
latency.

Which explains why those data center GPUs cost more than your cat!

Al Engines

As already examined above, Al engines have an algorithm structure that’s perfect
for GPUs. The basic point about Al inference algorithms include:

e Process all of that data, and
e Hardly any alternate pathways.

Yes, for every word that an LLM throws out, it has to crunch through multiplication
operations on every single number in the model. And that’s just for one word. This
process repeats over and over, and there are very few ways to shortcut the
arithmetic without losing accuracy.

29 C++ Ultra-Low Latency

In fact, there are two main phases in Al inference with different latency
characteristics:

e Prompt processing phase (“prefill”’) — process all the input tokens.
¢ Decoding phase — emit the answer words.

The prefill phase has these characteristics:

e DParallel processing of every token in the input text.
e Compute-bound (because of that parallelization).

The decoding phase has opposite characteristics:

e Sequential algorithm (one output token at a time, called “autoregression”).
e Memory-bound (loading the entire model each time).

In fact, the situation with compute-bound vs memory-bound is a little more
nuanced in the decoding phase. It’s memory-bound overall, but the sub-
components of a layer have slightly different characteristics during the decoding
phase:

e Attention module — memory-bound (model weights and KV cache data)
e Feed-forward network (FFN) — compute-bound (model weights)

Hence, the double sequence of two matrix multiplications is an intense computation
in the FFN (also known as the Multi-Layer Perceptron or MLP). However, the
attention mechanism is memory-bound, mainly from needing to load the “KV
Cache” data and less so from needing model weights. This characteristic affects the
overall status of the decoding phase more than FFN computations, causing the
decoding phase to be memory-bound overall.

High-Frequency Trading

HFT and quant trading algorithms have some peculiar characteristics with regard
to low latency programming. The main point to consider about the algorithm is
there are conceptually two main code pathways:

e Cold path — analyze, but don’t trade.
e Hot path — trigger a trade.

David Spuler 30

And here’s the weird part:

e Cold path — very common.
e Hot path — rarely executed.

This is different from most other types of algorithms, where the main path to
optimize is also the common path. For non-HFT apps, you crank up the profiler,
run the whole app, find where it’s spinning the most CPU cycles, and optimize that
code.

Not for HFT!

For HFT, the hot path is the rare path. Despite what people think from the name,
the algorithm is actually trading much less frequently than it decides #o7 to trade.
Once the analysis decides to trigger a trade, that is a very hot path, and every step
must execute with minimal latency. There are multiple actions for a single trade
from initiation, network submission, processing, and finalization. The whole round-
trip latency of this trade execution hot path is hyper-critical.

But the analysis part of the HFT code can’t be slow either. The hot path is not really
just “trade” and should really be thought of as “analyze-and-trade.” We can’t have
the analysis phase running too slow, or we’ll miss the opportunity to trade. So, it’s
true that once a trade is triggered, that pathway must be super hot, but the analysis
phase cannot be a laggard either. Optimizing the analysis phase has an element like
normal performance profiling of code hot spots, along with extra network latency
issues from the data gathering phase via exchange network connections.

Intentional Slowness

Although latency is important, it is worth noting that there are times to go slow.
The main point is that humans are slower than computers, so the algorithm often
has to slow down the user interface so that the human user can keep up.

Game engines are a particular example of this. The computer has to move all of the
game characters and enemies fast, yes, but also not too fast. The speed of the user’s
character cannot be too fast for the inputs of the user. Similarly, the enemies cannot
move too fast, or the user will not be able to evade them or destroy them.

Al engines don’t really have this problem in text-to-text classic LLMs. The only
concern for excessive speed is not having the text output too fast to be read.
However, other types of AI models such as speech and video need to have outputs
in the right speed range, not too slow, but also not too fast.

31 C++ Ultra-Low Latency

High-frequency trading is one area that doesn’t really have a “human in the loop.”
There’s no real need to intentionally slow down the execution of a trade. However,
there is a need to avoid over-trading too fast, lest the algorithm fail to notice some
sort of failure. But this is the less common case than simply needing to go as fast
as possible. Reporting a trade back to a supervising user is the last step, and not in
the critical path.

David Spuler 32

2. Hardware Acceleration

Why Hardware Acceleration?

Hardware acceleration has come a long way since the Intel 8087 floating-point
coprocessor in 1980. Every CPU now comes with builtin floating-point operations,
and even opcode instructions that perform complex mathematics like exponentials
and logarithms in hardware.

Parallelizing computations is now where the action’s hot in Al, which needs many
vectors and matrices running in parallel mode (i.e., tensor computations). The most
powerful parallel computations are GPUs which can chomp through a continuous
stream of data in parallel.

GPUs are not the only type of hardware acceleration. Even without GPUs, typical
CPUs have multi-core and multi-thread parallelism. You can even do small-vector
parallel instructions in the CPUs using special SIMD opcode instructions. For
example, x86 CPUs have SIMD accessible via C++ AVX intrinsic functions, and
Apple M1/M2/M3 chips support Arm Neon for parallelism.

Types of Hardware Acceleration

There are lots of different types of silicon chips available for your Al engine. The
basic types of hardware chips are:

e Central Processing Unit (CPU)

e Graphics Processing Unit (GPU)

e Tensor Processing Unit (TPU)

e Application-Specific Integrated Circuit (ASIC)
e Field-Programmable Gate Array (FPGA)

If you want to build your own hardware, and there are plenty of research papers
that do, then use an FPGA or ASIC. Even prior to the Al hype, ASICs proved their
value in the Bitcoin mining boom, and FPGAs were commonly behind Azure, AWS
and GCP, particularly around security/data protection.

33 C++ Ultra-Low Latency

If you’re not a hardware designer, you’re more likely to want the main CPU and
GPU options. CPU parallelism is via AVX or Arm Neon SIMD instructions. For
GPUs, you’re most likely looking at an NVIDIA chip, from the P100 at the low
end to the H100 at the top end (with V100 or A100 in the middle). Alternatively,
the TPU is a special custom Al chip created by Google, and is in the same vein as
other GPU chips.

CPU Hardware Acceleration
Many of the major CPU chips offer builtin hardware acceleration.

e x86/x64 (Intel/AMD) — AVX SIMD instructions (including AVX-2,
AVX-512, and AVX-10)

e ARM — Neon SIMD instructions (e.g., on phones)

e Apple M1/M2/M3 — ARM Neon, Apple AMX instructions, or Apple
Neural Engine (ANE).

AVX intrinsics can be used on x86/x64 platforms with Microsoft MSVS or
GCC/Clang C++ compilers to run CPU data crunching in patallel.

The ARM Neon is a hardware acceleration processor. ARM-based architectures can
run the Neon acceleration opcodes, which are 128-bit SIMD instructions that can
parallelize both integer and floating-point computations. At the time of writing, the
current version is based on Armv8. Notably, the Apple iPhone platform is based
on ARM silicon and has Neon acceleration capabilities.

Apple M1/M2/M3 chips ate based on ARM, so the ARM Neon acceleration works.
There are also some additional Apple-specific hardware accelerations such as Apple
AMX and Apple Neural Engine (ANE).

Detecting CPU Acceleration in C++

It is tricky to check what CPU or GPU support is available to your C++ program.
There are different methods for Microsoft Visual Studio, GCC, and Apple.

Preprocessor macros. The first point is that you can only use preprocessor macros
if the “single platform” assumption is true. In other words, if you’re building on the
single platform that you’re running in production, or you’re a developer toying with
an engine on your own single PC.

David Spuler 34

In such cases, you can detect the current build environment using preprocessor
macros. For example, if you’re on a Windows box with Microsoft Visual Studio,
you might try this:

#if AVX2
// ... supports AVX2
fendif

This works fine if you are running C++ on your developer desktop machine, and
don’t plan to run it anywhere else. But this doesn’t check runtime availability for
AVX2 on your user’s machine. It’s only testing whether you’ve got the AVX2
architecture flag enabled in your compiler on your build machine. Hence, it’s
misleading and although you can do a #1f or #ifdef test for whatever macro you
like, it isn’t very helpful for multi-platform programming.

Run-time platform testing. The #1if method can check the major platforms that
you’re compiling on (e.g., Windows vs Linux vs Apple), but you cannot check what
exact CPU you are running on, or what capabilities it has. The preprocessor macros
are processed at compile-time, and can only detect what machine it’s building on.
This isn’t very useful in determining if your user is running the code on a CPU that
supports SIMD instructions, or if their box has a GPU on it.

Instead, you need to call C++ intrinsics to detect CPU capabilities at runtime. On
the x86/x64 architecture this intrinsic uses the “CPUID” opcode. The C++ intrinsic
calls differ by compile platform:

e MSVS: cpuidor cpuidex (superseding isa availablein
<isa availability.h>)

e GCC/Clang: builtin cpu supportsor builtin cpu is
functions.

GPU Hardware Acceleration

For the sticklers, AI GPU chips are not really a “GPU” because that stands for
“Graphics Processing Unit,” and they aren’t used for “Graphics” in an Al
architecture (even when creating an image). In fact, they’re really a General-Purpose
GPU (GPGPU), but nothing other than Al matters in the tech industry, so we stole
the acronym from the gamers.

35 C++ Ultra-Low Latency

GPUs are great big SIMD processors. There is a huge range of vectorized opcodes
available for any given GPU. Each GPU isn’t just one vectorized stack of silicon,
but has lots of separate “cores” that process Al workloads (e.g., FMA) in parallel.

Each core runs a SIMD operation such as a small matrix multiply or FMA in a
single GPU clock cycle. For example, a V100 “Tensor Core” can do a 4x4x4 half-
precision (16-bit) matrix/tensor multiply in a cycle, which is a lot more advanced
than a typical vectorized operation.

Hence, it’s a parallel-of-parallel architecture with:
(a) all the GPU cores running in parallel, and
(b) each core doing vectorized SIMD operations.

The chips also have their own GPU RAM (sometimes called “VRAM?”) and there
are also multiple levels of caches of that RAM. If you’re assessing the specs of a
GPU, consider:

e FLOPs throughput

e Cores

e RAM

e Clock speed

¢ Memory bandwidth rate

e Cooling systems (they run hot!)

GPU Pricing. If you're looking at renting a data center GPU, NVIDIA is top of
the list for Al computations. The choice between a P100, V100, A100, or H100 is
important. To run a version of Meta Llama2, a V100 is workable for that, but with
not many instances per box. As of writing, pricing for a V100 runs below a buck an
hour and there are 730 hours in a month, so you can do the math (pricing varies
with vendors anyway). You can get an A100 for more than a buck an hour, and a
H100 for roughly double that (for now). On the horizon, NVIDIA has a H200
coming mid-2024 with about 141GB RAM (versus the H100’s 80GB), and also the
B100 in late 2024 for even higher performance than a H200.

You can also buy a GPU chip outright from your private jet using your diamond-
encrusted phone. Okay, so that’s a bit of an exaggeration. Pricing changes, as of
writing, you’re looking at around ten grand for a V100 by itself, but pricing is higher
if it’s part of a “system” on a motherboard or a box (and this confuses ChatGPT if
you ask it about GPU pricing).

David Spuler 36

Another option is used GPUs, which are cheaper, but might have spent their prior
life in a Bitcoin-mining forced labor camp. GPUs do have a limited lifetime and can
overheat with partial or total failure.

Detecting GPU Support in C++

Detecting GPU capabilities that are available at runtime in C++ is even more
problematic than detecting CPU accelerators or SIMD instructions. The available
options for GPU detection include:

e NVIDIA CUDA C++ compiler (nvcc)

e AMD ROCm

e Microsoft DirectML (DirectX)

e Apple Metal

e Vulkan (vkEnumeratePhysicalDevices, vkGetPhysicalDeviceProperties)
e Low-level GPU shader APIs

NVIDIA requires CUDA code to be compiled with their nvec compiler, and the
compiler itself has builtin mechanisms for testing the GPU capabilities. That results
of that output can be used to set #define options within the C++ code too. The
compiler also comes with some builtin defines.

GPU detection is not just determining if a GPU is available. More detail will
typically be required, down to “is feature X available” or “which implementation
for feature X is available.” For example, NVIDIA has a “GPU Architecture” and a
“GPU Feature List” to test for capabilities.

Assembly Language versus Intrinsics

Assembly language, or “assembler”, is the low-level language for CPU machine
instructions. Like C++, it is still a symbolic human-readable language, but unlike
C++, it translates mostly one-to-one to machine code instructions. The syntax for
assembler is much simpler than C++, and more obscure, but it’s also very, very
fast.

When to use assembly language. The first question to ask yourself before writing
assembler in C++ is whether you need to. The use of assembler should only be
considered for the most bottlenecking parts of the code, like deep inside the inner
loops of a GEMM kernel. Otherwise, you’re probably micro-optimizing something
that’s not that critical.

37 C++ Ultra-Low Latency

Another question is whether to use “intrinsics” instead of assembler. Each C++
compiler has literally hundreds of builtin low-level functions called “intrinsics” that
are very fast, probably because the compiler-writers have written them in assembler.
There are also lots of intrinsics to use for GPU operations and CPU SIMD
extensions such as AVX-512.

There are also intrinsics that map one-to-one to x86 CPU instruction codes on that
platform. Look through the long list of C++ intrinsics for your compiler platform
to see if there’s one that does what you need.

The use of intrinsics is via a standard C++ function call syntax, so you don’t need
to learn assembler to take advantage of them.

Assembly language syntax: Here are some of the basics of assembly language

coding:

e Assembly code filenames usually have a suffix of “.S”, “.s” or “.asm”
(but don’t need to).

e Inline assembly inside C++ could be added to base code via the inline
statement asm ("string"), asm__ ("string"), or the alternative
syntax of asm { tokens }, depending on the compiler.

e Comments start with a semicolon (but you can also use C++ comments
for inline assembly).

e One line per assembly statement.

e Jump or branch labels need a suffix colon and should start a line (either
their own line or before a statement).

Disadvantages of Assembly Language: The reason that the C language came
into being was to overcome some of the low-level problems of programming in
assembly or machine code. There are various downsides to using assembly
language:

e Non-portable — assembly is specific to the CPU and many features
depend on CPU sub-releases.

e Pitfalls — and you thought C++ had troubles.

e Maintainability — few programmers know assembly.

e Complexity — everything’s harder at the low-level.

To summarize, there’s only two reasons to use assembly language: speed and
security (of your job).

David Spuler 38

Inline Assembly Language

Most C++ compilers support features allowing you to specify assembly language
sequences in the middle of a C++ program, which is called “inline assembly
language.”

You don’t need to put assembler into a separate code file, because you can use
assembly language directives inside C++ sequences.

The directive to use to introduce an assembly language statement into C++ is
somewhat compiler-dependent, but the whole concept of assembly language is
platform-dependent anyway!

The “asm” expression is the official C++ standard version. This is like a function
call with a semicolon ending it.

The asm statement contains the assembly language statements inside a large string
constant, ending with a newline escape (i.e., “\n”), inside round brackets.

Multiple assembly commands can be merged by putting two string literals on
subsequent lines and using the adjacent string literal concatenation feature of C++.

asm (
" ; ... instructions\n" // C++ Comment
" , ... more instructions\n"

The Microsoft style is different, with a code block rather than an expression. You
don’t need to put the assembly statements inside a string literal, and you don’t need
the “\n” newline escapes, either.

The basic syntax looks like this:

__asm {
; ... instructions // C++ comment

39 C++ Ultra-Low Latency

This is the Gnu and Clang style with “ _asm__ " as a C++ function-like expression
(similar to “asm”):

__asm__ (
" ; ... instructions\n" // C++ Comment
)7

Mixing C++ and assembly language is not something recommended just for fun.
Not only do you need to know the assembly statements and all about the CPU
registers, but youwll need to know about function calling conventions

(e.g., cdeclvs stdcallvs _thiscall)and name mangling in C++.

Which actually sounds kind of fun.

David Spuler 40

3. System Optimizations

Optimizing the Whole System

There’s a lot of moving pieces in a whole low latency system. Optimizing them is
an elegant dance, where each component plays a part. There’s no single answer to
this, and it’s an ongoing process of continuous efficiency improvement.

Instead, you need to look at all the different components in your hardware and
software stack. At each layer, you need to consider:

e Better or newer components
e Configurations of the component
e Optimized programming

The good news is that optimizations to most of the layers are cumulative. You can
optimize the hardware, the C++ software, and the network, and get a triple benefit.

Low Latency System Components

If you want to build a low latency system, here are some of the basic components
in your stack. A single system may include:

e Hardware — CPU, GPU, FPGA, NPU, etc.
e Memory (RAM)

e Disk storage — e.g., SSD (NVMe)

e Network interface card (NIC)

The software stack looks like:

e Operating system kernel layer — Linux or bust.

e System software tools and services/daemons

e Compiler tools and system libraries

e Middleware software (e.g., Katka)

e API/SDK clients (e.g., HFT exchange connectivity)
e Application software (your C++!)

41 C++ Ultra-Low Latency

Beyond the single system, there are various other system components:

e Network switch or router devices

e Network connections (e.g., wired, optical, microwave)
e Load balancer devices

e Backup storage devices

Combining Multithreading and SIMD CPU
Instructions
You can double up! C++ multithreading software can be interleaved with CPU

SIMD instructions as an optimized optimization. It’s totally allowed, and you can
even put it on your resume. The idea is basically this structure:

e Multithreading architecture — higher-level CPU parallelization.
e SIMD instructions — lower-level CPU vectorization.

Some of the main CPU architectures with SIMD parallelization include:

e AVX—x86 (e.g., Intel or AMD)
e ARM Neon — iOS/Mac

Note that there are variants of each of these SIMD architectures, available on
different chips. For example, AVX has AVX-1 (128 bits), AVX-2 (256 bits), AVX-
512 (you can figure it out), and AVX-10 (1024 bits).

Combining Multithreading and GPU
Vectorization
If you’ve sold your car to buy a PC that has both a fast CPU and a high-end

NVIDIA GPU, there’s good news to think about while you ride the bus: both chips
run at the same time. (Wow, in parallel, even.)

In fact, there are “threads” on both the CPU and the GPU. However, C++ CPU
threads are much higher-level than the CUDA C++ threads on the GPU. The idea
is:

e CPU threads — big chunks of work.
e GPU threads — very granular computations.

David Spuler 42

On the GPU, you might code vector addition with one GPU thread doing the
addition in every element of the vector, up to the 1024 maximum. And if your
vector has more than 1024 elements, you’d split it up into 1024 sub-sections and
use “striding” to do it. But I digress.

CPU threads are not that granular, and you use them to do large chunks of work,
not just one addition instruction. For example, you might have threads pulling
incoming user requests off the queue, and a thread might handle the entire user
request, perhaps launching some other threads on the CPU or GPU to do so.

There are some parallels (haha) between coding CPU and GPU threads:

e Both types of threads have a call stack.

e Both have “global” or “shared” memory to use across threads.

e Overhead of thread launches and exits are a thing for both CPU and GPU
threads.

Note that there’s also a new generation of “mini-GPUs” called a Neural Processing
Unit (NPU), which aren’t as powerful as a fully-fledged GPU. NPUs tend to be
used on “Al Phones” and other “edge” devices, which aren’t as powerful as a PC.

Most of the comments about combining C++ multithreading and GPU coding also
apply to the use of NPUs, except a little slower.

Going for the Triple-Double
You can even triple up your parallelism:

e Multithreading/multicore (CPU)

e SIMD instructions (CPU)

e GPU vectorization

Is there a way to do up to four levels of parallelism in just one C++ program? Yes,
of course:

e Linux processes (parallelism at a higher level).
e Networking communications (the NIC runs parallel, too).

There are some optimizations of those things, too.

43 C++ Ultra-Low Latency

Advanced Linux O/S Optimizations

It doesn’t end with the C++ code. There are other things you can optimize in the
Linux O/S:

e Process priorities — be nice and turn yours up to eleven!

e Linux system processes — turn off the various Linux system processes that
you don’t need (so they don’t compete for CPU time).

e Kernel bypass — direct NIC manipulations.

e Overlap communications and compute — e.g., PCle bus GPU-to-memory
upload/download.

e Networking technologies — e.g., TcpDirect and Onload; RDMA.

e Linux kernel optimizations — e.g., network buffer settings; disable writes
that update the “file access date” when reading a file.

e Linux system settings — ensure you don’t have accounting or security
modes on.

There’s also some other items on the advanced menu:

e Overclock your CPU (and the GPU)
e Buy a bigger box

e Geta faster SSD disk (e.g., NVMe)
e Assembly language

e Microwave communications

e FPGA

There’s always more, but I’ve run out of room in your web browser.

Serving and Deployment Optimizations

If your software has to do multiple things at once, such as talk to multiple people
(users), or communicate with multiple stock trading platforms, then there are many
system-level practicalities that affect latency.

If your low latency application is a public-facing consumer website, there are a
number of deployment issues to scale up to a lot of users.

David Spuler 44

Some of the issues to consider in the whole end-to-end latency of a request going
through a system include:

e DNS lookup time

o Connection handshake time

e SSL time

e Load balancing

e Round-robin DNS

e Parallelization (multiple servers)
e Utility servers

e Caching (e.g., etags)

e CDNs

e Database lookup time

e Database indexes

e Keep-warm server architectures

Building a low-latency system is more than just coding up some C++. You have to
put together a bunch of off-the-shelf components.

Network Optimization

If your algorithm has to talk between two computers, there’s a network in between.
The time spent sending data across the wire and back is a key part of the latency.
Faster algorithms need to optimize the network traffic. The main techniques for
network optimization include:

e Higher bandwidth network connections

e Advanced network protocols

e Compressing network data sizes

e Spreading bandwidth usage over time (avoiding peaks)
e Overlapping computation and communications

e Direct access to peripherals (local and remote)

e Direct access to memory (local and remote)

e Sticky sessions (keeps session data local)

e Sharing cache data between multiple servers

There’s a whole book that needs to be written about network optimizations! Should
be done by Tuesday.

45 C++ Ultra-Low Latency

References

These are some good articles on optimizing an entire AI LLM backend system:

1.

2.

Character.Al, June 20, 2024, Optimizing Al Inference at

Character.Al https:/ /research.character.ai/optimizing-inference/

Apple, June 2024, Introducing Apple’s On-Device and Server Foundation
Models, https://machinelearning.apple.com/research/introducing-apple-
foundation-models

Together Al, Nov 13, 2023, Announcing Together Inference Engine — the fastest
inference available, https:/ /www.together.ai/blog/together-inference-
engine-vl

Ryan Lucchese, Niki Birkner, Yaron Hagai, Virginia Adams, August 13,
2024, A practitioner’s guide to testing and running large GPU clusters for training
generative Al models, Together Al https:/ /www.together.ai/blog/a-

practitioners-guide-to-testing-and-running-large-gpu-clusters-for-training-

generative-ai-models

And these are some references about entire HFT system optimizations:

1.

Larry Jones, 27 Feb 2025, Mastering Concurrency and Multithreading in C++:
Unlock the Secrets of Excpert-1evel

Skills, https:/ /www.amazon.com.au/Mastering-Concurrency-
Multithreading-Secrets-Expert-Level-ebook/dp/BODYSB519C
Sebastien Donadio, Sourav Ghosh, Romain Rossier, 17 June,

2022, Developing High-Frequency Trading Systems: Learn how to implement high-
[frequency trading from scrateh with C++ or Java

basices, https:/ /swww.amazon.com/Developing-High-Frequency-Trading-
Systems-high-frequency-ebook/dp/B09ZV5L.2T7

Irene Aldridge, April 2013, Wiley, High-Frequency Trading: A Practical Guide
to Algorithmic Strategies and Trading

Systems, https:/ /www.amazon.com/High-Frequency-Trading-Practical-
Algorithmic-Strategies-ebook/dp/BO0BOHIS5K

David Spuler 46

https://research.character.ai/optimizing-inference/
https://machinelearning.apple.com/research/introducing-apple-foundation-models
https://machinelearning.apple.com/research/introducing-apple-foundation-models
https://www.together.ai/blog/together-inference-engine-v1
https://www.together.ai/blog/together-inference-engine-v1
https://www.together.ai/blog/a-practitioners-guide-to-testing-and-running-large-gpu-clusters-for-training-generative-ai-models
https://www.together.ai/blog/a-practitioners-guide-to-testing-and-running-large-gpu-clusters-for-training-generative-ai-models
https://www.together.ai/blog/a-practitioners-guide-to-testing-and-running-large-gpu-clusters-for-training-generative-ai-models
https://www.amazon.com/Mastering-Concurrency-Multithreading-Secrets-Expert-Level-ebook/dp/B0DYSB519C/
https://www.amazon.com/Mastering-Concurrency-Multithreading-Secrets-Expert-Level-ebook/dp/B0DYSB519C/
https://www.amazon.com/Developing-High-Frequency-Trading-Systems-high-frequency-ebook/dp/B09ZV5L2T7/
https://www.amazon.com/Developing-High-Frequency-Trading-Systems-high-frequency-ebook/dp/B09ZV5L2T7/
https://www.amazon.com/High-Frequency-Trading-Practical-Algorithmic-Strategies-ebook/dp/B00B0H9S5K
https://www.amazon.com/High-Frequency-Trading-Practical-Algorithmic-Strategies-ebook/dp/B00B0H9S5K

Part II: HFT & Algo Trading

a7 C++ Ultra-Low Latency

David Spuler

48

4. Trading Engine Components

Overview of Trading Engines

What high-level components does a trading system need? At the top-most level, the
sequence in a HFT trading engine goes something like this:

e Ingest market data (from exchange)
e Analyze this data

e Decide whether to trade

e Submit trade order (to exchange)

e Risk management and reconciliation

Note that if you work at an exchange, the requirements are reversed, and with an
even higher need for mission critical accuracy, but are also somewhat simpler at a
high-level:

e Receive orders from trader clients

e Matching engine to trigger trade execution
e Send market data feed out to many traders

Software Components

Each of those components is just a small matter of more coding. We do that in
C++, of course!

Market data ingestion components include:
e Exchange network protocol libraries (e.g., UDP multicast client).

e Market data normalization (converting into your own order objects).
e Snapshot synchronization support

49 C++ Ultra-Low Latency

The central management of orders, sometimes called an Order Management System
(OMS), includes various software components:

e Order book data structure
e Crossing detection
e Matching engine (simulated)

A more advanced order book may also have:

e Otrder rule supportt (e.g., FIFO vs pro rata)

e Special exchange status (e.g., pre-open)

e Iceberg order detection

e Market microstructure analysis

¢ Generalized order book (beyond limit orders)

Algos are not a big deal in trading, and they’re all published in open-source
repositories on the internet (I'm kidding). Here are some of the things you’ll need
for your algo engine:

e Trading decision engine

e Method or API to specify algos

e Common primitives library for algos

e Transpiler from algo language to C++ (also known as “front-office
programmers”)

e Declarative algo specification (yeah, right, dream onl)

Also, since many algo strategies may require data from more than one financial
instrument to make a decision to trade, we get to:

e Multi-instrument order book (multiple assets)
e Distributed order book management (multiple exchanges)
e Multi-instrument multi-exchange algo primitives

Trade submission to the exchange is a whole separate ball of wax:

e Rate limiter (emulated)

e Pre-trade risk management
e Trade submission

e Trade status management
e Bad trade handling

David Spuler 50

The risk management and regulatory compliance boffins want their pound of flesh:

¢ Risk management engine (pre-trade and post-trade)
e DPosition tracking

e Compliance tracking engine

e Logging

e Accounting reconciliation

All of the above stuff is just for live trading. There are some offline C++ capabilities
that you’ll need as well:

Backtesting — testing if those algo devs can code worth anything.
Historical data storage — for backtesting or stress testing.
Synthetic data generation — robots do testing better.

Compliance reporting — sending it all off somewhere.

If I've counted correctly, that’s 33 major software components. So, no matter how
great you are at C++, don’t expect to knock out a new trading engine prototype
over the weekend.

Low-Level Infrastructure

To implement any of these financial components, you need some helper
infrastructure in both hardware and C++ software to make it run fast. Some of the
C++ code libraries and templates you might need for speed include:

e TCP and UDP libraries — advanced network socket programming.

¢ Disk and file storage — low latency I/O with memory-mapped files and a
custom filesystem.

e Statistical primitives — going way beyond the average.

Looking more specifically at C++ multithreaded coding components that aid in
C++ optimizations:

e Thread pools — low-latency multithreading.

e Memory pools — preallocation of memory for objects.

e In-memory logging — save that data, but not yet.

e In-memory counters — tracking statistics for performance and accounting.

e Lock-free queues — forwarding data very quickly along the execution
pipeline of components.

51 C++ Ultra-Low Latency

Hardware is important, of course, arguably even moreso than the C++ software:

e Co-located Linux servers (proximity access versus connection via
microwave or fiber optics).

e Network switches

e NICs (in servers, with kernel bypass capabilities)

e TI'PGA servers

e GPU parallelization

e Quantum computing (it’s coming!)

The need to communicate over the network also adds:

e UDP multicast for market data feed ingestion.

e Kernel bypass (hardware support in NIC hardware, plus C++ code).

e Inter-site network connectivity (around the world we gol).

e Connectivity to GPU server farm (e.g., for ML models).

¢ Out-of-band networking — host network connections for administration.

Safety, too! Here are some of the custom C++ libraries you may use in low-latency
programming:

e Custom assertions — removeable in production code.

e Self-testing code — ditto for #1f DEBUG.

e Testing harness — unit tests are someone else’s job.

e Stress testing — using historical data feeds or synthetic data.

e Timing and benchmarking — proving your code is faster than the intern’s.
e Error handling — not using standard C++ exceptions.

There are also various DevOps requirements:

e Instrumentation — tracing for errors and performance analysis.
e Monitoring — watch out for red flashing lights.

e Hardware failure detection — e.g., GPU burn.

e Kill switch — if it’s redder than red.

That’s another 23 low-level software components to add to the 33 C++ higher-
level components in the prior section, and about five major hardware categories.
Building all that should take you two weeks!

David Spuler 52

References

1. Sourav Ghosh, July 2023, Building Low Latency Applications with C++, Packt
Publishing, https://www.amazon.com/dp /1837639353

2. Charles Cooper, 2021, Fast implementation of an ITCH order
book, https:/ /github.com/chatles-cooper/itch-order-book

3. Ronak Chattetjee, 2023, A bigh frequency trading system built with C++: High
performance, low latency high frequency trading system written from scratch in
C++, https://github.com/nvarosu/hft

4. Ranjan (Man of steel), 2025 (updated), Live High-Frequency Trading
Excchange Engine, https://github.com /ranjan2829 /Live-High-Frequency-
Trading-Exchange-Engine

5. Amitava Biswas, Aug 18, 2023, Designing Low Latency High Performance
Order Matching

Engine, https://medium.com/@amitava.webwork/designing-low-latency-
high-performance-order-matching-engine-a07bd58594f4

53 C++ Ultra-Low Latency

https://www.amazon.com/dp/1837639353
https://github.com/charles-cooper/itch-order-book
https://github.com/nyarosu/hft
https://github.com/ranjan2829/Live-High-Frequency-Trading-Exchange-Engine
https://github.com/ranjan2829/Live-High-Frequency-Trading-Exchange-Engine
https://medium.com/@amitava.webwork/designing-low-latency-high-performance-order-matching-engine-a07bd58594f4
https://medium.com/@amitava.webwork/designing-low-latency-high-performance-order-matching-engine-a07bd58594f4

David Spuler

54

5. Hotpath Optimizations

What is Hotpath Optimization?

Hotpath optimization is a multithreading C++ optimizations in HFT whereby the
most important code is prioritized and super-optimized. Whereas the traditional
“hotpath” in C++ code is the most heavily executed code, in HFT the hotpath is a
rarely executed sequence of high importance (i.e., submitting the trade). Hence,
optimizing the hotpath can mean different things:

e Profiling the most heavily executed code (traditional C++ code).
e Running the GPU profilers on CUDA C++ kernels (for Al applications).
e Optimizing the rare but most important pathway (HFT applications).

Using the various C++ profiler tools won’t help you much in HFT hotpath
optimization. Well, actually it can, but only if you have a way to modify the code in
test mode so that it a/ways runs the hotpath sequence. But take care with this idea,
as maybe it shouldn’t really submit a thousand live buy orders to the exchange when
it’s running under Valgrind in the nightly build.

Hotpath Optimization Techniques

The idea with hotpath examination is to put every single instruction under the
microscope. Especially for HFT, every microsecond counts, and there are many
ways to squeeze out more speed.

There are two main categories of optimizations:

e Concurrency optimizations — multithreading-related code changes.
e General C++ optimizations — all of the rest!

With regard to multithreading, the hotpath should not be subjected to any of the
delays that can beset a single thread.

55 C++ Ultra-Low Latency

Some of the methods for speedup include:

e CPU pinning — give the hot thread its own core (completely avoids
context switching)

e Don’t use locking on the hotpath (as much as possible) via lock-free
coding, read-only data structures or lock-free algorithms.

e Cache warming via prefetching of shared data needed by the hotpath.

e Keep the cache warm all the way down into the NIC.

e Use a lock-free queue data structure to avoid contention issues.

e Use custom thread pools with only preallocated memory block pools.

Other than multithreading changes, there’s another few hundred other types of
C++ optimizations to consider. There are a number of chapters about this.

But here’s a smattering of some interesting techniques:

e Hoist code out of the hotpath by using precomputation.

e Remove slowpaths by deferring handling of error checks.

e Maximize compile-time computation (e.g., constexpr, TMP if you
must).

e Don’t allocate or free memory; use only preallocated memory or global
memory.

e Use in-memory databases for any significant amounts of incoming data.

e Review data de-serialization and setialization costs.

e Don’tlog, or defer logging to the end, or write to an in-memory logger.

e Replace every if statement with branchless coding tricks.

e Examine every code statement in the entire hotpath (even at assembly
level).

Odds are high that you’ll find something to improve, no matter how many times
you look at the same stretch of code.

David Spuler 56

Network Optimizations

In a network-heavy application, such as HFT, there is a lot of importance in the
speed of networking. Many of the main optimizations are hardware issues:

e (Custom NIC
e Fast switches

Note that there can be multiple networks attached to one server:

e Public network
e Private network

The purpose of a private network is to send messages only between your servers
and any administrative consoles. This private or “out-of-band” network can be used
for things like:

e Monitoring and administration messages
e Sending data between servers (e.g., quotes data in HFT, or KV cache data
in LLLM inference).

Although hardware and its related network connections are critical, let’s not forget
the software. Your C++ code needs to talk to the network, to receive incoming
data and to emit actions (e.g., a trade in HFT) Network-related optimizations to the
C++ code in the hotpath can include:

e Use kernel bypass to custom NICs for fast networking.
o Keep the client network connection warm (method depends on the API).
e Use custom wrappers for TCP and UDP network processing.

For extra speed, you may need to wrap or re-implement the TCP and UDP code.
Some of the default algorithms for networking introduce some minor safety checks
and other delays, which interfere with your need for speed. Linux socket
programming can be a lot of fun. I can remember coding a custom version for
the select primitive, which is loads of bitmask fiddling.

57 C++ Ultra-Low Latency

Core Pinning

Core pinning is a multithreading optimization where a thread is “pinned” to one of
the cores to give it higher priority. This means that important thread that runs the
hotpath can have guaranteed CPU availability, rather than waiting for the default
thread scheduling algorithms. Hence, it can be a solution to avoid lock contention
worties for the main hotpath thread.

Core pinning is also called “thread affinity”” and has multiple other names (e.g.,
“processor affinity” or “CPU affinity” or “CPU pinning”), but if you hear the words
“pinning” or “affinity” in relation to threads, this is it.

Pinning has other meanings in related architectures. There’s a higher-level type of
pinning whereby whole processes or applications are pinned to a CPU core by the
operating system, rather than just a single thread, which isn’t quite the same thing,
Note also that CUDA C++ has another type of “pinned memory” for GPUs, but
that’s a memory upload optimization rather than a compute improvement.

The other side of core pinning is that you obviously don’t pin the less important
threads. All lower-priority threads have fewer cores available, and are downgraded.

On Windows, you can set up a process-level CPU pinning for an application via
the GUI On Linux, thereis a “taskset” command that allows running a program
with core pinning. Both Windows and Linux have non-standard system calls that
can set up pinning for either a process or a thread. Programmatic C++ APIs on
Linux are:

e Pinning processes — sched setaffinity
e Pinning threads — pthread setaffinity np

On Windows, these are the C++ APlIs:

e Pinning processes — SetProcessAffinityMask
e Pinning threads — SetThreadAffinityMask

The use of core pinning is a very powerful type of hotpath optimization. The main
pathways are super-optimized because:

e No context switches
e Highest priority execution
e Guaranteed core availability (no delay)

David Spuler 58

In-Memory Logging

The last thing you want is for your hotpath to block waiting for log messages to get
written to disk. Hence, your options for logging include:

e Don’tlog!
e Buy a faster SSD disk (what’s next after NVMe?)
e Store log messages in memory

Not logging messages can be an option in some cases. This refers to tracing and
debugging messages, that aren’t business-critical. Some of the approaches to disable
logging include:

e Compiling-out unimportant tracing.
e Disabling logging but having it still in the code.

If you use a Boolean control flag to enable or disable logging, this can be an effective
solution. On the other hand, you can have a lot of these:

if (g_debug) {

// Log a message

}

These can be inefficient on a hotpath for two reasons:

e Cost of testing the global flag multiple times, and
e Extra branches that interfere with branch prediction.

On the other hand, this can be very flexible and the above costs can be a small price
to pay in some applications. You can enable or disable the global flag based on:

e Command-line options (i.e., add a “~debug” setting).
e Sending a SIGUSRT1 signal to the process (toggle debug mode).

Whatever the choice regarding debug or tracing-related logging, you can’t avoid
business-related logging. For example, a HFT applications needs to track any actual
trades sent, and update any risk management applications.

59 C++ Ultra-Low Latency

The solution for this is to use an in-memory logging C++ class. The features that
you need include:

e Log messages are copied to an in-memory queue (preferably lock-free).
e A separate log-writing class pulls these messages off the queue.
e The thread writing log messages to disk is low-priority in the background.

In this way, you can have quite extensive logging, but the critical path is all in
memory, and the slower writing to disk is deferred to a background task that can
run in the quiet periods.

References

1. Paul Bilokon, Burak Gunduz, 8 Sep 2023, C++ Design Patterns for Low-
latency Applications Including High-frequency
Trading, https:/ /arxiv.org/abs/2309.04259,
Code: https://github.com/Oburak/imperial hft

2. Machinet, March 13, 2024, How to optimize C++ code for use in bigh-frequency

trading algorithms? https:/ /www.machinet.net/tutorial-eng/optimize-cpp-

code-high-frequency-trading-algorithms
3. Ivan Eduardo Guetra, October 19, 2024, C++ Design Patterns for Low

Latency Applications Including High Frequency
Trading, https:/ /programmador.com/series/notes/cpp-design-patterns-
for-low-latency-apps

4. Dung Le, Aug 13, 2020, Optimizations for C+~+ multi-threaded
programming, https://medium.com/distributed-knowledge/optimizations-
for-c-multi-threaded-programs-33284dee5e9c

5. Larry Jones, 27 Feb 2025, Mastering Concurrency and Multithreading in C++:
Unlock the Secrets of Excpert-1evel
Skills, https:/ /www.amazon.com.au/Mastering-Concurrency-
Multithreading-Secrets-Expert-Level-ebook/dp/BODYSB519C

6. Eli Bendersky, January 17, 2016, C++17 threads, affinity and

hyperthreading, https:/ /eli.thegreenplace.net/2016/c11-threads-affinity-
and-hyperthreading/

7. Bytefreaks, 23 November 2016, C/ C++: Ser Affinity to process thread —
Example Code 3, https:/ /bytefreaks.net/programming-2/c/cc-set-affinity-
to-process-thread-example-code

David Spuler 60

https://arxiv.org/abs/2309.04259
https://github.com/0burak/imperial_hft
https://www.machinet.net/tutorial-eng/optimize-cpp-code-high-frequency-trading-algorithms
https://www.machinet.net/tutorial-eng/optimize-cpp-code-high-frequency-trading-algorithms
https://programmador.com/series/notes/cpp-design-patterns-for-low-latency-apps/
https://programmador.com/series/notes/cpp-design-patterns-for-low-latency-apps/
https://medium.com/distributed-knowledge/optimizations-for-c-multi-threaded-programs-33284dee5e9c
https://medium.com/distributed-knowledge/optimizations-for-c-multi-threaded-programs-33284dee5e9c
https://www.amazon.com.au/Mastering-Concurrency-Multithreading-Secrets-Expert-Level-ebook/dp/B0DYSB519C/
https://www.amazon.com.au/Mastering-Concurrency-Multithreading-Secrets-Expert-Level-ebook/dp/B0DYSB519C/
https://eli.thegreenplace.net/2016/c11-threads-affinity-and-hyperthreading/
https://eli.thegreenplace.net/2016/c11-threads-affinity-and-hyperthreading/
https://bytefreaks.net/programming-2/c/cc-set-affinity-to-process-thread-example-code
https://bytefreaks.net/programming-2/c/cc-set-affinity-to-process-thread-example-code

6. Orders

Otrders

Orders are the main low-level data for both an exchange and a trading engine. There
are different types of orders:

e Limit orders (buy or sell at a set price)

e Stop orders (buy/sell when a price is reached)
e Market orders (accept the current price)

e Pegged orders

There are two “sides” for every trade, and they have separate orders: buy orders
and sell orders. The prices of bid orders are called “bids” and for sell orders the
term is “asks.” Or you can just call them “buys” and “sells” if you prefer.

Processing of orders differs for exchanges versus trading engines, but there are
many ovetlaps. An exchange processes a large volume of incoming orders
submitted by its trading clients. A trading engine can both submit its own orders,
and also tracks other orders via the exchange’s market data feed.

When an order is submitted to an exchange, there are two possibilities:

e Immediate execution
e No matches yet

An immediately executing order is called an “aggressive order” and the exchange
should execute it against other waiting orders. If no matches, the order goes in the
“order book” for later execution, in which case it is called a “passive order”.

The most common scenario is that an exchange has a number of passive orders for
each stock or other financial instrument. The prices of buys are lower than the sell
prices. All of the buy orders have prices lower than the lowest sell price; otherwise
a trade would occur. Hence, an important measure is the highest buy price (“max-
buy” or “max-bid”) and the lowest selling price (“min-sell” or “min-ask”). The
difference between the max-buy and min-sell is the “spread” or “bid-ask spread.”

61 C++ Ultra-Low Latency

Market Data Feeds

For order processing by a trading engine, the exchange provides a data feed about
all of the buy and sell orders that are currently active on the exchange for each
financial instrument. the types of incoming market data feed messages includes:

e Add new order (buy or sell)

e Modify order

e Cancel order

e Trade execution

e Other administrative messages

There are a variety of low-level assumptions about the structure of the incoming
data from a market data feed:

e New orders (“adds”) should have a unique id that we haven’t seen before.

e Modify or cancel orders should have an id that was previously added.

e Modify orders can only do certain types of updates (e.g., price changes are
usually disallowed and instead the order must cancel and re-submit at the
new price level).

Note that these assumptions can fail, and quite often, because a market data feed is
usually implemented as a UDP multicast protocol. UDP is an unreliable protocol,
where network messages can be lost or delayed, but it’s faster than TCP.

To maintain accuracy, there’s a separate data feed that’s slower and more reliable,
usually over TCP. There’s a whole phase of “snapshot synchronization” logic for

the entire order book, which uses this separate data feed, and it’s very different
from the basic UDP market data feed of incoming transactions.

Order Objects

Otrders are usually represented as a simple structure. They are a frequently-used
object, and the last thing we want is to have function calls for creating, copying, or
moving these objects.

Bitwise copying is finel

David Spuler 62

Here’s an example order of a verbose order structure:

struct Order {

unsigned long timestamp;

int id;

int price; // or: double price;

int qgty;

bool is buy; // Side: Buy or sell order?
bi

Note that we will often exclude the “side” data field because we’re often processing
buy and sell orders separately. For example, an order book usually maintains the
bids and asks at each price level as a separate data structure. Hence, context tells us
whether it’s a buy or sell order object, and it’s more efficient not to store an explicit
field. Even a small bool field adds more than a byte because of alignment issues.

We could use inheritance of the different types of order structures, by having an
order base class, and derived buy order and sell order classes. However, that’s not
the typical low-latency coding style, because to take advantage of such a hierarchy,
we’d need to use virtual functions, which are elegant but somewhat inefficient.

Note that there’s only minor differences between a “struct” and a “class” in
C++. A structure is really like a class, except the data member default to public, and
a few other obscure difference.

Hence, you can define member functions for a structure to be class-like, or you can
make a class have only public data members, like a structure. Just take care with:

e Default constructors

e Copy and move constructors

e Destructors

e Assignment operators (copy/move)

You probably just want the defaults. Also, you don’t want your order objects to
contain some other non-trivial data member objects, or you get the same
performance problems in those subobjects.

In some data structures, you might want to store a cut-down version of an order.
Your internal code probably doesn’t need all of the fields that come in from the
exchange data feed messages. For example, in a queue based on “order-of-
insertion” you don’t need to store the timestamp. Hence, it’s common to have
multiple different types of order objects, with fewer data members and a more
compact size.

63 C++ Ultra-Low Latency

Integer Prices

Trading engines usually represent price as integers in real-world code. Some of the
useful terminology in this regard is:

e Tick — the smallest possible pricing differential (depends on the stock or
other instrument).

e DPip — the smallest difference in Forex pricing (foreign currencies).

e Basis point (bp) — the different differential in interest rates (usually a
hundredth of a percent or 0.01%).

The value of the tick for a stock or futures contract depends on the individual stock,
financial instrument, or asset. The tick for an asset might be $0.01 (i.e., a cent) or a
small amount like $0.0001 for low-priced assets, or a relatively large amount such
as $0.25 (quarter) for a high-priced asset.

A normal 32-bit “int” or “uint32 t” is usually adequate to represent a price.
Note that the integer representation of a price indicates a multiple of the tick or
pip, rather than the actual dollar price. Note that size tis usually a 64-bit
unsigned integer, rather than 32-bit, although it depends on the C++
implementation.

Prices cannot wusually be negative (except for Swiss interest rates).
Since UINT MAX in <climits> is approximately 4.7 billion, the tick values stored
as a 32-bit integer have these properties:

e $0.01 — price up to $47 million in 32-bits.
e $0.25 — price up to $1.175 billion.
$$0.0001 — price to $470,000 in 32-bits.

°
To avoid issues with 32-bits, trading engines often use 64-bit integers for all prices,
thereby avoiding the risk of integer overflow and also allowing for negative pricing.
As required, 64-bits can be used for larger price values than those listed above, or

for more granular pricing with a smaller tick value. In such cases,
use uint64 t or unsigned long.

On the other hand, 32-bit integer arithmetic is marginally faster than the same
operations on 64-bit integers. This also uses double the space, which affects cache
lines and other cache locality, so there’s a performance trade-off in terms of both
space and time.

David Spuler 64

The term “tick” is used for all types of financial instruments, but there are other
terms. The tick is called a “pip” for Forex currency transactions, which is usually
0.0001 or 0.01, depending on the cutrency pair. The term “basis point” refers to
the smallest difference in interest rates, and is a fraction of a percent (a hundredth
of a percent).

The reasons for the use of integers in price representations include:

e Avoids rounding errors in floating-point computations.

e Equality tests or comparisons of float or double can suffer rounding
errors.

e Integer arithmetic is faster than floating-point.

Integer quantities. Quantity is also a positive integer, and is usually stored as an
unsigned integer. This representation can handle a quantity up to 4.7 billion of an
asset at the given price.

Negative quantities are usually invalid, and underflow of an unsigned type would
wrap around to a large unsigned integer, resulting in an error. Zero quantity can be
used as a representation of a used-up order, or some other marker of a “to-be-
deleted-later” order, since a real order cannot have zero quantity.

Timestamp integers. Timestamps are also an integer, usually represented as
an unsigned long to allow representation of the large numbers. Exchanges will
tag an order with a timestamp, and the origination of timestamps in trading systems
is usually a hardware-based timestamp. Incoming messages will often be tagged with
a hardware timestamp in the NIC of the system.

Consistency Checks on Orders

Incoming market feed order messages can sometimes be lost, delayed, or corrupted.
Some of the self-consistency checks to consider include:

e DPositive integers for price, quantity, 1D, and timestamp.

e Huge integers might be underflow (e.g., UINT MAX is also -1 converted).

e Timestamps should not be less than the previous one (but it happens with
UDP).

65 C++ Ultra-Low Latency

At a higher-level, consistency should also apply to the order book data structure.
Some consistency checks include:

e ID should be new for add orders.

e 1D should already exist for modify or cancel orders.

e Trade executions and subsequent order updates should be consistent.

e If max-buy and min-sell cross, there should be a trade message incoming.

Another common error is that zero quantity (or price) might be used to indicate a
finalized trade, a “to-be-deleted-later” efficiency optimization, or an otherwise
invalid order. In multithreaded code, that order might be seen before it’s removed.
Hence, you need to check for this invalid case everywhere, and 1 do mean
everywhere. Otherwise, you’ll be re-processing zero-quantity orders over and ovet,
because a zero-quantity buy or sell order can always be filled.

David Spuler 66

7. Order Book & Matching
Engine

What is an Order Book?

An order book is a data structure that tracks all the currently active buy orders
(“bids”) and sell orders (“asks”). Typically, it has tons of data, because it has all the
buys and sells from every trader who’s in the market today.

Tracking the order book has a number of commonalities across all changes. There
are a number of major assumptions when implementing an order book:

1. Only a single stock — each financial instrument with a price has its own
order book.

2. Allindividual orders are seen — it’s a “market-by-depth” data feed with all
the juice.

3. No out-of-order transactions — we track order times implicitly as they are
received via “order-of-insertion” rather than receiving an explicit
timestamp and sorting based on its value.

4. No missing transactions — this is often an invalid assumption (I'm looking
at you, UDP!), so the order book must be robust for problems such as IDs
that are not found.

It’s different for the exchange versus a trading engine client. The exchange is
managing many trading clients, but a trading engine is only for one exchange. The
way it works overall is:

e Exchange — real order book and matching engine to find trades to
execute.

e Trading engine — an abstract “model” of what’s happening in the
exchange.

The exchange has to detect trades via its “matching engine” and really execute them
(and do so correctly!). A trading engine is just watching what’s happening, and using
that information to decide whether or not to submit its own orders.

67 C++ Ultra-Low Latency

It’s like the exchange has the “real” order book, and the trading engine is
maintaining its own “model” of what it probably looks like.

In theory, a trading engine doesn’t need its own matching engine. In practice,
maintaining an order book means that you know when the bids and asks have
“crossed” (i.e., a buy is high enough to match a sell), and you can thereby predict
when a trade message will be coming. In fact, this can be a useful consistency self-
check to confirm that your predictions about incoming trades are correct.

Matching engines and order books are intricately linked, and their code uses the
same data structure. It’s not much extra code, and, anyway, you'll probably also
need a matching engine for:

e Unit testing of the order book
e Backtesting

Note that a trading engine’s order book is about all the orders and trades, not just
your own. Tracking your own submitted trades is a totally different component of
your trading engine. For example, to track whether your order got executed, or to
know cumulatively what your current “positions” are in the purchased stocks from
rour prior submitted orders, that’s not in the order book.

your p >

It’s some other C++ codet’s problem.

Order Book Messages

The input to an order book is mainly a set of messages for:

e New buys

e New sells

e Updates (to quantity)

e Cancels (remove the order)

If you’re the exchange, these submitted orders or updates to already-submitted
orders are received via TCP from multiple clients. If you’re one of the trading
engines, you see all these messages coming across the network from a market data
feed, usually via UDP multicast messages.

The main difference is in trade executions. The exchange has a matching engine
that has to figure out whether to execute a trade, and then tell everyone about it. A
client order book in a trading engine doesn’t need to figure this out, because it gets
told about trades in the incoming messages from the exchange’s market data feed.

David Spuler 68

Let’s examine the types of messages that occur.

Usually, the bids are priced lower than the asks, in which case there’s no trades.
When orders come in like this, they go into the order book, and might be executed
later when things change. These are called “passive orders” and can be buys or sells.

If a new bid in an incoming buy order raises the price above the min-ask (min-sell),
then that buy order will trigger a trade to occur. Similarly, if a new sell transaction
has a lower ask, then it may match with one of the bids, and a trade occurs.

Market Data Feed Issues

There are two main types of data feeds, where one is like a fire hose and the other
more like a faucet. The amount of data affects how “deep” of an order book data
structure you can maintain from the feed:

e Market-by-Order (MBO) — full detail about every order, trade or update.
e Market-by-Price (MBP) — only trades and pricing, not every passive order.

An MBO data feed shows every order as it comes in from traders, with full detail
of how many passive orders there are at every price level. MBP is more of an
aggregation of pricing, showing the total quantities of bids and asks at every price
level. Hence, an MBP feed is more detailed than just “quotes” about the most recent
trade prices for a stock, but it’s much less data than an MBO feed.

Some issues in the structure of an MBO market data feed can affect how you update
your fully-detailed client-side order book in a trading engine.

e Are affected order IDs listed in a trade execution message?

e Do orders affected by a trade execution get modified by followup messages
changing status or quantity?

e Isthere order status tracking in the feed (e.g., partially filled, filled, or “done
for day”).

Some lesser-known types of data feed information:

e Broken trade — undo a prior trade.
e Execution with price — specific type of trade message.

69 C++ Ultra-Low Latency

Order Book versus Matching Engine

There’s a kind of symbiotic relationship between an order book data structure and
a matching engine algorithm. The tentative distinction is:

e Matching engine — detects if a trade is possible.
e Order book — is told when a trade occurs (by the matching engine).

If you’re processing a market data feed, then the exchange is detecting trades (via
its matching engine), and then sending trade messages down the feed. Your order
book is then receiving a trade message, and doesn’t need to do its own matching to
detect when trades occur. In fact, many of the market data feed protocols will
supply the IDs of the orders involved in a trade, so your order book may not need
to implement the matching logic.

Except that sometimes it does!

You need to do matching if you don’t get IDs in trade messages from the feed,
which is sometimes the case. Another reason is when a trading engine needs to
predict trades before you hear about them on the feed. Such issues depend on the
algo that you’re running.

Matching Engine Logic

Consider the situations if you get a trade message from a market data feed with
only:

e Trade price
e Trade quantity

How do you know which orders did the trade? Short answer: you don’t. There could
be many orders with the right price and enough quantity.

In these cases, a client-side trading engine has to effectively build your own
emulation of a matching engine, as part of your client-side order book maintaining
code.

Note that mapping an anonymous trade message, without only price and quantity,
to other orders is effectively the same logic as an exchange doing a matching process
on an incoming new order.

David Spuler 70

You have to figure out which orders probably did the trade by looking at all the
buys and sells at the price level, and examine all orders at that price level in the
order they were received (i.e., order-of-insertion), and which orders have enough
quantity, and so on.

Guess what you just coded in your order book ... a matching engine!

There are also various other scenarios where things get different with order books
versus matching algorithms:

1. Exchange matching algorithm — if you’re working on the exchange side,
then you actually need to implement a live matching engine for real trades

(scaryl).

2. Backtesting you may need to emulate a matching algorithm to
simulate the effect of your fancy algorithm and its submission of orders.

3. Unit testing — you may need to emulate a matching engine, unless you’re
just replaying some recorded data feed messages.

And if you have to code up a real matching algorithm at an exchange, guess what
data it has to maintain, for each financial instrument, to detect matches based on
all the incoming trade submissions from its clients...an order book.

Data Structures for the Order Book

The first point to note about the order book is that it’s an incremental algorithm.
You process each market data feed message in sequence, and can maintain an up-
to-date order book in this way.

Is your order book correct? Not always, since messages can get delayed or even lost
(usually in a UDP multicast data feed). There’s also a non-incremental secondary
method call “snapshot synchronization” whereby you can correct your order book.
Also, some protocols have partial status or statistics messages that can help validate
your order book is still correct.

Multiple data structures are required to address the efficiency of various different
types of requirements.

71 C++ Ultra-Low Latency

The overall idea would be something like:

e Hash table — mapping the 1Ds to order objects.

¢ Doubly linked list — order-of-insertion sorted list for processing orders in
the order they’re received.

e Heap data structure (priority queue) — maintain the maximum-buy (max-
heap) and minimum-sell (min-heap).

Do you need all this stuff?

A hash table is hard to avoid because everything’s keyed off the order IDs. New
orders come in with a unique ID, which is then used to modify or cancel the order.
The IDs also usually appear in trade messages, although not always.

Whether you need a queue or linked list for the FIFO list of orders is discussed
below. The first point is that it’s actually needed at a price level, and not necessarily
one huge list of all orders.

FIFO Ortrder Lists

The idea of an order list is that it has FIFO logic based on order-of-insertion, which
is usually equivalent to timestamps. Assuming they have the best price, multiple
orders at the same price level are supposed to match in the order they were received
by the exchange.

Do you always need a linked list or queue of orders?

If you’re the exchange then, yes, you definitely need to track FIFO status of orders
at a price level, so as to implement “fairness” of trade execution in the matching
engine. But what about on the trading engine side?

It depends on what algo you’re doing. If the market data feed is giving your order
IDs for trades, then you don’t need to emulate a matching engine, and you don’t
need those linked lists, unless the algo needs a signal derived from them.

This situation is a little similar to using a Market-by-Price (MBP) data feed, which
doesn’t have all the individual trades. However, there are times when you want to

track all the individual orders and trades, but you don’t really need to know the
FIFO ordering of them.

David Spuler 72

For example, you might want more price-level data than an MBP feed is giving you,
such as maintaining all these price-level statistics incrementally:

e Total volume

e Total number of orders (queue length)

e Time frequency of orders (timestamp computations)
e Last order size and timestamp

An algo could be using these price-level data points, without necessarily needing
the full tracking of all the orders in a queue data structure.

Price-Level FIFO Ladders

An important aspect of maintaining an order book is that matching orders should
be processed fairly in a FIFO order. Hence, to process a trade in a matching engine,
we need a queue of orders. This gives a FIFO ordering with the orders stored
according to order-of-insertion.

But the price matters more than the ordering! To process a matching trade, we need
to find all the orders that are max-buy (or min-sell), and process them in FIFO
order. There are two basic ways to set up a data structure:

¢ One long FIFO queue
e Per-price FIFO queues

Using a single FIFO queue is inefficient when we need to process a trade, because
the whole list may need to be scanned to find the orders at the right price level.

Having a separate queue (list) for each price level is much faster, because all of the
items on the list have the same price level (that we want). This aspect of having lists
of orders for each price level is often called a “laddet” or a “bid/ask ladder.” The
algorithm becomes:

1. Find the linked list or queue of orders for that price level.
2. Scan the order list processing each order record (in FIFO order).
3. Continue until we have enough quantity or the list ends.

4. Process the next-best price if we need more quantity (from Step 1).

73 C++ Ultra-Low Latency

However, there is extra storage cost because each price level needs its own object,
and must contain the head and tail pointers of a dequeue or doubly-linked list. And
we need a mapping data structure to find those linked lists for each price level (i.e.,
a hashmap or a very big bucket array).

Note that this above analysis of FIFO matching is ignoring some other types of
matching rules. For example, there is pro-rata and hybrid FIFO pro-rata as other
possibilities, which introduce additional complications if any order has a large
quantity (which is arguably “unfair”!).

Heap Data Structures

Heap data structures, also known as a priority queue, are good at efficiently tracking
the maximum (or minimum) of a set of values. They are also efficient at updating
the maximum or minimum under many insertions and deletions of random values.
Note that the term “heap” in this context has nothing to do with memory
allocation!

There are three types of heaps:

e Max-heap — tracks the maximum value.
e Min-heap — for the minimum value.
e Min-max-heap — does both efficiently (we don’t need this).

Do you need a heap for price levels? It seems like overkill to have a data structure
just to calculate the maximum buy and minimum sell prices of the order book.
However, see below for reasons why an incremental algorithm isn’t that easy. In
short: deletions are tricky to handle without a heap.

Anyway, actually you don’t need a heap, because you need two! There are typically
two heaps with a max-heap data structure for the buy orders to track max-bid, and
another min-heap data structure for the sell orders (min-ask). These two heap data
structures are completely independent.

In C++, a max-heap can be implemented using a standard library data structure via
the std: :priority queue container class.

A min-heap can be declared using a custom comparator that reverses the logic. The
default for a max-heap is std: : less, but you can use std: :greater to create
a min-heap. Although using a custom comparator would often be inefficient, the
standard C++ library probably (hopefully) has a builtin template specialization for
this comparator. However, you need to check by benchmarking!

David Spuler 74

If your min-heap is slow with a custom comparator, there’s another weird
optimization: negative numbers to the rescuel A maximum of negative values is the
minimum absolute value. You can make a min-heap from a max-heap by negating
all the values on the way in, and negating again (to reverse it back to the original
number) when returning an item from the min-heap.

ere are alternatives to heaps, but you certainly need to track some information
Th It heaps, but y tainly need to track f

per price-level, and be able to access it in sorted order (e.g., find the second-best
price). A heap is the most straight-forward data structure for doing this.

Ordering Out-of-Order Orders

The simplest type of order book and matching engine should be based on “order
of insertion” so that older orders get processed first. However, even when trying to
maintain this FIFO ordering, there can also be issues with timestamping and lost
or delayed order messages. This is more of an issue for client-side coding of an
implicit order book from a market data feed via UDP multicast, rather than an
exchange server’s incoming transactions over more reliable TCP connections.

Some orders from the exchange market data feed may be received late due to a
delay and therefore appear to be “out-of-order” when they arrive at the market data
ingestion component. Typically, this is due to delays or lost packets in UDP
multicast messages as they are sent from the exchange’s market data feed to the
trading engine’s client code.

How to handle this?

As a client, we want to keep our order book accurate, but not at too great of a
performance cost. In the abstract, there are various ways to treat messages that
come in with a timestamp that indicates they are not received correct order. Some
issues include:

e Detection by tracking incoming timestamps versus previous messages.
e Ignoring timestamps and doing order-of-insertion anyway.
e Timestamp-based insertion to correctly place the orders in the FIFO list.

Detection is relatively straight-forward if we assume it’s a rare event and only one
transaction is received out-of-order. The idea is to simply track the incoming
timestamp of the most recent order, and compare that with each incoming message.
However, things get more complex if there could be multiple out-of-order
transactions, which could be also the wrong order in themselves. Handling these
obscure cases efficiently is more problematic.

75 C++ Ultra-Low Latency

One way to do it all efficiently is to detect out-of-order timestamps, but then ignore
the issue (except maybe logging some in-memory statistics counters). In other
wortds, just insert it into the data structure in order-of-insertion, and it will be
wrongly behind some of the orders with a later timestamp.

How risky is that?

The risk is that there’s a match at that price level, and some other transactions get
processed by a trade, rather than this one (which was actually received earlier by the
exchange). The importance of an order can also depend on its price level, since
orders that are unlikely to be crossed won’t see any problem at all. Another point is
that lost messages occur, so there are whole orders that get missed, and the order
book will get occasionally updated via the “snapshot synchronization” methods.

In other words, out-of-order trade or order messages is not the only problem that
we have with our order book becoming an inaccurate model of the exchange’s order
book. There are various trade-offs here, and nobody likes to leave it to chance. In
this case, we actually know there’s a problem, whereas with a lost order, we do not.

Can we fix it?

The correction is to try to insert the order wherever it should have been.
Timestamp-based insertion is inherently a slower operation on the default data
structure of a FIFO queue of orders.

Insertion into an order-of-insertion queue is an O(1) insertion at the tail of the
queue, which is only a couple of operations. But for an out-of-order insertion using
its timestamp, you now have to scan this queue or deque. The operation of finding
where exactly to insert is an O(n) linear search to examine all the timestamps on the
list. It may be a rare event, and the reverse scan down the list might only be a few
orders previously, but it still introduces a non-deterministic possible slowdown to
insertion of orders into the order book data structures.

Another separately indexed data structure may be considered here to map
timestamps to linked list locations (i.e., unsigned long to a pointer), but that adds
more complexity to the situation. And it’s not a hashmap, because we need lookups
with relative ordering of the timestamp keys. Worse still, maintaining some other
type of index will also slow down all of the other non-problematic order insertions.

David Spuler 76

Incremental Max-Buy and Min-Sell Prices

A useful optimization is to maintain the current maximum buy and minimum sell
as two incrementally-updated price values. These are the same numerical types as
the price type, whether it’s a double or an integer. And there are two separate values:

e Max-buy price (maximum bid)
e Min-sell price (minimum ask)

The first thought is to get excited and think that maybe we don’t need a data
structure at all to track the price levels. Maybe we can just incrementally maintain
these two values, and done.

Does it work? Let’s try it out. The general idea for the incremental algorithm is:

e New buy orders — if price is more than the max-buy, update the
incremental max-buy.

e New sell orders — if price is less than the min-sell, update the incremental
min-sell.

e Cancel buy orders — if buy price equals the max-buy, and there are no
other buy orders at that price level, find the next-highest buy price.

e Cancel sell orders — if sell price equals the min-sell, and there are no other
sell orders at that price level, find the next-lowest sell price.

e Modify orders — these are not allowed to change the price of orders, so
they don’t affect it.

e Trades — treated like order cancels for updating the max-buy or min-sell
values.

This would be a beautifully efficient algorithm ... if only it worked. It’s super-fast
for new buy or sell orders, and modify orders don’t affect the incremental values.
The problem is the deletions.

Deletions of orders, whether via a cancel message or a trade happening, need to
find the new max-buy or min-sell. Canceled buy orders below the max-buy price,
or sell orders above the min-sell price, don’t affect the incremental values, and are
efficient.

Also, even if the deletion is an order at the max-buy or min-sell, if there is even one
other order at that price level, then we also don’t need to do anything.

77 C++ Ultra-Low Latency

But if a deletion removes the last order at the max-buy or min-sell price, then we
need to scan all the other price levels. Note that when doing any type of deletion
or cancel, there shouldn’t be a buy order at a higher price, or a sell order at a lower
price, if we’ve been correctly tracking the incremental values. So, we’re looking for
the second-best buy or sell price.

Alas, the hash table of offer ids is no help here. We need a data structure that tracks
the price levels of all offers, and one that can efficiently find the maximum or
minimum, such as:

e Red-black tree (e.g., std: :map)
e Heap (e.g, std::priority queue)

On the upside, you can see that the use of the price-level data structure (heap or
tree) to find the next-best buy or sell prices is a relatively rare event. Hence, this
incremental optimization can be very helpful in practical terms. For example, when
computing mid-quotes or the bid-ask spread, we can just access these two scalar
variables, rather than querying the price level data structure.

Finding whether there’s any other orders at that price level actually requires a price-
level data structure anyway. We need to map the new ordet’s price level to the linked
list of other orders at that price level.

There’s also another optimization here: to avoid needing to look up the price level,
we could store a pointer to the price level object for the current max-heap or min-
sell prices (i.e., we have then four incrementally maintained variables: two prices
and two pointers to price level data structure objects).

Also, we’ve probably already found the price level data structure object for other
reasons (e.g., to add a new order to the linked list of orders for that price level).

David Spuler 78

References

10.

Sourav Ghosh, July 2023, Building Low Latency Applications with C++, Packt
Publishing, https://www.amazon.com/dp /1837639353

Philippe Bourgeon, 20106, Take Home Test (C++14

OrderBook), https:/ /github.com /bgn9000/Cpply-OrderBook

Sadhbh Code, 2024, C++20 Order Book: Order Book implementation in
C++20 (Concepts & Co-Routines), https:/ /github.com/sadhbh-
c0d3/cpp20-orderbook

Code Review, 2023, Fast OrderBook

Implementation, https:/ /codereview.stackexchange.com/questions /285623
/fast-orderbook-implementation

Colman M., September 25, 2024, C/C++ Adpanced Order Book Processing
Example with CPU Affinity, https:/ /www.linkedin.com/pulse/cc-

advanced-order-book-processing-example-cpu-colman-marcus-quinn-

7227¢/
Scorsone Enterprises, 2024, Coding an Order Book in C++ (Beginner

Friendly), https:/ /www.youtube.com /watch?v=TRiqIkhROXT

Shu Wang, 2011, How to Build a Fast Limit Order

Book, https://gist.github.com /halfelf/db1ae032dc34278968{8bf31ee999a
25

Quantitative Finance (Stack Exchange), 2021, What is an efficient data
structure to model order

book?, https:/ /quant.stackexchange.com/questions /3783 /what-is-an-
efficient-data-structure-to-model-order-book

Chatles Cooper, 2021, Fast implementation of an ITCH order

book, https:/ /github.com/charles-cooper/itch-order-book

Amitava Biswas, Aug 18, 2023, Designing Low Latency High Performance
Order Matching

Engine, https://medium.com/@amitava.webwork/designing-low-latency-
high-performance-order-matching-engine-a07bd58594f4

79 C++ Ultra-Low Latency

https://www.amazon.com/dp/1837639353
https://github.com/bgn9000/Cpp1y-OrderBook
https://github.com/sadhbh-c0d3/cpp20-orderbook
https://github.com/sadhbh-c0d3/cpp20-orderbook
https://codereview.stackexchange.com/questions/285623/fast-orderbook-implementation
https://codereview.stackexchange.com/questions/285623/fast-orderbook-implementation
https://www.linkedin.com/pulse/cc-advanced-order-book-processing-example-cpu-colman-marcus-quinn-7227e/
https://www.linkedin.com/pulse/cc-advanced-order-book-processing-example-cpu-colman-marcus-quinn-7227e/
https://www.linkedin.com/pulse/cc-advanced-order-book-processing-example-cpu-colman-marcus-quinn-7227e/
https://www.youtube.com/watch?v=TRiqIkhR0XI
https://gist.github.com/halfelf/db1ae032dc34278968f8bf31ee999a25
https://gist.github.com/halfelf/db1ae032dc34278968f8bf31ee999a25
https://quant.stackexchange.com/questions/3783/what-is-an-efficient-data-structure-to-model-order-book
https://quant.stackexchange.com/questions/3783/what-is-an-efficient-data-structure-to-model-order-book
https://github.com/charles-cooper/itch-order-book
https://medium.com/@amitava.webwork/designing-low-latency-high-performance-order-matching-engine-a07bd58594f4
https://medium.com/@amitava.webwork/designing-low-latency-high-performance-order-matching-engine-a07bd58594f4

David Spuler

80

8. Iceberg Orders

What are Iceberg Orders?

Iceberg orders are large orders where most of the quantity is hidden, in the same
way that most of an iceberg is hidden under the water. Exchanges offer support for
iceberg orders in terms of auto-replenishment of these orders with more of the
hidden quantity when the displayed quantity gets traded. The replenished quantity
is added as a new order with a different ID, so it’s not obvious that it’s a
replenishment of an iceberg.

The reason that some traders would want to use iceberg orders is that a large
quantity can be traded without making it obvious. Hopefully, this avoids price
slippage that might otherwise occur.

The effect of icebergs is different for exchanges versus other traders because of the
information asymmetry. At a high level, the management iceberg orders has aspects
including:

e Display quantity is visible to other traders, but a larger total quantity is
hidden.

e The exchange knows it’s an iceberg, and has automatic support for this.

e Other traders don’t know which orders are icebergs (in theory).

Many exchanges allow the placement of iceberg orders as a special type of bid or
ask. For example, a hedge fund or institutional investor might wish to make a large
trade. Even HFT traders may use their own icebergs, although they may also like
to find icebergs to trade against, because it means there’s a lot of hidden liquidity at
a price level.

Exchanges have explicit support for icebergs as an order type. When you place an
iceberg order with an exchange, you specify:

e Side (buy or sell)

e Price

e Display quantity

e Total quantity (hidden)

81 C++ Ultra-Low Latency

e Replenishment (increment)

The initial quantity is displayed and is the first order. When this order is consumed
in a trade, a new order is created with the replenishment quantity. The amount of
replenishment doesn’t need to be the same as the initial quantity.

This is a simple type of iceberg order with a fixed replenishment quantity and zero
delay. Some exchanges offer more advanced handling of iceberg orders, such as
dynamic adjustment of the replenishment size, or auto-delays for when the new
order appears. These more advanced features can help iceberg orders remain
hidden and get the best execution prices.

Iceberg Replenishment Scenarios

When an iceberg is triggered on the side of an executed trade, the exchange
automatically “replenishes” the quantity in a new order. In other words, once the
display quantity is absorbed in a trade, another new order is automatically placed.

Conceptually, the new order has its own ID and is added to the end of the queue,
like any other type of order. However, behind the scenes, the exchange may have
shortcut this cycle with some code optimizations.

An interesting scenatio arises where an aggressive order matches an iceberg order
at the best price, and one or more orders at a second-best price that is also crossed
and could be executed. Naively, we would say that the price level has only the single
iceberg order at the displayed quantity according to the FIFO queue of orders at
that price level. The replenishment orders are not yet on that queue. Hence, the
matched iceberg order’s initial display quantity should be used, and there being no
further liquidity at that price levels, the second-best price orders should be executed
to fill any remaining capacity.

But when is the iceberg replenished? Is it before or after switching to a second-best
price level?

The naive scenario is not very good, because a better price was on offer by
replenishing the iceberg and trading with it again, before reverting to the second-
best priced orders only after the iceberg order was exhausted. This is a better
algorithm for the exchange, and there’s nothing really conceptually wrong with this.
It’s just doing the replenishments after scanning a single price level, before moving
to a second-best price level.

David Spuler 82

Iceberg Algorithm Optimizations for
Exchanges

There are two types of code optimizations in relation to the processing of iceberg
orders:

1. Exchanges optimizing executions that trigger many replenishments.
2. Other traders trying to figure out which orders are icebergs.

On the exchange side, some of the situations that can be considered for algorithmic
optimizations include:

e Repeated replenishment — iceberg orders getting replenished many times
in a single trade execution with lots of new orders getting created and then
executed.

e Two icebergs colliding — the aggressive order that triggered the trade was
itself an iceberg, which matched with one (or more) icebergs on the other
side of the trade.

Let’s look at what sort of code optimizations are possible.

The first point is that the exchange knows which orders are iceberg orders. Hence,
when it’s scanning the list of orders to match at a price level, it can fill the non-
iceberg orders, and the displayed amount of an iceberg order. Note that this is only
considering a “fair” FIFO filling method, and not more complex variants such as
“pro rata” algorithms where larger orders get more fill.

After the first scan of the order list for a price level, the exchange knows it has seen
some iceberg orders at that price level. Hence, the exchange’s matching engine
knows that once the list is finished this first scan of the price level, there will be
new replenishments of one or more iceberg orders at that price level. In fact, after
this first scan of the best price level, if there’s still quantity to be traded, then:

There’s only icebergs left!

According to a naive implementation, the one or more icebergs at that price level
should be repeatedly:

1. Creating a new order with a replenished quantity, and

83 C++ Ultra-Low Latency

2. Executing a trade with the new quantity.

This could happen many times. Possibly an entire iceberg order is used up, or it
may have quantity left. Partial fills are also possible at the edge cases.

In practice, an exchange’s matching engine may use some optimizations here, rather
than repeatedly doing the same steps. After all, you can calculate how much of the
available quantity should be consumed by each iceberg based on:

(a) your active ordet’s available quantity,
(b) the iceberg’s hidden remaining quantity, and
(c) the iceberg’s replenishment rate.

You can do the arithmetic first, and then create new orders with new IDs. One
optimization is to do a bulk-insert of all these new orders into the order book. A
better optimization is not to put them into the order book at all, because they’re
already been traded out of the order book (before they even went in). However, the
exchange still needs to emit the various new order and trade execution messages
for all of these iceberg replenishment orders, so as to try to hide everything.

Finally, note that these optimizations won’t apply in all situations for an exchange.
For example, these optimizations are assuming that the client’s iceberg orders are
immediately replenishable with zero delay, which is not true of all iceberg orders.

Trader Detection of Hidden Icebergs

Other trading participants would love to find out which orders are icebergs. In
theory, there’s nothing to see. But HFT coders and algorithmic traders are nothing
if not innovative.

Generally, the strategy for finding icebergs is to watch the market’s sequence of
events, via the market data feed. Anywhere that the sequence differs from what you
would normally expect for a non-iceberg order, that’s when you have identified a
likely candidate. The main idea is:

Spot dcebergs when they execute!

There’s not much you can do when an iceberg is sitting passively in the order book.
Similarly, a non-aggressive new iceberg order won’t be easy to spot. The differences
occur in the executions.

David Spuler 84

To see what can be done to detect market sequence differences, think about the
process whereby an order will trigger an immediate auto-replenishment by the
exchange. Some new orders have appeared and been executed in the blink of an
eye. The 1Ds of these new replenished orders were not in the order book before,
but they appear as a sequence of new aggressive orders at the same price point.
Some of the main things to see is:

(a) Suddenly created orders immediately executed, and/or
(b) New orders created with the same quantity.

So, this analysis of the timing of executions and new orders gives some hints about
the presence of an iceberg order at a price point. Note that this is assuming basic
icebergs with replenishment of a fixed size that processes instantaneously with zero
delay. However, exchanges also offer more advanced types of icebergs with
dynamic replenishment quantities, time delays, and triggers based on market
conditions.

Some other types of indicators that an iceberg may be present include:

e Price levels sustained despite low apparent available liquidity.

e Volume spikes at that price level.

e Recurring market maker indicators in repeated orders (not the individual
traders, which is secret, but the financial institution through which they’re
trading, which isn’t).

Probing Strategies

And finally, there’s also the idea of issuing your own trades that attempt to find out
if an order is an iceberg, This is called a “probing strategy”” and aims to find hidden
liquidity in the market. Some of the ideas include:

e Ping orders — submit small orders watching for replenishments.
e Layered orders — several orders at multiple price levels.

e Flash orders — short-duration orders to see if they get swallowed.

The overall idea is to issue these “probes” and then watch the reaction in the market
data feed for what trades occur, and how quickly, and whether new orders get
created.

If you think you’ve found an iceberg, there are two basic ways to play for an edge:

85 C++ Ultra-Low Latency

(a) Now — repeatedly trade against the iceberg or others using this extra
knowledge, and/or

(b) Later — trade for price changes that will occur after the iceberg is
finished.

Many of these probing methods are commonly used by algo traders. These attempts
to find icebergs can have false positives, whereby it’s not an iceberg, but some other
algorithmic trader that’s responding with new orders. Furthermore, such methods
can be expensive if you fail, may change the market unintentionally, and also some
types of probing may be considered “market manipulation” in some jurisdictions.
Hence, if you think you can spot icebergs, maybe think about the Titanic.

Extensions

1. Examine or code up the matching engine logic for processing trades when
an iceberg order is matching.

2. Examine the algorithm for optimizing iceberg matches where multiple
icebergs match, and the active quantity is large enough for many
replenishments.

3. Can you calculate how much each iceberg will consume of an order’s
quantity using only arithmetic and conditional tests? Try to avoid
simulating it with a loop. Start with the case of one iceberg, then generalize.

4. Examine probing methods to detect advanced iceberg orders with delayed
replenishment and non-fixed quantities.

David Spuler 86

9. Rate Limiter

What is a Rate Limiter?

A rate limiter or “throttling” component aims to avoid too many requests hitting a
server in a time period. For example, a server might have a rate limit policy of “100
requests per minute” that all clients must adhere to.

Servers have two basic methods for dealing with an exceeded rate limit:

e Rejection — disallow the client’s transaction with an error message.
e Smoothing — instigate a delay or other load reduction method without
rejecting.

Servers don’t really like having to force rate limits on their clients. After all, they
want happy customers. Hence, servers will attempt to improve their capacity in
other ways:

e Load balancing technologies
e Bigger servers with GPUs
e More C++ low-latency coders

But at some point, if demand for your service is unlimited, you have to say no.

Rate limiters are a general technology component and may apply to numerous types
of servers and services that allow multiple clients:

e Trading exchanges limiting HFT order submissions.

o Al servers limiting the number of Norse poems people can request through
their APIL

e Web sites limiting the number of browser page views or online
transactions.

e Email servers limiting the pass-through of emails (spam prevention).

I’m sure you can think of some more.

87 C++ Ultra-Low Latency

Client vs Server Rate Limiters

Servers and clients have different issues, but both can implement a rate limiter C++
component. The basic idea is:

e Servers — block a client from submitting too many orders (keeping it
minimal).
e Clients — try to figure out when you can submit an order (so as to

maximize it).
There’s a significant architectural difference for the two contexts:

e Server rate limiter — per-client rate limits for many clients.
e Client rate limiter — tracks rates viz one server and one client (mel).

The scalability requirements for the server are much greater. Hence, a server will
often implement its multi-client rate limiter using an in-memory database such as
Redis or Memcached. The client-side rate limiter component is much less complex,
and it’s usually a simple C++ class.

As you can see, the objectives for servers versus clients are somewhat opposite, but
the coding issues are similar. The server is effectively maintaining multiple rate
limiters with one for each client. The client is maintaining one rate limiter
component for its connection to the server. These are two sides of the same coin:

Client rate limiters are abstract models of the server rate limiter.

The server has the real rate limiter that will actually block orders. The client’s rate
limiter is a theoretical model that attempts to emulate the server-side logic to
thereby predict whether we can send an order or not. Hence, to implement a client-
side rate limiter you need to know as much as possible about the server’s rate limiter:

e Rate limit thresholds — e.g., how many transactions in what time period?
e Rate limit algorithm — e.g., time-based or total transactions?

The rate limit thresholds are usually patt of the documentation. Note that rate limits
may not be time-based, such as where each client is allowed (or can buy) some
“credits” and then consumes one or more credits with each submitted request.

David Spuler 88

The algorithm used by the server-side rate limiter may be trickier to discern. There’s
a whole bunch of theory about the best way to do this on a server. Here’s a selection
of algorithms:

e Fixed counts (credits)

e Token bucket

e Leaky bucket

e Fixed window

e Sliding window (log variant)

e Sliding window (counter variant)

There are other low-level features of a server-side rate limiter algorithm to consider:

e Rate limit violations — does the server reject, smooth, or delay the client
transaction?

e Retry permissions — does the server’s rejection include a data field with
the recommended time for a retry?

And then you have to code all that into your client rate limiter.

Rate Limiter Optimizations

Client-side rate limiters are part of the “hotpath” and are performance-critical. After
all, a rate limit component is queried immediately before submitting a transaction,
so any latency in the rate limiter checking will directly worsen trade submission
latency.

How to run fast?

Well, it depends on the server’s algorithm. For example, if the server allows one
request per minute, then only record the timestamp of your last submission. And
when the server’s method is one based on a fixed number of credits (e.g., a free trial

with an upper bound on credits, or a way to purchase a number of credits), then
the client can just maintain an incremental value of its own credit stache.

More interesting optimizations atise in the rate limit tracking of fixed window and
sliding window algorithms. The general idea for the rate limit is:

N requests in M seconds.

89 C++ Ultra-Low Latency

In a fixed window algorithm, the allowed limit is reset every M seconds. It’s like the
server has an interrupt timer running every M seconds, which resets the allowed
client transactions. Indeed, this is one way to implement it, although it’s not the
fastest for the server, because it would have to touch every client’s counter every M
seconds.

Nevertheless, having a timer running every M seconds is more efficient for the
client-side implementation. But you have to make sure that your client-side
interrupt is synchronized with the server’s timestamps, or else chaos ensues.

A sliding window algorithm is a more accurate way to limit client requests. Whereas
a fixed window algorithm can be manipulated by the client in a way that allows 2N
transactions to be submitted, a sliding window will more correctly limit to only N
client transactions.

However, it’s also more complicated to code a sliding window algorithm, and
requires tracking the timestamps of many requests. The methods to implement a
sliding window rate limiter include:

e Naive request queue with removals.
e Tixed array of N timestamps.
e Ring buffer of N timestamps.

Compact data representation. But before we look at the code, there’s a space
optimization, which also helps with speed due to cache locality. The first
optimization is that we can throw away most of the transaction. We only need the
timestamp, so we can compact the data significantly. <

It might be desirable to store other aspects of the request, such as an order ID,
especially in testing mode. But the algorithms discussed below work only on the
timestamp, and don’t ever need to go back to the original order or request. In
production mode, a client-side rate limiter component will tell you whether or not
you have permission to submit a trade, but it can’t give you a list of the transactions
you did previously.

Naive request queue algorithm. The naive algorithm is to realize this is an
“order-of-insertion” algorithm, so we need a queue, where the orders are stored as
they are received, with their timestamp being the only important field.

David Spuler 90

The basic idea goes like this:

e Remove all old transactions on the queue that are outside the M seconds
time window.

e Check if there are less than N transactions still in the queue.

e If so, success, and add our request to the queue.

e Otherwise, fail with a rejected transaction (and don’t add it to the queue).

But this idea is not great coding, and I'm understating it here for politeness reasons.
This method is super-inefficient because we are doing:

e Insertions of new requests (even if only timestamps).
e Removals of out-of-date requests.
e Linear scanning of the request list.

Fixed array of N items. A key insight is that to manage a rate limit of N items for
a fixed time period, we only need to track the last N requests. Hence, we only need
to store the last N items, and we can maintain a fixed array of exactly N items, or
rather, exactly N timestamp values. Throw that dynamic queue data structure to the
curb!

The simplest idea is an order-of-insertion array, but we shouldn’t use an array that
starts from index zero. Instead, we should use a ring or circular buffer data
structure.

Fixed-size ring buffer. The simple idea is to maintain a fixed-size ring buffer
containing the last N timestamps. This is effectively implementing a fixed-size
queue of N items in an array or vector container.

I's an implementation choice whether to use a compile-time size
with std: :array orarun-time fixed size with std: : vector for the ring buffer.
If the rate limit is rarely changing, then N is a compile-time constant and we can
use std: :array.

However, we can use std::vector by doing a single heap allocation with
areserve () call in the startup phase of the trading application, away from the
hotpath. The vector method is more flexible because we can load N from a
configuration file, rather than needing a re-compile.

91 C++ Ultra-Low Latency

Prefilled ring buffer. One minor optimization is to note that the client-side rate
limiter in a ring buffer is doing a needless branch. There are two distinct cases:

1. Startup — the first N transactions.
2. Ongoing — the rest of the transaction requests.

If the total number of submitted transactions is less than N, then our queue is only
partially filled, and the transaction is definitely allowed: we’ve never submitted
enough transactions, regardless of the time petiod!

But branches are not great, as discussed in the chapter on branch prediction. In the
spirit of branchless coding, let’s not even check for the condition. Instead, we can
pre-fill the initial ring buffer with N zero timestamp values at startup, and pretend
like it already has N elements stored in it. Thus, we can remove an “if” statement
(goodbye, branch, we won’t miss youl).

Note that doing this also allows a secondary optimization: we no longer need both
“head” and “tail” indices. The ring buffer is always full, and the most recent item is
always right next to the oldest timestamp. So, we only need a single offset.

Unfortunately, we can’t remove everything! If it weren’t for those pesky orders, we
could do it all at compile-time.

Advanced Client Rate Limiting Issues

Computing retry time. An extra feature of our rate limit algorithm is in the
rejection logic: compute the wait time required until a re-submission of this trade
would be accepted. This can be returned to the caller as useful information.
However, it’s not a simple algorithm in our fixed-size ring buffer queue. Whether
we want to always compute this for the caller, or provide an API for the caller to
ask for this information, is a judgement call. But if our order is going to be rejected
anyway, we’re no longer in the hotpath, so adding computations has a low penalty.

Server timestamps synchronization. There can be a difference in the timestamp
values of the server, versus your ones. This is a rare issue, and it can cut both ways.

e False positives — you submit a trade and it gets refused.
e Talse negatives — you withhold a trade that would have been allowed.

The difference in timestamps can occur at both ends of the queue. Depending on
which end, this rare issue could trigger a false positive or false negative.

David Spuler 92

Extensions

1. Extend the client-side rate limiter algorithm to use time delays and retries.
When should a rate limiter suggest a delay versus rejecting the transaction?

2. Extend the client-side rate limiting algorithm to accept requests from
multiple threads.

3. How would you handle false positives? The client rate limiter says the trade
is allowed, so the trade execution component submits the trade, but the
exchange server rejects its submission. Add a feature allowing the trade
execution component to report “bad trades” to the rate limiter. Should it
report “good trades” to the rate limiter?

4. Examine the use of lower-precision timestamp values in the ring buffer.
Instead of a 64-bit unsigned long, can you use 32 bits? Or less?

5. Analyze the use of differences in timestamps to compact the data type.
Instead of the full timestamp, can you use the number of clock ticks since
the program startup timestamp?

6. Consider how to handle incoming transactions that are out-of-order
according to their timestamps. For example, your code is accepting
candidate trade transactions from multiple servers.

7. What statistics should be tracked and recorded to allow monitoring and
management of a rate limiter software component in production?

References

1. Peer D., September 27, 2024, Building A Custom Api Rate Limiting Tool In
C++, https://peerdh.com/blogs/programming-insights /building-a-
custom-api-rate-limiting-tool-in-c (This is a server implementation of rate
limiting for multiple users)

2. Mike Cheng, 2015, ratelimiter: A C++ Rate limiter
implementation, https:/ /github.com/mfycheng/ratelimiter (Server version)

3. Geeks for Geeks, 16 Mar, 2023, How o Design a Rate Limiter API | Learn
System Design, https:/ /www.geeksforgeeks.org/how-to-design-a-rate-
limiter-api-learn-system-design/ (This is a server-side rate limiter;
examines bucket, leaky bucket, etc.)

4. Stack Overflow, 2015, Rate limiting algorithm for throttling
request, https:/ /stackoverflow.com/questions/26647166/rate-limiting-
algorithm-for-throttling-request

5. Learn X by Example, 2025, Rate Liniting in
C++, https://learnxbyexample.com/cpp/rate-limiting/ (Server-side rate
limiter.)

93 C++ Ultra-Low Latency

https://peerdh.com/blogs/programming-insights/building-a-custom-api-rate-limiting-tool-in-c
https://peerdh.com/blogs/programming-insights/building-a-custom-api-rate-limiting-tool-in-c
https://github.com/mfycheng/ratelimiter
https://www.geeksforgeeks.org/how-to-design-a-rate-limiter-api-learn-system-design/
https://www.geeksforgeeks.org/how-to-design-a-rate-limiter-api-learn-system-design/
https://stackoverflow.com/questions/26647166/rate-limiting-algorithm-for-throttling-request
https://stackoverflow.com/questions/26647166/rate-limiting-algorithm-for-throttling-request
https://learnxbyexample.com/cpp/rate-limiting/

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Arpit Bhayani, Apr 05, 2020, Systens Design: Sliding window based Rate
Limiter, https:/ /www.codementot.io/(@arpitbhayani/system-design-
sliding-window-based-rate-limiter-157x7sburi (Server-side rate limiting.)
Aman Kumar Pandey, Jan 9, 2025, Understanding rate limiting and its
implementation, https:/ /medium.com/@amandevbhardwaj/understanding-
rate-limiting-and-its-implementation-70bb5e33£63a

Abhishek Dey, The Algorists, 2025, Distributed API Rate

Limiter, https:/ /lowleveldesign.io /SystemDesign/Ratelimiter (Implemen
ts various server-side algorithms.)

Wikipedia, 2025, Token

bucket, https:/ /en.m.wikipedia.org/wiki/Token bucket

Wikipedia, 2025, Leaky

bucket https:/ /en.wikipedia.org/wiki/Leaky bucket

4sily, 2017, Simple rate limiter: A quick-and-dirty implementation of RPS

limiter, https:/ / github.com/4sily/rate-limiter-cpp

Geeks for Geeks, 7 Nov, 2024, Rate Liniting in System

Design, https:/ /www.geeksforgeeks.org/rate-limiting-in-system-design
Jan Gaspar, 2013, Chapter 9. Boost.Circular

Buffer, https:/ /www.boost.org/doc/libs/1 64 0/doc/html/circular buff
er.html (General implementation of a circular buffer that can be used in
the rate limiter.)

Robert Mosolgo, April 5, 2021, How we scaled the GitHub API with a
sharded, replicated rate limiter in Redis, https:/ /github.blog/engineering/how-
we-scaled-github-api-sharded-replicated-rate-limiter-redis

Hiresh Trivedi, Aug 5, 2021, Designing a Distributed Rate Limiter —
Introduction, https:/ /medium.com/wineofbits/designing-a-distributed-
rate-limiter-introduction-731afd345a66

Ruslan Diachenko, Feb 5, 2024, S/iding Window Rate Limiting and its
Memory-Optimized V ariant, https:/ /rdiachenko.com/posts/arch /rate-
limiting /sliding-window-algorithm/ (Client-side use of a deque for the
sliding window algorithm.)

Stack Overflow, 2023 (updated), Skding window algorithm for rate limiting
requests per second

windows, https:/ /stackoverflow.com/questions/69161879 /sliding-
window-algorithm-for-rate-limiting-requests-per-second-windows

Book Notes, 2022, Design a Rate

Limiter, https:/ /books.dwf.dev/docs/system-design/c5

Ronak Chattetjee, 2023, A high frequency trading system built with C++: High
performance, low latency high frequency trading system written from scratch in

C++, https://github.com/nyarosu/hft

Ranjan (Man of steel), 2025 (updated), Live High-Frequency Trading
Exchange Engine, https:/ /github.com/ranjan2829 /Live-High-Frequency-

Trading-Exchange-Engine

David Spuler 94

https://www.codementor.io/@arpitbhayani/system-design-sliding-window-based-rate-limiter-157x7sburi
https://www.codementor.io/@arpitbhayani/system-design-sliding-window-based-rate-limiter-157x7sburi
https://medium.com/@amandevbhardwaj/understanding-rate-limiting-and-its-implementation-70bb5e33f63a
https://medium.com/@amandevbhardwaj/understanding-rate-limiting-and-its-implementation-70bb5e33f63a
https://lowleveldesign.io/SystemDesign/RateLimiter
https://en.m.wikipedia.org/wiki/Token_bucket
https://en.wikipedia.org/wiki/Leaky_bucket
https://github.com/4sily/rate-limiter-cpp
https://www.geeksforgeeks.org/rate-limiting-in-system-design/
https://www.boost.org/doc/libs/1_64_0/doc/html/circular_buffer.html
https://www.boost.org/doc/libs/1_64_0/doc/html/circular_buffer.html
https://github.blog/engineering/how-we-scaled-github-api-sharded-replicated-rate-limiter-redis/
https://github.blog/engineering/how-we-scaled-github-api-sharded-replicated-rate-limiter-redis/
https://medium.com/wineofbits/designing-a-distributed-rate-limiter-introduction-731afd345a66
https://medium.com/wineofbits/designing-a-distributed-rate-limiter-introduction-731afd345a66
https://rdiachenko.com/posts/arch/rate-limiting/sliding-window-algorithm/
https://rdiachenko.com/posts/arch/rate-limiting/sliding-window-algorithm/
https://stackoverflow.com/questions/69161879/sliding-window-algorithm-for-rate-limiting-requests-per-second-windows
https://stackoverflow.com/questions/69161879/sliding-window-algorithm-for-rate-limiting-requests-per-second-windows
https://books.dwf.dev/docs/system-design/c5
https://github.com/nyarosu/hft
https://github.com/ranjan2829/Live-High-Frequency-Trading-Exchange-Engine
https://github.com/ranjan2829/Live-High-Frequency-Trading-Exchange-Engine

21. Ruy Dan, 2025 (updated), A Ring Buffer implementation with a fixed-sige buffer,
developed in Zig, https://github.com/ruy-dan/ring-buffer

22. Stack Overflow, 2020 (updated), How do I implement a circular list (ring buffer)
in C?, https:/ /stackoverflow.com/questions /215557 /how-do-i-
implement-a-circular-list-ring-buffer-in-c

23. Ralf Holly, 2020, Circular Adpentures 1'11: A Ring Buffer
Implementation, https:/ /www.approxion.com/circular-adventures-vii-a-
ring-buffer-implementation/

95 C++ Ultra-Low Latency

https://github.com/ruy-dan/ring-buffer
https://stackoverflow.com/questions/215557/how-do-i-implement-a-circular-list-ring-buffer-in-c
https://stackoverflow.com/questions/215557/how-do-i-implement-a-circular-list-ring-buffer-in-c
https://www.approxion.com/circular-adventures-vii-a-ring-buffer-implementation/
https://www.approxion.com/circular-adventures-vii-a-ring-buffer-implementation/

David Spuler

96

10. Slowpath Removal

What is Slowpath Removal?

Slowpath removal is a multithreading optimization whereby the cold paths are
removed, merged, or deferred. The idea is to give priority to the hotpath by avoiding
any branches leading to the slowpath, as much as possible.

Not all code belongs on the hotpath. Some examples of slowpath logic include:

e Error handling
e Logging
e Sclf-testing code

Note that I really mean removal of these paths. There are actually two optimizations
in slowpath removal:

e Avoiding the cost of testing for errors.
e Removing branches of code instructions.

We don’t just want to avoid testing for errors, but we actually want there to be zero
branches in the hotpath code sequence. The reasons for this include:

e Branch prediction optimizations (i.e., branch elimination), and
e Instruction cache optimization.

Another point is that to make the hotpath short, with good latency in the instruction
prefetch cache, we want to minimize any slowpath code in that path. Hence, if you
cannot avoid having a slowpath sequence in the hotpath, then you should
encapsulate it into a separate function, and don 'z inline the slowpath function. In this
way, only the test for that slowpath condition (e.g., an error flag test), and a single
function call to the slowpath function, is in the instruction block along the hotpath.

If the hotpath code sequence is short and tight on the CPU, it runs a lot faster than
if it has to think about alternative pathways.

97 C++ Ultra-Low Latency

Error Handling Slowpaths

Error handling is a common example of a slowpath. Most of the failures and
exception states of execution are not on the hotpath, as they are uncommon events
compared to success. They’re called exceptions for a reason!

The problem with errors is that you have to check for them, even though they never
happen. Okay, yes, so they can happen, and good programmers always check their
return codes and so on. But when you’re trying to go fast, you want to focus on
success and winning.

The choices for error handling are therefore on the scale between two extremes:

e Repeatedly check every error (slow)
e Don’t check for any errors (unsafe)

There are some trade-offs in the middle ground:

e Check for fewer errors in production, but more in offline self-testing,
e Use in-memory logging data structures to defer outputting data to log files.
e Defer error checking until multiple error statuses can be checked at once.

Deferring Error Checks

The idea of deferred error checking is to not immediately check every error status.
Instead, we try to keep going and ignore possible error states, and then check for
them as late as possible.

Traditional error checking is to immediately test for a failure return code. Here’s an
example:

bool oksetup = orderobj.setup(ticker, price);
if (!oksetup) {
// Fail...
}
bool oktrade = order.obj.submit trade();
if ('oktrade) {

// Fail...
}
bool oklog = logger.record(ticker, price);
if (!oklog) {

// Fail...

}
David Spuler 98

The basic structure is a long i f-else-if sequence, with error handling interleaved
into the main hotpath. Yes, you could micro-optimize the above, such as by
avoiding three separate Boolean variables, but you get the idea. This is a slow
control flow that mixes the hotpath and the slowpath.

Faster is to run as fast as possible with all the steps, and only check for problems at
the end. If we can defer error checking until after the trade has submitted, then our
error handling code is completely out of the hotpath. Here’s the basic concept for
doing deferred error checking at the end:

bool oksetup = orderobj.setup(ticker, price);

bool oktrade = order.obj.submit trade();
bool oklog = logger.record(ticker, price);
if (!'oktrade || !'oksetup || !'oklog) {

// Fail...

We might optimize this using bit flags for error codes and pass-by-reference
parameters:

uint32 t errflags = 0;
orderobj.setup(ticker, price, errflags);
order.obj.submit trade(errflags);
logger.record(ticker, price, errflags);
if (errflags) {

// Fail...

The tricky part here is whether the trade submitter or logger functions will crash
when the first function fails. We have to design all the routines to be pass-through,
or at least non-crashing, even if an eatlier routine has had an error. This is easier
said than done!

You have to take care to really defer the error checks, not just hide them. For
example, if your second routine needs to check for an error status from the first
function (so it doesn’t crash), then you haven’t really deferred the error checking
until after the hotpath has finished. Instead, it’s just hidden further down the call
stack inside the individual functions.

99 C++ Ultra-Low Latency

Removing Error Checks

Safe C++ programming practices always have us doing a lot of extra work to check
for a myriad of coding problems:

e Function parameter validation

e TFunction error return code checking

e Assertion failures

e Self-testing code failures

e Memory allocation failures

e Tile loading errors (e.g., file not found, disk full)
e Valgrind runtime checking

But if we want to go fast, many of these can be removed. Goodbye to slow code!
Hello, speed.

Not all of the above error situations are that common, and many of them are under
our own control, since they’re really just checking for our own coding errors. Some
error avoidance strategies for the critical code in the hotpath include:

e Don’t use memory allocation (avoids allocation failures).

e Avoid disk-full issues with logging via good Linux admin practices and
lightweight monitoring.

e Compile-out parameter validation, assertions, and self-testing code for
production (but include them in unit tests and offline automated test
harnesses).

If compiling out all of the safety stuff gives you concerns, here’s the plan:
e Don’t write buggy codel!

Oh, wait! That’s not so easy. But here’s what we can do: mitigate against human
frailty by shaking out all the bugs before they get to production.

One of the main ways to have very fast production code, but mitigate against
unforeseen coding failures is to max out the use of automated testing in offline
mode. Here’s the basic plan:

e CI/CD — faster unit tests.
e Nightly builds — longer automated tests, static analysis, etc.

David Spuler 100

We can and should run basic unit tests as part of CI/CD, but then we should thrash
the whole thing to death in nightly builds. This means to enable lots of self-testing
code and other very slow tests that would cause developer productivity issues if we
ran them in CI/CD. Hence, nightly builds should run stress tests under Valgtind,
even running the same tests across multiple platforms, compilers, and optimization
levels. We maximize the testing offline to mitigate the risk of removing these tests
in production.

Never-Failing Functions

As programmers, we’ve had it drummed into us that every function should return
a success or failure status. But, why?

Some functions should never fail. If it’s a function that does not access external
resources, the most common reasons for failure are internal ones (e.g., called with
the wrong parameters) or very rare states (e.g., memory allocation failure). Every
one of these reasons are things under our control:

e Don’t call it with bad parameters.
e Don’t use allocated memory.

As an example, consider a function to set up an order object to submit a trade,
which is obviously on the hotpath. This is the traditional C++ style:

bool ok = orderobj.setup(ticker, price);
if (!ok) {
// Handle the error...

}
// Keep going (submit the trade)

Here’s a faster method whereby we only check for those “under-our-control”
coding issues in offline regression tests. The basic idea is to have the error checks
only in test modes:

#if SELFTEST // unit test mode

bool ok = orderobj.setup(ticker, price);

if (lok) {

// Handle the error...

}
#else // Production mode (hotpath)

(void) orderobj.setup(ticker, price);
fendif

// Keep going (submit the trade)

101 C++ Ultra-Low Latency

In fact, we probably should further optimize the function to have void return type
in production, and never even think about returning an error code. We could use
tricky #1f sequences, or have two versions of the entire function. If we make the
function inline, then the C++ optimizer might get rid of some of the
unused return statements, but why do we need them in the first place?

The main slowness that we can’t get rid of in the hotpath is return codes or
exceptions from the third-party APlIs, network connections, and system resources,
which could really fail in production. However, we already talked about these above,
and the strategies to defer these checks to later in the hotpath.

References

1. Paul Bilokon, Burak Gunduz, 8 Sep 2023, C++ Design Patterns for Low-

latency Applications Including High-frequency

Trading, https:/ /arxiv.org/abs/2309.04259,

Code: https://github.com/Oburak/imperial hft
2. Sarah Butcher & Alex McMurray, 2 January 2025, The C++ techniques yon

need for $600k bedge fund

Jobs, https:/ /www.efinancialcareers.com/news/low-latency-c
3. Ivan Eduardo Guetra, October 19, 2024, C++ Design Patterns for Low

Latency Applications Including High Frequency

Trading, https:/ /programmador.com/series/notes/cpp-design-patterns-

for-low-latency-apps

David Spuler 102

https://arxiv.org/abs/2309.04259
https://github.com/0burak/imperial_hft
https://www.efinancialcareers.com/news/low-latency-c
https://programmador.com/series/notes/cpp-design-patterns-for-low-latency-apps/
https://programmador.com/series/notes/cpp-design-patterns-for-low-latency-apps/

Part III: Low-Level Techniques

103 C++ Ultra-Low Latency

David Spuler 104

11. Branch Prediction

What is Branch Prediction?

Branch prediction is an optimization in the CPU whereby efficiency is improved by
considering upcoming branches. The CPU in its execution logic tries to predict
which of the two paths of a branch is more likely to be taken.

Most CPUs also do “speculative execution” of the future instructions, to get ahead,
which must be discarded if the “wrong” branch is actually executed by the code.

For the programmer, these branch prediction capabilities give the opportunity to
further optimize your code to capitalize on the CPU’s abilities.

Optimization techniques for the C++ programmer include:

e Eliminating branches in the hotpath so that the code runs straight and
narrow (i.e., fast!).

e Hinting to the compiler about the most likely branches of execution
(e.g., [[likely]] and [[unlikely]] specifiers).

e Keep unavoidable branches in the same code neighborhood (e.g., short

loop bodies).

Branch prediction has a problem in HFT: the hot path is rarely executed (ic.,
actually submitting a trade). All of the branch prediction logic would try to run the
cold path, as it would always be predicted. But what we want is for the branch
prediction logic to always choose the hot path, even though it would mostly fail to
be correct.

Thus, all of HFT is at odds with a whole swathe of computing theory about branch
prediction. HFT needs a “set opposite world mode” flag, but I'm yet to find one in
the GCC documentation.

105 C++ Ultra-Low Latency

Types of Branches

First things: analyze your hotpath code for branching. The main types of branches
in C++ code include:

e 1if statements and if-else statements.

e Loop conditions and loop bodies.

e Loop control statements: break, continue.
e Function calls and return statements.

e switch statements (multi-way branching).

Some of the less obvious types of branches are:

e Ternary operator (?:)
e Short-circuiting in the && and | | operators

There are also hidden branches in C++ code features such as:

e Virtual function calls
e Function pointers (and function names)

Branch Compiler Hints

There are several ways for the programmer to give “hints” to the compiler and its
optimizer about which pathways are more likely. As always, the compiler is free to
ignore hints, so you have to check in the assembly output what effect your changes
have. Some of the ways to give hints include:

e [[likely]] and [[unlikely]] path attributes (C++20).
e likely() andunlikely () condition markers (C++20)

e noexcept attribute (C++11)

e [[noreturn]] attribute (C++11)

e [[assume (expression)]] attribute (C++23)

GCC also has various extensions available to give hints:

e builtin expect (expression, value) (GCC extension)
e hot (GCC function attribute)

David Spuler 106

It’s common in pre-C++20 Linux code to define your own macro versions for use
with the GCC compiler:

#define likely (expr) __builtin expect ((expr), 1)
#define unlikely(expr) _ builtin expect ((expr), O0)

Branch Profiling

Branch profiling is the recording of pathway stats to analyze the most likely
branches. This can also be re-used in the compilet’s optimization mode, so that the
optimizer can perform branch-aware optimizations. Hence, there is a two-step
process whereby better branch prediction can be incorporated into your C++
executable code.

GCC has capabilities to store and use branch prediction statistics in its optimization
phase. The arguments to use are:

e -—fprofile-arcs (GCC command-line argument)
e -fprofile-generate (GCC command-line argument)
e -—fprofile-use (GCC command-line argument)

Following this process will allow GCC to generate more optimal code under
assumptions based on branch frequency in its seen executions. Obviously, this is
an automatic method, but needs multiple steps in the build:

e Compile without branch hints

e Run the tests

e Output the branch prediction data

e Re-compile the code with branch optimizations enabled

Note that for HFT, the fully hot path (i.e., trade execution) is actually a rare branch,
so this historical branch data won’t be that useful. One solution is to run GCC in a
test mode in which the hotpath is always dummy-executed! Other early parts of the
hotpath in HFT can still benefit in both situations, such as the trading decision
logic, which is always executed on incoming market data. Obviously, non-HFT
applications can always benefit, as the most likely paths are also the most heavily-
executed.

107 C++ Ultra-Low Latency

Branch Heuristics

In the absence of other branch prediction data, the CPU and compiler tools fall
back on some heuristics. Some of the common ones include:

e The if code block is more likely to be executed than the else code block.

e Loops tend to be executed multiple times.

e Backwards branches are assumed to be loop iterations (and are preferred
due to the prior assumption).

Hence, we can make some heuristic recommendations for how to organize your
code:

e Put common case code in the i f block.
e Have error handling in the else block.
e Don’t use once-only loop executions.

Branch Elimination

The simplest way to avoid branch prediction issues is to have fewer branches. There
are various ways to achieve this, ranging from minor code tricks to re-writing your
entire algorithm to have fewer conditional tests.

Which branches to eliminate? The worst kinds of branches that need elimination
include:

e Long if-else-if sequences
e Nested if-else statements

What data is being tested by a branch condition is also critical, and some of the
problematic branches are based on unpredictable conditions:

e Branches depending on user inputs
e Branches depending on random numbers
e Branches depending on system clocks

The best types of conditional tests include:

e Compile-time known tests
e Predictable conditions

David Spuler 108

The techniques available to eliminate your least favorite branches include:

e Reorganize the overall algorithm to have fewer branches.

e Defer or combine error checking for multiple errors so that there’s only
one error handling branch.

e TFunction call optimizations such as inlining and call hierarchy flattening,

e Loop conditional test reductions such as loop unrolling and iteration
bounds known at compile-time.

e Branchless programming techniques and tricks to change conditional paths
to arithmetic computations.

Branchless Programming Tricks

Branchless programming is a variety of coding tricks to get rid of control flow
branches. The main approach is to remove conditional tests, such as 1 f statements,
by using a variety of arithmetic computations instead. Code that has no branches in
a long block can run very fast on a CPU because of instruction prefetching,

Advantages of branchless programming:

e Avoids branch prediction issues (CPU speedup).
e Avoids warp divergence in CUDA C++ (GPU speedup).
e Job security

Possible general software engineering disadvantages of these branchless arithmetic
bit tricks:

e Code complexity — isn’t it a good thing?
e Unreadable code — as if we care.
e Maintainability — is someone else’s problem.

Even worse, the speed benefit might be a mirage. The issues include:

e De-optimizations from too many arithmetic operators — benchmark your
tricks!

e Don’t underestimate the optimizer’s capability on simple code (even if it’s
“branchy”).

e Code tricks can confuse the optimizer (undermining any benefit).

e Memory access costs may dominate over branchless code.

109 C++ Ultra-Low Latency

One of the risks with branchless code is that it runs too fast, and gets blocked by
memory access delays. Hence, you may need to combine branchless code sequences
with software-based memory prefetch primitives, such as with GCC builtins:

e builtin prefetch()
e mm prefetch()

Branchless Coding Techniques

Now, let’s look at some of the fun tricks in branchless C++ sequences. The various
types of methods for branchless coding include:

e Bit masks

e Bit arithmetic (bitshifts, bitwise AND/OR/XOR)
e Mapping Boolean flags to 0 or 1

e Mapping logical operator results to 0 or 1

e Multiplications by 0 or 1 using Booleans

e Lookup tables

¢ Conditional move (CMOYV) assembly statements
e Ternary operator (?:)

Some of the more traditional C++ optimizations techniques can also reduce
branching as an extra benefit:

e Loop code hoisting of conditional tests.
e Compile-time settings and configurations.

Ternary Operator and CMOV

Using the C++ ternary operator is one way to help the compiler write branchless
code. Consider the basic 1f statement:

if (x > y) |

max = X;
}
else {

max = y;

}
This can be more concisely written with a ternary operator:
max = (x > vy) ? X : y;

David Spuler 110

The ternary operator can be implemented in the compiler backend using a CMOV
(conditional move) register assignment statement. This is a branchless instruction
that implements the conditional assignment very efficiently.

In theory, both pieces of code are equivalent, and the compiler really should
generate identical code. In practice, the use of the ternary operator makes it easier
on those poor compiler engineers, because it’s 100% guaranteed that an assignment
is required, whereas the if statement requires a significant amount of extra
compile-time static analysis to deduce that both assignments are setting the same
vatiable. The C++ compiler is more likely to emit a branchless CMOV assembly
statement with a ternary operator.

Boolean Flags are 0 and 1

Another way to reduce branches is to use Boolean flags in arithmetic, using them
as having the values of integer 0 and 1. Here’s a simple example:

bool inc_ flag;
int x = 0;

if (inc_flag) {
X++;
This can be implemented in a branchless manner:
X += (int)inc_flag

Note that the type cast to int is not really needed, but helps with readability, and
ensures you don’t get compiler or static analyzer warnings.

Whether that is faster is something that needs testing because it forces an addition
operator into one of the pathways that previously had none, but at least its
branchless so it helps with branch prediction.

That was a simple example, but many other ideas are possible. Instead of this:
if (clear flag) x = 0;
You can try this branchless version:

X *= (int) !clear flag;

111 C++ Ultra-Low Latency

It’s not clear that this is faster, since multiplication is an expensive operation, but a
good compiler can actually notice that it’s a fake multiplication over two possible
values (0 and 1), and the optimizer can then use a CMOV instruction. Who’s to
know without checking the assembly code or running a benchmark.

Logical Operators are 0 and 1

In the same vein, the Boolean values of the && and | | operators can be treated as
0 and 1 in integer arithmetic expressions. Here’s an example of the maximum
computation:

max = (x > y) * x + (y > x) * y;

Note that the optimizer can notice that a multiplication over a Boolean operand
can be replaced with a CMOV, and there are two here. Again, the ternary operator’s
single CMOV instruction is probably faster than this possible de-optimization,
because this version has either two multiplications or two CMOYV instructions.

Bitwise XOR Tricks

There’s the well-known XOR trick to swap two integer variables without using a
temporary:

A

X = X vi
y =y " %
X =x " vy;

Don’t worry; nobody understands how this works. But it uses three assignments,
no temporary variable, and no branches.

Self XOR to Zero

There’s also a well-known assembly language trick of zeroing a register using XOR
with itself. The idea is that instead of an “x=0" statement, do this:

x *= x; // Self XOR
The result is zero, and we don’t even need to initialize the variable! However, we

don’t usually do this in C++, but the equivalent is common in assembly listings and
compiler backend implementations.

David Spuler 112

Sign Bit Extension Masks

If you’re doing any arithmetic with negative values, you can use bitwise tricks by
creating two masks depending on the sign bit. The idea is that the bitmask is:

e All 0’s if the number is positive (or zero).
e All I’s if the number is negative.

In other words, the bitmask is 32 bits all set to the same bit value as the sign bit.
The bitmask value is either O or OxFFFFFFFF, which is also that artist previously
known as -1. One way is a ternary operator:

unsigned int mask = (x >= 0) ? 0 : OxFFFFFFFFu;

We can also generate this bitmask using the right bitshift operator and sign
extension:

unsigned int mask = x >> 31;

Yes, 1 really should portably compute the bitshift count using the standard
constant CHAR BIT and sizeof (int) as nicely done in [Farrier, 2025].

Subtraction Bit Mask

Another way to get the same result is by noting the joke about ~1 being the same
value. Hence, this trick with subtraction on 2’s complement signed integers works:

unsigned int mask = (unsigned) ((int)(x < 0) - 1);

The comparison generates an integer 0 or 1, and then we subtract 1 to get either
OxFFFFFFFF or 0. Hence, we needed to reverse the comparison test to “<” instead.

All of the type casts are hopefully “free” without runtime costs, and are probably
not necessary because implicit conversions would work, anyway.

113 C++ Ultra-Low Latency

Example: RELU Activation Function

Let’s have a go at making the RELU function branchless. RELU is an “activation
function” in LLM backends, and it’s quite simple:

if (x < 0) {
RELU = 0;
}
else {
RELU = x;

}

In other words, change negatives to zero, but leave positives unchanged. Here’s the
ternary version (faster):

RELU = (x < 0) ?2 0 : x;
The mask-by-subtraction version combines with bitwise-and to get:

unsigned int mask = (x < 0) - 1;
RELU &= mask;

Another idea for a branchless version of a bitwise RELU is:

unsigned int umask = (x >> 31); // All 0's or 1's
RELU = (x | umask);

Actually, that’s buggy, with the bit masking the wrong way around. Here’s the
correction:

unsigned int umask = ((-x) >> 31); // All 0’'s or 1's
RELU = (x | umask);

Beware this might be a de-optimization, because the ternary version might be a
single CMOYV instructions, whereas this version has three operators: negative, right
bitshift, and bitwise-AND.

David Spuler 114

Sign Bitshift Portability

There’s a major portability problem with this code, because right bitshift on a
negative signed integer is actually undefined behavior in C++. The compiler is free
to shift in zero bits or to sign bit extend on the leftmost bit position, in its sole
discretion. Hence, you need to check your platform to see what the >> operator
does, and whether this rightshift bitmask idea will work.

Note that we cannot fix this by doing the right bitshift on an unsigned type,
which is guaranteed to shift in a zero bit (well-defined in standard C++, but not
what we want). Note also that this is only undefined for right bitshift, not for left
bitshift, which is well-defined and always shifts zero bits in on the right side (again,
not what we want).

Of course, you can create the sign-based bitmask more portably by avoiding the
right bitshift operator, but this loses the branchless benefits:

unsigned int mask = (x >= 0) ? 0 : OxXFFFFFFFE;
That’s safe and slow, and what’s the point of that?
Lookup Tables
Precomputation of lookup tables is a fast way to get a double benefit of fast
computation and branchless code. A good example in the standard C++ library are
the functions for character types. Here’s a slow branching version:

#define islower (c) (((c) >= 'a') && ((c) <= "'z"))

This has lots of computation and there are also branches in the short-circuiting
logic of the && operator.

A faster version uses a precomputed lookup table with 256 bytes.
#define islower(c) islower table[(unsigned char) (c)]

This is faster and branchless, at the cost of 256 bytes of global memory, and has
already been done for you in the standard libraries by those uber-brainy compiler
engineers.

115 C++ Ultra-Low Latency

References

10.

11.

12.

13.

Paul Bilokon, Burak Gunduz, 8 Sep 2023, C++ Design Patterns for Low-
latency Applications Including High-frequency

Trading, https:/ /arxiv.org/abs/2309.04259,

Code: https://github.com/Oburak/imperial hft

Sarah Butcher & Alex McMurray, 2 January 2025, The C++ techniques yon
need for §600k hedge fund

Jjobs, https:/ /www.efinancialcareers.com/news /low-latency-c

Paul Alexander Bilokon, Maximilian Lucuta, Erez Shermer, 27 Aug
2023, Semi-static Conditions in Low-latency C++ for High Frequency Trading:
Better than Branch Prediction Hints, https:/ /arxiv.org/abs/2308.14185,
Code: https://github.com/maxlucuta/semi-static-conditions (Advanced
branch prediction analysis, a way to do branches by self-modifying code
at assembly level.)

John Farrier, March 2025, Branch Prediction: The Definitive Guide for High-
Performance C++, https:/ /johnfarrier.com/branch-prediction-the-
definitive-guide-for-high-performance-c/

Stdjan Deli¢, Apr 10, 2023, Branchless programming — Why your CPU will
thank_you, https:/ /sdremthix.medium.com/branchless-programming-why-

your-cpu-will-thank-you-5£405d97b0c8
Jared Gorski, 11 August, 2020, Branchless

programming, https:/ /jaredgorski.org/notes/branchless-programmin
Algorithmica, March 2025 (accessed), Branchless

Programming, https:/ /en.algorithmica.org/hpc/pipelining/branchless
Michael Kerrisk, Oct 5, 2012, How much do __builtin_expect(), likely(), and
unlikely() improve performance? http:/ /blog.man7.org/2012/10/how-much-
do-builtinexpect-likely-and.html

Agner Fog, 28 May, 2024 (last update), The microarchitecture of Intel, AMD,
and VIA CPUs: An optimization guide for assembly programmers and compiler
mafkers, https:/ /www.agner.org/optimize/microarchitecture.pdf

GCC, March 2025 (accessed), Commeon Function

Attributes, https:/ /gcc.gnu.org/onlinedocs/gec/Common-Function-
Attributes.html

Algorithmica, July 2025 (accessed), Binary

Search, https://en.algorithmica.ore/hpc/data-structures/binary-

search/ (Shows a branchless binary search algorithm with prefetching.)
Paul-Virak Khuong, Pat Morin, 15 Mar 2017 (v2), Array Layouts for
Comparison-Based Searching, https:/ /arxiv.org/abs/1509.05053 (Branchless
and cached versions of binary search on sorted arrays.)

Agner Fog, 22 June 2024 (last updated), Optimizing subroutines in assembly
langnage: An optimization guide for x86

platforms, https:/ /www.agner.org/optimize/optimizing assembly.pdf

David Spuler 116

https://arxiv.org/abs/2309.04259
https://github.com/0burak/imperial_hft
https://www.efinancialcareers.com/news/low-latency-c
https://arxiv.org/abs/2308.14185
https://github.com/maxlucuta/semi-static-conditions
https://johnfarrier.com/branch-prediction-the-definitive-guide-for-high-performance-c/
https://johnfarrier.com/branch-prediction-the-definitive-guide-for-high-performance-c/
https://sdremthix.medium.com/branchless-programming-why-your-cpu-will-thank-you-5f405d97b0c8
https://sdremthix.medium.com/branchless-programming-why-your-cpu-will-thank-you-5f405d97b0c8
https://jaredgorski.org/notes/branchless-programming/
https://en.algorithmica.org/hpc/pipelining/branchless/
http://blog.man7.org/2012/10/how-much-do-builtinexpect-likely-and.html
http://blog.man7.org/2012/10/how-much-do-builtinexpect-likely-and.html
https://www.agner.org/optimize/microarchitecture.pdf
https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html
https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html
https://en.algorithmica.org/hpc/data-structures/binary-search/
https://en.algorithmica.org/hpc/data-structures/binary-search/
https://arxiv.org/abs/1509.05053
https://www.agner.org/optimize/optimizing_assembly.pdf

12. Instruction-Level Parallelism

What is Instruction-Level Parallelism?

Instruction-Level Parallelism (ILP) is a CPU optimization performed at the lowest
levels of machine instruction processing. If you thought parallel programming was
about multithreading, SIMD vectorization and GPU kernels, there’s a whole
another level deep down in the CPU.

Modern CPUs are amazingly advanced, and they have been architected to use
various types of extra parallelism. Some of the types of instruction-level parallelism
in 2 modern CPU include:

e Parallel execution units

e DPipelined execution of micro-ops

e Out-of-order execution of instructions

e Prefetching of instructions

e Branch prediction Memory data prefetching

Importantly, the CPU has total parallelism in its instruction execution units. In fact,
a CPU can typically run four or more machine instructions in parallel in the same
clock cycle, but using multiple execution units on different parts of the chip.

Instruction Reordering Optimizations

Instruction reordering is a type of Instruction-Level Parallelism (ILP), and is an
optimization performed inside the CPU where it actually runs the machine code
instructions out-of-order. The way this works in simple terms is:

e Delay any opcodes that don’t have the data they need (e.g., from memory).
e Run any instructions that are ready as soon as possible.

There’s a whole smash of fun to be had researching how this all works in the CPU.

There are schedulers and “stations” and various queues and caches. Kudos to all
those hardware engineers.

117 C++ Ultra-Low Latency

Another special type of fun is for compiler engineers. GCC does a lot of fancy
optimizations in the code generation backend in terms of taking advantage of
instruction orders.

But what about C++7? Is there anything you can do in C++ to optimize your code?
Or with inline assembly instructions?

Safety first. Most of the discussion of out-of-order execution and C++ occurs in
relation to safety. Problems can arise across multiple threads if the reads and writes
from our C++ statements are running out-of-order. I mean, how can it be good to
just run my C++ code in any random order that the CPU chooses?

The issue of preventing out-of-order errors involves “memory order.” These are
especially useful for correctly implementing lock-free algorithms with atomics, but
they also act as memory barriers that can prevent any undesirable types of out-of-
order execution.

Speed second. But the goal is to go faster! Rather than stopping the CPU from
reordering instructions by using memory barriers, let’s maximize it! There are at
least two major ideas:

e Minimize memory-waiting delays
e Exploit out-of-order instructions

The first point is to minimize the slowdowns whereby instructions get delayed. The
main one is memory accesses, which has well-known solutions such as: cache hit
maximization, cache lines, tiled memory accessing, contiguous memory blocks,
reducing data sizes, etc.

Other than cache locality, there’s not a lot of discussion anywhere in books or on
the internet about exploiting out-of-order instruction execution to make code run
faster. But there’s some discussion of this in Agner Fog’s astounding CPU
resources; see (Fog, 2024). The key point is:

Free extra parallelism!

The average CPU has hidden parallelism in terms of its various computation
pathways. For example, the CPU can run these two computations in parallel:

e Integer arithmetic — Arithmetic-Logic Unit (ALU)
e Floating-point arithmetic — Floating-Point Unit (FPU)

David Spuler 118

That’s not the full list!

Modern CPUs now have more than one ALU, so they can perform two or more
integer additions or comparisons in parallel. Some CPUs can also run different
types of integer arithmetic, such as addition and multiplication, on separate
pathways. Similarly, some of the SIMD operations run separately from the non-
SIMD instructions.

Out-of-Order Execution Optimizations

So, you can see the opportunity here, right? Not only can the CPU run the same
operations in parallel via SIMD instructions, but it can run two (or morel) different
types of computations in parallel.

Unfortunately, the opportunities for huge improvements to your C++ are
somewhat limited. For example, if you have a computation with both integer and
floating-point computations, can you parallelize them? Yes, but only in limited
circumstances, where:

e The two computations don’t depend on the results of the other.
e Not requiring memory accesses for the computations.
e Computation operands are values already in CPU registers.

If there’s a dependency, they can’t run in parallel. And if they both require memory
requests, that’s the bottleneck regardless of whether the instructions can run in
parallel. The data needs to be already loaded from memory into CPU registers to
run fast.

That’s quite a list of limitations, but it’s not insurmountable. The optimization
methods include:

e Prefetching the memory (e.g.,, builtin prefch () with GCC).
e Removing “dependency chains” from the code sequence of arithmetic
instructions.

One common way to remove data dependencies is to use multiple separate variables
for intermediate results.

119 C++ Ultra-Low Latency

Multiple Accumulator Optimizations

A simple example of using parallel arithmetic computations in a CPU is using
multiple accumulator variables for vector dot product. Here’s an unrolled version
for the dot product:

float vector dot product unroll2 ILP(
const float v1[], const float v2[], int n)
{
float sum = 0.0f;
for (int i = 0; 1 < n; i += 2) {
sum += v1[i] * v2[1i];
sum += v1[i+1] * v2[i+1];
}

return sum;

The problem is there’s a data dependency between the two additions. The two
multiplications can run in parallel, if the CPU can do so, but the second “sum+="
operation must await the completion of the first one. The solution that increases
the opportunity for CPU instruction-level parallelism is:

Multiple separate accumulators!
Hence, the code becomes:

float vector dot product unroll2(
const float v1[], const float v2[], int n)
{
float sum = 0.0f, sum2 = 0.0f; // Two accumulators!
for (int i = 0; 1 < n; 1 += 2) {
sum += v1[1i] * v2[1i];
sum?2 += v1[i+1] * v2[i+1];
}

return sum + sum2; // Add the accumulators

This new version now allows the compiler to use out-of-order execution or other
instruction-level parallelism optimizations, because the two “+=" operations are
now independent inside the loop body.

This function also needs other optimizations applied to it, which are orthogonal to
this idea of breaking data dependency chains, such as marking the pointers are
“restricted” and using AVX SIMD vectorized instructions.

David Spuler 120

References

1. Agner Fog, 22 June 2024 (last updated), Optimizing subroutines in assembly
langnage: An optimization guide for x86
platforms, https:/ /[www.agner.org/optimize/optimizing assembly.pdf

2. Agner Fog, 28 May, 2024 (last update), The microarchitecture of Intel, AMD,
and V1A CPUs: An optimization guide for assembly programmers and compiler
mafkers, https:/ /www.agner.org/optimize/microarchitecture.pdf

3. Daniel Lemire, April 2018, Is software prefetching (__builtin_prefetch) useful for
performance? https:/ /lemire.me/blog/2018/04/30/is-software-

refetching- builtin prefetch-useful-for-performance

4. Johnny’s Software Lab, March 31, 2024, The pros and cons of explicit software

prefetching, https:/ /johnnysswlab.com/the-pros-and-cons-of-explicit-

software-prefetching/

5. Katecpp, Oct 5, 2015, Improve performance with cache

preferching, http:/ /katecpp.github.io /cache-prefetching/

121 C++ Ultra-Low Latency

https://www.agner.org/optimize/optimizing_assembly.pdf
https://www.agner.org/optimize/microarchitecture.pdf
https://lemire.me/blog/2018/04/30/is-software-prefetching-__builtin_prefetch-useful-for-performance/
https://lemire.me/blog/2018/04/30/is-software-prefetching-__builtin_prefetch-useful-for-performance/
https://johnnysswlab.com/the-pros-and-cons-of-explicit-software-prefetching/
https://johnnysswlab.com/the-pros-and-cons-of-explicit-software-prefetching/
http://katecpp.github.io/cache-prefetching/

David Spuler 122

13. Cache Locality

What is Cache Locality?

Cache locality is the idea of staying “local” in our accesses to memory locations to
maximize the benefits of some hardware caches in the CPU. There are two general
categories of cache locality:

e Instruction cache locality — machine code instruction execution.
e Memory cache locality — data access from memory locations.

There’s a lot going on in the CPU in terms of caching accesses and also prefetching
possible future accesses. Cache locality is the idea of ensuring that our C++ code
maximizes the value of those hardware cache optimizations.

Caching occurs primarily at a lower-level than multithreading, which means that
each thread’s execution can benefit from these optimizations. Most of the methods
to improve cache locality are related to the general code structure, rather than
specific ways to do thread synchronization or other multi-threading requirements.
The general ideas include:

e Tight code blocks and loops — instruction cache locality.
e Localized and predictable memory access sequences — data cache locality.

You can do both together if you like, since they have orthogonal speedups. Easier
said than donel!

There are various tools you can use to examine the rates of cache hits and cache
misses in the instruction or data caches. Some of the main ones include:

e perf (Linux)

e cachegrind (valgrind)
e Intel VTune

e gperftools

e uprof (AMD)

o likwid-perfctr

123 C++ Ultra-Low Latency

Depending on how you look at it, these speedups make cache locality either more
or less important in multithreaded applications versus sequential code. It’s more
important in multithreading because we have lots of threads in different places
doing different things, all of which need to have good cache locality. Or maybe it’s
less important, because the CPU has to throw away all of those per-thread hardware
caches at every context switch, so why bother with cache locality? I'll leave it to you
to judge that.

Instruction Cache Locality

The instruction cache stores recently executed machine code instructions in a CPU
hardware cache. There’s also a separate mechanism of “instruction prefetching” to
try to load the next instruction that will be executed. As part of this prefetching
method, there’s also “branch prediction” in the CPU, which attempts to predict
which of two branch directions will get chosen.

To get the best out of these instruction speedups, our C++ code should generally
use:

e Short and tight loops
e Fewer branches

Keeping loops short will mean that the CPU stays within the same block of code,
maximizing the chances that it already has an instruction in its cache. Interestingly,
this means that some common code optimizations can be bad for instruction cache
locality:

e Inlining of functions
e Loop unrolling

Both of these can cut both ways, since they both reduce branches, but also lengthen
code blocks. Whenever you’re tempted to maximize your use of such optimizations,
think about the plight of the poor instruction cache as it tries to keep up.

Branches are another separate issue from short code blocks. In fact, long code
sequences of compute instructions are fine for branch prediction. To maximize the
CPU’s branch prediction capability, we should either have few branches, or at least
have very predictable branches. At the limit, we could use branchless programming,
which is a set of tricks to get rid of branches. See Chapter 4 for more on branch
prediction and branchless coding methods.

David Spuler 124

Data Cache Locality

There are numerous improvements that you can make to improve cache locality for
the memory access caches. And there are rather a lot of different caches for CPU
Memotry accesses:

L1 and L2 caches (per-thread)

L3 cache (shared)

TLB cache (virtual address accesses)
NUMA multi-core caching

There are some general recommendations for the entire application, that aim to
reduce memory cache misses:

e Use less memory!
e Fewer memory allocations
e Smaller data sizes

But particular algorithms can also be modified to keep nearby memory in the
caches. Data structures can affect the level of cache locality, with improvements
such as:

e Separate cold data from hot data — improve cache locality for hot data.

e Structure of Arrays (SoA) vs Array of Structures (AoS) — which one is
best depends on the context.

e Contiguous data structures — arrays and vectors, not linked lists or trees.

e Compact data structures — smaller memory sizes are easier to maintain in
the cache.

The code execution of various algorithms can alter the sequence of memory
accesses, and thereby maximize cache locality. Some well-known improvements
include:

e Loop segmenting — process short sub-sequences of a longer array.
e Tiling algorithms — process 2D “tiles” in a matrix or multidimensional
data structure (also called “blocking”).

The goal of these algorithm modifications is to iterate over a small sub-section in
the data, keeping cache locality during that “hot” computation, and then move on
to the next part. This works particularly well with matrix multiplication, because it
involves multiple computations with every element of the matrix.

125 C++ Ultra-Low Latency

There are also some dynamic approaches whereby you can manually ensure that
data is already in the cache when you need it:

e Memory prefetching
e Cache warming

See Chapter 3 for more about prefetching and cache warming,

Memory Hierarchy

To fully understand the caches, we need to know of all the different types of
memory used in a C++ program. Handling memory propetly is one of the most
important parts of C++ optimization, because memory access is much slower than
the CPU. Memory is the bottleneck, and you need to know where the compiler puts
everything.

Learn to love the linker-loader!

When your program starts running, the “loader” puts all sorts of things in different
places. The basic moving parts that happen before execution starts are:

e Instructions — the code’s machine instructions.
e Global read-write memory — initialized or zero-initialized global variables.
e Read-only data — string literal data.

To get deeper into the memory segments used by the linker-loader, these are the
main ones:

e text — stores the machine code instructions (read-only, executable)

e bss — all zero’d global data such as global arrays without non-zero
initializers (read-write)

e data — Initialized non-zero global variable data (read-write)

e rodata — read-only data such as string literals or constants (read-only)

Yes, the “text” segment has a confusing name, and it’s sometimes called the “code”
segment. According to Wikipedia, BSS stands for “Block Started by Symbol,” but
you didn’t need to know that.

All of the above segments are statically resolved, for the most part, by the linker.
However, once the program gets going, there are more dynamic allocations of
memory within its virtual address space.

David Spuler 126

The main types of dynamic memory are:

e Stack memory
(also alloca).

e Heap memory — dynamically allocated by the C++ new operator or the
older malloc function.

e Thread-local storage — via the “thread local” keyword (C++11).

the function call stack with parameters and local variables

See Chapter 8 for more about reducing stack and heap memory, and now let’s
discuss thread-local storage.

Thread-Local Storage

Thread-Local Storage (TLS) is memory that is exclusive to a particular thread. The
other threads do not have access to it. In C++, this is defined via the
“thread local” keyword, available since C++11. The usage is simple:

thread local int tls variable;

There are also some eatrlier and non-standard versions:

e Thread local — older version of specifier.
e thread — GCC non-standard modifier with similar semantics.
e declspec(thread) — on Microsoft C++.

The key features of thread local variables are:

e Accessible in one thread only.
e Persistent memory storage.
e Variables, objects or arrays only (cannot havea thread local function).

Per-thread access. If you declare a variable as “thread local” then the C++
compiler has to ensure the semantics. Accesses to that variable in C++ must go to
the version of that variable for the current thread. Typically, this means that the
variable has multiple copies, with different addresses for each thread.

How is it implemented? It’s not necessarily using any particular hardware support
behind the scenes, and it’s not necessarily using any magic per-thread caching.

127 C++ Ultra-Low Latency

The C++ compiler can allocate different addresses per thread to the same data, and
then ensure that accesses within each thread get the correct version. After all, the
C++ compiler knows that a particular variable is “thread local” because it’s a
type specification.

Persistent memory semantics. The thread_local specifier is very similar to the
static keyword in terms of its memory persistence. Its effect is similar to:

e Global variables (with external scope linkage)
e static file-scope variables

e static local variables (in a function)

e static data members (in a C++ class)

A thread local variable is created when a thread starts and destroyed when the
thread finishes. This has some implications:

e At most one copy is created at program startup.
e Dynamically created (along with the thread itself).
e Does not persist across thread shutdown and restarts.

Note that persistence and scope are different things. Persistence is whether the data
is maintained across multiple accesses, whereas scope is simply whether its name
can be referenced within code statements.

For example, if you use a thread local variable as a local variable in a function,
its value will persist across invocations to that function, and always have the same
address. However, it’s scope is limited to within the function, where its name is
accessible. This is the same as a static local variable, but with the extra semantics
that only one thread can see this version. If multiple threads call the function, they’ll
get different versions of the thread local variable inside the function.

Thread-local variables occupy a special niche in the programmer’s bag of tricks.
You don’t need to wrap accesses with any locking or other synchronizations, which
is nice. They are like atomics, in that they cannot be messed up by another thread,
but unlike atomics because they are not shared across threads. The main usage is to
have some shared code, but also have a special non-shared variable, especially where
you want the variable to persist, such as having per-thread counters, flags,
intermediate calculations, and so on.

David Spuler 128

References

N —

Wikipedia, May 2025 (accessed), .bss, https://en.wikipedia.org/wiki/.bss
Milan Stevanovic, 2014, Advanced C and C++ Compiling,

Apress, https://www.amazon.com.au/dp/BOTHXFIL.QHO/
John R. Levine, 1999, Linkers and I oaders, Morgan

Kaufmann, https://www.amazon.com/dp /1558604960

CPP Reference, May 2025 (accessed), Storage class

specifiers, https:/ /en.cppreference.com/w/c/language/storage class speci
fiers.html

Microsoft, 2021 Thread Local Storage

(I'LS) https:/ /learn.microsoft.com/en-us/c arallel/thread-local-
storage-tls

Larry Jones, 27 Feb 2025, Mastering Concurrency and Multithreading in C++:
Unlock the Secrets of Expert-Level

Skills, https:/ /www.amazon.com.au/Mastering-Concurrency-

Multithreading-Secrets-Expert-Level-ebook/dp/BODYSB519C

129 C++ Ultra-Low Latency

https://en.wikipedia.org/wiki/.bss
https://www.amazon.com.au/dp/B01HXFLQH0/
https://www.amazon.com/dp/1558604960
https://en.cppreference.com/w/c/language/storage_class_specifiers.html
https://en.cppreference.com/w/c/language/storage_class_specifiers.html
https://learn.microsoft.com/en-us/cpp/parallel/thread-local-storage-tls
https://learn.microsoft.com/en-us/cpp/parallel/thread-local-storage-tls
https://www.amazon.com.au/Mastering-Concurrency-Multithreading-Secrets-Expert-Level-ebook/dp/B0DYSB519C/
https://www.amazon.com.au/Mastering-Concurrency-Multithreading-Secrets-Expert-Level-ebook/dp/B0DYSB519C/

David Spuler 130

14. Cache Warming

What is Cache Warming?

Cache warming is a specific type of prefetching optimization aimed at keeping the
various memory caches fresh. It typically involves scanning through all the memory
data required for the “hot path,” even though there’s no real intention to use the
data (until later). The hot path needs a warm cache, so that when the hot path is
executed (e.g., a trade execution in HFT), then memory accesses are very fast.

There are multiple ways to trigger prefetching of data to keep the cache warm:

e Low-level C++ prefetching primitives.
e Copyto volatile temporary variables.
e Explicit dry-run parameters in the code.

Unlike other types of CPU prefetching, cache warming is something your C++
code does directly, rather than a hardware-enabled feature. It’s up to you to
determine what data is needed the most in hot path computations, and then pre-
load that data on every pass-through. You effectively do a “dry run” of the hot path,
but access the memory to ensure it’s maintained in the cache.

Note that cache warming is not always a guaranteed win. Using the “dry run”
approach can end up with a lot of extra conditional tests:

if (!dry run) {
// Do something
}

This can negatively impact performance in two ways:

e Runtime cost of testing the flag, and
e Extra branches of code that slow down CPU branch prediction.

As with everything in multithreading, you really need to time it to see if these costs
are less than the gain from faster memory cache accesses.

131 C++ Ultra-Low Latency

Memory Prefetch Primitives

Although you can “manually” prefetch data in basic C++ code, there are also some
builtins that are convenient for larger amounts of data. Some of the C++ primitives
to use for cache warming include:

e builtin prefetch (GCC)
e mm prefetch (GCC)

Prefetching is more effective on some data structures than others, with a general
preference for contiguous data blocks. Cache locality issues in the “cache lines”
with size 64-256 bytes are another reason. As a practical example, contiguous arrays
are better than dispersed data structures liked links lists and trees. This means
that std: : vector contiguous memory layouts can be more effectively prefetched
than the spread-out memory used by std: : 1ist objects.

Volatile Temporary Variables

Another approach for manual prefetching is the use of volatile specifier on
temporary variables. By assigning data to a volatile temporary variable, the
optimizer cannot remove an apparently unused assignment. For example, consider
if we do this:

int temp = my order book[0];

The C++ compiler may notice that “temp” is not used anywhere else, so it can
throw away that entire assignment statement into nowhere. The solution is to use
the volatile specifier:

volatile int temp = my order book[0];

The compiler is forced to load the data into memory even when it seems to be
unused by the remainder of the code, because assigning data to
avolatile variable is itself a side-effect.

Note that we only want to declare temporary variables as volatile, but not the
shared global data arrays we’re trying to prefetch. We don’t want the main data
structures to have this status. If our main global variables or arrays were declared
as volatile, this would actually interfere with having them loaded from the
memory caches. They would be uncached!

David Spuler 132

Dry-Run Executions

A simple approach to cache warming is to still execute all the steps, even if you’re
not going to do anything. For example, in HFT, you could call the “execute trade”
function even if the decision is to ot trade any stocks.

The method is simply to pass a Boolean flag indicating a “dry run” or “test run” or
“warm-up run” or whatever term you like. A simple conceptual example:

if (!dry run) {
orderobj.setup (ticker, price);
execute trade (orderobj);

A better way to get more cache warming is to populate all the objects as if you were
going to actually do a trade. At the very last step, the dry-run flag is tested, and no
trade gets submitted.

orderobj.setup (ticker, price);
if (!dry run) {
execute trade (orderobj);

But we really want to warm up the entire path, even the trade execution logic.
Hence, we go deeper by passing the flag inside:

orderobj.setup (ticker, price);
execute trade (orderobj, dry run);

And our trade execution code looks like:

void execute trade (Order &order, bool dry run)
{
if (!dry run) {
g order count++; // Count total
// Other accounting stuff..
// Submit the order...

That isn’t really much better, is it? We didn’t warm anything extra, but just pushed
the test inside the function.

133 C++ Ultra-Low Latency

Double Data Trouble

We really need to actually prefetch some data! One way is to double up all our data.
The basic data for order count tracking is like this:

int g _order count = 0;
One common trick is to use an array of two values with two meanings:

e Live data
e Dry-run data (unused)

Hence, our order count becomes:
int g order count([2] = { 0, O };
Then we can try this:

if (!dry run) {
g order count[0]++; // Live run

}

else {
g order count[1l]++; // Dummy

}

The point of the dummy is that we access the [1] array element in order to warm
up the [0] element (without changing it). This works because of “false sharing”
with “cache lines,” which is often a slowdown problem, but here they offer an
advantage. We can warm the cache by touching adjacent array elements, without
disturbing the main data. (Note that here we don’t use the alignas trick to avoid
false sharing, because we actually want it to occurl)

In the spirit of branchless programming, we can make this code tighter by mapping
the Boolean flag to 0 and 1 integer values:

g_order count[(int)dry run]++;

Note that we have actually added extra computation to our hot path! Instead of a
global variable increment, it’s now an array index lookup plus the increment.

David Spuler 134

We need to measure our optimizations to ensure that the gain from memory cache
warming is greater than the extra cost of these array indexing operations. (We've
also added a large amount of extra computation to our cold path, including whole
extra function invocations, but we care less about that.)

Our conceptual trade execution routine starts to look like:

void execute trade (Order &order, bool dry run)
{
g order count[(int)dry run]l++; // Count total
// Other accounting stuff.. same tricks
if (!dry run) {
// Submit the order...
}

The idea is that our “dry run” mode has run over as much of the code as possible,
only stopping short of actually submitting the order. By maintaining the two copies
of all data, with dry-run and live values, we can prefetch all of those arrays into
memory caches.

Problems with Cache Warming

The above cache warming double-array trick has used false sharing of cache lines
for good, not evil. And yet it has a problem: false sharing.

Our use of false sharing was harmless (and helpful) because we assumed only a
single thread was in use. There’s no cache invalidation slowdown when it’s only one
thread. The cache warming idea for the L1 and L2 caches requires a single thread,
although the L3 cache can be warmed for multiple threads. Hence, this cache
warming idea has limitations:

e Single thread required for all order submissions (if you want .1/L.2 cache
warming).

e Thread pools and other multi-thread design patterns are therefore
problematic.

We cannot really have a thread pool model where each consumer thread could
potentially submit a trade. The above cache warming logic only works for one
thread. If we try to use multiple threads, our cache warming logic is actually a cache
freezing de-optimization, because we’ve got the “false sharing” problem for real.

135 C++ Ultra-Low Latency

Even worse, consider what happens if we try to use a thread pool model with the
following modifications:

(a) multiple consumers, where each thread tries to decide whether to trade,
(b) single trade submission thread.

In other words, multiple decider threads, where each decider then hands off to the
single trading thread (which is kept warmed).

But then we’ve made another conceptual error. The hot path should really include
the decision logic, as the overall latency is from receiving incoming data to
submitting a trade. However, we haven’t kept the cache warm for these multiple
“decider” threads, particulatly so for all the data they use in deciding whether to
trade, so the decision modules won’t run fast.

Possible solutions include:

e Single thread for all decision and order submission (with L1/L.2 warming),
or

e Keep multiple threads warm (trickyl), or

e Modify the cache warming code tricks to use reads only, not writes
(avoiding the cache invalidation problem), or

e Only warm up the L3 cache (for multiple threads).

But these solutions have additional problems:
e Single order thread idea lacks a failover or backup plan.
e Single order thread cannot issue two trades without blocking,.

e Warming multiple threads means each thread needs its own copy of the
data.

None of these solutions are great, so that’s why they pay you the big bucks.

Further Optimizing Cache Warming

Another further iteration of advanced cache warming would be to actually submit
a dummy order, such as if the exchange connectivity allowed the sending of test-
only transactions. Doing this would allow us to keep warm any of the data structures
that are actually inside the client API of the exchange connection.

David Spuler 136

The advantage of the use of dry-run cache warming is that all the various data
structures used to prepare a trade are kept warm in the memory caches (L1/1.2/L3).
The downside is extra processing that occurs whenever you’re not trading. In other
words, there are extra computations done on the “cold path” every time, just to
keep the “hot path” all snuggly and warm.

The code to traverse all the memory data structures can be a significant cost in itself,
although it only occurs during the cold path. There are several advanced tweaks to
optimize your cache warming code:

e Exploit cache line sizes for quicker loading of contiguous data.
e Limit cache warming to the total L1/1.2/L3 cache size.

A further optimization of cache warming is to use “cache lines” to your advantage.
The L1/1.2 caches don’t work on individual bytes, but on blocks of memory called
“cache lines”, which are usually sized between 64 bytes and 256 bytes (e.g., Intel is
usually 64 bytes, Apple M2 is 128 bytes, some other CPUs are 256 bytes). Hence,
to load a “cache line” of 64 bytes on an Intel CPU, you need to load one of the
bytes from the 64-byte block. Your C++ code doesn’t need to explicitly touch every
element of a vector to have the entire vector hot as a fresh-baked oven loaf in the
cache. Admittedly, this doesn’t speed up the hot path itself, but only the preliminary
cache warming code.

An important limitation of cache warming is the maximum sizes of the L1, L.2, and
L3 caches. If you’re trying to warm up the CPU cache for your 7B Al model, that’s
7 billion floating-point numbers, and trying to keep them all in the CPU cache isn’t
going to work. On the other hand, you can probably preload an entire 7B model
into the CPU RAM (i.e., global memory, not the caches), or into the GPU’s VRAM,
but that’s preloading not cache warming, and it’s a slightly different story.

If you know your CPU’s cache size, you can optimize your cache warming strategy
by only trying to prefetch that much data. If you load more data than the cache size,
the newly warmed data is just evicting other data from the cache that you prefetched
earlier in the warming code. Hence, prefetching exactly the amount of data equal to
your CPU cache size is the optimal cache warming strategy.

137 C++ Ultra-Low Latency

References

1. Paul Bilokon, Burak Gunduz, 8 Sep 2023, C++ Design Patterns for Low-

latency Applications Including High-frequency

Trading, https:/ /arxiv.org/abs/2309.04259,

Code: https://github.com/Oburak/imperial hft
2. Sarah Butcher & Alex McMurray, 2 January 2025, The C++ techniques yon

need for §600k hedge fund

Jjobs, https:/ /www.efinancialcareers.com/news /low-latency-c
3. Edelweiss Global Markets Oct 14, 2024, Cache-

W arming, https://edelweissgm.github.io /hft/2024/10/14/CacheWarmin

g.html
4. Ibrahim Essam, Jul 19, 2024, Cache warming and menory

access, https:/ /ibrahimessam.com/posts/cache/

5. Nimrod Sapir, 2019, High-Frequency Trading and Ultra Low, Latency
Development
Techniques, https://corecppil.github.io/CoreCpp2019 /Presentations /Ni
mrod High Frequency Trading.pdf,
Code: https://github.com/DanielDubi/StaticFlatMap

6. Daniel Lemire, April 2018, Is software prefetching (__builtin_prefetch) useful for
performance? https:/ /lemire.me/blog/2018/04/30/is-software-

refetching- builtin prefetch-useful-for-performance

7. Johnny’s Software Lab, March 31, 2024, The pros and cons of explicit software

prefetching, https:/ /johnnysswlab.com/the-pros-and-cons-of-explicit-

software-prefetching/
8. Katecpp, Oct 5, 2015, Improve performance with cache

prefetehing, http:/ /katecpp.github.io/cache-prefetching/

David Spuler 138

https://arxiv.org/abs/2309.04259
https://github.com/0burak/imperial_hft
https://www.efinancialcareers.com/news/low-latency-c
https://edelweissgm.github.io/hft/2024/10/14/CacheWarming.html
https://edelweissgm.github.io/hft/2024/10/14/CacheWarming.html
https://ibrahimessam.com/posts/cache/
https://corecppil.github.io/CoreCpp2019/Presentations/Nimrod_High_Frequency_Trading.pdf
https://corecppil.github.io/CoreCpp2019/Presentations/Nimrod_High_Frequency_Trading.pdf
https://github.com/DanielDubi/StaticFlatMap
https://lemire.me/blog/2018/04/30/is-software-prefetching-__builtin_prefetch-useful-for-performance/
https://lemire.me/blog/2018/04/30/is-software-prefetching-__builtin_prefetch-useful-for-performance/
https://johnnysswlab.com/the-pros-and-cons-of-explicit-software-prefetching/
https://johnnysswlab.com/the-pros-and-cons-of-explicit-software-prefetching/
http://katecpp.github.io/cache-prefetching/

15. AVX Intrinsics

What are AVX Intrinsics?

AVX intrinsics are SIMD parallel instructions for x86 and x64 architectures. They
are actually machine opcodes supported by the x86/x64 CPU, but are wrapped in
the intrinsic prototypes for easy access from a C++ program.

The main advantage of SIMD instructions is that they are CPU-supported parallel
optimizations. Hence, they do not require a GPU, and can even be used on a basic
Windows laptop. The main downside is that their level of parallelism is nowhere
near that of a high-end GPU.

There are multiple generations of the AVX intrinsics based on the x86/x64 CPU
instructions. Different CPUs support different features, and exactly which intrinsic
calls can be used will depend on the CPU on which your C++ is running. The basic
AVX types are:

o AVX — 128-bit registers = 4 x 32-bit £1loat values
AVX-2 — 256-bit registers = 8 x 32-bit f1loat values
AVX-512 — 512-bit registers = 16 x 32-bit float values
e AVX-10 — 512-bit registers (with speedups)

The AVX intrinsics use C++ type names to declare variables for their registers.
The float types used to declare the registers in AVX using C++ all have a double-
underscore prefix with “ m128” for 128-bit registers (4 £1oats), “ m256” for
256 bit registers (8 £loats),and “ m512” for 512 bits (16 f1loats).

Similatly, there are also register type names for int types (_ ml128i, m256i,
and m512i), and types for “double” registers (ml28d, m256d,
and m512d).

AVX intrinsic functions and their types are declared as ordinary function
prototypes in header files. The header files that you may need to include for these
intrinsics include <intrin.h> <emmintrin.h> and <immintrin.h>.

139 C++ Ultra-Low Latency

Useful AVX SIMD vector intrinsics for £loat types include:

e Initialize to all-zeros — mm_setzero ps, mm256 setzero ps

e Setall values to a single float — mm setl ps, mm256 setl ps
e Setto4or8values— mm set ps, mm256 set ps

e Load arrays to AVX registers — mm_loadu ps, mm256 loadu ps
e Store to float arrays— mm storeu ps, mm256 storeu ps

e Addition— mm_add ps, mm256 add ps

e Multiplication — mm mul ps (SSE), mm256 mul ps (AVX-2)

e Vector dot product — mm dp ps, mm256 dp ps

e TFused Multiply-Add FMA — mm_fmadd ps, mm256 fmadd ps
e Horizontal addition (pairwise) — mm_hadd ps, mm256 hadd ps

Note that the names of the intrinsic functions have meaningful suffixes. The “ ps”
suffix means “packed-single-precision” (i.e., £loat), whereas “ pd” suffix means
“packed-double-precision” (i.e., double).

AVX Operations

The main SIMD instructions are called “vertical” instructions, by convention. They
take one vector and a second vector (e.g., both are 128-bit), apply an operation
element-wise in parallel, and put the result into a third register. In other words, they
return the result of a “pair-wise” or “element-wise” operation on two vectors into
a third vector.

For example, vertical addition requires two input vectors and will output a third
vector with the sums. AVX-512 SIMD addition will add two 512-bit registers full
with float values on a paired element basis (i.e., adds up 16 pairs of the 32-
bit float values), yielding a third 512-bit vector with the result (16 £loat values).

Binary operations. The full list of binary AVX operations is very long. Supported
AVX operations include:

e Multiplication

e Addition

e Subtraction

e Division

e Maximum

e Minimum

e Fused Multiply-Add (FMA)
e Bitwise operations

David Spuler 140

Unary operations. AVX unary intrinsics apply a particular function to all elements
of an AVX register in parallel, and return the resulting register. Supported AVX
unary operations include:

e C(Clear to zero

e Set to a constant

e (asts

e Conversions

e Popcount (POPCNT)

e Leading-zero count (LZCNT)

Mathematical Functions. Simple float-to-float mathematical functions are
effectively a type of unary operator. AVX supports a variety of functions with
vector hardware instructions, such as:

e Absolute value: abs

e Error function: erf

e Reciprocal

¢ Rounding, ceiling, floor

e Roots: sgrt (square root), cube root
e Inverted roots (e.g., invsqrt)

e Exponential: exp, expl0

e Logarithm: 1og, 10910

e Trigonometric functions

e Hyperbolic functions

e Statistics (e.g., Cumulative Distribution Function)

AVX Horizontal Intrinsics

Horizontal operations refer to arithmetic across the values within one vector. AVX
intrinsics exist to do “horizontal” operations across the same vector, such as adding
horizontal elements of a vector, or finding the maximum of pairs of elements within
a vector.

Horizontal SIMD instructions are typically designated with a “h” prefix (e.g.,
“horizontal add” is “hadd”). More specifically, the intrinsic for 128-bit horizontal
add is “ mm hadd ps”anditis “ mm256 hadd ps” for 256-bits.

However, do not make the mistake of assuming that these horizontal AVX
intrinsics are a “reduction” of a vector down to a single float (i.e., vector-to-scalar).
I mean, they really should do exactly that, but that would be too good to be true.

141 C++ Ultra-Low Latency

The horizontal intrinsic functions are still effectively “pairwise” operations for
AVXand AVX-2, except the pairs are within the same vector (i.e., horizontal pairs).
If you want to add all elements of a vector, or find the maximum, you will need
multiple calls to these intrinsics, each time processing pairs of numbers, halving the
number of elements you are examining at each iteration. Hence, for example,
summing all the float values in a vector with AVX or AVX-2 uses a method of
“shuffle-and-add” multiple times.

Thankfully, AVX-512 actually does have horizontal reductions that process all the
elements in their 512 bit registers. Hence, the 512-bit hotizontal add uses a different
naming convention and uses the prefix of “reduce add” in the intrinsic name
(e.g., mm512 reduce add ps is a summation reduction). In other words, this
reduction operates in parallel on all 16 £loat values in an AVX-512 register, and
the mm512 reduce add ps intrinsic can add up all 16 float values in one
operation. This horizontal reduction summation is useful for vectorizing functions
such as average, and could be used for vector dot products (i.e., do an AVX-512
SIMD vertical multiplication into a third vector of 16 float values, then a
horizontal reduction to sum those 16 f£loat values), although there’s an even
better way with FMA intrinsics.

Supported AVX horizontal operations for pairwise horizontal calculations (AVX
or AVX-2) or vector-to-scalar reductions (AVX-512) include floating-point and
integer versions, with various sizes, for primitives, such as:

e Addition

e Maximum

e Minimum

e Bitwise operations

Portability Checking of AVX Versions

The power of AVX support has changed over the years, with different CPUs having
different capabilities, not only with AVX, AVX-2 and AVX-512, but also their sub-
releases. And it’s also a little unclear into the future, with reports that some of the
newer Intel chips have AVX-512 disabled.

If you write some code using AVX-512 intrinsics, and compile your C++ into an
executable with the AVX-512 flags on, and then it runs on a lower-capability CPU
without AVX-512, what happens? Do the AVX-512 intrinsics fail, or are they
simulated somehow so that they’re slower but still work? Answer: kaboom on
MSVS. In the MSVS IDE, if you try to call these intrinsics on a CPU that doesn’t
support it, you get “unhandled exception: illegal instruction.”

David Spuler 142

In other words, the C++ compiler still emits the AVX-512 instruction codes, but
they aren’t valid, so it excepts at runtime.

Hence, the calls to AVX-512 are not emulated at run-time on lower-capability
CPUs. And they aren’t checked, either. That’s up to youl!

Dynamic test required: Firstly, you cannot use the preprocessor. You can’t
test #1f or #ifdef for whether you’ve got AVX-512 in the CPU or not. You can
use the preprocessor to distinguish between different platforms where you’ll
compile a separate binaty (e.g., ARM Neon for phones or Apple M1/M2/M3
chipsets). But you cannot choose between AVX/AVX-2/AVX-512 at compile-
time, unless you really plan to ship three separate binary executables. Well, you
probably could do this if you really, really wanted to.

The other thing you don’t really want to do is low-level testing of capabilities. You
don’t want to test a flag right in front of every AVX-512 intrinsic call. Otherwise,
you’ll lose most of the speedup benefits. Instead, you want this test done much
higher up, and then have multiple versions of the higher-level kernel operations
(e.g., vector add, vector multiply, vector dot product, etc.)

What this means is that you have to check in your runtime code what the CPU’s
capabilities are, at a very high level in your program. Hence, it is important to check
your platform has the AVX support that you need, such as via the “cpuid”
intrinsic at program startup. Then you have a dynamic flag that specifies whether
you have AVX-512 or not, and you can then choose between an AVX-2 dot
product or an AVX-512 dot product, or whatever else, during execution.
Obviously, it gets a bit convoluted when you have to dynamically choose between
versions for AVX, AVX-2 and AVX-512 (not to mention all the AVX sub-
capabilities and also AVX-10 coming soon).

Example: Basic AVX SIMD Multiply

Let us do a basic element-wise SIMD multiply using AVX (version 1) and its 128-
bit registers. This will do a paired vector multiply an array of 4 £1oat numbers (i.e.,
4 x 32-bit float = 128 bits). Each float in the resulting array is a pairwise
multiplication of the elements in the two operands.

This is how SIMD instructions work, by operating on each element of the array
(e., “pairwise” or “element-wise”). For example, a “vertical” multiply will take the
4 float values in one input array, and multiply each of them by the
corresponding float in the other input array of 4 £1oat numbers, and then will
return a resulting output array with 4 £loat values.

143 C++ Ultra-Low Latency

For testing, let us assume with want to create an AVX function that multiplies
4 float values element-wise. The test code looks like:

float arrl[4] { 1.0£ , 2.5f£ , 3.14f, 0.0f };
float arr2[4] = { 1.0f , 2.5f , 3.14f, 0.0f };
float resultarr[4];

// Multiply element-wise

aussie multiply vectors(arrl, arr2, resultarr, 4);

Testing the results of the multiply as an element-wise multiply of each pair in the
4 float values (using my home-grown “aussie testf” unit testing function
that compares float numbers for equality):

aussie testf (resultarr([0], 1.0f * 1.0f); // Unit tests
aussie testf(resultarr[l], 2.5f * 2.5f);

aussie testf (resultarr([2], 3.14f * 3.14f);

aussie testf (resultarr[3], 0.0f * 0.0f);

Here’s the low-level C++ code that actually does the SIMD multiply using the
“ mm mul ps” AVXintrinsic function:

#include <xmmintrin.h>
#include <intrin.h>

void aussie avx multiply 4 floats(
float v1[4], float v2[4], float vresult[4])

{
// Multiply 4x32-bit float in 128-bit AVX registers
~ ml28 rl = mm loadu ps(vl); // Load floats
~ ml28 r2 = mm loadu ps(v2);
~ ml28 dst = mm mul ps(rl, r2); // AVX Multiply
_mm_storeu ps(vresult, dst); // Convert to floats

Explaining this code one line at a time:
1. The header files are included: <xmmintrin.h> and <intrin.h>.

2. The basic AVX register type is “ m128” which is an AVX 128-bit
register (L.e., it is 128 bits in the AVX version, not AVX-2 or AVX-512).

3. The variables “r1” and “r2” are declared as mm128 registers. The
names “r1” and “r2” are not important, and are just variable names.

David Spuler 144

4. The intrinsic function “ mm loadu ps” is used to convert the arrays
of 4 float values into the 128-bit register types, and the resultis “loaded”
into the “r1” and “r2” 128-bit types.

5. Another 128-bit variable “dst” is declared to hold the results of the
SIMD multiply. The name “dst” can be any variable name.

6. The main AVX SIMD multiply is performed by the “ mm mul ps”
intrinsic function. The suffix “s” means “single-precision” (i.e., 32-
bit £loat). This is where the rubber meets the road, and the results of the
element-wise multiplication of registers “r1” and “r2” are computed and
saved into the “dst” register. This computation is analogous to the basic
C++ expression:

dst = rl * r2;

7. The 128-bit result register variable “dst” is converted back to 32-
bit float values (4 of them), by “storing” the 128 bits into
the float array using the “ mm_storeu_ ps” AVX intrinsic.

AVX Memory Alignment Issues

The above example glosses over the issue of managing “alignhment” of memory
addresses on byte boundaries with the “alignas” specifier. Some of the AVX
SIMD intrinsic calls require that addresses are 16-byte aligned (i.e., this is effectively
128-bit alignment), which is not guaranteed by the C++ compiler. However, we’ve
tolerated non-aligned addresses by using the “ mm_storeu_ ps” intrinsic, which
works with either aligned or non-aligned addresses.

Note that alighment restriction requirements of AVX are somewhat in flux. Not all
AVX intrinsics require alignment, and they are “relaxed” in many cases. There have
also been some bugs in compiler toleration of non-aligned addresses in C++
intrinsics. Where required, the alignment needs are:

e AVX-1— 16-byte alignment (128-bit).
e AVX-2 — 32-byte alignment (256-bit).
e AVX-512 — 64-byte alignment (512-bit).

Since we can sort out alignment at compile-time using the C++ “alignas”
specifier and “aligned” type attributes, there is no performance penalty (except
in terms of space) for ensuring greater compatibility across CPU platforms and
compiler versions by preferring aligned addresses.

145 C++ Ultra-Low Latency

You can create your own macros to easily test pointer addresses for alignment by
checking their remainder with the % operator. These examples use bitwise-and to
replace the slow remainder operator:

#define aussie is aligned 16 (ptr) \

((((unsigned long) (ptr)) &l5ul) == 0)
#define aussie is aligned 32 (ptr) \
((((unsigned long) (ptr)) &31ul) == 0)

Although our code to multiply 4 f£1loat values tolerates non-alignment, it’s a minor
slug. The “ mm storeu ps” AVX intrinsic is slower if the addresses are not
aligned, so we should fix the alignment for performance reasons. There’s also
another “store” intrinsic to convert from 128-bits to 4 floats called

113 [

~mm_store ps” (without the “u”) that runs faster, but does not tolerate non-
aligned float arrays.

Actually, “ mm_storeu ps” is supposed to be equally as fast as the alternative
“ mm_store ps” if the address is correctly aligned, so we can still use that
intrinsic if we prefer safety, but we need to change the variables to be aligned on
16-byte boundaries for a speedup.

To ensure alignment in C++, there is an “alignas” specifier for variable
declarations. We can use “alignas (16)” to force C++ to create the variables
with 16-byte alignment of the address where they are stored.

For example, our unit test harness code could have ensured 16-byte alignment of
all memory addresses via:

// Test with 16-byte alignment
alignas(l6) float arrl(4] = { 1.0f , 2.5f , 3.14f, 0.0f };
alignas(16) float arr2(4] = { 1.0f , 2.5f , 3.14f, 0.0f };
alignas (16) float resultarr[4];

There are wvarious non-standard alternatives to “alignas” in the wvarious
g

compilers. For example, MSVS has “ declspec (align (16))” with two prefix
underscores, and GCC supports “decltype (align(16))”.

David Spuler 146

The AVX code for an alignment-requiring version is not much different, with
minor changes to the names of the C++ intrinsics:

void aussie avx multiply 4 floats aligned(
float v1[4], float v2[4], float vresult[4])

{
// Use 128-bit registers to multiply 4x32-bit floats...

- ml28 rl = mm loadu ps(vl); // Load floats 128-bits
~ ml28 r2 = mm loadu ps(v2);
~ ml28 dst = mm mul ps(rl, r2); // Multiply

_mm_store_ps(vresult, dst); // Aligned convert to float

Ideally we’d like to ensure that the function is only called with aligned addresses at
compile-time. The first attempt is to declare “vresult” above as
“alignas (16)” for type checking of alignment issues, but it fails for function
parameters. Fortunately, there’s another way using type attributes:

__attribute ((aligned(16)))

Another method is to define our own assertion that uses bitwise tests on the address
instead:

#define is_aligned 16 (ptr) \
((((unsigned long int) (ptr)) & 15) == 0)

This tests the address is a number that is a multiple of 16 using bitwise-and with 15,
but this is at runtime and costs extra cycles.

AVX-2 SIMD Multiplication

Here is the AVX-2 version of pairwise SIMD multiply with intrinsics for 256-bit
registers, which is eight 32-bit f1oat variables.

void aussie avx2 multiply 8 floats(
float v1[8], float v2[8], float vresult[8])

{
// Multiply 8x32-bit floats in 256-bit AVX2 registers

~ m256 rl = mm256 loadu ps(vl); // Load floats
_ m256 r2 = mm256 loadu ps(v2);
_ m256 dst = mm256 mul ps(rl, r2); // Multiply (SIMD)

_mm256_storeu_ps (vresult, dst); // Convert to 8 floats

147 C++ Ultra-Low Latency

This is similar to the basic AVX 128-bit version, with some differences:

e The type for 256-bit registers is “ m256”.

e The AVX-2 loading intrinsic is “ mm256 loadu ps”.

e The AVX-2 multiplication intrinsic is “ mm256 mul ps”.

e The conversion back to float uses AVX-2 intrinsic
“ mm256 storeu ps”.

AVX-512 SIMD Multiplication

Here is the basic 16 £loat SIMD vector multiplication using 512-bits in AVX-
512.

void aussie avx512 multiply 16 floats(
float v1[16], float v2[1l6], float vresult[l6])
{
// Multiply 16x32-bit floats in 512-bit registers

~ m512 rl = mm512 loadu ps(vl); // Load 16 floats
~ m512 r2 = mm512 loadu ps(v2);
~ m512 dst = mm512 mul ps(rl, r2); // Multiply (SIMD)

~mm512 storeu ps(vresult, dst); // Convert to floats

Note that AVX-512 will fail with an “unhandled exception: illegal instruction” (e.g.,
in MSVS) if AVX-512 is not supported on your CPU.

Example: AVX 128-Bit Dot Product

The AVX instruction set has a vector dot product intrinsic that wraps an x86 dot
product instruction. There are versions of the dot product intrinsic for AVX (128-
bit), AVX-2 (256-bit) and AVX-512 (512-bit).

For basic AVX (128 bits), this is a full vector dot product of two vectors with 4 x
32-bit f£loat numbers in each vector. One oddity is that although the result is a
floating-point scalar (i.e., a single 32-bit f£1oat), it’s still stored in a 128-bit register,
and must be extracted using the “ mm_ cvtss_£32” intrinsic.

David Spuler 148

The example code looks like:

float aussie avx vecdot 4 floats(float v1[4], float v2[4])

{
// AVX dot product: 2 vectors of 4x32-bit floats

~ ml28 rl = mm loadu ps(vl); // Load floats

~ ml28 r2 = mm loadu ps(v2);

~ ml28 dst = mm dp ps(rl, r2, 0xfl); // Dot product
float fret = mm cvtss £32(dst); // Extract float

return fret;

Example: AVX-2 256-Bit Dot Product

Here is my attempt at the 256-bit version of a vector dot product of 8 £loat values
using AVX-2 instructions, which seems like it should work:

float aussie avx2 vecdot 8 floats buggy(
float v1([8], float v2[8])

{
// BAVX2 dot product: 2 vectors, 8x32-bit floats

~ m256 rl = mm256 loadu ps(vl); // Load floats
_ m256 r2 = mm256 loadu ps(v2);

~ m256 dst = mm256 dp ps(rl, r2, 0xfl); // Bug!
float fret = mm256 cvtss f£32(dst);

return fret;

But it doesn’t! Instead of working on 8 pairs of float numbers, it does the vector
dot product of only 4 pairs of £loat values, just like the first AVX code. The
problem wasn’t related to alignment to 256-bit blocks, because I added
“alignas (32)” to the arrays passed in. It seems that the “ mm256 dp ps”
intrinsic doesn’t actually do 256-bit dot products, but is similar to the 128-bit
“ mm dp ps” intrinsic that does only four float numbers (128 bits). These are
based on the VDPPS opcode in the x86 instruction for 32-bit float values and
there is VDPPD for 64-bit double numbers. However, it seems that
“ mm256 dp ps” is not using the 256-bit version. Or maybe my code is just

buggy!

149 C++ Ultra-Low Latency

References

1. Intel (2023), Inte/® 64 and LA-32 Architectures Optimization Reference Mannal:
Volume 1, August 2023, 248966-Software-Optimization-Manual-V1-
048.pdf

2. Agner Fog (2023), Optimizing subroutines in assembly
langnage, https:/ /www.agner.org/optimize/optimizing assembly.pdf

3. Félix Cloutier (2023), x86 and amd64 instruction
reference, https:/ /www.felixcloutier.com /x86

4. Microsoft (2023), x86 intrinsics list, https:/ /learn.microsoft.com/en-
us/cpp/intrinsics/x86-intrinsics-list
5. Intel (2023), Intel Intrinsics Guide, V'ersion 3.6.6, May 10th,
2023, https://www.intel.com/content/www/us/en/docs/intrinsics-
guide/index.html
6. Intel (2023), Intel C++ Compiler Classic Developer Guide, version
2021.10, https:/ /www.intel.com/content/www/us/en/docs/cpp-
compiler/developet-guide-reference/2021-10/overview.html,
PDF: https://cdrdv2.intel.com/v1/dl/getContent/781922PfileName=cp
p-compiler developer-guide-reference 2021.10-767249-781922.pdf
7. Paul Bilokon, Burak Gunduz, 8 Sep 2023, C++ Design Patterns for Low-
latency Applications Including High-frequency
Trading, https:/ /arxiv.org/abs/2309.04259,
Code: https://github.com/Oburak/imperial hft

David Spuler 150

https://www.agner.org/optimize/optimizing_assembly.pdf
https://www.felixcloutier.com/x86/
https://learn.microsoft.com/en-us/cpp/intrinsics/x86-intrinsics-list
https://learn.microsoft.com/en-us/cpp/intrinsics/x86-intrinsics-list
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-10/overview.html
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-10/overview.html
https://cdrdv2.intel.com/v1/dl/getContent/781922?fileName=cpp-compiler_developer-guide-reference_2021.10-767249-781922.pdf
https://cdrdv2.intel.com/v1/dl/getContent/781922?fileName=cpp-compiler_developer-guide-reference_2021.10-767249-781922.pdf
https://arxiv.org/abs/2309.04259
https://github.com/0burak/imperial_hft

16. Contiguous Memory Blocks

Why Contiguous Memory Blocks?

A critical part of optimizing low-latency engines is to store data in a contiguous
memory block so that they have a sequential address space. Processing large chunks
of data in parallel is the main optimization used in both GPU and CPU SIMD
acceleration. All of the vectors, matrices, and tensors need their underlying data in
a block for efficiency.

Processing data that is in adjacent addresses is much faster than jumping all over
the place. Vectors should obviously be stored as a simple contiguous array in
memory. Less obviously, similar comments apply to the linearized memory storage
of matrices and tensors.

The use of contiguous memory is an important optimization for both sequential
and parallel algorithms. The reasons that memory blocks are more efficient include:

e Data locality (cache hits)
e Data block GPU uploads (model weights from memory-to-cache)
e Predictive cache pipelining (in CPU sequential accesses)

Data locality refers to using data in the same or similar address locations. This is
helpful for the cache hit rate because data that is already in the cache is much faster
to access that a non-cached RAM memory address.

GPU uploads from CPU RAM to the GPU’s Video RAM (VRAM) is done in
blocks. Obviously, we don’t want to be uploading random bits of data from
different parts of the RAM.

Non-GPU architectures also benefit from the use of contignous memory. This is
obviously true of CPU SIMD instructions (e.g., AVX on x86), but even in
sequential execution, the CPU has its own RAM caching methods and often has
other optimizations of memory accesses. Predictive cache pipelining is where the
CPU attempts to predict what the next memory location will be, and load it in a
pipelined speedup, before being asked. This pipelining of memory accesses is much
faster than doing completely sequential address lookups.

151 C++ Ultra-Low Latency

Typically, predictive cache pipelining uses the simple heuristic that the next address
is the most likely next request, which assumes that data is being processed in the
order of the addresses. Hence, scanning an array in reverse is the worst possible
order for these CPUs. Similarly, jumping around to different memory addresses,
such as scanning the column of a matrix using a large “stride,” is also inefficient.

Low-Level Memory Block Functions

Memory block operations in the standard C++ libraries are implemented using fast
assembly language behind the scenes. The main functions in the standard C++
library that operate at a low level on binary bytes in a memory block are:

e memset (): set bytes to a value, usually used to clear bytes to zero.
e memcpy (): copy bytes.

e memmove (): copy bytes, but tolerates overlapping regions.

e memcmp (): compare a sequence of bytes.

e memchr (): search for a byte in a sequence.

These functions are lower-level than the modern C++ versions, such
as std: :copy, std: :move (), and their “backward” versions. The above listed
memory block functions are not aware of object-level semantics, and won’t run any
special functions on memory containing objects.

Note that unlike the standard string functions (such as strlen), these functions
do not assume a block is null-terminated by a zero byte. Zero is simply a binary
value, and these functions don’t stop at a zero byte. All of these functions operate
on a block of memory with a known maximum byte length.

Each compiler environment typically offers some extra non-standard byte-wise
functions that are also fast. Some of the less standardized C++ intrinsics that
operate on memory blocks include:

e memccpy (): copy bytes up to a specified sentinel byte.

e memicmp () or memicmp: compare bytes ignoring letter case.

e Dbcopy (): copy bytes

e Dbzero (): clear bytes to zero.

e Dbcmp (): compare bytes.

e Dbyteswap uint64 () (Microsoft intrinsic): Swap the bytes of an
integer.

e builtin bswaplé6 (): GCC function to swap the bytes in an integer.
There are versions for 32-bit and 64-bit.

David Spuler 152

Fast Memory Block Operations

The slow way to do things in arrays is one element at a time. The faster way is to
use the standard memory block functions on the whole array. There are a number
of standard functions that operate on array data or memory blocks and they are
very fast.

Initialize with memset byte fill. The memset function sets all of a memory block
to a byte value. It is widely used as a fast way to initialize a block of memory to all
ZE10S.

memset (&x, 0, sizeof(x));

Almost all usages of memset will be for the zero byte. The only other usage I've
seen is to fill memory with a dummy non-zero byte as a form of mutation testing
to catch uses of uninitialized memory.

memset (&x, 0x55, sizeof(x));

Fast array copying with memcpy. The fast way to copy an entire array is
with memcpy. Rather than copy each element of an array, one at a time, in a loop,
the memcpy standard library function can be used to copy the entire array in one
statement:

memcpy (destarr, srcarr, sizeof (srcarr));

Note that this is a bitwise copy of the array intended for simple data types. For
example, it won’t run copy constructors if applied to an array of objects.

The memcpy function does a very fast memory block copy. It is like strcpy in
that the destination is the first parameter. memcpy will copy everything, even null
bytes and hidden padding bytes. It keeps going even if it finds a null byte, so it is
not like strecpy, and will always copy a fixed number of bytes. memcpy is a super-
fast byte copy, but is unsafe, because it does not have well-defined behavior if the
source and destination blocks ovetlap.

Safer byte copy with memmove: The memmove function is a safer version
of memcpy, which also works correctly if the memory blocks ovetlap. If the source
and destination blocks don’t ovetlap, it’s the same as memcpy, except probably
slightly slower. If they do overlap, then memmove conceptually will copy the source
to a temporary area, and then copy it to the destination block.

153 C++ Ultra-Low Latency

Copying arrays using struct assignment. An alternative method of copying
arrays is to make a tricky misuse of struct assignments. This is similar to
how std: :array works, which could also be used in a similar vein, but this
example totally avoids any constructor, copying or move costs (also works in C).

This method is not portable, is very unreadable and uses pointers incorrectly by
converting between two different pointer types. However, it can be faster
than memcpy because it makes use of the assignment operator rather than calling a
function. On the other hand, memcpy is an intrinsic function that might be inlined
to assembler instructions by the compiler, so this trick might be a waste of time.
Benchmarking is recommended here.

To copy an array using this method it is necessary to declare a new
dummy struct type that is the same size as the array that is to be copied. Then
we use type casting to fool the compiler into thinking it is copying structures when
really it is copying arrays. The method is illustrated below:

struct dummy transfer { // The new struct type
int a[MAX]; // This field gives the right size
}i

int a[MAX], b[MAX]; // The array variables being copied
static assert(sizeof (struct dummy transfer) == sizeof(a));
* (struct dummy transfer *)a = *(struct dummy transfer *)b;

The assignment statement first type casts both “a” and “b” to be pointers to the
new struct type, and then dereferences these pointers so that the compiler
believes it is assigning between two structures. The assertion is an efficient compile-
time safety net to ensure that the copying statement will work. Of course, a better
way entirely is probably to put the array inside a class object, with lovely
encapsulation and modularity, and then we can simply copy the objects.

memcmp byte comparisons. The memcmp function does a byte-wise comparison
in a memory block. Its return value is like strcmp, returning 0 for equality, and a
negative or positive value otherwise. Note that memcmp is not like strcmp, and
will not stop when it finds a zero byte.

David Spuler 154

Memory Block Function Pitfalls

The standard memory block functions are fast, but they are not always safe. Here
are some of the common pitfalls that commonly occur in everyday coding.

memset sizeof problem. Here’s another glitch in using memset inside functions:

void zero array(int arr[10])

{

memset (&arr, 0, sizeof(arr)); // Bug

}

The problem is not memset, but the sizeof operator on function parameters. An
array parameter in a function is like a hologram and isn’t really there. It’s not really
an array, but a pointer, and sizeof (int [10]) is the same as sizeof (int¥*).
Hence, sizeof (arr) is probably only 4 or 8, rather than 40 or 80, leaving most
of the array uninitialized. Personally, I recommend a memset debug wrapper
function to catch this kind of problem at runtime, or maybe a tricky preprocessor
macro can detect it at compile-time with a static assert somehow.

memset portability issue. Even though it’s a fast zeroing method, the use
of memset to zero bytes has an obscure portability problem on any architecture
where all-bytes-zero is not the same as all data types zero. However, on most
standard platforms, all-bytes-zero is correct for all types: integer zero (ignoring
endianness), floating-point zero (positive zero is all bits zero), and the null pointer.

memcpy overlapping blocks error: The only downside with memcpy is that it can
fail with ovetlapping ranges for the source and destination blocks, so if you are
shuffling arrays up or down one element using memcpy, then you have to be
careful, because the results on overlapping ranges are undefined. Here’s a buggy
example of using memcpy to remove the first character of a string in place:

memcpy (s, s+1, strlen(s+1)+1); // Bug
The problem is that the blocks starting at “s” and “s+1” are overlapping. It is
implementation-defined whether it will be correct. The fix is simply to

use memmove, which always works correctly for overlaps:

memmove (s, s+1, strlen(s+1l)+1); // Correct

155 C++ Ultra-Low Latency

memcmp return value. A pitfall with memcmp is that you cannot assume that it
returns 1 or =1, but must compare the return result to zero (like
the strcmp function).

if (memcmp (&a, &b, sizeof(a)) == 1) // Bug
if (memcmp (&a, &b, sizeof(a)) > 0) // Correct

memcmp object equality testing. Looking at the memcmp function, you might
think of it as an opportunity to do a fast equality/inequality test on large objects by
simply doing a byte-wise test. You would not be the first to think that.

Consider if you have a complex number class:

class MyComplex {
float real,imag;
// .. etc

The brute-force equality test is:

bool is_equal (const MyComplex &a, const MyComplex &b)
{
return (a.real == b.real && a.imag == b.imag);

}
Our idea to optimize this with memcmp looks like:

bool is_equal (const MyComplex &a, const MyComplex &b)
{

return memcmp (&a, &b, sizeof (MyComplex)) == 0; // Bug!
}

Unfortunately, there are multiple obscure pitfalls with this approach:

e Padding bytes

e Two types of floating-point zero

e Multiple types of floating-point NaN (not-a-number)
e Bitfields

Padding byte problems. If float is 4 bytes, but the machine has 8-byte alignment,
then the “real” and “imag” data members will be stored on 8-byte alignment
addresses, and there will be another 4 bytes each of dummy padding.

David Spuler 156

It doesn’t even have to be on a machine with alignhment issue, but can occur with a
bigger object if we’ve mixed different size objects (e.g., char, int, and pointers).
The padding bytes will be uninitialized (e.g., for local objects or if allocated with
“new”), in which case they can contain random values. Since memcmp does not skip
the padding bytes, its test will fail.

Now, we could possibly work around this portability issue via the use of memset in
the constructor, or calloc memory allocation, to zero all of the bytes of an object
including the padding bytes.

Negative zero problems. Unfortunately, the next problem is not a portability
problem, but a fundamental issue with floating-point numbers. There are two zeros!
There’s the normal zero with all bits zero, and there’s negative zero, with the sign
bit set, but all other bits zero. Hence, the bitwise testing of both float numbers fails
if there’s ever a negative zero.

NaN problems. Similarly, but perhaps less seriously, the representation
of NaN (Not-a-Number) in floating-point is also not fixed. There are multiple
values of NaN, both positive and negative. So, memcmp would say the float values
differ, even if both are NaN. I think this NaN issue is less serious than negative zero,
because if your computations are generating NaN, then they’re probably already
failing, and an incorrect memcmp equality test won’t matter as much.

Bitfield problems. If our structure has any bitfield data members,
this memcmp idea fails too. Bitfields ate a standard C++ feature that is defined with
a suffix colon and a number of bits like:

unsigned int myflag:1; // Boolean bitfield with 1-bit

With bitfields it’s implementation-defined how this is represented numerically, and
there might be undefined bits in the same byte, or extra padding bytes again.

Still want your memcmp speedup? I’'ve just shown you about 15 pitfalls, but
maybe you still want to live on the edge and get that speedup? You can
use memcmp to do fast array or object comparisons if you’re really, really sure that
you have:

e Zero byte initializations. All allocated arrays or objects must be first zero’d
by memset or calloc. You cannot rely on constructors, and it’s hard to
put amemset as the first action of the constructor due to initializer lists
and base classes. You may have to intercept all of the runtime uses for
the new and new [] memory allocation operators with your own wrapper
that does memset on the block, rather than use constructor tricks.

157 C++ Ultra-Low Latency

e Padding. It’s also unclear if you can actually rely on static or global
vatiable initialization to catefully zero all the padding bytes in an array or
object. Probably it works on most platforms, but I doubt it’s fully portable.
To be sure, use memset on the global variables during program startup.

e No bit-fields used. That’s easy, at least.

e Floating-point computations should avoid negative zero and NaN.

Raw Subarray Memory Blocks

Passing raw subarray types to functions can be a fast alternative to some of the
modern C++ contiguous containers (L.e., std::array, std: :vector).
However, the passing of a container object by reference with “const&” parameters
is also very fast, so don’t assume that raw arrays are always faster.

If a function accepts a raw array type, it is possible to pass it any array as an
argument, or any pointer of the right type. In this way, it is possible to pass memory
blocks or “sub-atrays” to a function by passing the address of a particular array
element. A function to operate on a particular type of array can be written, and used
to operate on various arrays.

void clear (int a[], int n)

{

int 1i;
for (1 = 0; i < n; i++)
al[i] = 0;

}

void test subarrays()

{

0); // clear first ten, 0..9
+ 50, 10); // clear 50..59
a[50], 10); // clear 50..59 (equivalent)

clear
clear

int a[100];
(a, 1
(a
clear (&

Multidimensional subarrays. It is also legal to pass multi-dimensional arrays to
functions. However, the sizes of all but the first dimension must be specified in the
function receiving the array.

David Spuler 158

For example, to pass a two-dimensional array to a function, the function header
would look like:

void fn(int al[] [SIZE2]);

The reason for this restriction is that the compiler cannot determine the address for
an arbitrary array element if it does not know the sizes of all but one of the
dimensions.

Because the sizes of most of the array dimensions must be specified in the function
declaration it is very difficult to write a function to act on sub-arrays of multi-
dimensional arrays. For example, this idea would be useful to define library
functions to operate on matrices with different dimensions. Ideally, we would like
one function to calculate the determinant of a matrix for any dimension (i.e., an n-
by-n matrix where n varies). Consider how we want a determinant function to look:

double determinant (double matrix[][], int n); // Bug

Ideally, the dimensions of the matrix are not specified at compile-time, but are
specified at run-time by the n argument. This is not possible as a simple C++
declaration because the second dimension (i.c., n) needs to be specified in the
definition of the two-dimensional array type. The best solution is to use dynamic
multi-dimensional arrays.

Dynamic Memory Management Pitfalls

Memory management is really not the strong suit of C++. If your program is
crashing or behaving badly, it’s highly likely to be some kind of memory problem.
There are so many pitfalls in C++ dynamic memory management, and even in static
or global (non-dynamic) memory, that it’s hard to list them all.

C++ programs have access to a large block of free memory, called the heap. The
actual size of the available memory depends on the system. This memory is available
to a C++ program which can allocate itself chunks of memory from this heap. This
is useful when a C program does not know beforehand how much data is being
stored, and hence, how much memory is required. Instead of allocating a large array
for the worst case, the program can allocate itself blocks of memory as required.

Blocks of dynamic memory can be allocated in two main ways:

e The C++ style “new” or “new []” operators
e Theolder stylemalloc () and calloc () functions (inherited from C)

159 C++ Ultra-Low Latency

Other ways to allocate dynamic memory include:

e strdup (): make an allocated copy of a string.
e realloc():acompanion tomalloc/calloc thatis rarely used.

Once the memory is no longer needed it is “freed” back to the heap. Again, there
are two main ways:

e The C++ style “delete” and “delete[]” operators
e The older style “free” function

Some of the main memory problems in a C++ program can include:

Uninitialized new memory. The new operator does not initialize the
new chunk of allocated memory. Accidentally using it is a common bug.

Uninitialized malloc memory. The malloc function also does not
initialize its allocated memory. Again, use of a memory block that is
allocated by malloc but hasn’t been propetly cleared is a common bug.
One of the mitigations is to use calloc instead, because calloc does
zero the bytes of every block it allocates.

Mismatched new/delete with malloc/free. Memory allocated
with new should be deallocated by delete, butmalloc’d memory
should be free’d. Never the twain shall meet, or else kaboom.

Mixing new/new[] and delete/delete[]. Memory allocated
by new should be released by delete, but memory allocated by the array
version “new []” should be freed by the delete[] array version. Again,
they’re not supposed to mix.

free(nullptr) is harmless. If it’s so harmless, why is it a pitfall?
Sure, free (nullptr) is officially defined by the standard to do nothing.
But if your coding is doing this, it sure walks and talks and quacks like a
buggy duck.

strdup (nullptr) is not harmless. This is probably a crash, but even

on systems where it’s not, it’s clearly a bug in your code if you’re trying to
duplicate a null pointer.

David Spuler 160

Pitfalls for Non-Dynamic Memory Blocks

There’s so many pitfalls in management dynamic memory, with either new/delete
or malloc/free, that surely we’ve run out? No, don’t worty, it’s comforting to know
that there are still a bunch more insidious problems in other types of non-allocated
memory.

Here’s a list of some more fatal memory stomps that aren’t about allocated blocks
on the heap:

e Buffer overrun of a global, local, static, or stack buffer variable.

e Returning the address of a local variable on the stack (ie., non-
static variable).

e Trying to write to addresses of string literals (often a crash if they’re non-
writable, but maybe worse behavior if it can be modified).

e Modifying arr [10] in an array of size 10 (raw arrays or std: :array).

e Uninitialized local variables or local buffers on the stack (non-static).

e Using an uninitialized local pointer variable to access some random address
in Timbuktu.

e Null pointer dereferences. Oh, well, at least you initialized it.

e Returning the address of a “static” local variable (aliasing problems).

e Using a negative array index.

e Modifying a string literal (they’re in read-only memory on Linux).

The standard C++ library functions can also have problems:

e strcpy () on overlapping string arguments: strcpy (s, s+1);

e strncpy () canleave strings without a null byte terminator.

e memcpy () on overlapping memory blocks (use memmove instead).

e Trying to free() ordeletea global, static, stack or instruction
address will crash.

e Double fclose () on file pointers from fopen.

e Ignoring the return value of erase () in an iterator loop.

161 C++ Ultra-Low Latency

David Spuler 162

17. Memory Pools

What are Memory Pools?

Memory pools are a C++ optimization where you take control of the memory
allocation used for a class of objects. The basic idea is to store all objects of the
same type in a big array, next to each other, rather than being spread out over the
heap wherever the new operator decides to put them.

Memory pools are a general optimization that can be used in C++ with
the new operator, and also in C programming with malloc.

Some of the related data structures include:

e Bucket array
e Hive

A bucket array is like a memory pool, in that it’s a big memory block, and you put
your objects in there. However, a bucket array usually handles erasing an object by
simply marking it as invalid using a Boolean flag. The memory for an erased object
is not usually re-used when you insert a new object.

A hive is a generalization of a bucket array, whereby a hive can dynamically expand
and contract the number of buckets. Notably, there’s a std: :hive class to use in
C++206, which would make a good basis for an advanced type of memory pool.

However, we’re going to examine some of the simpler types of memory pools first.

163 C++ Ultra-Low Latency

Why Memory Pools?

Other than being a fun and gritty project in low-level C++ coding, the goal is speed,
and this is achieved in various ways:

e Preallocation — no need to allocate memory on a low-latency hotpath.
e Fewer allocation calls — one big chunk rather than lots of small ones.
e TFewer deallocation calls — reusing memory addresses within the pool.

e No memory fragmentation — we don’t mix small and large memory
allocations.

e Less memory overhead — hidden heap memory “control blocks” are not
needed.

e Cache locality — all objects are stored contiguously.

In fact, you can even get the number of memory allocations for your class down to
zero, if you really want to, by using a global memory pool object. Even the memory
poolis not on the heap! But this only works for a tixed-size memory pool, and thus,
only if you’re really sure you won’t need too many objects.

Memory fragmentation is also a slowdown that can be avoided or reduced with
memory pools. The problems with fragmentation atise in two ways:

e Frequent allocations and de-allocations, and
e Different-sized memory blocks.

A memory pool is helpful in both respects. The memory pool avoids lots of
allocations by using one big block, and avoids deallocations by re-using the
locations inside the block. And because the memory block stores lots of blocks of
the same size, we aren’t mixing up different size allocations.

Disadvantages of Memory Pools

Firstly, this whole idea of memory pools is only about reducing allocated memory
on the heap. This optimization is not relevant for objects stored on the stack (i.e.,
local variables), or static objects, such as global scope objects or static data
members.

David Spuler 164

Memory pools are not the only option for optimization memory allocation. In fact,
the use of an open-source drop-in replacement for the standard C++ memory
allocators is another significant option:

e jemalloc — the original FreeBSD allocator, now a Facebook favorite.
e tcmalloc — from Google, with an Apache 2.0 license.

The other disadvantages of memory pools include:

e Fixed maximum number of objects (in the basic versions).

e Only works for single-sized objects (e.g., one class).

e Need one memory pool object for each type of object (via templating).
e Not useful for optimizing variable-sized objects (e.g., strings).

e Allocating too much memory in one massive chunk.

However, we can work around a lot of these disadvantages by using a templated
class for our memory pool. The optimization of memory pools is a general
algorithm that works for all types of objects.

Memory Control Block Overhead

Whenever you allocate memory on the heap, using the new operator or the old-
style malloc function, it returns you the address of the block. But that’s not actually
the start of the rea/ memory block.

There’s actually an extra memory control block stored before that address. It
contains meta-information about the memory block, which is used by the C++
standard library to keep track of things. For example, the size of the memory block
is stored in that control block.

Whenever you deallocate a memory block by sending the address
to delete or free, the standard library knows to look backwards a few bytes.
Hence, it can find the size of the memory block, which helps it to deallocate the
full block of memory. You don’t need to worty about it, because the standard library
takes care of it.

Hence, if you create a memory pool from one big chunk to contain 100 objects,
rather than 100 separate calls to the new operator, there are 99 fewer memory
control blocks. This is why memory pools reduce the memory overhead from your
objects.

165 C++ Ultra-Low Latency

Fixed-Size Memory Pool Algorithms

For simplicity, we’re going to limit our first memory pools to just one huge block
in memory. This means that we can choose the overall capacity of the memory pool,
but we can’t increase it later by adding a second big block. This makes our memory
pool more like a vector or array, rather than a dynamic bucket array or hive.

Even with these restrictions, there are still quite a few choices to make about
designing our memory pool algorithm. Some of the alternatives include:

e Boolean flag— storing an “active” flag in each object.

e Index array — maintaining a list of indices of free blocks as a “free list”
(instead of a per-object flag).

e DPointer array — tracking the free list via pointers.

e Permutation-based free list approach.

In the first case, we only have one array, and each block contains the “active” flag
along with the stored user objects. In the other cases, we maintain two arrays, for
one of the uset’s objects, and another as the free list (with either indices, pointers,
or permutations).

Disadvantages of Boolean Flag Method

The first point to remember is that this memory pool is a significant optimization.
It achieves all the advantages of a memoty pool as outlined above: preallocation,
fewer allocations and deallocations, less memory fragmentation, and so on. Hence,
it’s a good start, and a worthy improvement to our classes.

We could stop now, and go home with a smile on our face.

However, it’s not optimal. There are even better ways to code up a memory pool.
The suboptimal features of this version of a memory pool include:

e Mixing hot and cold data

e Alignment issues for some types
e Extra padding bytes needed

e Slow insertions

David Spuler 166

One problem with the above approach is that it mixes “hot” and “cold” data. Your
objects are probably hot areas of processing that are doing whatever you need. The
Boolean flags are only used by the memory pool when inserting and deleting
objects, and are thus cold data for the main processing algorithms. It would be
better for cache locality if the cold data was separated from our hot objects.

Memory size is also not optimal. By adding a single Boolean variable to each object,
it’s not just 1 byte extra, because the compiler probably may have to add a number
of padding bytes to meet the alignment requirements (depending on what’s inside
your objects). This will increase the memory size, and worsen cache locality when
processing multiple objects.

However, the main problem with the Boolean flag approach is that it’s slow. In fact,
it has worst case O(n) performance for an insertion, because it might have to scan
the entire array to find a free block. This worst case won’t happen initially, but the
performance can degrade as the memory pool fills up, and we do lots of insertions
and deletions.

We can do better!

Boolean Flag Array Method

One way that we can address some of these issues is by separating all of the Boolean
“active” flags into a different array. Rather than storing a flag in each object, we
just store the user’s object in the main block, and have a second block that contains
the Boolean flags.

The advantages are that it fixes the hot-cold data problem, addresses alighment
concerns, and the compiler won’t need to add extra padding to the array of user
objects. The array of Boolean flags should be one byte per object, but stored in a
different array.

Firstly, we move the “active” flag out of the structures:

struct Node {
unsigned char data[sizeof(T)]; // Raw storage

bi
And put it into a separate array:

bool activearr [N];

167 C++ Ultra-Low Latency

The handful of places that used the “active” flag need to be changed to the
“activearr ” array member.

We can also fix the alignment issues using the alignas and alignof specifiers:
alignas (alignof (T)) std::array<Node, N> arr ;

Bit packing. This active flag array method can be further improved by using bit
packing. We only need one bit flag per object, rather than one byte each. Hence,
we can pack them all into an array of 64-bit unsigned long, and can check for
a free block using one integer comparison, testing 64 memory blocks at a time.

In practice, this version is pretty fast. Even so, it is technically still an O(#) worst
case algorithm for insertion or deletion with large numbers of objects. And there
are a few ways to fix that.

Index Array Memory Pool

The faster solution is to maintain an array of integer indices for the free locations.
The advantages of this index array approach over the eatlier “active” flag method
include:

e Insertion and deletion always have O(7) complexity.
e Separates hot data from cold data.
e No extra padding bytes needed.

Here’s the basic definition of the class:

template<typename T, int N>

class IndexMemoryPool {
struct Node ({

unsigned char data[sizeof (T)]; // Raw storage

bi

private:
alignas (alignof (T)) std::array<Node, N> arr ;
int freelist [N]; // free indexes (stack-like)
int ct ;
int ctfree ;

//

bi

David Spuler 168

Some of the basic primitives are simple:

bool empty() { return ct == 0; }
bool full() { return ct == N; }

int capacity() { return N; }

int count() { return ct ; }

int count free() { return ctfree ; }

The index array is a “free list” that tells us where to find a free memory block. After
a lot of insertions and deletions, if functions a lot like a stack of free locations. At
the start, it’s a fixed-size stack that’s full with the index of every element available.

IndexMemoryPool () : arr (), ct (0), ctfree (N) {
for (int 1 = 0; 1 < N; 1i++) {
freelist [i] = i; // Store all indexes

When we allocate a new block, that’s a “pop” of the stack, because we’re removing
from the free list:

int pop free index()
{

assert (ctfree > 0);

int index = freelist [ctfree - 1];
assert (index != -1);

freelist [ctfree - 1] = -1; // Clear it
ctfree --;

return index;

The allocation of a block is mostly a call to this “pop” of the free list:

T* alloc() {

if (full()) return nullptr; // fail!
int index = pop_ free index();
assert (index != -1);

ct _++; // Incremental count
return reinterpret cast<T*>(&arr [index]);

169 C++ Ultra-Low Latency

And the reverse is true when the caller releases a memory block. This is a push
operation of a newly free index onto the stack.

void push free index (int index)
{
assert (ctfree < N);
freelist [ctfree]
ctfree ++;

I~

index;

And here’s the version for release the memory:

void erase (T* addr) {
assert(ct_ >= 0);
Node* nptr = reinterpret cast<Node*>(addr);
if (nptr >= reinterpret cast<Node*>(&arr [0])
&& nptr <= reinterpret cast<Node*>(&arr [N - 1])
) A
// Valid pointer...
int offset = nptr - &arr [0];
push free index(offset);
ct_--; // Incremental count
}
else { // Invalid pointer...
assert (false);

}

In summary, note that the push and pop of the free list stack is very efficient with
O(1) complexity. This index array version has constant-time efficiency.

Boolean Flag Memory Pool

This is the simplest approach, but not the fastest. Let’s examine it to get some of
the basic ideas.

Some of the interesting features of this code include:

e Boolean flag— stored as a data member in every memory pool record.

e Dointer arithmetic — used in computing the offset when erasing an object.

e Incremental count — increment on allocation, decrement on release.

e Compile-time pool size — this wuses std::array rather
than std: :vector.

David Spuler 170

Here’s the basic layout of the memory pool class.

template<typename T, int N>
class MemoryPool {
struct Node {
T data;
bool active;
}i
private:
std::array<Node, N> arr ;
int nextfree ;
int ct ;
//
}i

The constructor has to set all the “active” flags (although using memset would
be faster than a loop):

MemoryPool () : arr (), nextfree (0), ct (0) {
for (int 1 = 0; 1 < N; i++) arr [i].active = false;

}

The code maintains the index of the “next free” object. Initially, it’s increasing as
the first blocks get used, but later it’s necessary to scan lineatly.

int find next free(int offset) {
if (offset == -1) offset = 0;
int i = offset;
do {
if (larr [i].active) return i; // Found
i=(1+ 1) % N;
} while (i != offset);

return -1; // It’s full!

Here’s the code for the allocation of a memory pool block:

T* alloc() {

if (full()) return nullptr; // fail!
assert (nextfree != -1);

int oldindex = nextfree ;

arr [oldindex].active = true; // Not free
nextfree = find next free (nextfree);

ct ++; // Incremental count
return reinterpret cast<T*>(&arr [oldindex]);

171 C++ Ultra-Low Latency

And here’s the code whereby a block is released by the caller. Note that the index
computation requires pointers converted to the correct type. This code has some
safety checks that are quite expensive, and might later be removed for production
usage.

void erase (T* addr) {
assert(ct >= 0);
Node* nptr = reinterpret cast<Node*>(addr);
if (nptr >= reinterpret cast<Node*>(&arr [0])
&& nptr <= reinterpret cast<Node*>(&arr [N - 1])
) A
// Valid pointer...
int offset = nptr - &arr [0]; // Pointer arith
assert (nptr->active);

nptr->active = false; // Free now

ct_--; // Incremental count

if (nextfree == -1) { // Was full?
nextfree = offset;

}

}

else { // Invalid pointer...
assert (false);

}

Constructor inefficiency. This implementation has a high-level slug if the
memory pool is instantiated for use with a non-trivial class type. The definition
for std: :array will cause the constructors for every single object to run
needlessly on the empty storage bytes, when the memory pool is first created or
defined. The solution here is simply to use bytes instead of the class type for the
storage declaration:

struct Node {
unsigned char data [sizeof (T)]; // Raw storage
bool active;

bi

But we also need to be careful of memory alignment in this situation. The template
could be instantiated on any type, some of which will need aligned addresses.
Character addresses won’t get automatically aligned, so we have to
use alignas specifier. However, it’s hard to fix in this implementation, because I
cannot use alignas (alignof (T)). The extra “active” flag in the structure is
messing everything up. But that’s only one disadvantage of this method.

David Spuler 172

Memory Pools Versus Containers

Why do you need a memory pool? Why not just use the standard C++ containers
for your objects? Isn’t a memory pool about the same as std: : vector?

Yes and no.

Yes, a memory pool for your objects is very similar to managing them all in a
standard vector. After all, the memory pool code can use a std: : vector object
inside it as the big pool. So, yes, you can manage your objects in a standard vector
if you:

e Use a single reserve or resize call to allow the vector to allocate
memory in one call.
o Keep track of objects going in and out of the vector.

In other words, it’s almost the same thing as writing a memory pool, except it’s
mixed in the middle of your application’s main logic.

Hence, no, it’s not quite the same thing. There are two types of containers:

e Contiguous storage containers — it’s very similar.
e Maps, sets, hash tables — memory management performance gains.

We'll examine vectors and arrays in a minute, but first let’s look at the other
containers. There are two aspects to use normal memory allocation and storing your
objects in these advanced containers:

e Allocating memory for your objects — you’ve improved nothing (it’s one
allocation call per object).

e Extra container allocations — the container also needs memory allocation
and a memory pool doesn’t help with that.

But for the containers based on contiguous memoty, the issue is less clear cut. The
standard containers based on contiguous storage include:

e std::vector

e std::array
e std::inplace vector (C++26)

173 C++ Ultra-Low Latency

When you compare a memory pool to using a standard vector of your objects, there
is less gain to performance. However, creating a memory pool as a standalone class
has several practical advantages:

e Separate memory management optimizations from business logic.

e Ensures only a single (huge) memory allocation occurs (or only a few if it’s
dynamic).

e Callers of the interface or API don’t need to know about the memory
management aspects.

Creating a memory pool as a separate idiom is good for encapsulating the
performance optimization aspects of memory management. It encourages
modularity by isolating high-level business logic from low-level resource
management.

Advanced Memory Pools

Higher-level improvements to the public memory pool interface are also possible.
Most of the discussion here has been about a memory pool for one type of class,
with a focus on reducing the number of distinct blocks requested on the heap. More
advanced memory allocators are well-known, and they offer a variety of generalized
performance optimizations and convenience features:

e Thread safety (e.g., a single mutex or a lock-free version).

e Intercepting the class-specific new and delete operators.

e DPassing arguments to object constructors via parameter packs
and std:: forward()

e Placement new operator — does not really allocate memory!

e Custom allocators — memory pools via allocator functor objects.

Additional memory management features that could be added to a memory pool
include:

e Dynamic expansion with multiple chunks rather than a fixed-size pool.

e Multiple object types supported in the memory pool.

e Dynamic size of objects allowed by allocating multiple large “pools” or
memory chunks.

e Downsizing the memory pool if fewer objects are required.

Even more general than memory pools is the concept of “custom allocators.” The
idea of custom allocators is not just to enhance memory handling of a few classes,
but to take over the whole memory allocation shemozzle from the standard library.
David Spuler 174

Extensions

1. Build your own simple memory pool templated class.

2. Add a memory pool to your object class by overloading a set of class-
specific new and delete operators, sending these allocation requests to
the memory pool instead.

3. Code up multiple types of memory pools and measure their performance.

4. Generalize your memory pool class to dynamically manage multiple big
chunks of memory, rather than just one.

5. Implement an advanced dynamic memory pool using the new container
class std: :hive (C++20) as the underlying data structure, rather than a
vector or array.

References

1. Sourav Ghosh, July 2023, Building Low Latency Applications with C++, Packt
Publishing, https://www.amazon.com/dp/1837639353

2. Larry Jones, 27 Feb 2025, Mastering Concurrency and Multithreading in C++:
Unlock the Secrets of Expert-Level
Skills, https:/ /www.amazon.com.au/Mastering-Concurrency-
Multithreading-Secrets-Expert-Level-ebook/dp/BODYSB519C

3. Devansh, Feb 27, 2024, A guick introduction to Memory Pools: Optimizing
Memory Management in Software Engineering, https://machine-learning-made-
simple.medium.com/a-quick-introduction-to-memory-pools-
cc3198d004db

4. happyer, Apr 23, 2024, Memory Pool Techniques in
C++, https://medium.com/@threchappyer/memory-pool-techniques-
in-c-79e01£6d2b19

5. Bernardo Palos, 2025, Memory Pools in C++_ What They Are and How to
Tmplement Them, https:/ /palospublishing.com/memory-pools-in-¢_-what-
they-are-and-how-to-implement-them

6. Stack Overflow, 2019, C++177 memory pool design
pattern? https:/ /stackovertflow.com/questions/16378306/c11-memory-
pool-design-pattern

7. Boost,

2011, Boost.Pool, https:/ /www.boost.org/doc/libs/1 53 0/libs/pool/doc
html/index.html

8. Roger Ferrer Ibafiez, Nov 19, 2017, A very simple memory pool in

C++11, https:/ /thinkingeek.com /2017/11/19/simple-memory-pool

175 C++ Ultra-Low Latency

https://www.amazon.com/dp/1837639353
https://www.amazon.com.au/Mastering-Concurrency-Multithreading-Secrets-Expert-Level-ebook/dp/B0DYSB519C/
https://www.amazon.com.au/Mastering-Concurrency-Multithreading-Secrets-Expert-Level-ebook/dp/B0DYSB519C/
https://machine-learning-made-simple.medium.com/a-quick-introduction-to-memory-pools-cc3198d004db
https://machine-learning-made-simple.medium.com/a-quick-introduction-to-memory-pools-cc3198d004db
https://machine-learning-made-simple.medium.com/a-quick-introduction-to-memory-pools-cc3198d004db
https://medium.com/@threehappyer/memory-pool-techniques-in-c-79e01f6d2b19
https://medium.com/@threehappyer/memory-pool-techniques-in-c-79e01f6d2b19
https://palospublishing.com/memory-pools-in-c_-what-they-are-and-how-to-implement-them/
https://palospublishing.com/memory-pools-in-c_-what-they-are-and-how-to-implement-them/
https://stackoverflow.com/questions/16378306/c11-memory-pool-design-pattern
https://stackoverflow.com/questions/16378306/c11-memory-pool-design-pattern
https://www.boost.org/doc/libs/1_53_0/libs/pool/doc/html/index.html
https://www.boost.org/doc/libs/1_53_0/libs/pool/doc/html/index.html
https://thinkingeek.com/2017/11/19/simple-memory-pool/

9. Contributors, May 2025 (accessed), jemalloc memory
allocator, https:/ /jemalloc.net/, https://github.com/jemalloc/jemalloc (ot
iginally from FreeBSD, then updated by the Mozilla Foundation and
Facebook, Inc.)

10. Google, May 2025
(accessed), TCMalloe, https://github.com/google/tcmalloc (Apache 2.0
License)

David Spuler 176

https://jemalloc.net/
https://github.com/jemalloc/jemalloc
https://github.com/google/tcmalloc

18. Data Compression

What is Data Compression?

Data compression is a common efficiency requirement in low-level programming.
This is the general class of algorithms that aim to make data smaller.

Generally, there are two main phases:

e Compression — reducing data to a smaller size.
e Decompression — inflating the data to its original values.

There are two main classes of data compression algorithms:

e Lossless — the original data is fully restored.
e Lossy — uncompressed data differs and is partially “lost” in some sense.

Obviously, lossless algorithms are preferable, but some types of lossy algorithms
can achieve much better compression ratios. Hence, there is a trade-off between
data size and accuracy of the uncompressed data.

The best example of lossy compression in the modern era is “quantization” in Al,
which is a type of “model compression” technique. The billions of 32-bit numbers
that are an LLM’s “weights” can be shrunk down to fewer bits, often as few as 4
bits each, while still retaining the general capabilities and knowledge of the original
model. In this way, LLMs are much smaller to transport over the network, to store
on disk, and also faster to run on CPUs or GPUs (less memory usage).

Note that this is not a typical data compression algorithm, because quantized
models are not “uncompressed” back to 32-bit numbers, but are used in their low-
bit formats.

177 C++ Ultra-Low Latency

Related Data Algorithms

Data compression is somewhat related to other common programming tasks, but
it is not the same as:

e Encoding — converting data to a simpler representation.

e Encryption — hiding the data with varying levels of difficulty.

e Hashing — mapping data to a hash value.

e Data compaction — using smaller data records.

e Data structures — organizing data for fast search or other operations.

Encoding or encryption of data are different requirements to compression. In fact,
both encoding and encryption can increase the data load and slow things down.,
but have other advantages.

Encoding neither makes the data smaller nor hides it from prying eyes. The goal of
encoding is to make it easier to use data, whereas data compression has the central
aim of reducing size. There are some common encoding algorithms:

e Base64 (or UUencode) — transmit binary data over text-only streams using
the subset of printable characters.

e UTF-8 — internationalization encoding for European letters and Double-
Byte Character Sets (DBCS).

¢ Rot-13 — simple semi-encryption method.

Note that most of these encoding algorithms will actually increase the size rather
than decrease. This is true of both UTF-8 or UUencode.

Encryption is a different task, and it’s not related to data compression. The purpose
is to maintain privacy and security of the data payload, and the way to do that often
increases its size. Some of the well-known encryption algorithms for “hash”
creation include:

e SHA (Secure Hash Algorithm)
e MD5 (Message Digest 5)
e AES (Advanced Encryption Standard)

These algorithms have been used for things like password encryption in the past.
More recently, these encryption algorithms became known as cryptographic
algorithms, because they’re used in Bitcoin mining and other “crypto” creations.

David Spuler 178

Low Latency Data Compression

When there’s too much data, you want to compress it. In low latency programming,
some example situations where data compression algorithms can be useful include:

e Disk storage — e.g., compressing large volumes of historical data in files
or databases.

e Network data transmission — e.g., sending data off to a different site for
ML model processing.

The goals of data compression include:
1. Reduced space storage on disk or in memory, and/or
2. Faster network transmission

Note that the goal is not to make processing faster. In fact, to process the data later,
you would have to uncompress it first. Both compression and uncompression are
extra processing costs, so there is a trade-off when considering the benefits of data
compression algorithms.

Trading algorithms involve the processing of a lot of data, often aggregated from
multiple financial exchange locations. Full market data with deep order book details
grows quickly in size, and compressing this data speeds up historical storage,
algorithmic analysis for trading storage, and backtesting with this data.

Data Compression Algorithms

There is a long history of data compression algorithms from the 1970s and earlier.
The lossless algorithms from that era include:

e Run-Length Encoding (RLE)
e Huffman coding
e Lempel-Ziv algorithm (LLZ)

Run-length encoding is well-known and unsophisticated. It can do well if the data
has long “runs” of the same value, which is relatively common in images, but not
in text.

179 C++ Ultra-Low Latency

Huffman coding is a more complicated data compression algorithm. It involves
building a separate data structure that represents the bitwise encodings for different
patterns. Huffman coding is quite successful as an algorithm, but its main downside
is the need to convey the dictionary as a separate data structure before decoding
can begin on the main compressed data.

The Lempel-Ziv algorithm was a clever idea of overcoming Huffman coding’s main
disadvantage by building a dictionary incrementally inside the compressed data,
thereby alleviating the need to pre-send a separate data structure. Several variants
for LZ data compression have been used:

e LZ77 — the original 1977 version.
e LZ78 — an improved version in 1978 by the original researchers.
e Lempel-Ziv-Welch (LZW) — a further improved and popular algorithm.

LZ77 is the original LZ algorithm from 1977, using a “sliding window” over the
text. Each entry in the compressed file includes a character count and an “offset”
back to a prior occurrence of the same text string. In this way, the explicit dictionary
required for Huffman encoding is no longer needed, because the strings in the prior
text are used as if they were a dictionary.

The LZ78 variant is a modification of the LLZ77 algorithm, which uses an explicit
dictionary data structure. However, this dictionary is used internally by both the
encoder and decoder, but does not need to be sent from the encoder to the decoder.
Instead, the decoder can rebuild the dictionary in an incremental fashion as it
decompresses the text.

The LZW algorithm became the most widely used data compression algorithm. It
was used in numerous Unix tools and notably in the GIF image format.

The improved LZW algorithm modified the LZ78 algorithm to introduce faster
handling of some failed-match sequences. Initially, it has a “predefined” dictionary
for all possible symbols, which is used if a text string has no match in the normal
LZ78 dictionary. For 8-bit data, there are 256 of these predefined symbols, being
all the single-character strings. Both the encoder and decoder start with this initial
dictionary.

The main downside of the LZW algorithm for modern computing is that it’s an
inherently sequential algorithm, since both the decoder and encoder must
incrementally build the dictionary from the data sequence. This means that it’s
difficult to fully parallelize LZW encoding or decoding on multiple CPU threads or
using GPUs.

David Spuler 180

Parallel Data Compression Algorithms

Many of the traditional data compression algorithms are difficult to parallelize. The
problems that need to be overcome include:

e Inherently incremental algorithms (sequential nature)
e Variable-length bit strings

Incremental algorithms. Compression that must start at the beginning of the data
stream is problematic for parallelization. An example of this is the “sliding window”
approach in LZ77. The dictionary approach in L.Z78 is also difficult to parallelize,
because it requires a phase to construct the dictionary, before all sub-texts can be
compressed.

Bit position offsets. It might seem that the Huffman algorithm could have parallel
decompression once the dictionary has been sent to the decoder. However, another
problem arises: given a chunk of data to decode, how does the decoder know which
bit in the first byte to start with. It could be any of the bit positions. The variable-
length bit strings used by compression mean that you cannot determine this without
processing from the beginning of the input string.

Naive parallelism. You can parallelize all of these algorithms by doing a “restart”
in every chunk, which is sometimes called a “segmented compression” algorithm.
The LZW algorithm even has a “clear code” for exactly this purpose. But that’s not
a very good method! I don’t see much difference between that idea and just splitting
the data into a bunch of files, and then compressing each file. Furthermore, the
code that’s working on each chunk is running an inherently sequential algorithm,
rather than one that’s vectorized over SIMD or GPU kernels. Somehow that
doesn’t seem optimal to me!

Parallelizing LZW compression. The LZW algorithm also suffers from these
problems that limit parallelism. The encoder and decoder both build the dictionary
in an incremental manner from the start, limiting parallelism. And most LZW
algorithms used variable-length bit representations, which also depend on prior
input data.

There are some parallelizations possible for an LZW data compression algorithm,
but these are not inside the main data compression loop. Rather, the features that
wrap around the main LZW logic can be separated.

181 C++ Ultra-Low Latency

Parallel optimizations to the LZW algorithm include:

e Run the bit packing/unpacking in a separate thread from the
encoder/decoder.

e Run the I/O in parallel to the encoding/decoding (i.e., file input, file
output) by reading or writing chunks to files in separate threads.

Even this bit packing parallelization runs into problems and requires modification.
There’s no difficulty if the LZW algorithm uses fixed-width 12-bit codes. However,
variable-length LZW variants can change the bit positions, leading to difficulty with
parallel packing and unpacking of chunks.

Chunk headers. One possible solution to the variable bit position issue is to
extend the algorithm so that every chunk has a “header” of data. A simple version
would have an extra two bytes that encode: (a) what bit position to start processing
for the rest of the data, and (b) how many bits are being used for packing.

However, this simple two-byte header still has a problem: the number of bits for
encoding numbers in LZW can increase at any point in the middle of a chunk. A
more complex header is needed, such as the two bytes indicating the bit position
and number of bits, along with another two bytes indicating how far along in the
chunk until the bit sizes increase.

Newer parallel algorithms. This chapter has only scratched the surface of
parallelizing data compression algorithms. It is perhaps unsurprising that older
algorithms designed for sequential processing are difficult to parallelize. However,
there is an immense body of research in this area, and some newer parallel data
compression algorithms:

e Parallel gzip

e Zstandard

e Parallel bzip2

e Parallel L.Z4

e Parallel LZMA

e BTW parallel Huffman

There are many options and many research papers to read.

David Spuler 182

References

1. Michael Dipperstein, 2019, &kw: An ANSI C implementation of the LZW
compression algorithm, https://github.com/MichaelDipperstein/lzw

2. Mark R. Nelson, 1999, LZW data compression/ expansion demonstration
program, https:/ /people.cs.pitt.edu/~kirk /cs1501 /assignments /lzw/lzw.c
XX

3. Geeks for Geeks, 21 May, 2024, LZW (Lempel—Ziv—Welch) Compression
technique, https:/ /www.geeksforgeeks.org/computer-networks /lzw-
lempel-ziv-welch-compression-technique

4. Wikipedia, June 2025 (accessed), LZ77 and
L.Z78, https://en.wikipedia.org/wiki/1.Z77 and 1.Z78

5. Facebook, 2025, Zstandard - Fast real-time compression
algorithm, https:/ /github.com/facebook/zstd

6. LZ4 contributors,
2025, LZ4, http:/ /www.lz4.0rg/, https://github.com /124 /124

7. Dingwen Tao, 2019, GPU-Accelerated 1 ossless Compression
Survey, https://github.com/dingwentao/GPU-lossless-compression

8. Flanglet, 2025, Kangi: Fast lossless data compression in
C++, https://github.com/flanglet/kanzi-cpp

9. Martin Vorbrodt, 2019, Extremely Fast Compression Algorithm, Vorbrodt’s
C++ Blog, https://vorbrodt.blog/2019/03/22/extremely-fast-
compression-algorithm/

183 C++ Ultra-Low Latency

https://github.com/MichaelDipperstein/lzw
https://people.cs.pitt.edu/~kirk/cs1501/assignments/lzw/lzw.cxx
https://people.cs.pitt.edu/~kirk/cs1501/assignments/lzw/lzw.cxx
https://www.geeksforgeeks.org/computer-networks/lzw-lempel-ziv-welch-compression-technique/
https://www.geeksforgeeks.org/computer-networks/lzw-lempel-ziv-welch-compression-technique/
https://en.wikipedia.org/wiki/LZ77_and_LZ78
https://github.com/facebook/zstd
http://www.lz4.org/
https://github.com/lz4/lz4
https://github.com/dingwentao/GPU-lossless-compression
https://github.com/flanglet/kanzi-cpp
https://vorbrodt.blog/2019/03/22/extremely-fast-compression-algorithm/
https://vorbrodt.blog/2019/03/22/extremely-fast-compression-algorithm/

David Spuler 184

Part IV: Low Latency Data
Structures

185 C++ Ultra-Low Latency

David Spuler 186

19. Modern C++ Containers

Standard C++ Containers

Contiguous data containers. The general-purpose containers with contiguous
data are called “sequence containers” and include several that are well-known and
often used:

e std::string— dynamic character arrays.
e std::vector — dynamic everything arrays.
e std::array — static fixed-size arrays.

e std::bitset — fast bit vectors.

Associative containers and sets. The associative key-value data structures are
more commonly called a “map,” “dictionary,” or “symbol table” design pattern.
Note that the “set membership” idiom is usually very similar to the associative
containers, because the search is the same, but the sets don’t have a payload at the
end.

The main types of modern C++ containers for searching include the choice
between two main types of underlying data structures:

e Red-black balanced binary trees — logarithmic complexity for search,
insert and delete.
e Hash tables (with chaining) — constant-time average complexity (fast!),

but linear worst-case (slow!).
The containers include these red-black tree versions:

e std::map — key-value lookup (dictionary idiom).
e std::set — key-only set membership lookup.

And these are the hash tables (my favorite data structurel):

e std::unordered map — dictionary hash table for key-value pairs.
e std::unordered set — hash table for set membership.

187 C++ Ultra-Low Latency

There are also variants that allow duplicates, which means multiple copies of the
same key stored separately in the container. Examples include:

e std::multiset
e std::multimap
e std::unordered multiset
e std::unordered multimap

Linked list containers. Some of the containers to manage data in dynamically-
allocated linked lists include:

e std::1list — double-linked list
e std::forward list — singly-linked list

Note that the hash table containers (e.g., std: :unordered map) also belong on
this list because they use “chaining” for collision resolution. This approach
effectively hangs linked lists off every bucket of the hash table.

Sorted “flat” containers. There are some newer containers in C++23 that are
“flat” in the sense that they maintain data in sorted order. These classes include:

e std::flat set
e std::flat map
e std::flat multiset
e std::flat multimap

Special semantics containers. Some of the general-purpose containers with
different semantics to searching include:

e std::stack — dynamic FIFO structure.

e std::queue — queue data structure (single-ended).

e std::dequeue — double-ended queue.

e std::priority queue — implements the “heap” data structure.

View containers. The various types of “view” containers include:
e std::string view

e std::span
e std::mdspan — multidimensional view class.

David Spuler 188

Bit-level data structures. Modern C++ supports both class libraries and utility
functions for a variety of low-level bit manipulation tasks. Some examples include:

e std::bitset
e Bit manipulation utilities in <bit>

Small utility data structures. Some of the more generic types of “mini-data
structures” include:

e std::pair

e std::tuple

e Ranges

e std::optional
e Permutations

Multithreading data structures. Parallel coding with synchronization and locking
is supported in modern C++ with libraries such as:

e std::thread

e std::mutex

e std::lock

e std::condition variable
e std::atomic

e std::latch

e std::barrier

And that’s not the full list of primitives available in the concurrency library. Many
of these multithreading capabilities have been available since C++11.

Upcoming C++26 containers. Some of the upcoming containers include:

e std::hive (C++20)
e std::inplace vector (C++26)

What’s missing? I feel ungrateful to even be writing this list, given the amazing
amount of work that’s gone into coding up all the above data structures in the
standard C++ library.

189 C++ Ultra-Low Latency

Nevertheless, some of my favorites aren’t on the list yet! Data structures that are
missing from the standard C++ containers library include:

e Sorted array — indirectly supported only (e.g., std: : sort).

e Tries — 26-way tree for storing text keys based on letters.

e B-tree — multi-way tree data structure good for disk storage.

e Graphs — depth-first search, breadth-first search, topological sort.
e Tri-state Boolean — indirectly supported via std: :optional.

General Container Optimizations

Containers have a lot of commonalities in their performance patterns. Some general
comments apply to multiple types of container classes, and making them run faster.
Consider the following when implementing the usage patterns of your containers:

e Choose an initial size — avoid container auto-resizing slowdowns.

e Minimize insertions and deletions — yeah, right, those actions are why we
use containers!

e Auto-resizing of containers — watch out for silent slugs!

e Remove all elements with clear () rather than a loop.

e Container destruction can be slow.

Choose your containers wisely:

e DPrefer hash tables when you need fast searching (e.g., the standard
container class std: :unordered map).

e Don’t use a key-value associative container if you only need a set.

e Consider whether you need sorted or unsorted scanning of all elements.

e DPrefer the various contiguous-memory standard C++ container classes
such as std: :array and std: : vector for good cache locality.

Optimizations in relation to the types of data to use in containers:

e Choose scalar types — objects have more risks of slowdowns from calls to
constructors, destructors, move operators, etc.

e Prefer integer keys — faster than std: :string or char* in key-value
pairs.

e Reduce the sizes of keys and values — minimizes overall container
memory size and improves cache locality.

David Spuler 190

Choosing Containers

This should be a short section of the book because it’s very easy: use the two
containers std: :vector ot std: :unordered map, and forget the rest. Oh,
maybe std: :queue and std: : stack if you must.

I’m only half joking, because there are two things that you often want to do quickly:

e Scanning — std::vectoris an array with contiguous data (cache
locality).

e Searching — std: :unordered map is a hash table with O(7) average
complexity for search, insert, and delete.

So, that’s covered most of the basic data processing requirements. You're either
scanning through a set of data to work on it repeatedly. Or you’re looking a key up
in a dictionary, so you need search to be fast.

What about the other dynamic classes? Somebody’s spent a whole lot of time on
them, so surely they’re useful for something?

There are situations where you might want to consider alternatives to arrays and
hash tables. For example, there’s std: :map, which uses red-black trees and has
logarithmic complexity for searching, inserting and deletion. But this is not as good
as O(7) of a hash table. The situations where a hash table might not be the best
include:

e Scanning of the whole data set that is stored in sorted order —
neither std: :vector nor std: :unordered map are good at this.
e Real-time latency-critical situations — where the worst-case linear

performance of searching a hash table is too risky.

But if you ask me, you can still use only arrays and hash tables in combination. Hash
tables aren’t great at scanning because it’s a non-contiguous linked list scan.

Here’s a funny thought:
1. Insert repeatedly into the hash table, and then

2. Linearize the hash table in an array.

191 C++ Ultra-Low Latency

Those are your main trade-offs. Beyond that, if you’re only searching a set of keys,
but don’t need to map the key to any other data, then use a set rather than a
dictionary (officially called an “associative container”). There’s a (slow) red-black
binaty tree in std: :set, but fortunately there’s a (faster) hash table for that
called std: :unordered set.

Linearizing Containers

One common optimization is to perform some “preprocessing” before doing a lot
of sequential processing of the data. This applies when the startup does a lot of
insertions, but the main processing is mostly about scanning the data. In this case,
we can switch to a linearized version of a dynamic container for faster scanning.
Here’s example code for linearizing a linked list:

// Linearize linked list to vector

std::1list<int> mylist;

std: :vector<int> vec;

//

int n = mylist.size();

vec.reserve(n) ;

for (auto& iter : mylist) {
vec.push back(iter);

This code to linearize is not particularly efficient, because it’s forced to linearly scan
the linked list, and then insert into the vector one-at-a-time. However, I can’t see a
way to do a bulk-insert out of a linked list.

As an alternative, if we no longer needed the linked list version, we could use
the merge () member function (C++17) to transfer items from the list container
to the vector. This is particularly effective because merge () changes the internal
container pointers, but doesn’t call any copy or move methods.

Changing Containers

Another idea is to convert our insertion-friendly container to one that’s best for
fast searches. One idea that goes from binary trees to hash tables is this:

e Handle the insertion phase with std::map — logarithmic insertion
complexity with red-black trees.
e Convert to std: :unordered map (hash table) for faster searches.

David Spuler 192

Note that C++17 has the std: :merge () member functions for splicing one
container into another. There’s also extract () to remove a single item. Note that
these routines don’t move or copy any user data, but only update container internal
pointers. This avoids the need for erasing data from one container and re-inserting
all the data into the other container.

On the other hand, hash tables also have fast insertion with constant time on
average, which is better than logarithmic (on average), so why do we need the red-
black trees at all? One reason is that hash tables can degrade to linear performance
in the worst case. Another reason is that the trees are good at fast processing of the
data in sorted order, whereas hash tables have unsorted data.

Maybe we should do the reverse, handling insertions with our hash table, and then
converting to a red-black tree for scanning in sorted order. No, not really. If we
want sorted scanning of data, we’d probably do better to export the hash table to
a std::array or std: :vector, and then use std: :sort () on the array or
vectot.

So many choices, so little time!

Useful Member Functions

Optimizing containers is about choosing the best one for your requirements, and
then making the best usage of the interfaces that are provided. You don’t need to
write your own if you can do better with the standard containers.

Memory management of the various containers can be further optimized in a
number of ways. Firstly, you can consider things like whether the container is “full”
and what “capacity” it has. The main member functions include:

e size () — number of elements in the data structure.

e capacity () — maximum allowed with current memory.
® reserve () — request an amount of memory.

e resize () — reorganize to a bigger or smaller size.

e clear () — quickly remove all elements.

e shrink to fit () — requesta smaller memory size.

193 C++ Ultra-Low Latency

The hash table containers, such as std: :unordered map, also have member
functions to control the number of buckets and the resizing policies:

e Dbucket count () — size of the hash table array.

e Dbucket size () — length of a chain at an index.

e load factor () — number of keys divided by hash table size.

e max load factor () — read or set the load factor that will trigger a
rehash.

e rehash () — manually trigger a hash table size change and rehash (at your
discretion).

You can use these member functions to track how effective the hash table is
performing. This also allows taking control of the policy of when it will auto-resize
and rehash into a bigger hash table with more buckets.

These C++17 member functions are useful sometimes for removing or moving
multiple elements in a container:

e extract () — pulls a node out of the container data structure.
e merge () — efficiently combines two containers.

Hidden Auto-Resize Slugs

The auto-resizing capabilities of many C++ containers makes them dynamic and
easy to use. However, it also hides a common efficiency that has existed since the
earliest days of the STL: hidden calls to special functions. In fact, there are multiple
reasons that you might want to avoid container auto-resizing:

e Slow performance — every object might get moved.
e Iterator invalidation — all objects could be at new addresses.

Auto-resizing of a container is probably something you want to avoid for
performance reasons. In the worst case, it can trigger a significant delay when you’re
inserting into a container. The cost of an auto-resize may include:

e Memory allocation — e.g., allocating a new memory block or a hash table
array.

e Move assignment calls — not for all container classes.

e Re-hashing — re-computing this for all the objects.

David Spuler 194

Note that some containers will call the move assignment operators, whereas others
will resize the container without actually putting the stored objects in new locations.
Here’s how it works for some:

e std::vector — calls move assignments if the allocated block changes.
e std::unordered map — zero move operator calls.

The situation with the hash table is complex, but basically it moved internal pointers
around, but not your objects. The hash container doesn’t need to move the objects
inside the nodes on the chained linked list, so doesn’t call move operators for the
user’s objects on those nodes. However, it does have to do other container-internal
computations:

e Re-compute the hash function for every node’s key, and
e Re-attach the node to a different chained linked list.

There’s no overall mechanism to control the resizing properties of all containers,
but we can use various different methods. The main solutions are:

e Reserve maximum memory, or
e Manually manage the resizing process.

Initialization with maximum size. The first idea for avoiding auto-resizing is to
guess the maximum number of elements we could possibly need to store in the
containers, and call the reserve () function at the definition of the container
object. For example, the code could be:

std::vector<int> v;
v.reserve (1000) ;

But not this, which will run 1,000 default constructors in a vector of non-scalar
type:

v.resize(1000); // Slow!
And this also would create 1,000 new objects and run their constructors:

std::vector<int> v (1000); // Slug!

This reservation of memory is a type of “preallocation” optimization. We ensure
that all memory that could be required is allocated during the initialization phase,
which ensures that no memory allocations are performed later in the hotpath.

195 C++ Ultra-Low Latency

Detecting auto-resizing. Alternatively, we can detect when an insertion is likely
to trigger an auto-resize. The standard container interfaces allow us to know this,
before we do an insertion:

if (v.size() + 1 > v.capacity()) {
// Resizing likely on insertion!

Unfortunately, there’s not a lot that we can do in this situation. I mean, we could
just “not insert” as a strategy, but that doesn’t sound great.

Deferring container auto-resizing. Alternatively, we could detect the situation 10
insertions ahead of time, still insert the single item, and then do something later to
manage the resizing, perhaps in a lower-priority thread.

const int n_lookahead = 10;
if (v.size() + n_lookahead > v.capacity()) {
// Resizing will be soon!

In standard C++ classes that are more dynamic than the basic std: : vector, such
as std: :unordered map, we can defer the auto-resizing to a more convenient
time. This is only possible for the dynamic classes based on linked lists or binary
trees. Note that the hash table classes actually used linked lists, because of linear
chaining as the collision resolution mechanism.

We can initialize the hash table to a particular size in the constructor. The bucket
count is an optional integer parameter to the constructor.

std::unordered map<std::string, int> hmap (1000);

This only works well if we know the maximum size that we need. For more dynamic
handling, we can also wuse the bucket management functions in
the std: :unordered map interface to detect when the hash table is getting full,
and take appropriate action.

The “load factor” is the number of elements stored in the container, divided by the
hash table array size (i.e., the number of “buckets”). There’s no target load factor
in the standard definition, but an implementation will typically aim for a load factor
around 0.5 to 1.0. The container implementation also has a “maximum load factor”
that will trigger a rehash into a bigger hash table when it’s exceeded.

David Spuler 196

When the load factor is near the maximum value, this means the class will soon be
increasing the hash table size, and possibly re-hashing every single element.

Here’s the idea coded up:

// Detect rehash risk
std::unordered map<int, string> h;
int n lookahead = 10;

float load estimate = (h.size() + n_lookahead)
/ (float) h.bucket count();
if (load estimate >= h.max load factor()) {

// Rehash is likely!

In the case of a hash table, we can actually ensure that it won’t rehash by
manipulating the maximum load factor setting. The max load factor method
has overloads allowing us to both get and set the value.

Hence, a solution that defers rehashing: increase the maximum load factor setting,
insert our new object, and then reset the maximum load factor:

float old load factor = h.max load factor();

h.max load factor(old load factor*2.0f); // Skip rehash
h.insert({ x, s }); // Insert the object without fear!
h.max load factor(old load factor); // reset

Note that we have to be careful, lest we introduce another hidden slug: never-
resizing our hash tables.

Don’t defer it forever!

If you forget to ever rehash your hash table, it won’t crash, but becomes a hidden
slowdown. The use of chaining means that the standard hash table containers won’t
fail if they never get auto-resized, but they will degrade to the linear performance
of a linked list for all operations.

197 C++ Ultra-Low Latency

Hand-Coding Containers

The standard containers are elegant and beautiful, but they are designed to be very
general. Hence, they can sometimes be slower than you could achieve on your own.
Some of the problems with standard container performance include:

e Too many allocations and deallocations with new and delete.

e Non-contiguous storage in dynamic containers (e.g., linked lists, binary
trees).

e There is no easy way to change the overall algorithm — e.g., you can’t
change std: :unordered map to not use linked list chaining for
collision resolution.

e General containers may not meet the requirements of your specific
application.

In short: sometimes you can do better!

David Spuler 198

20. Move Semantics

What are Move Semantics?

Whoever invented move semantics deserves the Nobel prize. Move semantics
refers to a beautiful and elegant addition to C++ class definitions added in C++11.
The syntax is concise and the internal definition is semantically consistent in many
ways. But the most beautiful part of move semantics: it’s all about making C++
even faster!

Move semantics were about making C++ more efficient at a very high level. The
issues were unnecessary calls to class constructors and copy assignment operators
in a number of situations, such as:

e Temporary object creation
e Returning a class type from a function
e Overloaded operator return types

Most of the changes in C++11 that brought in move semantics were done in a way
that maintained backward compatibility. The new features available in classes
included:

e Move constructors
e Move assignment operators

Whereas the new special members needed to be added to existing classes, there
were also a number of automatic compiler optimizations that were enhanced to take
advantage of move semantics:

e Copy elision
e Return Value Optimization (RVO)
e Named Return Value Optimization (NRVO)

Some parts of copy elision rely on move operations, whereas other cases of copy
elision and RVO are actually independent of move semantics, and can be used
without move special functions. But the optimal choice is to use all of them
together.

199 C++ Ultra-Low Latency

Copy Elision

Copy elision is an automatic C++ compiler optimization that “elides” (removes)
various “copy’” operations on objects. I guess “copy removal” just didn’t have the
same ring to it?

Copy elision works in particular situations in the C++ language. These situations
include:

e (lass-type return statements — the main situation.
e throw expressions (and handlers)
e Coroutines

The effect of copy elision is to avoid a full object copy. Instead, the place where the
new object is used simply refers to the old object, which would have been copied
without this optimization.

Technically, there are other unusual situations, and there are two variants of copy
elision:

e Removal of copying, or
e Downgrading copying to a move operation.

You don’t need to modify your code to get the benefits of copy elision. In fact, you
also don’t need to turn the optimizer up to eleven. Copy elision is a normal part of
the C++ standard.

Return Value Optimization

Returning an object type is a special case where the old code used to be inefficient.
The good news:

e Return Value Optimization (RVO) is an automatic compiler optimization.
e Nothing you need to do!

Well, actually you do need to declare a move constructor and a move assignment
operator to get the full benefits, but you were doing that already, right?

David Spuler 200

Why was RVO needed? Because return statements used to cause lots of copying
for objects. This could be worked-around by declaring a reference object parameter,
which was returned back, instead of having an object return type. But that’s
inconvenient, and there are also cases where it’s not possible:

e Binary operator overloads (non-assignment) — e.g., binary “+” operator.

e Unary operator overloads (non-increment/decrement) — e.g., unary “-”
operators.

o Postfix increment/decrement operators — must return the old object (not

the current one).

Operator overloading was one of the most beautiful parts of C++ signatures.
Shame that it used to be inefficient, but now it’s not.

Any function can return a class object, rather than a pointer or reference, but the
effect is that the function itself needs to declare a local object to be returned.
Consider this code:

MyClass func(int x)

{
MyClass ret(x); // Create object
return ret; // Copy object

And then it gets copy constructed again when we call the function:
MyClass m = func(3);

Move semantics solve this problem, in combination with copy elision. This special
case is called Return Value Optimization (RVO), and allows the compiler to do
“one-two-skip-a-few” for object copying.

To get even more technical, this situation is called Named Return Value
Optimization (NRVO), when a function returns a named local variable (i.e., “ret”
here). The non-named version of RVO occurs when the function returns an
unnamed object, such as a temporary object created as the result of a construction
or operator.

Some types of RVO are implementation-specific and optional for the compiler to
do. However, NRVO is “mandated” by the C++17 standard when returning a
named local object variable. I guess unnamed RVO will be mandated at some time
in the future, too.

201 C++ Ultra-Low Latency

RVO is very efficient in that it doesn’t just convert copying to moving, but can in
fact avoid the complete creation of temporary variables. The compiler can optimize
the above code so that the return statement constructs or moves the object
directly into the place where it was called from. This means not only we avoid
vatrious copies/moves, but also the avoidance of that temporary object’s
constructor and destructor, too.

Moving Multiple Objects

Moving multiple objects arises as an inefficiency in C++ because there’s no multi-
move semantics. Some examples where you want to move multiple contiguous
objects to a different memory location include:

e Move capabilities for a custom multi-object container.
e Shuffling objects along in a sorted array on insertion or deletion.
e Auto-resizing a std: :vector container (bigger or smaller).

There’s no multi-move constructors or assignhment operators in the standard C++
language, so there’s only single object moving methods. In practice, you can move
multiple objects in various ways, such as:

e Moving them one-by-one
° std: :move (begin, end, dest) overload

Note that this is the std: :move ovetload that does real runtime wotk, not the
simpler version that’s just a type-cast to an R-value reference.

Unfortunately, all of these ideas are calling the move constructors for every single
object. This is fine for scalar types or classes with simple inlined versions, but it’s
still not optimal.

The workaround for your own class is simply to define a non-special member
function to do fast moving, which you can call explicitly. But this doesn’t solve the
general problem of using your new class in a container that may need to bulk-move
your objects at some point.

David Spuler 202

Generic Move Operator

Some types of objects are “relocatable” and can used an optimized move method.
The basic ideas of move semantics refer to the difference between a “shallow copy”
(also called a “bitwise copy” or a “byte copy”) versus a “deep copy”. The basic idea
is this:

e Copy assignment or constructor — deep copy
e Move assignment or constructor — shallow copy

The copy constructor has to make a full copy of every data member of the other
object to create a new object. The old object is unchanged.

The move constructor needs to transfer all of the data members from the old object
to the new object. And then the old object needs to be “cleared” in some way,
which leaves it in a “valid” state (so that its destructor doesn’t crash or deallocate
memory it no longer owns). Hence, why not do these steps in general as an
optimization:

e Shallow move old data members to new object — bitwise copy of all bytes.
e Clear old object’s data members — zero the old bytes.

This idea of a relocatable object that is a C++ class object is similar to the type trait
“std::is trivially move constructible” (C++11). However, thisisn’t
quite what we want, which is a way to specify that our object is relocatable. The
type trait instead only detects some cases where this is true. Perhaps we could set
this type trait to “true” for our own class, and the standard container classes will
honor this type trait setting, but I have my doubts.

Instead, let’s think about generalizing the idea to all relocatable class types. We can
even code up the idea:

template<typename T>
T& generic move assignment buggy (T& newobj, T& oldobj)
{
memcpy (&newobj, &oldobj, sizeof(T)); // Move bitwise
memset (&oldobj, 0, sizeof (T)):;
return newobij;

}

203 C++ Ultra-Low Latency

Well, that has an aliasing bug if the new and old object are the same. So, let’s fix
that first:

template<typename T>
T& generic move assignment safer (T& newobj, T& oldobj)
{
if (&newobj != &oldobj) { // Avoid aliasing
memcpy (&newobj, &oldobj, sizeof(T)):;
memset (&oldobj, 0, sizeof(T));
}

return newobi;

Does this idea work?

The short answer is: yes and no. Yes, this idea can be used very often, and is
efficient.

Let’s look at the good news first. This approach works for all these situations:
e Scalar types — moving an integer is a bitwise copy anyway.
e Simple object data members — if this move approach also works for the
sub-object.
e Virtual functions — yes, the hidden “vptr” pointer in the old object is

also moved by the bitwise copy.

However, technically the full answer is “no,” because there are some problem areas
when using this approach:

1. Self-referring pointer data members.

2. Virtual function problems — vptr is nulled in the old object.
3. Virtual destructor problems — a problematic special case.

4. External pointers into the old object (invalidated).

5. Obscure portability problems with zero byte representations.

Self-referencing data member problems. This is a problem when the object is
relying internally on its own address. Self-referring internal pointers (or references)
are data members inside the object that point to another part of the object. These
are uncommon, and seem like bad programming style anyway.

David Spuler 204

Note that pointers pointing outside of the object are just fine. In fact, that’s why
this copy-and-zero approach is efficient, because we don’t need to copy and
reallocate any pointer data members. A bitwise copy of a pointer or reference is still
pointing to the right place.

Virtual function problems. The memset () function has cleared every byte to
zero, including any of the hidden “vptr” pointers to the virtual function table.
When there’s any virtual function in a class, then it has a hidden pointer inside the
object. There are also other places that may have another vptr, including:

e Base class — but it usually shares a single vptr with the derived class.

e Multiple inheritance — requires multiple vptr’s in the object.

e Subobject data members — if they are of a class that has its own virtual
functions.

If your code calls any of these virtual functions after it’s been nulled, I'm betting
against you. Nevertheless, we might be able to work around this by simply not
calling any virtual functions after this move sequence.

Virtual function problems. Destructors make it a little more difficult, because it’s
hard to stop the C++ compiler from calling them. And every class with any other
virtual function is supposed to make its destructor also virtual. Just ask Scott Meyers
in the very first edition of his Ejfective C++ book, which was good advice in the
1990s, and still remains so.

Hence, if our object has a virtual destructor, it may try to access the null vptr at
some point. There’s no simple workaround to “just avoid calling the destructor,”
since it’s called implicitly.

External pointers into the object. I feel like we can live with this idea. If there
are any pointers or references to refer to the old object’s internal data, they are now
invalidated. But that’s true anyway, because the whole idea of a moved object is that
it’s going away.

All bytes zero portability. There’s a theoretical portability problem when
using memset to clear an object to have all its bytes equal to zero. I’'m not sure it
even applies anymore, as I don’t know of any platform where this is a real problem.
The concern is whether clearing all the individual bytes to zero will actually clear
multi-byte data to its equivalent zero or null value.

205 C++ Ultra-Low Latency

In practice, these are all true:

e Characters — byte zero is always character zero.

e Integers (signed and unsigned) — all bytes zero is integer zero.

e Floating-point — all bits zero is floating-point positive zero in the IEEE
754 standard.

e DPointers — all bytes zero is the nullptr in any platform I know.

Hence, I’'m not sure it’s a real problem, but every book on C++ portability I've read
has mentioned it, so now I have, too.

Workaround for fast move problems. I hate to give up on a really efficient idea,
so we can point to the limitations where we need to ensure:

e “Relocatable objects” with no internal pointers or references.
e No virtual functions
e No virtual destructor

Maybe we can work around the virtual function problems by not clearing the vptr.
Here’s the idea:

memset ((char*) &oldobj + sizeof (void~*), O,
sizeof (T) - sizeof (void*)):;

This assumes that thete’s only one vptr, and it’s shared by the base class and
derived class. Unfortunately, this idea still fails for subobjects with their own virtual
functions and multiple inheritance where objects can have more than one
hidden vptr. Anyway, it’s a worthy try, and we could always ban virtual functions,
which aren’t that efficient anyway!

Multi-move generic function. This idea can be generalized to moving a
contiguous array of multiple objects at once. The need for such a “multi-move”
capability is less often required, but can arise when containers resize, and we also
need it to implement sorted array insertions and deletions.

The above “generic” version only works for one object. Let’s think about
generalizing the idea of bytewise moves and then clearing to zero.

David Spuler 206

Here are some thoughts:

1. The idea still generally works on a mult-object block, because it’s similar
to moving one object at a time.

2. Ovetlapping ranges of objects are a problem, because the memset will
wrongly clear some of the newly moved objects.

Amusingly, note that we did deal with the “overlapping blocks” problem in the
single-object generic move. It’s the same as the “aliasing” check!

Detecting overlapping ranges more generally is a bit more intricate to code. Here’s
my attempt at updating the generic move method to support multiple objects:

template<typename T>
T& generic multimove assignment (T * destarr,T* srcarr,int n)
{
if (destarr == srcarr) { // Same exact block
// Nothing to do
}

else {
T* enddest = destarr + n;
T* endsrc = srcarr + n;

if (enddest > src && enddest < endsrc) {
// Overlapping (moving left safely)
memmove (destarr, srcarr, n * sizeof(T));
int num overlap = enddest - src; // Ptr arith
// Clear non-overlapping part
memset (enddest, 0, (n - num overlap) *sizeof(T));
}
else if (endsrc > dest && endsrc < enddest) {
// Overlapping (move right safely)
memmove (destarr, srcarr, n * sizeof (T));

int num overlap = endsrc - dest; // Ptr arith
// Clear non-overlapping part
memset (src, 0, (n - num overlap) * sizeof(T));
}
else {

// Non-overlapping blocks (move all)
memcpy (destarr, srcarr, n * sizeof(T));
memset (srcarr, 0, n * sizeof(T)); // Clear old
}
}

return newobj;

207 C++ Ultra-Low Latency

Compiler support? Even with the restrictions to scalar and relocatable objects,
and other problems listed above, this idea of just moving memory blocks around is
so efficient that maybe the compiler should provide this as an option automatically?
Is this the default assighment operator? No, not quite, because the default move
constructor or assignment operator is a “member-wise move” of all of the data
members. This is the same as a bitwise move if all data members are trivial, but any
complex classes as subobjects will need their own move constructors called.

1 like this whole idea a lot more than the normal move member functions, where
you have to fiddle endlessly with every single data member. Come on, the single
object version is only two statements! Hence, I'm hereby recommending to the
standards committee that, like the “=default” specifier, there needs to be a new
“=fast” specifier added to the C++26 language.

David Spuler 208

21. Arrays

Arrays are wonderfully efficient! They’re the most basic data structure known to
humanity. The main features to note about an atrray include:

¢ Contiguous memory storage — great for cache locality.
e Single type of data— no need to be worried about the type.

In modern C++, there are several ways to create an array data structure:

e std::array
e std::vector
e std::inplace vector (C++20)

There are also some older methods of using arrays that still work in modern C++
code:

e Fixed-size array variable: int arr[10];
e Allocated fixed-size array: new int[10];
e Old-style allocated array: malloc (sizeof (int) *10) ;

Note that the size of arrays in these examples don’t need to be a compile-time

constant in C++. They can be a variable, where the size of the declared array is
sorted out at run-time.

Array Operation Complexity

There are two main types of arrays to store objects: sorted and unsorted. Well,
actually, there’s other types of arrays with different semantics (e.g., stacks, queues,
heaps, ring buffers), but let’s just look at searching and sorting for now.

Are they fast? Here’s the 10,000 foot view:

e Unsorted arrays — very fast insertions/deletions, but slow searches (linear)
and even slower to sort the data.

e Sorted arrays — faster search (logarithmic), slower insertions/deletions,
and great if you need sorted data.

209 C++ Ultra-Low Latency

In more detail, here’s the overall complexity analysis of the basic searching methods:

e Searching — unsorted is O(#) (linear search) and O(log 1) for sorted (binary
search).

e Inserting — unsorted is O(7) (add to the end), but O(») if sorted (shuffle
required).

e Deleting — this is O(7) if unsorted (tricky swap method!), but O(#) if
sorted (also shuffles).

e Print unsorted — both are O(#) with a linear scan of the array.

e Print sorted — unsorted is Oz log n) because it requires a sort, but
only O(n) if already sorted.

And some other algebraic operations:

e Maximum/minimum — unsorted is O(z) because it requites a scan, but
only O(7) if already sorted (choose first or last element).

e Top-k elements — unsorted requires an O(# log n) sort or at least a “partial
sort”; only O(k) for a sorted array.

e Sum or average — both are O(#) because the whole array must be scanned.

Modern C++ Arrays

We’re going to implement our own sorted and unsorted arrays to examine the
algorithms. Standard C++ already has two types of wunsorted arrays
in std::array and std: :vector. We could just wrap around those types, but
I’'m going to use low-level raw arrays to show the algorithms in more detail.

Sorted arrays are trickier. Note that there’s no “sorted array” class in the standard
y y
C++ library.

However, there are some primitives we can use to achieve sorted arrays:
e std::sort () — modern C++ version with a hybrid quicksort/heapsort
algorithm.

e gsort() — old-style quicksort with function pointers (not
recommended).

David Spuler 210

There is also some builtins for “binary search” on a sorted array:

e std::binary search() — modern C++ implementation for array.

e std::equal range () — binary search that handles duplicate elements
in the array.

e Dbsearch() — old-style binary search with function pointers (not
recommended).

If we are inserting into a sorted array, we don’t need binary search exactly, because
we’re assuming the element isn’t already in the array. Instead, we need a “binary-
like search” method of finding the index location to insert a new item. In other
words, we need to find the spot where the item fits in the array, but do it
logarithmically, rather than using a slow linear scan.

Writing a binary-like search algorithm to find the insertion point is very fiddly
coding! Fortunately, the standard C++ library has two methods that code it for us:

e std::lower bound() — generalizes binary search for insertions.
e std::upper bound () — similat version that finds the location above.

Strictly speaking, std: :binary search () in the C++ standard only requires a
“partitioned” array rather than a “sorted” array. But for a scalar type with well-
defined comparisons, this is the same thing.

Custom Array Implementation

Anyway, let’s look at some of the basic operations in our custom versions of array
algorithms. We'll examine the unsorted atray version, but the sorted version is
almost identical. Here’s the overall class members:

template<typename T, int N>
class UnsortedArray {
private:

T arr [N];

int capacity = N;

int count = 0;

/e
bi

Note that “capacity ” is somewhat redundant if we’re templating based on a
compile-time array size. However, it would be useful if we were dynamically
constructing our arrays at runtime.

211 C++ Ultra-Low Latency

Here are some of the basic “getter” functions:

int size() { return count ; }
int count() { return count ; }
int capacity() { return N; }

And here are some of the basic utility functions:

bool empty() { return count == 0; }
bool full() { return count == N; }

Container Deletion Pitfalls

While we’re on the topic of deletions, let’s look at some common mistakes with
deletions from C++ containers. There are at least two major pitfalls in using
the erase () method to remove an object from a C++ container. Here’s the basic
first attempt:

for (auto iter : container) {
if (want to delete(*iter)) {
container.erase(iter); // Kaboom!

This will crash with a big mushroom cloud. The problem is that we’ve assumed the
iterator stays valid, whereas the erase () method actually returns an updated
iterator that we need to use. We can’t use a range for loop to do this, so we have
to use begin () and end () manually:

for (auto iter = container.begin();
iter != container.end(); ++iter) {
if (want to delete(*iter)) {
iter = container.erase(iter); // Use return value

}

This is not a crash, but still a major bug. The iterator loop skips over the next item
after the erased object. There are two increments in the deletion sequence:

1. erase () returns the next valid iterator (after the removed object), and

2. ++iter skips to the next element (again!).

David Spuler 212

To get it correct, we need to change the idiom to avoid ++iter if we erase
anything.

for (auto iter = container.begin();
iter != container.end(); /*Not here!*/) {
if (want to delete(*iter)) {
iter = container.erase(iter); // Use return value
}
else {

++iter; // Only if not erasing!

}

And now the code finally works!

Bypassing Interfaces

The std: :array and std: :vector classes are designed to allow you to get
access to the stored data via the data () member function. It’s also guaranteed that
the data is stored in contiguous memory locations. Note that this is also true
of std::string, which has adata() member and alsoc_str (), which
returns the same address.

The data () method allows direct access via pointers or low-level array types to
the data in the standard array or vector containers. Whether doing this is any faster
is unclear, and needs benchmarking, since many of the member functions are simple
pass-through inlined functions that work on the internal data anyway.

But there’s certainly a few pitfalls! The address returned by the data () member is
not guaranteed forever. There are at least two major types of bugs:

e Object is destroyed, or
e Object is moved or modified.

Since you have a pointer to an object’s data, you want that object to stick around.
But the object can disappear in a few ways:

e Stack object goes out of scope (triggering the destructor and unwinding
the stack).

e Allocated object is deallocated by the delete operator.

e Object is moved by a container (e.g., an auto-resize or other “iterator
invalidation” situation).

213 C++ Ultra-Low Latency

Even if the object stays around to watch your skills, there’s another problem. If the
underlying object is modified, then the internal address of the data that you have
may become invalid. The issues are very similar to the well-known “invalidated
iterator” problems with containers. Changes to the container that probably
invalidate the data () pointer include:

e Insertions and deletions
e reserve()

e resizel()

e shrink to fit()

Any of these members that modify the object are allowed to move the data. For
example, they might allocate a different memory block, and move the whole array
away from your pointer. But there are a huge number of other situations under
which an iterator into a container may become invalidated, which presumably also
invalidates an old address returned from the data () member function.

Watch out!

David Spuler 214

22. Unsorted Arrays

Unsorted Arrays Overview

Unsorted atrays are not an all-star data structure, and don’t get a lot of use for basic
search requirements. The main features include:

e Slow search lookups in cases like associative arrays or sets (linear scan cost).
e Tastinsertions and deletions (constant cost, without any “shuffle”).
e Sorting an unsorted array is costly with O(# /log #) complexity.

Unsorted arrays are very useful if we want fast insertions and deletions, but rarely
need to search or sort the array. Insertion is very fast with constant time, just by
adding the new element at the end of the array. Deletions can also be implemented
in constant time, but only via a trick of swapping the to-be-deleted element with
the last element.

Interestingly, we can always fix our unsorted array by sorting it, and that turns out
to be a decent idea. Let’s examine the two ways to get a sorted array:

e Build an unsorted array, then sort it, or
e Incrementally maintain a sorted array.

The first plan costs O(z)in total to do all the 7 insertions (unsorted), and then
costs O(n log n) to sort it with std: : sort. The second plan costs O(z) for every
one of the #insertions into a sorted array, and so we get to O(#"2) quadratic
complexity for the incremental sorted array approach. In summary, our analysis
suggests:

e Unsorted array (sort it later) — complexity of O(# log n).
e Sorted array (incremental) — quadratic O(%"2) complexity.

An unsorted array might be the way to go? However, as discussed above, it’s not as
bad as that sounds if we have scalar types in a sorted array, because the “shuffle” is
a single memory block copy.

215 C++ Ultra-Low Latency

Note that an unsorted array is actually sorted in a weird way: by the order of
insertions. Hence, if you have an ordered sequence of data, they are mapped into
the array sequence according to the order in which they are processed. If these
objects have an associated timestamp, your supposedly unsorted array may well be
sorted implicitly according to the timestamp field.

Unsorted arrays are underestimated, and can be efficient in practice. An array that
is unsorted functions as a list of items, but is stored in contiguous memory, which
can make scanning the atrray efficient in terms of cache locality (e.g., faster than
linked lists in std: : 1ist or red-black binary trees in std: :map).

Unsorted arrays can be useful for semantics other than basic search lookups. An
array can efficiently implement a fixed-size stack, but a fixed-size queue is better
implemented using a ring buffer that progresses around the array in a circular
fashion. You can also put a balanced binary tree or a heap data structure into an
array, but we’re getting far away from a basic unsorted array in doing that.

Linear Search of Unsorted Arrays

Linear search is the worst part of unsorted arrays. There’s not really a better way to
search an unsorted array. Here’s a simple hand-coded linear search of the array to
demonstrate the algorithm that’s happening:

int find linear search(const T &item)
{
for (int 1 = 0; i < count ; i++) {
if (item == arr [i]) return i; // found
}

return -1; // not found

The above assumes we’re stored our data in a raw array type as the data member.
If we choose to store the data as std: :array or std: :vector, we could use
standard member functions to search the array, such as £ind ().

Note that if we were doing a lot of searches of an array without many insertions or
deletions, here’s an idea: pre-sort the array! This gives us this approach:

1. Pre-sort the array with std: :sort

2. Use binary search on our newly sorted array (logarithmic complexity).

David Spuler 216

Template Value vs Reference Parameters

Templating based on a type has a common conundrum about how to choose
between passing function parameters by reference or value. The desirable efficient
that we want is usually:

e Small integer types — pass-by-value.
e Large class types — pass-by-reference.

Which signature should we use?

int find linear search(const T &item) // Const reference
int find linear search(T item) // Pass-by-value

Which one we desire for larger non-class types, such as long or double, is
somewhat implementation-dependent and you really need to benchmark to check!
Unfortunately, there’s no way to alter the signature of a templated function
according to a compile-time setting. I don’t think there’s a way to do it in type traits.

However, the most common modern C++ style is to use const reference
parameters. The reasons are:

e Large class types — const& references are much faster.
e Small integer types — it’s not much worse.

In one sense, I'm not sure about the last point, because:

1. It’s a micro-optimization, and

2. The compiler may auto-optimize it anyway.
But there is a simple solution whereby you can use consté& reference parameters
for generic types, but use pass-by-value for small integers. Template specialization
to the rescue! Just define specialized versions of templated functions for the handful

of small integer types:

int find linear search(int item) // Pass-by-value

{
// etc...

Now you only have to define about 27 more versions for every type.

217 C++ Ultra-Low Latency

Fast Linear Search

You’re thinking that this doesn’t exist, and the heading is an oxymoron. But there
are situations where linear search on an unsorted array can be faster than the
alternatives:

e Small number of elements

e Sentinel search optimization

e Low-level support for searching
e DParallel linear search

Let’s examine all of these techniques in turn.

Sentinel linear search optimization. This is an optimization attributable to
Knuth (1973) in the Mix programming language. The idea is to remove the
conditional test in the loop (i.e., removing “i < count”) by guaranteeing a
successful search. The trick is to add an extra element at the end of the array, which
equals what we’re searching for.

Note that this requires that we declare our array data member with one more item
than the capacity. We always need a spare element at the end, even if the array is
full to capacity.

T arr_ [N + 1]; // Extra dummy element

Sentinel-based searching is only good for arrays of scalar types, because it requires
making a copy of the search element, which is created at the end. The sentinel
search of an unsorted array still has linear complexity, but has a lower complexity
constant because each loop iteration is faster in practice.

Low-Level Search Support

Some types of CPU have explicit instructions that support scanning a memory
block for a value. If we’re using an array of characters or bytes, there are these
candidates:

e std::find— on an array, vector, or string type.

e strchr — old-style character strings (null-terminated)
e memchr — low-level memory blocks of bytes.

David Spuler 218

The modern C++ code using std: : £ind looks something like this:

bool find standard(const T& item)
{

auto iter = std::find(arr , item);
return iter != arr .end();

The version that returns the integer index of the element in the array is:

int find standard index(const T &item)

{

auto iter = std::find(arr , item);
if (iter == arr .end()) return -1; // Fail
return iter - arr.begin(); // Pointer arith

Note that this idea only works for arrays of contiguous memory. Pointer arithmetic
doesn’t work well on general iterators for dynamic memory containers.

Parallel Linear Search

There are multiple ways that we could parallelize our linear search algorithm. It just
depends on our budget! Here are some options:

e CPU SIMD instructions (e.g., AVX or ARM Neon)
e Multithreading (on CPU)
e GPU hardware

SIMD instructions allow use to test multiple values in parallel on a CPU. For
example, an x86 CPU from Intel or AMD allows the AVX sets of instructions, and
there are a few versions:

e AVX — 128 bits (4 x 32-bit integers).

e AVX-2— 2506 bits (8 x 32-bit integers).

e AVX-512— 512 bits (16 x 32-bit integers).
e AVX-10 — 1024 bits (32 x 32-bit integers).

CUDA C++ GPU linear search. If we have an NVIDIA GPU, this advanced
type of parallelism is much more extensive. In fact, we can create 1024 threads, and
each thread can compare only a few elements with our search key.

219 C++ Ultra-Low Latency

This sounds like an almost constant-time algorithm on the GPU, but it’s not quite
that good. In practice, there are two phases:

1. Compare each loop element in parallel, and
2. Collate the results.

The GPU can compare all the array elements 1024 at a time. Hence, it’s not constant
time, but it’s still linear time divided by 1024.

Also, at the end we have a synchronization problem with detecting which of the
threads had a successful result of the comparison. It’s not quite as bad as a
“horizontal reduction” of the array (e.g., max or sum), but we have to synchronize
the results in shared memory or global memory.

We could use “warp shuffle” instructions that coordinate via faster GPU registers,
but these only work within each warp of 32 threads, so it ends up being like a
horizontal reduction over each warp.

Unsorted Array Insertions

Inserting into an unsorted atray is very fast because we can just insert it at the end.
This is very efficient with constant time complexity.

The code example for insertion at the end:

void insert end(const T & obj)

{
if (full()) {
throw std::overflow error ("Insert full array");

}
else {
arr [count ++] = obj;

}

There’s nothing much to this code: only one statement! It’s very efficient to insert
at the end of an array.

David Spuler 220

Insertion at an Index

Inserting in the middle of an unsorted array seems to be an O(#) operation. If we
needed to insert into the middle, it would seem slowet because of the need to
shuffle the other elements out of the way. And that would certainly be true of a
sorted array, where a shuffle is needed to maintain the sorted array.

But, no, we’re talking about an unsorted array here. Let’s ban the shuffle.

There’s a move trick to insert into the middle of an unsorted array at a given index
in O(7) time. The trick is to note that in an unsorted array we only need to move a
single element out of the way. The idea is two short phases:

1. Move the existing element “out of the way” and to the end.
2. Insert the element at that location.

Here’s a coded version of the “move away to the end” optimization. One fast way
is to use std: :move, which is like a type cast with no runtime code, and this causes
move assignment on a complex object (or simple byte copying on a scalar type).
Here’s the code:

void insert at offset(const T & obj, int offset)
{
if (full()) |
throw std::overflow error ("Insert full array");

}

else {
// Move to end
arr [count + 1] = std::move(arr [offset]);
arr [offset] = obj; // Insert at location

count ++;

Note that this only works for an unsorted atray, not a sorted array. If we wanted a
sorted order, or we need the implicit order-of-insertion in an unsorted array, then
this “move to end” idea cannot be used as it will ruin the ordering.

221 C++ Ultra-Low Latency

Fast Unsorted Array Deletion

There’s a trick for deleting an arbitrary element from an unsorted array that is often
missed in articles. Unsorted array deletion need not be O(») complexity, but can be
done in O(7) time.

Deletion of an item from an unsorted array is a two-phase operation: find and
destroy. Here’s the code to find the element, which uses linear search to find its
offset, and is thus O(#) unavoidably:

void delete key(const T& item)
{
int offset = find linear search(item);
if (offset == -1) {
throw std::invalid argument ("Delete not found");
}
else {
delete offset swap(offset);
}

The naive idea for deleting from an unsorted array that we’ve found here is to
remove the element and “shuffle” the rest of the elements downwards (to the left)
so that there’s no “gap” in the array. Doing a shuffle isn’t so bad for scalar types,
where it’s probably just one call to memmove behind the scenes. But for non-scalar
objects, we’re moving a lot of objects. Either way, our unsorted array deletion with
a shuffle has cost complexity of O(#) time.

There is a faster way!

First, let’s get rid of the special cases: if there’s only one element in the array, just
erase it, and set the count to zero. And if the erase location is the end-most object,
just erase it there, and decrement the count. Otherwise, if the object we want to
remove is at the front or middle of the array, we do a tricky swap with the end
element:

e Swaparr[i] with arr[n-1]
e FEraseatarr[n-1]

e Decrement n

This swap idea has changed our unsorted array deletion from O(#) time to the
optimal O(7) complexity. There’s no loops anywhere!

David Spuler 222

Note that we can use std: : swap here, and we may need to explicitly run the
destructor of objects being destroyed (optional for scalar types). Here’s what the
code looks like:

void delete offset swap(int offset)
{
if (empty()) {
throw std::underflow error ("Delete empty arr");
}
else if (count == 1) { // ***
if (!std::is trivially destructible<T>::value) {
arr [0].~T(); // Explicit destructor
}

count = 0;
}
else {
if (offset != count - 1) {
// Swap with the end element
std::swap (arr [offset], arr [count - 1]);

}

if (!std::is trivially destructible<T>::value) {
arr [count - 1].~T(); // Expl destructor

}

count --;

The above code uses “type traits” from modern C++ to detect whether or not we
need to explicitly run the destructor when destroying an object in the array. This is
very efficient because type traits are evaluated to compile-time constants, so the
compiler should optimize out the path if not needed (i.e., using “dead code
elimination”). There are several options available in the type traits library,
depending on exactly what types we want to suppott in our array:

e std::is_trivially destructible<T>::value
e std::is_destructible<T>::value
e std::is scalar<T>::value

Actually, the above code has a minor inefficiency. The giveaway is that two code
sequences with is_trivially destructible are similar. Can you see it? We
don’t need to expressly test for count==1 (marked with stars), because the general
code in the else clause also works for that special case as well.

And also, what was I thinking? There’s no need to swap the element to the end,
only to destroy it there. That’s two hidden moves inside std: : swap, when we
only need one moved element.

223 C++ Ultra-Low Latency

The better idea than swapping is to destroy the object where it is, and then move
the end element down:

if (!std::is_trivially destructible<T>::value) {
arr [offset].~T(); // Destroy in place
}

if (offset != count - 1) {

// Move down the end element

arr[offset] = std::move(arr [count - 1]);
}
count --;

Note that std: :move () here is only a compile-time type cast operation. It will
ensure that the move assignment operator is used on complex class types, and is
also efficient for scalar and other trivial types.

Yes, moving the end element to the middle of the unsorted array changes some
addresses. It will certainly invalidate iterators over the container. But so would the
shuffle of elements, so we’re okay there.

Note that this only works for an wusorted array data structure. If we did this on a
sorted array, we’d ruin the sorting order in the array by moving the biggest element
into the middle of the sequence. Sorted arrays need to do the shuffle.

One final point is that this fast deletion trick with swapping will break the unofficial
ordering of the array by its insertion order. If we have timestamps associated with
our array elements, swapping the end element into the middle will ruin that implicit
ordering.

David Spuler 224

23. Sorted Arrays

Sorted Arrays Overview

There is no standard C++ sorted array class, so we’ve got to implement our own.
The C++ containers that can be used for sorted arrays include:

e std::vector — variable size.
e std::array — fixed size at compile-time.
e Native C++ arrays — old-style non-container builtin arrays.

A sorted array has a good search lookup cost, being logarithmic in the total number
of elements, by using the “binary search” lookup algorithm. However, that’s not as
good as a hash table (e.g., std: :unordered map), which has O(7) average search
cost.

Insertions and deletions have a poor O(#) theoretical complexity, although the first
phase of finding where to insert or delete is also logarithmic, using an algorithm
very similar to binary search.

The linear cost arises because once they find the location, they then need to shuffle
elements:

e Make a gap (insertion), or
e Close a gap (deletion).

If we’re using a class object for our array, such as std: :array or std: :vector,
we can use the insert () method. This is doing a shuffle behind the scenes.

The main advantage of a sorted array is that it’s, well, sorted, so if we want to
process the array elements in sorted order, then it’s already done for us. That’s
desirable because raw sorting of an unsorted array is expensive with its well-

known O(n log n) complexity (e.g., std: :sort typically uses a quicksort-heapsort
hybrid).

225 C++ Ultra-Low Latency

If we need to use sorted data, there are other options in the C++ containers.
The std: :map container is implemented as a balanced binary tree, called a “red-
black tree,” and this has logarithmic complexity for all major operations: search,
insertions and deletions. However, a sorted array has good memory cost because it
uses contiguous storage, so it should not be underestimated!

Shuffling Array Elements

Shuffling of array elements along by one location is required for both insertion and
deletion in sorted arrays. Shuffle right to create a gap for a new insertion, and shuftle
left to close a gap after deletion. We can also use this idea for unsorted arrays, but
there are faster tricks, as examined later in this section.

In practice, shuffling of sorted arrays is quite efficient for scalar types via a memory
block copy, using the memmove () standard function. Note that memmove () is an
older function that does a bytewise copy of the memory that ignores object
constructors and move operators. Presumably, the standard insert () method is
using fast byte copies for scalar types.

Here’s an obscure pitfall: we cannot use various other copying methods because
the shuffle involves overlapping source and destination memory blocks. There does
not seem to be a version of C++ copying that permits overlaps. These functions
would be incorrect and lead to undefined behavior on overlapping memory blocks,
which is definitely true of any array shuffle:

e std::memcpy (old C-style)
e std::copy n

However, we can use the ovetloads of the std: :move function that wotk on
ranges of multiple objects. These version of std: :move have a real runtime cost,
unlike the basic version, which is a compile-time type-cast that converts to a
movable R-value reference (with no runtime code generated). We also need to pay
attention to whether we are shuffling to the left or right, because these functions
don’t work for all overlapping arguments.

e std::move or std::copy — moving or copying left (i.e., close a gap
for deletion).

e std::move backwardorstd::copy backward — for moving or
copying right (i.e., create a gap for insertion).

David Spuler 226

Note that using the std: : copy ot std: : copy backward functions also work
here, but the copying operation is slower than moving for non-scalar types. Hence,
the std: :move versions are more general, but still have some downsides:

e Expensive for non-scalar objects.
e Iterators are invalidated on the array.

e Invalidates any pointers or references to specific objects.

Unfortunately, the shuffle cost is terrible for complex objects that will require their
move operators called for every single object. I can’t say that I recommended sorted
arrays for those types. Note that there are also various types of objects where we
could still use a memory block move to do a “shallow move” of the objects (i.e.,
“relocatable objects”), rather than individually moving each element. However,
using this idea requires tricks to prevent the C++ container from doing its move
thing, such as using a low-level raw array rather than std: : vector.

Binary-Like Sorted Array Insertion

Sorted arrays are logarithmic for searches, but not quite as good for insertions and
deletions. Inserting a new element into a sorted array is a three-phase algorithm:

1. Find the location to insett,
2. Shuffle elements to the right (create a gap), and
3. Insert the new element at the location.

There are three ways to find the location in a sorted array:
1. Linear search from the front.
2. Linear search from the back.
3. Binary-like search (faster!)

Linear search over a sorted array doesn’t use equality, but finds the first element the
bigger than the new element. Or to go in reverse, start at the end and look for the
first element that’s smaller than the new one.

227 C++ Ultra-Low Latency

The advantage of starting at the end is that we can shuffle as we go, but it'll have
terrible cache locality problems in accessing memory addresses in reverse. CPU
memory prefetch algorithms usually assume a forward access order.

Anyway, neither of the linear algorithms are fast and they aren’t typically used.
Instead, binary-like search for the insertion point is much faster, with a logarithmic
complexity.

Binary-like search for insertion involves splitting up the array into two intervals,
and choosing between the two based on the midpoint value. This is not exactly the
same as binary search, because we’re assuming that the element is not already in the
array. Hence, it’s like binary search, but we’re looking for smaller versus bigger
elements in comparison to the new element, rather than seeking equality.

You can code your own binary insertion algorithm, or the standard C++ library has
two functions to help:

° std::lower bound()
e std::upper bound()

These functions are general methods on many containers, but they require the
underlying data to be sorted, or “partitioned” is the official term. It means the same
as “sorted” for everyone except polymaths who like Abelian groups.

Hopefully, this is coded in the standard library via a binary-like search method, and
is therefore fast. It should have logarithmic complexity. However, if we follow it up
with an insert () call, then that’s an array shuffle that’s likely to be linear in cost.
Note that there’s no equivalent “binary deletion” algorithm when we’re deleting
from a sorted array. That just uses normal binary search to find the element, such

as std::binary search, if it’s there, and then we can remove it. Insertion is
different to deletion in that sense.

Sorted Array Deletion

Deletion of an element in a sorted array is easier than insertion. There are two major

phases:
1. Find the element using binary search.
2. Shuffle the elements left to close the gap.

David Spuler 228

Note that we’re using real binary search, not the binary-like search for insertion,
because we assume the element is present. We can’t delete an element that’s not in
the array. Hence, we can use std: :binary_ search to find the element.

The deletion phase is a left shuffle of all the array elements. As discussed above, we
can do a byte copy such as memmmove () or std: :move, which both are well-
defined with overlapping memory blocks.

These methods can be efficient for scalar and other trivial types where bitwise
shallow copying is allowed, but may trigger a cascade of move constructors or move
assignments on complex classes. Thus, sorted arrays can be potentially inefficient
for non-scalars because of the hidden costs of shuffling objects.

Batched Multiple Insertions in Sorted Arrays

The optimization here is that we can perform two or more sorted array insertions
faster if we do them together. There are several possibilities to consider:

1. Adjacent sequences — if we have two or more items that “fit” between

two elements of the array, we can insert them in a block, and do only one
shuffle.

2. Sorted sequence — if we have a sorted list of two or more new elements
to insert, we can insert them by doing a single scan of a merge sort (i.e.,
merging two sorted arrays into one longer array).

These ideas are certainly more efficient than naive repeated insertions, but they are
special cases. However, looking at those efficiency gains, we get the inspirational
idea of a more general way to handle a sorted array with lots of insertions:

1. Defer insertions by storing to-be-inserted data in a separate location.
2. Batch insert all of the new data later (e.g., every 100 insertions).

For example, we could store the first 100 to-be-inserted elements in a separate array
of 100 elements. Or reserve an extra 100 elements at the end of the main vector.

However, correctness before efficiency. Our to-be-inserted array elements are
supposedly already inserted into our sorted array, so they should be found by
search, and should be able to be deleted, too. Hence, both search and deletion
algorithms will need to look in two locations, which gets complex and bug-prone,
not to mention less efficient.

229 C++ Ultra-Low Latency

Even assuming we’ve fixed those bugs, the overall efficiency of this batched-
insertion method is actually not that great. We’ve overlooked the practical problem
that the batched insertion step needs the 100 extra elements to be in sorted order
before the merge. So, we’d have to run std: :sort () on the new array of 100
extra elements, before merging them into the main sorted array.

Alternatively, we could maintain our 100 elements as a sorted array, but then your
boss might notice this oddity that could be hard to explain on a whiteboard:
maintaining insertions into a sorted array to optimize insertions into a sorted array.

I'm not sure how much we’ve actually improved things? My brain is about to
explode figuring it out, but feel free to talk amongst yourselves. I’'m going to analyze
deletions instead.

Batched Multiple Deletions in Sorted Arrays

The deletion of an element in a sorted array is a “find-and-destroy” sequence that
is quite inefficient. The finding of the element is fast using binary search, with a
logarithmic cost. However, the shuftle required to remove an array element in the
middle of the array has linear cost.

If we’re doing a lot of deletions, the cost is significant from a lot of shuffling. If
we’re inserting and later deleting # elements into a sorted array, and each deletion
is linear, then it’s quadratic in complexity.

Can we do better?
Yes, and there are multiple ways to do so. Some of the options include:

e Deleting a range of elements
e Deferred deletions

The simplest idea is to delete two or more array elements at once. This reduces
multiple deletions to a single shuffle operation. However, it’s not always possible
to know that our many deletions will be in a subrange or even pairs of adjacent
elements.

The more general case of multiple random deletions can be optimized via deferred
deletion algorithms. The idea of deferred deletions is to track multiple deletions,
possibly in some other ancillary data structure, and then finalize the deletions all at
once.

David Spuler 230

Deferred Deletions with Extra Data Structure

The idea of optimizing a large number of deletions is to group multiple deletions
and then perform them together. For example, if we track the locations to be
deleted, and can then detect adjacent pairs of elements (or more), then these
subarrays can be deleted together. This is efficient because we shuffle once per
deleted subarray rather than once per deleted array element.

Here’s an idea: store the array indices for deferred deletion. The approach involves:
1. Store indices of to-be-deleted elements in a secondary data structure, and

2. Later, we scan this data structure to look for adjacent indices, which can
be deleted together, which is faster.

In addition to the gain of processing merged pairs or longer subarrays of elements,
the shuffle can also be optimized to move smaller chunks around, by removing the
“gaps” where the to-be-deleted elements are located.

This approach is workable, and fortunately there’s only two problems:
1. Bugs, and
2. Slugs.

The downsides of this approach of storing the indices of the to-be-deleted elements
include some major potential bugs:

e Insertions will mess up the indices in the secondary data structure.
e Searches will still find the to-be-deleted items.

Fixing these problems is not easy, and certainly not efficient. And even if we only
had multiple deletions in a row, this approach is also not especially efficient in
general, with both space and time overhead:

e The space overhead of the secondary data structure.
e Extra time cost of updating a secondary data structure (and destroying it).
e The algorithm to find adjacent indices is inefficient (e.g., sort the indices).

The other major problem with this approach of using an extra secondary data
structure containing deletion offsets is simply: it’s unnecessary. There’s a better way.

231 C++ Ultra-Low Latency

Deferred Deletion & Vector Defragmentation

There’s a simple way to handle deferred deletions in a sorted array, and it doesn’t
even require an extra data structure. The basic strategy looks like:

1. Mark each deleted element as “to-be-deleted” (later).

2. Ignore all to-be-deleted elements (e.g., when searching).

3. Remove all the to-be-deleted elements together (using vector defrag).
How do you mark an array element for deletion? There are two basic strategies:

1. Add a new Boolean flag in the array, or

2. Special values

Extra Boolean Flag Method. Obviously, if our array elements are large objects,
then we could just add another bool data member to mark its status. But if our
array elements are small, such as an array of integers or timestamps or other scalars,
then adding an extra data field is inefficient in terms of both space and time.

Extra space cost will be at least a byte per array element, and likely more due to
alighment considerations. Larger array elements also reduce cache locality and will
impact speed.

Special Values Method. The idea of using a special value is to re-use an existing
data field in the array, rather than adding to its size. Some common special values
to consider include:

o 0
o -1
e nullptr

e Negatives

Usually, we will just use a single, fixed special value such as 0 or -1. However, if
we want to mark the data, but still be able to know what the original data value was
at that location, one way is to negate it (reversibly). The slow way to do this is to
multiply by -1, whereas the faster way is to toggle the sign bit.

David Spuler 232

No matter what method is used, the key point is that we are able to look at an array
clement and decide whether it’s valid or a to-be-deleted array element. We’ll need
to use that function in all of the other array operations.

Searching and Insertion with Deferred Deletions. Note that it’s quite tricky to
ignore the to-be-deleted elements during search and insertion. The binary search
algorithm may still “find” the number in a to-be-deleted array element, in which
case you need to check adjacent array elements, as there may be a non-deleted array
element with the same value.

Sorted array insertion with some to-be-deleted elements should still work. The
sorting of the array key should be maintained across both valid and already-deleted
clements. Inserting a new element will change all the array indices, but note that
we’re not tracking these indices for our deferred deletion algorithm, so this shuffling
from insertion doesn’t cause problems with the deletions done later.

An interesting wrinkle in this method occurs when an insertion matches the
location of a to-be-deleted element via the binary insertion method. In this case,
the new element can simply replace the to-be-deleted item, and no shuffle is needed,
leading to a very efficient insertion. Furthermore, even if not, our shuffle for
insertion can be shorter, as it only needs to shuffle the elements until the first to-
be-deleted item is found (i.e., only shuffle up to a “gap” in the array).

Searches and insertions are not the only code to modify. You also need to ignore
the to-be-deleted elements in any other array operations, such as printing the array
elements or other linear scan. It’s actually quite error-prone to have to remember
to handle already-deleted elements in every other operation. Easy to leave an
insidious bug this way!

Vector Defragmentation. The final stage of this deferred deletion algorithm is to
clean up the array to remove all of the to-be-deleted atrray elements. Until this is
done, the array could be wasting a significant amount of space.

The idea of vector defragmentation is to scan the entire array and compact all the
valid array elements together. This is accomplished via a simple two-pointer
algorithm. At the end, we need to resize our full array down to the reduced number
of stored elements.

Phew! That was a lot of special cases to handle for our delayed deletion algorithm.
Hope it’s worth it!

233 C++ Ultra-Low Latency

Many Searches, Insertions & Deletions

The general case is a sorted array that’s undergoing a large volume of searches,
insertions, and deletions. A sorted array is not necessatily the best data structure for
that, but the assumption is that we need a sorted array for some other reason, such
as fast scanning of the entire array through its contiguous memory.

Searching is not the problem. The binary search algorithm is very efficient with
logarithmic complexity in both average and worst-case cost.

Insertions and deletions in a sorted array are much worse, since both involve a
“shuffle” that is linear in cost. In both cases, the main optimization to consider is a
deferred algorithm, where multiple insertions and deletions can be delayed, and
then performed as a group. Overall, this deferred batching idea doesn’t seem to
work very well for insertions, but works extremely well for deletions.

In practice, the shuffle is not that bad, because it’s just a big memory block copy
using memcpy () or memmove () or similar functions. Thus, if the array elements
are a scalar, or any other similar “plain old data” object type that doesn’t require a
move constructor or move assignment operator, then it’s not really O(#) complexity
to do insertion or deletion in a sorted array. Hence, the benefits of using deferred
deletion with vector defragmentation may not be as great as they seem.

Extensions

1. Benchmark the sorted array implementation with a raw array versus
using std: :vector as the internal data array, especially to see if our
hand-coded binary search is fast or not.

2. Explore the use of “shallow copying” on sorted arrays containing
“relocatable objects” in the shuffle needed for insertions and deletions in
a sorted array data structure.

3. Explore the efficiency of calls to move constructors in a “shuffle” for a
sorted array implemented using std: :vector or std: :array.

4. Implement the binary-like search algorithm to find the insertion location
in a sorted array. (Note that deletion is just the normal binaty search to find
the element.)

5. Benchmark inserting into an unsorted array and then sorting
using std: : sort, versus incrementally maintaining a sorted array. Do the
results differ for a scalar integer type versus arrays of an object
like std: : string (which has move operators)?

6. Implement a hybrid binary-linear search where the binary search reverts to
linear search once the interval is small enough.

David Spuler 234

10.
11.

Implement an AVX SIMD version of linear search over integers that tests
a number of integers in the array at once.

Implement a “cache-aware” binary search that chooses the middle index at
the start of a cache line (where possible), and tests all values in that cache
line immediately using an unrolled linear search.

Implement a binary search that is both cache-aware and uses AVX SIMD
instructions to test all elements in the same cache line more efficiently.
Implement a sorted array with deferred insertions and deletions.

Is there a better way to optimize insertions into a sorted array via batched
insertions or deferred insertions (in the general case)? What about if we
exclude searches and deletions, so thatit’s only a sequence of many random
insertions? Maybe we can build some other data structure with better
insertion complexity, such as a red-black tree (std::map), and then
linearize it into the array with a tree traversal at the end.

235 C++ Ultra-Low Latency

David Spuler 236

24. Order of Insertion

Whenever you hear the words “order of insertion” in a set of requirements, it
should be associated with certain ideas. Note that this is exactly the same as First-
In-First-Out (FIFO), which means that any type of queue is good at this:

e Linked list queue — std: : queue container.
e Doubly-linked list queue — std: : deque container.
e Array queue or dequeue — a ring buffer.

However, order-of-insertion is not necessarily a queue data structure. If the
requirements include insertion or deletion in the middle of the sequence, then it’s

not really a queue (nor even a dequeue).

These types of requirements that combine order-of-insertion traversal along with
generalized insertions and deletions can arise in several practical contexts:

e Least-Recently-Used (LRU) cache.
e Operating system paging algorithms.
e Order book updates (trading engine).

e Rate limiting (throttling) of requests.

These all have a time element that causes them to have queue-like need for
insertion-ordering. However, there needs to also be key-based searches, insertions
and deletions, so a basic queue is not adequate.

Hash Table with Order-of-Insertion

As an example, let’s consider a dream list of requirements for such a data structure:
1. Fast search, insert and deletion, and
2. Traversal in order-of-insertion.

To get to the first three, with fast search, insertion, and deletion, you should
immediately think: hash tables.

237 C++ Ultra-Low Latency

Hash tables have average case O(1) complexity for search, insertion and deletions.
Admittedly, hash table can degrade to linear complexity in the worst case.
Furthermore, hash tables have a poor traversal cost generally, and totally fail at
maintaining any order in the traversal. We can’t maintain “order of insertion” with
just a hash table.

Hence, to implement traversal in the insertion order we need another data structure.
The first idea is to have two totally distinct containers, and search them both when
we’re doing our operations. A better idea is that in our hash table nodes, we can
insert a pointer to some other node in another data structure, so that we don’t need
to do two lookups.

Two options come to mind:

e Array or vector — contiguous data with good cache locality.
e Doubly-linked list — non-contiguous linked data structure.

Let’s look at each of these options.

Contiguous Array Version

The idea is to maintain traversal in the order of insertion by maintaining the items
in a separate std::vector or std::array container. For example, you could maintain an
array of pointers to the hashed nodes in the array. And each hash node would need
either a pointer back to the array or an index offset of where the element is found
in the array.

The use of an array or vector makes the traversal of items super-fast, by scanning
the array, in contiguous memory locations. Okay, so actually the cache locality isn’t
that great, since scanning the pointers in the array has good locality, but then it’s
jumping via the pointers to the nodes in the hash table, which are in different places
in memory.

It’s easy to maintain order-of-insertion in the array, simply by always inserting at
the end. Our array or vector data structure has a count of how many elements are
in the array, and we can insert a new item at the end.

Problems arise with deletion, however. If the need for deletion was only to remove
an item from a fixed-size array to make room for the next one, then we could
address this by using a ring buffer implemented as an atray (i.e., a fixed-size queue
in an array).

David Spuler 238

However, if we want to remove arbitrary items from our hash table, and hence from
our array, the use of a contiguous array causes difficulties. The difficulty is not in
finding the location for removal, but at the end of this sequence:

1. Search the hash table for the key.

2. Find the pointer or index into the array in the hash node.
3. Remove the node from the hash table container.

4. Remove the pointer from the array or vector container.

However, once we try to remove the entry from the array, there’s a gap. There are
three possible approaches:

1. Mark the item as “deleted” (i.e., leave a gap).
2. Shuffle the array elements down.
3. Move the end array element down into the gap (“swap and pop”).

None of these solutions are great. They all lead to suboptimal complexity in one or
other of the methods.

Marking each item with a “deleted” flag works fine on deletion, but the insertion-
order scan has to skip extra unused elements. There are a few ways to mark the
elements:

e Boolean flag inside each element.
e Separate array of Boolean flags.
e DPacked bit vector representing the Boolean flags.

Furthermore, with the marking-as-deleted method, the array will fill up, and need
to have its gaps removed eventually. This is a costly type of “garbage collection” or
“memory reclamation” algorithm that will have linear complexity. And until it’s
cleaned up, the method will waste extra memory space for all the deleted gaps.

Shuffling all of the elements down to fill the gap does maintain the correct order in
the array. However, it’s an O(n) operation and will also invalidate all the pointers
into the array from other non-removed elements in our hash table. So, we’d need
some way of finding all those elements (e.g., reverse pointers), and also the cost for
updating them all.

239 C++ Ultra-Low Latency

Finally, the “move end element down” array trick is an O(1) method to cover our
gap, and would only require updating one non-removed hash node, which is also
O(1). Admittedly, the need to store reverse pointers from the array back to the hash
nodes adds O(n) more space. However, it fails completely, because the array is no
longer sorted in order of insertion.

Is there a way to salvage the dream of maintaining a contiguous array that is sorted

by insertion order? There are some tricks to try, like permutation arrays, but I can’t
see a good solution.

Doubly-Linked List Version

A more natural solution is to thread a doubly-linked list through our hash nodes.
The advantages of a doubly-linked list are:

1. No fixed size limits.
2. Easier deletion with O(1) complexity.
3. Maintains order-of-insertion naturally.

Note that the linked list has to be doubly-linked so that deletion is easy once we
find a node to remove. If it’s only a singly-linked list, then we cannot find the
element before the current node, so we can’t easily unlink the current node.

The doubly-linked list method is not without downsides. There are problems with
time and space:

e Extra space for previous and next pointers in each node.
¢ Non-contiguous memory usage for scanning (it’s a linked list!)

To implement the intetleaved doubly-linked list, each node in our hash table needs
to have “next” and “previous” pointers. We also need to track the head and tail of
this list at the container level.

The idea is that a scan in order of insertion is just to run down the doubly-linked
list in one direction. Hence, when we insert a new item it has to be inserted at the
end of the list.

David Spuler 240

The reason that this method is better than an array or vector is that it’s easy to
remove in a linked data structure. There’s no “gap” when we remove an item from
a linked list. We just update the pointers to the adjacent list elements to point
around the removed list node.

Could we use a separate doubly-linked list, such as the std: :1ist container,
rather than manually threading pointers through our hash table? Yes, but this
wouldn’t really avoid the space cost of storing “next” and “previous” pointers in
each hash node, but just move them elsewhere. Additionally, we’d need a pointer
to the list node in the doubly-linked list stored in the hash nodes. And each insertion
would need two separate memory allocations for the hash nodes and linked list
nodes. Hence, threading our doubly-linked list through the nodes themselves seems
more efficient overall.

241 C++ Ultra-Low Latency

David Spuler 242

25. LRU Cache Data Structure

What is an LRU Cache?

Least-Recently-Used (LRU) caches are a common requirement in low-latency
programming. There are several important applications of an LRU cache:

e Operating system paging algorithms
e Memory access caches (low-level)
e Order book updates in trading

The idea of an LRU cache is to maintain a cache of recently used data, such as
memory we’ve just accessed, or a piece of data we’ve just updated. But we don’t
want an unlimited size data structure, so when it gets full, we evict the data that was
“least recently used” (i.e., the oldest data).

Note that an LRU cache is a more specific type of cache that just mapping keys to
the values they were set to. The operations we need to support include:

e Add anew key to the cache (with its corresponding value).

e Update a key when it gets re-used again (more recently).

e Remove the least-recently-used item in the cache (to make room for
insertions).

Sounds like a queue? No, it’s not!

Not a Queue or Deque

An LRU cache has features that sound like a queue with FIFO ordering. We want
to evict the oldest items from the cache, which sounds exactly like maintaining a
queue of elements, and deleting from the tail of the queue will remove the oldest
element.

243 C++ Ultra-Low Latency

These features are very queue-like and maintain a FIFO-like order-of-insertion:

e Add a new item to the end of the queue (the newest item).
e Remove from the front (to evict the oldest item).

The feature that’s not like a queue occurs on the “update” of a key that’s already in
there, which occurs if a cached item is then accessed a second time. This requires
two problematic operations:

e Search — find the item already in our LRU cache, and
e Deletion — remove the item from the middle of the queue.

It’s starting to sound less-and-less like a queue. There’s no fast searching method
for std: : queue and std: : deque, and we’d have to use a linear scan.

Deletion is also a problem. We need to move an item from the middle of the queue
back to the head of the queue. This is not like a standard queue, which only allow
deletions from the end. A standard dequeue container also allows deletions from
the front, but this doesn’t help us.

Hence, we can’t just use a queue or dequeue, but need something fancier as our
implementation of an LRU cache.

Overall, an LRU cache has similar requirements to the general case earlier: fast
searches, insertions, and deletions. We also need to maintain order-of-insertion for
cache evictions, but we need to remove arbitrary nodes from that sequence, so a
standard queue or dequeue won’t work.

Note that, unlike the general case, we don’t actually need to traverse the sequence
in order, but only use it for evictions.

Nevertheless, the basic idea of an LRU cache implementation is similar to the
general case of a data structure that maintains ordering by insertion sequence:

e Hash table for fast searches, insertions, and deletions.
e Maintain order-of-insertion sorting via an array, vector, or linked list.

Adding a new node into the cache is simply an insertion into the hash table, and
adding it to the head of the array or list. This item is the “most recently used” so it
will now be the last to be evicted from the cache.

David Spuler 244

If our cache is full, adding a new node means removing the oldest. It’s easy to
remove the “least recently used” by removing it from the hash table, and removing
the end element from the list (effectively, like a queue).

We could seemingly implement this queue-like functionality with two possible
approaches:

e Statically with a fixed-sized array (i.e., a ring buffer wraparound), or
e Dynamically via a linked list.

Only one of these ideas will work!

Array Implementation Fails

Let’s consider a contiguous array implementation first, which would be desirable
for cache locality efficiency. In other words, we use a hash table for searching,
insertion and deletion, but also maintain a separate array or vector data structure to
track insertion order.

In practice, we’d need to use a wrap-around of elements in a ring buffer structure,
implemented via an array or vector container.

This is workable for many of the LRU cache requirements. Search and insertion is
very fast in the hash table. We don’t actually search the array, which is fortunate,
and inserting into an array with order-of-insertion is just adding it to the end (fast!).

However, deletion is a problem. We run into a significant efficiency problem arises
when we need to update a cache item that’s already in the cache from a prior access:
Every update of a value already in the cache needs to do two things to the array:
(a) delete the node in its previous place in the array, and
(b) re-insert the node at the head (it’s now the most-recently used item).
The key point is that the “previous place” for an item could be anywhere in the
array or ring buffer. So, we need arbitrary deletions at any location. For the reasons

discussed in the general case, an array or vector that implements a ring buffer or a
fixed-size array will fail in this situation.

245 C++ Ultra-Low Latency

Removing an item from the middle of the array is problematic and needs an
inefficient shuftle method to fill the gap, followed by trying to update pointers to
all the array elements that were moved by the shuffle. Alternatively, moving the
array’s end element down to cover the gap fails because it completely messes up the
order of elements in the array.

A ring buffer implemented in an array or vector is no better at handling random
deletions. Removing from the middle of a wraparound sequence in a ring buffer is
actually the exact same situation, except rotated, and has the same problems.

One solution is to not allow cache updates. If an item is already in the cache, we
could simply 7of update its position in the sequence. However, this is no longer an
LRU cache, but more like a Least-Recently-Loaded (LRL) cache, or really a FIFO
queue version of a cache.

The requirements for an LRU cache are somewhat different to a FIFO queue. For
example, all frequently-used items will get evicted from the cache in a fixed order,
getting no benefit over infrequent accesses. The efficiency of the cache does not
adapt to access patterns. Overall, it seems that a contiguous data structure is not
effective for an LRU cache.

Linked lists to the rescue!

Doubly-Linked List LRU Cache

Fortunately, an LRU cache is also fast to implement with a hash table and doubly-
linked list. Note that a singly-linked list fails to provide efficient deletion, so we
have to double up. Hence, the basic idea is:

e Hash table — good at efficient search, insertion and deletion (but without
ordering).
e Doubly-linked list — maintains data according to order-of-insertion.

There are two ways to implement our doubly-linked list:
e Second container — using the standard std: : 1ist container separately
(it’s doubly-linked).

e Threaded intrusively — use a doubly-linked list that is threaded through
the hash table nodes.

David Spuler 246

The first solution is workable if we maintain a pointer or iterator into the linked list
from our hash table nodes. We could make our list contain copies of the whole keys
(if small), or pointers to the hash table nodes if the keys are a complex object (i.e.,
don’t copy it). But overall, the two container approach is inefficient because we’re
doubling the number of allocated nodes by doing memory allocation once in the
hash table, and again in the std: : 1ist container.

A better solution is to intrusively thread our own hand-coded doubly-linked list
through our hash table nodes. This requires extra space for “next” and “previous”
pointers in our hash table nodes, but doesn’t require a second memory allocation,
and also maintains only one copy of the keys.

Let’s run with that idea and examine the efficiency of the operations:

e Secarch — use the hash table to get O(1) average search cost (we don’t
search the linked list).

e Insertion — fast O(1) insertion into the hash table, and also O(1) insertion
at the end of the doubly-linked list.

e Deletion — fast (O1) deletion from the hash table, and also O(1) deletion
in the middle of a doubly-linked list (hooray!).

e Traversal (insertion-ordered) — linear scan of the linked list (easy).

The linked list needs to be doubly-linked because deletion from the middle of a
singly-linked list is problematic. Efficient deletion from the middle of a singly-linked
list needs to go backwards to find the previous node, which doesn’t work with one-
way pointers.

Deletion from the middle of a doubly-linked list is easy by resetting two pointers,
in the node prior to us, and the node afterwards. This is fiddly but has only O(1)
complexity, with just a few pointer operations. Unlike the array version, there’s no
“shuffling” or other hidden costs, so deletion is also fast, and maintains the order-
of-insertion requirement.

The deletion algorithm for doubly-linked lists is fiddly with some edge cases, but
not that difficult. Once the list node to remove is found, we need to update the
pointers in both the previous and the next node on the list. We also need to handle
special cases like when the array is empty, or has only one element, or when deletion
is at the head or tail of the array.

247 C++ Ultra-Low Latency

References

1. Geeks for Geeks, 27 Dec, 2024, LLRU Cache - Complete
Tutorial, https:/ /www.geeksforgeeks.org/Iru-cache-implementation
2. Shaila Nasrin, Jan 18, 2025, LRU Cache Implementation in
C++, https://medium.com/learn-coding-concepts-with-shaila/Iru-cache-
implementation-in-c-8a52f259206f
3. CPP Scripts, May 2025 (accessed), C++ LRU Cache: Mastering Efficiency
with Ease, https:/ /cppscripts.com/cpp-lru-cache
4. Peter Goldsborough, May 2025 (accessed), lu-cache: A feature complete L. RU
cache implementation in C++, https:/ /github.com/goldsborough /Iru-cache
5. Tim Day, 2012, LRU cache implementation in
C++, https://timday.bitbucket.io /Iru.html

David Spuler 248

https://www.geeksforgeeks.org/lru-cache-implementation/
https://medium.com/learn-coding-concepts-with-shaila/lru-cache-implementation-in-c-8a52f259206f
https://medium.com/learn-coding-concepts-with-shaila/lru-cache-implementation-in-c-8a52f259206f
https://cppscripts.com/cpp-lru-cache
https://github.com/goldsborough/lru-cache
https://timday.bitbucket.io/lru.html

26. Fast Ring Buffers

What is a Ring Buffer?

A ring buffer is an array-like data structure where the data moves around in a “ring”
so that the end wraps around to the beginning. It’s also known as a “circular buffer”
and is often what is meant when people talk about a “fixed-size queue.”

A ring buffer is stored in a single array or vector of contiguous data, but is not
accessed in the same idiom. The data is processed in a FIFO (First-In-First-Out)
idiom, where items are added to the “tail” of the queue, and removed from the
“head” for processing.

Hence, a ring buffer is a good choice of data structure for implementing a fixed-
size queue or dequeue (double-ended queue).

Some of the main design decisions when implementing a ring buffer involve etrror
handling:

e Overflow — inserting into a full buffer
e Underflow — removing from an empty buffer

Should the ring buffer throw an exception, or just return a Boolean failure status to
the caller?

Simple Ring Buffer
A basic ring buffer data structure has three main elements:

e Array or vector of objects (fixed-size)
e Head index (integer)
e Tail index (integer)

249 C++ Ultra-Low Latency

Here’s some code using std: :array for a ring buffer:

template<typename T, int sz>
class RingBuffer {
private:
std::array<T, sz> arr; // Fixed-size array
int head;
int tail;
//
bi

New objects are inserted at the tail, and retrieved for processing from the head. In
a typical implementation, the progression goes from left to write, using a “+1” idea
for the next location. Technically, the ring buffer data could be handled in reverse
order, but the forward progression around the ring is simpler and allows marginally
more efficient arithmetic because there are no negatives to handle.

Thus, the basic primitives needed by a ring buffer:

e Insert at the tail
e Remove at the head

Here’s the basic insertion method:

bool push(const T& x) {
int newtail = (tail + 1) % sz;
if (newtail == head) {
// Overflow (full)
return false;
}
tail = newtail;
arr([tail] = x;
return true; // success

>

And here’s the “top” method for an interface that allows “top” to access, and “pop’
to remove:

T top() A
if (is_empty()) {
// Underflow
return T(0) ;

}

return arr[head];

}
David Spuler 250

The “pop” method actually removes the item from the ring buffer:

void pop() { // Just remove (no return)
if (is_empty()) |
// Throw exception? (optional)
return;

}

else {
head = (head + 1) % sz;
}

And there are also various simple primitives:

e Capacity — the fixed-size of buffer.
e Empty — zero elements
e Full — fixed-size atray is full.

The code is reasonably simple:

int capacity() const { return sz; }
bool is empty() const { return head == tail; }
bool is full() const { return (tail+l) % sz == head; }

Pros and Cons of Ring Buffers

The main advantage of a ring buffer is that it has contiguous data. This means that
our fixed-size queue should be faster to access than one stored as a linked list
using std: : queue.

The main disadvantage of a ring buffer is that it has a fixed size,
unlike std: : queue, which grows dynamically. This ring buffer size doesn’t
necessatily need to be known at compile-time, but does need to be set when you
initialize the ring buffer. There are also more advanced types of ring buffers which
use multiple arrays, which can be dynamically grown in size.

The other disadvantages are that the ring buffer is very specific to a FIFO access
pattern. It’s not a fast data structure for these operations:

e Searching for a value
e Sorting data
e Inserting at a random location (rather than the tail)
e Deleting from a random location (rather than the head)
251 C++ Ultra-Low Latency

Insertions and deletions are slow because they require a “shuffle” of all objects.
Note that there’s an interesting wrinkle: we could make insertion and deletions fast
if we don’t mind violating the FIFO ordering and moving objects around
(invalidating any pointers or iterators referencing them). The idea is that the ring
buffer becomes like an unsorted array (with wraparound):

e Fast random insertion — move the current element at the insertion
location to a free location at the end of the ring buffer, then insert.
e Fast random deletion — move the last element to the location we are

deleting from.

It’s not all bad news. The data in a ring buffer is mostly stored contiguously, so
there are some operations that still have good cache locality properties:

e Scanning or visiting all data elements
e Random access of data by integer index

A linear scan of all the elements can be quite fast, provided you don’t mind that it’s
unsorted (or rather, it’s sorted by order-of-insertion). The data elements are always
in one or two contiguous data blocks, which is better than dispersed data structures
like linked lists or binary trees. However, it’s not quite as fast as an array or vector
scan of objects, which is always one contiguous block.

Accessing one of the objects via an integer ordinal is still quite fast (i.c., 0...n-1).
Mainly, it’s just some integer arithmetic with head and tail to find its array offset in
the ring buffer.

Incremental Count Optimization

Computing the count of how many elements are currently inside the ring buffer is
somewhat tricky: In the above computations, we can compute the “count” of how
many elements are in the buffer using arithmetic on head and tail indices.

int count () const {
return (tail >= head) ? tail - head
sz — (head - tail);

An alternative that can be faster, if the count () method is called often, is to
maintain an incremental count, and store it in the ring buffer.

David Spuler 252

The idea is pretty simple:

e Insertions — count++ (except if full)
e Deletions — count-- (except if empty)
e Count — just return the count variable.

Hence, the computations during insertion and deletion are only a single integer
increment or decrement, and the count () function becomes a simple getter of an
integer data member. In addition, the availability of a “count” variable actually
allows some optimizations to some of the other methods:

e empty() — test count==
e full() —testcount==capacity

These are much faster than the earlier versions using head and tail index arithmetic.
Hence, these efficiency gains may override the extra costs from incrementally
computing the count during object insertions and removals.

Avoiding Three Integers

If we use an incremental count optimization for the number of items in the ring
buffer, we end up with three integer values:

e Head
e Tail
e Count

It turns out that we don’t need all three, because they are inter-related numbers. We
can calculate the “tail” variable from the “head” and the “count” value.

tail = (head + count) %sz;
There are actually some other numbers that are also related, which we could also
use. For example, the total number of insertions and deletions of objects is related

to the head and tail values, and the count is simply the difference between them.

Alternative Variable Pairs. It turns out that a ring buffer can be defined by any
two variables from a set of several related calculations.

253 C++ Ultra-Low Latency

Some of the possible pairs include:

e Head and tail
e Head and count
e Tail and count

Note that there are two main implementations of the initialization of head and tail
values. These yield implementations that differ by one in all calculations, so you
have to consistently choose between them:

e head = tail = 0
e head 1,tail = 0

The meanings of head and tail differ slightly in these two variants. Hence, the inter-
relationship with the count is also different by one. Care must be taken to avoid
off-by-one errors!

Combining Two Variables. The optimization ideas above reduced our three
variables (head, tail, and count) down to two variables. Any pair of them will do,
since they are inter-related.

But what about reducing it to one variable? Having only one integer variable in our
ring buffer might be desirable because:

e Efficient single arithmetic operations.
e One integer value as an atomic for lock-free versions.

Can it be done?

The key point to note is that we really do need two distinct values. However, we
can put them together into a single integer with encoding and packing ideas. For
example, we could store the head as 16 bits and the count as 16 bits, and put both

in a 32-bit unsigned integer.

Note that this limits the capacity of the ring buffer to 2716 which is 65,536. We
could also pack them into a 64-bit unsigned long if we needed more capacity.

David Spuler 254

Modulo Arithmetic Optimizations

The % operator for modulo arithmetic (or remainders) is one of the slowest
operations in C++. The typical code we want to optimize in a ring buffer or fixed-
size queue uses this idiom:

head = (head + 1) % N;

Modulo arithmetic is based on division, which is also slow, even on integers. Hence,
our ring buffer can be improved by getting rid of the percent!

How? There are several options:

e Bitwise arithmetic

e Type casts

e Ternary operator

e Branchless coding

e Unsigned arithmetic

Bitwise-and trick. Firstly, if we choose the buffer size N, to be a power-of-two,
then we can use bitwise arithmetic. A remainder of a power-of-two is the bitwise-
and of the number one less. These are equivalent:

head (head + 1) % 16; // Modulo
head = (head + 1) & 15; // Bitwise-and

Validating power-of-two. One thing you might want is a safety net to ensure
nobody uses the ring buffer for a size that’s not a power-of-two. We want this:

static assert(is_power of two(N)); // How?
We can use the Kernighan bit trick:

static assert((N & (N-1)) == 0); // Kernighan
How does this work?

It’s just magic, and let’s forget about it.

255 C++ Ultra-Low Latency

No, actually, the Kernighan trick is that “N& (N-1)” clears the value of the
rightmost bit of a number. Hence, if the number without the rightmost bit equals
zero, then there’s only one bit set in the number. And the set of numbers with only
one bit set: powers of two.

Note that lots of parentheses are necessary around the bitwise operator to avoid an
operator precedence glitch. Also note that the Kernigan trick fails with a false
positive if N is zero or negative, so we should add some more safety checks at
compile-time:

static_assert (N > 0);

Type casts. The use of bitwise-and is limited to powers of two, which is annoying,
but there’s an even more specific way to do this for some of them: type casts. If we
can choose the size as 256 (8-bits) or 65,536 (16=Dbits), we can do this:

head (unsigned char) (head + 1); // 8-bits
head = (unsigned short) (head + 1); // 16-bits

Note that type casts are often effectively free after C++ does its optimization thing,
The register allocation algorithm can just choose to use a value in a different way,
and propagate that forward to other arithmetic. Thus, a type cast operation may
result in zero runtime instructions.

Ternary operator. But why are we using arithmetic in general, when there’s actually
only one case where we want to reset the value. Another way is to use the ternary
operator instead of arithmetic. The calculation becomes:

head = (head + 1 == N) ? 0 : head + 1;

We can also implement this logic in two instructions, which is worth a try:

head++;
if (head == N) head = 0;

Or if you like short-circuiting operators, you can do this:
(++head) == N && (head = 0);
The compiler probably treats that the same, but you never know, and you might

want to check the assembly output (e.g., using “gcc -S7).

David Spuler 256

Branchless coding tricks. Another trick is to notice that we just want to zero the
value in one specific case. Hence, we can use the branchless coding trick of using
logical operators as 0 or 1 integers. The goal of branchless coding is to remove all
control flow branches, so that the CPU’s branch prediction logic can run fast. Note
that the ternary operator is actually like an if statement, and it has two branches.
The branchless version with only fixed arithmetic is:

head = (head + 1) * (head + 1 != N); // Branchless

The way this works is to multiply the value by 0 or 1, depending on the logical test.
Again, we can also try this as two statements:

head++;
head *= (head != N); // Branchless

Note that I doubt the branchless versions are very efficient, because they’ve added
a multiplication operation. The ternary operator version is likely better, and isn’t
that bad despite its branches, if you look at the assembly. Most compilers will
convert it to a single CMOV (conditional move) CPU instruction, which makes it
effectively branchless, too.

Unsigned arithmetic. One final trick is to note that we have modulo arithmetic
for free in the CPU: unsigned integer arithmetic. Overflow of unsigned integers is
not an exception in C++ and when you think about it, implements the exact
semantics of modulo arithmetic. Hence, here’s the idea:

unsigned char head;
head++;

It works! And there’s not a single percent operator anywhere! All this time and we
had cheap modulo arithmetic hiding in plain sight.

We really need to time this, because it isn’t 100% guaranteed as faster code. A lot
of the uses of head will involve converting it from unsigned char to an integer
offset, such as for array indexing in the vector of objects that makes up the ring
buffer. A variation of this idea would be to store the head and tail as integers or
unsigned integers, so that they can be used as the fastest type of normal integer, but
still use unsigned arithmetic overflow tricks for modulo arithmetic.

257 C++ Ultra-Low Latency

This is the idea for an N=256 size ring buffer:

int head;

((unsigned char¥*) &head) ++;

This relies on the platform being “little endian” with the lowest-order byte stored
on the left, which is true in most modern CPUs (but not if you’re sending integers
over the network in “network byte order”). And, yes, you got me, I really should
use reinterpret cast here rather than the old C-style type cast.

Obviously, these tricks of using head and tail as unsigned integers only work for
a limited set of sizes:

e N=256-—unsigned char (8-bits)
e N=065,536 — unsigned short (16-bits)
e N=4.7 billion — unsigned int (32-bits)

We can even do decrement and negative calculations this way, since underflow is
also not an exception, whereas the % operator and negatives don’t talk to each other
at parties.

Move Semantics

If our ring buffer contains complex objects, there are many more considerations
for making it efficient. One of the biggest inefficiencies in a ring buffer class is
inserting and deleting any non-trivial objects. If we do it wrong, we’re calling copy
assighment operators and copy constructors to make new objects in the array, and
running the destructor when we release an object.

Move semantics to the rescuel

The first point to note is that it doesn’t matter for simple data types in our ring
buffer. Any scalar values like integers or floating-point numbers don’t have any
copy constructors or destructors to wortry about. In fact, this is also true of simple
structures and classes, so long as they are “plain-old data” or POD data types.

But anything more complicated than this will have costly calls to copy constructors
and copy assignment operators.

David Spuler 258

To optimize this, we need to talk about:

e Move constructor and move assignment operator
e R-value references

e Copy clision

e Return Value Optimization (RVO)

In practice, the problems atise in both our “push” and “top” versions. The “pop”
routine causes a COpy assignment operator invocation:

bool push (const T& x) {
//
arr[tail] = x; // Copy assignment
return true; // success

And the “top” member has the problem of returning an object type, which will use
a copy constructor call at the return statement.

T top() {
//

return arrlhead]; // Copy constructor

The automatic compiler optimization of “copy elision” might help improve the
performance of the “top” method. Returning an object is exactly the situation it’s
meant for. However, we can use move semantics explicitly to ensure it’s improved:

bool pop top move (T& outobj) {
if (is_empty()) { return false; }
ct incremental--;
int oldhead = head;
head = (head + 1) % sz;
outobj = std::move (arr[oldhead]); // Move assign
return true; // success

Note that std: :move () is a compile-time type-cast here, without any runtime
cost. And it’s required to convert to an R-value reference, as otherwise the
assignment statement would still call a copy assignment operator.

259 C++ Ultra-Low Latency

Constructor Problems

One of the performance problems with our ring buffer implementation is
that std: :array calls the constructor for every object whenever a new ring
buffer object is defined or created. This occurs with this use of std: :array for
our ring buffer:

std::array<T, sz> arr; // Fixed-size array
How to avoid these constructor calls? After all, our ring buffer is supposedly empty

with zero objects initially. Some of the solutions that don’t work and will still call
constructors:

e Raw arrays
e DPointer to std::array

Using a raw array like this will still call all the constructors when our ring buffer is
created:

T arr(sz];

Similarly, we could use an allocated copy of std: : array, since it’s really an object
not an array. It works like this:

std::array<typename T,sz> * arrptr;

arrptr = new std::array<T,sz>; // in constructor

This allocates our big array in the constructor rather than as a non-allocated data
member. This adds an extra inefficiency from the extra allocated block, and doesn’t
work anyway. The new operator will still run all the individual object constructors.

What about using std: : vector instead?

David Spuler 260

Standard Vector Problems

Using std: :vector can be better than std: :array, because it delays both its
memory allocation and its construction of objects:

std::vector arr<T>;
Unfortunately, I’'m not a big fan of this approach, because it has other difficulties:

e Extra memory allocation call (inefficient).
e Bounds checking failures in debug libraries.

The first point is that resize () has the same problem with too many constructor
calls. Doing this in the constructor will still call all the constructors:

arr.resize(sz); // Constructors!
So, we can call reserve () instead of resize (). That won’t call constructors:

std::vector arr<T>;
//

arr.reserve(sz); // No constructors!

This has hopefully allocated the memory for all the objects, without running their
constructors. But this can run into various problems when we try to use the vector
elements. The problem is on this type of statement in our push method:

arr[tail] = x;

And the same problem still occurs with our code that gets items out of the ring
buffer. Note that the issue is not move semantics, because this has the same issue:

outob] = std::move (arr[oldhead]); // Move assignment

The issue is bounds checking on the [] operator for std: : vector. In theory, the
reserve () function has allocated valid memory for enough objects. However,
the size () function is still zero, so the runtime bounds checking will trigger on
any debug run of the code.

Yes, maybe some platforms this will work, with no bounds checking. But you can
run into portability problems. For example, it makes the code fail with spurious
runtime errors on any type of “hardened” standard C++ library.

261 C++ Ultra-Low Latency

Explicit Destructor Calls

Another problem with our ring buffer implementation when instantiated with class
types is destructor calls. Instead of too many constructor calls, we have too few
destructor calls. The problems include:

e Destructor calls missed after move assignments (e.g., popping).
e Destructor calls on destroying the whole ring buffer.

One solution: don’t bother. If the object that’s used in a ring buffer doesn’t have
important destructor actions after a move (and it shouldn’t), or if destroying the
whole ring buffer is in the shutdown sequence of the application, then you can
maybe just forget about this problem.

Another solution is to explicitly call the destructor ourselves. You can call the
destructor of a class like any other member function using the ~T () syntax. For
example, in the pop function, we can do:

arr[head] .~T(); // Explicit destructor

Basic types don’t need destructor calls, so we ideally want to distinguish trivial types
from fancy class objects. We can also use type traits to do this, which are
wonderfully efficient compile-time operators that work during instantiation of the
template. Here’s how it works:

if (!std::is_trivially destructible<T>::value) {
arr[head] .~T(); // Explicit destructor

The alternative is to note that trivial types have no-op destructors, and the compiler
would remove them anyway. Hence, the above type trait test may be unnecessary,
but it’s a fast compile-time test anyway, so either way is fine.

Note that we are assuming here that the class being used has a destructor that works
propetly after an object has been moved away. In other words, it doesn’t do
something silly like assuming a pointer in the object is non-null.

The move assighment operator also needs to propetly clear all the non-trivial data
members, such as pointers, to zero or null values, so that the destructor doesn’t
access bad memory after a move.

David Spuler 262

Class Interface Bypass

There are a couple ways to bypass the class interfaces, and thereby avoid the
inefficiencies of construction and destruction. This makes the caller of our ring
buffer manage when the objects are created and destroyed. The main ways are:

¢ Blocking non-trivial types
e Raw character buffer arrays
e DPointers to objects

Trivial types only. We can make our ring buffer, or other home-grown containers,
faster simply by disallowing their use with complex objects. We can efficiently
trigger compiler warnings with the type trails, so that users of the template know to
only use scalars or other POD types. Here’s some examples using the various
different settings:

static_assert(std::is pod<T>::value); // Plain-0ld Data
static_assert(std::is_ trivial<T>::value); // Trivial

Raw character-array memory buffers. The idea is to use a character array as a
raw buffer, rather than std::array or std: :vector, for our container class
(e.g., our ring buffer). To bypass class constructions by using raw memory buffers,
we have choices like:

char arr([sizeof(T) * sz]; // Static data member
char *arr = new char[sizeof (T)*sz]; // Dynamic alloc

This raw byte idea is workable, but every use of the array has to involve index
calculations and type casts to object-type pointers. It’s fiddly and annoying, but it’s
faster, because it avoids constructor calls, and doesn’t need all the extra messing
around to avoid std: : vector bounds checking. There are also concerns with:

e Uninitialized bytes in the buffer
e Alignment of addresses

We really should also initialize the bytes in our array buffer to all nulls in the
constructor using memset on the whole array. To do this, we also need to make
sure that all the classes using the ring buffer have properties like:

e All-bytes-null is a stable but invalid initial status of the object.
e Destructor doesn’t fail on an all-bytes-null object.

263 C++ Ultra-Low Latency

We also need to manually take care of alignment of the addresses, since the compiler
thinks we only have characters, which don’t have alignment issues. There’s
the alignas standard specifier and various non-standard implementations for
older language versions.

If we’re really careful, maybe the initialization is not needed and we can leave out
the memset call in the constructor. There’s some new “uninitialized memory”
primitives coming in C++26 that may also help to do so. You can maybe avoid
needing the null byte initialization, but I'm betting against you when I
run valgrind on your code.

Pointers. As much as I admire the design of move semantics, there is a simpler
way to avoid the overhead of objects moving in and out of our ring buffer. Old-
school coding still works: store pointers to the objects in the ring buffer instead of
full objects. The upside is avoidance of object copying and moving overhead.

The downside of pointers is the extra level of indirection, and double hit to memory
with poor cache locality because of that. And pointers have a few pitfalls with a bad
reputation as being unsafe, but I’'m sure you’ve heard that before.

Extensions

1. Implement a reverse ring buffer that uses decremented indices for head
and tail, rather than addition, so that it grows from right-to-left instead of
left-to-write.

2. Implement a dequeue in a ring buffer by adding “insert-at-head” and
“remove-from-tail” operations for the ring buffer (rather than the normal
insert-at-tail and remove-from-head idiom). The trick is we’ll need to
subtract one from indices and go in reverse.

3. Implement a ring buffer with initialization of “head=1" and “tail=0"
(rather than “head=tail=0"). All calculations will differ by one, such as the
“empty” calculations is not “head==tail” anymore.

4. Implement a ring buffer using two full-size integers that count the number
of insertions and deletions. Note: the relationship between head and tail
versus insertions and deletions is not that difficult!

David Spuler 264

27. Perfect Hashing

What is Perfect Hashing?

Perfect hashing is the extreme of hashing, where we guarantee that there’s no
collisions. Hence, the hash function is “perfect” because no pair of two keys map
to the same hash value. This makes for a super-fast hash lookup with
guaranteed O(7) search performance, and no need to look up a second hash
location ever.

Perfect hashing is faster than normal hash tables. Regular hashing is fast on average,
with O(7) average search, but collision resolution mechanisms like linear chaining
or probing can have worst case O(n)search cost. Perfect hashing has
guaranteed O(7) search complexity for best, average, and worst case. In fact, we
don’t even code up a collision resolution method at all.

Unfortunately, the good news stops there, because this only works in a very special
situation: where the set of keys is known at compile-time. This hash table can only
contain a fixed set of keys that we know whenever we build the perfect hashing
code.

If there are any insertions or deletions, this idea doesn’t work at all, and may require
us to re-run and re-compile our perfect hashing engine if they occur. Thus, we can
tolerate insertions and deletions but only if they are rare. Some examples of rarely
changing sets of strings we might want to look up with perfect hashing include:

e Special keywords in a programming language tokenizer (e.g., 100 reserved
words).

¢ Common English words in a grammar checker (e.g., 1,000 basic words).

e Stock tickers on an exchange’s market data feed (e.g., about 5,000).

e Vocabulary words of an Al model (often 50,000 to 100,000 words).

Yes, the last one is a bit tricky, because tickers might change daily, in which case we
might need to re-run our perfect hashing in every overnight build. Also, finding a
perfect hash function for 100,000 LLM vocabulary strings in a reasonable amount
of time might be a struggle.

265 C++ Ultra-Low Latency

Disadvantages of Perfect Hashing

We already mentioned the main disadvantage of perfect hashing, which is that it
requires a known set of keys, or at least a very rarely changing set of keys. Other
disadvantages include:

e Cost to build — expensive to scan the search space to find a perfect hash
map.

e Scalability problems — cannot handle a large number of keys because the
search space becomes too large.

e Static data — insertions and deletions invalidate the hash map.

¢ Recomputations — increasing the key set requires a total re-run of the
whole shemozzle.

Perfect hashing also has some of the disadvantages of a basic hash map
like std: :unordered map, such as:

e Unsorted data
e Scanning all data is somewhat inefficient (and in unsorted order)
e Cache locality issues because objects are stored randomly in the hash table.

Perfect hashing is not perfect for every case. Some alternatives data structures to
consider for search lookup optimization include:

e Bloom filters
e Tries
e Automata (precomputed)

Or you could just put all your keys in an array and use a GPU to check them all in
parallel.

Perfect Hash Functions

Special hashing algorithms can be used in any situation where the search data is
known at compile-time. The most efficient solution is to use hashing with a specially
developed hash function, designed to prevent all collisions. This is called a perfect
bash function and can only be developed for unchanging data. If a perfect hash
function can be found, the symbol table can be searched with one computation of
the hash function and one key comparison to determine if the key is actually there
at the index.

David Spuler 266

The most difficult aspect of using this method is the search for a perfect hash
function for a particular set of data. There are a few common methods of doing so:

e Inspired guesswork
e Brute-force computation
e Use a perfect hashing tool (e.g., GNU gperf)

In some cases, the programmer can work out a function that has no collisions by
guessing at a function. For example, if the programmer notices that all keys have a
different first letter then it is easy to compute a perfect hash function as a mapping
from the 26 letters to a different unique integer, the hash value. There’s a curious
fact unknown to most Al engineers, that humans are very resourceful and this
method of “guessing” the function works surprisingly well.

The brute-force approach involves trying to generate the hash function using a
computer which tries a number of different hash functions of a particular meta-
pattern, applies the hash function to each key, and report when no collisions occur.

Further Optimizations of Perfect Hashing

The general complexity of perfect hashing is O(7), which is true of the best case,
average, and worst case complexity. Hence, it’s fast for large sizes, but we still might
want to optimize it a little more! There are two places to try to speed up:

e Lookup function (online)
e Perfect hash function creation (offline)

The basic method of perfect hashing can be optimized so that lookup is even faster.
Some of the ways that we might super-optimize the search phase include:

e Not checking the key is present.
e Using a power-of-two hash table size.
e Larger hash table size.
Avoiding string comparisons. The sequence for a perfect hash lookup:
1. Calculate the perfect hash function.

2. Find that location in the hash table.

3. Compare the string at that location with our search key.

267 C++ Ultra-Low Latency

But why are we doing this string comparison at the end? That’s quite slow. Well,
sometimes we don’t need to, and it depends on context. For a grammar checker or
LLM tokenizer, we need to detect whether or not the key is there, because multiple
words could map to the same hash location.

On the other hand, a market data feed from a US stock exchange might only contain
our set of ticket names, so we can assuze that only one string could possibly be at
the hash table location. In other words, we’re assuming that every string is found,
and there are zero failed searches, so our hash table is mapping of the string to a
set of data structures (e.g., our order book for that stock). That’s all fine, and it will
go faster, but the code will break completely if the exchange adds a new stock ticker!

Another way we could avoid the string comparison is to use two or more perfect
hash functions. This data structure is known as a Bloom filter, and combines
multiple bit vectors with multiple hash functions. Bloom filters are a probabilistic
data structure that can confirm 100% that a key is invalid, but can only confirm that
a key is likely to be valid, but not with 100% certainty.

Power-of-two hash table size. The size of the array that is our hash table is one
main parameter for a perfect hash function, so we have some control over it. Note
this basic point: the hash table size must be more than the number of keys, or else
it’s a little hard to avoid collisions! In fact, it’s easier to find a perfect hash function
if the size is significantly more than the number of keys, so that there are some
empty slots.

But what size? For some reason lost in the mists of time, everyone wants to choose
a prime number, preferably a Mersenne prime, because that supposedly makes hash
maps more evenly spread. But in the case of perfect hashing, we are looking for
exact mappings with zero collisions, so it’s perhaps not so important to use a prime.

Instead, we should use a power-of-two hash table size, because that allows the
arithmetic in our perfect hash function to be faster. The reason is that most perfect
hash functions look like this:

offset = some big number (key) % N;
The % remainder operator is extremely slow, even on integers. The only reason it is

used here is to ensure that the hash function maps to between 0 and N-1,
where N is the hash table size.

David Spuler 268

We can use “strength reduction” to use a faster arithmetic operation, such as:

e Bitwise-and operator — if N is a power-of-two (e.g., for x$16 do x&15).
e Type cast to unsigned char —if Nis 256 (8 bits)

e Type cast to unsigned short — if Nis 65,536 (16 bits).

e Opverflow of unsigned char — if N is 256 (8 bits)

e Opverflow of unsigned short —if Nis 65,536 (16 bits).

We’ve already examined a lot of these optimizations to modulo arithmetic in detail
for the discussion of ring buffers in Chapter 21.

Larger hash table size. An important point about hash table sizes is that bigger
can be better. This is true for both the offline computation of the perfect hash
function, and the online search lookup. Bigger hash tables have more “gaps” and
are an easier search space to find a solution. In terms of online search performance,
a bigger table worsens cache performance, but that’s not likely to be great for a hash
table anyway. Furthermore, these extra gaps also mean that unsuccessful searches
will be faster on average, because those keys that map to a gap can avoid the string
comparison at the end. And memory is cheap, after all.

Offline search optimizations. The search for a perfect hash function can be very
expensive, and even impossible. Some of the ways to speed things up include:

e All of the hash function optimizations.
e Splitting up the search space (partitioning).

The first point is that any optimization to the perfect hash function computation
applies a thousand-fold to the offline search. For example, we also get faster
computations possible in the offline search for a hash function if we only look at
power-of-two table sizes. In fact, our offline code does a lot more of those
computations.

Search space partitioning optimizations. The search space is combinatorial and
explodes with large key sets. One approach is to split the keys into multiple perfect
hash tables, such as by partitioning the key sets. Some of the ways to consider
partitioning include:

e First letter — we can use 26 different perfect hash tables.

e Two letters — this gives 26¥26=676 separate hash tables.

e Length of keys — e.g., stock tickers are at most 5 letters long.

e Preliminary hash — a simple hash function to start with (e.g., first two
letters modulo a size smaller than 670).

269 C++ Ultra-Low Latency

Note that this means running the perfect hash engine multiple times to find a
different perfect hash function for each partitioned set of keys. However, running
26 searches for smaller sets of keys will often run faster overall than trying to find
one super-perfect hash function for every single key.

Example: ANSI C Keywords

As an example of the various approaches, let us attempt to develop a perfect hash
function for a set of C’s 32 keywords for a programming language tool:

auto break case char

const continue default do
double else enum extern
float for goto if

int long register return
short signed sizeof static
struct switch typedef union
unsigned void volatile while

Using my own version of “inspired guesswork”, involving a couple of hours of
poring over ASCII tables, I managed to come up with a reasonable perfect hash
function. The basic approach I took was to break up the words into groups of about
five keys by using a test of the string length, and also by making single character
comparisons on the larger groups of keys with the same length. Once the group
was small enough I looked for letters in the keys that were unique, often the first
or second letter, and then examined the ASCII binary values of these letters. This
way, the hash function extracts certain bits from each letter, and generates a small
integer, which is then mapped into an “interval” of values for that particular group.
The function, which produces hash values in the range 0..36, is as follows:

int my hash(char* s)
{
switch (strlen(s)) {
case 2: // Only “if” and “do”
return (s[0] & 01) + 2; // 2..3

case 3:
return (s[0] & 01) + 8; // 8..9
case 4:
if (s[l1] == 'o') // goto, long, void

O‘
return (s[0] & 03) + 26; // 26..29
else // auto, case, char, else, enum
return ((s[1l] & 14) >> 1) + 30;
case 5: // break, const, float, short, union, while
// First letter is unique
return (s[0] & 07)+(s[0] == 'c') + 10; // 10..16
case 6:

David Spuler 270

if (s[0] == 's') // signed,sizeof,static,struct
return (s[5] & 03) + ((s[5] & 8) >> 3)
+ ((s[5] & 16) >> 2) + 18; // 18..22

else // Letter not ’'s’ - double, return, extern
return (s[0] & 03) + 23; // 22..24

case 7: // "typedef", "default"

return (s[0] & 16) != 0;
case 8: // continue, register, unsigned,volatile

// First letter is unique

return ((s[0]&04) >> 1)+(s[0] & 01) + 4; // 4..7
default: // Can’t be a C keyword

return 0; // Pick any number

The second approach is to make the computer perform a brute-force search for a
perfect hash function. The following program takes a set of keys from a file and
develops a hash function of the following form:

(2 C[i] * key[i]) mod N

The code attempts brute-force computations with many combinations of the
constants C[i] and N. If one of these hash functions produces no collisions, a
perfect hash function has been found. The source code below implements this
concept.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>

char words[MAX] [LEN]; // words being hashed
int C[LEN]; // coefficients of hash function

#define MAX MULTIPLIER 1 // Let C[i] range 0..MAX MULTIPLIER
// 0 means skip, 1 --> use addition

#define MAX MODULUS 1000

int G_MODULUS;

int G _MODULUS START MULTIPLIER = 5;

int G_MODULUS_TOP;

271 C++ Ultra-Low Latency

// Rpply the hash function coefficients to a key

int compute hash perfect(char* s, int modulus)
{
unsigned int hash = 0;
for (int 1 = 0; i < LEN && s[i] !'= 0; i++) {
hash += s[i] * C[i];
}

return hash % modulus;

// Try all the combinations of coefficients
// This function finds the perfect hash function!

void perfect hash find best (int nwords, int nstart)
{
bool done = false;
bool flags[MAX MODULUS]; // has a key hashed here yet?
int modulus = nstart * G MODULUS START MULTIPLIER;
do {
// Do one possible modulus (table size)
for (int i = 0; i < LEN; i++) C[i] = 0; // Clear
do {
// Update C[i] coefficients for next attempt
C[O]++;
for (int i =
if (C[1]
C[i] = 0;
if (i + 1 < LEN) { C[i + 1]++; }

0; 1 < LEN; i++) {
<= MAX MULTIPLIER) break;

}
memset (&flags, 0, sizeof flags);

// Scan all strings to count collisions...
bool collision = false;
for (int num = 0; num < nwords; num++) {
int val = compute hash perfect(
words [num], modulus);
if (flags[val]) {

collision = true;
break;

}

flags[val] = true;

}
if (!collision) { // report success!!

printf ("NO COLLISION: ");

for (int i = 0; i < LEN; i++) {

printf("%2d ", C[i]);

}

printf (", MODULUS = %d ", modulus);

if (modulus == nstart)

printf (" PERFECT!!! (n=%d)", (int)nstart);

David Spuler 272

printf ("\n");
break; // exit do loop. Do next MODULUS
}
// Finish only when all multipliers
// are up to MAX MULTIPLIER
done = true;
for (int i = 0; 1 < LEN; i++) {
if (C[i] < MAX MULTIPLIER) ({
done = false;
break;
}
}
} while (!done);
if (done) {
printf ("FAILED with MODULUS %d\n", modulus);
}
modulus--; // Try the next modulus value
} while (modulus >= nstart);

As shown in the source code above, the program is set to find all hash functions
where the coefficient is either 0 or 1. These functions are a useful special case, as
no multiplications are actually needed (all the characters with a 1 coefficient are
simply added). When the program is run as shown on the ANSI C keywords as
inputs, the best hash function it produces has modulus 134 (i.e., hash table size 134)
and the following coefficients:

NO coLLIsioN: 1 0 1 1 1 1 1 0 O 0 , MODULUS = 134

This information can be coded up into a simple petfect hash function.
Unfortunately, the memset and strncpy calls are necessary to ensure that characters

beyond the end of the string are considered zero, as is assumed by the hash function
generator.

int computer hash (char* s)
{
char s2[10];
memset (s2, 0, 7);
strncpy(s2, s, 7)
return ((int)s([O0]
+ (int)s[4]

// zero the first 7 letters
; // copy up to 7 letters
+ (int)s[2] + (int)s[3]
+ (int)s[5] + (int)s[6]) % 134;

273 C++ Ultra-Low Latency

This is not a minimal perfect hash function for these 32 keys. If the records to be
stored with these keys are quite large, the space wastage of 134 hash table entries
may be too large. A simple method of overcoming this is to add an array of 134
small integers (i.e., using the char type), where each entry in this array sets each C
keyword to a unique value in the range 0..31. On the other hand, this may be a de-
optimization as a sparse hash table can be more efficient than a minimal perfect
hash function. If the table is large, it becomes likely that an unsuccessful search will
map to a location containing a null pointer entry, and this avoids the need for the
key comparison.

Perfect Final Thoughts

These computations we found here are not minimal perfect hash functions. If the
stars align, you can sometimes find a mapping that works with the hash table size
exactly equal to the number of keys. It might take a lot of CPU juice to find one,
though. Good luck with that!

All of the hash functions in this section (both human and computer-generated) have
multiple limitations, such as:

e ASClI-specific — not portable to the EBCDIC set or other character sets.
e Little endian — I haven’t checked portability to big endian machines.

Finally, if you’d rather use a tool for perfect hashing than have as much fun as I just
did, you can use the GNU gperf tool, which is a perfect hash function generator.
GNU gperf will output the perfect hash function in C++ for you, and is highly
customizable.

Extensions

1. Generalize the perfect hash functions to use parallel arithmetic in the hash
function computation, such as AVX or ARM Neon SIMD instructions on
a CPU or GPU kernel calculations.

2. Parallelize the search for a perfect hash function on either a CPU (e.g,,
AVX or ARM Neon functions) or on a GPU (e.g., in CUDA C++).

3. Implement multiple perfect hash functions on the same set of keys to get
a Bloom filter data structure, where the string comparison can be omitted
during lookup.

4. Try out the GNU gperf tool for one of the data sets.

David Spuler 274

28. Matrix Multiplication

Matrix-Vector Multiplication

Matrix multiplication by a vector gives another vector. Let us consider the simple
case first, where the matrix is square with dimensions NxIN and the vector is also
of size N. The matrix has Nrows and N columns, and the input vector
has N elements. The resulting output vector will also have N elements.
Conceptually, in pseudocode:

MAT[N] [N] * VIN[N] -> VOUT[N]

It’s not immediately obvious, or at least, I don’t remember my High School Math
teacher mentioning it, but matrix-vector multiplication is a bunch of vector dot
product computations. We need to do a vector dot product for each of the elements
of the output vector. Fach element is a dot product of a matrix row times the input
vector. Note that the dimensions match for a dot product, with N matrix rows
and N elements in the input vector.

Rectangular matrices. The general case of a rectangular matrix multiplied by a
vector is a little trickier, but not a lot. If our matrix is MxIN and the vector is size NN,
then the output vector has size M. Note the two of the dimensions must match: the
columns of the matrix and the elements of the input vector are both N. However,
this dimension N “disappears” and the output vector has size only dependent
on M. The pseudocode:

MAT[M] [N] * VIN[N] -> VOUT[M]

The rectangular matrix-vector multiplication is almost identical to square matrix-
vector computations. Each element of the output vector is a dot product of a matrix
row with the input vector. Again, we note that the dimensions of the matrix rows
(N) must match the size of the input vector (IN), or else we cannot compute it. I
mean, we coz/d still compute it with mismatched dimensions, such as by assuming
that the shorter one (matrix row or input vector) had zeros in the missing elements,
but that sounds a little buggy.

275 C++ Ultra-Low Latency

Complexity of Matrix-Vector Multiplication. The algorithmic complexity of
matrix-vector multiplication is quadratic in IN, whereas matrix-matrix multiplication
is cubic in N. The basic matrix-vector multiplication scans IN rows of the matrix,
with each row element performing a computation against each of the N elements
in the vector, giving two nested loops with an overall O(IN*2) cost.

Memory layout: One important point for the efficiency of matrix-vector
multiplication is that the default memory layout has contiguous addresses for both
the matrix row and the vector. Obviously, a vector is just a sequence of memory
with all the elements in series. Not so obviously, a row of a matrix, when stored as
a C++ two-dimensional array, is also a contiguous set of data (i.e., a2 matrix row is
like a vector). Hence, the dot product multiplication of a matrix row and the input
vector is simply scanning forward along contiguous addresses for both of its inputs,
which makes it easy to vectorize.

Optimizing Matrix-Vector Multiplication

The version of matrix-vector multiplication with row-wise vector dot products
needs three parameters, because it outputs to another separate destination vector.

void aussie matmul vector basic outl (const ymatrix m,
const float v[], int n, float vout[])
{ // Basic matrix-by-vector using vector dot product
for (int i = 0; i < n; i++) {
const float* rowvector = &m[i] [0];
float sum = aussie vecdot basic(rowvector, v,n);
vout[i] = sum;

Nested Loop Matrix-Vector Version: The same matrix-vector multiplication
algorithm in the form of two nested loops is below. This is flattening the call to the
lower-level vector dot product function and putting its inner summation loop
directly inside the outer main loop. The basic C++ code looks like:

void aussie matmul vector basic out2(const ymatrix m,
const float v[], int n, float vout[])
{ // Basic matrix-by-vector using nested loops..
for (int row = 0; row < n; row++) {
float sum = 0.0f;
for (int col = 0; col < n; col++) {
sum += (m[row] [col] * v[col]l);
}

vout [row] = sum;

}
David Spuler 276

Optimizations of matrix-vector multiplication. Various ways to optimize the
naive nested loop matrix-vector multiplication suggest themselves:

11 2

e Hoisting loop-invariant code (loop code motion) of the
expression.

e Loop pointer arithmetic for both loops.

e Loop unrolling of the inner loop to unroll 4, 8 or more iterations.

e Loop tiling to unroll a 2x2 tile/block.

e Vectotization using the AVX1/AVX2 vector dot product vetsions we
already examined.

m[row]

I tried coding several more of these optimizations and here are the benchmarks:

Matrix-Vector (MatMulVec) benchmarks (N=2048, ITER=300):
Matrix-vector nested loops: 3480 ticks (3.48 seconds)
Matrix-vector nested loops hoisted: 3489 ticks (3.49 sec)
Matrix-vector nested ptr-arith: 3415 ticks (3.42 seconds)
Matrix-vector unrolled inner (4): 1166 ticks (1.17 seconds)
Matrix-vector unrolled inner (8): 938 ticks (0.94 seconds)
Matrix-vector nested tiled 2x2: 1995 ticks (2.00 seconds)
Matrix-vector vecdot AVX1 DP: 1414 ticks (1.41 seconds)
Matrix-vector vecdot AVX2 FMA: 929 ticks (0.93 seconds)

Interestingly, code hoisting and loop pointer arithmetic were a waste of effort. Loop
tiling did better than the original, but probably its speedup is primarily from the
effect of loop unrolling rather than data locality or cache hit rates, since simpler
loop unrolling did better. Note that the AVX1 version used the “dot product”
intrinsic but AVX-2 used the FMA intrinsic. Simple loop unrolling also did as well
as AVX2 hardware vectorization, probably because the versions of AVX1 and
AVX2 were simply calling the vector dot product functions, so they still had
function call overhead. Hence, this algorithm can be further optimized by inlining
to fix the AVX function call overhead, combining AVX intrinsics with unrolling
for the inner loop, and then some minor final tweaks such as pointer arithmetic.

Tiled Matrix-Vector Multiplication

A more detailed analysis of the matrix-vector algorithm shows that it is not optimal
in at least three areas:

e Data locality

e Pipelining AVX intrinsic arithmetic
e Redundant loads

277 C++ Ultra-Low Latency

The data locality of the 2x2 tiled version is better, but more improvement is
possible, starting with the use of AVX intrinsics inside the “sub-kernel” for the tile.
The AVX instruction sequences of “load, calculate, store” in the eatlier non-tiled
AVX-optimized versions are not allowing for the natural instruction pipelining of
the AVX intrinsics to calculate multiple sums or FMA operations with near-parallel
pipelining. And the entire input vector is getting re-loaded repeatedly for every row
in the matrix. So, we need to examine improvements on three aspects.

A tiled sub-kernel is the main way to fix data locality and pipelining. Improving data
locality is somewhat inherent to tiling. The pipelining can be improved by unrolling
the tiled sub-kernel and reordering the loads and stores so they don’t block the
arithmetic of AVX intrinsics.

Can we avoid redundant vector loads? Since it’s unavoidable to access every
element of every row at least once, the redundant loads of the vector suggest that
we should modify the algorithm so as to work on a subsection of the vector for
each of the matrix rows. This suggests an inversion of the main nested loops of the
algorithm. However, that runs into the major problem that it destroys cache locality,
by scanning down the column of the first matrix. I benchmarked this loop
interchange idea, and it actually increased execution time. Maybe we should use the
transpose of the first matrix, so that it’s in column-major order when scanning its
columns? No, that’s actually just going back to the original algorithm without the
loop interchange.

Anyway, a better plan seems to be to reduce the redundant loading by using
temporary calculations inside the tile sub-kernel. Here is what a basic tiled/blocked
algorithm using 2x2 tiles looks like in basic sequential C++:

void aussie matmul vector tiled 2x2 better(const ymatrix m,
const float v[], int n, float vout[])
{ // Tiled/blocked matrix-by-vector using 2x2 tiling

aussie assert(n % 2 == 0);

for (int row = 0; row < n; row += 2) {
vout [row] = 0.0f;
vout [row + 1] = 0.0f;

for (int col = 0; col < n; col += 2) {
vout [row] +=
(m[row] [col]l*v([col]) // row+0,col+0

+ (m[row] [col+l] * v[col+l]l) // row+0, col+l
vout [row+1l] +=
(m[row+1l] [col]*v[col]) // row+l, col+0
+ (m[row+l][col+l] * v[col+l]) // row+l, col+l

’

}
David Spuler 278

One minor improvement would be to use memset to clear the whole output vector
to zero, rather than individual assignments, which I added to the 4x4 tiled version.
There is another minor improvement is removing the “common sub-expressions”
of vicol] and v[col+1] and I tried this with no improvement noted in the 2x2
tiled version, but about 10% improvement in the 4x4 tiled version. The
computations of m[row] and m[row+1], etc., can also be hoisted out of the inner
loop, giving another 10% gain for the 4x4 tiled version. The C++ code for the 4x4
tiled version with a fully unrolled 4x4 sub-kernel now looks like:

void aussie matmul vector tiled 4x4 CSE2 (

const ymatrix m,
{
aussie assert(n % 4 ==
memset (vout, O,
for (int row = 0;

const float* rowve

const float vI[],
// Tiled/blocked matrix-by-vector using 4x4 tiling
) .
sizeof (float)
row < n;

C

int n, float wvout[])

* n);
row += 4)
gm[row] [0];

{

const float* rowvecl = &m[row + 1][0];
const float* rowvec2 = &ml[row + 2][0];
const float* rowvec3 = &m[row + 3][0];
for (int col = 0; col < n; col += 4) {
float fcolO = v[coll]l;
float fcoll = v[col + 11;
float fcol2 = v[col + 2];
float fcol3 = v[col + 3];
vout [row] +=
(rowvec[col] * fcol0) // row+0, col + O
+ (rowvec[col + 1] * fcoll) // row+0, col + 1
+ (rowvec[col + 2] * fcol2) // row+0, col + 2
+ (rowvec[col + 3] * fcol3) // row+0, col + 3
vout [row + 1] +=
(rowvecl[col] * fcolQ) // row+l, col + 0
+ (rowvecl[col + 1] * fcoll) // row+l, col + 1
+ (rowvecl[col + 2] * fcol2) // row+l, col + 2
+ (rowvecl[col + 3] * fcol3) // row+l, col + 3
vout [row + 2] +=
(rowvec2[col] * fcolO) // row+2, col + O
+ (rowvec2[col + 1] * fcoll) // row+2, col + 1
+ (rowvec2[col + 2] * fcol2) // row+2, col + 2
+ (rowvec2[col + 3] * fcol3) // row+2, col + 3
vout [row + 3] +=
(rowvec3[col] * fcolO) // row+3, col + O
+ (rowvec3[col + 1] * fcoll) // row+3, col + 1
+ (rowvec3[col + 2] * fcol2) // row+3, col + 2
+ (rowvec3[col + 3] * fcol3) // row+3, col + 3

’

279

C++ Ultra-Low Latency

Matrix-Matrix Multiplication

Now let’s look at matrix-matrix multiplication, whereas above we looked at matrix-
vector multiplication. The proper MatMul and GEMM kernels are coded for full
matrix-matrix multiplication.

Matrix multiplication results in another matrix as the output. For the simple case of
two square matrices of the same size, the resulting output matrix is also of the same
dimensions. In pseudocode:

M1 [N][N] * M2[N][N] -> MOUTI[N] [N]

For multiplying two rectangular matrices, or sizes MxIN and NxP, we get an output
matrix of size MxP (i.e., the inner N dimensions disappear). In pseudocode style:

M1 [M] [N] * M2[N][P] -> MOUTI[M][P]

Note that P=7 is the case of matrix-vector multiplication, because an Nx7 matrix
is actually a vector with IN rows of a single element (i.e., one column).

Algorithmic Complexity. The naive implementation of a matrix-matrix
multiplication via three nested loops is a cubic algorithm, with O(N"3) complexity.
The well-known Strassen algorithm has complexity about O(N"2.7), which looks
like such a massive improvement. Other algorithms such as the Coppersmith-
Winograd algorithm and numerous sub-variants have better asymptotic complexity,
but with a high constant overhead, making them impracticable for anything but
very large values of IN.

Basic Matrix-Matrix Multiplication. The basic naive algorithm for matrix
multiplication is three nested loops. There is nothing fancy here: this is just coding
up the basic matrix multiplication method that you forgot the second you finished
your Senior math exam.

If you don’t believe me, check it out on Wikipedia.

David Spuler 280

Here’s the C++ code:

void aussie matmul matrix basic(const ymatrix ml,
const ymatrix m2, int n, ymatrix mout)
{
// Matrix-Matrix mult basic naive n”3 algorithm
for (int row = 0; row < n; row++) {
for (int col = 0; col < n; col++) {
float sum = 0.0f;
for (int k = 0; k < n; k++) {
sum += (ml[row] [k] * m2[k][col]);
}

mout [row] [col] = sum;

The two outer loops are scanning the rows of the first matrix, and the columns in
the second matrix. The innermost of the three loops is doing a vector dot product
computation over the “k” index variable. However, it’s not a normal vector-vector
dot product. Instead, it’s the dot product of one “horizontal” vector, which is a row
of the first matrix, and of a second “vertical” vector, which is a column of the
second matrix. Hence, the number of rows in the first matrix must equal the
columns of the second matrix, which is true here because we’re assuming that both
matrices are square. Hence, the “k” variable is spinning down the n elements of a
row and a column at the same time. Every element of the NxIN output matrix
requires a vector dot product calculation like this.

Vectorization. None of these matrix multiplication algorithms are especially good,
because they are all sequential, rather than parallel algorithms. Neither the naive cubic
version nor the Strassen algorithm are what we need. What we need for GPUs and
CPU SIMD intrinsics are vectorizable algorithms for matrix-matrix multiplication.
Unfortunately, the above simple triple-nested matrix multiplication algorithm
is not one of them, because non-contiguous storage of the second matrix hampers
vectorization.

Memory layout problems for matrix-matrix multiplication: The layout in
memory for matrix-matrix multiplications is not as fortuitous as it was for matrix-
vector multiplications. Each computation in matrix-matrix multiplication is a vector
dot product of a row of the first matrix with a column of the second matrix. Each
row of the first matrix is happily stored in contiguous memory, but the columns in
the second matrix are not. In fact, the “stride” between two elements of a column
of a matrix is a very large number of bytes in the default memory layout.

281 C++ Ultra-Low Latency

The default storage of matrices and two-dimensional arrays in C++ is called “row-
major” storage layout. Row-major storage has each row in contiguous memory. The
rows are stored one at a time, top to bottom, and adjacent elements in a row are
also adjacent memory addresses. Columns are a second-class citizen in row-major
layout, and you have to jump around to find adjacent elements of a column vector.

The alternative storage method is “column-major” storage layout where the
columns are stored in contiguous memory, and it’s the rows that are in the smoker’s
carriage at the back of the train. However, column-major is not the default C++
storage mode.

Hence, to vectorize a matrix-matrix multiplication, we want to keep the first matrix
in row-major storage, but we need to rearrange the storage of the second matrix to
be column-major storage, rather than the default row-major storage. Column-major
storage would help vectorize the columns with each column element in adjacent
memory locations. The first matrix is fine, but we want the second matrix to be
stored in a mirror image of itself.

Hmm, a mirror and a matrix. What does that sound like? A transposed matrix.

Pseudo-Transposed Second Matrix. The simplest way to get column-major
order of a matrix (especially if square) is to use the transpose of the matrix, and
modify the internals of the matrix multiplication function to pretend that the
transpose is actually the column-major storage of the original second matrix. I call
it the “fake transpose” method, which is a bit of a misnomer because it is the actual
transposed matrix, but we modify the matrix multiplication code to access it with
reversed logic indices.

Confusing? Yes, I felt the same way, but if you follow it through carefully, you can
see that the transpose is really very similar to storing the original matrix in column-
major order, where each column element is stored in adjacent memory. The
columns of the original problematic matrix become fake rows in the fake transpose,
stored in sequential memory addresses. So, for square matrices, we can take the
transpose of a matrix, and it’s like the matrix has been converted into column major
storage. However, we also need to change the C++ code in the matrix
multiplication kernel, because it assumes row-major order storage of both matrices,
but now we’ve got row-major storage only for the first matrix, and column-major
storage for the second one (our fake transpose).

The main point of optimization with a transpose is that the column becomes a
contiguous vector from a row in the transposed matrix.

David Spuler 282

Here’s what the matrix multiplication algorithm looks like when it’s working on a
“fake” transpose:

void aussie matmul matrix fake transpose(const ymatrix ml,
const ymatrix m2, int n, ymatrix mout)
{
// Matrix-Matrix naive n”3 algorithm on a TRANSPOSE
for (int row = 0; row < n; row++) {
const float* rowvec = &ml[row] [0];
for (int col = 0; col < n; col++) {
float sum = 0.0f;

const float* colvec = &m2[col][0]; // Row!
for (int k = 0; k < n; k++) {
sum += (rowvecl[k] * colvecl[k]);
}
mout [row] [col] = sum;

Note that the above code assumes the transpose has already been computed.
However, it is viable to compute a new transpose matrix in a preliminary step and
still be faster, because transposing a matrix only adds an extra O(N"2) time to
compute the transpose (and IN*2 storage space to store it temporarily), whereas the
main matrix multiplication is O(N"3) time.

Perhaps surprisingly, this transpose method is much faster even without any
vectorization. Because the column vectors are accessed in sequential order from
contiguous memory, there is much better data locality for the memory cache, and
also for any predictive pipelining happening in the cache. Here’s the benchmark
comparison:

Matrix-Matrix multi (MatMul) benchmarks (N=2048, ITER=1):
Matrix-matrix mult basic: 69479 ticks (69.48 seconds)
Matrix-matrix fake transpose: 47469 ticks (47.47 seconds)

The transpose method is 31% faster with an unchanged basic MatMul algorithm.
And all we did was permute two indices in a two-dimensional array. This code does
exactly the same arithmetic computations as the naive version, but accesses memory
in a different order, giving us a cache speedup.

There are various other small coding optimizations that can improve the transposed
MatMul method further. The loop body could be partially unrolled by 4 or 8
iterations (or more).

283 C++ Ultra-Low Latency

Here’s the C++ code of the version with an unrolling factor of 8 iterations:

void aussie matmul matrix fake transpose unrolledS8(
const ymatrix ml, const ymatrix m2, int n, ymatrix mout)
{

// Transpose Matrix-Matrix mult 8 iteration unroll

aussie assert(n % 8 == 0);
for (int row = 0; row < n; row++) {
const float* rowvec = &ml[row] [0];

for (int col = 0; col < n; col++) {
float sum = 0.0f;
const float* colvec = &m2[col][0];

for (int k = 0; k < n; k += 8) {

sum += (rowvecl[k] * colvecl[k])
+ (rowveclk + 1] * colveclk + 11])
+ (rowvecl[k + 2] * colveclk + 2])
+ (rowvecl[k + 3] * colvecl[k + 31)
+ (rowvecl[k + 4] * colveclk + 41])
+ (rowveclk + 5] * colveclk + 5])
+ (rowvecl[k + 6] * colvecl[k + 6])
+ (rowveclk + 7] * colveclk + 7])

}

mout [row] [col] = sum;

Here are the benchmark results:

Matrix-Matrix mult (MatMul) benchmarks (N=2048, ITER=1):
Matrix-matrix fake transpose unroll 4: 15221 ticks (15.22 s)
Matrix-matrix fake transpose unroll 8: 12151 ticks (12.15 s)

Further tweaks are possible. The internal loop could be fully unrolled for a known
vector size. Also, the initialization “sum=0.0£” could be removed by peeling the
first iteration and starting the loop at “k=1"".

Pointer arithmetic could be used to avoid loop indices and the double bracket
accesses. However, these are small fry, and we’re now on the hunt for the Spanish
mackerel of MatMul optimizations: vectorization.

David Spuler 284

Vectorized MatMul

Cache speedup is not the only benefit of the transpose method. Once we have
column-major storage for the second matrix, then both the rows of the first matrix,
and the columns of the second matrix are in contiguous memory. The computation
is a normal vector dot product again on two vectors stored as arrays in memory
(.e., “rowvec” and “colvec” in the C++ code above). Hence, we can just use all
of our standard vector dot product speedups again, including vectorization and
hardware acceleration.

As an example, here’s the AVX-2 vectorization of the transpose method using the
FMA 256-bit intrinsics to do the vector dot product in parallel. This parallelizes the
dot product by 8 elements at a time:

void aussie matmul matrix fake transpose vecdot AVX2 (
const ymatrix ml, const ymatrix m2, int n, ymatrix mout)
{
// AVX2 Matrix-Matrix multiplication
aussie assert(n $ 8 == 0);
for (int row = 0; row < n; row++) {
const float* rowvec = &ml[row] [0];
for (int col = 0; col < n; col++) {
const float* colvec = &m2[col][0];
mout [row] [col] = aussie vecdot FMA unroll AVX2 (
rowvec, colvec, n);

Here are the benchmark results:

Matrix-Matrix multi (MatMul) benchmarks (N=2048, ITER=1):
Matrix-matrix fake transpose AVX1l: 19522 ticks (19.52 s)
Matrix-matrix fake transpose AVX2: 12747 ticks (12.75 s)

If anything, these AVX results are disappointing. Basic loop unrolling techniques
(in the prior section) did better than AVX1 and the same as AVX2 vectorization.
However, we haven’t used AVX optimally inside the sequential code here. The
AVX intrinsic calls should be moved up into the loop body without any function
call overhead (i.e., inlining the function manually).

I coded up that idea, and it made almost zero difference! I guess the C++ compiler
is already inlining it, or function call overhead is a tiny percentage.

285 C++ Ultra-Low Latency

Further parallelization speedups would include using AVX-512 or AVX-10
intrinsics for vectorizing 16 elements in parallel. Also desirable are various further
optimizations of the sequential code around any AVX intrinsics. The inner “col”
loop could be fully or partially unrolled with multiple AVX sequences and/or
optimized with pointer arithmetic.

Loop Tiled/Blocked MatMul

The triple-nested MatMul version with the vectorized inner loop is still nowhere
near what is possible. There are three more ways to increase throughput:

e Data locality within the matrices.
e Pipelining of the SIMD instructions.
e Avoiding repeated loads of the same data.

The data locality of the basic AVX transposed MatMul algorithm is still far from
optimal, although we fixed the most egregious problem by using the transpose. The
algorithm is simply scanning down all of the dimensions, without really any attempt
to maintain data locality.

The method of calling AVX intrinsics is simply doing “load, FMA, store” repeatedly
along blocks of 4 or 8 elements, which does not allow for the natural pipelining of
the FMA instructions. The loads and stores are interrupting the flow of
computation.

Secondly, if you look carefully at the “load” operations that are happening in the
sequence, you realize that it is repeatedly loading the same regions of the matrices.

Tiling or blocking the MatMul loops are far more effective. The basic idea is that
instead of scanning sequentially, we process smaller square or rectangular “tiles” or
“blocks” of the data, one at a time.

Data locality is the main aim of a tiled algorithm, but it also helps us achieve better
pipelining of SIMD instructions, because we can load all the data in, and then
perform multiple arithmetic operations on it without any intervening loads or
stores.

And since a tiled MatMul is iterating more carefully over smaller blocks of data
within the matrices, there’s also less redundant loading of the data overall.

David Spuler 286

Fast Matrix Multiplication Theory

The main techniques for faster matrix multiplication of general matrices include:

e Strassen’s algorithm
e Winograd’s algorithm
e Fast Fourier Transform (FFT) methods

Matrix multiplications can also be sped up by restricting our algorithm to only use
matrices that are of special types:

e Low-rank matrix factorization
e Sparse matrices
e Special matrix methods (e.g., Butterfly matrices, Monarch matrices, etc.)

Each of these specialized matrix types can have a faster matrix multiplication kernel
than using the all-purpose GEMM kernel. For example, sparse matrices can be
stored in a compacted permuted-tuple format, with parallelization of permutation
arrays for computation.

Approximate Matrix Multiplication. Approximate Matrix Multiplication (AMM)
refers to a variety of complicated model optimization techniques that replace matrix
multiplications with various approximations that avoid the cost of arithmetic
multiplication, trading off some accuracy.

These methods are usually distinct from quantization methods, are not specific to
certain subclasses of matrices, and evoke more advanced mathematics in the theory
of matrices.

Note that these algorithms apply at the high-level of how matrices are multiplied
with other matrices or with vectors (e.g., avoiding some vector dot products),
whereas there are also low-level optimizations of the arithmetic operation when
multiplying two numbers.

These two classes of approximation research are not the same, and are actually
orthogonal to each other.

287 C++ Ultra-Low Latency

Multiplying by Transpose

The transpose of a matrix is commonly used in matrix multiplication algorithms,
both as part of the algorithms and as a speedup. For example, this occurs in Al
engines with the QKV matrix computations inside the attention heads, where the
transpose of K is used, usually denoted as KT in the algebraic formula.

Note that this is the actual algebraic use of the rea/ transpose, as opposed to the
unique idea of using a “fake transpose” to get column-major storage of matrices for
easier vectorization.

The code to compute the transpose of a matrix is shown below for a square matrix:

void aussie matrix transpose basic(const ymatrix ml,
int n, ymatrix transpose)
{
// Transpose: put transpose into the output matrix
for (int i = 0; 1 < n; i++) {
for (int j = 0; j < n; Jj++) |
transpose[j][i] = ml[i][J];

The funny thing is that if we want to multiply a “real” transpose as the second
matrix in some computation, then the original non-transposed matrix is the “fake
transpose” of the “real” transpose.

How awkward!

But it’s actually good, because we usually already have the original matrix in
memory, and we don’t even need to compute the (real) transpose. Instead, to do a
MatMul of a matrix with this real transpose, we can instead use the original matrix
as the second operand in the kernel that is based on the column-major storage of a
fake transpose. Oh, dear, I feel like it’s all circular and I’'m digging myself into a
word pit here! But it all works out in the end, and it’s fast, which is really the one
and only thing.

David Spuler 288

References

1. Ulrich Drepper (2007), What Every Programmer Shoutd Know About Menory,
November 21, 2007, http://people.redhat.com/drepper/cpumemory.pdf

2. Kazushige Goto (2008), Anatomy of High-Performance Matrixe Multiplication,
ACM Transactions on Mathematical Software, Volume 34, Issue 3,
Article No.: 12, May 2008, pp 1-
25, https://doi.org/10.1145/1356052.1356053,
PDF: https://www.cs.utexas.edu/~flame/pubs/GotoTOMS revision.pd
£

3. Harald Prokop (1999), Cache-Oblivions Algorithms, Masters Thesis, MIT,
June 1999, http://supertech.csail.mit.edu/papers/Prokop99.pdf

4. Intel (2023), Inte/® 64 and LA-32 Architectures Optimization Reference Mannal:
Volume 1, August 2023, 248966-Software-Optimization-Manual-V1-
048.pdf

5. Agner Fog (2022), VVector Class Library
(I’CL), https:/ /www.agner.org/optimize/vel manual.pdf

6. Sergey Slotin (2022), Matrix Multiplication,

Algorithmica, https://en.algorithmica.org/hpc/algorithms/matmul/
Code: https://github.com/algorithmica-

org/algorithmica/blob/master/content/english /hpc/algorithms /matmul
.md

289 C++ Ultra-Low Latency

http://people.redhat.com/drepper/cpumemory.pdf
https://doi.org/10.1145/1356052.1356053
https://www.cs.utexas.edu/~flame/pubs/GotoTOMS_revision.pdf
https://www.cs.utexas.edu/~flame/pubs/GotoTOMS_revision.pdf
http://supertech.csail.mit.edu/papers/Prokop99.pdf
https://www.agner.org/optimize/vcl_manual.pdf
https://en.algorithmica.org/hpc/algorithms/matmul/
https://github.com/algorithmica-org/algorithmica/blob/master/content/english/hpc/algorithms/matmul.md
https://github.com/algorithmica-org/algorithmica/blob/master/content/english/hpc/algorithms/matmul.md
https://github.com/algorithmica-org/algorithmica/blob/master/content/english/hpc/algorithms/matmul.md

David Spuler 290

Part V: Multithreading
Optimizations

291 C++ Ultra-Low Latency

David Spuler 292

29. Multithreading Optimizations

C++ Multithreading Optimizations

Multithreading is the art of parallelizing on a multicore CPU, often as part of low
latency programming. Threads have been around since at least the 1990s (e.g.,
POSIX threads), even before most CPUs even had “cotes,” but recent
advancements have made them much easier to code.

C++11 introduced a standardized thread library called std: : thread (along with
the supporting extra classes std: :mutex and std: :atomic), and C++17 then
introduced a lot more advanced parallelization modes.

What is Multithreading?

In this discussion, threads run on the CPU, and you can have many threads per
CPU (or per “core”). Multithreading and multicore programming are largely the
same thing, or at least they’re in the same ballpark.

Other types of threads can differ quite a lot. For example, there is also a slightly
different idea of “threads” on GPUs in the CUDA C++ programming language.

You can run 1024 threads on an NVIDIA GPU, but you might not want to do that
on your CPU lest you run out of stack space. CUDA C++ allows 1024 threads by
having a quite restricted amount of GPU memory (sometimes called VRAM)

allocated to the call stacks for each GPU thread in a grid.

Hence, stack overflow is a thing on GPUs, too.

293 C++ Ultra-Low Latency

How Not to Multithread

If you’re looking for a short career as a multithreading programmer, here are some
suggestions:

Launch as many CPU threads as you possibly can, ideally one per vector
element, just like you do in a low-level GPU kernel for Al inference.

Put huge buffer objects as local variables on your call stack, and launch
multiple threads of that.

Fix your huge local buffer variables by making them static, because that
function won’t ever get run twice at the same time.

Use mutexes around every access to all your variables, just to be safe.
Recursion will get you fired in any coding job, except university lecturer,
so it’s best to pretend you’ve never heard of it.

High-Level Multithreading Optimization

The first point above all else: multithreading is a high-level optimization in itself. Hence,
you want to be judicious in your choices of where to use your threads, and at what

level.

Some of the issues that control the overall concurrency that is achieved via a
multithreaded architecture include:

Abstraction level choices for splitting the work across threads.

Thread pool design pattern — avoid creating and destroying threads.
Thread specializations — e.g., producer and consumer threads model.
Message-passing design pattern to avoid locking — e.g., with a paired
future and promise.

Focusing on the data can also be useful to optimize:

Multithreading-friendly data structures — e.g., queues (esp. lock-free
versions).

Maximize read-only “immutable” data usage — aims to avoid blocking
concurrent readers.

Advanced data structure read-write models — copy-on-write, versioned
data structures.

Shard data across threads — reduces needed synchronizations (or other

types of data partitioning).
Reduce disk writes — e.g., use in-memory logging with late disk writes.

David Spuler 294

Ways to optimize by focusing on the execution pathways include:

e Slowpath removal — keep the hot path small and tight.

e Defer error handing — most error code is uncommonly executed (i.c., a
slowpath), so avoid, defer or combine error detection code branches.

e Cache warming — keep the hotpath bubbling away.

e Full hotpath optimizations — e.g., for HFT, the hotpath is not just “trade”
but actually the full latency from data feed ingestion to execution, so it’s
actually “receive-analyze-decide-and-trade.”

Some of the more pragmatic points include:

e How many threads?
e How long should each thread run?
e When to exit a thread versus waiting.

There’s no wrong or right answer to these questions, as they depend on the
application and the problem you’re trying to solve.

Low-Level Multithreading Optimization

There are various ways to modify how you run threads in order to optimize their
concurrency speed. These are not as impactful as the higher-level thread choices,
but are still important.

Some methods to change the lower-level thread architectures include:

e Core pinning (processor affinity) — every popular thread can have a
favorite core.

e Early unlocking — e.g., copy data to local variables, release lock, then do
the computations.

e Cache locality improvements (L1 cache and memory prefetch cache)

e Branch reductions —the instruction pointer on the straight-and-narrow.

e Lock-free algorithms — avoid mutex overhead and blocked thread delays.

295 C++ Ultra-Low Latency

Ways to avoid slow-downs in multithreading, and therefore increase speed:

e Minimizing thread launch and shutdown overheads.

e Releasing locks early by avoiding unnecessary computation, I/O waits, etc.

e Minimizing context switches

¢ Memory reductions (e.g., allocated memory optimizations; reduce thread-
specific call stack size).

e Avoid spinlocks (busy wait) or mitigate with exponential backoff methods.

e Avoiding “false sharing” from overlap of CPU memory prefetch cache
lines (e.g., use alignas (64) to separate unrelated atomics).

e Check std::lock guardis not unnecessarily delaying the unlock (i.e.,
till it goes out-of-scope).

Sequential C++ Code Optimizations

An important point about the code running in any thread is that: i#’s just C++ code.
Each thread is running a sequential set of instructions, with its own call stack.
Hence, all of the many ways to optimize normal C++ code also applies to all of the
code in the thread.

Hence, all of the basic ideas for C++ code optimizations apply:

e Compile-time processing — constexpr, constinit, etc.

e Operator efficiency — e.g., replace multiply with bitshift or addition.

e Data type optimizations — e.g., integers versus floating-point.

e Memory optimizations — improve with cache warming (prefetching),
memory reductions.

e Loop optimizations — e.g., loop unrolling, code hoisting, and many more.

e Compiler hints — e.g., [[1ikely]] statements.

e Function call optimizations — e.g., inlining, always_inline, etc.

e (C++ class-level optimizations — e.g., specializing member functions.

e Algorithm improvements — various non-concurrency improvements,
such as precomputation, caching, approximations, etc.

So, the bad news is that once you’ve coded your multithreaded algorithm, you still
have to go and do all the other types of sequential optimizations.

Oh, come on, who are we kidding? — it’s loads of bonus fun.

David Spuler 296

References

1. Paul Bilokon, Burak Gunduz, 8 Sep 2023, C++ Design Patterns for Low-
latency Applications Including High-frequency
Trading, https:/ /arxiv.org/abs/2309.04259,
Code: https://github.com/Oburak/imperial hft

2. Dung Le, Aug 13, 2020, Optimizations for C+~+ multi-threaded
programming, https://medium.com/distributed-knowledge/optimizations-
for-c-multi-threaded-programs-33284dee5e9c

3. Geeks Programming, March 2025 (accessed), Performance Boosting with
C++ Multithreading
Technigues, https:/ / geeksprogramming.com/performance-boosting-cpp-
multithreading-techniques

4. Karthikeyan Akkapalli, Aug 25, 2024, Multithreading in C++: Concepts,
Challenges, Advanced Techniques, and
Applications, https:/ /medium.com/@karthikevan akkapalli/multithreadin
g-in-c-concepts-challenges-advanced-techniques-and-applications-
b97cbdcf31c7

5. Deb Haldar, August 17, 2017, Top 20 C++ multithreading miistakes and how
to avoid them, https:/ /acodersjourney.com/top-20-cplusplus-
multithreading-mistakes

6. Nimrod Sapir, 2019, High-Frequency Trading and Ultra Low, Latency
Development
Techniques, https://corecppil.github.io /CoreCpp2019 /Presentations/Ni
mrod High Frequency Trading.pdf,
Code: https://github.com/DanielDubi/StaticFlatMap

7. Machinet, March 13, 2024, How 1o optimize C++ code for use in high-frequency

trading algorithms? https:/ /www.machinet.net/tutorial-eng/optimize-cpp-

code-high-frequency-trading-algorithms
8. Ivan Eduardo Guerra, October 19, 2024, C++ Design Patterns for Low

Latency Applications Including High Frequency
Trading, https:/ /programmador.com/series/notes/cpp-design-patterns-

for-low-latency-apps

297 C++ Ultra-Low Latency

https://arxiv.org/abs/2309.04259
https://github.com/0burak/imperial_hft
https://medium.com/distributed-knowledge/optimizations-for-c-multi-threaded-programs-33284dee5e9c
https://medium.com/distributed-knowledge/optimizations-for-c-multi-threaded-programs-33284dee5e9c
https://geeksprogramming.com/performance-boosting-cpp-multithreading-techniques/
https://geeksprogramming.com/performance-boosting-cpp-multithreading-techniques/
https://medium.com/@karthikeyan_akkapalli/multithreading-in-c-concepts-challenges-advanced-techniques-and-applications-b97cbdcf31c7
https://medium.com/@karthikeyan_akkapalli/multithreading-in-c-concepts-challenges-advanced-techniques-and-applications-b97cbdcf31c7
https://medium.com/@karthikeyan_akkapalli/multithreading-in-c-concepts-challenges-advanced-techniques-and-applications-b97cbdcf31c7
https://acodersjourney.com/top-20-cplusplus-multithreading-mistakes/
https://acodersjourney.com/top-20-cplusplus-multithreading-mistakes/
https://corecppil.github.io/CoreCpp2019/Presentations/Nimrod_High_Frequency_Trading.pdf
https://corecppil.github.io/CoreCpp2019/Presentations/Nimrod_High_Frequency_Trading.pdf
https://github.com/DanielDubi/StaticFlatMap
https://www.machinet.net/tutorial-eng/optimize-cpp-code-high-frequency-trading-algorithms
https://www.machinet.net/tutorial-eng/optimize-cpp-code-high-frequency-trading-algorithms
https://programmador.com/series/notes/cpp-design-patterns-for-low-latency-apps/
https://programmador.com/series/notes/cpp-design-patterns-for-low-latency-apps/

David Spuler 298

30. Common Multithreading Bugs
& Slugs

Multithreading Bugs Overview

Modern C++ is hard enough, and multithreading adds another layer of complexity.
You’re not alone, and bugs abound in parallel multithreaded C++ code! Various
beginner bugs and simple misunderstandings include:

113 b3

e Linux linking problem with the “pthreads” library (needs
linker option).

e main () does not wait for other threads and needs to call join ().

e Calling join () inside the new thread causes a deadlock.

e Crashing on join() because the thread is no longer “joinable” (test via
the joinable () method).

-pthread

Here are some simple mistakes you can make when trying to convert your
application to multithreading:

e Not using any synchronization for your threads (Yikesl).
e Not locking in all the places.

e Forgetting locking for cout and cerr output.

e Not unlocking on all paths.

e Double-locking a mutex.

¢ Double-unlocking a mutex.

Once you get into running multiple threads, here are some common gotchas in
terms of assumptions and misunderstandings:

e Assuming that the standard C++ containers are always thread-safe.

e Assuming that all simple int or pointer operations are atomic without
using std: :atomic.

e The volatile specifier is not a synchronization method.

Let’s examine some of these simpler multithreading mistakes.

299 C++ Ultra-Low Latency

Main Thread Exits Early

Here’s a simple “Hello World” program using standard threading. It looks totally
fine, right?

#include <iostream>
#include <thread>

void thread function ()

{
std::cout << "Hello world!" << std::endl;

}

int main ()

{
std::thread tl(thread function);
return 0;

Can you see the bug? The program won’t print anything.

Why? Because there’s nothing stopping the main () function, which just keeps
going and exits immediately. It doesn’t wait for the other thread to even start, let
alone finish, but is indifferent to its plight.

That’s one of the things to understand, but there are actually a few fundamental
g y
points to note here:

e Launching a new thread is a non-blocking operation.
e Exiting the program kills all unfinished threads.
e 'To wait for a thread, call join ().

Hence, to fix the program, you need to do this in the main () function:

std::thread tl(thread function);
tl.join(); // Wait!

After this change, the main thread will politely wait for the other thread to print its
message and finish. The join () function has the following features:

e Blocking call that waits for the other thread to finish.
e Immediate return if the other thread has already finished.

David Spuler 300

Self-Join Deadlock. Note that you cannot call join () from inside the new
thread itself. This causes an immediate deadlock, because the join () call in the
thread is waiting for itself to finish, but it cannot finish because it’s waiting (is
anyone else a fan of Catch 227). 1 feel like this self-join situation is a bug that the
standard threads library could check for, and maybe it does in the newer “hardened”
versions of the standard C++ library.

Anyway, just don’t do that. It’s the main thread that needs to join the new thread
from the outside, not the other way around.

Joinable Safety Check. In the above simple code, it’s not necessarily needed, but
safer thread code would validate that the thread is allowed to join before trying to
do so, because it crashes if you’re wrong! For example, a “detached” thread is non-
joinable. Here’s the simplest check:

if (tl.joinable()) tl.join(); // Safer

Note that in addition to join (), there’s also a2 method called detach (), but the
former is much simpler. The main thread still needs to wait for a detached thread
before exiting, but requires additional synchronization via some other method,
because you can’t join () a detached thread, as we just discussed.

Linux Linking Problem

You may find that a standard C++ program using the standard thread library does
not compile with GCC on Linux, or at least on older versions. The problem is that
standard C++ threads are implemented as POSIX threads on Linux with GCC.

The problem is that the POSIX threads library (usually called “pthreads”) is not
getting linked properly. You need to add an extra “~pthread” compiler flag to the
linking step (without an “s”). The error looks like this:

.../thread:127: undefined reference to ‘pthread create'
And the fix is to add this linking flag for GCC:

-pthread

Here’s the line in my Makefile for my testing build:

LINKFLAGS=-L/usr/1ib64/ -g $(PFLAGS) -pthread

301 C++ Ultra-Low Latency

Volatile Misunderstanding

This is a common mistake made about a longstanding feature of C++ (and also C).
The “volatile” specifier in C++ is #of for synchronization. In particular, the
wrong use of this specifier is not useful in multithreading because it:

e Does not do anything with other threads.
e Does not make a variable atomic.

Not only won’t it do anything useful for your multithreading synchronization, but
it will actually slow your code down because it interferes with the optimizer.

The purpose of volatile is much more mundane than multithreaded code, and
relates only to sequential programming, with these features instead:

e Indicates that this variable or address has “side effects” that the compiler
does not know about.
e Blocks the compiler from “optimizing out” reads or writes to this variable.

The main real-world uses of the volatile specifier include:

e Mapping an I/O device to a variable or memory address.
e Stopping compiler optimizations in benchmarking of low-level arithmetic.

The first one of these is the reason that it exists in the C++ language (and originally
in C, too). The idea is to tell the compiler that a variable or address represents an
input or output device. So, if the compiler sees the same variable or address read
twice, it doesn’t optimize the second one out, which would be faulty if that address
represents incoming data from a peripheral device or network feed. Similarly, if you
write the same value to that variable, intending to send two bytes to an output
device, the compiler is stopped from blocking you.

The use in benchmarking is a programmer trick that really misuses a language
feature. But there’s nothing wrong with that, because the standard semantics
for volatile are well-defined and have existed in the language since forever. It
was standardized into the C language in the ANSI C standard of 1989/1990, and
was formally incorporated into C++98.

The volatile specifier is a wonderful feature of C++ that I’ve used often. But,
as mentioned above, don’t use volatile as a synchronization method, because
nowhere in the above list of its features is anything related to multithreading or
concurrency.

David Spuler 302

Advanced Multithreading Bugs

As you progress to greater multithreading knowledge, the bugs get harder:

e Race conditions — a variety of orders that can have different results.

e Deadlock — often from wrongly-ordered acquisition of multiple locks.

e Livelock — a weird kind of near-deadlock cycling.

e Memory order errors — with atomics and lock-free data structures.

e High-level concurrency issues — sigh, the low-level concurrency code was
working so well.

e Thread starvation — a low-priority thread never gets any juice.

e Priority inversion — weirdly, a low-priority thread gets 4/ the juice.

That’s more than enough! However, there’s another important category of C++
multithreading bugs:

All the other C++ bugs you already know abonut.

Multithreaded code still uses basic sequential C++ code in every thread. There
might be a few bugs to watch out for in that!

Multithreading Slugs

There are plenty of ways to improve the performance of a C++ multithreading
application. In fact, you could write a whole book on it

Some of the higher-level slugs to avoid include:

e Using sequential code instead of multiple threads (the horrors!).
e Launching too many threads (leads to thread overhead).
e Too many runnable threads per core.

Some possible slowdowns in your locking strategy:

e Coarse-grained locking for an entire data structure (per-container locking).

e Using a single per-class mutex as static data member (per-class locking).

e Using unique locks for read operations, instead of shared read-write locks.

e Using a mutex for a simple integer counter (or a Boolean status flag), when
atomics would be enough.

303 C++ Ultra-Low Latency

Some of the low-level slugs in locking synchronization include:

e Opverlong lock holding with std: : lock_guard destructor unlocking.

e Not freeing a lock when no longer needed (e.g., when doing computation).

¢ Holding a lock while doing the last computations, instead of copying data
to local variables (and then unlocking before the computations).

e Holding a lock before an I/O operation or blocking kernel system call.

Some other ideas for areas to address for performance:

e Thread function arguments are pass-by-value by default (e.g., for objects).

e Not using a thread pool instead of launching/destroying lots of threads.

e Don’t do core pinning (thread affinity) with core zero (it’s the main Linux
kernel core).

e Blocking calls to select () in socket programming.

e Not doing any real work in the main thread (it’s a useful worker, tool).

Fake Multithreading

One weirdly common slug is “redundant thread computations” due to a simple
programming bug. This means that you have multiple threads repeating the exact
same work in multiple threads, but nobody notices because it’s a slug rather than a

bug.

For example, if you’re optimizing a “vector-add” operation that takes two vectors
and outputs a third vector, and the vectors are very long (e.g., in Al), then you might
try to have different segments of a vector processed in different threads to
parallelize the operation. But if you mess up the indices, such as if your boss calls
you away to an important meeting while you’re coding, there might be a problem
with the loop indices.

If you actually send work to each thread that has the full index range, rather than a
sub-segment, then each thread scans the entire vector and outputs the entire third
vector. This is insidious because the results should be correct, but it’s re-computing
the same arithmetic operations multiple times in parallel.

There’s nothing wrong with your high-level design except that the code still
has n instead of i in the code that assigns jobs to threads. You can go crazy and
optimize your multithreaded vector-add operation with producer-consumer thread
pools and lock-free queues, and then add work stealing for load balancing, but if
your indices are wrong, it’s all moot. Slugs and bugs can live together!

David Spuler 304

References

1. Deb Haldar, August 17, 2017, Top 20 CH++ multithreading mistakes and how
to avoid them, https:/ /acodersjourney.com/top-20-cplusplus-
multithreading-mistakes/

2. Akhil Robertson Cutinha, Jan 10, 2021, Comzmon Multithreading
Mistafkes, https:/ /medium.com/swlh/common-multithreading-mistakes-
e36ca8e98e7a

3. Rainer Grimm, February 10, 2021, Resolving C/ C++ Concurrency Bugs More
Efficiently with Time Travel
Debugging, https://www.modernescpp.com/index.php/resolving-c-c-
concurrency-bugs-more-efficiently-with-time-travel-debugging/

4. Geeks for Geeks, 27 Feb, 2024, Threading
Issues, https:/ /www.geeksforgeeks.org/ threading-issues

5. Matrix Media Solutions, September 20, 2024, Debugging Threaded Code: Tips
and Technigues for 1dentifying and Resolving Concurrency
Issues, https:/ /www.matrixnmedia.com/debugging-threaded-code-tips-
and-techniques-for-identifying-and-resolving-concutrency-issues

6. Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau, 2023, Common
Concnrrency Problems, in book Operating Systems: Three Easy Pieces,

2018, https://pages.cs.wisc.edu/~remzi/OSTEP/threads-
bugs.pdf, https://www.amazon.com/exec/obidos/ASIN/198508659X

305 C++ Ultra-Low Latency

https://acodersjourney.com/top-20-cplusplus-multithreading-mistakes/
https://acodersjourney.com/top-20-cplusplus-multithreading-mistakes/
https://medium.com/swlh/common-multithreading-mistakes-e36ca8e98e7a
https://medium.com/swlh/common-multithreading-mistakes-e36ca8e98e7a
https://www.modernescpp.com/index.php/resolving-c-c-concurrency-bugs-more-efficiently-with-time-travel-debugging/
https://www.modernescpp.com/index.php/resolving-c-c-concurrency-bugs-more-efficiently-with-time-travel-debugging/
https://www.geeksforgeeks.org/threading-issues/
https://www.matrixnmedia.com/debugging-threaded-code-tips-and-techniques-for-identifying-and-resolving-concurrency-issues/
https://www.matrixnmedia.com/debugging-threaded-code-tips-and-techniques-for-identifying-and-resolving-concurrency-issues/
https://pages.cs.wisc.edu/~remzi/OSTEP/threads-bugs.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/threads-bugs.pdf
https://www.amazon.com/exec/obidos/ASIN/198508659X/

David Spuler 306

31. Thread Overhead

What is Thread Overhead?

Thread overhead is the extra cost of creating and destroying threads, at the start
and end of multithreaded algorithm execution. This is effectively an extra cost that
you wouldn’t have in a single-threaded C++ application, and is offset against the
performance gain of parallelizing your code into multiple threads.

Hence, the two main components of thread overhead are:

e Launching new threads
e Destroying a finished thread

Note that these costs do not involve any other thread, but are specific to a single
thread. There are some other less obvious causes of extra thread overhead:

e Constructors of thread local objects (thread-local storage)
e Destructors of thread-local objects on thread shutdown

These per-thread costs are analogous to the startup and shutdown costs of C++
global objects in a non-threaded program. A normal C++ program has extra code
that runs before main () for global object constructors, and destructors that run
after the application finishes.

Measuring Basic Thread Overhead

You’re supposed to use a “thread pool” to avoid all the basic overhead of starting
and stopping threads. I was wondering how much that overhead would actually be,
so I decided to time it, using a dummy example.

307 C++ Ultra-Low Latency

Here’s my simple benchmarking function that just consumes some time, but
uses volatile to avoid getting optimized away:

void thread function (int n)
{
for (volatile int 1 = 0; 1 < n; 1i++) {
// nothing

I wanted the code to be doing some real instructions, rather than just sleeping for
a delay, such as with the this thread::sleep for () function,in caseit made
any difference to the status of the thread before shutdown.

Here is the instrumentation I used to try to measure thread startup and shutdown
overhead using the high-resolution clock in the <chrono> library:

{

before = std::chrono::high resolution clock::now();
before thread = before;

std::thread tl(thread function, n);

after thread = std::chrono::high resolution clock::now();
tl.join();

after join = std::chrono::high resolution clock::now();

}

now = std::chrono::high resolution clock::now();

And the computations of the different costs in microseconds are:

diff thread function =
std::chrono::duration cast<std::chrono::microseconds>
(now - before) .count () ;
startup_thread function =
std::chrono::duration cast<std::chrono::microseconds>
(after thread - before thread).count();
shutdown thread function =
std::chrono::duration cast<std::chrono::microseconds>
(now - after join).count();
compute thread function =
std::chrono::duration cast<std::chrono::microseconds>
(after join - after thread) .count();

David Spuler 308

Lambda and Functor Threads

A thread can be defined in other ways than a normal function call, such as function
pointer (not much different), a lambda function, and a functor (function object).
Hence, I decided to test the various different ways that a thread body of executable
instructions could be defined, such as:

e Standard function (i.e., with a name)
e Lambda function (anonymous function)
e Functor (function object)

The named function is shown above with the timing instrumentation around it.
Here’s the lambda function version with the anonymous [] syntax:

std::thread tl1([] (int n) {
for (volatile int 1 = 0; i < n; 1i++) {
// nothing

}

}r on);

And here’s a functor for your viewing pleasure, which is a “function object” where
the operator () has been defined:

struct Functor ({
void operator () (int n) {
for (volatile int i = 0; 1 < n; 1i++) {
// nothing

}s
Functor functor;
std::thread tl (functor, n);

Timing Results
Timing on Linux with GCC, these are the non-threaded timings:

Basic Function: 34 microseconds

Basic Function (Repeat): 36 microseconds
Basic Inline: 34 microseconds

Basic Ptr-to-Fn: 34 microseconds

Basic Functor: 32 microseconds

Basic Lambda: 34 microseconds

Basic std::function: 33 microseconds

309 C++ Ultra-Low Latency

And these are the threaded calls on Linux with GCC:

Thread Func (First): 228 us (init: 144, compute: 84, end: 0)
Thread Func (Repeat): 43 us (init: 3, compute: 39, end: 0)
Thread Func (Repeat): 41 us (init: 2, compute: 39, end: 0)
Thread Lambda: 42 us (init: 2, compute: 39, end: 0)

Thread Functor: 40 us (init: 2, compute: 37, end: 0)

Note that these are microseconds! The overhead from setting up the threads library
with 200 microseconds is not even half a millisecond. And that’s only the first call,
with the rest of the threads seeming to have only 2 or 3 microseconds of startup
overhead on Linux!

Timing on Windows (MSVS) for the non-threaded function calls:

Basic Function: 107 microseconds

Basic Function (Repeat): 102 microseconds
Basic Inline: 78 microseconds

Basic Ptr-to-Fn: 97 microseconds

Basic Functor: 136 microseconds

Basic Lambda: 87 microseconds

Basic std::function: 182 microseconds

And here are the Windows timings of the thread launches for the same functions:

Thread Func (1lst): 3387 us (init: 74, compute: 3312, end: O0)
Thread Func (Rep): 649 us (init: 41, compute: 607, end: 0)
Thread Func (Rep): 729 us (init: 35, compute: 694, end: 0)
Thread Lambda: 621 us (init: 34, compute: 586, end: 0)
Thread Functor: 539 us (init: 30, compute: 509, end: 0)

A few conclusions can be drawn:

e Thread launch overhead is about 26% on Linux (43 vs 34) and 500% (649
vs 107) on Windows (admittedly, an unfair comparison of a Linux server
versus a Windows laptop!).

e The first thread launch has a large extra time cost, which disappears on a
repeat, perhaps from initialization of the thread mechanisms (or perhaps
it’s just a cold cache?).

e There’s not much difference between running a thread body with a
standard named function, lambda function, or functor (function object) on
either platform.

David Spuler 310

Limitations. This is a dummy function and the overhead would be proportionally
less if the thread did more computation. This is a single test of a single function for
a single iteration count. There might be a few statisticians who want to object to
that level of sampling.

Furthermore, as you can see, my timing method isn’t particularly effective at
separately computing the startup and shutdown costs of a thread. A lot of the
startup cost and shutdown cost seems to be hidden inside the compute time, while
the main thread is waiting with the join () call. Nevertheless, the total costs are
quite indicative of the extra overheads, especially on the very first thread launch.

Synchronization and Context Switch
Overhead

The above discussion is about the overhead of threads starting and stopping. There
are various other types of overhead that should be optimized in the middle of the
thread’s execution:

e Synchronization overhead — extra cost of mutexes, locks, atomics, etc.
e Thread wait durations — blocked while awaiting a mutex or lock.

There are also some slowdowns that arise because your code is now split up into
multiple threads, which have to be scheduled and time-sliced by the OS and the
hardware. Some of the general areas of cost include:

e Context switches — cost of swapping threads in and out of CPU.
e Scheduling costs — the OS choosing which thread to run next.

There are also some slowdowns that occur in hardware caches during these
switches, because the OS does not store and reinstate any of the hardware caches.
The new thread starts with cold hardware caches, leading to cache misses with
performance problems in several areas:

e Memory cache invalidation — context switches lose low-level I.1/1.2/1.3
CPU cache advantages.

e TLB cache loss — the virtual address cache is lost.

e CPU instruction pipeline —stalls because execution location has moved.

e Instruction prefetch — cleared because a new thread starts elsewhere.

e Memory prefetch cache — the new thread is unlikely to be accessing the
same memory locations.

e NUMA cache issues — loss of cache coherence in multicore NUMA.

311 C++ Ultra-Low Latency

In other words, everything that the CPU does to make executing code run fast gets
undermined by a context switch.

What causes a context switch? Context switches can arise at the end of a time-slice
in scheduling, or can occur whenever the threads uses a primitive that can block
the thread. Some examples that trigger a context switch include:

e Synchronization — waiting for a lock or mutex.
e System calls — those that block, such as for I/O or networking.

A context switch involves storing all the status of the current thread and then
overlaying a new context for the new thread. This has its own cost, and also triggers
a flush of various CPU hardware caches, so the new thread starts its time-slice with
cold caches. Hence, context switches are expensive, and minimizing the number of
context switches is an important part of optimizing multithreading code.

David Spuler 312

32. Thread Pools

What are Thread Pools?

Threads going swimming in warm ocean water. Who doesn’t love the beach?

Thread pools are a design pattern in C++ multithreading that avoids the cost for
creating and destroying threads by using long-running threads. Instead of incurring
this thread overhead, a “pool” of available threads have been pre-created, which sit
there until work is available to be done. The main characteristics are:

e Idle threads wait for work (e.g., off a task queue).
e Threads are not destroyed after completing a chunk of work.

Thread pools are mostly used in a “producer-consumer” design pattern, although
thread pools can also be used in other ways. There are effectively two thread pools
in this design pattern:

e Producer thread pool — or sometimes a single producer.
e Consumer thread pool — always multiple, or what’s the point?

Typically, one or more producer threads adds work items to a queue, such as when
it receives new data from a network source. Another group of consumer threads is
idle while waiting to pull work off the queue. Consumers do the work, return the
results, and then add themselves back to the pool of idle consumer threads awaiting
more work.

Work Queue Implementation

The typical features of the thread-safe queue used in a producer-consumer work
queue include:

e Vector of worker threads

¢ Queue of arbitrary tasks (e.g., usually implemented as lambdas, functors
or std: : function wrappers)

e Stop flag for shutting down

313 C++ Ultra-Low Latency

The main interfaces are:

e Enqueue work (push) — by the producer.
e Deque work (pop) — by the consumer worker threads.
e Shutdown — tell all the threads to stop.

For a more advanced thread pool, some extra convenience features of the work
submission interface to consider include:

e Work functions with arbitrary arguments (via parameter packs, variadic
functions)
e Perfect forwarding of function arguments (e.g., std: : forward)

The work queue can be implemented in various ways:

e Use std::queue or std: :deque inside the thread pool object.
e Hand-coded locking queue with mutex and condition variable.
e Lock-free queue with atomics and “Compare-And-Set” (CAS) primitives.

Thread Pool Example

I tried hard to make this example simpler; I really did! In fact, my aim was to use
only explicit function names, and avoid any uses of the syntactic sugar for:

e T.ambda functions
° std::function
e Functor mechanics

However, it was a triple fail. Perhaps the last point was unavoidable, since a worker
task is a function object. But I also had to add a little lambda function just to get
the worker thread function to run and another one for the predicate in the condition
variable wait. I also used std: : function for the type of the function objects.

Anyway, here’s the first attempt at a “simple” thread pool with these features:

e Wraps around a std: : queue of tasks — not anything home-grown.

e Each task is a function object — so they can be put on a queue.

e Vector of threads — each one waits forever for a task.

e Mutex and condition variable for synchronization — i.e., basic locking, not
lock-free).

e Stop flag — only used when shutting down the entire thread pool.

David Spuler 314

And here’s the code of the basic interface and private data members:

class ThreadPool {

using TaskType = std::function<void()>; // Type alias
private:

std::vector<std::thread> threads ; // Threads in pool
std::queue<TaskType> gtasks ; // Queue of tasks to run
std: :mutex mtx ;
std::condition variable cv_;
bool stopflag ; // Shutdown flag (set in destructor)

}i

For safety, I've deleted some of the whole-thread-pool methods:

ThreadPool (const ThreadPoolé&) = delete;

ThreadPool (ThreadPoolé&&) = delete;

ThreadPoolé& operator=(const ThreadPool&) = delete;
ThreadPoolé& operator=(ThreadPool&) = delete;

Here’s the basic constructor with the number of threads to create in the pool, by
adding them to a vector of threads:

ThreadPool (size t nthreads) : stopflag (false) {
for (int i = 0; 1 < nthreads; i++) {
// Create new thread
auto tobj = [this] () { worker thread(); };
threads .emplace back(tobj);

Here’s the worker that each thread runs, with an infinite loop waiting for tasks.

void worker thread() ({
for (;;) { // forever
std::unique lock<std::mutex> lock(mtx);
cv_.wait (lock, [this] {
return !qtasks .empty() || stopflag ; });
if (!gtasks_.empty()) {
TaskType t = gtasks .front();
gtasks_.pop();
lock.unlock(); // Unlock before running task!
t(); // Run the task!
}
else { // Empty queue
if (stopflag) { return; } // Quit
}

315 C++ Ultra-Low Latency

Each thread will only exit if (a) the destructor sets the stop flag, and (b) there’s no
more tasks still on the work queue. This ensures the whole thread pool gracefully
shuts down by first finishing all jobs.

And here’s the destructor, which sets a global stop flag, notifies all the threads, and
then waits for each one to stop.

~ThreadPool () {
std::unique lock<std::mutex> lock(mtx);
stopflag = true; // Set the shutdown flag
lock.unlock () ;
cv_.notify all(); // Tell everyone to stop
for (auto &t : threads) {

t.join(); // Wait for all threads

}

threads .clear();

Here’s the enqueue function to add a work task for a thread to run:

void enqueue task(TaskType t) {
std::unique lock<std::mutex> lock (mtx);
gtasks .emplace(t);
lock.unlock () ;
cv_.notify one(); // Wake one worker

Here are some of the ways to call the enqueue function to submit work to run:

p.enqueue_ task(my test task); // Ptr-to-function
p.enqueue_ task(std::function<void()>(my test task));
p.enqueue task([] () { /*lambda function*/ });

auto functor = []() { /*lambda function*/ };
p.enqueue_ task (functor) ;

The whole thread pool is far from perfect, and I’'m sure you can see some areas
needing work.

David Spuler 316

Problems to Avoid

There are a lot of little fiddly problems to overcome in the thread pool
implementation, even with a wrapper around a standard queue object.

e Tiddly to get the scope right so that the worker function can access the
queue object, but is also able to be put into a function object.

e Ensure that we must unlock before running any task (otherwise, all jobs
are serialized!).

e Lambda function for the predicate function on the wait of the condition
variable.

'The above code needs some fixes:

e Enqueue should warn or throw if the thread pool is already stopped.

e Should use move semantics fully to avoid copying any task or thread
objects.

e Call joinable () before join (), justin case.

Various fixes to move semantics are needed here.

e enqueue task() should use std: :move () to move a new task onto
the queue.

e worker thread() shoulduse std: :move () to pull a new task off the
front of the queue.

Advanced Thread Pool Features

Some of the features that can be added to a more advanced thread pool
implementation:

e Dynamically increase and decrease the number of workers.

e Priorities for the work jobs to run important work faster.

e Scheduling of jobs to run with a delay or at a specific time.

e Work stealing and thread-specific work queues.

e Support for a graph of interdependent jobs (i.e., a “compute graph” or
“task graph”).

317 C++ Ultra-Low Latency

The interface to the thread pool job submission could also need these capabilities:

e Arguments for tasks (e.g., via parameter packs and std: : forward).
e Status results indicating success or failure (e.g., non-void functions).
e General capabilities to return answer objects to the work submitter.

e Interface for the work submitter to query job status.

Some additional devops infrastructure would be desirable for these thread pool
classes:

e Monitoring support via logging, and instrumentation for production usage.
e Self-monitoring to detect straggler/hang jobs (e.g., never-finishing).

e Seclf-test capabilities for use while regression testing (non-production).

e Timing features for performance measurement (non-production).

e Statistics reporting for production or testing usage.

It’s just a small matter of coding.

Task Graphs

Thread pools are mostly designed on the assumption that each piece of work is
independent. Hence, the worker threads don’t depend on each other in any way,
but only on the producer thread that’s adding work to the queue. This is the simplest
and also the most common requirement.

However, work jobs that depend on each other are not uncommon. The overall
network of dependencies between concurrent jobs can create a “graph” of work to
be done, with additional synchronization required between the individual workers.
An example of a more generalized thread pool that supports a work graph is listed
in the references; see Puyda (2024).

David Spuler 318

References

1. Emily Dawson, April 2025, Multithreading with C++: Parallel Programming
Guide, https:/ /www.amazon.com/dp/BO0F4947761./

2. Geeks for Geeks, 3 Jan, 2024, Thread Pool in
C++, https: / /www.geeksforgeeks.org/thread-pool-in-cpp

3. Ishan Tripathi, Dec 11, 2023, Making a Thread Pool in C++ from
serateh, https:/ /dev.to/ish4n10/making-a-thread-pool-in-c-from-scratch-
bnm

4. Matheus Gomes, July 5, 2023, Thread Pool In C++ — Writing a Concurrent
Task Quene, https://matgomes.com/thread-pools-cpp-with-queues

5. Barak Shoshany, 27 Dec 2023 (v4), A C++17 Thread Pool for High-
Performance Scientific Computing, https:/ /arxiv.org/abs/2105.00613v2,
Code: https://github.com/bshoshany/thread-pool

6. Dmytro Puyda, 23 Jul 2024 (v2), A simple and fast C++ thread poo!
implementation capable of running task
graphs, https:/ /arxiv.org/abs/2407.15805,

Code: https://github.com/dpuvda/scheduling

319 C++ Ultra-Low Latency

https://www.amazon.com/dp/B0F494Z76L/
https://www.geeksforgeeks.org/thread-pool-in-cpp/
https://dev.to/ish4n10/making-a-thread-pool-in-c-from-scratch-bnm
https://dev.to/ish4n10/making-a-thread-pool-in-c-from-scratch-bnm
https://matgomes.com/thread-pools-cpp-with-queues/
https://arxiv.org/abs/2105.00613v2
https://github.com/bshoshany/thread-pool
https://arxiv.org/abs/2407.15805
https://github.com/dpuyda/scheduling

David Spuler 320

33. Fine-Grained vs Coarse
Locking

What is Coarse Locking?

Coarse-grained locking is a simple method of achieving synchronization with
relatively few lock objects and not many calls to locking primitives. The locks are
“coarse” because they control large chunks, such as a block of code in an entire
member function, or access to an entire data structure. Some examples include:

e Long sequences of code with a lock request to start and release at the end.
e Single per-class mutex for your entire data structure.
e One global mutex for all the critical sections of code.

The effect of coarse-grained locking is to effectively limit all accesses to the code
block or data structure to be one thread at a time (i.e., full serialization). By
comparison, fine-grained locking has multiple locks and more frequent locking and
unlocking requests, but over shorter blocks of code or controlling access to
portions of a data structure. The fine-grained locking approach is more performant,
but requires a lot more effort to code correctly.

Coarse-grained locking can be added to your code relatively quickly. Hence, the
advantages of coarse locking include:

e Simplicity

e Thread-safety (it does work)

e Low lock overhead in some cases (fewer total calls to locking primitives)
e Lower risk of concurrency bugs (easy to implement)

The downsides of coarse locking are mainly about performance:

Blocking other threads for longer (poor synchronization)
Locking overhead required for read-only accesses
Serialization of multiple concurrent readers (low parallelism)
Increased lock contention (for the single mutex)

321 C++ Ultra-Low Latency

Adding Coarse Locking

A common requirement for locking is to create your own thread-safe containers,
like stacks and queues, since the standard C++ containers are not actually thread-
safe. If you have a class where you want its main data structure to be thread-safe,
there’s a surprisingly simple way to add coarse locking.

The steps are:

¢ Add a mutex as a data member.
¢ Add a mutex lock and unlock call to erery member function.

Here’s what the mutex data member to control synchronization in every object
looks like:

#include <mutex>
#include <vector>

class MyVector {
private:
std::mutex mtx ;
std::vector<int> vec_ ;
//
public:
int get count () { return vec .size(); }
//
}i

Here’s a sum () class member function, but without any thread synchronization:

int sum() {
int isum = 0;
for (int i =

0; 1 < vec_ _.size(); i++) {
isum += vec_ [1i];
}

return isum;

David Spuler 322

The code to add a mutex with lock calls at the top, and unlock calls at the end of a
function:

int sum() {
mtx .lock(); // Acquire lock
int isum = 0;
for (int i 0; 1 < vec_.size(); i++) |
isum += vec [i];

I o~

}
mtx_.unlock(); // Release lock
return isum;

Actually, this method of directly using std: :mutex is not that good, because you
have to make temporary copies of internal data, even in simple getters:

int get count() {
mtx_.lock(); // Acquire lock
int iret = vec .size();
mtx .unlock(); // Release lock
return iret;

An even simpler approach is to use the special wrapper class, std: : lock guard,
which means you only add one lock guard declaration statement to the top of every
member function.

std::lock guard<std::mutex> lock(mtx);

The mutex object is automatically unlocked at the end of the function, or whenever
it returns, by the destructor of the lock guard wrapper object. This fixes the above
problems with simple getters so that no temporary variable is needed, because the
unlocking is automatically occurring after the return expression is calculated (i.e.,
effectively it’s at the closing right brace of a member function, which is where the
destructor runs).

The downside is that you actually have two objects:

e Mutex object (data member)
e Lock guard object (function-local scope)

323 C++ Ultra-Low Latency

Here’s how it looks in the code:

int get count() {
std::lock guard<std::mutex> lock(mtx); // Acquire
return vec_.size();

} // Release lock here!

Here’s how the sum () member function looks:

int sum() {
std::lock guard<std::mutex> lock(mtx); // Acquire

int isum = 0;
for (int 1 = 0; 1 < vec .size(); i++) {
isum += vec [1];

}
return isum;
} // Implicit lock release here

Note that we can control the locking and release of a lock guard object by enclosing
it in a narrower scope block. Here’s the use of a dummy pair of braces to control
the scope for a marginal efficiency gain:

int sum() {
int isum = 0;
{
std::lock guard<std::mutex> lock(mtx); // Acquire
for (int i = 0; i < vec_.size(); i++) {
isum += vec [i];
}
} // Implicit lock release here
return isum;

As you can see, adding coarse locking to your whole class can be as simple was
adding a single statement at the top of every member function. The main downsides
include:

e Forgetting one of the member functions (concurrency bug).
e Performance issues from holding the lock too long.

e Read-only access to your object requires locking calls.

Note that std::lock guardis not the only type of lock wrapper class to
consider.

David Spuler 324

Other examples of standard classes that act as mutex wrappers:

e std::unique_ lock — allows explicit unlock.

e std::lock — basic multi-mutex handling.

e std::try lock — handling of unavailable locks.
e std::scoped lock — handles multiple mutexes.
e std::shared lock — flexible locking method.

Notably, there’s the std: :unique lock wrapper, which has the advantage that
it has an explicit unlock () method. This means you can more easily release the
lock early if it’s no longer needed, which reduces lock contention and delays in other
threads. The unique lock wrapper still has the destructor as a backup to release the
lock if the mutex hasn’t already been unlocked before the end.

Disadvantages of Coarse Locking

This approach of using a coarse locking mechanism in literally every member
function looks really inefficient, and it is! There are significant performance
problems:

e Basic getter member functions become needlessly inefficient.
e Other const member functions need to lock just for read-only access.

Do we really need to lock the basic getters? For example, if a getter is just returning
the current count of objects, does it need a lock? Probably not!

I mean, it returns an integer for the count, which is close to an atomic operation,
and almost certainly atomic on many CPUs. And if another thread is modifying the
data structure, changing the count, this is the caller’s synchronization problem. It’s
really a “higher-level” multithreading problem than the issue here, where we’re only
trying to keep the data structure itself consistent across multiple calls to its member
functions.

However, not all const member functions can avoid needing a lock. For example,
a sum () function above that scans over all of the elements of the vector still needs
synchronized access, to avoid some other thread modifying an element in the
middle of a scan.

Overall, this coarse-grained locking approach works in terms of thread-safety, but
is not ideal in terms of performance. We can probably avoid some of the locks in

the simple getter functions.

325 C++ Ultra-Low Latency

However, several speed problems remain with this approach:

e Thread overhead even if the caller is only ever reading.
e Multiple concurrent readers are needlessly serialized.
e Not efficient for multiple readers and a single writer.

The cost overhead from coatse locking can be quite significant.

Coarse Locking Overhead

Let’s see how much it costs to add coarse-grained locking via lock guards. I chose
a basic standard queue container, with just integers. As a control, I declared a basic
queue wrapper class without any synchronization.

template<typename T>
class QueueWrapNoSync {

private:
std: :queue<T> m_g;

public:
int count() const { return m g.size(); }
T front() const { return m g.front(); }

void pop() { m g.pop(); }
void push(T t) { m g.push(t); }
}i

Next, I created another class with a mutex in the objects, and lock guard statements
added to every member function.

template<typename T>
class QueueWrapLockGuard {
private:
std: :queue<T> m g;
std::mutex m mutex;
public:
int count () const {
std::lock guard<std::mutex> lock (m mutex);
return m _g.size();
}
T front () const {
std::lock guard<std::mutex> lock (m mutex);
return m_g.front();

David Spuler 326

void pop () {
std::lock guard<std::mutex> lock(m mutex);
m_g.pop();

}

void push (T t) {
std::lock guard<std::mutex> lock(m mutex);
m_g.push(t);

i
Here are the timing results:

Queues, Sequential (No synch): 64839 microsec

Queue, 1 Thread (No synch): 35528 microsec

Different Queues, 2 Threads (No synch): 38123 microsec
Same Queue, 2 Threads (No synch, Buggy!): 38097 microsec
Same Queue, 2 Threads (Lock Guard): 56024 microsec

[N VSN

This shows that two threads running with lock guard synchronization adds about
47% overhead versus without synchronization, although admittedly it removes the
bugs. So, it is serializing approximately half of the second thread’s execution, which
is presumably the amount of time it is blocked waiting for a lock.

So, here we have coarse-grained locking significantly increasing the time cost,
because the lock guards effectively serialized most of the interface to our queue.

We can partially solve this by changing the getter to not use locks, because it’s
probably atomic, and tweaking the lock guard to release the lock slightly eatly.

The full solution to the cost overhead: fine-grained locking!

Fine-Grained Locking

Fine-grained locking is using locks over shorter sequence blocks of code or smaller
parts of a data structure.

The general ideas are:
e More locks

e Smualler portions of data locked
e Shorter duration lock holds

327 C++ Ultra-Low Latency

Some of the goals of finer granularity locking include:

e Lock contention improved
e Reducing thread blocking delays (less waiting for a lock)
e Allowing multiple concurrent readers (shared read lock)

In the above example, it’s difficult to insert granular locks into the queue data
structure, because it’s a builtin standard container, where we cannot easily modify
the code. However, we can certainly apply fine-grained locking approaches to our
own hand-coded containers. Some of the methods to get finer granularity of locking
include:

e Lock durations — acquire locks late, release locks eatly.

e Granular locks — multiple locks on parts of data structures.

e Read-write locking — shared reader versus unique writer locks.
e Lock-free programming — using atomics instead of mutexes.

Some of these approaches are now discussed, and some are also covered in other
chapters.

Granular Data Structure Locking

Whereas coarse-grained locking has one mutex for the entire data structure or
container object, fine-grained locking uses many more mutexes or locks. The first
point about implementing these strategies is to get used to the idea that mutexes
and locks are just objects. Hence, we can use:

e Arrays of mutexes and locks
e Mutex or lock object data members

Hence, we can put mutexes or other locking objects inside our other objects, or
part of containers, or whatever we want to do. Hence, we can use much more
granular approaches that achieve the benefits of fine-grained locking: The idea is to
use many locks such as:

e TLocks for each individual node in a container.
e Locks for sub-parts of the data structure.

Locking each node in a data structure is as fine-grained as it is possible to go in a
container. The idea is that a writer thread can modify other elements in the
container, as long as it’s not changing the one that you’re using.

David Spuler 328

This can be effective at avoiding lock contention, as other threads would rarely be
blocked, but does increase lock overhead for every object.

A less fine-grained approach is to use fewer locks, but still maintain multiple locks
per container. Some examples of using fewer locks than per-node, but still having
many locks for portions of a data structure include:

e Linked list sub-lists with locking from its sub-head node.
e Binary tree with locking used on a subtree.
e Hash table with locks for each bucket chain.

The idea with these methods is to avoid blocking other threads for every access to
the entire container. For example, if your hash table has an array of mutexes, one
per bucket, then readers and writers are only in contention for elements that map
to the same hash bucket. This reduces lock contention, as it’s a relatively rare event.

Lock Striping

Another variant of this approach is called “lock striping,” and is a trade-off between
the number of mutex objects and lock contention. The idea is to map all our data
to a smaller number of mutexes. For example, in a hash table with a thousand
buckets, rather than also using a thousand mutexes, we can use many fewer, and
map the buckets to mutexes. The idea is like this in our container template:

T key[NBUCKETS] hashtable ;
std: :mutex [NLOCKS] lockarr ;
//

size t bucket = hash function (key);
size t lockoffset = bucket % NLOCKS;

Here, we could have a hash table with 1,000 buckets in the hash table, but only 10
locks. This is a tenfold reduction in lock contention compared to the coarse locking
approach of one lock per data structure.

Lock striping reduces the number of mutexes required, but will slightly increase
lock contention compared to the granular approach of having one mutex per
bucket. I’'m not sure that I recommend lock striping in this example, because the
advantage of using fewer mutexes for our hash table is mainly space reduction
rather than speed, and don’t we have plenty of that? On the other hand, there is
extra cost per lock in terms of initialization (mutex constructors) and shutdown
(mutex destructors), so lock striping can reduce this cost compated to fully fine-
grained locking.

329 C++ Ultra-Low Latency

Lock Segmenting

Lock segmenting is another middle-of-the-road approach, with similar ideas to lock
striping, in the sense that it uses fewer locks than data points. The idea is to have
one lock per “segment” of the data structure being used. This has particular
applicability to linear data structures, such as vectors and atrays, in areas such as
linear algebra and Al engines.

If we have a vector of data, we often want algorithms to operate on “segments” of
that data, so as to maintain cache locality advantages in a CPU architecture. Note
that a GPU architecture prefers a striped approach, but that’s in CUDA C++ with
a totally different type of on-GPU threading model, not in C++ multithreading.

Doing data processing fast with cache-aware multithreading means that each thread
operates on a segment of contiguous data, and we have a controller thread that’s
scheduling different threads to work on segments of the vector. Here’s the idea of
a hand-coded vector container that’s segmenting the locks according to the data:

// Template: NARRAY = size, NLOCKS = lock granularity
float arrdata [NARRAY];
const int NSEGMENTS = NARRAY / NLOCKS;

std::mutex lockarr [NLOCKS];
static_assert (NARRAY % NLOCKS == 0); // avoid extras

size t map offset to lock(size t offset) {
assert (offset < NARRAY);
size t lock offset = offset / NSEGMENTS;
assert (lock offset < NLOCKS) ;
return lock offset;

Hence, any code that’s working on a segment of the array, does this to figure out
which mutex to acquire:

void process_ segment (size t offset) {
size t lock offset = map offset to lock(offset);
lockarr [lock offset].lock();
// ... etc
lockarr [lock offset].unlock();

The idea is similar to lock striping, but this uses division rather than modulus.

David Spuler 330

Nearby offsets in lock segmenting will usually get the same lock, as they’re in the
same segment of contiguous data, whereas adjacent elements would get different
mutexes in the lock striping approach. The advantage of lock segmenting over lock
striping is that it allows contiguous data processing, whether reading or writing, and
therefore has cache locality efficiency.

Higher-Level Concurrency Problems

Note that higher-level concurrency issues can occur with these approaches, such as
lock striping or lock segmenting. The problems arise if you have whole-of-data
algorithms, which limit the value of these middle-level locking ideas. For example,
consider if you have two high-level methods that work on the entire vector of data:

e Sum vector — calculate the sum of the whole vector of data, or some other
linear algebra metric like a dot product (reader).
e Scale vector — multiply the entire array by a factor (writer).

If both of these methods acquire locks one segment at a time (ot striped), then the
segment-level operations are going to get interleaved. For example, one of the
segments being summed might get modified by the scaling method, before getting
summed, so the sum returned has only calculated results properly on half the
elements.

There’s nothing wrong with the concurrency at the segment level, but the
application-level logic is broken. The concurrency solutions at a higher-level are not
pretty:

e Vector-level lock to serialize all whole-of-vector algorithms (a read-write
lock), or
e Acquire all of the many locks for each segment or stripe (ugh!).

It’s not quite that bad, since we’d use read-write locking, so that multiple reader
algorithms could still run concurrently on the entire array. However, writer
algorithms would get totally serialized on this approach, blocking all other readers
and writers, which is not optimal.

More efficient would be to have a more complex scheduling algorithm, so that the
“scale vector” method runs in a pipelined fashion, processing one segment behind
the “sum vector” method, but that’s tricky to do if each such segment is running in
a different thread. However, if you don’t do this, they’re potentially going to
interfere with each other at the higher-level, creating actual bugs in the application
logic, despite being correctly synchronized at the segment level.

331 C++ Ultra-Low Latency

Read-Write Locking

An important improvement to lock contention is to allow multiple readers to access
concurrently, but any “writer” must have unique access. This idea can be used for
both coarse and fine-grained locking, and can be combined with moderate
approaches like lock striping or lock segmenting. The goals of the read-write lock
approach are:

e Multiple readers at the same time (but not any writers).
e Every writer needs exclusive control (no other readers or writers).

This is efficient in situations where there are lots of readers processing the data, and
fewer writers. However, it can be less successful where readers and writers are
accessing the data structure with approximately the same frequency, such as passing
work on a queue in the producer-consumer model. Actually, in that model, both
the producers and consumers are writers (not just readers), as they each push or
pop the queue. You can make consumers into readers by using a delayed-pop idea,
but eventually someone has to clean up the mess.

The standard C++ library has builtin support for achieving read-write locking. The
way to achieve this is with a “std: : shared mutex” instead of a basic mutex.
The changes to our code can be summarized:

e std::shared mutex is now used in all of the class member functions
(using <shared mutex> header file).

e Readers request a std: :shared lock over the shared mutex (multiple
concurrent readers).

e Writers request a std: :unique lock over the shared mutex (exclusive
access).

Here’s the modified code in full:

#include <shared mutex>

template<typename T>
class QueueWrapReadWrite {
private:
std: :queue<T> m _g;
std::shared mutex m mutex; // Read-write
public:
int count () const { // Reader
std: :shared lock<std::shared mutex> lock(m mutex);
return m g.size();

}
David Spuler 332

T front() { // Reader
std::shared_ lock<std::shared mutex> lock (m_mutex) ;
return m_g.front();

}

void pop() { // Writer
std::unique lock<std::shared mutex> lock(m mutex);
m_g.pop();

}

void push(T t) { // Writer
std::unique lock<std::shared mutex> lock(m mutex);
m g.push(t);

bi

Here is the comparison of speed against the basic lock guard version with non-
concurrent readers:

1 Queue, 2 Threads (Lock Guard): 55214 microseconds
1 Queue, 2 Threads (Read-Write): 51687 microseconds

There was about a 6.4% improvement by adding shared reader locking.

This makes sense, because most of the testing involves write operations
of push () and pop (), but there is a small gain in concurrency from the read-
only count () and front () operations.

But overall, it’s still quite a lot of overhead, when you recall the lock guard version
was 47% extra CPU time compared to without synchronization.

Maybe we should try a lock-free version.

333 C++ Ultra-Low Latency

References

1. Ilinois Tech, May 2025 (accessed), Locks and locking
strategies, https://moss.cs.dit.edu/cs450/slides /09-concurrency-c.pdf
2. Niklas Fors, December 5, 2013, Coarse-grained and fine-grained
locking, https://fileadmin.cs.lth.se/cs/Education/EDA015F/2013 /Herli
hy4-5-presentation.pdf
3. Martin Fowler, 2003, Coarse-Grained
Lock, https://martinfowler.com/eaaCatalog/coarseGrainedl.ock.html
4. Adam Belay, 2019,

Locking, https://pdos.csail.mit.edu/6.828/2019 /lec/I-locks.pdf

David Spuler 334

https://moss.cs.iit.edu/cs450/slides/09-concurrency-c.pdf
https://fileadmin.cs.lth.se/cs/Education/EDA015F/2013/Herlihy4-5-presentation.pdf
https://fileadmin.cs.lth.se/cs/Education/EDA015F/2013/Herlihy4-5-presentation.pdf
https://martinfowler.com/eaaCatalog/coarseGrainedLock.html
https://pdos.csail.mit.edu/6.828/2019/lec/l-locks.pdf

34. Core Pinning

What is Core Pinning?

Core pinning is a multithreading optimization where a single thread is “pinned” to
one of the cores to give it higher priority. This means that important thread that
runs the hotpath can have guaranteed CPU availability, rather than waiting for the
default thread scheduling algorithms. Hence, core pinning can be a solution to avoid
lock contention worties or excessive context switch in the main hotpath thread.
Core pinning is also called “thread affinity” and has multiple other names (e.g,,
“processor affinity” or “CPU affinity” or “CPU pinning”), but if you hear the words
“pinning” or “affinity” in relation to threads, this is it.

Pinning has other meanings in related hardware architectures. There’s a higher-level
type of pinning whereby whole processes or applications are pinned to a CPU core
by the operating system, rather than just a single thread, which isn’t quite the same
thing. Note also that CUDA C++ has another type of “pinned memory” for GPUs,
but that’s a memory upload optimization rather than a compute improvement.

The other side of core pinning is that you obviously don’t pin the less important
threads. All the lower-priority threads have fewer cores available, and are
downgraded.

Pros and Cons

The use of core pinning is a very powerful type of hotpath optimization. The main
pathways are super-optimized because of these factors:

e No context switches

e Fewer cache misses (no invalidated caches)
e Highest priority execution

e Guaranteed core availability (no delay)

335 C++ Ultra-Low Latency

The downsides are fairly obvious:

e That core isn’t available for other work.
¢ Load balancing only available on the other cores.

And also, you can’t do it too many times, because the CPU hardware only has a
fixed number of cores.

Counting Cores

The code to set up core pinning is really a two-part procedure with these steps:
1. Determine how many CPU cores are available.
2. Pin a thread to one of them.

There are various non-standard ways to interrogate the system for its CPU settings.
The standard method is to call the hardware concurrency () function in the
standard thread library, which tells you how many physical cores are in the CPU.

int number of cores()

{

return std::thread::hardware concurrency();

}

This has been a standard method since C++11, so it should be available to you.
Alternatively, non-standard methods include:

e sysconf () — POSIX version in <unistd.h> for Linux.

e GetSystemInfo () — Win32 API in <windows.h>.

e cpuid() — low-level intrinsic function in <cpuid.h> that wraps
the CPUID machine instruction on x86 CPUs (Intel/ AMD).

All of these functions offer a whole wealth of other hardware information about
the CPU, rather than just the number of cores.

David Spuler 336

Setting Up Core Pinning

There’s no language-supported standard way to set up core pinning using the
C++11 std: : thread library, nor does anything appear forthcoming in C++26
for this area. However, there are longstanding platform-specific functions to do
this.

Sometimes, you don’t need to code up core pinning in C++, but can use OS settings
or commands. On Windows, you can set up a process-level CPU pinning for an
application via the GUIL. On Linux, there is a “taskset” command that allows
running a program with core pinning.

Both Windows and Linux have non-standard C++ system calls that can set up core
pinning for either a process or a thread. Linux uses the “pthreads” library to do
core pinning, and Windows has some Win32 features. The sequence at a high-level:

1. Get a native thread id

2. Call the platform-specific core pinning APIL.
To implement core pinning in C++ on Linux you need to bypass std: : thread to
get to the underlying POSIX thread id, which has type pthread t as defined

in <pthread.h>. This is required because all the core pinning calls are POSIX
functions on Linux. There are at least two ways to do this:

e pthread self () — POSIX call to return the id of the current thread.
e std::thread::native handle () — returns the “native” thread ID
of a standard C++ thread object, which is a POSIX thread id on Linux.

Once you have a valid thread id, then you can set up core pinning for that thread.
The programmatic C++ APls on Linux are:

e Pin processes — sched_setaffinity
o Pin threads— pthread setaffinity np, pthread attr setaffinity np

On Windows, these are the C++ APlIs:

e Pinning processes — SetProcessAffinityMask ()
(] Pinning threads — SetThreadAffinityMask ()

Now let’s look at a full example on Linux.

337 C++ Ultra-Low Latency

Linux Core Pinning

Here’s a native pthreads sequence to pin the current thread to a core:

#include <pthread.h>
#include <unistd.h>
#include <sched.h>

bool pin me (int corenum)

{

pthread t tid = pthread self(); // Get current thread id

cpu_set t cpuset;

CPU_ZERO (&cpuset) ; // Clear all core bit flags
CPU_SET (corenum, &cpuset); // Set one core bit flag

// Pin the thread!
int ret = pthread setaffinity np(tid,

sizeof (cpuset), &cpuset);
return ret == 0; // Zero return 1s success

Note that failures can occur when attempting to pin a thread to a core. The process
needs adequate permissions to do so, and the core number needs to be valid for the
given system.

This code uses “cpu_set t” from <sched.h>, which is a bitmask (or other data
structure) that represents a mask of one or more cores. There are various bit
manipulation macros also defined in <sched.h> for use with this bitmask type:

e CPU ZERO () — clears all the bits.

e CPU SET () — sets one bit.

e CPU CLR() — unsets one bit.

e CPU ISSET () — tests one bit.

e CPU COUNT () — counts how many bits are bit.

There are also some arithmetic operations on the CPU bit sets in <sched.h>:

e CPU EQUAL () — testif two bitsets are equal.
e CPU AND () — bitwise-and on all bits.

e CPU OR() — bitwise-or on all bits.

e CPU XOR () — bitwise-xor on all bits.

The CPU bitmask type cpu_set_t is nota C++ object, but a raw C-like structure,

which means it can be copied or moved by bitwise copy using memcpy.

David Spuler 338

Note that pthread setaffinity np () can be passed a CPU set with more
than one bit set, in which case the thread will be migrated to one of those cores.
You can also examine the bitmasks via pthread getaffinity np ().

Isolating Linux Cores

To fully implement core pinning of a thread to a particular core on Linux, some
further actions may be needed. Changes are required to Linux kernel settings to do
things like:

e Isolating the core
e Disabling interrupts

Some of the Linux kernel parameters you may need to adjust include:

e nohz otrnohz full
e isolcpus

e irgaffinity

® rcu nocbs

There is some industry wisdom to avoid core zero on Linux systems, because that’s
the CPU core that the kernel always tries to run system tasks on, as described in
Bernhardt (2023). There’s also a discussion of some odd issues with core 1 on Linux
in Dawson (2023).

References

1. Machinet, March 13, 2024, How to optimize C++ code for use in high-frequency

trading algorithms? https:/ /www.machinet.net/tutorial-eng/optimize-cpp-

code-high-frequency-trading-algorithms
2. Dung Le, Aug 13, 2020, Optimizgations for C++ multi-threaded

programming, https:/ /medium.com/distributed-knowledge /optimizations-
for-c-multi-threaded-programs-33284dee5e9¢

3. Larry Jones, 27 Feb 2025, Mastering Concurrency and Multithreading in C++:
Unlock the Secrets of Expert-Level
Skills, https:/ /www.amazon.com.au/Mastering-Concurrency-
Multithreading-Secrets-Expert-Level-ebook/dp/BODYSB519C

4. Eli Bendersky, January 17, 2016, C++17 threads, affinity and
hyperthreading, https:/ /eli.thegreenplace.net/2016/c11-threads-affinity-

and-hyperthreading

339 C++ Ultra-Low Latency

https://www.machinet.net/tutorial-eng/optimize-cpp-code-high-frequency-trading-algorithms
https://www.machinet.net/tutorial-eng/optimize-cpp-code-high-frequency-trading-algorithms
https://medium.com/distributed-knowledge/optimizations-for-c-multi-threaded-programs-33284dee5e9c
https://medium.com/distributed-knowledge/optimizations-for-c-multi-threaded-programs-33284dee5e9c
https://www.amazon.com.au/Mastering-Concurrency-Multithreading-Secrets-Expert-Level-ebook/dp/B0DYSB519C/
https://www.amazon.com.au/Mastering-Concurrency-Multithreading-Secrets-Expert-Level-ebook/dp/B0DYSB519C/
https://eli.thegreenplace.net/2016/c11-threads-affinity-and-hyperthreading/
https://eli.thegreenplace.net/2016/c11-threads-affinity-and-hyperthreading/

5. Bytefreaks, 23 November 2016, C/C++: Set Affinity to process thread —
Example Code 3, https:/ /bytefreaks.net/programming-2/c/cc-set-affinity-
to-process-thread-example-code

6. Mark Dawson, Jr., February 12, 2023, My Fear of Commitment to the 15t CPU
Core, https:/ /www.jabperf.com/my-fear-of-commitment-to-the-1st-cpu-
core/ (avoiding core 1 for CPU affinity).

7. Manuel Bernhardt, 16 Nov, 2023, On pinning and isolating CPU
cores, https://manuel.bernhardt.io /posts/2023-11-16-core-
pinning/ (examines costs of arithmetic operations versus cache
mispredictions and context switches).

8. Davood Ghatreh Samani, Chavit Denninnart, Josef Bacik, Mohsen Amini
Salehi, 3 Jun 2020, The Art of CPU-Pinning: Evaluating and Improving the
Performance of Virtnalization and Containerization
Platforms, https:/ /arxiv.org/abs/2006.02055

9. Kernelorg, May 2025 (accessed), The kernel’s command-line

parameters, https:/ /[www.kernel.org/doc/html/v4.14/admin-
guide/kernel-parameters.html

David Spuler 340

https://bytefreaks.net/programming-2/c/cc-set-affinity-to-process-thread-example-code
https://bytefreaks.net/programming-2/c/cc-set-affinity-to-process-thread-example-code
https://www.jabperf.com/my-fear-of-commitment-to-the-1st-cpu-core/
https://www.jabperf.com/my-fear-of-commitment-to-the-1st-cpu-core/
https://manuel.bernhardt.io/posts/2023-11-16-core-pinning/
https://manuel.bernhardt.io/posts/2023-11-16-core-pinning/
https://arxiv.org/abs/2006.02055
https://www.kernel.org/doc/html/v4.14/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/v4.14/admin-guide/kernel-parameters.html

35. False Sharing

False Sharing and Cache Line Sizes

False sharing is a slug in C++ multithreaded code preventing two threads from
running as fast as they should. The idea of “false sharing” is that two threads can
interfere with each other’s memory caching. The sharing is “false” because it can
occur with data that’s not actually being intentionally shared between the threads,
but is impeded simply because the memory addresses are too close together.

Why does it occur? The CPU’s L1 and L2 caches don’t just cache in single bytes,
16-bit words, or even 32-bit integers. Instead, they have caching in “chunks” in the
hardware level, which are called “cache lines” (also “cache sectors” or “cache
blocks” or “cache line sizes” or “bananas in pyjamas” if you prefer).

How big? Some examples of common sizes of these cache lines include:

e Intel CPUs — 64 bytes.
e Apple M2 — 128 bytes.
¢ Some AMD and other CPUs — 256 bytes.

Note that you can get this number for the L1 cache line size in bytes
programmatically in C++17 via functions declared in the <new> header:

® hardware destructive interference size()

® hardware constructive interference size()
What this means is that, on an Inte]l CPU, the caches are updated 64 bytes at a time,

because one “cache line” is read or written as the minimum size. This is good
because:

e Cache loads are 64 bytes in parallel (in hardware).
e Cache writes (updates) store 64 bytes in parallel.

But this is bad because:

e Invalidating one cache byte also invalidates all 64 cache line bytes.
341 C++ Ultra-Low Latency

This is where we have a slowdown from false sharing. If one thread sets any value
in a 64-byte cache line, then all of the other 63 bytes are also invalidated in the
cache. If a second thread needs to use any of those other 63 bytes, then it needs a
cache line refresh. Slowness ensues.

Example of False Sharing

A common example would be two integers, each 4 bytes in size, but close together
so that they sit inside the same 64-byte cache line. The most common problems
arise with atomics or mutexes close together, but they can affect any global variable.

Hence, first a simple example without any atomics, mutexes, or other thread
synchronization. Let’s just look at two threads that are updating their own global
variable, with no ovetlap between the threads. In theory, these two threads should
not affect each other at all. In reality, there are CPU cache lines.

Here are our two global counter variables:

int g counterl = 0;
int g _counter2 = 0;

In practice, false sharing is more likely to occur with two atomics declared close
together. However, in this example we’re just testing with two completely unrelated
threads, with absolutely zero synchronization happening between them. They really
shouldn’t impact each other, if not for false sharing.

Here is the sequential code, which sets two global variables:

void runtestl no threads (int n)
{
for (int i = 0; 1 < n; 1i++) {
g_counterl++;
}
for (int i = 0; 1 < n; 1i++) {
g_counter2++;

}

David Spuler 342

Here are the two threads that aim to set those two global variables in parallel. Note
that each thread only accesses one variable, without any “sharing” going on.

void threadl (int n)
{
for (int i = 0; 1 < n; i++) {
g_counterl++;

}

void thread2 (int n)
{
for (int i = 0; 1 < n; 1i++) {
g_counter2++;

And here’s the basic thread launching code:

void runtestl threads(int n)

{
std::thread tl (threadl, n);
std::thread t2(thread2, n);
tl.join();
t2.join();

Finally, here is the timing code using <chrono>:

g _counterl = g counter2 = 0;
auto before = std::chrono::high resolution clock::now();
runtestl no threads(n);

auto now = std::chrono::high resolution clock::now();
auto diff = std::chrono::duration cast
<std::chrono::microseconds>(now - before).count();

std::cout << "Time (no threads): "
<< diff << " microseconds" << std::endl;

Here are the speed results from executing the sequential and threaded code for 100
million iterations using g++ on Linux.

Time (no threads): 256079 microseconds
Time (2 threads): 209341 microseconds

343 C++ Ultra-Low Latency

Note that the threaded code does not actually run twice as fast as the sequential
code, despite having two threads that should run in parallel. In fact, it only improves
on the sequential code by about 19%, rather than 50%. Why?

It’s the magic of false sharing, whereby one thread writing to its variable slows down
the other unrelated variable that’s only being used by the other thread. The two
threads are constantly writing to their own variable, which messes with the cached
value of the other global variable used in the other thread. It’s kind of like
entanglement in quantum physics, if you like that kind of thing.

Detecting False Sharing

According to the documentation, Valgrind’s DRD tool should be able to detect
false sharing (and numerous other thread errors). However, I ran the command:

valgrind --tool=drd ./testl
I did not get any warnings:
==8618== ERROR SUMMARY: 0 errors from 0 contexts

On closer reading of the DRD documentation, DRD seems to only detect a false
sharing situation if the two threads are running on different cores, which may have
been the reason.

Solutions for False Sharing

There are a few coding solutions to prevent false sharing. The basic idea is ensuring
that the addresses of unrelated thread-shared global addresses are not too close.
Options include:

e DPutting global variables in random spots throughout your C++ code.
e Using alignas to enforce address spacing on alignment boundaries.

The first one is kind of a joke, although it would probably work in most cases.
However, it’s not technically guaranteed where the linker will put unrelated global
variables in the address space.

A more elegant solution is to put variables, especially atomics, on address alignment
boundaries. The idea is to ensure that each important global variable is alone in its
64-byte block.

David Spuler 344

The global variables in our declarations become:

alignas (64) int g counterl = 0O;
alignas (64) int g _counter2 = 0O;

By declaring them both as alignas (64), it guarantees two things:

e The variables start on a 64-byte alignhment boundary (we don’t care about
this here), and
e They are the only variable in that 64 bytes (this fixes false sharing).

The downside is that each 4-byte integer is stored in 64 bytes, so there’s a total 60
bytes of unused padding added to global memory usage. But it’s better to pad
memory than to waste CPU cycles! (On the other hand, the CPU cache lines are
also loading and storing 60 unused bytes, so we’ve somewhat undermined the
efficiency advantages of the I.1/1.2 cache lines for this 64-byte block.)

Anyway, who cares, it works! Here are the faster speed measurements just from
adding alignas statements:

Time (no threads): 260277 microseconds
Time (2 threads): 133947 microseconds

Wow! It’s almost exactly half the time! The performance gain is about 49%, which
is much better than 19% (due to false sharing slowdowns), and is close to the 50%
gain we were aiming for with two threads. Maybe there’s something to this
multithreading stuff, after all.

Some Final Tweaks

As a finesse, you can assure that the addresses are far enough apart by simply
checking in code. One possible method to make sure that some junior code jockey
hasn’t deleted your alignas statements:

assert ((char*)&var2 - (char*)é&varl >= 64);

Unfortunately, you can’t do it faster at compile-time, since addresses of global
variables are not “constant” enough for the compiler:

static_assert ((char*)&var2-(char*)&varl>=64); // Fails

345 C++ Ultra-Low Latency

Note that some CPUs have cache line sizes up to 256 bytes. Hence, you might
need alignas (128) or alignas (256) on those platforms.

Note also there are various other non-standard ways to achieve alignment, most of
them having existed on platforms prior to the alignas specifier in the C++
standardization. For example, GCC has a whole set of old builtins. Feel free to use
those old things and charge extra because you’re writing antique C++ code.

Another point is that false sharing slowdowns can arise for non-global variables,
such as dynamic allocated memory or stack addresses. It’s not very likely for two
threads to see contention over stack addresses inside their respective call frames,
but it can occur with allocated memory blocks that are shared. There are various
ways to get aligned addresses inside dynamic memory allocation, including aligned
memory allocation primitives, so the same ideas can solve the problem.

Nevertheless, atomics declared as global variables are probably the most likely area
where false sharing can occur. This suggests a general rule: all global atomics should
be declared as alignas. I'm not sure I agree, and it does sound a bit drastic. This
does avoid the performance slug of false sharing, but it will also waste significant
memory with padding bytes.

References

1. Dung Le, Aug 13, 2020, Optimizations for C++ multi-threaded
programming, https://medium.com/distributed-knowledge/optimizations-
for-c-multi-threaded-programs-33284dee5e9c

2. Paul]. Lucas Jul 13, 2023, Advanced Thread Safety in
C++, https://dev.to/paulilucas /advanced-thread-safety-in-c-3ap5

3. Larry Jones, 27 Feb 2025, Mastering Concurrency and Multithreading in C++:
Unlock the Secrets of Excpert-Level
Skills, https:/ /www.amazon.com.au/Mastering-Concurrency-
Multithreading-Secrets-Expert-Level-ebook/dp/BODYSB519C

4. Valgrind, March 2025 (accessed), DRD: a thread error
detector, https:/ /valgrind.org/docs/manual /drd-manual.html#drd-

manual.limitations

David Spuler 346

https://medium.com/distributed-knowledge/optimizations-for-c-multi-threaded-programs-33284dee5e9c
https://medium.com/distributed-knowledge/optimizations-for-c-multi-threaded-programs-33284dee5e9c
https://dev.to/pauljlucas/advanced-thread-safety-in-c-3ap5
https://www.amazon.com.au/Mastering-Concurrency-Multithreading-Secrets-Expert-Level-ebook/dp/B0DYSB519C/
https://www.amazon.com.au/Mastering-Concurrency-Multithreading-Secrets-Expert-Level-ebook/dp/B0DYSB519C/
https://valgrind.org/docs/manual/drd-manual.html#drd-manual.limitations
https://valgrind.org/docs/manual/drd-manual.html#drd-manual.limitations

36. Lock Contention

What is Lock Contention?

Lock contention is a multithreading slowdown where threads are blocked waiting
on locks held by other threads. If your code has a lot of busy threads, any of the
synchronization code (e.g., using mutexes or condition variables) can lead to
contention over accesses to shared data.

Note that lock contention is not the same thing as lock overhead. Lock contention
is the extent to which threads get blocked waiting for a lock. Lock overhead is the
extra cost of library calls that do lock-related stuff, such as the cost of requesting a
lock, releasing a lock, creating a mutex, destroying a mutex, etc.

All multithreaded applications have some level of lock contention, otherwise why
would it need locks at all? Hence, optimizing to reduce lock contention is something
that you can’t avoid. General points about lock contention include:

More threads means more opportunities for lock contention.
So does having more locks (all other things being equal).
Unpopular shared data is unlikely to cause contention.

e Fine-grain locking is desirable for often-used data.

In the worst case, you get to a deadlock situation, which upgrades the lock
contention problem from a slug to a bug.

Optimizing Lock Contention

General strategies for reducing lock contention include:

e Short critical sections

e Reduce total lock requirements
e Acquire locks late

e Release locks eatly

347 C++ Ultra-Low Latency

Here’s the best one:
e No synchronization — don’t use any locks at all!

Unfortunately, the “no locks” plan has its limitations, being mostly limited to read-
only data used by multiple readers. Nevertheless, your first thought should be if
there’s a way to do this without needing to use a lock.

Some of the specific strategies for using fewer locks or otherwise reducing
contention include:

e Consider using fewer threads (so less contention for locks).

e Maximize lock-friendly data handling (e.g., “immutable” read-only data).

e Review lock granularity (fine-grain vs coarse-grain vs a hybrid strategy).

e Tolerate lockless output (e.g., out-of-order debug messages aren’t so bad).
e Limit block scope of std: :1lock guard to release the lock early.

e Usestd::unique_ lock and other variants for more flexibility.

e Copy data to temporary variables to release locks before processing data.
e Use queues as the preferred method to transfer large amounts of data.

e Avoid false sharing (can impact lock contention issues).

e Release locks before blocking system calls, I/O waits, or network actions.

Some examples of other advanced strategies include:

e Reader-friendly containers (e.g., versioned data structures, copy-on-write).

e Kernel bypass (for I/O efficiency).

e Doublelock check method (first check without lock, then acquire the lock).

e Exponential backoff when waiting (e.g., avoiding spinlock busy waits).

e Shard or partition data across multiple threads (avoids need for locks).

e Use message-passing via std: :promise and std: : future rather than
shared memory.

e Thread-specific queues and “work stealing” design pattern.

e Lock-free algorithms with atomics not mutexes (very tricky to get right).

David Spuler 348

Avoid Lock Guard Delayed Unlocking

The std::lock guard class is a wonderfully safe way to use mutexes, because
it helps us avoid deadlocks and severe thread starvation if we forget to unlock our
mutex (as ifl). Unfortunately, it’s too easy to use, and coders can forget to unlock.

The problem is that we can accidentally hold the lock for too long, which increases
lock contention. Here’s an example of the concept:

std::mutex g my mutex;

void process critical data()
{
// Step 1. Lock
std::lock guard<std::mutex> mylockguard(g my mutex);
// Step 2. Get the data...
// Step 3. Process the data

The problem is that we haven’t really thought too much about where we should
unlock. The above code doesn’t release the mutex until after we’ve finished
processing the data at Step 3, when the function returns, which is needlessly long.

One way to fix this would be to use some other more flexible locking wrappers that
allow explicit control of the unlocking. Your basic choices are:

e std::lock _guard-— can only unlock in its destructor (inflexible).
e std::unique lock — allows an explicit unlock call (more flexible).

A simpler solution is to explicitly control the scoping that sets when the destructor
of std::lock guard triggers the release of the lock. Here’s a better version:

void process critical data()
{
{ // Step 1. Lock
std::lock guard<std::mutex> mylockguard(g my mutex);
// Step 2. Get the data...
}
// Step 3. Process the data

This has added an extra pair of { } braces around the first two steps. This triggers
the scoping mechanism, so that the std: : lock guard destructor is called and
the mutex is unlocked immediately after Step 2, at the inner right brace. Then Step
3 can process the data to its heart’s content without blocking any other threads.

349 C++ Ultra-Low Latency

Fine-Grain vs Coarse-Grain Locking

Locking granularity has two basic strategies: go small or go big. Here’s a summary:

e Coarse-grain — lock an entire data structure while updating it.
e Fine-grain — lock only in the exact critical code sequence that updates the
data structure, deep in its internals.

The characteristics of these strategies can be summarized:

e Coarse-grain — longer duration, fewer locks overall.
e Tine-grain — shorter duration, more locks.

Fine-grain locking improves performance for data that is used often. By limiting
the granularity of locking, each thread holds the lock for only a short period while
performing a low-level update, so many threads can have the lock in turn.

However, fine-grain locking means frequently locks and unlocks, which involves
some overhead. It also increases the overall complexity of the concurrency
algorithms by needing multiple locks for small pieces of data, thereby creating
greater risk of mistakes, such as an incorrect request order for multiple locks causing
a deadlock.

Coarse-grain locking can reduce performance because it locks data for a longer
period of time, when a broader update to a higher-level data structure is performed.
The chance of lock contention for a long duration is higher than with fine-grain
locking. Any thread seeking the lock is less likely to find a window to access it if the
lock is frequently requested, so coarse grain locking is best for rarely-used data.

The advantage of fewer higher-level locks is simplicity. There is not only a lower
risk of deadlocking errors, but also fewer chances to go wrong when ensuring
concurrency is adhered to, and the access to the shared data is properly controlled.
For example, when updating a large data structure with a single lock, this means
that concurrency errors cannot occur at a lower level. Thus, it’s easier for the thread
to maintain a coherent state of the data structure, because there won’t be any
interleaved changes from other threads.

Hybrid locking strategy involves using a trade-off: using fine-grain locks for
frequently-accessed critical sections, and coarse-grain locking for less popular data.
This can be a pragmatic solution that balances speed with lower development
complexity and risk mitigation.

David Spuler 350

Lock-Free Algorithms

Lock-free programming is a method of optimizing multithreaded code to avoid
locks (i.e., mutexes). The advantages in speed atise from:

e Overhead of mutexes
e Lost performance from threads blocked awaiting a resource.

The main disadvantage of lock-free programming:
* Your brain will explode.

The internet is littered with articles about failed attempts to write lock-free
algorithms, even by some of the best programmers. There are many ways to go
wrong in the quest to get rid of mutexes.

Note that “lock-free” programming does not mean that you just search up “mutex”
in vi, and then hit the “dd” button. No, lock-free programming is not just sequential
programming. Instead, the idea is to switch to a faster concurrency method than
mutexes, so this is the main idea:

e std::mutex — lock-based programming.
e std::atomic — lock-free programming.

The overall idea is to use an “atomic” operation instead of a mutex. To make this
work, it’s usually a quite complex atomic operation, such as a “Compare-And-
Swap” (CAS) operation.

This 1s how a CAS operation works, with a number of steps all done atomically in
one unbreakable sequence:

e Access a variable (that you want to set atomically).

e Compare it to the “old” or “expected” value.

e Ifit’s equal to the old value, then successfully update to the new value (and
done).

e Ifit’s not equal to the old value, someone else has already updated it, so
we fail (and then loop around and retry).

What a mouthful! Fortunately, C++ has the std: :atomic class (since C++11) to
take care of all that.

351 C++ Ultra-Low Latency

The main routines to use for a CAS instruction are:

std::atomic: :compare exchange weak
std::atomic::compare exchange strong

Note that you will also need to know about “memory orders” around atomic
primitives, as controlled via the std: :memory order library.

There are also a variety of non-standard methods to achieve lock-free programming
with primitives in older code platforms, or in a platform-specific manner. Some of
the primitives are:

e InterlockedCompareExchange — Win32 version in <winnt.h>.
e OSAtomicCompareAndSwapInt — iOS/Macin <OSAtomic.h>
e atomic compare exchange — older GCC version.

Note that the std::atomic class is not actually guaranteed to be a lock-free
atomic operation on every platform. It’s a good idea to test your platform using the
“is lock free” primitive as part of your initialization or self-testing code:

assert (std::atomic<int>::is lock free());

Thread Pools

Thread pools are a design pattern in C++ multithreading that avoids the cost of
creating and destroying threads by using long-running threads. Instead of incurring
this thread overhead, a “pool” of available threads have been pre-created, which sit
there until work is available to be done. The main characteristics are:

e Idle threads wait for work (e.g., off a task queue).
e Threads are not destroyed after completing a chunk of work.

Thread pools are mostly used in a “producer-consumer” design pattern, although
thread pools can also be used in other ways. There are effectively two thread pools
in this design pattern:

e Producer thread pool
e Consumer thread pool

Typically, one or more producer threads adds work items to a queue, such as when
it receives new data from a network source (e.g., exchange connection in HFT).

David Spuler 352

Another group of consumer threads is idle waiting to pull work off the queue.
Consumers do the work, return the results, and then add themselves back to the
group of idle consumer threads awaiting more work.

References

10.

11.

Paul Bilokon, Burak Gunduz, 8 Sep 2023, C++ Design Patterns for Low-
latency Applications Including High-frequency

Trading, https:/ /arxiv.org/abs/2309.04259,

Code: https://github.com/Oburak/imperial hft

Jeff Preshing, Jun 12, 2012, .An Introduction to Lock-Free

Programming, https:/ /preshing.com/20120612/an-introduction-to-lock-
free-programmin

Deb Haldar, August 17, 2017, Top 20 C++ multithreading mistakes and how
to avoid them, https:/ /acodersjourney.com/top-20-cplusplus-
multithreading-mistakes/

Apple, March 2025 (accessed), Mac OSX

documentation, https:/ /developer.apple.com/library/archive/documentatio
n/System/Conceptual/ManPages iPhoneOS/man3/OSAtomicAdd32.3.
html

Wikipedia, March 2025 (accessed), Non-blocking

algorithm, https:/ /en.wikipedia.org/wiki/Non-blocking algorithm

Herb Sutter, September 08, 2008, Lock-Free Code: A False Sense of Security,
Dr Dobbs Magazine

(archived), https://web.archive.org/web/20150901211737 /http:/ /www.
drdobbs.com/article/printrarticleld=210600279&siteSectionName=cpp
Microsoft, 24 May, 2022, InterlockedCompareExchange function

(winnt.h), https:/ /learn.microsoft.com/en-

us/windows/win32/api/winnt/nf-winnt-interlockedcompareexchange
GNU Foundation, March 2025 (accessed), 6.26 Built-in Functions for

Memory Model Aware Atomic

Operations, https:/ /gcc.gnu.org/onlinedocs/gec/ 005 005fatomic-
Builtins.html

CPP Reference, March 2025 (accessed), std-:atomic::compare_exchange_weak,
std::atomic::compare_exchange_strong, https:/ /en.cppreference.com/w/cpp/at
omic/atomic/compare exchange

CPP Reference, March 2025

(accessed), std:memory_order, https://en.cppreference.com/w/cpp/atomic
/memory order

Sarah Butcher & Alex McMurray, 2 January 2025, The C++ techniques yon
need for $6004& hedge fund

Jobs, https:/ /www.efinancialcareers.com/news/low-latency-c

353 C++ Ultra-Low Latency

https://arxiv.org/abs/2309.04259
https://github.com/0burak/imperial_hft
https://preshing.com/20120612/an-introduction-to-lock-free-programming/
https://preshing.com/20120612/an-introduction-to-lock-free-programming/
https://acodersjourney.com/top-20-cplusplus-multithreading-mistakes/
https://acodersjourney.com/top-20-cplusplus-multithreading-mistakes/
https://developer.apple.com/library/archive/documentation/System/Conceptual/ManPages_iPhoneOS/man3/OSAtomicAdd32.3.html
https://developer.apple.com/library/archive/documentation/System/Conceptual/ManPages_iPhoneOS/man3/OSAtomicAdd32.3.html
https://developer.apple.com/library/archive/documentation/System/Conceptual/ManPages_iPhoneOS/man3/OSAtomicAdd32.3.html
https://en.wikipedia.org/wiki/Non-blocking_algorithm
https://web.archive.org/web/20150901211737/http:/www.drdobbs.com/article/print?articleId=210600279&siteSectionName=cpp
https://web.archive.org/web/20150901211737/http:/www.drdobbs.com/article/print?articleId=210600279&siteSectionName=cpp
https://learn.microsoft.com/en-us/windows/win32/api/winnt/nf-winnt-interlockedcompareexchange
https://learn.microsoft.com/en-us/windows/win32/api/winnt/nf-winnt-interlockedcompareexchange
https://gcc.gnu.org/onlinedocs/gcc/_005f_005fatomic-Builtins.html
https://gcc.gnu.org/onlinedocs/gcc/_005f_005fatomic-Builtins.html
https://en.cppreference.com/w/cpp/atomic/atomic/compare_exchange
https://en.cppreference.com/w/cpp/atomic/atomic/compare_exchange
https://en.cppreference.com/w/cpp/atomic/memory_order
https://en.cppreference.com/w/cpp/atomic/memory_order
https://www.efinancialcareers.com/news/low-latency-c

12. Alex McMurray, 12 February 2024, The expert C++ programming technigue
you need to know for a HET

interview, https:/ /www.efinancialcareers.com/news/the-expert-c-
programming-technique-you-will-need-to-know-for-a-hft-interview

13. Paul J. Lucas Jul 13, 2023, Advanced Thread Safety in
C++, https://dev.to/pauljlucas/advanced-thread-safety-in-c-3ap5

14. Larry Jones, 27 Feb 2025, Mastering Concurrency and Multithreading in C++:
Unlock the Secrets of Excpert-Level
Skills, https:/ /www.amazon.com.au/Mastering-Concurrency-
Multithreading-Secrets-Expert-Level-ebook/dp/BODYSB519C

15. Dung Le, Aug 13, 2020, Optimizations for C++ multi-threaded
programming, https://medium.com/distributed-knowledge/optimizations-
for-c-multi-threaded-programs-33284dee5e9c

16. Karthikeyan Akkapalli, Aug 25, 2024, Multithreading in C++: Concepts,
Challenges, Advanced Technigues, and

Applications, https:/ /medium.com/@karthikevan akkapalli/multithreadin

g-in-c-concepts-challenges-advanced-techniques-and-applications-
b97cbdcf31c7

David Spuler 354

https://www.efinancialcareers.com/news/the-expert-c-programming-technique-you-will-need-to-know-for-a-hft-interview
https://www.efinancialcareers.com/news/the-expert-c-programming-technique-you-will-need-to-know-for-a-hft-interview
https://dev.to/pauljlucas/advanced-thread-safety-in-c-3ap5
https://www.amazon.com.au/Mastering-Concurrency-Multithreading-Secrets-Expert-Level-ebook/dp/B0DYSB519C/
https://www.amazon.com.au/Mastering-Concurrency-Multithreading-Secrets-Expert-Level-ebook/dp/B0DYSB519C/
https://medium.com/distributed-knowledge/optimizations-for-c-multi-threaded-programs-33284dee5e9c
https://medium.com/distributed-knowledge/optimizations-for-c-multi-threaded-programs-33284dee5e9c
https://medium.com/@karthikeyan_akkapalli/multithreading-in-c-concepts-challenges-advanced-techniques-and-applications-b97cbdcf31c7
https://medium.com/@karthikeyan_akkapalli/multithreading-in-c-concepts-challenges-advanced-techniques-and-applications-b97cbdcf31c7
https://medium.com/@karthikeyan_akkapalli/multithreading-in-c-concepts-challenges-advanced-techniques-and-applications-b97cbdcf31c7

37. Atomics & Memory Orders

What are Atomics?

Atomic variables are a C++11 features whereby an operation on a variable can be
done “atomically” and does not require any other cross-thread synchronization.
The std: :atomic library in the <atomic> header file exists to provide these
capabilities across platforms in standard C++. Note that there’s also a C version
called Atomic.

Atomics are mainly used to implement the “lock-free” versions of thread-safe data
structures like concurrent stacks and queues. But that’s the advanced stuff]

The first point is to note that atomics can implement thread-safe algorithms for
much simpler requirements, such as:

e Counters

e Sums

e Maximum or minimum
e Boolean flags

Don’t wrap a mutex or a lock check around a simple counter — use an atomic
instead.

Standard Atomic Class

The atomic library is a templated class with pre-defined instantiations for several
different types. Hence, you can use atomics with vatious types of vatiables:

std::atomic<int> g my atomic counter;
You can instantiate the atomic template with your own class types, but only if it

satisfies various properties (e.g., trivially copyable). The main use of atomics is with
scalar types such as integral types or pointers, which are almost always efficient.

355 C++ Ultra-Low Latency

Implicit atomics. Note that the performance of the atomic library can be very fast
for simple scalar variables. On many platforms, this will just be a single machine
code increment instruction on the underlying int variable, but on some obscure
platforms it might be more complex. For example, on a lot of CPU platforms, the
reading and writing of an int variable is implicitly atomic, because it runs in only
a single CPU instruction. Hence, the members for std: :atomic<int> might
simply be a nothingburger that just accesses the integer variable underneath.

Emulated atomics. On the other hand, some platforms cannot really implement
atomics properly for more complicated types, but has to use its own locking
algorithms. Most C++ code using an atomic should still work either way, but this
gives insight into its performance characteristics on different platforms.

To check on the status on this platform, there is the is_lock_ free () and the
C++17 is_always lock free () member function in std::atomic to test
whether a particular instantiation is truly atomic, or whether the library has to
emulate atomicity using hidden locks and mutexes. The first tests whether a
particular variable is lock free, and the second is whether that type of atomic is
always lock-free, which is a hair-splitting difference, but occasionally matters.

Atomic type aliases. If you get tired of typing the angle brackets for the template
instantiation, there are some handy type aliases available since C++11, such as:

e atomic_int

e atomic_short
e atomic bool

e atomic size t

There’s a lot more, but I’'m sure you get the idea.

Basic Atomic Operators

Integer types are particularly well-supported by the atomic library. In simple cases,
you can use the atomic variable in a way that mimics its use for the underlying type.
You can access the integer value of the above atomic just by using its name, and
use various operator overloads that the atomic library provides for each type, such
as assighment and increment.

For example, if you wanted to track a counter of things happening across multiple
threads, you could just do this in every thread using a global-scope atomic variable:

g my atomic counter++; // incremented atomically

David Spuler 356

The unary operators defined for atomics on integer types include:

e Prefix and postfix ++ (increment)
e Prefix and postfix -- (decrement)

There are also various binaty operators:

e Assignment (operator=)
e Extended assignment (e.g., operator+=)

Note that although there are not explicitly defined overloads for common binary
operators (e.g., + or —), you can simply use the name of the atomic variable in such
expressions, and it should get treated as an integer, via the overloaded type cast
operator to the underlying type.

Don’t move or copy atomics. Although you can do various operations on the
variable wrapped by an atomic, you technically cannot copy or move the entire
atomic object itself. It has deleted both copy and move versions of constructor and
assignment operator.

Advanced Atomic Operations

An atomic variable is guaranteed by the C++ library to be performed as a single
indivisible operation. However, there are cases where you want more control over
the operation on the atomic, and also additional features that control reads and
writes to the variable. Some of the more complex methods available for atomic
variables include:

e load() — get the value (atomically).
e store () — write a value to the variable.

e exchange () — store a new value, and return old value.

These methods also have the ability to define a “memory order” for
synchronization with other reads and writes to the variable.

This is a complicated issue in synchronizing atomics across multiple threads for
lock-free programming,.

357 C++ Ultra-Low Latency

There are more complicated arithmetic operations with similar features. Some of
the useful operations that you can perform include:

— addition

— subtraction

— maximum (C++206)
— minimum (C++20)

e fetch add
e fetch sub
e fetch max
e fetch min

— o~ o~ —~
~ o~ ~—

There are also the binary bitwise operations (since C++11) only for atomics of
integral types:

e fetch and() — bitwise-and operation
e fetch or () — bitwise-or
e fetch xor () — bitwise-xor

Atomic flags. The C++11 library also included a class of std: :atomic flag,
which is useful for concurrency. This is a simple interface that mimics
synchronization capabilities of mutexes and condition variables. It’s simpler than
defining your own versions using the basic std: :atomic class with a scalar type.

C++20 Atomics

C++20 adds some extra member functions to std: :atomic that give it new
functionality that sounds a lot like a condition variable or a spinlock. The goal of
adding these newer C++20 features was improved efficiency over similar
synchronization methods. The members are:

e wait () — blocking call to wait until an atomic changes.
e notify one () — notify one waiting thread.
e notify all() — notify all the threads that are waiting.

These primitives allow a thread to wait for an atomic to change, which is a blocking
call until its value changes (there are no spurious returns where the value has not
changed). The notification methods allow for one or all threads to be signalled
about a change to an atomic.

There’s also some useful type aliases that can help pick the most efficient type of
atomic on a platform. These types are declared in C++20:

e atomic_signed lock free
e atomic unsigned lock free

David Spuler 358

Memory Orders

Memory orders are a feature of advanced atomics that is also defined in <atomic>.
The goal is to help interleave atomic operations with other atomic or non-atomic
arithmetic in a way that does not cause race conditions or other synchronization
failures. The enumeration std: :memory order defines constants for a number
of “memory orders” that can be used in atomic operations.

Simple atomics don’t require any fancy memory orders. You don’t really need to
worry about memory orders for the very simple uses of atomics such as counters,
which default to the safest and most restrictive memory order. But memory orders
are critical for implementing advanced lock-free data structures with atomics.

The idea of memory orders is to block the compiler from doing some reordering
optimizations that will break your code. If you don’t set any particular memory
order, then the default memory order is used, which is “sequential consistency” and
has these properties:

e The most restrictive memory model — blocking the optimizer.
e The safest — least likely to cause concurrency bugs.
e The slowest — compiler reordering optimizations are blocked.

The definition is std::memory order seq cst from <atomic>. It’s not
very readable, but I guess no-one on the standards committee wanted to type
“sequential consistency” in their code.

There are a number of memory order constants that you can use. Here’s a list to
help confuse the matter:

e std::memory order relaxed — “relaxed” (the least restrictive,
fastest, and riskiest).

e std::memory order acquire — “acquire” (restricts memory reads).

e std::memory order release — “release” (restricts memory writes).

e std::memory order consume — “consume”’ (affects dependent
operations).

e std::memory order acq rel — “acquire-release” (both reads and
writes).

e std::memory order seq cst — “sequential consistency” (default,

most restrictive, safest).

What do they do? Umm, nobody really knows, so just use whatever Al suggests.
Let’s move on to the next chapter.

359 C++ Ultra-Low Latency

Using Memory Orders

If you’re still here, here’s the first point: you don’t define an atomic variable with a
specific memory order. Rather, the memory orders are passed as optional
parameters for the major atomic operations:

e load() — get the value of an atomic vatiable.
e store () — set an atomic variable.

Every operation on an atomic can choose a memory order. Here’s the overall sliding
scale of options available to you:

e Relaxed — bugs.
e Sequential consistency — slugs.

Or you can choose something in the middle if you really know what you’re doing.
Pay your money and take your chances.

Relaxed Memory Order

The “relaxed” mode doesn’t do much. It’s pretty chill about whatever the compiler
wants to do, and there are no constraints applied to the optimizer. Hence, it’s the
fastest and most unsafe, where the compiler is “relaxed” but “stressed” is the
programmer’s mode.

Using the relaxed mode is a significant optimization, so it pays to consider when
you can get away with it. Some of the simpler uses of atomic variables for counters
or flags don’t need any memory synchronization at all. Let’s declare some atomics:

std::atomic<int> g atomic_counter;
std::atomic<bool> g atomic_shutdown flag;

The question is whether there are any other dependent variable reads or writes
happening around your operation on the atomic variable. Examples where this is
the case include:

e Basic atomic counter
¢ Global flag for all threads

If you’re using an atomic<int> variable as a counter of something, it’s quite
possible that nothing depends on it.

David Spuler 360

You want every thread to be able to increment the counter (without losing one),
but this is guaranteed by atomic semantics. The default is “sequential consistency”
for this:

g_atomic counter++;

But it might actually be faster to do this in “relaxed” mode:

g _atomic_ counter.fetch add(1l,
std: :memory order relaxed);

Another example is our global “shutdown” flag that tells all the threads to close up
shop. As an atomic, we can directly assign it, which uses the “sequential
consistency” memory order:

g_atomic_ shutdown flag = true;

There aren’t really any dependent operations on this flag, other than the threads
occasionally check it. Note that an atomic flag like this doesn’t do any signalling by
default, so we’re assuming that other threads are watching, or getting signalled
another way. In any case, we can probably use “relaxed” mode to set our atomic

flag:

g _atomic_shutdown flag.store(true,
std: :memory order relaxed);

We might also want to test std: :atomic flag, to see if it’s any faster, since it’s
a pre-defined class with similar semantics.

Load and Store Memory Orders

The atomic load() and store() operations allow a memory order to be specified.
Both of them default to “sequential consistency” (slow and safe), if no memory
order argument is specified.

The alternative memory orders are quite limited for these primitives, because some
memory orders cause undefined behavior. In addition to the default “sequential
consistency” memory order, the options for a more efficient memory order are:

e load() — “consume” or “acquire” or “relaxed”
e store () — “release” or “relaxed”

361 C++ Ultra-Low Latency

Undefined Behavior

There are some memory orders that are simply incorrect, and lead to “undefined
behavior” according to the C++ standard. Some examples include:

e load() — memory orders that are undefined:
memory order release and memory order acq rel
e store() —memory orders that are undefined:

memory order consume,memory order acquire and memory o
rder acq rel

Note that “acquire-release” memory order cannot be used at all with these methods.
Data Hazards are not Memory Orders

You may have heard of an ordering issue called “data hazards” that includes
problems such as:

e Read-After-Write (RAW)

o Write-After-Write (WAW)

e Write-After-Read (WAR)

e Read-After-Read (RAR) (harmless!)

However, data hazards are not actually related to memory ordering, nor even to
multithreading. Instead, data hazards are a pipelining issue inside the CPU’s
instruction scheduler related to “instruction reordering” and “out-of-order”
execution. There are many similar concepts in terms of the different orders that can
cause problems, but memory orders are in multithreading of multiple threads,
whereas data hazards are inside the CPU related to the instruction ordering within
a single thread.

Hence, data hazards can be delegated to the hardware engineers, and us C++
programmers have one less thing to worry about!

David Spuler 362

Extensions

1. Explore the use of std: :atomic<bool> versus the convenient
alternative std::atomic_flag in modern C++.

2. Examine the performance of std: :atomic for various types, examining
the costs of primitives such as locking and unlocking, along with basic class
operations such as construction, destruction, copying and moves.

3. Research the details of all the various memory orders.

References

1. Emily Dawson, April 2025, Multithreading with C++: Parallel Programmiing

Guide, https:/ /wwww.amazon.com/dp/B0F4947761./
2. Sourav Ghosh, July 2023, Building Low Latency Applications with C++, Packt

Publishing, https://www.amazon.com/dp /1837639353
3. CPP Reference, May 2025
(accessed), std::atomic, https://en.cppreference.com/w/cpp/atomic/atomi
Cc
4. CPP Reference, May 2025
(accessed), std::memory_order, https:/ /en.cppreference.com/w/cpp/atomic

/memory order

363 C++ Ultra-Low Latency

https://www.amazon.com/dp/B0F494Z76L/
https://www.amazon.com/dp/1837639353
https://en.cppreference.com/w/cpp/atomic/atomic
https://en.cppreference.com/w/cpp/atomic/atomic
https://en.cppreference.com/w/cpp/atomic/memory_order
https://en.cppreference.com/w/cpp/atomic/memory_order

David Spuler 364

38. Lock-Free Data Structures

What are Lock-Free Data Structures?

Lock-free programming is a method of optimizing multithreaded code to avoid
locks (i.e., mutexes) by using atomics instead. Mutexes have a significant overhead,
whereas atomics are more efficient, but that’s not the only benefit. The advantages
in speed and lower latency arise from reducing:

e Overhead of mutexes and lock guards

e Lock contention overhead

e Lost performance from threads blocked awaiting a resource.
e Context switches (avoided)

Generally speaking, there should be a higher throughput with none of the threads
blocked to wait, which also avoids context switching. Threads can execute an
atomic operation and keep going, which is better for CPU utilization, assuming
there is enough work needing to be done.

Lock-free algorithms also have some safety and resilience advantages. Since the
threads no longer block waiting for locks, this avoids some common pitfalls in
multithreading:

e Lower risk of deadlock or livelock
e Reduced chance of priority inversion

The main disadvantage of lock-free programming:

* Your brain will explode.
The internet is littered with articles about failed attempts to write lock-free
algorithms, even by some of the best programmers. There are many ways to go

wrong in the quest to get rid of mutexes.

There are actually some real downsides to lock-free programming, and it’s not an
automatic performance win.

365 C++ Ultra-Low Latency

Some issues include:

e Load balancing properties can change or worsen if no thread ever blocks.
e Lock-free primitives are not always faster than mutexes or other lock types.
e Low-contention applications may perform worse under lock-free methods.
o Weirdly, overall lock contention suffers if nobody ever gets swapped out.

And worst of all, errors in coding the complex lock-free algorithms can not only
cause bugs, but can also introduce insidious slugs!

Implementing Lock-Free Methods

Lock-free programming is the hardest part of multithreading. If you can do this,
you can do anything. But the reverse also applies: if you’re still struggling to do
other types of multithreading, don’t try to do this yet. To do lock-free programming,
you really need to understand:

e Overall locking strategies (mutexes, locks)
e Atomics (basic usage)
e Memory orders (in relation to atomics)

Note that “lock-free” programming does not mean that you just search up “mutex”
in vi, and then hit the “dd” button. No, lock-free programming is not just sequential
programming. Instead, the idea is to switch to a faster concurrency method than
mutexes, so this is the main idea:

e std::mutex — lock-based programming,.
e std::atomic — lock-free programming.

The overall idea is to use an “atomic” operation instead of a mutex. However, it is
not adequate to use simple atomic operations, but you need to use the “compound”
operations. Hence, to make this work, it’s usually a quite complex atomic operation,
such as a “Compare-And-Swap” (CAS) low-level operation or a “Fetch-and-Add”
computation.

Let’s examine the “Compate-And-Swap” approach in detail.

David Spuler 366

This is how a CAS operation works, with a number of steps all done atomically in
one unbreakable sequence:

e Access a variable (that you want to set atomically).

e Compatre it to the “old” or “expected” value.

e Ifit’s equal to the old value, then successtully update to the new value (and
done).

e Ifit’s not equal to the old value, someone else has already updated it, so
we fail (and then loop around and retry).

What a mouthful! Fortunately, C++ has the std: :atomic class (since C++11) to
take care of all that. The main routines to use for a CAS instruction are:

std::atomic: :compare exchange weak
std::atomic::compare exchange strong

Note that you will also need to know about “memory orders” around atomic
y ry
primitives, as controlled via the std: :memory order library.

Weak or Strong CAS?

Should you use the weak or strong version of the CAS primitive? The strong version
is guaranteed to not fail for “spurious” reasons, but only if the atomic’s value is not
what you want. By comparison, the weak version can fail for two reasons:

¢ Wrong atomic value
e Spurious error failures

Thus, the strong version seems better, but even so, the most common idiom for
using CAS in lock-free programming is the use of the weak version, but in a loop.
This idea simply retries if the weak CAS primitive fails, whether due to the
underlying atomic variable’s value being wrong, or due to the obscure spurious
failures.

Both the weak and strong CAS primitives are usually in a loop. The weak CAS can
fail for two reasons, being spurious failures or another thread modified the value,
and needs to retry. The strong CAS will not fail for spurious reasons, but can still
fail for the second reason, and still often needs a loop. The weak version is more
commonly used because it’s somewhat more efficient, under the assumption that
spurious failures are rare.

367 C++ Ultra-Low Latency

Example: Lock-Free Stack Array

A lock-free stack implemented in an array is a great example to use, because it has
only one moving piece: the stack pointer. This is an integer index used to identify
the level of usage in the array, and also doubles as a counter of how many items are

on the stack.

Here’s our basic interface for an array-based stack:

template<typename T, int N>
class LFStackArray {

private:
std::atomic<int> sp ; // Stack pointer
T arr [N]; // Fixed-size array
public:
LFStackArray() : sp_{-1}, arr {} { }
~LFStackArray () { }
LFStackArray (const LFStackArray&) = delete;
LFStackArray (LFStackArray&é&) = delete;
LFStackArray& operator=(const LFStackArrayé&) = delete;
LFStackArray& operator=(LFStackArrayé&&) = delete;

}i

And here are some basic member functions:

bool empty() const { return sp == -1; }
bool full() const { return sp == N - 1; }
int count() const { return sp_ + 1; }

And let’s define the main member functions implementing the stack LIFO
functionality. The top () function is a const member that does not pop the stack

(like the standard C++ stack container):

T top() const {
if (sp_ == -1) {
throw std::exception("Stack underflow top");

}
else {
return arr [sp];

David Spuler 368

Here’s the pop () function that decrements the stack pointer:

void pop () {
if (sp_ == -1) {
throw std::exception("Stack underflow pop"):;

}

else {
sp_——7
}

And here’s the push () member function that increments the stack pointer:

void push (const T& item) {
if (full()) {
throw std::exception("Stack overflow");

}
else {
arr [++sp] = item;

}

See Any Bugs?

This code will run fine in many cases, but has several concurrency bugs if multiple
threads are pushing and popping. The sp_ variable is atomic, and all of the
operations on this variable will be correctly serialized. Problems arise because each
of the main member functions are accessing the atomic variable twice.

Any interleaving access in another thread that modifies the stack pointer between
those two accesses can break the code. Since all the member functions are short,
and the two accesses are within a few instructions, these bugs would be rare
situations, but are still an insidious problem.

One way to fix these problems would be to just remove the exception-handling
code. All of the extra reads on the stack pointer are to detect overflow and
underflow conditions. But that’s not a great design decision to make, based solely
on our lack of expertise in lock-free programming.

369 C++ Ultra-Low Latency

CAS Versions

A better idea is to use the “Compare-And-Swap” (CAS) idiom, repeated in a loop,
for proper lock-free versions. Here’s an updated pop () method:

void pop () {
int oldsp = sp .load();
if (oldsp == -1) {
throw std::exception("Stack underflow pop"):;

}

while (!sp .compare exchange weak (oldsp, oldsp - 1)) {
// Nothing (try again)

}

Note that in this version using sp_.load () is not really different from just
using sp_ by name (an implicit load), but the second part uses a different loop. The
CAS call is used to check that the stack pointer still has the expected value (i.e., not
modified by some other thread), and we loop around until it’s true. Since this is a
“weak” CAS call, it call also fail for spurious reasons, but that’s not a problem
because we just retry in that situation, too.

What’s missing?

There are no memory orders specified anywhere, so the atomic calls are defaulting
to “sequential access” in both the load and CAS loop. That’s the safest memory
model, but it’s needlessly inefficient here.

There are three places where we can specify an alternative memory model. But
which to choose? The best choices are:

e Initial load () call — “relaxed” memory model (fastest)
o Weak CAS success — “acquire” memory model
e Weak CAS failure (retry loop) — “relaxed” memory model (fastest)

We can get away with relaxed mode for the initial 1oad () because it’s not critical.
We’re testing for an error, and we also don’t care too much about ordering of
accesses leading up to the CAS test.

Similarly, we also don’t much care about ordering whenever the weak CAS call fails,
whether for spurious reasons or because the value has changed. Either way, we’re

just looping back to re-try, and the ordering up to the next CAS call doesn’t matter.

David Spuler 370

However, we do care on a successful CAS result, which is when the stack pointer
is actually being updated to a new value. Hence, we choose “acquire” rather than
“relaxed” for that option.

Our new function looks like:

void pop () {
int oldsp = sp_ .load(std::memory order relaxed);
if (oldsp == -1) {
throw std::exception("Stack underflow pop");

}

while (!sp .compare exchange weak (oldsp, oldsp - 1,
std::memory order acquire, // Success mode
std::memory order relaxed) // Failure mode

) A
// Nothing (try again)

Still Buggy!

There’s an obscure problem in the above pop () function that indicates a
misunderstanding of how the CAS primitives work. They don’t just update the
atomic, but also the passed-in parameter.

Let’s consider a stack that currently contains one element, but two threads are both
trying to pop the stack. Consider this sequence:

e Thread A: starts and calls 1oad () inside pop ()

e Context switch

e Thread B: runs a full pop () function to pop the stack (i.e.,, Load () and
then CAS success).

e Context switch

e Thread A: continues, but weak CAS fails (value of sp_ was changed by
Thread B).

e Thread A: loops around to retry.

e Thread A: weak CAS now succeeds using the sp_ value updated by Thread
B (yes, really)

The end result of all this is a major bug:

e The atomic is updated to the wrong stack pointer.
e The stack hasn’t been popped twice (it should be, once by each thread).

371 C++ Ultra-Low Latency

The CAS primitive can change the variable passed as the expected value. Hence,
the value of sp_ in the above code can change before and after the loop, and also
whenever there’s a loop-around to retry.

Look at the official signature of the weak CAS function, and you’ll notice that the
first argument containing the “expected” or “old” value is a non-const reference.
The second argument is not a reference.

Why aren’t they the same?

The compare exchange weak () function can modify the expected value (used
to test), but not the “new” value, used to store. This means that:

(a) If it succeeds immediately, the “old” variable will have the “new” value.

(b) 1f it fails and loops around, the “old” variable will have whatever value
another thread changed it to.

When you examine lock-free versions with CAS primitives and loops, you’ll notice
a few things about the pattern:

1. The “old” value is retested every loop iteration (after CAS failure).
2. The “old” value is also retested after the loop (after CAS success).

3. The “expected” value parameter to weak CAS may also need to be re-
computed each iteration, based on the “old” value (which can change),
rather than using an unchanging separate variable to contain the expected
value.

This is getting complicated! Well, yes, that’s the fun of lock-free coding.

Anyway, here’s the final version with the corrected weak CAS calls. This defers the
underflow test until after the loop, where it catches both cases of underflow: initial
underflow or an underflow caused by some other thread popping the stack out
from under us.

David Spuler 372

The final code is:

void pop () {
int oldsp = sp_.load(std::memory order relaxed);
while (oldsp != -1
&& !sp .compare exchange weak(oldsp, oldsp - 1,
std::memory order acquire, // Success mode
std::memory order relaxed) // Failure mode
) A
// Nothing (try again)
}
if (oldsp == -1) {
throw std::exception("Stack underflow pop"):;

Hopefully, this new version now has all the various concurrent execution sequences
covered:

e Success: valid pop on the stack without any changes by another thread.

e Success: valid pop on the stack but another thread removes one (or more)
stack elements, but doesn’t fully empty the stack.

e Underflow: Pop on an already-empty stack.

e Underflow: Pop on a non-empty stack, but another thread empties the
stack before us.

Difficulties with Lock-Free Coding

What’s so hard about coding a lock-free algorithm? Well, it’s a totally different way
of thinking about concurrency compared to the use of standard locking
mechanisms.

Some of the problems include:
e Catering for all possible instruction ordering sequences.
e Choosing the right memory order to guarantee correctness.
e Higher-level concurrency problems with the interface.

e Handling the “ABA” problem where updates are missed.

We’ve already discussed instruction ordering and memory orders in Chapter 7 on
atomics, so let’s look at the other issues now.

373 C++ Ultra-Low Latency

High-Level Race Conditions

Even when we’ve correctly implemented the member functions with atomics and
memory orders, this lock-free stack is still problematic to use. The stack itself will
stay consistent no matter what member functions are called in what order, but there
are higher-level concurrency problems with any paired usage of multiple member
functions, such as sequences like:

e Top and then pop
e Test empty before calling pop
e Test full before calling push

What we’d need to do is define some more composite member functions using
lock-free methods. Ideas for new methods to add in the interface for better usage
in multithreaded applications include:

e Top-and-pop
e Pop-if-not-empty
e Push-if-not-full

ABA Problems

The ABA problem is a more general concurrency issue that can be particularly
applicable to lock-free sequences. The ABA problem occurs where a shared variable
undergoes this uncommon sequence with activity in one thread:

e Initial value — A
e Update to value — B
e Second update — A

The problem occurs in a second thread, and it’s not really obvious why it’s tricky.
After the ABA sequence, the second thread sees the value as A, which is unchanged
from the prior value it would have seen. Hence, the second thread doesn’t know
about the intervening value B. Depending on context, this is sometimes no
problem, or sometimes a major concurrency error whereby the second thread
wrongly assumes that nothing has changed, and the data structure hasn’t been
updated.

A good example is an array implementation of a lock-free stack. The index value is
incremented by one on a push, and then decremented back to its prior value by a
thread doing a pop. This is an ABA sequence on an integer index, whereby another
thread might assume that the stack index has not changed.

David Spuler 374

If that thread accesses the “top” element, then an ABA sequence occurs in the first
thread, the second thread may see that the stack index is unchanged and assume the
same element is still on top of the stack, when in fact, there’s an entirely different
value. Remember, it’s the atomic integer representing the stack index that’s
undergone the ABA sequence, not the actual object on the stack.

This problematic sequence can occur in any synchronization style including both
locking and lock-free algorithms. It’s quite an insidious bug, because the ABA
sequence doesn’t occur that often. In particular, a lot of the lock-free methods for
using a CAS operation in a loop are checking for the old value, and can be
vulnerable to an ABA sequence.

C++20 Atomics and Lock-Free

The C++20 standard introduced some extra primitives to the atomic class, which
were similar in nature to condition variables and spinlocks (or a hybrid thereof).
The primitives included:

e wait () — blocking call to wait until an atomic changes.
e notify one () — notify one waiting thread.
e notify all() — notify all the threads that are waiting.

An important point to note is that if you’re using these C++20 primitives to
implement thread synchronization, it’s more like using locks than a lock-free
algorithm. Where threads are blocked and waiting on an update to an atomic
variable, that’s a great feature of C++20, but it’s no longer really a lock-free data
structure. The main hallmark of lock-free programming, where every thread keeps
going, is missing in that style.

Freestanding Atomic Functions

Standard C++ provides a number of “free-standing” atomic functions that mirror
the member functions. For example, there is:

e atomic fetch add() — similar to fetch add().
e atomic_ fetch sub() — matches fetch sub ().

There are also “explicit” versions of many of these functions:

e atomic fetch add() — default memory order.
e atomic fetch add explicit () — extra argument for the memory
order.

375 C++ Ultra-Low Latency

The differences in all these free-standing versions of the functions compared with
the main C++ ones are:

e Not member functions (free-standing).

e Accept a pointer to an atomic, not a reference.

e Memory orders can be specified in the “explicit” versions.

e Consistent with the C-language versions defined in the C11 standard.

The reason for pointer arguments is that these functions are consistent with the C
language versions declared in <stdatomic.h>in C11 (not C++11).

Always Faster?

Note that lock-free algorithms are not always a speed improvement. There is a
significant case to be made that lock-free algorithms can increase thread contention.
Hence, it is important to time your before-and-after if you’re switching from a lock
implementation to a lock-free version of your thread-safe data structure. Since the
concern is related to lock contention when there are multiple threads, it is important
to time performance of your overall application across multiple threads under a
realistic load, rather than just benchmarking the low-level lock-free queue
primitives. See the references section for various Stack Overflow conversations
involving quite animated discussions on when and whether a lock-free algorithm is
better or worse than locking methods.

Portability issues

There are also a variety of non-standard methods to achieve lock-free programming
with primitives in older code platforms, or in a platform-specific manner. Some of
the primitives are:

e InterlockedCompareExchange — Win32 version in <winnt.h>.

e OSAtomicCompareAndSwapInt — Mac variant in <OSAtomic.h>

e atomic compare exchange — older GCC version.
Note that the std: :atomic class is not actually guaranteed to be a lock-free
atomic operation on every platform. It’s a good idea to test your platform using the

“is lock free” primitive as part of your initialization or self-testing code:

assert (std::atomic<int>::is lock free());

David Spuler 376

Extensions

1. Implement a lock-free version of fine-grained locking using lock striping
on a vector data structure with an array of atomics instead of mutexes (see
discussion of “lock striping” in Chapter 4).

2. Implement a lock segmenting version of lock-free fine-grained locking on
a vector data structure using atomic arrays, not mutexes (see the discussion
of “lock segmenting” in Chapter 4).

References

1. Paul Bilokon, Burak Gunduz, 8 Sep 2023, C++ Design Patterns for Low-
latency Applications Including High-frequency
Trading, https:/ /arxiv.org/abs/2309.04259,
Code: https://github.com/Oburak/imperial hft

2. Jeft Preshing, Jun 12, 2012, An Introduction to Lock-Free
Programming, https:/ /preshing.com/20120612/an-introduction-to-lock-
free-programmin

3. Deb Haldar, August 17, 2017, Top 20 C++ multithreading mistakes and how
to avoid them, https:/ /acodersjourney.com/top-20-cplusplus-
multithreading-mistakes

4. Apple, March 2025 (accessed), Mac OSX
documentation, https:/ /developer.apple.com/library/archive/documentatio
n/System/Conceptual/ManPages iPhoneOS/man3/OSAtomicAdd32.3.
html

5. Wikipedia, March 2025 (accessed), Non-blocking
algorithm, https:/ /en.wikipedia.org/wiki/Non-blocking algorithm

6. Herb Sutter, September 08, 2008, Lock-Free Code: A False Sense of Security,
Dr Dobbs Magazine
(archived), https://web.archive.org/web/20150901211737 /http:/ /www.
drdobbs.com/article/printrarticleld=210600279&siteSectionName=cpp

7. Microsoft, 24 May, 2022, InterlockedCompareExchange function
(winnt.h), https:/ /learn.microsoft.com/en-
us/windows/win32/api/winnt/nf-winnt-interlockedcompareexchange

8. GNU Foundation, March 2025 (accessed), 6.26 Buzlt-in Functions for
Memory Model Aware Atomic
Operations, https://gcc.gnu.org/onlinedocs/gec/ 005f 005fatomic-
Builtins.html

9. CPP Reference, March 2025
(accessed), std::atomic<I>::compare_exchange_weak,
std::atomic<T>::compare_exchange_strong, https:/ /en.cppreference.com/w/c

pp/atomic/atomic/compare exchange

377 C++ Ultra-Low Latency

https://arxiv.org/abs/2309.04259
https://github.com/0burak/imperial_hft
https://preshing.com/20120612/an-introduction-to-lock-free-programming/
https://preshing.com/20120612/an-introduction-to-lock-free-programming/
https://acodersjourney.com/top-20-cplusplus-multithreading-mistakes/
https://acodersjourney.com/top-20-cplusplus-multithreading-mistakes/
https://developer.apple.com/library/archive/documentation/System/Conceptual/ManPages_iPhoneOS/man3/OSAtomicAdd32.3.html
https://developer.apple.com/library/archive/documentation/System/Conceptual/ManPages_iPhoneOS/man3/OSAtomicAdd32.3.html
https://developer.apple.com/library/archive/documentation/System/Conceptual/ManPages_iPhoneOS/man3/OSAtomicAdd32.3.html
https://en.wikipedia.org/wiki/Non-blocking_algorithm
https://web.archive.org/web/20150901211737/http:/www.drdobbs.com/article/print?articleId=210600279&siteSectionName=cpp
https://web.archive.org/web/20150901211737/http:/www.drdobbs.com/article/print?articleId=210600279&siteSectionName=cpp
https://learn.microsoft.com/en-us/windows/win32/api/winnt/nf-winnt-interlockedcompareexchange
https://learn.microsoft.com/en-us/windows/win32/api/winnt/nf-winnt-interlockedcompareexchange
https://gcc.gnu.org/onlinedocs/gcc/_005f_005fatomic-Builtins.html
https://gcc.gnu.org/onlinedocs/gcc/_005f_005fatomic-Builtins.html
https://en.cppreference.com/w/cpp/atomic/atomic/compare_exchange
https://en.cppreference.com/w/cpp/atomic/atomic/compare_exchange

10.

11.

12.

13.

14.

CPP Reference, March 2025

(accessed), std:memory_order, https:/ /en.cppreference.com/w/cpp/atomic
/memory order

Sourav Ghosh, July 2023, Building Low Latency Applications with C++, Packt
Publishing, https://www.amazon.com/dp /1837639353

Tim Blechmann, 2011, Chapter 17.

Boost.Lockfree,, https:/ /www.boost.org/doc/libs/1 53 0/doc/html/lockf
ree.html, https://www.boost.org/doc/libs/1 53 0/doc/html/boost/loc
kfree/queue.html

Stack Overflow, 2011, Do lock-free algorithms really perform better than their
lock-full counterparts? https:/ /stackoverflow.com/questions /5680869 /do-

lock-free-algorithms-really-perform-better-than-their-lock-full-

counterparts
Stack Overflow, 2017, Using Boost.Lockfree quene is slower than using

mutexes, https:/ /stackoverflow.com/questions/43540943 /using-boost-
lockfree-queue-is-slower-than-using-mutexes

David Spuler 378

https://en.cppreference.com/w/cpp/atomic/memory_order
https://en.cppreference.com/w/cpp/atomic/memory_order
https://www.amazon.com/dp/1837639353
https://www.boost.org/doc/libs/1_53_0/doc/html/lockfree.html
https://www.boost.org/doc/libs/1_53_0/doc/html/lockfree.html
https://www.boost.org/doc/libs/1_53_0/doc/html/boost/lockfree/queue.html
https://www.boost.org/doc/libs/1_53_0/doc/html/boost/lockfree/queue.html
https://stackoverflow.com/questions/5680869/do-lock-free-algorithms-really-perform-better-than-their-lock-full-counterparts
https://stackoverflow.com/questions/5680869/do-lock-free-algorithms-really-perform-better-than-their-lock-full-counterparts
https://stackoverflow.com/questions/5680869/do-lock-free-algorithms-really-perform-better-than-their-lock-full-counterparts
https://stackoverflow.com/questions/43540943/using-boost-lockfree-queue-is-slower-than-using-mutexes
https://stackoverflow.com/questions/43540943/using-boost-lockfree-queue-is-slower-than-using-mutexes

Part VI: Sequential C++
Optimizations

379 C++ Ultra-Low Latency

David Spuler 380

39. Timing and Benchmarking

Timing C++ Code

There are a number of reasons why it can be useful to time the execution of a
program. Timing C++ code can be useful in determining which statements should
be optimized whereas profilers may only indicate which functions are consuming
time. Timing code can also determine the relative efficiency of various operations
and give you valuable information about writing code for your machine (e.g., is
shifting faster than integer multiplication?).

There are several ways to time your C++ code, some of which have existed for
decades, and some that are newer and standardized. Here’s a list of some options:

e time shell command

e time C++ function

e clock C++ function

e <chrono> standard C++ class

Another way to examine the efficiency of a C++ operation is to look at the
assembly code. This is examined later in the chapter.

If the full execution time for a program is all that is needed, the
Linux time command can be used to calculate the time required by a program.
There are two versions — a stand-alone utility in /bin and a command built

into csh. The command to run is usually:

time a.out

A different executable name could also be used and command line arguments can
also be specified.

381 C++ Ultra-Low Latency

The Chrono Class

The std: :chrono library is an awesome piece of work, and has many features.
It’s been part of the C++ standard since C++11. I’'m only going to touch on a
handful of basic measurements here.

Here’s an example of how to measure the duration between two events:

auto before = std::chrono::high resolution clock::now();

// ... Do something
auto now = std::chrono::high resolution clock::now();
auto diff = std::chrono::duration cast
<std::chrono::microseconds> (now - before) .count();
std::cout << "Time: " << diff
<< " microseconds" << std::endl;

There are other ways to do this, as the library is very flexible, with many capabilities.
Reading the documentation for this class is enough to make my head spin. Someone
had a lot of time to spend on time! Kudos to them. But one way is good enough
for timing our C++ code, so let’s move on and leave the rest as an exercise for the
reader (LOL!).

The Clock Function

If a more detailed speed analysis is needed, it is possible to add C++ self-
instrumentation code to your program to monitor its own performance. The basic
idea is to use the standard library functions to monitor the time before and after an
action. The advantages of the clock function over the new-
fangled std: : chrono library:

e Measures CPU clock ticks, not wall clock time.
e Works in C, if you need it, not only C++.
e Only have to remember one function namel!

The oldest useful function is the “clock” function which has existed since the C
programming language. The clock function counts the number of clock ticks
since the program began executing. The “time” function, which keeps track of the
real calendar time could also be used, but it is not a true indication of processor
time on a large multi-user system. The clock function is correct for both single
user and multi-user systems.

David Spuler 382

The clock function returns a value of type clock t (typically long or int) that
counts the number of clock ticks. This value can be converted to seconds by
dividing by the constant CLOCKS_PER_SEC, also declared in <time.h>.

The basic idea of timing C++ code blocks is to call the clock function before and
after an operation and examine the difference between the number of clicks. The
code below examines the relative speed of shift and multiplication operations on
int operands.

void profile shifts()
{
const int MILLION = 1000000;
const int ITERATIONS = 100 * MILLION;

int x =1, vy =2, z = 3;

clock t before = clock();
for (int i = 0; 1 < ITERATIONS; i++)
x =y << z;
printf ("%d Shifts took %f seconds\n", ITERATIONS,

(double) (clock() - before) / CLOCKS PER SEC);

before = clock();

for (int i = 0; 1 < ITERATIONS; i++)
X =y * z;

printf ("%$d Multiply took %f seconds\n", ITERATIONS,
(double) (clock() - before) / CLOCKS PER SEC);

}
Clock Problems

clock Portability Pitfall. Note that some implementations on older Unix versions
don’t conform to the C++ standard and return the number of clock ticks since
the first call to the clock function. This means that a single call to clock at the
end of the program would always return zero. Hence, it is more portable to measure
the number of clock ticks between two calls to clock, one at the start and one at the
end. Obviously, you can also put the first call to “clock” at the start of the “main”
function to avoid this rare glitch. Note that on implementations that are correct, a
call at the start of “main” may be non-zero due to the overhead of global and static
C++ object instantiations (i.e., constructors for global objects), which occurs
before entering main.

383 C++ Ultra-Low Latency

Clock Tick Integer Division Pitfall. Note that the standardized clock t type
and CLOCKS PER_SEC constant are both integers. Hence, here’s a bug:

clock t diff = clock() - before;
double seconds = diff / CLOCKS PER SEC; // Bug!

The problem is that it’s integer division, so it inaccurately truncates to an integet.
You need a typecast to £1loat or double on either side of the division operator.

clock t diff = clock() - before;
double seconds = diff / (double)CLOCKS PER SEC; // OK

Clock Tick Overflow Pitfall. The clock function also has a problem with
wraparound on some implementations. Because of its high resolution, the total
number of clock ticks can quickly overflow the maximum value that can be stored
by the type clock t. On one system the clock function will wrap around after
only 36 minutes. If the program being timed runs for longer than this period, the
use of clock can be misleading. One solution is to use the “time” function rather
than “clock” when executions are longer, but this usually only has resolution to
the nearest second.

Benchmarking

Benchmarking is a slightly different concept to tuning, and refers to testing the
efficiency of certain operations, such as low-level operators, to find a more efficient
way to do an operation. For example, if you want to compare multiplication versus
addition, you write a program to run these operations a few million times. When
changing a program to increase efficiency, you shouldn’t assume that a certain
operation is clearly faster, but you should benchmark whether the changes have
noticeably increased the operation’s efficiency (or even decreased it!).

Techniques for measuring program efficiency range from the stop-watch method
to the use of sophisticated profiler software tools. If no profiler is adequate, the
programmer can gain timing information by adding instrumentation statements to
the program, although there are many pitfalls in attempting to determine the time
taken by a sequence of statements.

The measurement of the memory usage and space-efficiency of a C++ program is
a slightly more difficult problem. There are several types of memory: instruction
code, static memory, read-only string literals, initialization data, global/static
variables, the stack, and the heap. Measuring the memory usage of the stack and
heap is somewhat difficult because of their dynamic nature.

David Spuler 384

However, various tools exist to measure the different types of memory, and clever
use of C++ programming constructs can also yield reasonable data.

Benchmark programs attempt to examine how quickly your machine executes
certain instructions, which is more useful for examining a single multiplication
operation. You mainly use benchmarking for code that’s running in low-level
kernels, such as CPU speedups (e.g., AVX intrinsics) or examining the possible use
of different GPU primitives.

Consider benchmarking for timing of low-level arithmetic operations on your
platform. For example, how would you determine whether the integer
multiplication operation x*2 could be more efficiently replaced by x<<1?

How can you time these instructions? You obviously cannot just time a single
operation of each with the “clock” function, because a single click tick contains
many CPU cycles. So, you have to time thousands or even millions of such
operations.

for (int i = 0; 1 < 100 * MILLION; i++) {
x << 1;

We’ve already noted one problem: there’s all this extra loop overhead time for the
for loop conditional test (the “<” operator) and its incrementer (i++). The loop
actually has three operations that are all about the same order-of-magnitude cost
(.e., <, ++, <<). To get at the operator cost, we’d need to subtract out the loop
overhead. We could, for example, try to time an empty loop without any loop body,
and subtract that from our final cost.

Benchmarking Problems

Null effect problems. Another problem is that we cannot easily time the operators
with these statements in the loop body:

x << 1;
X * 2;

The compiler is clever enough to notice that the x<<1 and x*2 statements have no
effect in the program above (and gives “null effect” warnings). The built-in
optimizer may even remove them completely. So, they won’t get timed propetly, or
at all, even in a loop.

385 C++ Ultra-Low Latency

Add volatility? One possible solution is that maybe the compiler can be forced to
avoid this optimization on the original expressions by declaring x asa “volatile”
variable.

volatile int x = 0;

The volatile qualifier tells the compiler that all accesses to x are important, and
that it should not remove any. The intended purpose of volatile is to allow the
declaration of addresses for memory-mapped 1/O, debugger-modified variables, or
for variables modified by other programs (e.g., a semaphore modified by another
program running concurrently).

However, we can use it here to force all accesses to x to occur even if they appear
pointless.

On the other hand, by doing this, we’ve lost the ability to see the “real” time cost
for these operations when they’re running in normal code. Most variables
aren’t volatile.

Anyway, it doesn’t even work properly. Unfortunately, the computations of
the << and * operators in x<<1 and x*2 are not being assigned anywhere, so the
computations themselves could be optimized out, even though the actual read
operations on x must occur because x is volatile.

To force the << and * operations to occur, it is necessary to use their result
somehow, such as by assigning it to the (volatile) variable x:

X = X << 1;
Although all of the above improvements will enhance the previous version, a far

better method of improvement is to time a loop that performs a huge number of
the operations,.

Hence, we have to use something like these assignment expressions inside a loop:

X <<= 1;
X *= 2;

David Spuler 386

The code given here examines the relative speed of 10,000 shift and multiplication
operations on int operands:

volatile int x = 0;

clock t before
for (int 1 = 0;
X = x << 1;

// volatile to prevent optimizations

clock () ;

i < ITERATIONS;

i++)

printf ("$d Shifts took %f seconds\n",

(double) (clock ()
before = clock();
i < ITERATIONS;

for (int i = 0;
X =X * 2;

- before)

i++)

ITERATIONS,
/ CLOCKS_PER SEC) ;

printf ("$d Multiplications took %f seconds\n", ITERATIONS,
(double) (clock ()

Loop Unrolling

- before)

/ CLOCKS PER SEC);

Unfortunately, the above method of measuring the speed of operations is not
completely accurate, because it also includes the loop overhead (incrementing i
from 1 to 10,000) and the cost of the assignment of the result to x. The loop
overhead can be minimized by placing many operations within the loop, as below:

volatile int
clock t befo
for (int i =
<<
<<
<<
<<
<<

XX X X X
[
XoX X X X

}

X
re
0;

~e

~. . N

PR e e
~

~.

XX X X X

printf ("%d Shifts

(double) (clock ()
before = clock();
i < ITERATIONS;

for (int 1

XXX X X
([l

XX X X X

X % X % %

}

|
NN DN DN

0;
;
;
;
;

’

XX X X X

0; // volatile
clock();

< ITERATIONS;
= x << 1; x =
= x << 1; x =
= x << 1; x =
= x << 1; x =
= x << 1; x =

XX X X X

to prevent optimizer

i++)

X

XX X X

<<
<<
<<
<<
<<

<<
<<
<<
<<
<<

~e

. N

~.

{

1;
1;
1;
1;
ll

PR e e
~

XX X X X
[
XX X X X

took %f seconds\n", ITERATIONS*20,
/ CLOCKS PER SEC);

printf ("%d Mult took
(double) (clock ()

- before)

2;
;
;

’

X ok o X

NN NN

’

X

XX X X

XX X X

X

T

)

’

~. . N

NN DN+
~

~.

%$f seconds\n",
/ CLOCKS PER SEC);

- before)

* ok ok X X
DD DNDDNDN
N Ne Ne N

XX X X X~
Il
XX X X X

ITERATIONS * 20,

Unfortunately, the assignment operations are needed to prevent the optimizer
removing the computations, as discussed above.

387

C++ Ultra-Low Latency

The only truly effective method of removing the cost of the assignment from the
measurement is to time another separate loop, and subtract its time from that of
the other loops, as below. This method also automatically accounts for the loop
overhead cost, so the multiple operations inside each loop are not needed (and in
fact would be incorrect). Our final version of the benchmark program is also made
more sophisticated to output the relative magnitude of the two operations:

void profile shifts4()
{
const int MILLION = 1000000;
const int ITERATIONS = 1000 * MILLION;
volatile int x = 0; // volatile to prevent optimizations
double timel, time2;
// Time the loop overhead
clock t before = clock();
for (int i = 0; i < ITERATIONS; i++)
x = 1;
clock t loop cost = clock() - before; // overhead
double ovtime = (double) (loop cost) / CLOCKS PER SEC;
printf ("%d overhead: %f seconds\n", ITERATIONS, ovtime);

// Shifts
before = clock();
for (int i = 0; i < ITERATIONS; i++) {

X = X << 1;
}
timel = (double) (clock() - before - loop cost)

/ CLOCKS_ PER_SEC;

printf ("$d Shifts took %f secs\n", ITERATIONS, timel);

// Multiplications

before = clock();
for (int i = 0; i < ITERATIONS; i++) {
X =x * 2;
}
time2 = (double) (clock() - before - loop cost)

/ CLOCKS_PER SEC;
printf ("$d Mult took %f seconds\n", ITERATIONS, time2);

// Compare both times, and print percentage difference
const float ACCURACY = 0.00001f; // maximum error
if (fabs(timel - time2) < ACCURACY) // (almost) equal?

printf ("Shift and multiplications: same time\n");
else 1if (timel < time2) {

printf ("Shifts faster by %5.2f percent\n",

(time2 - timel) / time2 * 100.0);

}
else {

printf ("Multiplications faster by %5.2f percent\n",

(timel - time2) / timel * 100.0);

}
David Spuler 388

Limitations of Benchmarking

Benchmarking of C++ using these timing methods is not perfect, but I've always
found it useful. There are various reasons why this type of benchmarking timing
results may not be fully correct.

e Hard to account for parallelism (e.g., GPU throughput)

e Single-threaded code is not always a true representation.

e DPipelining speedups often differ in production code (even for sequential
CPU code, such as AVX intrinsics).

e Loop overhead is hard to separate from the raw operations (as seen abovel)

e Compiler optimizations might modify or even remove the operations being
benchmarked.

e Memory cache hit rates are too high because you’re running tight code
accessing only a few addresses.

e Optimization levels in test mode might not match your production version.

¢ Debug modes might not match production (e.g., if running in a debugger).

e Pipelining by the CPU of many instructions makes it appear better than
reality.

e Unrealistic non-production conditions are being tested.

Compiler optimizations. In this day and age of amazing optimization algorithms,
note that on some platforms the benchmarking code above may indicate that shifts
and multiplications cost exactly the same. This is most likely an indication that the
compiler automatically optimizes any multiplications by powers of two into left
shifts. To get the true cost of a multiplication, the expression should be:

X = X * x;

But even this might be optimized algebraically by a compiler. The only way to know
for sure what’s actually being benchmarked is to examine the assembly language.

Examining Assembly Output

Another way of examining the relative costs of particular operations for a particular
compiler is to examine the assembly language produced by the compiler. Many
compilers have an option to produce assembly language output. For example, under
Linux the command may be:

gcc -S main.cpp

389 C++ Ultra-Low Latency

This will produce the assembly language listing for the C++ source file and store it
in a new file “main.s” as a human-readable text file. Without the -S option, the
assembly output would have been passed to the assembler to create the machine
code executable. GCC also has a “-masm” option that controls the different
“dialects” of assembly language (e.g., “intel” or “att”). GCC also has a verbosity
control on assembly output via “~fverbose-asm” and “~fno-verbose-asm”
options.

Another way to generate assembly with GCC is the “~save-temps” option. This
option tells GCC to save the temporary assembly language file that it used for the
real compilation. Hence, this option can be used with the normal compilation mode
to both build the code as normal and also output a “.s” assembly file. The
advantage of this GCC “~save-temps” option over “~S” is that you don’t need
to create a separate build path for generating assembly text files.

Reviewing assembly code. Examining assembly language instructions produced
for C++ operations can be very enlightening. For example, you can determine
whether the compiler uses a special increment instruction for the ++ operator.
Whether or not the compiler is performing various optimizations can also be
examined.

Counting the number of assembly instructions is a simple measure and gives a
reasonable indication of how efficiently an operation will be performed. A better
method is to determine the number of cycles used by each instruction, but this
requires a rather more intimate knowledge of the assembly language being used.

Many useful things can be discovered by examining assembly output. For example:

e Does the expression x*2 generate a multiply instruction or a shift
instruction (or an addition instruction to do “x+x”)?

e Does the compiler notice that x=x+1 can be replaced by x++?
e Is the integer % remainder operator implemented by a sequence of

instructions?
Consider the use of the relational operators (e.g., >, <) in expressions such as:

flag = x > y;

This will often produce a sequence of instructions because of the need to assign
flag the value either O or 1.

David Spuler 390

The instructions may well look like the following pseudo-assembly language:

LOAD 10($sp) # Load x (from stack)

CMP 12 ($sp) # Compare with y (on stack)
BGT $1 # Branch if greater than

LOAD 0 # Result of > operation is 0
JUMP $2

S1:

LOAD 1 # Result of > operation is 1

$2:

STORE 14 ($Ssp) # Store in flag (on stack)

However, review the assembler for the similar test in i f statements, such as:
if (x > vy)

For an if statement, the instructions need not be as complex, because there is no
need to store the value 0 or 1 anywhere. The assembly language could be similar to
branches without computations:

LOAD 10 ($sp) # Load x (from stack)
CMP 12 ($sp) # Compare with y (on stack)
BLE $1 # Branch if NOT greater than
Code for if statement body
S1:

Statements after if statement
Examining Object Files

The objdump command is another useful tool on Linux for analyzing binary object
files. DUMPBIN is the comparable tool on Windows for MSVS (or you can use
the LINK command with the “/DUMP” option). These tools can get to the assembly
language text in reverse, by disassembling the binary instructions that are in the
object file, in combination with the various symbolic information.

objdump can be used to examine object files in various ways and there are various
useful options. The “~d” and “-~D” options provide disassembly where you can
examine a full dump of the assembly code in printable form (as an alternative path
to the “~S” option). The “~h” option shows the headers of the object file and “~
g” shows debugging information in the file. There are numerous other options and
the “~-help” option can be used to list all options. The objdump command is
part of Gnu Binutils, which also includes other useful binary file tools such
as nm, size, strip, and strings utilities

391 C++ Ultra-Low Latency

DUMPBIN also has various options that can be used on the DOS command-line.
The default is “/ SUMMARY” for a summary of the information about the object file.
The “/DISASM” command shows the disassembly of the object file, which is in
assembly language. Also useful is “/SYMBOLS” to show the symbolic names.

Performance Tuning Practices

How should the huge number of methods of improving program efficiency be
applied to a program? The code transformations that improve the program by a
significant amount should be tried first, and the smaller optimizations used only
when it is important to squeeze out that last bit of extra speed in bottlenecks.
Hence, I suggest the following steps for improving the efficiency of a program:

1. Time your program to get a baseline (i.e., run a full inference query).
2. Invoke the C++ compiler’s built-in optimizer.

3. Profile the code and find the “hot spots.”

4. Consider a better data structure or algorithm.

5. Use the major code transformations.

6. Use smaller code transformations, if speed is crucial.

The first step is to measure your code’s time cost. Otherwise, how will you know
whether anything made it better?

The next step is easy: turn on your optimizer. All modern C++ compilers have an
option to invoke an optimizer on the code. The optimizer, although it may not
always yield a major increase in speed, has one very important advantage — the
programmer need not change the code. Hence, if a small improvement is desired,
the optimizer can often provide it without much effort.

Software tuning. Assuming you’re done with all the non-code changes to the
system (e.g., hardware, networking), it’s time to examine the C++. You can either
start high by looking at the data structures, or start low by optimizing the busiest
low-level kernels.

The choice of a better algorithm (usually with different data structures) for a
program is not an easy method of program improvement. Simply identifying what
would be a better algorithm is a difficult problem!

David Spuler 392

And once identified, the new algorithm must be implemented by the programmer,
costing precious man hours. However, this is the best method to achieve an order-
of-magnitude increase in the program’s performance.

The next step is to profile in detail the C++ code to determine which functions (or
statements) are accounting for most of the program’s time; these are the “hot spots”
of the program. This identification of costly statements is best achieved by a
profiler, although if I had to take a guess, I'd say look at your vector dot product
code. Identifying frequently called functions and deeply nested loops is often
adequate. Once the hot spots are identified, all efficiency measures, large and small,
should be applied to this code. Any improvement to the efficiency of a statement,
no matter how small, will improve the overall efficiency greatly if that statement is
executed often.

Once the most costly functions and loops have been optimized, other statements
can also be optimized, although the increase in speed will not be as noticeable. Some
of the better code transformations to apply are parallelization, loop optimizations
(vectorizations), using pass-by-reference for passing structures or objects to
functions, and replacing small functions with macros or inline functions.

Make it right first? The speed improvement techniques in C++ can be applied
either as the programmer is writing the code, or after the development and
debugging of the program. The second approach is often referred to as the “make
it right first” rule. However, I believe that the first method is preferable simply
because optimizing your program once it is working is a dangerous practice, and
often introduces new bugs. Deferring efficiency improvement to the final
development stage can also waste programmer time in improving the basic
algorithms used in a program. Using efficiency techniques during the development
of the program is a much sounder method of improving efficiency.

Tuning Trade-offs

Tuning a program is not always a clear-cut gain. There are numerous other
quantities that efficiency may affect:

e Space versus time-efficiency.

e Robustness of a program.

e Readability and maintainability of a program.
e DPortability of a program.

393 C++ Ultra-Low Latency

There is almost always a trade-off between time and space when making programs
run faster. Many of the algorithm improvements sacrifice space for extra speed,
such as caching and precalculation. An often overlooked trade-off is between
program efficiency and a programmer’s time in making the changes.

Changing a program for efficiency can introduce extra bugs into a program
(although you could argue that it might remove bugs, too). If a piece of code has
already been debugged, improving its efficiency may not be worth the risk to the
robustness of a program.

Many of the program transformations used for efficiency can reduce the readability
for a program. Naturally, this also makes it more difficult for a program to be
maintained, and since the major cost in a program’s development cycle is usually
maintenance, improving efficiency may not be worth it in the long run.

Perhaps surprisingly, the efficiency of a program can usually be increased
significantly without affecting portability. There are some efficiency techniques in
this book, but there are many generic methods that work across all C++ code.

Almost all of the dangers of improving efficiency are dangers for the programmer.
On the other hand, the users of a program will be well pleased by extra
responsiveness, and this alone makes efficiency improvement a worthwhile
exercise.

References

1. Linux Code, December 27, 2023, Measuring Excecution Time with Microsecond
Resolution in C++, https://thelinuxcode.com/cpp-microseconds

David Spuler 394

https://thelinuxcode.com/cpp-microseconds/

40. Bitwise Operations

C++ Bitwise Operators

Here’s a refresher on the C++ bitwise operators:

x & y— binary bitwise-AND

b

| vy — binary bitwise-OR

b

~ y — binary bitwise-XOR

x << y — binary left bitshift

x >> y — binary right bitshift
~x — unary bitwise-complement

Binary literals. Also, a reminder that C++ also supports binary literal constants
with a “Ob” prefix, similar to the hexadecimal “0x” prefix.

For example, to represent the constant 10 (ten), your C++ code can use:

const int ten = 10; // decimal
const int ten = 0xA; // hexadecimal
const int ten = 012; // octal

const int ten = 0b1010; // binary

Bitwise badness: A few pitfalls in coding C++ bitwise operators should be
mentioned:

e Integer-only: the C++ bitwise operators do not work on floating-point
data types.

e Quiet overflow: if you do anything to overflow an integer type, nobody’s
going to tell you. For example, shifting the sign bit too far left with
“1<<32” instead of “1<<31” will simply lose it. You might get a compiler
warning, though.

395 C++ Ultra-Low Latency

e Two is not better than one. The & operator is bitwise, but && is logical.
Similatly, | and | |. It’s the reverse for < and << or > and >>. Choose the
wrong one and you might get a compiler warning, if the stars are aligned
and the wind is blowing easterly.

e Operator precedence is tricky and not what you’d expect (it’s arguably
broken, but rather too late to fix), so use lots of parentheses in bitwise
expressions, and don’t ignore C++ compilation warnings.

e Bitwise operators are not always well-defined on negative values (e.g.,
bitwise right shift is officially “undefined behavior” on a negative), so it’s
best to use “unsigned” types as operands to bitwise operators. Note also
that it’s often useful to add the suffix letter “u” to integer constants
(e.g., 10u, OxAu or 0b1010u), when dealing with bitwise operations. This
makes the constant of type “unsigned” and avoids various bitwise
operator problems with signed numbers.

Bitwise operation algebraic properties: The interaction with zero is an
important difference between the main operations:

e Bitwise-AND with zero equals zero: a & 0 == 0
e Bitwise-OR with zero equals the other value: a | 0 == a

The following inequalities for bitwise operators on non-negative integers can also
be useful to know:

e Bitwise-AND only clears bits and is <= each operand: a & b <= a
e Bitwise-OR only sets bits and is >= each operand: a | b >= a

e Bitwise-AND equals the larger value only for equal numbers.

e Bitwise-OR equals the larger value only for subset bit patterns.

Addition versus bitwise operations: The relationship between the bitwise
operators and the integer “+” operator can be useful to understand:

e Bitwise-AND is <= the sum of its operands: a & b <= a + b
e Bitwise-AND equals addition only if both numbers are zero.

e Bitwise-OR is >= the sum of its operands: a | b >= a + b

e Bitwise-OR equals addition only for disjoint bit sets or zeros.

Note that these relationships are for positive integer values. Bitwise operators need
positivity in their daily lives, whereas addition is fine with lots of negativity.

David Spuler 396

Bit Flag Basics

The main use of C++ bitwise operators is to use bit flags in integer variables, which
is very efficient in both storage space and execution time. A vanilla “int” can stote
32 bit flags, and a “long” can store 64 bits. The basic bit operations in C++ use
these bitwise operators:

e Check a bit — bitwise-AND (&)

e Seta bit — bitwise-OR ()

e Toggle a bit — bitwise-XOR (*)

e Clear a bit — bitwise-AND with complement (& with ~)

Here are some example macros for examining the bits in a 32-bit integer, which
should be of “unsigned int” type:

// Bit Flags in Integers

#define AUSSIE ONE BIT SET(x, b) \
((((unsigned) (x)) & ((unsigned) (b))) != 0)
#define AUSSIE ANY BITS SET(x, b) \
((((unsigned) (x)) & ((unsigned) (b))) != 0)
#define AUSSIE ALL BITS SET(x, b) \
((((unsigned) (x)) & ((unsigned) (b))) == ((unsigned) (b)))
#define AUSSIE NO BITS SET (x, b) \
((((unsigned) (x)) & ((unsigned) (b))) ==)

The corresponding macros to set and clear these bit flags are:

#define AUSSIE SET BITS(x, b) \
((((unsigned) (x)) | ((unsigned)
#define AUSSIE CLEAR BITS(x, b) \
((((unsigned) (x)) & (~((unsigned) (b)))))
#define AUSSIE TOGGLE BITS(x, b) \
((((unsigned) (x)) ~ ((unsigned) (b))))

(b))))

Yikes! What a mess! But all those parentheses are necessatry to avoid precedence
issues with preprocessor macros.

397 C++ Ultra-Low Latency

Bit Sets

You can consider a 32-bit integer to be a “bit set” of 32 distinct bit flags, where all
1s represent a bit flag that is in the set. A bit set is an inherently parallel architecture,
even in ordinary sequential C++ code. The basic idea is that a 32-bit unsigned int
stores 32 bit flags. Certain actions on the integer as a whole effectively process 32
bits in parallel. For example, it is very fast to check if any bits are set at all by testing
whether the whole integer is zero.

In regards to bit sets stored in an integer, the basic set operations can be
implemented very efficiently with C++ bitwise operators:

e Bitwise-AND (&) — intersection

e Bitwise-OR (|) — union

e Bitwise-complement (~) — set complement (negated set)

e Bitwise-and-complement (“A&~B”) — set difference (set minus)

In addition, there are a number of fast operations that can be useful for bit sets:

e Integer zero — null set of bits.
e Integer negative-one — full set of all 1s.
e Bitwise “popcount” — set cardinality or number of elements.

Example code with these ideas for 32-bit sets implemented as unsigned integers:

u!=0 // Test if any bit is set

u3 = u2 & ul; // Intersection of sets (Bitwise-AND)
u3 = u2 | ul; // Union of sets (Bitwise-OR)

u3 = u2 "~ ul; // Toggle bits in sets (Bitwise-XOR)
u3 = ~ul; // Set complement or inverse

The total number of bits set out of 32 can be computed fast as a “popcount”
operation using intrinsic functions, such as “ popcnt” in Microsoft Visual Studio
and “ builtin popcount” for GCC (there are also versions for 64-bit longs).
In x86 architectures, popcount is a single CPU instruction (POPCNT) implemented
in hardware, and is therefore very fast.

Note that these C++ macros assume type “unsigned int” with 32 bits, and
therefore 32 distinct bit flags in a single integer variable. For more bits, the
“unsigned long” type could be used (64-bit), and there is also the “long long”
type (128-bit).

David Spuler 398

The above macros would need to be changed to use type casts to “unsigned
long” rather than just “unsigned” for a 64-bit version. For even more bits, a
data structure called a “bit vector” can be implemented as an array of unsigned
integers, which generalizes the bit set idea.

Bitwise Intrinsic Functions

Intrinsic functions, or “builtin” functions, are special C++ functions that are
specific to the compiler environment. For example, Microsoft Visual Studio and
GCC have different builtins. Intrinsics ate usually implemented in very efficient
ways, often directly mapping to CPU instructions, so they can be very powerful
optimizations.

Some of the useful builtin functions for integer bitwise arithmetic are listed below.
Most of these functions are for “int” or “unsigned int” (32-bit), but have
other versions for long 64-bit or unsigned long 128-bit types. There isn’t
usually a version for “short” 16-bit integers.

Count Leading Zeros (CLZ): Various functions count the leading zeros, or
similarly, the offset of the first set bit. This is scanning the bits from left-to-right
and finding the most significant bit. One application of the CLZ intrinsic is a fast
way to compute a truncated log2 of an integer, or similarly, computing the highest
power-of-two in a number.

e BitScanReverse (Microsoft intrinsic <intrin.h>): Finds the most-
significant bit in a 32-bit integer. There’s also BitScanReverse64.

e clz: Count leading zeros (various versions); also sometimes called “nlz”
for “number leading zeros”.

e lzcnt: Leading zeros count in Microsoft Windows intrinsics,
use <intrin.h> for Microsoft Visual Studio C++.

e Dbuiltin clz (count leading zeros): GCC function to count the
number of leading prefix zeros in an unsigned integer.

e CountLeadingZeros: Microsoft <intrin.h> ARM intrinsics.

For all you silicon addicts, here’s the CPU hardware instructions are underpin these
intrinsics:

e BSR: Bit Scan Reverse x86 assembler instruction.
e LZCNT: x806 instruction for leading-zero count, similar to BSR.

399 C++ Ultra-Low Latency

Count Trailing Zeros (CTZ): Contrasting to the leading zero functions, these
functions find the zeros on the right-hand-side of an integer. This is the least-
significant bit.

_BitScanForward (Microsoft intrinsic <intrin.h>): Finds the least-
significant bit set. Long int version is BitScanForward64.
__builtin ctz (count trailing zeros): GCC function counts zero bits
on the right (least-significant bits).

ffs/ffsl: Find first set (least-significant bit).

__builtin ffs (find first set): GCC function: find first set bit from the
least significant bits (from the right bits).

The related x86 CPU hardware instructions are:

BSF: Bit Scan Forward x86 assembler instruction.
TZCNT: x86 instruction for trailing-zero count, similar to BSF.

If you’d rather code it yourself, there’s Brian Kernighan’s bit trick for LSB: bitwise-
and of n and n-1 (ie, in C++ n& (n-1) finds the lowest set bit). But using the
intrinsics should be faster.

Popcount (Set Bits Count): The count of 1s in a number is known as the
“popcount” (which is short for population count) and there are various intrinsics:

__builtin popcount: GCC function to count the number of 1s in an
unsigned integer.

BitOperations.PopCount: Microsoft intrinsic function for bitwise
popcount.

__popent: AMD x86 popcount intrinsic using POPCNT x86 instruction
(Microsoft platform)

_mm_popcnt _u32: Intel x86 popcount intrinsic using POPCNT x86
instruction (Microsoft platform); use <intrin.h> on MSVS C++.
__builtin parity: GCC function tracking bitwise binary parity
(whether the number of 1s is odd or even).

The x86 CPU hardware instruction is POPCNT, which computes the popcount
faster than a hummingbird’s wings.

David Spuler 400

Example: Integer Popcount

The “popcount” is short for “population count” of a binary number, and is the
number of binary 1s in an integer number. This has applications such as quickly
counting the number of elements in a bit set or bit vector.

Bitwise arithmetic can be used to check for a '1' value in each bit of an integer.
Usually an unsigned type is used (as below), but bit twiddling of signed integers is
also possible. This is the slow version in C++ that simply loops through each bit,
checking if it is set:

int aussie popcount basic (unsigned int x)
{

// Count number of 1s

const int bitcount = 8 * sizeof (x);
int ct = 0;
for (int 1 = 0; 1 < bitcount; i++) {

if (AUSSIE ONE BIT SET(x, 1lu << i)) ct++;
}

return ct;

Kernighan Popcount Algorithm: A faster version is to use a bit trick found by
Brian Kernighan, author of The C Programming Langnage. For all values of n, the
previous number n-1 has one less bit set. So, if you do bitwise-AND of n and n-
1, it removes the rightmost bit that is 1 (i.e., least significant bit). Hence, you can
use this to optimize popcount by only looping as many times as there are 1s in the
number (rather than always doing 32 iterations). Here’s the new C++ code:

int aussie popcount kernighan algorithm(unsigned int x)
{
// Count number of 1ls with Kernighan bit trick
int ct = 0;
while (x != 0
X =X & (
ct++;

1); // Remove rightmost 1 bit

}

return ct;

Intrinsic Popcount Functions: The Kernighan method is faster, but far from
optimal. To do it super-fast, we have to look at existing builtin function primitives.

401 C++ Ultra-Low Latency

For example, Microsoft intrinsics include “ popent” or “ mm popcnt u32”
(in header file <intrin.h>), whereas GCC has a “ builtin popcount”
function, which count the number of 1s in an unsigned integer. On x86 CPUs, the
underlying intrinsics should be using the x86 assembler instruction named POPCNT.

Here is some example C++ code that works for Microsoft Visual Studio:

int aussie popcount intrinsics2(unsigned int x)

{

return _ popcnt(x); // Microsoft intrinsics

}

Obviously, a faster version is to declare this one-line function as “inline” in a
header file, or to convert to a C++ preprocessor macro, such as:

#define AUSSIE POPCOUNT (x) (__popcnt ((unsigned) (x)))

Example: Bitwise Log2 on Integers

Calculating the base-two logarithm of integers can be quite useful. There are various
algorithms that use logarithms in Al

Let’s calculate the integer logarithm of an integer. This means we aren’t doing the
proper fractional logarithm of a number, but we are truncating it down to the
nearest integer. For example, 1og2 (7) will be truncated to 2, rather than 2.807.
Note that we’re assuming the input is unsigned numbers, since logarithms of
negatives are undefined. Also, we have to decide how to handle zero,
because 1og2 (0) is undefined (or negative infinity if you prefer).

A simple way to implement a truncated integer 1og2 function is to use floating-
point functions and type casts back to int:

int aussie logZ2 integer slow(unsigned int u)
{

// Slow float-to-int version

return (int)log2f (u);

This works, but it’s inefficient to use floating-point arithmetic on integers. Surely
there’s a faster way?

David Spuler 402

After some thoughts about binary bits, we notice that 1og2 of an integer is just the
index position of the highest bit in a number. The 10g2 of 1 is 0, because the '1'is
in position 0. The 1og2 of 2 (binary 10) is 1 because the leftmost 1 is in position
1. The 1og2 of 4 (binary 100) is 2, where the 1 is in index 2. The number 7 is
binary 111, so log2is the position of the leftmost 1, which is position 2.
So, 10g2 (7) is the same as 10g2 (4), but 1og2 (8) is 3.

There are numerous builtin bitwise functions that can find the leftmost set bit. With
sudden insight, we note that we can use “CLZ” (count leading zeros) to compute
how many prefix zeros there are before the leftmost 1 bit (i.e., counts the zeros up
to the most-significant bit from the left). We can then compute the bit index
position from the right in a 32-bit integer as “32-CLZ”. It’s on the right track, and
a bit of testing shows that the formula to use is “32-CLz-1".

Here’s some example code that uses this CLZ method to compute 1og2 of an
integer. This works on Microsoft Visual Studio using the <intrin.h> header file
to declare intrinsics.

int aussie log2 integer clz intrinsic(unsigned int u)
{
// LOG2 using CLZ
int clz = lzcnt(u); // Count leading zeros
const int bits = 8 * sizeof (u);
return bits - clz - 1;

And here’s the macro version for those who don’t trust compilers to inline propetly:

#define AUSSIE LOG2 LZCNT (u) \
((8*sizeof (unsigned)) - (_ lzcnt((unsigned) (u))) - 1)

And this is actually not optimal. We really should help the C++ optimizer by
reordering this to move the “~1” subtraction operation next to the other constant,
noting that “sizeof” is a compile-time constant expression in C++. Putting them
together would make sure that the compiler correctly merges these operations using
constant folding. On the x86 implementations, the CLZ builtin functions are
presumably using the x86 LZCNT or BSR assembler instructions, which are both
similar and fast.

Bug alert! Note that you can’t use “££s” (find first set bit) for this 1og2 method,
because it gives you the offset of the least-significant set bit (i.e., the rightmost bit
rather than the leftmost bit). The other x86 instructions of TZCNT (Trailing Zeros
Count) and BSF (Bit Scan Forward) are also incorrect.

403 C++ Ultra-Low Latency

Example: Highest Integer Power-of-Two

Another simple trick related to the 10g2 calculation is to truncate a number to its
largest power-of-2. This is equivalent to the value of its leftmost bit in binary
representation.

For example, 8 (binary 1000) stays as 8, because it’s 2”3, but 7 (binary 111)
reduces down to 4 (binary 100), which is272. As with the truncated
integer 10g2 calculation, this method focuses on computing the leftmost 1 bit,
which is known as the Most-Significant Bit (MSB).

Whereas the 1og2 calculation found the index position of that MSB, this power-
of-two calculation requires the value of the MSB. In other words, we need to find
the bit that is the MSB, and then keep only that bit. A simple way to do this is to
compute the 1log2 of the integer efficiently, and then left-shift a 1 by that many
places (using unsigned type). The basic idea is:

int bitoffset = log2 integer fast(i);
int highestpowerof2 = 1lu << bitoffset;

Note that this doesn’t handle cases like zero, so it still needs a bit of extra code
polishing work.

Integer Overflow and Underflow

Integer arithmetic overflow and underflow have traditionally been ignored in C++
programs, mostly by assuming that operations won’t exceed the range of 32-bit
integers. Most platforms don’t fail on integer overflow, and quietly continue,
without even triggering a signal like SIGFPE (floating-point error).

The absence of runtime warnings can potentially leave insidious bugs in your code,
and is also an undefended attack vector for security. Also, perhaps ignoring
overflow isn’t the best strategy.

Integers have a fixed range of numbers that they can represent. For example, a
signed 16-bit integer represents the relatively small range of -32, 768 to +32, 767,
and an unsigned 16-bit number can be from 0 to 65, 535. A 32-bit signed integer
has a much bigger range from about negative 2 billion (-2,147,483,648) to
about positive 2 billion (+2,147,483,647). For an unsigned 32-bit integer,
there’s no negatives, and the range is from zero up to about 4 billion
(+4,294,967,295).

David Spuler 404

Feel free to memorize those numbers, as you’ll be needing them at least once a
decade. The ranges for 64-bit integers are massive numbers around 2”64, which is
approximately decimal 10°19.

If integer arithmetic on a data type falls outside the range supported by that integer
type, then an overflow or underflow occurs. There are symbolic constants for the
minimum and maximum numbers for many types ate in the <limits.h> standard
header file.

e int — INT MAXand INT MIN
e unsigned int — UINT MAXand UINT MIN

The effect of integer overflow or underflow is platform-specific, but on most
platforms, it is usually: #othing! 1t’s a silent insidious bug in many cases. For a signed
integer, overflow quietly wraps around from positive to negative, and underflow
does the reverse.

Here’s an example of overflow of an int type:

int x = INT MAX;
assert(x >= 0);
++x; // Overflow!
assert(x < 0);

And this is underflow of int:

int x = INT_MIN;
assert(x < 0);
--x; // Underflow!
assert(x > 0);

Floating-point types can represent much larger magnitude numbers than integers.
Hence, another way for an integer to overflow is in a conversion from floating-
point numbers.

float f = (float)INT MAX * (float)INT MAX; // Fine!
int x = (float)f; // Overflow!

For an unsigned integer, the results are a little different, since negatives are not
possible. Instead, overflow wraps around from a large number to zero, and
underflow (going below zero) wraps around to the largest unsigned number.

405 C++ Ultra-Low Latency

Preventing Integer Arithmetic Overflow. There’s not really a good way to detect
arithmetic overflow or underflow before it happens. Post-testing is easier.

For example, GCC and Clang have some intrinsics, such as
“ builtin add overflow” for addition, which use post-testing of the x86
CPU overflow or carry flags for detecting integer overflow, and return a Boolean
flag which you can use. The GCC documentation say it uses “conditional jump on
overflow after addition” and “conditional jump on carry” for unsigned overflow.
Here’s an example:

if (__builtin add overflow(x, y, &z)) {
/ Overflow!

The mainstream prevention strategy is simply to choose a big integer type (at least
32-bit) and then hope that no outliers occur in your input data. Most programmers
let the overflow occur and then check. Or rather, just between you and me, most
programmers simply don’t even check at alll

Technically, integer overflow is “undefined behavior” on C++, and it’s certainly
non-portable, so you really should check. But most platforms handle it the same
way, by quietly wrapping the integers around in two’s complement form.

Increment overflow. For incrementing integers, you can do a pre-test like:

if (INT MAX == x) {
// Overflow!
}

else {
x++; // Safe increment

}

Addition overflow. And here’s a version to pre-test addition of two positive
integers for overflow:

if (x > INT MAX - y) { // x + y > INT MAX
// Overflow!

}

else {
x += y; // Add safely

}

David Spuler 406

Multiplication overflow. The test for multiplication overflow is even worse
because it uses division:

if (x > INT MAX / y) { // x * y > INT_MAX
// Overflow!

}

else {
x *=vy; // Multiply safely

}

Head in the sand approach. Unfortunately, pre-testing for overflow is massively
inefficient, as shown above. Do you really want to do this for every addition or
increment? Even post-testing for overflow isn’t much better. Overall, there’s good
reason why most C++ programmers just skip it, and hope for the best.

Overflow management. The alternative to ignoring the problem is to consider
various different risk mitigation strategies for integer overflow:

e Larger data types (e.g., Long) for a larger range.

e Use floating-point types instead.

e Use unsigned type for non-negative variables (e.g., sizes, counts).

e Use size_ t for the unsigned variable type (it’s standardized).

e Enable compiler runtime checks (when debugging/testing)

e Range checking input numbers (e.g., model weights).

e DPost-testing the sign of arithmetic results.

e GCC and Clang intrinsic functions with overflow testing.

e The <stdckdint.h> header file in C23 (that’s the C standard, not
C++23).

e Safe integer class wrappers.

Runtime overflow detection. Some C++ compilers provide limited support for
runtime error checking of arithmetic. The x86 CPU has builtin overflow detection,
with a quietly-set overflow flag and a carry flag, which some C++ compiler-writers
have made use of.

GCC has an “~ftrapv” option which elevates overflow errors (presumably by
using post-checking). GCC has defined a number of C++ intrinsic functions which
you can use to perform overflow-safe integer arithmetic, such as:

e Dbuiltin add overflow — addition
e builtin mul overflow — multiplication

407 C++ Ultra-Low Latency

Microsoft Visual Studio C++ provides the “/RTC” option, which stands for “Run-
Time Checks”, or there’s “Basic Runtime Checks” in the MSVS IDE Project
Settings. However, these MSVS features don’t check much for arithmetic overflow,
with a focus on stack frame checking and uninitialized variables. The closest is
“/RTCc” to detect data type truncations at runtime.

There’s also a runtime debugging tool that focuses on integer overflow and other
oddities. It’s named “Undefined Behavior Sanitizer” or UBSAN for short. It works
like Valgrind, by adding runtime instrumentation code.

Safe integer classes. Currently there’s no standard safe integer types in C++, but
adding them was unsuccessfully proposed in 2016. If you like a busy CPU, and what
programmer doesn’t, you can replace all int variables with “safe integer” class
objects, with many examples of such classes available on the Internet. They’re
probably not as bad as I've implied, since C++ inlining should make the critical
path quite short.

Missing Operators: NAND, NOR, XNOR

Note that there’s no simple operator for NOR, NAND or XNOR in C++. And
you might need them, since neural networks uses these uncommon bitwise
operations more than normal C++ coding. For example, XNOR is needed as the
vector dot product operator for binarized bit vectors, such as in binary quantization
and also XNOR neural networks.

These missing operators can be easily simulated using two C++ bitwise operations,
with a binary bitwise operation and the “~” bitwise two’s complement unary
operator afterwards.

NAND (x,y) = ~(X & Yy
NOR (x,y) = ~(x | vy)
XNOR (x,y) = ~(x " vy)

So, you can just code this as fast C++ macros, right?

#define NAND(xX,y) ~(x & y) // Bug alert!
fdefine NOR(x,y) ~(x | y)
fdefine XNOR (x,y) ~(x " y)

No, this is broken in about half a dozen ways.

David Spuler 408

To write macros correctly, you need to ensure there’s parentheses around the whole
expression, and also around each parameter name, to avoid getting bitten by C++
macro expansion operator precedence problems. And these macros also don’t work
correctly if you pass in a non-unsigned integer.

Here’s some example C++ macros that work for 32-bits:

#define AUSSIE BITWISE NAND (x,y)
(~(((unsigned) (x)) & ((unsigned

\
) (

#define AUSSIE BITWISE NOR(x,y) \
)
\
)

))))

y
(~(((unsigned) (x)) | ((unsigned) (y))))

#define AUSSIE BITWISE XNOR (x,y)
(~(((unsigned) (x)) *~ ((unsigned) (y))))

You could also declare these macros as “inline” functions if you prefer. Note

that these macros have a lot of parentheses to avoid various insidious precedence

errors, and they also are limited to 32-bit operations. For 64-bit, you’d need to create

alternative “unsigned long” versions.

These NAND/NOR/XNOR macros are convenient, but not very efficient since
they perform two arithmetic operations. Single-operation versions are available in
assembler if you really need them, accessible via C++ builtin intrinsic functions
such as:

e kxnor — x86 intrinsic for XNOR bitwise operation.

e KXNORW/KXNORB/KXNORQ/KXNORD — x86 assembler bitwise XNOR
operations.

e VPTESTNMB/VPTESTNMW/VPTESTNMD/VPTESTNMQ — x86 assembler
bitwise NAND operations.

Note for the sake of completeness that there are more weird bitwise operators that
do different things on a pair of bits. There are four input combinations and
therefore 16 possible binary operator functions. There are three C++ bitwise
operators (AND/OR/XOR), plus the three extra ones coded above
(NAND/NOR/XNOR), two trivial always-zero and always-one operations, two
copy-operand functions, and six other ones that are equivalent to variations with
negated operands (e.g., “x&~y” is one).

I’m not sure why you needed to know that.

409 C++ Ultra-Low Latency

Bitwise AI Applications

Bitwise operations are a well-known coding trick that has been applied to neural
network optimization. Bitwise-shifts can be equivalent to multiplication and
division, but faster. Other bitwise operators can also be used in various ways in
inference algorithms. Some of the common uses of bitwise operators in Al engines
include:

e Arithmetic computation speedups: Bit tricks are used in optimizations
of multiplication operations with bitshifts, and also faster approximate
arithmetic methods.

e Sign bit manipulation: Various optimizations are possible by direct
bitwise operations on the sign bit of integers or floating-point numbers.
For example, the RELU activation function tests for negatives, which are
changed to zero, but positive values are unchanged. This can be
implemented efficiently as a sign bit test.

e Floating-point bit operations: The bits of the numeric representations
of IEEE 754 floating-point numbers, or the Google bfloatl6 type,
include a sign bit, an exponent, and a mantissa. Normal bitwise arithmetic
operators cannot be applied to floating-point numbers, because the C++
bitwise and bitshift operators only work on integer types. However,
floating-point numbers are really just integers underneath, so there are
various tricky ways that bitwise operators can be used on the undetlying
IEEE standard bit representations that are used by floating-point numbers.
This is discussed in the next chapter on floating-point optimizations.

e Look-up Tables: Algorithms that use table lookups for speed
improvement typically involve bitwise shifts in computing the table offset.

e Data structures: Some data structures used in optimization of neural
networks that involve bits include hashing and Bloom filters.

Bits of Al Research: Some of the advanced areas where bitwise optimizations
have been used in neural network research include:

e Power-of-two quantization (bitshift quantization): By quantizing
weights to the nearest integer power-of-two, bitwise shifts can replace
multiplication.

e Bitserial Operations: Bitserial operations are bitwise operations on all of
the bits of an integer or bit vector. For example, the “popcount” operation
counts how many 1s are set in the bits of an unsigned integer. The bitserial
operations can be useful in neural network inference for computing the
vector dot products in binary quantization or 2-bit quantization.

David Spuler 410

Advanced number system division: See dyadic numbers and dyadic
quantization for an obscure number system involving power-of-two
division, which can be implemented as bitwise right-shifting.

Low-bit integer quantization: When quantized to only a few bits,
inference can use bitwise arithmetic and bitserial operations to replace
multiply-accumulate. The main examples are binary quantization and
ternary quantization, both of which avoid multiplication operations in
favor of bitwise operations (or addition) and sign bit handling.

Shift-add networks: Multiply-and-add (or “multiply-accumulate”) can be
replaced with bitshift-and-add.

Bit arithmetic neural networks. These are neural networks where the
neurons operate as bitwise operations. For example, see Weightless Neural
Networks (WNNSs).

XNOR Networks: XNOR neural networks are similar to binarized
networks. Their internal operations rely on the bitwise XNOR operation.
The idea is that XNOR is actually an implementation of the multiplication
operation on binary values. XNOR is an uncommonly used bitwise
operation, and there’s no builtin C++ operator for binary XNOR.
However, there is always hardware XNOR support, such as a 64-bit
XNOR instruction in the x86 CPU instruction set.

References on Bitwise Operations

If I’'ve whetted your appetite for bit fiddling magic, there’s plenty more:

1.

2.

Sean Eron Anderson (2005), Bit Twiddling Hacks, Stanford

University, https://graphics.stanford.edu/~seander/bithacks.html
Ian Brayoni (2020), https://github.com/ianbravoni/bithacks (Python
code inspired by Sean Eron Anderson’s Bit Twiddling Hacks.)

Henry S Warren (2012), Hacker’s Delight, 2nd Edition, Addison-Wesley
Professional, https://www.amazon.com/Hackers-Delight-2nd-Henry-
Woarren/dp/0321842685 Code: https://github.com/hcs0/Hackers-

Delight

Antonio Gulli (2014), A Collection of Bit Programming Interview Questions solved
in C++ Kindle Edition, https:/ /www.amazon.com.au/Collection-
Programming-Interview-Questions-solved-ebook/dp/BOOKIIDPUG
Jorg Arndt (2010), Matters Computational: 1deas, Algorithms, Source

Code, https://dl.acm.org/doi/10.5555/1941953, https://www.jjji.de/fxt/f
xtpage.html#fxtbook,

Code: https://www.jjj.de/bitwizardry/bitwizardrypage.html

Sigtid/Jasper Neuman (2023), Programming

pages, http://programming.sirrida.de/

411 C++ Ultra-Low Latency

https://graphics.stanford.edu/~seander/bithacks.html
https://github.com/ianbrayoni/bithacks
https://www.amazon.com/Hackers-Delight-2nd-Henry-Warren/dp/0321842685
https://www.amazon.com/Hackers-Delight-2nd-Henry-Warren/dp/0321842685
https://github.com/hcs0/Hackers-Delight
https://github.com/hcs0/Hackers-Delight
https://www.amazon.com.au/Collection-Programming-Interview-Questions-solved-ebook/dp/B00KIIDPUG/
https://www.amazon.com.au/Collection-Programming-Interview-Questions-solved-ebook/dp/B00KIIDPUG/
https://dl.acm.org/doi/10.5555/1941953
https://www.jjj.de/fxt/fxtpage.html#fxtbook
https://www.jjj.de/fxt/fxtpage.html#fxtbook
https://www.jjj.de/bitwizardry/bitwizardrypage.html
http://programming.sirrida.de/

7. Harold (2023), Bits, Math and Performance, Sep
2023, http:/ /bitmath.blogspot.com
8. Stephan Brumme (2023), The bit twiddler, https://bits.stephan-

brumme.com/
9. Gurmeet Manku (2008), Fast Bit Counting, 5 Aug

2008, https://gurmeet.net/puzzles/fast-bit-counting-routines

David Spuler 412

http://bitmath.blogspot.com/
https://bits.stephan-brumme.com/
https://bits.stephan-brumme.com/
https://gurmeet.net/puzzles/fast-bit-counting-routines/

41. Floating-Point Computations

What are Floating-Point Numbers?

Floating-point numbers are typically stored in 32 bits for single-precision C++
“float” types, and it’s actually a 32-bit integer behind the scenes. The main
floating-point types that you already know from C++ programming are:

e Single-precision floating-point — 32-bit float (FP32)
e Double-precision floating-point — 64-bit double (FP64)

The smaller 16-bit floating-point numbers that are never used in everyday C++
coding, but are important for Al include:

e Half-precision IEEE type — 16-bit “short float” (FP16)
e Half-precision Bfloat16 type — 16-bit “Brain float” (BF16)

If only there was really a “short float” typein C++. The BF16 type is the non-
IEEE 16-bit float version from Google Brain. Note that there is new standardized
support for these 16-bit types in C++23.

Which type of floating-point number should you use? That’s when things get tricky,
because there are many wrinkles in the choice between 32-bit and 16-bit floating-
point. It’s not always clear which floating-point size is the best to use. FP32 is the
most common size used in basic Transformer inference, but FP16 is a good choice
for quantization of models, because they are compressed to half the size and retain
good accuracy. And BF16 has been very effective in terms of GPU-accelerated
algorithms.

Some hardware accelerators support different formats and sizes for their parallel
operations. And there are various software problems with portably coding 16-bit
floating-point data types in C++, along with vatiable hardware support for 16-bit
operations across platforms.

413 C++ Ultra-Low Latency

Less importantly, there are also some other floating-point sizes, both bigger and
smaller:

e Quarter-precision type — 8-bit floating-point (FP8)
e Quadruple-precision type — 128-bit “quad” floating-point (FP128)

FP8 is mainly seen in research papers, and hasn’t really caught on for quantization
(8-bit integers are typically used instead). The bigger sizes FP64 and FP128 aren’t
really needed to make your model work accurately, so their significant extra cost in
speed and size isn’t worthwhile for only a small perplexity gain in most use cases.

Bit Representations of Floating-Point

Standardized bit patterns are used to represent floating-point numbers in a kind of
scientific notation. There are three types of bits:

e Sign bit
e Exponent bits
e Mantissa bits

Firstly, there’s one bit for the sign, indicating whether the whole number is positive
or negative. Then the remaining bits are split up between the “exponent” (i.e., the
“power”), and the “mantissa” (also called the “digits” or the “significand” or the
“fraction”). In a standard 32-bit “float” type used in Al, there is:

e 1 sign bit
e 8 exponent bits
e 23 mantissa bits

How does that even make a number? Well, it’s like scientific notation, if you are
familiar with that. The exponent is the power and the mantissa is the digits.

Let’s pretend computers use decimal digits. If it were in base 10 storage, the decimal
number 1234 would be stored as:

e “0” for the sign bit — because non-negative.
e “3”in the exponent — the power is 1073=1000.
e “1234” as the mantissa — the digits make the fraction “1.234”.

This would represent +1.234x10"3 (which hopefully equals 1234). That’s how
it would work for a decimal version.

David Spuler 414

But, as you know, silicon beasts are not decimal. A floating-point number is actually
stored in binary, in a kind of base-two “binary scientific notation” numbering
scheme. So, conceptually, 1234 would be stored as a power-of-two exponent that
represents the largest power-of-two, which would be 1024, because 2°10=1024,
so the exponent has to store power “10” (ten), which is 1010 in binary. And
the 1234 would be converted to whatever the heck 1234/1024 is when you
represent that in binary 0’s and 1's, and remove the decimal point (which is
implicitly “floating,” you see?).

It’s more complicated than this, of course. That’s what standards are for! The
exponent bits are actually stored with an “offset” number (also called a “bias”),
which differs by the size of the exponent bits. And there also some special bit
patterns for particular numbers, such as zero or “NaN” (not-a-number).

Clear as mud? Don’t you wish someone could go back in time and invent a base-
10 computer?

Standardized Bit Representations

There’s nothing magical about the choices of how many exponent versus mantissa
bits. In the eatly days, there were many variations, but then they were mostly

standardized by the IEEE 754 standard.

32-bit Floating-Point Numbers: The most common type of floating-point is 32-
bits, such as the C++ “float” type. Other than the sign bit, there are usually 31
bits to split between the two other types, and the standard method is:

e Standard FP32 (IEEE754). Usually a “float” in C++, or “single
precision” number. Standard 32-bit floating-point is represented in binary
as: 1 sign bit, 8 exponent bits, and 23 mantissa bits (plus an implied prefix
'1" mantissa bit that isn’t actually stored, so it’s really 24 bits of mantissa
values). The exponent is stored with offset 127.

16-bit floating-point Numbers: With the “half” float types, there are 16 bits.
There are a few common representations of floating-point numbers in different
numbers of bits.

The main ones are:

e Half-precision (FP16). This is the standard 16-bit floating-point number,
also sometimes called “float16”. Annoyingly, there no standard “short
float” or other widely used predefined type in C++, although the C++23

415 C++ Ultra-Low Latency

standard adds one, so this may be changing soon. The most common
IEEE754-standardized version of FP16 type uses 1 sign bit, 5 exponent
bits, and 10 stored mantissa bits (plus implicit mantissa bit makes 11 bits).
The exponent is stored with offset 15.

e Bfloatlé6 (brain float 16 or BF16): This is a different 16-bit floating-point
numeric format, originally proposed by the Google Brain division,
specifically for use in Al applications. Bfloatl6 has 1 sign bit, 8
exponent bits and offset 127 (like FP32), and 8 mantissa bits (7 stored, 1
implicit). It is like FP32 but with the two lowermost bytes just thrown away,
so conversion between bfloatl6 and FP32 is simpler than converting
from FP32 to FP16.

8-bit Floating-Point (FP8). The use of FP8 mainly appears in quantization
research papers, but its usage is increasing within industry. There is usually 1 sign
bit, 4 exponent bits, and 3 mantissa bits (which makes 4 bits with an implied extra
mantissa bit). The other type of FP8 is 1 sign bit, 5 exponent bits, and 2 stored
mantissa bits (3 bits total). Interestingly, the NVIDIA H100 GPU supports both of
these FP8 formats.

FP16 Problems in C++

I already mentioned how there’s not a standard half-precision type in C++,
although that is fixable in the future, once compilers have implemented the C++23
standard. Here are some of the attempts at a 16-bit type:

e fpl6— only supported by ARM architecture.

e Floatl6 — not portably supported.

e short float — doesn’t seem to exist (I'm just wishful-thinking).
e std::floatl6 t — defined in the C++23 standard.

e std::bfloatl6_t — defined in the C++23 standard.

So, as of writing, if you want to code a 16-bit float in a portable way with C++,
there’s an ugly hack: short int.

A less fixable obstacle is that converting between FP32 and FP16 is not easy
because their exponent bit sizes are different. So, it’s fiddly to code, and not very
efficient.

The alternative idea is to use “bfloatl16” (BF16), which is the upper-most two

bytes of FP32. Converting is just a bitshift 16 places or playing with bytes, so it’s
faster than FP16.

David Spuler 416

However, BF16 isn’t high precision. With 8 mantissa bits (7 stored, 1 implicit), that’s
only about 3 decimal digits, because 8/3.3=3,and 3.3 is 1og2 (10), in case you
were wondering. But it’s not much worse than FP16, which is only about 4 decimal
digits using 11 binary mantissa bits.

Representing Zero

The sign bit, exponent, and mantissa can represent a lot of numbers, but not zero.
We cannot just set all the mantissa bits to zero, because that’s not zero, which is
rather strange.

There’s an implicit extra “1” bit so all the mantissa bits clear isn’t 0.0000,
it’s 1.0000. It always starts with a “1” digit and there’s literally no way to
represent 0.0000.

Also, the exponent can represent —127 to +128, but setting the exponent to 0 also
isn’t zero, because 270 is 1. And 2~-127 is very small and does get us very close
to zero, but it’s also not zero. With sudden horrifying insight, we realize:

There’s no way to represent zero!

The solution is that the IEEE 754 standard designers decided to treat all bits zero
as being really zero. All bits zero in the exponent is 0, but then subtracting
the 127 offset, means that it is =127 (the smallest number). So, if we clear all the
exponent and mantissa bits to zeros, the number should be 1.0x27-127, but we
can all pretend it’s actually zero. Then we can do some pretend coding, ahem, I
mean microcoding, so that all our Floating-Point Units (FPUs) pretend it’s zero, too.

Negative zero. Weirdly, there are two zeros: normal zero and negative zero. The
IEEE 754 standard allows two different bit patterns to mean zero, depending on
the sign bit. If we clear all the exponent and mantissa to zero, then the sign bit zero
means zero, but the sign bit set to “1” means “negative zero”.

I'm not really sure what negative zero even means! But sometimes when you work
with floats, a 0. 000 number will get printed with a “~”" in front of it. Maybe it’s
negative zero, or maybe a tiny negative with hidden digits at the 15th decimal place.

Fortunately, most of the arithmetic operations treat negative zero the same as zero.
The C++ compiler handles it automatically. Adding negative zero does nothing,
and multiplying by negative zero is also zero. But one of the gotcha’s if you’re being
tricky with the bits of a 32-bit floating-point number, by pretending it’s a 32-bit
integer: testing for zero isn’t one integer comparison, it’s two!

417 C++ Ultra-Low Latency

Representing Special Numbers

We’ve already discussed how zero is handled specially, and has a wonderful
dichotomy. The full list of special floating-point numbers is:

e Zero

e Negative zero

e +Inf (positive infinity)

e -Inf (negative infinity)

e NaN (Not a Number)

¢ Denormalized numbers (subnormal numbers)

Whereas zero is represented by the exponent being all Os, the special
numbers Inf and NaN are represented by the exponent with all 1s. So, this means
that the huge number 2°+128 is not actually represented, but reserved for these
special values. And honestly, that’s fine, because if 2°+128 isn’t infinity, then I
don’t know what it is.

Infinity: Inf is represented by all 1s in the exponent, but all Os in the mantissa.
And if the sign bit is 1, then it’s ~Inf (negative infinity).

Not-a-Number: NaN also has all 1s for the exponent, but any other pattern of the
mantissa bits means NaN. This means that there are many versions of NaN, for all
variations of the mantissa bits, except when all mantissa bits are O (which
means Inf). Also, if the sign bit is set, then the same patterns are also NaN (another
kind of “negative NaN”, but that distinction is rarely used).

Denormalized numbers: Apparently, the designers of the floating-point
standards think there’s a “huge” difference between 27-127 and zero. So, they
decided to “smooth” it out a little by using some special numbers called
“denormalized numbers” (also called “subnormal numbers™).

The standard does this by getting rid of the “implicit” mantissa bit. For one special
exponent value, all Os, the standard changes the meaning to consider the implicit
hidden mantissa bit to be a leading 0, rather than a leading 1.

Hence, the mantissa can represent fractions less than 1.0, such as 0.1101 rather
than only 1.1101 (in binary). The special exponent with all Os therefore never
represents —~127, but represents the special value zero (or negative zero) if all the
mantissa bits are Os, or a tiny denormalized number if any of the mantissa bits are
set.

David Spuler 418

And even though the exponent with all Os should represent ~127, we pretend that
itis =126, one less, for the denormalized numbers, for “smoothness” reasons that
I leave as an exercise to the reader, mainly because I don’t understand it. Note that
denormalized numbers can also be tiny negatives if the sign bit is set.

Denormalized numbers are all very, very tiny, being less than 2~-126, so this
feature of floating-point standardization is more useful for high-precision scientific
calculations at NASA or SpaceX, rather than for most applications. In fact, here’s
the news about denormalized numbers in most coding:

We don’t use denormalized numbers.

In fact, we hate them, because they make our FPU run slow. So, really, the slowness
of our floating-point code is the fault of the FPU hardware engineers, as we’ve long
suspected. Fortunately, there’s a way to turn denormalized numbers off and run
faster, which is discussed below.

To summarize and/or to further confuse things, the exponent has two special cases:
all Os and all 1s. If the exponent bits are all Os, the number is either zero (or negative
zero) or a denormalized number (a tiny positive or negative). If the exponent bits
are all 1s, then the number is Inf or NaN (or negative Inf/NaN).

Testing for Special Values: The C++ standard has a number of fast routines to
test a floating-point number. Some of the useful ones in <cmath> include:

e std::isinf ()
e std::isnan()
e std::isnormal ()
e std::isfinite()

For more general analysis of floats, std: : fpclassify () in <cmath> returns a
code that matches special enum values:

FP_INFINITE, FP_NAN, FP_NORMAL, FP_ SUBNORMAL, FP_ ZERO

Unfortunately, it’s hard to distinguish positive and negative infinity, or to detect
negative zero using these functions. Youll need to add a call to the
“std::signbit” function (since C++11 for float arguments or C++23
for double), which returns true if a floating-point number has the sign bit on.
There also a “std: :copysign” function to copy the sign from one float to
another, which can be used for sign bit manipulations. Alternatively, define your
own bitwise macro tricks for these inspections.

419 C++ Ultra-Low Latency

Underflow and Overflow

Underflow is when a tiny floating-point number becomes so small that we can only
represent it as zero. This can be a very tiny positive or negative number. Note that
a negative number with a huge magnitude (near negative infinity) isn’t underflow;
that’s actually negative overflow. Underflow refers to tiny fractions.

Generally, underflow isn’t a problem for most code, because a number that low
isn’t going to affect the results. Similarly, I don’t think we need to worry much about
subnormal/denormalized tiny numbers either. If a probability is 2*-127 (or 2"~
126 for denormalized), well, it might as well be zero anyway.

If we’re using Bf Lloat16 for 16-bit processing, it still has 8 bit exponents, so the
lowest value is almost the same number (about 2~-127). If we’ve quantized the
network to FP16 (also 16-bit but with a 5-bit exponent), then the lowest probability
we can represent is 2~ =31, which is also a tiny probability.

Generally speaking, applications don’t tend to worry about underflow in floating-
point. If a floating-point calculation underflows, it should just go harmlessly to zero.
More concerning would be integer underflow, which is a different issue of large
negatives wrapping around to positives. Floating-point underflow is better behaved.

Overflow is when a number gets so large that it cannot be represented in floating-
point. Note that there are two types of overflow: positive overflow and negative
overflow.

The exponent is the problem for overflow. When the number is larger than the
highest exponent power, then it’s either a very large positive or a very large-
magnitude negative number.

For an 8-bit exponent, that means 2°+127 (because +128 is reserved for the
special Inf/NaN numbers). For a 5-bit exponent in FP16, this means 2"+31,
which is, coincidentally, also a good salary to request at your next performance
review.

Overtlow can be a problem, but usually only in the low-bit processing code where
arithmetic computations can sometimes go too high. When overflow occurs, it
could become a special floating-point number (NaN or Inf), or an integer number
might toggle over to negative (e.g., if integer-only-arithmetic quantized).

David Spuler 420

FTZ and DAZ CPU Modes

In many CPUs, the need to handle overtlow, underflow and denormalized values
is a cause of inefficiency. The CPU can do floating-point computations faster if it
can ignore those situations. This would be in violation of the IEEE 754 standard,
but sometimes you have to sacrifice greatness for speed.

There are two commonly used modifications to CPUs that speed up floating-point
arithmetic, by ignoring underflow and tiny numbers:

Flush-To-Zero (FTZ). This mode means that when the results are
“subnormal” they are “flushed” to zero instead of calculating the correct
“denormalized” result. Since these denormalized numbers are tiny, this
isn’t a concern in most code.

Denormalized-Are-Zero (DAZ). This is similar to FTZ, but allows
treating inputs that are some type of denormalized floating-point as a zero
input.

Both these modes, FTZ and DAZ, are only relevant to very tiny numbers, well
below the resolution that most applications need to worry about, so you can totally
enable them, provided we can figure out how to do so. CPUs with support for the
FTZ and DAZ modes include x86 CPUs and ARM Cortex cores, and likely other
processors. Google TPU doesn’t support FIZ/DAZ because it operates
on bfloatlé6 floating-point numbers.

Enabling FTZ and DAZ. Finding details on how to enable FTZ and DAZ is quite
hard! For command-line options, it seems to be “-ftz” on Linux/Mac or
“/Qftz” on Windows. To control these modes dynamically in C++ code, you need
to modify the MXCSR x86-64 CPU control register at runtime to set (or clear) the
bits corresponding to FTZ and DAZ. Some of the primitives available to do so via
GCC intrinsics include:

e builtin ia32 ldmxcsr
e builtin ia32 stmxcsr
e mm getcsr
e mm setcsr

In MSVS, there are preprocessor macros for FIZ in <xmmintrin.h> and for
DAZ in <pmmintrin.h> header files. These control the FIZ and DAZ bits in
the MXCSR, which is a CPU register with flags to control the CPU and the FPU.

421 C++ Ultra-Low Latency

The C++ snippet to enable these modes looks like:

#include <xmmintrin.h>
#include <pmmintrin.h>

void aussie float enable FTZ DAZ(bool ftz, bool daz)
{
if (ftz) A // FTZ mode
MM SET FLUSH_ZERO MODE (MM FLUSH_ZERO_ON) ;
}

else {
MM SET FLUSH ZERO MODE (MM FLUSH ZERO OFF);
}

if (daz) { // DAZ mode
_MM SET DENORMALS ZERO MODE (MM DENORMALS ZERO ON);
}

else {
_ MM SET DENORMALS ZERO MODE (MM DENORMALS ZERO OFF) ;

}

These intrinsics for FTZ and DAZ are dynamic C++ calls. You can also disable
these modes in C++, or switch back-and-forth between them dynamically. The
MXCSR values are per-thread, so these modes must be set at the start of every new

thread.

Negative Zero

Floating-point representations have two zeros: positive zero (the usual “0. 0£” one)
and negative zero (“~0.0£”). Note that there’s no negative zero in integers, but
only in floating-point types, because integers use two’s complement in C++.

Usually, you don’t have to worty about negative zero float values, because all of the
floating-point operations treat zero and negative zero as equal. Negative zero is not
less than positive zero, but is equal instead. For example, the “=="

cy_»

=" and
operators should correctly handle both zeros as the same, and testing “f==0.0£"
will succeed for zero and negative zero.

Normal C++ operations on float types will automatically handle negative zero

for you, such as “<” will treat the two zeros are equal, not less-than. This happens
at the cost of some inefficiency.

David Spuler 422

Detecting Negative Zero. Testing for negative zero is not easy. Unfortunately,
you cannot use the std: : fpclassify function because it returns FP_ZERO for
both positive and negative zero. Here are some fast macros for 32-bit floats that
look at the bits by pretending it’s an unsigned 32-bit integet:

#define AUSSIE FLOAT TO UINT (f) (* (unsigned int¥*)&f)

#define AUSSIE FLOAT IS POSITIVE ZERO(f) \
(((AUSSIE FLOAT TO UINT(f))) == 0) // All Os

#define AUSSIE FLOAT IS NEGATIVE ZERO(f) \
(((AUSSIE FLOAT TO UINT(f))) == (lu<<31l)) // Sign bit

Note that these macros only work for £1oat variables, not constants, because the
address-of “&” operator gets a compilation error for floating-point constants
(e.g, 0.0f or -0.0f). Also, these only work for 32-bit float types, and
comparable macros are needed for 64-bit double or 128-bit long double types.

Pitfall: Bitwise tricks on negative zero. There are some pitfalls with negative
zero if you are trying to subvert the normal floating-point number representations
and do bitwise operations on them (as I just did abovel).

For example, if you’re doing bitwise tests on a £1loat, you may still need to test for
two values of zero, such as using one or both of the above zero testing macros.

For magnitude comparisons of f£loat types via their underlying bits, there’s also a
problem. Whereas positive zero is all-bits-zero and will equal integer zero or
unsigned integer zero, negative zero has the uppermost bit set (the sign bit), so it
will be a negative integer or a very large unsigned number. Hence, negative zero will
sort as less than positive zero if using signed integer tests, or will sort as massively
greater than many numbers if using unsigned integers for testing.

The problem with negative zero also means that doing any bitwise comparisons will
fail. You cannot just compare the underlying integers for equality against each other,
nor can you use byte-wise testing. For example, using memcmp for equality testing
a float vector will occasionally fail for float values where positive zero
compares against negative zero, leading to insidious bugs.

Optimization by Suppressing Negative Zero. Since negative zero introduces an
inefficiency into basic £1loat operations (e.g., == or ! = with 0. 0), can we block it
for a speedup?

Are there any settings that fix the CPU or the compiler to ignore negative zero?

423 C++ Ultra-Low Latency

The FTZ and DAZ modes are mainly for subnormal numbers, not negative zero.
I'm not aware of any hardware CPU modes specifically for disallowing skipping
negative zeros, and I wonder whether they would actually be a de-optimization
anyway, by forcing the FPU to explicitly check for negative zeros. Apparently, FTZ
might help avoid negative zero in computations, but I’'m not sure it’s 100% of cases.
There is a GCC flag “~ffast-math” which disables the production of negative
zero in software.

Negative Zero. Can we speed up the floating-point computations of our code by
blocking all floating-point negative zeros? Then the FPU or GPU can assume
there’s only one type of zero, and run faster. We could either run in a negative-zero-
disabled mode, or use our own bitwise test for floating point zero as all-bits-zero
(i.e., using the unsigned integer trick).

What about zero values at runtime? Can we guarantee that it never contains a
negative zero, and thereby speed up analysis?

Getting to the Bits in C++

The basic 32-bit floating-point number in C++ is a float with a size of 4 bytes.
How can you manipulate the bits in a floating-point value, using the 32-
bit float type? You cannot use any of the C++ bitwise operators on floating-
point numbers, as they only work for integers.

The trick is to convert it to an unsigned integer (32-bit) with the same bits, and then
use the integer bitwise operations. The obvious way to convert
a float to unsigned is casting:

float £ = 3.14f;
unsigned int u = (unsigned)f; // Fail!

Nope. That doesn’t get to the bits, because it does a proper conversion between
floating-point numbers and integers, which is usually what you want when you

aren’t thinking about bits (i.e., all normal people).

To get to the bits in C++, we have to trick the compiler into thinking that it’s
already got an unsigned integer with pointer type casts:

unsigned int u = * (unsigned int*) (&f); // Tricky!

David Spuler 424

That’s a bit old-school casting. Here’s the modern way with reinterpret cast:
unsigned int u = *reinterpret cast<unsigned int*>(&f);

Once we have the bits, then we can twiddle the bits of our unsigned integer to our
heart’s content. When we’re finished, we can do the same trick in reverse to re-
create a floating-point number:

f
£

* (float *) (&u); // Floating again...
reinterpret cast<float> (&u); // Trendy version

And here’s a timely reminder that it’s important to use an “unsigned” type in
C++ for the bit faking code, because the “>>” right-shift operator has undefined
behavior on negatives.

Other Methods: Type casts aren’t the only way in C++. There’s also a trick
involving “union” structures, and you can also directly copy the bits to a differently
typed variable using “memcpy” or “bcopy”.

It seems to me that this type cast trick should be the fastest way, because a good
compiler should convert the address-of, reinterpret cast and indirection
sequence into a simple variable copy, especially with the “reinterpret cast”
hint. However, I haven’t actually benchmarked the speed of the different methods.

Pitfalls and Portability

Bitwise manipulation of float data is not the most portable code in the world. Let’s
examine some of the possible pitfalls in using these techniques.

Bitwise zero testing: If you’ve gone to the trouble to access the bits of a floating-

gy g g
point number, you might as well use them. Obviously, testing for “0.0” is a
common requirement, so let’s make it faster:

#define FLOAT IS ZERO(f) \
((*reinterpret cast<unsigned int*>(&f)) == Ou) // Bug!

Oops! We forgot about negative zero. There are two zeros in floating-point,
depending on the sign bit, and it’s hard to test it efficiently with bitwise operations
(e.g., mask the sign bit or shift left first).

425 C++ Ultra-Low Latency

Strict anti-aliasing rule. An important point about all this is that most of it is
platform-dependent, and officially “undefined behavior”. Some of it is standardized
by IEEE 754, but many variations are possible. Another issue is that there’s a “strict
anti-aliasing rule” that specifies that many of these tricks are officially non-standard
methods. Accessing a floating-point number as if it’s an unsigned number is a
technical violation of this rule. The “reinterpret cast” method is probably
less likely to run afoul of this problem, but it’s still not guaranteed.

Anyway, the union trick and the use of memcpy don’t really strike me as being
particularly more portable, although memcpy might be less likely to be optimized
wrongly by a compiler making wrong assumptions. Some additional risk mitigations
are warranted, such as adding a lot of unit tests of even the most basic arithmetic
operations. However, you’re still not officially covered against an over-zealous
optimizer that might rely on there being no aliases allowed.

Byte sizes. Another much simpler portability issue is checking the byte sizes of
data types, which can vary across platforms. Most of this bit-fiddling stuff relies on
particular 16-bit and 32-bit layouts. It doesn’t hurt to add some self-tests to your
code so you don’t get bitten on a different platform, or even by a different set of
compiler options:

aussie assert (sizeof (int) == 4);
aussie assert (sizeof (short int)

aussie assert (sizeof (float) == 4
aussie assert (sizeof (unsigned in

|
— ~

Il

Il

o~

<

Also note that for this to work well, both types must be the same size. So, this
would be a useful code portability check if it worked:

#if sizeof (float) != sizeof (unsigned int) // Fails!
#error Big blue bug
#endif

This macro preprocessor trick doesn’t work because sizeof isn’t allowed in a
preprocessor expression, because the preprocessing phase precedes the syntax
analysis. A better version uses a “static assert” statement, which does

compile-time checking in a more powerful way.

static_assert(sizeof (float)==sizeof (unsigned), "Bug!");

David Spuler 426

Floating-Point Builtin Functions

The alternative to directly accessing the bits as an unsigned integer is to use the
existing C++ functions. There are various existing functions for bitwise
manipulation of floating-point numbers, in two categories: standard C++ library
functions and compiler-specific intrinsics.

C++ has standard functions for the manipulation of floating-point numbers, and
their bitwise representations.

e std::signbit — Portably test the sign bit of a floating-point number.
e std::copysign— Portably copies the sign bit from one float,
merging it with the value of another (i.e., another’s exponent and mantissa).

There are also various compiler-specific “intrinsics” or “builtins” to manipulate
floating-point numbers. For the Microsoft Visual Studio C++ platform, these are
in <intrin.h> and there are also versions for GCC and other compilers.

e frexp — Get the mantissa and exponent.

e ldexp — Bitshifting by an integer shift-count.

e scalbn — Also integer bitshift on a float.

e logb — Extracts the exponent.

e ilogb — Extracts the exponent to integer.

e modf — Splits into whole and fractional parts.

e fma — Fused multiply add on float (Microsoft intrinsic)

e remainder — Get fractional part of floating-point (Microsoft intrinsic)
e fcvt — Low-level convert float to string (Microsoft intrinsic)

For many of the listed functions, there are additional versions for different floating-
point data types, such as float, double and long double. For example,
“frexp” will splita double type into its significand (fractional part) and exponent
integer, but there’s also “frexpf” for 32-bit float types, and “frexpl” for long
double types.

Floating-Point Bit Tricks for Al

Once you’ve got the bits into an unsigned integer, what can you do?

Assuming you’re willing to throw the standards documents to the curb, you can do
quite a lot. The bits can be directly manipulated in non-obvious ways to speed up
some types of floating-point arithmetic with integer bitwise arithmetic on the

427 C++ Ultra-Low Latency

underlying bits. Examples of floating-point bit manipulations used to optimize
neural networks include:

e Sign bit flipping: this can be used for fast non-multiplication binarized
networks with floating-point computations.

e Exponent bit manipulations: bitshifting float values in logarithmic
quantization can be implemented as integer addition on the exponent bits
of a float.

e Add-as-integer networks: This method simply adds the underlying bit
representations together as integers, to create a type of multiplication-free
neural network. Weirdly, this simple trick implements an approximate
multiplication algorithm known as Mitchell’s algorithm.

e Fast 1log2 computation on float types using the exponent bits directly.

The first step is to extract the bit patterns. Let’s assume it’s a standard 32-bit float
type with 1 sign bit, 8 exponent bits, and 23 stored mantissa bits. You can get the
different bits:

int signbit = (u >> 31);
int exponent = ((u >> 23) & 255); // Fail!
int mantissa = (u & ((1 << 23) - 1));

Nice try, but that’s only 2 out of 3. The exponent is wrong here! The bits are correct,
but it’s not the right number. We have to subtract the “offset” (or “bias”) of the
exponent, which is 127 for an 8-bit exponent. This is correct:

int exponent = ((u >> 23) & 255) - 127; // Correct!

Note that the sign bit and mantissa can be stored as unsigned (i.e., positive or
zero), but the exponent must be a signed integer, even though it is extracted from
the bits of an unsigned int. For a fraction like decimal 0.25 (i.e., a quarter), this is
equal to 2"-2, so the exponent is -2. In an 8-bit exponent, the range of the
exponent is =128 to +127. Note that the sign bit in a f1oat specifies the overall
sign of the whole number, and is not the sign of the exponent.

Here are some macro versions of the above bit extractions:

#define AUSSIE FLOAT SIGN(f) \

((* (unsigned *)&(f)) >> 31u) // Leftmost bit
#define AUSSIE FLOAT EXPONENT (f) \

((int) (((((* (unsigned*)&(f)))>> 23u) & 255) - 127))
#define AUSSIE FLOAT MANTISSA(f) \

((* (unsigned*) & (f)) & O0x007fffffu) // Right 23 bits

David Spuler 428

Note that these macros don’t work for constants, but give a compilation error such
as “l-value required”. This is because of the “&” address-of operator trick being
used needs a variable, not a constant. I don’t see an easy way around it for bitwise
trickery.

If you dislike bits for some strange reason, here’s a simple way to define the sign
bit macro using the “<” operator, which also works on constants:

#define AUSSIE FLOAT SIGN(f) ((f) < 0.0f) // Sign test

Example: Add-as-int Approximate Multiply

The add-as-integer method suggested by Mogami (2020) simply adds the integer bit
representation of two floating-point variables, as if they are integers. It’s quite
surprising that this has any useful meaning, but it’s actually a type of approximate
multiplication called Mitchell’s algorithm. Here’s what the C++ code looks like on
32-bit float types:

float aussie add as_int mogami (float f1, float f2)
{
// Add as integer Mogami (2020)
int ¢ = *(int*) & (f1)+* (int*) & (£2)-0x3£800000;
return * (float*) &c;

The magic number 0x3£800000 is (obviously) equal to “127<<23” and its
purpose is to fix up the offset of the exponent. Otherwise, there are two offsets
with value 127 combined. (Is there a faster way? It’s annoying to waste a whole
addition operation on what’s just an adjustment.)

Note that this algorithm is one exceptional case where we don’t want to
use unsigned integer types when tweaking bit representations. This trick needs
the temporary variable of type “int” and the pointers to be “int*” so that it can
correctly handle the sign bits of the two floating-point numbers.

This add-as-integer algorithm is not restricted to 32-bit £1loat data. It should also
work for 16-bit floating-point numbers in both float16 and bfloatl6 formats,
provided the magic number is changed to a different bitshift count and an added
offset of 15 (not 127) for 5-bit exponents.

429 C++ Ultra-Low Latency

Example: Float Bitshift via Integer Addition

This is another surprising bitwise trick on floating-point numbers. You cannot
perform the standard bitshift operators on float types in C++, so you cannot
easily speed up floating-point multiplication via bitshifts in the same way as for
integers.

Bitshifts are a fast way of doing an integer multiplication by a power-of-two (e.g.,
“x<<1” is the same as “x*2”). Note that it also doesn’t work to convert
the float to its unsigned int bit version and shift it using integer bitshift
operatofs.

On some platforms, there are some builtin special functions such
as 1dexp and scalbn for doing bitshifting on float data. The 1dexp function
accepts an integer power, and then bitshifts a floating-point number by this many
places. The l1dexp function is for double types, ldexpfis for float,
and 1dexpl is for long double types. The scalbn set of functions appears to
be almost identical to 1dexp functions. There is also a reverse function “frexp”
which extracts the significant (fraction) and the power-of-two for a floating-point
argument.

Although we can’t bitshift floating-pointer values, there is an intriguing alternative
optimization using integer arithmetic directly: addition. The suggestion in the
DenseShift paper (Li et al., 2023) is to simply add the shift count to the exponent
bits using integer addition.

Here’s some example C++ code that works for 32-bit floating-point numbers:

float aussie float bitshift add int(float f1, int bits)

{
// Bitshift float by adding int to exponent bits
// FP32 =1 sign bit, 8 exponent, 23 mantissa
unsigned int u = * (unsigned int*)&fl; // Get the bits
if (u == 0) return fl; // special case, don’t change
u += (bits << 23); // Add shift count to exponent
return * (float*)&u; // Convert back to float

How does it work? Well, it makes a certain kind of sense. The exponent in a
floating-point representation is a power-of-two, and we are bitshifting, which is
increasing the number by a power-of-two. Hence, we can increase the power-of-
two by adding 1 to the exponent, and it also works for adding by more than 1.

David Spuler 430

Note that this code also works for bitshift of a negative count (e.g., bitshift of -1
subtracts from the exponent and thereby halves the number) or zero (unchanged).
However, this exponent-addition trick can overflow if the resulting number
overflows or underflows the exponent range (e.g., =128 to +127).

This method has thereby improved the runtime performance of floating-point
multiplication by changing it to integer addition. The idea works provided we are
multiplying by a power-of-two, which is done in logarithmic quantization.
However, it’s a little tricky in that special formats like zero (and NaN) are
problematic for this algorithm. I had to add the test “u==0" which slows things
down (maybe there’s a better way?). Also, this approach can theoretically overflow
the exponent bits, messing up the sign bit, but that’s only if the float is very big
or very tiny. Checking for all these wrinkles will slow down the code.

Example: Log2 Floating-Point is Exponent

The 1og2 function for float types is a non-linear function that is quite expensive
to compute. We already computed 1og2 of an integer with low-level bit fiddling
methods based on a count-leading-zeros algorithm in the bitwise operations
chapter. There’s also a different bitwise trick for 1og2 of floating-point numbers.
This method computes the truncated integer version of the 1og2 algorithm (e.g.,
for use in logarithmic power-of-two quantization). There’s a very easy way:

The base-2 logarithm is the exponent!

It’s sitting right there, already calculated, hidden in plain sight amongst the 32 bits
of your friendly £loat variables. Here’s some C++ code to extract it:

int ilog2 exponent (float f) // Log2 for 32-bit float
{
unsigned int u = * (unsigned int*)&f;
int iexp = ((u >> 23) & 255); // 8-bit exponent
iexp -= 127; // Remove the “offset”
return iexp;

Alternatively, for greater portability and probably extra speed, too, there are some
standardized builtin C++ functions available across vatious platforms (including
Linux and Microsoft) that can extract the exponent: frexp, ldexp, ilogb,
and scalbn, are some that come to mind.

431 C++ Ultra-Low Latency

References on Floating-Point

1.

Eric Sakk (2018), Understanding Floating-Point Numbers, Concepts in
Computer Systems (Volume 2), 7 June

2018, https://www.amazon.com/dp /1983093025

Sean Eron Anderson (2005), Bit Twiddling Hacks, Stanford

University, https://graphics.stanford.edu/~seander/bithacks.html

T. Mogami (2020), Deep neural network training without multiplications, In
Beyond BackPropagation WS at 34th Conference on Neural Information
Processing Systems, 2020, https://arxiv.org/abs/2012.03458 (Uses
integer addition of the bits of an IEEE 754 floating-point representation
to perform approximate floating-point multiplication.)

Jean-Michel Mullet, Nicolas Brisebarte, Florent de Dinechin, Claude-
Pierre Jeannerod, Vincent Lerevre, Guillaume Melquiond, Nathalie
Revol, Damien Stehle, Serge Tones (2018), Handbook of Floating-Point
Aprithmetic, Birkhauser,

2018, https://link.springer.com/book/10.1007/978-3-319-76526-6,
Contents: https://cds.cern.ch/record/1315760/files /9780817647049 T
OC.pdf

Wonyeol Lee, Rahul Sharma, Alex Aiken (2016), VVerifying Bit-Manipulations
of Floating-Point, Stanford University,

USA, https://theory.stanford.edu/~aiken/publications /papers/pldil 6b.
pdf

Xinlin Li, Bang Liu, Rui Heng Yang, Vanessa Courville, Chao Xing,
Vahid Partovi Nia (2023), DenseShift: Towards Accurate and Efficient Low-Bit
Power-of-Two Quantization, Oct

2023, https:/ /arxiv.org/abs/2208.09708 (Uses integer addition on the
sign and exponent bits of IEEE 754 floating-point to perform bitshifts
on floats to perform power-of-two number quantization on 32-bit floats.)
Mostata Elhoushi, Zihao Chen, Farhan Shafiq, Ye Henry Tian, Joey
Yiwei Li (2021), DegpShift: Towards Multiplication-Less Neural Networks, July
2021, https://arxiv.org/abs/1905.13298 (Bitwise shifting and sign bit
manipulation.)

David Spuler 432

https://www.amazon.com/dp/1983093025/
https://graphics.stanford.edu/~seander/bithacks.html
https://arxiv.org/abs/2012.03458
https://link.springer.com/book/10.1007/978-3-319-76526-6
https://cds.cern.ch/record/1315760/files/9780817647049_TOC.pdf
https://cds.cern.ch/record/1315760/files/9780817647049_TOC.pdf
https://theory.stanford.edu/~aiken/publications/papers/pldi16b.pdf
https://theory.stanford.edu/~aiken/publications/papers/pldi16b.pdf
https://arxiv.org/abs/2208.09708
https://arxiv.org/abs/1905.13298

42. Arithmetic Optimizations

Types of Arithmetic Optimizations

There are two basic ways that arithmetic computations can be sped up whilst
retaining the same results:

e Single operator improvements
e Expression-level optimizations (multiple operators)

As an example of single operator optimizations, consider replacing the
multiplication operator. Alternative forms of arithmetic include bitwise shifting or
addition. The ways to do fewer multiplications tend to involve higher-level
algorithmic changes to the model, such as pruning or quantization.

Some of the methods of speeding up arithmetic come from the theory of compiler
optimization (e.g., strength reduction, sub-expression elimination). Hence, the
compiler will often automatically perform these types of optimizations (when the
optimizer is invoked). To some extent, this makes these transformations redundant.

Even so, good programming practice is to avoid situations where these
optimizations are needed on a large scale. The compiler does not look at the
program as a whole and can miss some “obvious” optimizations.

Operator Strength Reduction

Individual operations in C++ can be optimized in several ways. The general term
is “strength reduction” because a stronger operator with high computation
complexity is “reduced” to an equivalent operator that is simpler and faster.

Strength reduction is a technique used in automatic optimization by compilers, but
can also be used by programmers to improve algorithms.

433 C++ Ultra-Low Latency

The main “strong” operations that we’re trying to avoid are:

¢ Floating-point arithmetic (even addition)
e Multiplication

e Division

e Remainder (% operator)

e Math functions (e.g., sqrtf or expf)

Strength reduction has particular relevance to Al engines because the main
bottleneck is floating-point multiplication. Many of the research papers on
speedups are about replacing the floating-point multiplication operation with
something simpler, like addition or integer arithmetic.

Some of the general approaches in regard to strength reduction include:

e Bitwise operations (e.g., bitshifts can replace multiplication)

e Multiplication is slower than addition.

e Avoid division and modulo/remainder operators (they’re the worst!)
e Use integer arithmetic rather than floating-point (where possible)

e Use float single-precision arithmetic, not double-precision.

e Approximate arithmetic (e.g., for math functions)

Bitshift for multiplication: The canonical example that everybody knows is that
shift operators can replace multiplications by a power of two. But it’s only for
integers, not for floating-point numbers. Here’s a dummy example of integer
multiplication;

y = X * 4;
This can be more efficiently coded as a left bitshift:

y = x << 23
Bug alert! If you’re making this code change, you’re likely to introduce some bugs.
The “<<” and “*” operators have different precedence levels, so make sure you

add more parentheses. Also, consider whether you need to use “unsigned” type
when switching to a bitwise operator.

David Spuler 434

Right shift for division: The use of bitshifting works for division, too (but only
for unsigned):

y = x / 4;
y = x > 2u; // faster

Bitwise remainder calculations: The arithmetic modulus operator (remainder)
can also be optimized for power-of-two operands (but only on integers):

y:

% 512; // Remainder (mod)
y = &

x
X 511u; // Bitwise-AND

And here’s another one with integer relative comparisons versus bitwise-and,
although this one might not necessarily be faster:

if (x >= 512)
if (x & ~511u) // Bitwise-AND of complement (unsigned)

Avoiding multiplication: There are some simple cases even with the most basic
operators that have multiple options:

% X * 2;
y = x + x; // Addition
y = x << 1; // sShift

Automatic Strength Reduction: In theory, C++ compilers could know what will
be faster on its platform, and perform all these optimizations automatically when
compiling the program. The optimizers probably do some of them, but they cannot
do them all.

Intrinsic Functions: Other more advanced types of strength reduction involve
avoiding costly primitives, such as mathematical functions. For example, there are
bitwise arithmetic tricks to quickly compute the integer Log2 function.

GPU Strength Reduction: One final note is that when doing Al coding work, we
aren’t as concerned about which C++ operator works the best. The more important
concern is which operation is most efficient in the GPU or other non-GPU
hardware acceleration (e.g., AVX-512 on CPU).

Finally, note that these optimizations are local optimizations, and the same ideas
apply globally to the entire Al engine architecture. There’s been a lot of research
trying to change a// of the arithmetic in model inference from multiplication to
bitshifting, such as using addition or bitshifts.

435 C++ Ultra-Low Latency

Avoid % Remainder Operations

One common use of the remainder operator is the use of modulo arithmetic, such
as the wraparound array implementation of a queue abstract data type, where the
value of a variable is cyclically counted from 0 up to N-1, and then back to 0. The
most common idiom for coding this is:

Xx = (x + 1) % N;

However, the % operator is expensive, and in this case it is not really needed. The
following code sequence performs the same task more efficiently:

if (x == N - 1)
x = 0;

else
X++;

This can also be written more concisely, but not necessarily more efficiently, as an
b b
CXpI‘CSSiOﬂ with the “?:” ternary operator:

(x == N - 1) 2?2 (x =0) : (x++);

Another example of a clever avoidance of % is when the operand is similar to the
usual byte or word size. For example, consider this remainder:

x % 256

This can be more efficiently coded with bitwise-and using:
x & 255

But this can be even more efficiently coded as a type cast:

(unsigned char) x

The conversion to this “unsigned char” type will be efficiently implemented by
grabbing a byte out of a word. Unfortunately, this method is not portable to all
obscure systems, as it relies on an “overflow” being handled harmlessly, and on
“unsigned char” always containing 8 bits.

David Spuler 436

Reciprocal Multiplication

Division is a slow operation, whether in a CPU or a GPU. Multiplication is often
significantly faster than division, and in some cases a division can be replaced by a
multiplication using the reciprocal. A case in point is floating-point division by a
constant. For example, consider the division:

f =g/ 100.0;
This can be replaced by the multiplication:

f =g * 0.01; // Reciprocal

If the divisor is a symbolic constant, it is possible to replace the symbolic constant
with a hard-coded constant (or another symbolic constant). However, it is more
convenient to replace the constant with an explicit reciprocal calculation. For
example, consider the code:

f = g / DIVISOR;
This can be rewritten as:

f =g * (1.0 / DIVISOR);

The compiler should calculate the reciprocal using “constant folding” at compile-
time. Note that the brackets around the division expression are probably not strictly
necessaty because optimizers know about associativity, but are certainly helpful to
make life easier for the optimizer (and these poor critters need a break every now
and then).

If the divisor is a complex expression, the compiler might not automate the efficient
use of a reciprocal. Here’s the slow version of division by a scale factor:

v[i] /= sqrtf(3.14159f);
Here’s the faster way using the reciprocal of the constant:

v[i] *= 1.0f / sqrtf(3.14159f);

437 C++ Ultra-Low Latency

And we really should pre-calculate this constant using constant folding and
a static variable:

static const float scalefactor = 1.0f / sqgrtf(3.14159f);
v[i] *= scalefactor;

Integer Arithmetic

Real arithmetic is slow compared to integer arithmetic. Hence, it is favorable to
replace real arithmetic by equivalent integer arithmetic. Real arithmetic can be
replaced by integer arithmetic when only limited precision is required (e.g., 1-3
decimal places). To do this, work in integer units that are 10, 100 or 1000 times
larger (for 1, 2 and 3 decimal places) so that the decimal places appear as the lower
digits of the integers.

To convert the integer into its true integer and fractional parts is quite simple. To
get at the fractional part, calculate the number modulo 10, 100 or 1000 (using
the % operator). To get the true integer part, divide by 10 or 100 or 1000 —
remember that integer division truncates the fractional part.

A good example is: when working in dollars and cents, do calculations in terms of
cents (an integer). Then when printing it out, convert to dollars and cents using:

[}

cents = value % 100;
dollars = value / 100;

However, note that this is now using two of the worst integer operators: remainder
and division. The hierarchy of cost for integer operations is similar to floating-point:
integer addition and subtraction are faster than multiplication, but division is still
the worst, even for integers.

There appears little to be done to replace integer division with multiplication.
Multiplying by the reciprocal will change an integer operation to a floating-point
operation and will probably increase execution time. A power-of-two integer
division could be done via the “>>" right bitshift operator, provided that it cannot
be negative and uses an unsigned type.

David Spuler 438

Expression Transformations

Expression-level types of arithmetic improvements on an expression with multiple
operations include:

e Constant folding (compile-time precomputation of constant expressions)

e Common subexpression elimination (only computing things once in
expressions)

e Algebraic identities in computations

e Type consistency (avoid conversions)

Common Subexpression Elimination
Common subexpression elimination (CSE) is avoiding the recomputation of the
same expression twice. There are many cases where the same computation appears
multiple times in a single expression, or across the control flow of a program.
Compiler optimizers attempt to automatically detect such cases and reuse the first
computation.
In a complicated expression, there are often repeated sub-expressions. These are
inefficient as they require the computer to calculate the same value twice or more.
To save time, calculate the sub-expression first and store it in a temporary variable.
Then replace the sub-expression with the temporary variable. For example:

x = (1 * i) + (1 * i);

With a temporary variable, this becomes:

temp = i * i;
x = temp + temp;

Note that this attempt to be concise is incorrect:
x = (temp = 1 * i) + temp; // Bug

This may fail because of its reliance on the order of evaluation of the + operator. It
is not actually guaranteed in C++ that the + operator is evaluated left-to-right.

Common sub-expressions do not occur only in single expressions. It often happens
that a program computes the same thing in subsequent statements.

439 C++ Ultra-Low Latency

For example, consider the code sequence:

if (x >y && x > 10) {
//

}

if (x >y && yv > 10) {
//

The Boolean condition “x>y” need be calculated only once:

temp = (x > y);

if (temp && x>10) {
//

}

if (temp && y>10) {
//

Algebraic Identities

The calculations in some complicated expressions can be reduced by transforming
the expression into another equivalent form. The aim when using algebraic
identities is to group the operations differently, to reduce the total number of
arithmetic operations. Care must be taken to ensure that the new expression has
equivalent meaning. For example, the short-circuiting of the logical operators can
cause differences. Some useful algebraic identities are:

2 * x == x + x == x << 1
a*x+a*y==a* (x+y)
-x + -y == —-(x + V)
There are also Boolean algebraic identities that can be used to perform fewer logical
operations:

(a && b) || (a && c) == a && (b || c
(a || b) && (a || c) ==a || (b && c)
la && 'b == !(a || b)
ta || 'b == !(a && b)

David Spuler 440

Float Type Conversions

Hidden unnecessary C++ type conversions are a common source of extra
inefficiency. The main type in a Transformer is usually “float” (32-bit), rather
than “double” (64-bit). Avoid unnecessary type conversion code in two ways:

e Don’t mix float and double
e Don’t mix float and int

The use of float and int tends to be something professional C++ programmers
are aware of, after having been burned a few times, and doesn’t occur that often by
accident.

However, inadvertently mixing float and double is difficult to avoid, and
sneaks into your code all the time. For example, here’s some C++ code that looks
perfectly correct:

float scalefactor = sqrt(2.0) * 3.14159;

You know this isn’t Al code because it doesn’t have 27 decimal places for pi, which
we’ve memorized by rote. Al engines don’t really need anywhere near that much
precision, but it looks good for the boss.

The above code is also a small slug, because it may be unnecessarily using
“double” size arithmetic, although the compiler might fix it with constant folding
(but emit a warning anyway). Here’s the corrected code:

float scalefactor = sqrtf(2.0f) * 3.14159f;

Note that this example shows there are two places where an “f” suffix is needed to
signify that float arithmetic is required:

e Numeric constants (l.e., “2.0£” specifying a 32-bit f1oat, rather than
“2.07, which is a 64-bit double constant).

e Standard C++ functions (i.e., the “sqrt £” function returns £loat rather
than “sqrt” returning double).

Without the suffix “f£”, in both cases the default is double type constants
and double arithmetic functions. A lot of C++ compilers will warn about these
type conversions losing precision, so if you aim for warning-free compilation as a
quality goal, you’ll also fix most of these wasteful hidden type conversions.

441 C++ Ultra-Low Latency

David Spuler 442

43. Compile-Time Optimizations

C++ Compile-time Techniques

Compile-time processing is the optimal way to run a program. All the work is done
by the compiler and none by your program. There are literally zero instructions
executed on the CPU at runtime, whether it’s doing training or inference. It will be
blindingly fast for your users.

If only all code could be like that!

The reality is that programmers are still needed and that code still needs to run
(sigh!). But to make it faster, there are lots of ways to have more computation done
by the compiler, long before it ever goes near a user.

The C++ programming language has numerous features that help perform work at
compile-time. These include ways to explicitly control what goes to the compiler,
or to give more information to the compiler so that its optimizer can do good work
on your behalf. Some of the various C++ language features to consider include:

e Conditional compilation — #if/#1ifdef statements
e inline functions

e Templates — these expand at compile-time

e Symbolic constants — const or #define

e Function-like macros — #define with parameters

e Constant hints — constexpr, 1f constexpr, etc.
e Global and static variable initializations

e static data members — fixed data in C++ classes
e Type traits — compile-time type testing

e Restricted pointers — ignore aliasing risks

But when we’re doing Al there’s another compile-time data structure to consider:
the whole LLLM model itself.

443 C++ Ultra-Low Latency

C++ Optimizers

Every C++ compiler has optimization built into the code generation phase.
Typically, there are ways to specify that a higher degree of code optimization should
be performed. Methods to control the settings include:

¢ Command-line arguments (e.g., “~01” or “/01”)
¢ Configuration settings (e.g., Project Settings in the MSVS IDE)
e #pragma preprocessor directives

Take note of the meaning of the optimizer settings. For example, on MSVS the
setting “/01” optimizes for memory, not speed! Also, don’t be like me and assume
that the defaults are going to be what you want.

Looking at the MSVS IDE optimizer settings in my AUSSIE project file, I found:

e “Optimization” was “disabled” by default.

e “Enable Intrinsic Functions” was “No” by default. Why not?

e “Favor Size or Speed” was “neither” by default. Come on, why is there no
“both” option?

e “Inline Function Expansion” was “default” at least.

When to enable the optimizer? Should you run the optimizer at every build? At
what level?

Note that your policy should 7o be to turn up the optimization to maximum level
just before you ship your code to users, because your code can change in a very bad
way.

Don’t assume that turning the optimizer mode up to super-crunch is always an easy
win, as optimization can trigger latent glitches in your code by reorganizing memory
or reordering instructions.

What does the optimizer do? In order to optimize code, it’s important to know
what sorts of optimizations your compiler is doing automatically. Compilers have
been doing optimizations for literally 50 years, and the state-of-the-art is quite
amazing, with an extensive body of research theory.

David Spuler 444

Some of the main automated compiler optimizations include:

Constant folding/propagation
Constant expression evaluation
Common subexpression elimination
Redundant assignment removal
Strength reduction

Algebraic optimizations

Register allocation

Loop optimizations (e.g., unrolling)
Auto-vectorization

If you make simple changes to your code with some of the obvious things above,
it’s not going to give you a speedup. The compiler has already done it for you.

However, there’s a limit to what compilers can do. They certainly can’t make
architectural changes, and there’s also many mid-level algorithmic changes that
cannot be automated.

Function calls inside expressions are a good example of code changes that might
need to be manually optimized. When the compiler sees a function call used in
arithmetic, it isn’t always able to know what that function is going to do, and has to
be conservative by avoiding possibly incorrect optimizations.

Floating-Point Optimizer Options

Some C++ compilers have optimizations that you can use to speed up your
Floating-Point Unit (FPU). Some of the options for GCC include:

“-~ffast-math” option — This option is a broad enabler of multiple
floating-point speedups, such as -~fno-math-errnoand -ffinite-
math-only. It also disables negative zero.

“~fno-math-errno” option — This allows the standard library math
functions such as sqrt to run faster and also be more amenable to
parallelization, simply by allowing them to never set the global “errno”
variable. The use of errno was once a great way to track error codes, but
it’s also a blocker for thread-safety and parallelization. And let’s be frank:
you weren’t ever checking errno anyway, so turn it off!
“~ffinite-math-only” — This mode allows GCC math library
functions to skip any checks for Inf or NaN, which can make them
marginally faster.

445 C++ Ultra-Low Latency

Microsoft Visual Studio C++ also has its own set of FPU options:

e “Floating-Point Model” settings in a Project’s Property Pages under
“C++” for “Code Generation” has options “/fp:precise”,
“/fp:strict”, or“/fp:fast”

e “Enable Floating-Point Exceptions” can be turned off if you like.

People Helping Parsers

The humble C++ compiler needs your attention. Hat in hand, the compiler is sitting
there saying “I am but a poor, helpless lexer, without even a single neural network.
Please help me.” Hence, please consider donating your time to help a poor
struggling compiler in your neighborhood.

There is a long history of the C++ compiler needing “hints” about optimization
from the programmer. The early C++ language in the 1990s had a “register”
specifier that hinted to the compiler that a variable was going to be highly used, and
the compiler should optimize it by putting the variable in a CPU register. The
“register” keyword has since been deprecated in C++17, which indicates that
compiler register allocation algorithms no longer benefit from human help.

Some of the other longstanding C++ keywords that can be used for efficiency-
related purposes include:

e inline
° const
e static

And with the evolving C++ standards, there’s a whole new set of directives that are
hints to the compiler about how to optimize:

® constexpr

e constinit

e consteval

e reinterpret cast

e restricted pointers (“restrict”)

e [[likely]] and [[unlikely]] path attributes

The constexpr and related directives help the compiler do “constant folding”
and “constant propagation” to compute as much as possible at compile-time,
thereby avoiding any runtime cost for lots of code.

David Spuler 446

In fact, the idea is extended to its logical asymptote, whetreby you can declare an
entire function as “constexpr” and then expect the poor compiler to interpret
the whole mess at compile-time. Pity the overworked compiler designers.

The “restrict” pointer declarations help the compiler with advanced
optimizations like loop unrolling and vectorization by telling the compiler to ignore
potential “aliasing” of pointer variables, allowing much more powerful code
transformations on loops. The restricted pointer optimizations have now been
formalized in C++23, but non-standard versions have long existed. The possible
benefit is that restricted pointer specifications might help the compiler do auto-
vectorization of loops into parallel hardware-assisted code.

How much do these help? It’s rather unclear, and the compiler is free to simply
ignore these hints. Compilers already did a lot of constant propagation
optimizations before the “constexpr” directives came along, so presumably
compiler designers have upped their game even further now.

Inline Functions

Placing the keyword “inline” before any function declarations makes that
function instantly disappear in a puff of smoke. Well, sort of. It gives your C++
compiler the hint to optimize the code by putting the function’s body there instead
of the function call. This is faster, but means there are many copies of the function’s
statements, so it increases code size.

Which functions should you inline? General wisdom is to do inlining for these types
of C++ functions:

e Short functions (esp. single-statement functions)
e Getters and setters in a class
e Frequently called functions at the bottom of the call hierarchy.

The inline specifier is just a hint. Your compiler is free to completely ignore you.
In fact, this choice will probably disappear in a few years, as compilers become
better than humans at choosing which functions to inline.

If you want to force the compiler to inline, use preprocessor macros. However,
there’s a whole minefield of problems in function-like macros. For example, you
need to add parentheses around the whole expression and also around each
parameter’s appearance in the replacement text. Hence, inline functions are
much safer than macros.

447 C++ Ultra-Low Latency

The value of inline functions is not only from avoiding function call overhead.
The merging of the statements into the caller’s code also allows many other
optimizations to be applied there as follow-up transformations. Constants can be
propagated further through the inlined statements, which is similar to constexpr,
but the range of optimizations is much larger with inline.

GCC has some additional C++ language features related to inlining. There is the
“always_inline” function attribute which says to always inline this function,
and the “flatten” attribute which says to inline every call to other functions
inside this function. There is also the “gnu_inline” attribute that prevents
creation of a non-inlined function body.

inline function limitations

The inline specifier is wonderful when it works. A very important point to note
about inline functions is that the inline specifier, by itself, is not enough to
guarantee that inline code will be generated. The other requirement is that the
compiler must know the function body code, where the function is called.

Hence, an inline keyword in a function prototype declaration is not enough. The
executable statements inside the function’s definition (i.e., the function body) must
be available to the C++ compiler. Otherwise, how is the compiler to know what
inline code to expand a function call into? I guess in theory the C++ compiler could
maintain a huge database of all the functions in your source code, or scan through
all the CPP files to find it, and that would be amazing, but we’re not there yet. In
practice, the compiler will only inline functions where it has seen the function body
within the current C++ source file or an included header file.

This requirement imposes two restrictions on the use of inline functions:

1. Member functions declared as inline should include the
function body inside the same header file as the class declaration.
This can be achieved by placing the function body of a member
function inside the class declaration. For a more readable style
when there are many inline member functions, the class
declaration can declare the function prototypes, and then provide
the inline function definitions immediately after it, in the same
header file. This restriction ensures that whenever the class
declaration is included as a header file, the member function body
is available for inlining.

David Spuler 448

2. Non-member inline functions must be defined before they are used
within a source file, preferably by placing the inline functions in a header
file. Placing inline functions at the top of a source file allows the inlining
of any function calls later in the same soutce file, but calls to the functions
from a different source file cannot be inlined by the compiler unless
the inline function definition is placed in a header file.

Non-inlined functions

Some functions declared as inline will not be expanded into inline code by the
compiler, simply because they are too complicated for the compiler to handle. In
this case, the inline specifier is ignored and the function is treated like any other
function. The sophistication of the inline code generation depends on the compiler
implementor.

Even if a compiler could theoretically inline a function, the compiler is sometimes
still forced to generate a “real” function. There are various possible reasons for this:

1. The name of an inline function is used as a pointer-to-function
constant.

2. A call to the inline function from within another source file.

3. virtual member functions.
When an inline function is called from a source file, where the function body
has not been made available, the compiler generates a real function call (simply
because it cannot inline the function). Hence, the real function must exist and be
linked like any other function. Fortunately, the placement of inline functions in

header files as discussed above will avoid this for any function the compiler decides
to inline.

Inline Variables

Since C++17 you can define a variable as “inline”. What does this do?

Basically, it’s not really much of a speedup, but makes it easier to manage global
constants, global variables, or static data members in C++ classes. You can
declare these variables as “inline” in a header file, with an initializer:

inline int g x = 3;

449 C++ Ultra-Low Latency

Then you can with wild abandon include that header file all over the place without
any problems whatsoever. The C++ linker is required to:

e Merge all of them into one variable at link-time.
e Guarantee that it’s initialized as specified.
e Have the same address for that variable everywhere.

I find this addition to C++ somewhat humorous because it fixes up a huge mess
that’s existed since old K&R C code, and I’'ve battled against it many times trying
to get my program linked. I’'m not going to irritate myself by repeating all the quirks,
but it was always messy whether you had a global variable that was extern or non-
extern, initialized or non-initialized, in a header file or a non-header file. So, if
you ask me, the way that “extern” variable declarations “worked” was always
broken, and now it’s fixed in C++17. Hooray! (A bit late for me.)

Overall, allowing “inline” for variables is helpful to efficiency because you can
be guaranteed about constants, static members, or global variables at compile-
time. And it’s always nice to get your program to link.

Constant Specifiers

The “const” keyword means that something is constant, and cannot be modified.
It is helpful for efficiency, but its role is also to help detect programming errors,
where code accidentally attempts to modify a constant variable or object. There are
multiple places where “const” can be used.

e Symbolic constants

e const variables

e const objects

e const function parameters (i.e., “const&” idiom)
e const member functions (read-only)

But don’t get me started on “const correctness.” I've seen too many dawns
fighting with compilers about const. Anyway, let’s move on, and assume e

love const.

Basic const symbols. Symbolic constants can be declared as a representation of a
numeric value or other type data (instead of using #define symbols):

const float pi = 3.14;

David Spuler 450

Set-once variables with const. Variables can be made constant via “const”,
which is effectively the same as a symbolic constant, except that the initializer need
not be a compile-time constant. It is a “set-only-once” variable. The C++ compiler
ensures that const variables cannot be modified, once they ate initialized.

const int scale factor = get config("scale");
const int primes[] = { 2, 3, 5, 7, 11, 13, 17 };

Function parameters and const. The const specifier can ensure that function
parameters are not modified, especially for arrays passed by reference. const on a
scalar parameter type such as int is not as useful, only ensuring that the code inside
the function doesn’t modify the parameter (which isn’t really a problem anyway).
However, the idiom of “consts&” to specify a const reference as a function
parameter allows constant pass-by-reference of object parameters, which is
extremely important for C++ efficiency.

Instantiate-only objects with const. Class objects can be declared
as const variables. When the variable is a const object, it can be instantiated via
a constructor, but cannot be modified thereafter.

const Complex cfactor(3.14, 1.0);

Member functions declared const. Class member functions can be declared by
adding the keyword “const” immediately after the function parameter list:

int MyVector::count() const;

The C++ compiler blocks a const member function from modifying data
members, although it can still change “static” data members. For const object
variables, the C++ compiler ensures that any calls to non-const member
functions are disallowed.

Non-member functions. Note that a non-member function cannot be const.
The actions of a friend function or other non-class function are controlled by
using const on the parameters, rather than the whole function itself.

Beyond const. Newer C++ features have generalized and improved some of the
uses of const. The “constexpr” specifier is more powerful in terms of allowing
compile-time optimizations, as are its trickier derivatives “constinit” and
“consteval.” The newer use of “inline” on a variable (yes, a variable, not a
function, supported since C++17), can be helpful for safely sharing constants
across multiple files.

451 C++ Ultra-Low Latency

Constant Expressions Specifier

The constexpr keyword is an optimization hint for the compiler that’s more
powerful than “const.” Whereas const only guarantees that something won’t
change, constexpr is a guarantee by the human that something can be evaluated
at compile-time.

The compiler should use the constexpr hint to try to propagate constant values
throughout the evaluation of expressions and function calls, producing an overall
speedup. However, if the compiler doesn’t have the capability to do the level of
compile-time optimization required, or if the human has told the machine a bald-
faced lie, there’s no penalty and the code just runs like it never had
a constexpr specifier.

There’s not a whole lot of difference between const and constexpr if you use
it only for named constants:

const float PI = 3.14f;
constexpr float PI = 3.14f; // Same same

constexpr functions

The real power is when you use constexpr for functions.

const float SQRTPI = sqrtf(3.14f); // Works?
constexpr float SQRTPI = sqrtf(3.14f); // Works?

Oh, dear! I just tested this code snippet, and the const version works, whereas
the constexpr version fails to compile, which is the opposite of what I was
expecting. According to an informed source that was trained on Internet
scrapings, sqrtf is not going to be declared as a “constexpr” function until
C++26. Alas, by then all C++ programmers will have been replaced by robots, so
teel free to skip this section.

The apparently futuristic idea is that sqrt £ should have a “constexpr” keyword
in its declaration, because the function return value can be computed at compile-
time if you pass it a constant argument. In other words, the compiler can evaluate
“sqrtf (3.14f)” at compile-time. Hence, the whole function should be declared
“constexpr” in the standard library header file.

David Spuler 452

The const version is also probably not evaluating the sqrt £ function at compile-
time, but just calling it dynamically whenever the const variable is first initialized
(this non-compile-time initialization is allowed for const variables, provided you
don’t later attempt to change its value).

Anyway, you can already declare your own function with the “constexpr”
specifier.

constexpr int twice (int x)

{

return x + X;

constexpr functions vs inline functions

A lot of the same value in terms of optimization can be had by making a function
just inline rather than constexpr. Note that you can use both, but
officially constexpr for functions implies inline on the function as well.

Is constexpr any better than just inline? If you pass a constant argument to a
small inline function, then the expansion of the function body will trigger
various constant propagation optimizations, effectively evaluating most of it at
compile-time, which is almost the same as constexpr.

constexpr is supposed to be more formal in guaranteeing that the result of a
function is a compile-time constant, and the compiler is honor-bound to do
“compile-time function evaluation” to get the constant return value. Also,
a constexpr function is more officially usable as a compile-time constant, so that
you can use an expression with a constexpr function’s return value in various
places where C++ needs a constant (e.g., an array size declaration,
some template situations, etc.).

An inline function is also supposed to be optimized at run-time for non-constant
arguments, and constexpr functions are implicitly inline functions. The code
generation requirements of dynamic inlining are often more advanced that constant
expression evaluation.

Also, the limitations on how a constexpr function can be structured are a lot
easier to code than the unrestricted nature of an inline function body. However,
as a practical matter, the compile-time evaluation of expressions and the code
generation for inlined expressions have a lot of overlap, so I expect C++ compilers
will mostly try to do both on every type of function.

453 C++ Ultra-Low Latency

The inline keyword also serves a weird secondary purpose, by guaranteeing that
there’s only one copy of the function. This means we can include header files with
the full definition of that inline function anywhere we like, without getting a
compiler error at link-time about multiple definitions. But this isn’t a performance
optimization, and the linker feature of inline is almost the opposite of what we
want in making a function inline, because we don’t want a real function to be
called at all.

if constexpr statements

There is an alternative usage of constexpr in terms of “i £” statement conditions
(since C++17):

if constexpr (cond)

This new syntax tags the condition as being amenable to computation at compile-
time. Hence, the compiler should optimize the 1f statement to a constant value,
and it can then determine at compile-time which branch should be executed. So,
there is a double speedup from:

(a) the condition computation is removed at run-time, and
(b) code size reduction from unexecuted “dead code” being removed.

In fact, this determines at compile-time which code block will be parsed, so there
are cases where you can avoid a compile-time error in templates by wrapping it
inside an “if constexpr” check. This can be useful in compile-time situations
such as template expansion, where you can prevent some expressions from being
compiled, and also code bloat can be reduced.

constinit variables
The constinit specifier is like a hybrid between:

e consteval and
e static

The constinit specifier declares a variable that is static, with lifetime scope,
that is initialized at compile-time.

David Spuler 454

A variable declared as constinit must be initialized, and cannot be modified (like
“const”). However, the initializer needn’t be a “constant expression” although it
must be able to be calculated at compile-time.

Huh? That makes no sense. Sure, it does in the wotld of C++ standards. A
“constant expression” with only constant arithmetic is a special subset of the full
set of expressions that can be calculated at compile-time.

The best example is a call to a function that has one path where it’s constant, and
another path where it’s not. The definition of “somefunc” has two paths:

int somefunc ()

{
if (something) return 27;
else return some random number () ;

The “some func” function cannot be declared “const” or “constexpr” because

it isn’t always a constant on all paths.

However, if we’re using “somefunc” at program startup initialization, we can try:
constinit int s myconst = somefunc();

Here, if we know that it will use the constant path for some reason, the initialization

of “s_myconst” will go through the fixed path to get the compile-time constant

value of 27, we can tell the compiler that by declaring the variable as constinit.

Anyway, now that you’ve been forced to learn all that, just forget it. You’ll be rarely
if ever needing constinit.

consteval functions

Use consteval for functions that are always constant. A consteval function is
strictly declared so that every invocation of the function st return a compile-time
constant.

The consteval keyword is a subset of the constexpr functions (and it also
implies inline on a function). Although a constexpr function is constant if its
arguments are constant, it can also return a dynamic return value for non-constant
arguments.

455 C++ Ultra-Low Latency

When would you use consteval versus constexpr functions? I mean, when
you ask your boss to make you a cup of coffee, do you like to ask politely or do you
issue commands? Supposedly constexpr is optional for the C++ compiler,
whereas consteval is mandating compile-time evaluation.

Personally, I can’t see much difference in general usage, since the compiler will
probably optimize a constexpr function at compile-time if it’s capable enough.
Hence, for most regular functions I don’t see very much benefit to using
the consteval specifier over constexpr. There are some complicated places in
C++ where it helps to guarantee a compile-time constant, such as reflexive types
and other tricks in compile-time template usage.

Templates

C++ templates can be used for compile-time optimizations, rather than merely as
a programming convenience for algorithm generality and interface improvement.
By specializing templated code for a particular type or constant parameter, the effect
is that the resulting code is more specific, giving the compiler an opportunity for
better optimizations.

For example, if we have vector and matrix classes, then rather than having our code
dynamically check whether our precision is 32-bit £loat, or 8-bit integers, or some
other low-level type, we can use templated versions of the vector and matrix classes.
This generates different functions for each type of data. At the cost of some extra
code space, we’ve given the compiler the chance to do a much better job of
optimizing the code for the specific low-level data types.

Going beyond just using template code to write the same algorithm for different
types, there are ways to optimize code that is templated to do more at compile-time:

e Template class and function specializations

e Constant template parameters

e Compile-time conditional tests on types (e.g., sizeof, type traits, etc.)
e if constexpr syntax

e Variadic templates

e Template Metaprogramming (TMP) techniques

e SFINAE techniques

Constants can be used to instantiate template code in a way that helps the
compiler to optimize by evaluating constant expressions. Template parameters
don’t need to be types, but can also be constant variables or numbers, such as the
size of an array.

David Spuler 456

Using a template in this way is as efficient as hard-coding the array size, which helps
the compiler to know exactly what it can optimize, such as if the array size is used
in any computations.

If you think you can do better than the compilet’s optimizer, remember that you
can also override the generic template code. For example, you can instantiate your
own specific version of a template class for a particular type. Similarly, you can
provide a generic function declaration that instantiates a templated function with
your explicit version.

An alternative to specializing a version of a template class or function is to use
compile-time tests inside the generic template code. For example, you can use
conditional tests involving compile-time operations:

e sizeof

e typeid

e std::is_same v

e if constexpr conditional test syntax

Next level templating

C++ templates are a very powerful programming mechanism. In fact, you can
define entire projects as templates inside header files. To get the most speedup out
of template optimizations at compile-time, consider these methods:

e Type traits

e Variadic templates

e SFINAE

e Template Meta-Programming (TMP)

Type traits are a generic feature of C++ (since C++11) that you can use to
interrogate the type of a variable. They are declared in the <type traits> header
file and there are numerous ways that you can test the type of a variable. The above
example std::1is same vis one example. As another example, there
is std::is signedand std::is unsignedto test whether it’s a signed or
unsigned type. There’s also std::is pointerand std::is arrayand
various others. Combining type traits with “if constexpr” gives a powerful way
to ensure templated code gets evaluated at compile-time, and to specialize blocks
of code for particular types.

457 C++ Ultra-Low Latency

Variadic templates are another way to level up your code and have been
supported since C++11. These are variable-argument templates via the use of the
ellipsis “. . .” operator in a template declaration. This allows templates to accept
a variable number of parameters for instantiation.

SFINAE. Another optimization for advanced templating is to rely on SFINAE
semantics. This refers to “Substitution Failure Is Not An Error” and means
that template instantiation that fails should not itself trigger a compilation error
that prevents execution. More specifically, if the compiler tries and fails to
instantiate a template, but there’s another way to run it, such as a different
overloaded function available, then the code should execute via the non-templated
method. Relying on this capability in C++ not only avoids having compilation
errors that block some advanced template usages, but can also be used to ensure
compile-time calculations. However, although there are some good uses cases in
making templates faster, SFINAE is an obscure programming technique that isn’t
widely used in everyday C++ programming.

Template Meta-Programming. Further optimization of templated code at
compile-time is possible via the technique called “Template Meta-Programming”
(TMP). Note that this refers to an unusual usage of templates in C++, where the
idea goes beyond just using templates of code for different types (i.e., normal
templating of classes). TMP is an advanced coding method that uses (misuses,
perhaps) instantiation semantics of templates as a way of generating compile-time
code, even for some conditional branches. However, this is an obscure method that
is rarely needed, because most of the effects can be achieved via preprocessor
macros, function inlining, and using “constexpr” in modern C++.

References

1. Bjorn Andrist, Viktor Sehr (2020), C++ High Performance: Master the art of
optimizing the functioning of your C++ code, 2nd Edition, Packt Publishing, Dec
2020, https://www.amazon.com/dp /1839216549,

Code: https://github.com /PacktPublishing/Cpp-High-Performance-
Second-Edition (Chapter 8 is on compile-time optimizations.)

2. Gnu.org (2023), GCC Command Options, GNU Compiler
Collection, https://gcc.gnu.org/onlinedocs/gec/Invoking-GCC.html

3. Paul Bilokon, Burak Gunduz, 8 Sep 2023, C++ Design Patterns for Low-
latency Applications Including High-frequency
Trading, https:/ /arxiv.org/abs/2309.04259,

Code: https://github.com/Oburak/imperial hft

4. Sarah Butcher & Alex McMurray, 2 January 2025, The C++ techniques yon

need for §600k hedge fund

jobs, https:/ /www.efinancialcareers.com/news/low-latency-c

David Spuler 458

https://www.amazon.com/dp/1839216549
https://github.com/PacktPublishing/Cpp-High-Performance-Second-Edition
https://github.com/PacktPublishing/Cpp-High-Performance-Second-Edition
https://gcc.gnu.org/onlinedocs/gcc/Invoking-GCC.html
https://arxiv.org/abs/2309.04259
https://github.com/0burak/imperial_hft
https://www.efinancialcareers.com/news/low-latency-c

44. Zero Runtime Cost Operations

You want free CPU cycles? You got it! There are plenty of “freebies” in C++!

We’ve already talked about compile-time operations in C++, but here’s a summary
of some of the “hints” you can give to the compiler for a free gain, usually via
helping the optimizer to do fancier optimizations:

inline

template

const

constexpr (also consteval and constinit)
noexcept

static_assert

Restricted pointers (e.g., restrict)
likely/unlikely or builtin expect (exptessions)
[[likely]] and [[unlikely]] path attributes

I’ve missed a bunch of them, so you should re-read those chapters. Those are well-
known optimizations via programmer hints.

Here are some other ones that are useful. If you see these keywords, these are free
or compile-time operations:

auto types (type deduction)
decltype

final

override

explicit

[[nodiscard]] (function attribute)
= delete

But there’s always more.

459 C++ Ultra-Low Latency

Here are some advanced C++ language features that you might think cost real CPU
juice, but are free for various language design reasons:

e Type traits — compile-time type operators (not RTTT).

e Concepts (C++20) — compile-time guarantees.

e Static reflection (C++26) — fixing RTTT inefficiencies.

e Profiles — safety with compile-time validation.

e Curious Recurring Template Pattern (CRTP) — useful for devirtualization.
e Structured bindings — grouped assignments are compile-time processed.

Type traits are a form of Compile-Time Type Information (CTTI) and work at
compile-time.

Some examples are operations like std::is trivial or std::is_same.
However, note that you have to be careful not to move across into the much darker
side of RTTI, which is dynamic cast and typeid.

Free Type Cast Operations

There are various arithmetic operations that can look real, but actually disappear in
a puff of compiler smoke. The first item on the list is type casts, which have many
freebies:

e reinterpret cast

e static cast

e const cast

e std::move (move semantics)

e std::forward (perfect forwarding)

Note that std: :move is effectively a compile-time type cast, which turns an 1-
value into an r-value (I'm simplifying the idea here).

However, there are also overloaded versions of std: :move with two or more
arguments that really do move bytes at runtime (effectively doing memcpy), so be
aware of the distinction between free uses of std: :move for move semantics
versus real byte movers.

Arithmetic type casts between similarly represented numbers can often be
optimized away.

David Spuler 460

For example, these are usually free, or at least very fast:

e Downsizing integer type casts (e.g., int to char).
e Upsizing integer type casts (e.g., char to int)
e Floating-point type conversions (e.g., float to double)

Differently sized integer types seem like they would cost real instructions to convert
between them. If a char is one byte and an int is four bytes, you’d think there’s
an operation that adds or removes three bytes. However, the compiler has many
tricks up its sleeves here, such as:

e Copy propagation
e Register allocation
e Peephole optimizations

This is often true of the conversions between any of the many and varied integer
types, from a 1-byte char to a 16-byte long long. In the cases where the
compiler cannot find a way to do it freely, the operation is very inexpensive anyway.

But note that not all type casts are free. In particular, converting between integers
and floating-point types is expensive, in both directions, because the way these two
types of values are represented is very different. Be careful with explicit type casts,
but also any expressions that mix integer and floating-point types may have implicit

typﬁ casts.
Optimized Away

Here’s a somewhat random list of stuff that should get optimized away by the
compiler. We can be reasonably sure these are free:

e Constant expressions (via “constant folding” and constexpr features)

e Small getter member functions (via inlining)

e Null-effect expressions (useful for compiling-out assertions)

e Unnecessary temporary variables (removed by copy propagation, peephole
optimizations, and register allocation)

e Wrongly typed constants (e.g., using 1 or 1TUor 1.0 or 1.0f should be
implicitly type-converted at compile-time).

e Double negation (using “! ! (x)” is a common trick).

e Algebraic simplifications (e.g., plus zero, subtract zero, times one, and
many more).

461 C++ Ultra-Low Latency

e Explicit zero conditional tests (e.g., 1f (x != 0) orif (ptr !=
nullptr) equates to if (x) or if (ptr) atruntime).

e First data member in an object or structure (it’s offset is zero, so there’s a
“plus zero” in the address calculation that is optimized away).

e Assertions and #1f DEBUG (if compiled-out for production).

The compiler optimization of “dead code elimination” will make these control flow
features free:

e while (1) —using for (;;) isn’t faster!

e if(true) orif (1) orif (0) or whatever

e do..while (0) — a common macro trick.

e Short-circuited constants in | | or && operators
e Tested constants in the ?: ternary operator

You can always check the assembly code with “gcc -S” or the MSVS assembly
debug window.

Standard Container Operations

A lot of the standard containers have many optimized specializations for builtin
types. Hence, if you’re using std::vector<int>, you can expect operations
like push_back are inlined and very fast.

All of the contiguous containers and the non-contiguous linked containers would
maintain incremental variables, making begin () and end () calls very fast.

Similarly, most of the containers maintain an incrementer counter of objects inside,
so all calls to std: :size are as fast as a getter accessing an integer data member
(inlined, of course).

There are some relatively simple standard C++ data types where operations can
often be inlined or optimized away by the compiler:

e std::pair

e std::tuple

e std::optional

e std::expected

e std::variant (modern C++ unions)

David Spuler 462

Finally, note that some calls to containers can lead to memory allocations, which is
a slowdown. And various containers when used on your own non-scalar objects
can trigger many calls to constructors or assignment operators, which is slow
regardless of whether it calls copy or move versions.

I mean, moving is better than copying an object, but the optimizer can only do so
much.

The Opposite of Free

There are also features of C++ that look like they should be free, but are actually
costly. Perhaps we should call them “costlies”?

Elegance and the beauty of short code sequences is not the same thing as fast. Here
are some examples of beautiful things that can be slow:

e Calls to virtual functions

e RTTI (e, dynamic_cast and typeid)

e Lambdas, functors and other function objects

e std::function

e Comparators (except maybe standard ones like std: : less)
e Fold expressions

e Exception handling

The issue with lambdas and function objects is not clear-cut. If you use a lambda
with a simple capture and an immediate assignment to a functor variable, which is
then called, the optimizer probably can handle this and inline the function call.
However, if you declare your own complex lambda as a comparator that is sent to
a function (e.g., to std: :sort), all of the calls to that lambda are probably not
inlined, leading to a performance bottleneck.

Also, if you use a standard builtin comparator object like std: : greater and pass
it to std: : sort or other library functions, it’s likely that the operation has a pre-
coded template specialization for that comparator, meaning it won’t really be using
it as a function call.

However, you might want to benchmark this or look at the standard library source
to confirm there is such a specialization!

463 C++ Ultra-Low Latency

And here are some more slugs that are less obvious, because the code is concise
and looks like it should be fast:

e Operator overloading (looks like a single instruction, but it’s a function call,
even if it’s inlined).

e Initializer lists (can call lots of copy constructors).

e DPointer-to-function types (cannot be inlined).

e Implicit type conversions (especially via overloaded type cast operators).

e Temporary object creation (accidental)

e Type casts between int and float (explicit or implicit)

e Container resize () calls

Modern C++ is becoming such a complex language with conflicting goals of
elegance and performance, so it’s hard to know which things are freebies or costlies.

David Spuler 464

45. String Optimizations

Efficient Strings

The C++ std: :string class is a beautiful and elegant class that has been well-
designed and near-optimally implemented.

Its main advantages include:

High-level abstraction of string coding

e Automates management of memory buffer allocation

Safety (e.g., no buffer overflows when appending or concatenating)
e Moderately efficient

Note that I only said efficiency was “moderate”! As classes go, it’s one of the most
efficient, with lots of inline member functions and implementations supet-
optimized by compiler engineers. Some of the fast parts of the standard string class
include:

e Small String Optimization (SSO)
e TFast to copy
e Fast move semantics

But it’s still not as efficient as bypassing the string interfaces and doing low-level
string processing directly with char* pointers and arrays.

So, here we have a perfect example of the maxim: don’t optimize prematurely! I'm not
advocating to replace all strings with C-style string operations, but if your profiler
finds a hot-spot in a C++ string operation, you can do better.

Furthermore, if you’re doing a very string-intensive application, such as text
processing, the lowest level kernels that spin through the document probably
shouldn’t use the string class.

465 C++ Ultra-Low Latency

Common String Operations

If you have a string, and you want to do some work on that string,
the std: : string class is often very fast. In the situations where it’s not, you can
also revert to old-style efficient coding on char* pointers by using the interface-
bypassing data () or ¢_str () methods to get to the raw character array.

String length. The length () method is extremely fast, and always so. The
comparison goes like this:

e length () — always blazingly fast.
e strlen() — slow on very long strings.

Since the string class maintains the string length incrementally as a data member,
it’s already been precalculated. Hence, it’s an inlined access to an already-computed
integer.

In comparison, C-style null-terminated strings must scan for the null byte.
Hence, strlen () is slow on very long strings, whereas length () is still fast.

String Equality Comparisons. Which method is faster is unclear, depending on
the implementation of operator==, but my money’s on the string class. In
particular, it can compare the lengths quickly, since it has that precomputed for
both strings. The full list of ways to compare strings:

e operator==() — fast version.
e compare () — explicit method version.
e strcmp () — old-style string comparisons.

Case-Ignoring String Equality Comparisons. There’s not a standard case-
ignoring version of the compare () method. However, there are non-standard
implementations:

e stricmp() — Windows (MSVS)
e strcasecmp () — Linux (GCC)

String Search. This is a very simple and long-standing requirement. Your options
are pretty obvious:

e find() — simple and fastl
e strstr () — the old C function.

David Spuler 466

Case-Ignoring String Search. There’s not a standard method function named
“ifind” or “stristr”, but there are ways to get there:

e strcasestr () — Linux
e StrStrIA() on Windows in shlwapi.h

Reverse String Search. There the string class method rfind () for reverse string
searching. There’s not really a good alternative in the older C-style libraries.

Character Search. Searching a string for the first occurrence of a string characters.
The options include:

e find(char) — string class overload.
e strchr () — old-style C function.

Reverse Character Search. The options here are:

e rfind(char) — another class overload.
e strrchr () — reverse long-standing C function.

Note that the rfind () version is likely faster than the older function on very long
strings, because it has the string length precalculated in the string object and can
jump straight to the end, whereas strrchr () has to scan inefficiently from the

beginning of the string,

Multi-Character Search. If you want to search for a prefix or suffix of several
characters, rather than just one, then the C++ string class has what you need:

e find first of () — first character from a set.
e find first not of () — first character not in the set.

The suffix versions are:

e find last of()
e find last not of()

Prefix and Suffix Tests. The standard C++ methods on the string class are:

e starts with() (C++20)
e ends with() (C++20)

467 C++ Ultra-Low Latency

Other options include:

e string::find() — search forwards
e string::rfind() — reverse search
e LastIndexOf — Win32 version

There’s also some other options:

e remove prefix() in string view (C++17)
e remove suffix() in string view (C++17)

You can always code your own versions:

inline bool STRPREFIX (const char *s, const char *prefix)

{

return strncmp (s, prefix, strlen(prefix)) == 0;

}
Here’s a modern C++ style version:

inline bool string prefix(
const std::string& str, const std::stringé& prefix)

{

return str.find(prefix) == 0;

}
And here’s the same idea for suffix, using the “reverse find” method:

inline bool string suffix(
const std::string& str, const std::string& suffix)

{

return str.rfind(suffix) + suffix.length()
== str.length(); // Buggy!

Actually, that’s a bit careless of the failure return -1 from rfind ().

David Spuler 468

Here’s a fixed version:

inline bool string suffix(
const std::string& str, const std::string& suffix)

{

int offset = str.rfind(suffix);
if (offset == -1) return false; // not found
return offset + suffix.length() == str.length();

Note that rfind is needlessly inefficient here if the string is very long and the suffix
is not present. It keeps on scanning all the way to the start of the string, rather than
quitting early. There’s certainly a faster way to do it, such as comparing the two
lengths, using them to compute the address of where the suffix would be, and then
use basic string equality testing.

Case-Ignoring Prefix and Suffix Tests. There’s not much help with this in the
standard libraries, so you’ll have to roll your own with strnicmp (Windows)
or strncasecmp (Linux):

inline bool STRIPREFIX (
const char *s, const char *prefix)

return strncasecmp (s, prefix, strlen(prefix)) == 0;

Here’s my attempt at a fast suffix version, which mixes C++ and C coding, but
won’t be slow on a long string:

inline bool string strisuffix(
const std::string& str, const std::stringé& suffix)

{
int strlen = str.length();

int suffixlen = suffix.length();

if (suffixlen > strlen) return false;
int offset = strlen - suffixlen;

const char* raw = str.c str();

raw += offset;

const char* suffixraw = suffix.c str();
return stricmp(raw, suffixraw) == 0;

I’'m sure that you could do bettet!

469 C++ Ultra-Low Latency

String Class Inefficiencies

What’s so bad about the standard string class? Nothing, unless you want to do a
whole lot of processing of strings. Here’s a list of some of its problems:

1. It’s a large object (e.g., 40 bytes).

2. Sequences of binary + operators.

3. Too many calls to new and delete.

4. No way to use a larger non-allocated buffer.

5. Cannot use reference counting and copy-on-write.
A lot of these concerns can be summarized: 7£’s foo easy to use!

Programmers tend to get comfortable with the very convenient ways
that std: : string can be used in C++ programs. In comparison, doing C-style
string processing with low-level character buffers is painfull

Hence, there’s a tendency to forget that C++ strings are significant objects that
invoke memory allocation on all but the smallest of text strings.

String Memory Layout

The std::stringclass creates objects of a reasonable size, unlike C-
style char* The string class is quite complicated, although great compiler
engineers have made it look easy.

Some of the main points about string efficiency are:

e Small String Optimization (SSO) is standard (with a small internal buffer).
e Reference counting is not enabled (and nor is Copy-On-Write).

The use of SSO makes sense because otherwise even just declaring an empty string
object would cause a memory allocation call to the new operator:

std::string sl; // No memory allocation!

David Spuler 470

We can interrogate the string objects about their features using standard member
functions such as data () . If the pointer to the data is inside the object itself, then
we’re using SSO. And if two objects created from each other (via copy constructor
and/or assignment operator) have the same data buffer address, then reference
counting is enabled.

Here is some code that uses standard string member calls to determine some details
about the layout of a string object.

void print string details()

{

std::string str;

cout << "Sizeof std::string = " << sizeof (std::string)
<< " bytes" << endl;

int bytes = str.capacity() + 1;

int header = (sizeof(str) - bytes);

cout << "Capacity std::string = " << str.capacity()
<< " characters ("
<< bytes << " bytes)" << endl;

const char* datastr = str.data();

char* saddr = reinterpret cast<char*>(& str);

bool is sso = datastr >= saddr

&& datastr < saddr + sizeof (std::string);
cout << "Short String Optimization (SSO): "
<< (is_sso ? "yes" : "no") << endl;
cout << "Reference counting: "
<< (string is reference counted(bytes*100) ?
"yes" : "no") << endl;
int offset = (int) (datastr - saddr);
if (offset == 0) {
cout << "Buffer start of object (offset=0)" << endl;
}

else if (offset + bytes == sizeof(std::string)) {
cout << "Buffer at end string (offset = "
<< offset << ")" << endl;
}
else {
cout << "Buffer middle of string (offset ="
<< offset << ")" << endl;
}
cout << "Header block bytes = " << header << " ("

<< offset << " before buffer, "
<< (header - offset) << " after buffer)" << endl;

471 C++ Ultra-Low Latency

And here are the results in MSVS on my Windows laptop:

Sizeof std::string = 40 bytes

Capacity std::string = 15 characters (16 bytes)

Short String Optimization (SSO): yes

Reference counting: no

Buffer in middle of string (offset = 8)

Header block bytes = 24 (8 before buffer, 16 after buffer)

As to the 24 header bytes here, that could be 3 pointers (8 bytes or 64-bits each),
or maybe it’s 1 pointer to the buffer and 2 different 64-bit integers for length and
capacity. We can go exploring in the memory layout of the header block inside a
string object to try to answer that question. It’s non-standard coding that is
implementation-specific, but plenty of people have done it!

David Spuler 472

46. Pointer Arithmetic

What is Pointer Arithmetic?

Pointer arithmetic is a tricky C++ optimization that can often be used to remove
incremented variables in loops. Instead, a pointer can be incremented each loop
iteration. This changes an array access “arr [1]” into a pointer access “*ptr” and
is usually faster.

What is pointer arithmetic? Arrays and pointers are buddies in C++ and there’s
a way that mathematical arithmetic operators can work on both. Consider the
declarations:

int arr([10];
int *ptr;

To start with, we can set the pointer at the array, and C++ allows us to use index
notation on a pointer:

ptr = arr;
x = ptr(3];

Here, x will get the value of arr[3] viaptr[3]. The pointer and array are
equivalent. Note that the “&” address-of operator can be optionally used here. We
could have written “ptr=s&arr” to copy the address, but it’s optional.

C++ allows array index accesses on pointers with “ptr [3]” as above. We can also
do this using “pointer arithmetic”” with the “+” operator and the “*” pointer de-
reference operator:

x = *(ptr + 3); // Same as ptr[3]
The expression “ptr+3” is the address of the third element in the array

(.e., &arr[3]), and the “*” dereference operator gets the value pointed to by the
pointer (i.e.,, arr [3]).

473 C++ Ultra-Low Latency

Why does this work? If ptris pointing to the start of an integer, shouldn’t
“ptr+3” be a weird address in the middle of an integer?

No, because C++ does “pointer arithmetic” on pointers. Because “ptr” is an
“int*” type pointer, the compiler knows to work on “int” data. With pointer
arithmetic, the “+” operation adds a multiple of the bytes of the size of int types.
So “ptr+1” is not the address 1 more than ptr, it’s actually 4 more than ptr for
a 4-byte int (assuming 32-bit integers). And “ptr+3” is actually the address
“ptr+12”in terms of bytes.

Which Operators Do Pointer Arithmetic? Pointer arithmetic works with a
number of arithmetic operators:

e Increment — ptr++ adds 1*size bytes to ptr.

e Decrement — ptr-- subtracts 1*size bytes from ptr.

e Addition — ptr + naddsn*size bytes.

e Subtraction — ptr-n subtracts n*size bytes.

e Assign-Add — ptr += nadds n*size bytes to ptr.

e Assign-Subtract — ptr -=n subtracts n*size bytes from ptr.

Note that there’s no pointer arithmetic multiplication or division. Actually, I was
told that C++37 was going to have a C++ pointer multiplication operator that
scanned down an array doing paired multiplications, adding them up as it went, and
all in one CPU cycle, but then someone woke me up.

Pointer Comparisons: You can also compare pointers, which isn’t really doing
any special pointer arithmetic, but works as normal compatisons on their addresses:

e Equality tests — ptrl == ptr2 orptrl != ptr2
e ILessthan —ptrl < ptr2orptrl <= ptr2
e Greater than — ptr2 > ptr2 orptrl >= ptr2

Segmented Memory Model Pointer Comparisons: Note that there’s a weird
portability gotcha in relative pointer comparisons (i.e., less-than or greater-than).
They’re only guaranteed to work in very limited scenarios by the C++ standard,
such as when the pointers are both operating over the same array data.

Programmers tend to think of the address space as one huge contiguous range of
addresses, where you can compare all of the pointers in the program against each
other, and make some coding assumptions based on that.

David Spuler 474

However, there are architectures where pointer addressing is more complicated,
such as where pointers are a multi-part number pointing into different memory
banks with a more convoluted segmented addressing scheme. For example,
pointers to allocated heap memory might be separate from the pointers to global
static data, and not easily comparable.

Pointer Differences: You can subtract two pointers using the normal “-”
subtraction operator. The result is not the number of bytes between them, but the
number of objects. Hence, the two pointers must be of the same type (i.e., pointing
to the same type of object). Consider this code:

int arr(10];

int *ptrl = &arr[l];
int *ptr2 = &arr[2];
int diff = ptr2 - ptrl;

The value of “dif£” should be 1 in C++ (rather than 4 bytes), because the two
pointers are one element apart (i.e., 1 integer difference). Note that “diff” is a
signed integer here, and the value of subtracting two pointers can be negative (e.g.,
“ptrl-ptr2” above would be “~1” instead). Technically, the official type of the
difference between two pointers is “std::ptrdiff t” which is an
implementation-specific integral signed type that you can use if you’re also the sort
of person who alphabetizes their pantry.

Adding Pointers Fails: Note that adding two pointers with “ptrl + ptr2”is
meaningless and usually a compilation error. Also invalid are weird things like the
“+=" or “~=" operators on two pointers. Even though “~”is valid on two pointers,
“ptrl-=ptr2” fails to compile because the result of “ptrl-ptr2” is a non-

pointer type.

Char Star Pointers (Size 1 Byte): Note that if you want to avoid pointer
arithmetic, and see the actual numeric value of addresses, you can use a “char*”
type pointer (or “unsigned char*”). Since sizeof (char) is 1 byte, then all
of the pointer arithmetic will just add the expected number of bytes (e.g., ptr++ on
a char* pointer adds 1 to the address). If you want to know the actual total number
of bytes between two pointers, then cast them to “char*” type before doing the
pointer subtraction.

int diffbytes = (char*)ptr2 - (char*)ptrl;

Stride of an Array. A useful piece of terminology when processing lots of data in
memory is the “stride” of an array. This means the number of bytes between
adjacent array elements.

475 C++ Ultra-Low Latency

We can try to compute it as follows:

int arr[100];
int stride = &arr([2] - &arr[l]; // Wrong

Nope, that’s a fail. This isn’t the stride, because it did pointer arithmetic. The
addresses of array elements are really pointers, so the stride variable above is always
1 (the adjacent elements are 1 apart in pointer arithmetic). We need to convert
to char pointers to get the stride in bytes.

int arr([100];
int stride = (char*) &arr[2] - (char*)é&arr([1l];

Can’t we just use sizeof to get the strider Isn’t the stride above going to equal 4,
which is sizeof (int)? Yes, in the example above the use of sizeof is correct,
but no, that is not true in general. The stride will often equal the element size, but
may be larger. For a simply packed array of integers or other simple types, the stride
is almost certainly the size of the array element type. But this is not always true,
such as if it’s an array of a larger object with an awkward size that requires padding
bytes for address alignment considerations.

Loop Unrolling Stride. The term “stride” also has a secondary meaning when
talking about array processing with loop unrolling. The stride of an unrolled loop
is how long of a segment is being processed in each section of loop unrolling code.
For example, if a loop is unrolled with AVX-2’s 256-bit registers (equals 8 32-
bit f1oats), then the stride when discussed in the literature is either 8 f£loats or
8x4=32 bytes.

Void Pointer Arithmetic Fails: Note also that pointer arithmetic on a generic
“void*” pointer should be a compile error, because it points to unknown size
objects. Some C++ compilers will allow pointer arithmetic on void pointers with a
warning, and pretend it’s a “char*” pointer instead.

Finally, I don’t think you can increment a “function pointer” in valid pointer
arithmetic, but you’re welcome to try.

David Spuler 476

Pointers and Arrays

There is a close relationship in C++ between arrays and pointers. Array names are,
in many ways, just pointers to the first element in the array. The array indexing
operation is identical to a pointer expression involving address arithmetic.

The following algebraic identities hold:

arrayl[exp] == *(array + exp)
&arrayl[exp] == array + exp

These relationships have a number of consequences. First, the commutativity
of + means that expl [exp2] is equivalent to exp2 [expl], which leads to weird
syntax tricks like “n [ptr]” instead of “ptr[n]”.

Another consequence is that, in many situations, pointer variables can be used
instead of arrays. For example, it is legal to apply the array indexing operator (i.e.,
square brackets) to a pointer. For example:

x = ptr[3];

Just like arr[3], this sets x to equal the third element away from ptr,
where ptr is pointing into an array.

Array Function Parameters: The array and function relationship is complicated
when an array is a function parameter. When an array is passed to a function, the
address of the first element of the array is passed. An array formal parameter is
implemented as a pointer variable (i.e., a pointer pointing to the start of the array).

This explains why arrays are passed by reference, not by value. A local copy of the
array is not used inside the function. Instead, a pointer to the original array is used.
Hence, any change to an element of the local array variable is actually changing the
original array (i.e., pass-by-reference instead of pass-by-value).

The differences between pointers and arrays are few. The main one is that an array
name is not a variable, whereas a pointer is. Hence, an ordinary array name declared
as a local variable cannot be assigned to, or incremented, whereas a local pointer
variable can be. An array is similar to a constant pointer (e.g., int *const ptr).
Note that this is untrue when the array is a function parameter, when it can be
incremented or modified.

477 C++ Ultra-Low Latency

There are also the differences between pointers and arrays in relation to
initializations. Consider the two initializations:

char *p = "hello";
char arr[100] = "hello";

For the pointer p, the string “hello” is stored in separate memory. Only the
requited number of bytes are allocated (six, because of the extra character zero
added by the compiler to terminate the string). For the character array “arr”, 100
bytes are allocated, but only the first six are filled.

Pointer Arithmetic Loop Optimizations

The main way that we use pointer arithmetic for optimization is to change a loop
over an array into loop pointer arithmetic. Note that this is primarily a sequential
code optimization, and does not change anything in terms of vectorization for
parallel execution.

Pointer arithmetic is mainly used to get rid of an incrementer variable in sequential
code. Here’s a vector dot product with basic incremented loop variable i++ and
array index syntax v1 [i] used inside the loop:

float aussie vecdot basic(float v1[],float v2[], int n)
{
// Basic vector dot product
float sum = 0.0f;
for (int i = 0; 1 < n; i++) {
sum += v1[i] * v2[i];
}

return sum;

And here’s the same code when converted to pointer arithmetic:

float aussie vecdot ptr(float v1[], float v2[], int n)
{

// Pointer arithmetic vector dot product

float sum = 0.0f;

float* endvl = vl + n; // vl plus n*4 bytes

for (; vl < endvl; vl++,v2++) |

sum += (*vl) * (*Vv2);
}
return sum;

}
David Spuler 478

TR

How does this work? We got rid of the temporary variable “i” by using pointer
arithmetic “*v1” instead of array indices “v1 [1]”. We ate also using the function
parameters “v1” and “v2” as temporary local variables, as permitted in C++, so
we don’t need an extra temporary pointer variable.

The way this works with pointer arithmetic is v1 and v2 are treated as pointers,
which works due to the near-equivalence of pointers and arrays in C++. Rather

{382l

than using an array index “i” we increment both these pointer-array variables:

vi+t, v2++

These for loop incrementers “v1++” and “v2++” are both adding 4 bytes (the size
of a 32-bit float) to the pointers. Also note these two increment statements are
separated by the C++ comma operator, not by a semicolon.

The “endv1” end marker is calculated as the address of “v1 [0]” plus “n*4” bytes,
because the “+” operator in “v1+n” is pointer arithmetic addition, which is auto-
scaled by the size of the pointed-to object (i.c., 4 bytes for 32-bit float here), rather
than normal integer addition.

Note that a further micro-optimization is possible. We can change the less-than test
(vl < endvl”) to an inequality test (“v1 !'= endvl”), because equality tests
are slightly faster than less-than tests. Since this test is effectively inside the loop
and done every iteration, this might be worth doing.

The trade-off is safety: it'll become an infinite loop if you get the pointer math
slightly wrong, but hey, your code has no bugs, right?

Smart Pointers

Smart pointers are a programming idiom to make C++ pointers safer. They are not
a speed optimization, and in fact, they are a wrapper that adds extra logic around
the use of a raw pointer, and will be marginally slower. However, they avoid many
C++ pointer pitfalls, thereby improving reliability, and will reduce total allocated
memory usage by avoiding memory leaks. There may even be an indirect benefit to
execution speed if overall memory management is improved.

Programmers have been defining their own smart pointer wrapper classes for
decades, but there is now standard support for the idea in the C++ library. In the
typical idiom, a smart pointer tracks the creation and destruction of the object it
points to, which ensures that the destructor is called.

479 C++ Ultra-Low Latency

This helps avoid “memory leaks” in standard C++ pointers where an object is
allocated with “new”, but is never deallocated by “delete”.

The C++ standard libraries have various templates to support smart pointers,
mostly since C++11, so they are longstanding features.

e std::shared ptr
e std::unique ptr
e std::weak ptr

std::shared ptris a reference-counted shared pointer implementation. The
idea is that it tracks the total number of pointers to an object, and then automatically
destroys the object whenever there’s no more pointers to it. This occurs when the
last of the “shared_ptr” objects is itself destroyed, and then the reference count
for the underlying object is zero.

std::unique ptris a one-to-one mapping of a smart pointer to an object.
Whenever the unique ptr object is destroyed (e.g., goes out of scope as a local
variable), then both the smart pointer and its underlying object are destroyed or
otherwise cleaned up. The unique ptr object can refer to a single object
allocated by “new” or a single array-of-objects allocated by the “new[]” operator.

std::weak ptris a less commonly used type that has relevance
to std: :shared ptr insome complicated scenarios. Usually, you should choose
either of std: :unique ptr or std::shared ptr, depending on how many
pointers will point to the underlying object.

Pointers vs References

Overall, pointers are a good and bad feature of C++. They are low-level variables
that allow efficient processing of memory addresses, so we can code some very fast
methods with pointers. They allow us to get very close to the machine.

On the downside, there are pointer pitfalls. Pointers trip up novices and
experienced programmers alike. There is an immense list of common faults with
pointer manipulation, and coding problems with pointers and memory
management are probably half of the causes of bugs in C++ (at least). There are
some tools that mitigate against pointer problems (e.g., Linux Valgrind) but it is a
never-ending battle against them.

Pointers and arrays were implemented very similarly, and came from the earliest
designs of the original C language.

David Spuler 480

Basically, arrays are treated as a specific type of pointer, with various differences
depending on whether they are variables or function parameters.

Then came C++ to the rescue. References arrived with the new-fangled
programming language (cleverly named as “C++”) and were thoughtfully designed
as a type of safe pointer that cannot be null, but is just as efficient as a pointer
because the constraints on references are enforced at compile-time.

C++ allows two ways to indirectly refer to an object without needing to create a
whole new copy: pointers and references. The syntax is either “*” or “&” for their
declarations.

MyVector *myptr = &mv; // Pointer to mv object
MyVector &myref = mv; // Reference to mv object

Pointers and references are more efficient than spinning up a new copy of the
object, especially when the underlying object is a complicated object. And when
you have a function call, you should definitely avoid sending in a whole object.

void processit (MyVector v) // Slow

{
//

This is inefficient because the whole MyVector object will get copied, via whatever
copy constructor you have defined, which is slow. And if you haven’t defined a
copy constructor, then the compiler uses default bitwise copy of a structure, which
is not only slow, but also rarely what you want, and often a bug.

The faster reference version is to use a “const’ reference (or non-const if you’re
Yy
modifying it inside the function):

void processit (const MyVector & v) // Reference argument

{
//

The pointer version is:

void processit (MyVector * v) // Pointer argument

{
//

481 C++ Ultra-Low Latency

Which is faster in C++ — pointers or references? The short answer of “not any
difference” is the general view, because references are implemented as pointers by
the compiler behind the scenes. The two functions above are not going to be
significantly different in terms of speed.

The slightly longer answer is that references can be faster because there’s no null
case. A reference must always be referring to an object for the duration of its scope.
The C++ compiler ensures that references cannot occur without an object:

MyVector &v; // Cannot do this
MyVector &v = NULL; // Nor this
MyVector &v = 0; // Nor this

A reference must be initialized from an object, and you cannot set references equal
to pointers, because you actually have to de-reference the pointer with the “*”
operator, which crashes if it’s a null pointer:

MyVector &v = myptr; // Disallowed
MyVector &v *myptr; // Works if non-null

There’s no way in C++ to get a zero value into a reference variable (we hope). For
example, the address-of operator (&) applied to a reference variable returns the
address of the referenced object, not the memory location of the reference itself.
Hence, references are always referring to something and they cannot be equivalent
to the null pointer.

References are slightly faster: The guarantee of an object for a reference fixes all
those null pointer core dumps, and also relieves the programmer of the burden of
testing for null pointers. The compiler does this guarantee for references at compile-
time, so there’s no hidden null check being done by the compiler at run-time,
making it efficient. So, there’s a minor speed improvement from using references,
by not having to add safety checks for “ptr!=NULL” throughout the function call
hierarchy.

Pointers can be better than references if you need a “null” situation to occur. For
example, you’re processing an object that may or may not exist, and you need the
pointer to be allowed to be “NULL” if there’s no object. This should occur rarely,
and references should be preferred in many cases.

And finally, references aren’t very useful when you’re trying to scan through the
data in vectors, matrices, or tensors in an Al engine. You can’t do pointer arithmetic
on a reference in C++.

David Spuler 482

47. Algorithm Speedups

Algorithm Optimization Techniques

This chapter presents some of the theory of the general techniques for optimizing
algorithms. Changing the underlying algorithms used by the program is often the
only real way to gain a large speed increase.

In particular, the algorithms and data structures used can often be modified to give
a significant speed increase. Is there a better way to do what your program does? Is
it doing too much unnecessary calculation? Although much depends on the
programmer’s ingenuity, there are some common techniques for improving
performance of algorithms.

e Parallelization and vectorization

e Precomputation (save time by using space)
e Recomputation (save space by using time)
e Caching and computation reuse

e Greedy algorithms (immediate computation)
e Skipping algorithms

e Arithmetic strength reduction

e Integer arithmetic

e Change recursion to loops

e Incremental algorithms

o Choose a better data structure

The idea of “skipping” computations also has various sub-methods:
e Lazy algorithms (delay computation until needed)
e Common case first

e Simple case first
e Approximate tests first

483 C++ Ultra-Low Latency

Lookup Table Precomputation

Lookup tables are so widely used in Al engines that they’re usually abbreviated as
LUTs. The aim is to precompute results and replace frequently called costly
function evaluations with table lookup (i.e., array references). Note that this use of
precalculation is only worthwhile if some calculations are repeated and computing
the same result.

As an example, we can replace a call to “sqrt£” with a precalculated table of square
roots. In the subsequent calculations where square root is needed, a call to
the sqrtf function is replaced by a table lookup.

The precalculation uses two separate functions: one to perform the precalculation,
and another to access the values by table lookup. The precalculate function must
be called once via a global initialization routine for the class. Alternatively, every
call to the square_root function could self-check a static Boolean flag indicating
whether the values have been precalculated yet, and call the precalculate function if
not, but this is needlessly slower for every access.

Even more efficient is to use “offline precomputation” before your program even
runs. This is a more efficient method whereby the data is not precalculated during
initialization of the program, but is done eatlier in an “offline” mode (e.g., as part
of your build process). For example, the precomputed results are either stored to a
data file, or converted to a C++ source file that is linked.

Another good example of precalculation is the Boolean functions on characters
(e.g., isupper). To improve performance, it is possible to implemented these
functions as a precomputed array of 256 bool values, or 256 bytes with 0
if isupperis false, and 1 if isupper is true. Then isupperis evaluated by
indexing the character into the precomputed table:

#define isupper(ch) (precomputed array([ch])
In fact, many C++ compilers implement the isupper test and other functions
in <ctype.h> as a table lookup over the 256 character values (plus an extra one

for EOF), with a precalculated single bit flag per function — that is, one bit
indicating isupper, another bit for islower, etc.

David Spuler 484

Lazy Evaluation

The idea of lazy evaluation is a slight amendment to precalculation or data structure
augmentation. Full precomputation during program startup can be inefficient when
only some of the values are needed.

Lazy evaluation works in a “lazy” manner, by only doing work when asked. Instead
of precalculating every result, results are calculated only as needed. To use this
method, some way is needed of indicating whether a result is already in the table.
When seeking a result, it is necessary to check if the required value is already present.
If so, table lookup is used to get the result. If not, the value must be calculated,
stored in the table and that entry marked as present.

The precomputation of sqrtf can be modified to become lazy evaluation by
adding another array of Boolean flags, indicating which of the square roots have
been computed. When calculating a square root, the function checks if it has been
computed, and calculates it if not.

float square root lazy eval (int n)

{
static float sqrt table[NUM PREC + 1]; // values
static bool precalc[NUM PREC + 1]; // flags

if (!precalc([n]) { // precalculated?
sqrt_table[n] = sgrtf((float)n); // real sqgrt
precalc[n] = true; // Mark as computed

}

return sqrt table[n];

The use of lazy evaluation is slower than complete precalculation if all of the values
are eventually calculated, because of the overhead of checking whether calculation
is needed. Also, there’s only an efficiency gain for values that are calculated twice
or more. However, lazy evaluation can make the program faster overall if not all
calculations are needed, but some are needed many times. Any unnecessary
calculations are avoided. How lazy!

485 C++ Ultra-Low Latency

Source Code Precomputation

The examples of the precomputation of square roots in the previous two sections
are not particulatly efficient because they must still call the sqrtf function a
number of times. A far more efficient alternative is to use C++’s compile-time
initialization of arrays to set up the precomputed sqrt table array inside the
C++ source code. Hence, the square_root function becomes a simple lookup into
an array variable as follows. Note that the array is declared as “static” so that the
initialization occurs at compile-time.

float square root precalc(int n)
{
const int NUM PRECALC = 100; // Precalculate to 100
static float sqgrt table[] = {
0.000000f, 1.000000f, 1.414214f, 1.732051f,
2.000000f, 2.2360068f, 2.449490f, 2.645751f,
2.828427f, 3.000000f, 3.162278f, 3.316625f,
//... etc
}i
if (n >= NUM PRECALC) return sqgrtf((float)n);
return sqrt table[n];

The simplest way to produce the values for the precomputed array is to write
another program to produce them. Once the values are produced, this program
could be discarded, or it could be left in the build process. The following program
was used to produce the declaration of sqrt table used in the square_root
function given above. The output from the following program was copy-pasted into
the source code for the program above.

void generate sqrt table()
{
const int NUM = 100; // Precalculate to 100
printf ("static float sqgrt table[] = {\n");
for (int i = 0; i < NUM; i++) {
printf ("S£ff", sqgrtf((float)i)):
if (1 + 1 < NUM)
printf (", "); // comma after all but last
if (i $ 4 == 3 && 1 + 1 < NUM)
printf ("\n"); // newline every 4 numbers
}
printf ("\n};\n"); // finish off declaration

David Spuler 486

Source code precomputation should always be more efficient than lazy evaluation
and run-time precomputation. However, source code precomputation is only
applicable when the function can be computed at compile-time (e.g., any
“constexpr” function). If the computation involves any variables whose values
are known only at run-time, either lazy evaluation or run-time precomputation may

be needed.

Incremental Algorithms

It is often easier to modify what has already been done than to start from scratch.
This idea can be used to write faster algorithms. However, changing an existing
algorithm to use incremental calculations will usually require a total redesign of the
algorithm.

A simple example of an incremental algorithm is counting the number of symbols
in a hash table. The non-incremental way to count them is to traverse the hash table,
counting the number of entries along each hashed chain. The incremental method
is to keeping a running count — increment it when a symbol is inserted; decrement
it when a symbol is deleted. The incremental method is better if the count will be
required many times. If the count is not required, there has been a small extra
amount of unnecessary overhead.

Another good example appears in graphics animation when managing the buffers.
When displaying a new screen, it is usually more efficient to change the existing
screen buffer than to redraw the whole screen. The idea is to set only those pixels
that need to be changed.

For another example, a chess-playing program uses a game tree and the minimax
algorithm with a static evaluation function. This function usually analyses the
material balance (i.e., how many pieces each side has), along with other chess
strategy factors. A simple but inefficient method of computing the material value
of a position is to add the values of each piece on the 64 squares.

The efficient incremental algorithm is to subtract the value of the piece from a
running count whenever any piece is captured by the opponent.

487 C++ Ultra-Low Latency

Common Case First

When testing for a number of different conditions, it is best to test the most
common case first. If it is true, the other tests are not executed. When using
multiple 1f-else-1if statements, place the common case first. For example,
consider the binary search function:

if (key > alil]) {
//

}

else if (key < afli]) {
//

}

else { // equality
//

}

Equality is least likely of all the three conditions, and hence it goes last. Greater-
than and less-than are more common, so they go first.

The idea of common case first also appears in Boolean expressions using && or | |.
The short-circuiting of these operators makes them very efficient when the
common case is first. For | |, the most likely condition should be placed first (i.e.,
most likely to be true). For &&, the most unlikely condition should be placed first
(i.e., most likely to be false).

Simple Case First

This method is similar to common case first — the idea is to test the simplest
condition first. More complicated and time-consuming computations can be
avoided if the first test succeeds (or fails, depending on the context). This idea
appears in two main situations:

e 1f-if construct (nested if statements), and
e logical operators (&& and | |).

The simplest test should be the first of a pair of nested if statements and should
also be the first operand of a && or | | operator. In the examples below, the sub-
expression “x!=0"is evaluated first because it is the simplest and hence the least
expensive to evaluate.

David Spuler 488

This is the nested-if example:

if (x = 0) {
if (expensive fn(x) != 0) {
//

This is the && short-circuiting method:

if (x != 0 && expensive fn(x) != 0) {

//

Special Solution of Simple cases

In addition to putting a simple case first, it can also be efficient to solve simple cases
differently to the general case. When solving a problem, simple cases can often be
solved by specially designed fast functions. These “special solutions” can involve
table lookup of precalculated values (e.g., storing the first ten factorials in an array)
of just a fast algorithm for small cases (e.g., sorting less than five numbers quickly).

In general, the special solution of simple cases will give some speed increase if the
simple cases are fairly common. The advantage of simple case precalculation over
full precalculation is flexibility — it is not limited to those values that can be stored
in a fixed size table.

The use of table lookup for simple cases for the factorial function is shown below.
The use of the method here gives speed increase for all cases, not just the simple
ones, because the recursive definition of factorial eventually breaks the problem
down to a simple case.

int factorial precalc(int n)
{
const int NUM PRECALC = 5; // How many
static int s _precalc[NUM PRECALC + 1] =
{1, 1, 2, 6, 24, 120 };

if (n <= NUM PRECALC)
return s precalc[n];
else
return n * factorial precalc(n - 1);

489 C++ Ultra-Low Latency

Approximate Tests

Many algorithms can be improved by avoiding complex calculations with a fast
preliminary test that is often successful. This is a special type of common and simple
case optimization combined. This method is only worthwhile when avoiding the
complicated test is highly probable; if avoiding it is unlikely, the extra simple test
reduces efficiency because it adds (slightly) to the run-time cost.

Zero skipping. In an Al engine, a common example is “zero skipping.” A low-
cost test of a weight against zero can avoid the complexity of computing vector and
matrix operations with that weight.

Bounding Sphere Tests in Ray Tracing. As an example in 3D graphics, to
implement a ray tracing algorithm for graphical image rendering, it is necessary to
determine whether a ray strikes an object. Since the objects are often complex and
more often than not the ray will miss an object by a large amount of space, a simple
test can be used to quickly identify rays that are close enough to the object to
intersect with it. A good simple test is to determine if the ray intersects with the
bounding sphere of an object, as it is relatively efficient to determine this. If the ray
does intersect the sphere, the more expensive tests are applied to determine if the
ray intersects with the object. If the ray does not intersect with the sphere, the cost
of the more expensive tests has been avoided. Interestingly, the simplicity of testing
the intersection of a ray with a sphere helps explain why there are so many ray-
traced images of spherical objects.

Bounding-box 2D collision detection. The similar idea of a bounding rectangle
is useful for collision detection in coding 2D arcade games. Collision detection
usually involves testing many pairs of objects in a two-dimensional setting, and the
tests are complicated because of the different shapes of the objects. The more
complicated tests can be avoided by examining whether the bounding rectangles of
each object are intersecting. If they do intersect, then a closer examination of
whether the objects have pixels that overlap is carried out.

Rectangle Shapes. For yet another example of using a simple test to avoid
complicated tests, consider the problem of a GUl-based drawing program.
Typically, the user can select a vertex (e.g., the end of a line segment) by clicking
“close” to the vertex. In other words, the user must click the mouse within a
specified radius of the point. Hence, when the mouse is clicked, the program must
compare the mouse location with all the currently active vertices. The obvious
method is to use the distance formula for two points and apply the following test
on the x and y coordinates of the mouse and all points.

David Spuler 490

Here's the code:

const float DISTANCE = 2.0f;
float diffx = xMouse - xPoint;
float diffy = yMouse - yPoint;
float distance = sgrtf(diffx * diffx + diffy * diffy);
if (distance <= DISTANCE) {
// clicked!

Firstly, the efficiency of this test can be improved simply by avoiding the calculation
of the square root. Squaring both sides of the equation gives the equivalent test:

float distance squared = diffx * diffx + diffy * diffy;
if (distance squared <= DISTANCE * DISTANCE) {
// clicked!

However, the multiplications involved in computing the squares of the two sub-
expressions on the left are quite expensive, although the square on the right-hand
side will be a compile-time constant. A simple test can be used to avoid the
expensive multiplications in most cases. If the difference between either the x or
the y coordinates is greater than DISTANCE, then the points cannot be close
enough. Although the cost of these tests is quite high because the absolute value
for the difference must be found, it should still cost less than two multiplications,
and will be more efficient if there are many widely spaced points to be tested. The
code using this idea is:

bool check point clicked(int xm, int ym, int xp, int yp)
{
const float DISTANCE = 2.0f;
int xd = xp >= xm ? Xp - Xm : Xm - XpP;
if (xd > DISTANCE)
return false;
int yd = yp >= ym ? yp - ym : ym - yp;
if (yd > DISTANCE)
return false;
return xd * xd + yd * yd <= DISTANCE * DISTANCE;

Of course, algorithm improvements are even more effective. The best way for
improving the efficiency of this program is to avoid the need for multiplications
entirely, by changing the program specifications (!) so that the definition of clicking
“close enough” to a vertex with a mouse refers to clicking within a square around
the point, instead of a circle. Squares don’t need multiplication.

491 C++ Ultra-Low Latency

Augmenting Data Structures

An interesting type of caching is where the data is stored inside the main data
structure, rather than in a separate cache. Instead of recalculating derivative data
every time you need it, a faster way is to store the data in the data structure. This is
a form of caching that saves the time of recalculation, which need be done only
once. If the data ever changes, the calculations must be redone and stored again.
Hence, this method works best where data is unchanging, but can also tolerate
modifications.

As an example of augmentation, consider a struct defined to represent a line
segment (e.g., in a CAD drawing program). The struct contains four fields, for the
x and y coordinates of the start and end points:

struct line segment {
int x1, yl; // Start point
int x2, y2; // End point
i

Consider the computation of the length of the line segment, using:

float flen = sqrtf((y2 - yl) * (y2 - yl)
+ (x2 - x1) * (x2 - x1));

If the length is a common calculation, it can be beneficial to cache the length of the
line segment as an extra field in the struct:

struct line segment ({

int x1, yl; // Start point

int x2, y2; // End point

float length; // Length of line segment
bi

Whenever this length is needed during calculation it is immediately available as a
field member. However, it is important to be careful that there is no consistency
problem (where the length field is not the true length of the line segment). The
main danger is that the length field won’t be recalculated every time one of the
other fields change.

David Spuler 492

48. Memory Reduction
Optimizations

Memory Reduction in C++

There are many general techniques for reducing the memory requirements of a
C++ program. These techniques herein aim to reduce memory usage of a program
so that:

(a) your C++ does not waste too much time on memory management
activity, such as allocating too much memory, and

(b) your C++ code can execute on a low-memory platform, such as an IoT

embedded device.

In these days of cheap gigabytes of memory in every PC, memory reduction
techniques are perhaps not as important as those for increasing speed. However,
there are certainly situations when reducing space requirements is far more
important than increasing the speed of a program. This section discusses a number
of general techniques for reducing C++ memory requirements.

Unfortunately, reducing space requirements can also lead to loss of speed. There is
often a trade-off between space efficiency and time efficiency. Every C++ program
uses memory for a number of different purposes, and each of these areas needs to
be attacked separately. The memory usage of the program can be divided into the
following memory sections:

e Executable instructions
e Static storage
e Stack storage
e Heap storage

The executable instructions for a program are usually stored in one contiguous
block of memory. Static storage refers to memory used by global and
local static variables, string constants and (possibly) floating-point constants.

493 C++ Ultra-Low Latency

Stack storage refers to the dynamic storage of non-static local variables. Heap
storage refers to the memory space that is dynamically allocated using the new and
delete operators and the malloc/calloc/free standard library functions.

The memory requitements for the executable instructions are largely independent
of the other memory areas, whereas the techniques for reducing the memory
required for the other three areas are often similar. However, care must be taken
that applying a technique to reduce data space does not increase the amount of
C++ code too greatly, thus increasing the executable size.

Compact Data Representation

Different algorithms may store data differently and thereby reduce memory
requirements. There are many ways to represent data, and all have varying space
usage. For example, storing all the primes less than 1000 can be done with a list of
integers, a list of the incremental differences between successive primes, or a bit
vector with one bit for each integer up to 1000.

Different data structures. The program should be examined to determine if a
large space reduction can be achieved by changing to different data structures. For
example, the program could use arrays instead of linked lists or binary trees to avoid
the extra space due to pointer storage. However, this also wastes more space if the
array is not full, and it is even better to use dynamic arrays, which do not waste any
storage, as exactly the right amount of memory is allocated. Unfortunately, using
different data structures can sometimes reduce the time-efficiency of programs.

Data compression. Compressing data can reduce space requirements when large
amounts of data are involved. Hmm, let’s pause for a moment and try to think of
an example application with lots of data. Just jump in whenever you’re ready.

Billions or trillions of weights in an LLLM are a good candidate. Model compression
is the theoretical term and involves either using smaller data sizes (e.g., 8-bit integer
weights instead of 32-bit £loat data) or “pruning” of weights we don’t need. More
generally, data compression algorithms have been used in research on Al models,
such as sparsity, run-length encoding and Huffman encoding.

Proceduralization. Another data representation technique is to use a function to
represent data. Instead of a list of the first 1,000 primes, you could create an
“is_prime” function that contains a big C++ switch statement, with all the
primes as case values, which return true. You could also write a piece of code to
create this source code automatically.

David Spuler 494

Recomputation. Another example of proceduralization, consider storage for
several images generated by a fractal algorithm: the simplest method of storing the
images is to store them as large image files. But a much more space-efficient method
is simply to store the values of any arguments passed to the function creating the
fractal images. This way, the images can be recreated by calling the fractal generation
function with the correct arguments. The only space used is a few extra values
containing the arguments and the code instructions for the function. However, the
recalculation of an image by this method is extremely time-inefficient.

Reducing Data Size

There are many techniques for reducing the size of program data. These techniques
apply to all three types of memory — static, stack and heap storage. In some cases,
a method may increase the memory storage in one area to decrease the memory
usage in another, which is valid only if the total storage requirements decrease.

Use char arrays not std: :string. The wuse ofstd::stringis very
convenient, but if your program has many strings, the extra storage used by
the string objects can add up. Consider managing your own raw char arrays as
C-style strings if you really need the space.

Avoid max-size arrays or buffers. When using an array data structure or buffer,
there is temptation to be lazy and just make it bigger than it will need to be. Avoid
this temptation and optimize the memory usage propetly. Change an oversize array
into a dynamically allocated array, if size can be determined easily at runtime.

Smart buffers or smart array classes. An alternative to using an oversize array or
buffer is to create “smart” classes that manage this, by automatically extending the
array or buffer if more elements are needed. The std: :vector class is a good
way to do this.

Bit vectors. These can be used where information can be reduced to a single
Boolean value, such as bit flags or masks. The use of bit vectors is very compact in
terms of space, and there are standard C++ libraries to implement these efficiently.

Unions. When using a lot of structures, space can be reduced by overlaying the
data fields. This can only be done if the fields to be overlayed are mutually exclusive
(i.e., they never have active data in them at the same time). There is a special C++
data type for this purpose: the union.

495 C++ Ultra-Low Latency

Linearize multi-dimensional dynamic arrays. Use the simpler and smaller size
of a one-dimensional array, with the two-dimensional structure mapped onto it with
index calculations. This adds more runtime cost, but saves space over multiple
levels of dynamic array allocations.

Reusing space. One way to conserve memory is to reuse the space used by a
variable. The union data type is an example of this general idea, and another is
reusing variables for different purposes. For example, rather than letting several
functions each have a local temporary buffer, they could all use the same global
variable (although this is a very dangerous practice). As another example, if a
program uses two similar arrays, examine whether the two arrays can share the same
storage (possibly as aunion). Note that I don’t recommend any of these
approaches: too dangerous!

Small data types: short, char. Instead of using arrays of int, use arrays
of short, char or unsigned char. There is no problem with this method,
provided large integer values are not being stored (e.g., larger than 127 for char,
or larger than 255 for unsigned char). This technique is also worthwhile when
applied to int fields in objects although alighment restrictions may limit the
improvement — use the sizeof operator to determine if the size of the object has
been reduced. Smaller local vatiables could also be declared as a smaller type, but
this may increase the executable size due to type conversions. Note that speed can
be compromised by using smaller data types because of the type conversions that
often result. Similarly, use £1loat instead of double, where the greater precision
of results is not important (e.g., an Al model).

Bit-fields in objects. When storing small integers in objects or structures, there is
a way to specify exactly the number of bits required. These types are called “bit-
fields” and can only be used for fields inside objects, structures or unions. You
cannot declare a local variable with a bit-field type. When using bit-fields, small
integers or Boolean flags are automatically packed into a struct or union. This
reduces storage requirements significantly, but reduces speed because it is necessary
to pack and unpack bits.

Parallel arrays versus arrays of objects or structures. Because of alignment
restrictions, an object or structure may have unusable extra padding bytes. The
number of padding bytes can be determined by using the sizeof operator, and
subtracting the sizes of each individual field from the size of the object. If there are
padding bytes, replacing an array of struct with a number of “parallel” arrays
removes the need for this padding.

David Spuler 496

Packing. When dealing with large arrays of small integers, it can be more efficient
to pack them together (i.e., more than one value per word), particularly when the
information is binaty (true or false), because only one bit per value is needed. The
casiest way in C++ is to use std: :bitset. Note that bit-fields are a method for
packing provided by the compiler that can support more than one bit. They are also
much easier to use than coding it yourself.

Packing object atrays with #pragma pack. Microsoft C++ compilers support
the “#pragma pack” preprocessor directive, which can specify the packing and
alignment characteristics of an object. This can allow arrays of these objects to be
packed more closely into storage.

Reordering fields in objects and structures. Because of the word alignhment on
some machines, the order of fields in an object or structure can change the total
size of the object. This only applies to objects containing different size fields. A
general rule for minimizing the space is to order the fields from largest to smallest.
This heuristic may not give the best ordering — examine the size of a few different
orderings using the sizeof operator, if space is crucial. This is a machine-
dependent optimization, and may not work well on some machines.

Store integer codes instead of string names. If you’re storing a string to
represent some particular type or a limited set of names, or something with a finite
set, then you can use an enum instead. If you need to generate the actual string
name, use an array lookup or a switch statement to return the equivalent string
constant. For example, when dealing with Al word tokens, which are indeed fixed
and finite, use the integer token code without storing the word as a string, while
maintaining a single copy of the vocabulary strings (which you need anyway for the
tokenizing algorithm).

Measuring Code Size and Static Storage

In general, it is more difficult to measure how much space a program is using than
to measure how much time it is using. However, most environments provide some
means of determining the size of instructions and static data in an executable
program. If nothing else, the size of the executable file can be a reasonable guide.

The size command. Under Linux and UNIX, a useful command is the “size”
command, which examines an executable program and reports the memory used
by its instructions and its global or local static variables. However, it does not
(and cannot) report the stack or heap usage because the amount of such memory
used is dynamic, and hence cannot be found by analyzing the executable.

497 C++ Ultra-Low Latency

The command is simply:

size a.out

This produces output similar to the following:

text data bss dec hex
20480 8192 0 28672 7000

The “text” value refers to the machine code instructions for the program code.
Both the “data” and “bss” areas refer to global and local static variables. The
“data” area refers to variables which have been explicitly initialized with values (e.g.,
string literals or initialized global variables); the “bss” area refers to variables with
implicit initialization which defaults to zero (e.g., global variables or arrays without
non-zero initializers).

Function Code Sizes: If the code size is needed on a per-function basis, Linux
and most other UNIX environments support the “nm” command. Windows also

supports the nm command.

nm a.out

The nm command differs slightly across older UNIX variants, but will usually print
out information including the start and end address of a function, from which the
size of a function can be trivially computed.

Link Maps: Window users may be able to use a “link map” report. This allows to
find out about executable size by examining the output produced by some C++

compilers at the link stage (although not all compilers will produce useful output).

For example, the DOS “1ink” command with the “/map” option can be used
when linking the object files:

link /map *.obj

David Spuler 498

Code Bloat

The size of the executable depends on the size of your C++ source code. Hence,
the obvious way to reduce executable size is to go to the beach.

Take a day off! Stop writing code, for goodness sakel

Remove unnecessary code. Methods to reduce the number of executable
statements in your program could involve deleting non-crucial functions from the
program, and eliminating any dead code or old redundant code that has been “left
in” for various reasons. The use of compile-time Iinitialization of global
and static variables instead of assignment statements is another method for
reducing code size. Turning off debug code such as assertions, debug tracing, and
self-testing code can also work, but this loses the supportability benefit of shipping

a fully testable version.

Compile-for-space options. Another possibility is that your compiler may
support an option that causes the optimizer to focus on space reduction. This
causes it to generate executable instructions that are as compact as possible, rather
than being as fast as possible.

Avoid using large libraries. Pay attention to what code libraries you are linking
with. Some of them are quite extensive, and may be much more than you need. Try
to use the basic standard libraries as much as possible.

Template overuse. Templates are a common cause of “code bloat” and their
usage should be reviewed. This is particulatly true if you are using an integer-
parameterized template in order to gain compile-time efficiency, or an approach
such as Template Meta-Programming (TMP). If these templates are used with a
large number of constant values, many copies of the template’s executable code will
be generated.

Avoid large inline functions. Overuse of inline functions has the potential
to create more executable code. Tty to limit your use of inline to small functions
where the overhead of the function call is significant compared to the relatively low
runtime cost of the function body. Don’t inline large functions that are doing lots
of processing each call.

499 C++ Ultra-Low Latency

Inline tiny functions. Although inlining large functions can cause code bloat, the
reverse is usually true for very small functions. All of those getter and setter member
functions have about one instruction. The code generated from an inlined call to
these tiny functions may be much smaller than the instructions to call a real
function.

constexpr is inline, too. Remember that constexpr functions are also
effectively a type of inline function. Again, try to limit these to relatively small
functions. If a constexpr function is called with non-constant values, ot is
beyond the compilet’s ability to propetly inline, then multiple copies of the
executable code may result.

Library linkage. The size of the executable depends not only on the C++ code,
but also on the extra library functions that are linked by the linker. Although it may
seem that the programmer has no control over this, there are some techniques for
reducing the amount of linked code. The techniques depend largely on how “smart”
your linker is — that is, whether the linker links only the functions you need.

Use DLLs for common libraries. Dynamic link libraries (DLLs) are one way to
reduce the size of the executable, because the library executable code is loaded at
runtime. If the DLL is a commonly used library, such as the standard C++ runtime
libraries, not only will your executable smaller, but it’s also efficient at runtime
because it will be loaded only once into memory, even if many programs are using
the code. However, making your own special code into a DLL isn’t likely to offer
much memory benefit at runtime, since it will simply be loaded dynamically rather
than immediately at load-time. However, if it’s a library that isn’t needed in many
invocations of your program, you can save memory by deferring loading of the
library until you can determine whether it will be required.

Remove executable debug information. Executable size can be reduced by
avolding generation of the “debug” information and symbol table information. For
example, with GCC don’t use the “~g” debugging information or “~p” profiling
instrumentation options. Linux programmers can also use the “strip” utility
which strips symbol table information from the executable after it has been created.
However, the extra symbol table information is more relevant to the amount of
disk space the executable file uses than to the amount of memory it uses during
runtime execution.

David Spuler 500

Reducing Static Storage

Static storage refers to the memory for global and local static variables, string
constants and floating-point constants. All of the general size-reduction above can
reduce the size of the global and static variables.

String literal static memory. The space requirements for string constants can be
reduced if the compiler has an option to merge identical string constants (which
arise quite frequently).

If there is no such option, or the option does not merge string constants across
object files (which is quite likely), merging string constants can be achieved by the
programmer, although the method is far from elegant. For example, including this
variable in a header file and using it in multiple source files may create multiple
copies of the string literal:

#define TITLE "A very long string

Instead, a global variable can be declared to hold the string constant and the name
of this char array is used instead of the string constant. In modern C++ you can
use “inline variables” to avoid linker problems with multiple definitions.

inline const char TITLE[] = "A very long string ... ";

This change is unlikely to reduce the speed of the program, nor does it increase
memory requirements even if TITLE is used only once (there may seem to be an
extra 4 bytes to hold a pointer value pointing at where the string of characters is
stored, but this is not so).

Large global variables. If there is a large global or static variable or array, the
amount of static storage can be reduced by allocating it on the heap
using malloc or the new operator, or by making it an automatic variable.

This is particularly useful if the object has a short “lifetime”, in the sense that it is
used only briefly (e.g., the array is used as temporary storage inside a function).
When the variable is used all the time, this change doesn’t reduce the overall space
problem, but simply moves the problem to another area.

501 C++ Ultra-Low Latency

Stack Usage

Stack storage refers to memory storage used for function calls, and includes (non-
static) local variables, function parameters and system information used to keep
track of function calls. Hence, the basic methods of reducing stack storage are:

e Use fewer and smaller automatic local variables.
e Use fewer and smaller function parameters.

e Use “consté&” to pass objects by reference.

e Use global or static local variables instead.

e Reduce the depth of function call nesting.

e Avoid recursion (always).

Data sizes. The size of parameters and local variables can be reduced using the
general methods of using smaller data types. Another method is to avoid passing
large objects and to only large objects by reference (which is faster anyway). Don’t
use large arrays or buffers as local variables, but prefer allocated buffers or global
buffers, or declare them as local static variables.

Fewer parameters. The number of parameters can be reduced by using global
variables, or by packing a number of parameters into an object and passing the
whole object (which is often faster, too).

Fewer local variables. The number of local variables can be reduced by re-using
local variables, although this can introduce bugs if not enough care is taken.
Common examples of reusable variables are scratch variables, such as temporaries
or for loop index variables. Another method of reducing the number of local
variables is to use parameters as if they were local variables (this is safe because of
call-by-value). Overall, most of these suggestions are minor improvements, unless
you’re using very large arrays or objects as local vatiables.

Flatten call hierarchies. Reducing the depth of function call nesting (especially by
avolding recursion) also reduces stack space requirements. This can be achieved by
using preprocessor macros or inline functions (but this may increase code size).
You can also refactor your code to avoid too many layers of wrapping functions in
interfaces. Naturally, recursion should be avoided as much as possible by using
iterative loop algorithms or tail recursion elimination.

David Spuler 502

Reducing Heap Usage

Your C++ IDE should support tools that track heap or stack usage dynamically.
For example, MSVS has a “heap profiler” tool that you can enable. Linux tools such
as Valgrind can be very usual to examine heap memory usage. The amount of heap
storage depends on the size of blocks, the number of blocks and how quickly blocks
are deallocated. The size can be reduced using the general techniques of reducing
data sizes (e.g., small data types, packing, unions).

Fewer allocation calls. The number of heap blocks affects heap usage in the
obvious way (more blocks means more memory) and because of the fixed space
overhead of a few hidden bytes to store information about the block (so
that delete or free can de-allocate it). When small blocks are used, it can be
useful to pack more than one block together to avoid this fixed overhead.

Avoid small frequent allocations. If your frequently-used class allocates a small
amount of memory in a constructor and then deallocates it in the destructor,
consider alternatives. Small amounts of data could be stored in extra fields.

Memory leaks waste memory. Obviously, avoiding memory leaks which are
never returned to the heap is important to reducing heap memory usage. There are
many tools and debug libraries available to detect leaks, and ongoing use of these
tools will reduce overall heap fragmentation.

Early deallocation of memory. It’s a win if you have avoided leaking the memory,
but that’s not the end of the story. All allocated memory should be returned to the
heap as early as possible. If memory is not deallocated, unused memory (called
“garbage”) can accumulate and reduce the available memory.

Avoid realloc. Measure and manage any calls to realloc, as they can be a
significant cause of heap memory fragmentation. And they’re also not time-
efficient, so reducing them is a win-win.

Manage std: : vector sizes via “reserve”. The “resize” operations in the
container std: :vector can lead to lots of extra unnecessary allocation requests.
Judicious use of the “reserve” function can avoid this.

Linearize multi-dimensional allocated arrays. One big allocation of a linear
array is much more efficient on the heap than allocating separate blocks for rows
or lower-dimensions of the array. An array of pointers into the linearized large block
is only one more allocation, and has the same efficiency as having each pointer be
a separate dynamically allocated subarray.

503 C++ Ultra-Low Latency

Smart buffers. Use objects that contain a limited amount of memory, which is used
for the typical cases. If a longer string, or larger array is required, it needs to allocate
memory. Overall, this can massively reduce the number of blocks.

Memory fragmentation. Reduce memory fragmentation by reducing both
allocations and deallocations. It’s also important to manage the different sizes of
allocations, as varying block lengths cause more fragmentation.

Per-class allocators. In severe situations, take control of your class’s dynamic
objects by defining your own per-class allocators. Since the allocators knows that
all block requests will be the same size, it can not only be faster, but also better at
reusing memory blocks and avoiding memory fragmentation. But this method can
also be a big fail if coded lazily to first allocate one huge chunk of memory. These
allocators should dynamically manage requests for more storage, using a reasonable
incremental size, rather than guessing their maximum requirements up front.

References

1. Ulrich Drepper (2007), What Every Programmer Should Know About Memory,
November 21, 2007, http://people.redhat.com/drepper/cpumemory.pdf

2. Agner Fog (2023), Optimizing software in C++: An optimization guide for Windows,
Linnx, and Mac platforms,
PDF: https://www.agner.org/optimize /optimizin,

3. Kurt Guntheroth (2016), Optimized C++: Proven Techniques for Heightened
Performance, O'Reilly Media, https://www.amazon.com/dp/1491922060

4. Wikibooks (2023), Optimizing C++/ Writing efficient code/ Performance improving
Seatures,
Wikibooks, https://en.wikibooks.org/wiki/Optimizing C%2B%2B/Writing eff
icient code/Performance improving features

5. Bjorn Andrist, Viktor Sehr (2020), C++ High Performance: Master the art of
optimizing the functioning of your C++ code, 2nd Edition, Packt Publishing, Dec
2020, https://www.amazon.com/dp/1839216549,
Code: https://github.com/PacktPublishing/Cpp-High-Performance-Second-
Edition (Chapter 7 is on memory management.)

6. Dung Le, Jul 30, 2020, CUDA Memory Management & Use
cases, https://medium.com/distributed-knowledge/cuda-memory-management-
use-cases-f9d340f7c704

7. Rudy Bunel, Alban Desmaison, M. Pawan Kumar, Philip H.S. Torr, Pushmeet
Kohli, Learning to superoptimize programs. In International Conference on Learning
Representations (ICLR) (2017). https://arxiv.org/abs/1611.01787

8. Z Guo, Z He, Y Zhang, 2023, Mira: A Program-Behavior-Guided Far Memory System,
PDF: https://cseweb.ucsd.edu/~yiying/Mira-SOSP23.pdf (Interesting memory
management methods.)

David Spuler 504

http://people.redhat.com/drepper/cpumemory.pdf
https://www.agner.org/optimize/optimizing_cpp.pdf
https://www.amazon.com/dp/1491922060
https://en.wikibooks.org/wiki/Optimizing_C%2B%2B/Writing_efficient_code/Performance_improving_features
https://en.wikibooks.org/wiki/Optimizing_C%2B%2B/Writing_efficient_code/Performance_improving_features
https://www.amazon.com/dp/1839216549
https://github.com/PacktPublishing/Cpp-High-Performance-Second-Edition
https://github.com/PacktPublishing/Cpp-High-Performance-Second-Edition
https://medium.com/distributed-knowledge/cuda-memory-management-use-cases-f9d340f7c704
https://medium.com/distributed-knowledge/cuda-memory-management-use-cases-f9d340f7c704
https://arxiv.org/abs/1611.01787
https://cseweb.ucsd.edu/~yiying/Mira-SOSP23.pdf

49. Loop Vectorization

Sequential vs Parallel Loop Optimizations

Loops are often sources of inefficiency and can be optimized in numerous ways.
And the basic algorithms for neural networks are full of loops, with nesting to
multiple levels in tensor operations. Increasing throughput of GPU data processing
is one of the main goals achieved by loop optimizations.

Not all loop transformations are created equal. Some of them are best for sequential
code optimizations, whereas other loop transformations are used to parallelize
loops for vectorization. Loop transformations that are good for both sequential and
parallel loop optimization include:

e Loop unrolling —reduce test overhead and parallelize the body.

e Loop peeling — unroll the first few iterations.

e Loop coalescing — flatten nested loops.

e Loop splitting — split out subportions of the iteration range.

e Loop collapsing — another way to flatten nested loops.

e Loop interchange — switch inner and outer loop iterators of nested loops.
e Loop reordering — change the ranges of inner and outer nested loops.

Some loop transformations are mainly for sequential improvements, and are not
parallelization in themselves. However, these techniques can sometimes help with
parallelization if they enable another followup loop parallelization optimization.
Loop transformation optimizations which tend to be good for sequential code
optimizations but not parallelization include:

e Loop fusion — combine or “fuse” the bodies of two loops.

e Duff’s device — amusing but impractical coding trick for loop unrolling.

¢ Loop code motion — move or “hoist” loop-invariant calculations from
the loop body to pre-loop initialization.

e Loop perforation — randomly skip some loop iterations; it’s really a thing.

e Loop sentinel — fake it till you make it.

e Loop iterator strength reduction — change “*” to “+” if you can.

e Loop reversal — going backwards, and yet, still making progress!

505 C++ Ultra-Low Latency

Parallelizing loop optimizations with a main goal of vectorization of the loop body
include:

e Loop fission — opposite of loop fusion; split a single loop body into two.

e Loop tiling — process sub-parts of contiguous data in separate loops.

e Loop distribution — split two sub-parts of a loop body into two simpler
separate loops.

Loop Fusion

Loop fusion is a well-known code optimization where two separate loops are
merged into a single loop. This does not change the amount of in-loop computation
in either loop body, but reduces the loop overhead of the exit test by half. There is
also often a benefit from data locality that reduces data movement and temporary
data storage, which can also improve overall speed.

Note that loop fusion is not great at vectorization, because complicated loop bodies
are actually harder to parallelize. Most of the benefits arise in traditional sequential
code execution, which is why its theory dates back many decades. For modern
parallel execution on GPUs, loop fusion is often a poor choice, and more benefits
may arise from loop fission (the opposite of fusion) and loop vectorization.

Example: Loop Fusion: The general idea is to combine the body of two loops
into a single loop. Here is a simplistic example with the (non-fused) loops for
initializing two vectors using two sequential loops:

for (i = 0; 1 < n; i++) v1[i] = 0;
for (i = 0; 1 < n; i++) v2[1i] = 0;

And here is the version with loop fusion:
for (i = 0; < n; i++4) |

v1[i]

i
0;
v2[i] 0

’

Note that the loop fusion version incurs the same number of assignments for
initialization, but only half of the loop overhead cost (i.e., half of the “1 < n” and
“i++7 operators have been optimized away). And for the sake of argument, let’s
pretend that we don’t know a better way to initialize a vector data structure in C++
like memset or calloc or load-time static variable initialization.

David Spuler 506

Loop Perforation

The intentional introduction of randomness to executable code is known as a
“stochastic” algorithm. Personally, I'm more familiar with the unintentional
introduction of randomness, otherwise known as a “bug,” but now when it happens
you can tell your boss that you were adding “stochastic functionality.”

Code perforation is an optimization technique that trades accuracy for speed, by
randomly (ahem, I mean, stochastically) skipping some computations. Essentially,
using loop perforation is similar to an approximation with a random element, but
in a generalized way for any iterative code. It’s kind of like how teenage children
randomly skip their homework.

Loop perforation skips iterations of a loop in a probabilistic manner. Randomly
skipping some percentage of the loop bodies doesn’t sound like a good plan, but it
has its merits. In an Al inference computation, there’s so much going on that no-
one’s going to notice a few missed beats. Apparently it can even be useful. Well, at
least it’s faster to do nothing.

Example: Loop Perforation: Here is an example of adding loop perforation to a
vector dot product computation. This is an incredibly slow version, and is not
recommended, but is just to give the idea of skipping a percentage of the iterations:

float aussie vecdot perf (float vl1[],float v2[],int n,int pc)

{

// Loop perforation -- vector dot product
float sum = 0.0;
for (int i = 0; i < n; i++) {

if ((rand() % 100) + 1 <= pc) {

// This iteration is perforated...
continue; // Skip it...
}
sum += v1[i] * v2[i];
}

return sum;

Loop Unrolling

Loop unrolling is a code optimization where the body of a loop is repeated in
sequential code. This speeds up the algorithm because the overhead of both the
incrementer and the loop iteration test is avoided.

507 C++ Ultra-Low Latency

In some cases, the entire loop can be unrolled, usually when the loop iterations are
finite and known at compile-time. In other cases of partially unrolling, the loop
body can be repeated multiple times, and thereby the loop test only occurs every
few iterations.

For an Al engine, loop unrolling is used as an optimization in a few places. It is one
of the optimizations used by kernel fusion, along with loop fusion and others. Since
many meta-parameters of Al models are finite and fixed numbers (e.g., the “model
dimension”), there are many cases where an entire loop can be unrolled and then
vectorized into the GPU.

The logical extension of loop rolling is done by machine learning compilers, at least
from a conceptual point of view. These ML compilers unroll the inference loop and
the lower-level loops in matrix operations, thereby creating a finite graph
representation of the entire inference sequence. If all is unrolled, there are no loops
in the graph (an “acyclic” graph) and it is of finite size. The process of model
inference is propagation of data through the graph. There are many “graph
optimizations” that can be made on this graph representation of the Al model.

Example: C++ Loop Unrolling of Vector Dot Product. Here is the basic C++
non-unrolled vector dot product code:

float aussie vecdot basic(float v1[], float v2[], int n)

{

// Basic vector dot product

float sum = 0.0;

for (int i = 0; 1 < n; 1i++) {
sum += v1[1i] * v2[1i];

}

return sum;

If we know the value of #, e.g., that #=5, then we can completely unroll it:

return v1[0] * v2[0]
+ v1[1] * v2[1]
+ v1[2] * v2[2]
+ v1[3] * v2[3]
+ v1[4] * v2[4]

’

If we don’t know the value of 7, we can still unroll multiple iterations. Here’s an
example of 4-level loop unrolling of vector dot product in C++ by assuming
that 7 is a multiple of 4:

David Spuler 508

float aussie vecdot unroll4 (float vl1[],float v2[],int n)

{ // Loop-unrolled Vector dot product
if (n $ 4 '= 0) {
aussie assert(n % 4 == 0);

return 0.0; // fail

}
float sum = 0.0;
for (int i = 0; 1 < n;

)
sum += v1[i] * v2[i]; i++;
sum += v1[1i] * v2[1i]; 1i++;
sum += v1[i] * v2[i]; i++;
sum += v1[1i] * v2[1i]; 1i++;

}

return sum;

And here’s a generalization of that 4-level unrolling with extra code to handle the
leftover cases if 7 is not a multiple of 4. Although the extra cases look messy, they
are not actually the main performance bottleneck.

float aussie vecdot unrolldb(float v1[],float v2[],int n)
{
// Better loop-unrolled Vector dot product
int 1 = 0;
float sum = 0.0;
if (n $ 4 !'= 0) {
// Handle the extra cases...
switch (n % 4) {
case 1l: sum += v1[i] * v2[i]; 1i++;
break;
case 2:
sum += v1[i] * v2[i]; 1i++;
sum += v1[i] * v2[i]; i++;
break;
case 3:
sum += v1[i] * v2[i]; i++;
sum += v1[i] * v2[i]; i++;
sum += v1[i] * v2[i]; i++;
break;
default: aussie assert not reached(); break;
} // end switch
// Keep going with rest of the vector

for (; i < n;) { // Unrolled 4 times...
sum += v1[1i] * v2[i]; 1i++;
sum += v1[i] * v2[i]; i++;
sum += v1[1i] * v2[i]; 1i++;
sum += v1[i] * v2[i]; i++;

}

return sum;

509 C++ Ultra-Low Latency

This code is just an example for explanation. There are various further code
optimizations that can be done for production-level efficiency. For parallelization,
the loop body should call an intrinsic function to vectorize the method. For an Al
engine, we could choose our model dimension and other meta-parameters as
multiples of the loop unrolling factor, and thereby avoid ever having any of the
“leftover” cases.

For sequential code, we could change it to use pointer arithmetic rather than array
indices, we might try replacing the four i++ operators with i+=4, change the
integer modulo operator (%) to a bitwise-and operator test (i.e., use “n&3” not
“n%4”, which works since 4 is a power-of-two), and it also might be better to use
“+” rather than the “+=" operator. Finally, if we carefully code the leftover cases,
the main loop could be unrolled to many more levels than just four.

Duff’s Device for Loop Unrolling

There’s a neat coding trick called “Duff’s Device” for loop unrolling, which uses
a switch with case fallthrough to mimic assembler coding style. However, it’s
not great for vectorization as it’s likely to confuse the compiler, so may be mostly
of theoretical interest.

float aussie unroll4 duff (float v1[],float v2[], int n)
{
// Unrolled dot product with Duff’s Device
int i = 0;
float sum =
switch (n %
for (; 1 n;) {

0.0;
4)
<
case 0: sum += vl
3
2

{

[1] * v2[1i]; i++;
case sum += v1[1i] * v2[1i]; 1i++;
case sum += v1[1i] * v2[1i]; 1i++;
case 1l: sum += v1[i] * v2[i]; i++;

default:;
} // end for
} // end switch
return sum;

What’s happening here? My brain hurts looking at this code! The trick is that the
outside switch branches into a case that is inside the body of a for loop. This
is not normal everyday coding, because there’s a loop inside a switch, and the
loop body crosses over several case statements.

David Spuler 510

Also, none of the case statements has a “break” statement and they instead rely
on fallthrough semantics. Similatly, the “default” clause is mainly just to avoid
getting a spurious compilation warning (i.e., “missing default”), and also has no
“break” with only a lonely semicolon. Note also that the case labels are written
in reverse order from top to bottom (3..2..1), except for 0 at the top.

How does this even work? The first point is that it does. This code performs the
exactly correct number of iterations for any value of n (except n==0), and similar
versions with an unrolling factor of more than 4 will also work (i.e., if you change
“n%4” and add more case constants). The code looks like a hack, but actually uses
standardized C++ semantics of case fallthrough and switch multi-way control
flow and should work on all platforms. Branching into the middle of a loop with a
switch is valid in C++ provided it doesn’t bypass any local variable initialization
(hence, don’t put “sum” into the switch). Also, the case fallthrough semantics
(i.e., without a “break” ending each “case”) are standard for C and C++ since
inception. Finally, note that this code is buggy for n==0, because it incorrectly does
4 iterations, so it ideally needs a parameter validation assertion at the start.

Bug alert! Note that you cannot tweak the “i++” instruction using the standard
idiom:

sum += v1[i] * v2[i++]; // Bug!
The obscure problem is that the “*” operator doesn’t guarantee left-to-right
evaluation of its operands. The code assumes a computation evaluation order
of: v1[i],v2[1i], *, 1++, starting from the left. However, the C++ optimizer can

legally do this order of operations: v2 [1], i++, v1[1i], *, which is not what you
intended and gets the wrong array element for v1[1i].

This code might be unreliable across platforms, or it might work in the debugger
mode, but fall over once you turn on high levels of optimization. So, there is an
“order of evaluation” pitfall if you put “++” in an operand of the “*” operator or
many other binary arithmetic operators.

Is Duff’s Device any faster? The short answer is “not really,” although it looks
very appealing (or appalling). Firstly, note that this trick is not actually very useful
for vectorization, because a switch cannot branch into the middle of a vectorized
intrinsic (i.e., if you replace the loop body with a SIMD instruction). Furthermore,
although I haven’t tested it, I doubt many optimizers will be able to auto-optimize
that complex control flow with SIMD instructions. In sequential code, this method
also isn’t much faster, as it doesn’t really have any fewer operations than a basic
unrolled loop (i.e., with extra cases handled separately before or after the main
loop).

511 C++ Ultra-Low Latency

The above example of Duff’s Device can be further sped up using pointer
arithmetic and “looping down to zero” optimizations, but so can the other unrolled
versions. However, there is a minor speed advantage in terms of “instruction
locality” because the above code is very concise.

The main advantage of Duff’s Device is to bamboozle your colleagues. You can
use Duff’s Device with any unrolling factor, not just 4 as in the example shown
above (e.g., change to 8 by using “n%8” and adding cases for 4, 5, 6, and 7, ordered
from 7 down to 1, leaving 0 on top). Actually, the unrolling factor needn’t be a
power-of-two. Make it a prime number for extra bonus points. If you want more
of this kind of coding trickery, also search up Jensen’s device and Pigeon’s device.

Loop Tiling or Blocking

When you hear about a “tiled MatMul” or a “blocked GEMM,” this is the “tiling”
or “blocking” optimization method it refers to. MatMul is matrix multiplication and
GEMM is General Matrix Multiplication (i.e., the same thing). Tiling is the
optimization that most applies to speeding up matrix or tensor multiplication in Al
engines.

This optimization is for two-dimensional data (e.g., matrices). When you hear
“tiles” or “blocks,” think squares or rectangles of data. For example, if you have a
512x512 matrix, then a tiled algorithm might act on 16x16 sized chunks, one at a
time. Loop tiling is an optimization of two-dimensional or three-dimensional data
such as matrices or tensors. The one-dimensional equivalent of processing sub-
parts of a one-dimensional array is called “strip mining”, “loop sectioning” or often
simply “vectorization.”

In other words, tiling means operating on small subsections of a matrix. If you hear
“tiled tensor” that could mean two-dimensional data (i.e., just a fancy name for a
matrix), or alternatively it might refer to three-dimensional data, in which case, don’t
think anything or else your head will hurt.

Loop tiling is a method of executing sub-parts of nested loops in a way that
maximizes data locality, increases cache utilization, and improves parallel execution.
This is also called “loop blocking” because it processes the data a “block™ at a time,
although the term “tiling” is more widely used in research. The two-dimensional
sub-partitions of the data that are square or rectangular are called “tiles” or
“blocks”.

David Spuler 512

The same number of arithmetic operations are performed in a tiled versus non-tiled
algorithm. However, there should be fewer loads of the data into memory with
tiling. The downside is that tiling introduces additional loop overhead. In fact,
rather than flattening nested loops over a 2-D array (e.g., 512x512), tiling often
introduces additional levels of nesting! The two small loops that spin through the
16x16 square shape of a single “tile” or “block” are often newly added inner loops.
So, loop tiling often adds two new layers of nested loops inside your already-nested
loops. It makes you wonder how it can even be faster!

Example: Tiled Matrix Clear: For these examples, there is a type “ymatrix”

type:
typedef float ymatrix[ROWS] [COLUMNS];

If we forget about memset, here is the simple code to clear a matrix one element
at a time in a brute-force nested loop (non-tiled):

void aussie clear matrix(ymatrix m)
{
for (int i = 0; 1 < ROWS; 1i++) {
for (int j = 0; j < COLUMNS; Jj++) {
m[i] [j] = 0.0;

Now we decide to add a 4x4 square tile optimization to this code. The result is an
extra two levels of nested loops. Here is the basic code which assumes that the row
and column dimensions are exact multiples of the tile size, so there’s no extra
leftover cases to handle:

void aussie clear matrix tiled(ymatrix m)
{
const int TILEX = 4, TILEY = 4; // 4x4 tile size
static assert (ROWS % TILEX == 0, "Exact X");
static assert (COLUMNS % TILEY == 0, "Exact Y");
for (int i = 0; 1 < ROWS; 1 += TILEX) {
for (int § = 0; j < COLUMNS; j += TILEY) {
// Do the 4x4 tile...
for (int tx=i; tx < i4TILEX; tx++) {
for (int ty=j; ty < J+TILEY; ty++) {
m{tx] [tiley] = 0.0f;
}

513 C++ Ultra-Low Latency

Unrolled Tiles. One followup optimization trick with a tiled loop algorithm is to
apply loop unrolling to the two inner loops. This avoids the extra overhead of the
two extra inner loops, but retains the data locality benefits of tiling. This
optimization results in a fully “unrolled tile” computation without any extra inner
loops. In the above example, the two inner loops of a 4x4 tile would be replaced
with 16 unrolled computations in sequence. Or for a vectorized version, a fully
unrolled tile would be 4 sequential calls to vectorized intrinsics that each do 4
operations in parallel (e.g., AVX intrinsics each do 4 £1oat operations in parallel).

Example: Tiled Matrix Multiplication: Tiling techniques are widely used inside
neural network code to improve the efficiency of MatMul and thereby get better
throughput of tensor calculations from a GPU. Matrix multiplication is a good
candidate for this optimization because it has O(n"3) arithmetic calculations, but
uses only O(n"2) data. Hence, a naive matrix multiplication algorithm that doesn’t
address locality will re-load the same data into memory many times, whereas a tiled
algorithm can reuse the same data more efficiently.

A tiled version of MatMul processes “tiles” or “blocks” of each matrix one at a time
(i.e., small square or rectangular sections), with the aim of keeping small parts of
the matrix in the memory cache while they are processed. The algorithm progresses
across the matrix a tile/block at a time, rather than scanning all the way down one
dimension (row or column). The same number of multiplication operations are
performed as a non-tiled MatMul, but data locality and cache freshness should
improve the overall speed.

Loop Fission

Loop fission is an optimization that is the opposite of loop fusion. Instead of fusing
two loops into one, we take one loop and split parts of it into two loops. Loop
fission also been called other names such as “loop splitting” or “loop distribution.”

Loop fission can be more efficient for parallel execution (e.g., vectorization for
GPUs), but is often slower for sequential execution. Whereas loop fusion aims to
remove the overhead of one of the loops, loop fission tolerates an increased loop
overhead in return for simpler loop bodies that can be parallelized. The kernel
optimization of “kernel fission” is based on loop fission, and loop fission is one
technique used to achieve vectorization for GPUs.

The main reason to use loop fission is hardware acceleration via loop parallelization.
A complicated single loop can often run faster if split into two simpler loops, if
hardware acceleration can be accessed.

David Spuler 514

This is true even if the two resulting loops must run sequentially, because the
iterations of each loop are parallelized, but there’s a double benefit if the two whole
loops can also run in parallel.

Example: Loop Fission in BatchNorm: A good example arises in patt of the
code for batch normalization. Each element of the vector needs to have two
operations performed on it: subtract the mean (re-centering) and multiply by a
variance factor (re-scaling). The naive implementation of the second half loop in
BatchNorm looks like this:

float denom = sqrtf (varc + eps); // Scale factor

for (int i = 0; 1 < n; i++) {
// Normalize: re-center and scale
v[i] = (v[i] - fmean) / denom;

This is difficult to hardware accelerate because it’s unlikely that there’s a combined
“subtract-and-then-divide” operation to apply to all elements of a vector in parallel.
The first point is that maybe there’s an “add-and-then-multiply,” in which case we
can use the negative of the additive factor and the reciprocal of the scaling factor.
However, assuming there’s not, loop fission can be used to split the single
complicated loop into two sequential loops.

float negmean = -fmean; // Use negative for addition
float denom = sqrtf(varc + eps); // std. deviation
float recip = 1.0f / denom; // reciprocal multiply
// Loop 1l: Re-center using mean

aussie vector add scalar(v, n, negmean);

// Loop 2: Re-scale by factor

aussie vector multiply scalar(v, n, recip);

Each of the two loops is now easy to hardware accelerate, because they are both
very simple vector operations: “multiply-by-scalar” and “add-scalar.” Every
platform is likely to have hardware acceleration APIs for those simpler operations.
So, to summarize, we got an explosive boost to hypersonic rocket speed using
atomic operations with loop fission.

Isn’t that just the bomb?

515 C++ Ultra-Low Latency

Loop Reversal

Loop reversal is the optimization of making the loops go backwards. It does the
same number of arithmetic operations, but in reverse order, so there is no change
in the total arithmetic operations.

This goal is a speedup by “looping down to zero” with a faster loop test, but it is
often a de-optimization even for sequential execution. Typical CPU processors rely
on ascending order of memory accesses for predictive cache pipelining, and reverse
array access is a worst case for that.

Loop reversal is also not a useful parallelization method in itself. Vectorization for
GPU computation doesn’t really work in reverse. However, reversing a loop can
sometimes be useful as an initial transformation on nested loops if reversing the
inner loop’s direction allows another followup loop vectorization technique.

Example: Reversed Vector Dot Product: Loop reversal can be used on vector
dot product, as below, but it probably shouldn’t be. Here’s the basic idea:

float aussie vecdot rev(float v1[], float v2[], int n)
{
float sum = 0.0;
for (int i = n - 1; 1 >= 0; 1i--) {
sum += v1[i] * v2[i];
}

return sum;

Note that there are several coding pitfalls to avoid. The loop variable “i” cannot
be “unsigned” or “size t” type, because the test “i>=0" would never fail,
creating an infinite loop. Also, the reversed loop needs to start at “n-1"" and must
use “i>=0"" (not “i1>0") to avoid an off-by-one error. The above code also craters
for “n<=0” and needs a safety test.

David Spuler 516

Loop Code Motion

Loop code motion is moving loop-invariant code from inside the loop body to the
pre-initialization code for the loop. Any code that has the same value should not be
performed inside the loop body. Instead, it should be pre-calculated before the
loop, and stored in a temporary variable. This is sometimes called “hoisting” the
code out of the loop.

Example: Loop Code Motion: One common example of unnecessary
recalculation of loop-invariant values is in the loop test. The code in the Boolean
test for the loop is actually part of the loop body.

An example of code that re-calculates the loop limit:

for (1 = 0; 1 < vec.num _elements(); i++) {
//
}

The “num_elements” callis probably loop-invariant, assuming the vector doesn’t
change size during processing. Maybe the “num_elements” function is declared
“inline” and the C++ compiler will fix it anyway. Nevertheless, this is a candidate
for loop code motion, using a temporary variable instead:

int n = vec.num _elements(); // Loop-invariant value
for (i = 0; 1 < n; i++) {
//

}

Loop Distribution

Loop distribution is type of loop code motion that creates two loops from a single
loop that contain an “if” statement. The hoisted code is a conditional test. Some
early papers in the 1990s called it “loop unswitching.” Some papers use the term
“loop distribution” with the different meaning of splitting a loop into two loops,
which we call “loop fission.”

The goal of loop distribution is to move an “if” test out of the loop body, by
creating two loops, and ends up creating two separate loops on two pathways. This
sounds similar to loop fission, but loop distribution is a more general optimization
that doesn’t require parallelization to get a speed improvement (whereas loop
fission does).

517 C++ Ultra-Low Latency

Instead, loop distribution gets a benefit in ordinary sequential execution because it
moves the if-test computation out of the loop body to a once-only pre-
initialization test (i.e., “hoisted”). Note that only one of the two loops is executed
each time, and these two loops are never executed in parallel, so this technique is
not really a type of loop fission.

Example: Loop Distribution: Here’s a dummy example of implementing an
“add-or-subtract” function using a passed-in Boolean flag.

void aussie vector addition slow(
float v([], int n,
bool do_add, float scalar)

for (int i = 0; 1 < n; i++) {
if (do_add)
v[i] += scalar; // Add
else
v[i] -= scalar; // Subtract

The problem is that the test “1f (do_add)” is computed for every loop iteration,
and yet “do_add” is a loop-invariant flag variable. The faster version is to use loop
distribution to move the if-test into the loop initialization, and then split the two

pathways inside the loop to instead have two separate loops. Here’s the faster
version:

void aussie vector addition loop distribution(
float v[], int n,
bool do_add, float scalar)

if (do_add) { // Add scalar
for (int i = 0; 1 < n; i++) {
v[i] += scalar; // Add
}
}
else { // Subtract scalar
for (int i = 0; 1 < n; i++) {
v[i] -= scalar; // Subtract

This example is still far from optimal. For starters, it should be using pointer
arithmetic rather than array indices.

David Spuler 518

Loop Reordering

In neural networks, there are many loops, and many ways of nesting them, or
running them in sequence. The convolution layers in CNNs can have literally seven
layers of nested loops. Hence, there are various research papers exploring different
orders to perform the various computations.

Loop reordering is the general class of optimizations that involves reordering loops
or their iterations. This can refer to changing the ordering of two sequential loops
or two nested loops. The reordering optimization to reverse the inner and outer
nested loops is more precisely called “loop interchange.” A single loop can also be
reordered with “loop reversal.”

Loop reordering is an optimization that doesn’t reduce the total computations,
because it always executes the same number of iterations as the original version.
However, loop reordering may have several benefits:

e Vectorization. Putting the loop in a different order may make it more
vectorizable, or may allow other loop transformations to be applied before
vectorization.

e Data locality. Reordering the loops may improve data locality and cache
access speed by doing the operations in a different order. This reduces the
cost of accessing the data into memory (or low-level caches), rather than
the cost of the arithmetic. It is therefore related to memory/dataflow
optimizations and pipelining optimizations.

e Reduced loop overhead. Both loop interchange and loop reversal can
reduce the general overhead of loop testing. Loop interchange allows the
shorter loop to be on the outside. Loop reversal allows “looping down to
zero” which reduces overhead.

Loop Iterator Strength Reduction

Loop strength reduction is the arithmetic optimization of “strength reduction”
applied to loop iteration variables. For example, strength reduction aims to replace
multiplication with addition. Consider this loop:

for 0; 1 < n; 1i++) {

int 1 =
[1] = 10 * 1i;

(
a

519 C++ Ultra-Low Latency

This can be optimized to change the multiplication into an incremental addition:

for (int i = 0, x = 0; i < n; 1i++) {
ali] =
x += 10;

Note that the loop strength reduction optimization isn’t a good choice for loop
parallelization. Although it would be desirable to change a vectorized multiplication
to addition, this optimization has changed to an incremental algorithm. This makes
each loop iteration dependent on the prior one, with the results dependent on the
previous computation, so they cannot be done in parallel.

Loop Coalescing

Loop coalescing is a loop optimization that involves flattening two nested loops
into one non-nested loop. Typically, loop coalescing will still operate on a 2-
dimensional array, whereas flattening both the nested loops and the array is called
“loop collapsing.”

As a dummy example, consider a matrix initialization via nested loops:

for (int 1 = 0; i < n; i++) {
for (int j = 0; j < m; Jj++) {
arr[i][j] = 0.0f;

Loop coalescing involves changing to a single loop, but still using two indices i and
j, which are calculated from the main linear index.

int maxx = n * m;

for (int x = 0; 1 < maxx; x++) {
int 1 = x / n;
int 3 = x % m;
arr[i][j] = 0.0f;

The benefit in speed from loop coalescing can arise by simplifying the loop, which
makes it easier to parallelize via hardware acceleration, and also maybe a different
data access pattern which might improve data locality and cache freshness.

David Spuler 520

This optimization is not always possible, as nested loop logic is often quite
complicated, and flattening a nested loop may actually worsen data locality in many
instances. However, the linear nature of a simple loop can make the code to send
off chunks to a GPU much easier.

Loop Collapsing

Loop collapsing is closely related to loop coalescing, since both aim to flatten nested
loops, but loop collapsing is a special situation where the array is also flattened to
one dimension.

Consider a matrix initialization via nested loops over a 2-dimensional array:

for (int 1 = 0; 1 < n; 1++) {
for (int 7 = 0; j < m; J++) {
arr[i][J] = 0.0f;

}

The loop collapsed version has one big loop over a different one-dimensional array:
int maxx = n * m;
for (int x = 0; x < maxx; x++) {
arr2([(x] = 0.0f;
}

This loop transformation to a single loop is obviously more amenable to
vectorization.

Loop Peeling

Loop peeling is a type of loop unrolling that involves unraveling only the first few
iterations of a long loop. This is also similar to “loop splitting” with two sections,
where the first section is over the early range, and the second range is the main
section of all remaining iterations.

Loop peeling is beneficial to the overall loop efficiency if there is code in the loop
body that is only required for one or two early iterations, which can then be
removed from the main loop body. Similarly, there can be benefit in unraveling the
last few iterations of a loop, which is a similar technique.

521 C++ Ultra-Low Latency

One common case of loop peeling is when the first iteration is different from the
rest, so pecling off a single iteration is valuable.

-

for (int 1 0; < n; i++) |
arr[i] = (i == 0) 2 0.0f : 1.0f;

In this case, we can peel off the first “i==0" iteration into a single unrolled
instruction, and change the main loop to start at 1. This is also a trivial form of
“loop distribution,” where we are hoisting an “1i £” conditional test out of the loop.
The new code becomes:

arr[0] = 0.0f; // Peeled
for (int 1 1 /*not 0*/ ; 1 < n; i++) {
arr[i] = 1.0f;

This peeled version is faster in terms of both sequential or parallel execution. The
loop body has less computation and is also more amenable to vectorization.

Loop Splitting

Loop splitting refers to splitting the sequential iterations of a loop into two loops,
which each perform part of the original loop’s iterations. Loop splitting is closely
related to “loop sectioning” (“strip mining”), but often relates to more complex
arithmetic in the loop body. Note that “loop peeling” is a special case of loop
splitting where the first section is a small range of a few initial iterations, but these
few iterations are unrolled rather than looped.

Loop splitting takes a single loop and transforms it into at least two “split-out”
loops, one for the early iterations, and one for the remainder. However, loops can
also be split out into more than two loops.

In loop splitting, each split-out loop is shorter than the original loop. Unlike loop
fission, the two loops operate over different subportions of the iterator variable
range, executing the same number of total iterations, rather than double iterations
as in loop fission.

David Spuler 522

Example: Loop Splitting: Here’s some example code to “sqrtize” a vector, using
a cached optimization for the numbers up to 100.

void aussie vector do sqgrt(float v[], int n)

{

for (int i = 0; 1 < n; i++) {
if (i < 100) { // Fast cases
v[i] = aussie sqgrt optimized(v[i]);

}

else { // General case
v[i] = sqgrtf(v[i]);

}

However, we can use loop splitting to split this big loop into two shorter disjoint
ranges. Instead of 0..n-1, we do 0..99, and then 100..n-1. Each loop header is over
part of the range, and has a simpler loop body. Note that this code fails with an
array bounds violation for small values of n less than 100.

void aussie vector do sqrt loop splitting(
float vI[], int n)
{
for (int 1 = 0; 1 < 100; i++) { // Fast cases

v[i] = aussie sqgrt optimized(v[i]);

}

for (int i1 = 100; i < n; i++) { // General cases
v[i] = sqgrtf(v[i]);

}

The loop splitting optimization is beneficial if the loop body has different sections
of code that only relate to a subset of the iterator range. Hence, the loop bodies for
the two loops can be reduced to execute less code. Overall, there is still the same
number of iterations performed in the two loops combined, but each loop performs
only a proportion of the original iterations on a simpler loop body. This optimizes
sequential execution and the simpler code in each loop body may make
vectorization of one or both subloops easier. Furthermore, both subloops could
run in parallel.

523 C++ Ultra-Low Latency

Loop Interchange

Loop interchange is an optimization of nested loops that switches the inner and
outer loops. In a typical nested loop, the outer loop body and loop test is executed
rarely, almost lazily, whereas the inner loop body is scrambling along in a frantic
mess. Loop interchange simply switches them, reversing their roles.

Why is this an optimization? Although the same number of loop iterations still
occur in total, and the newly-made inner loop body is also thrashed, various
improvements can arise from reversing the iterator variables, usually to make the
innermost loop the longest. Possible optimizations result from:

e TFewer outside computations. A shorter outside loop reduces the arithmetic
operations of the outer loop, whereas the inner loop’s number of
computations is unchanged in either loop structure.

e Data locality. Another possible improvement is in data locality, which can
reduce cache misses and speeds up the overall execution. Note that this
benefit is not guaranteed just by switching loops, and sometimes loop
interchange can worsen data locality; careful analysis is needed.

e Inner loop vectorization. Another important possibility is that reversing
nested loops can create opportunities to apply other loop optimizations to
the new inner loop, notably to vectorize the inner loop.

Shortest loop outside, longest innermost loop: One of the considerations of
loop interchange is the optimization of putting the shortest loop on the outside,
and making the innermost loop with the longest range of iterations. This is an
optimization for both sequential or parallel execution. For sequential execution,
there is less overhead from the outer loop, because it is shorter. For parallelization,
there is improved vectorization of the inner loop, which now has a longer range.

Consider this example:
for (int 1 = 0; 1 < 1000; 1i++) {

for (int j = 0; j < 50; Jj++) |
//

The current loop nesting has the longest loop (to 1000) on the outside, and the
shorter loop (to 50) as the innermost loop.

David Spuler 524

Loop interchange simply makes it the reverse nesting:

for (int j = 0; j < 50; j++) {
for (int i = 0; i < 1000; i++) {
//

Considering sequential execution, the inner loop body is executed the same number
of times, so there’s no difference. This also includes the inner loop’s conditional
test and incrementer, which are different variables in the two examples, but also
execute the same number of times (50,000 times). However, consider the different
outer loops. The first example is 1000 iterations, whereas the second example’s
outer loop is only 50 times. Hence, the loop reordering optimization of “shortest
outer loop” and “longest innermost loop” has saved 950 of the outer loop’s
calculations (i.e., loop test and incrementer). Any extra code that’s in the outer loop,
either before or after the inner loop, would also be executed fewer times.

There is also an advantage for vectorization. In the first example, we could possibly
have 1000 vectorized operations of data size 50. In the interchanged loops, there
are 50 operations on vectors size 1000. Hence, there is more opportunity for much
larger vectorization gains in the second format with the longest inner loop.

Loop Sentinel

Loop sentinels are an optimization that removes the overhead of checking an array
index or pointer scanning an array or pointer chain. The technique does this by
adding a pretend extra element onto the end of the array, in a way that we can
pretend to succeed.

And since we’re guaranteed to always succeed, we don’t need to check for failure
while scanning the loop.

This technique is not particularly useful for vectorization, but is quite powerful for
long sequential scanning of arrays. It also has the downside of requiring at least one
writeable array element, so it cannot run on read-only arrays.

525 C++ Ultra-Low Latency

Example: Check Vector Negatives: Here’s the basic loop sentinel version that
sets up a dummy success in v [n]:

bool aussie vector has negative sentinel (
float v[], int n)

{
v[n] = -99.0; // Dummy negative (BUG!)
int i = 0;
for (; /*GONE!*/; i++) {
if (v[i] < 0.0) break; // Found negative
}

if (i == n) return false; // Fake success
return true; // Found a negative (for real)

However, this is actually buggy, since “v [n]” is potentially an array overflow. A
better version can manipulate the last valid element “v [n-1]" instead of moditying
“v[n]”. Then, we have to remember to fix it before we leave town. And we also
have to remember to check the last vector element that we temporarily overwrote
wasn’t also a real success.

bool aussie vector has negative sentinel2(
float vI[], int n)
{

float save = v[n - 1]; // Save it!
vin - 1] = -99.0; // Dummy negative at end
int i = 0;

for (; /*GONE!*/; i++) {
if (v[i] < 0.0) break; // Found negative
}
v[in - 1] = save; // Restore it!
if (i ==n - 1) {
// At the dummy (fake success)
if (save < 0.0) return true; // Must check
return false;

}

return true; // Found a negative (for real)

David Spuler 526

Loop Strip Mining (Loop Sectioning)

Loop strip mining is a loop optimization that scans or “mines” various “strips” in
an array. It is related to “loop tiling”” on arrays in two dimensions, but strip mining
only applies to processing one-dimensional arrays. Loop strip mining is also called
“loop sectioning” because it breaks an array up into sections that are operated on.

For a basic example, consider a simple atray initialization:

for (int i = 0; 1 < n; i++) {
arr[i] 0.0f;

}

Let’s assume we can parallelize this with 16 elements at a time (e.g., 512 bits total
parallel processing, which is 16 separate 32-bit f£1oat variables). So, we want to
process “strips” of length 16. For simplicity, let us assume that n is divisible exactly
by 16, so there’s no leftover work after the main loop.

for (int i = 0; 1 < n; i += 16) {
// Initialize arr([i]...arr[i+15] in parallel

}

Obviously, this is a dummy example, where memset would do better for zeroing
the array. Also, this really looks exactly like “vectorization” to me, where we are
vectorizing 512 bits at a time (16 £loats), and indeed the research mentions
vectorization as one application. But loop strip mining and vectorization are not
exactly the same techniques, because loop strip mining is a more general idea with
other applications.

Loop Spreading

Loop spreading is an optimization of two non-nested sequential loops that have
different iteration ranges. Typically, this refers to where the end ranges differ
significantly. If the loop ranges only differ by an off-by-one issue, then only loop
normalization is required.

Loop spreading modifies one of the loops, so that part of this loop fully overlaps
with the other loop (i.e., ideally one loop “spreads out” further to match the other
loop’s end bounds). Hence, after loop spreading has occurred, this subloop can be
fused with the other loop, and possibly parallelized. The remaining iterations that
are not overlapping then have to be addressed in a followup partial loop (only for
one of the loops).

527 C++ Ultra-Low Latency

Loop spreading mainly enables loop fusion as a followup optimization. For using
loop fission on the two loops, it is not necessary to do loop spreading, since the
two loops are already split apart, and each loop could already potentially be
vectorized independently.

Loop Normalization

Loop normalization is not directly an optimization, but is a preliminary loop
transformation that can make further loop optimizations easier. Followup
optimizations might be to fuse the two loops with loop fusion, or to parallelize each
loop, such as with loop fission or vectorization.

The goal of loop normalization is to make the loop iteration variables act across the
same range. This applies to two sequential loops, rather than nested loops. Hence,
loop normalization is needed when two loops in sequence are starting at different
offsets (e.g., one is i=1 and another starts at 1=0), or are finished at different
endpoints (e.g., n versus n-1).

If two loops have the same number of computations, but with different ranges,
then one loop can be changed with an offset. For example, these loops differ with
ranges 0..n-land 1. .n:

for (int i 0; i < n; i++) af[i] = 0;
for (int § = 1; j <= n; j++) b[j] = 0;

These can be adjusted to the same ranges with a “j+1” index offset, as follows:

for (int 1 = 0; 1 < n; 1i++) afli] = 0;
for (int j = 0; Jj < n; Jj++) b[j+1l] =

If the two loops have a different number of iterations, typically off by 1 or 2, then
“loop peeling” can be used to unroll and split off one or two iterations and shorten
the longer loop, so that both loops have the same number of iterations over the
same range. For example, in this example, one loop is 0..n-1 and another
1s0..n:

for (int i = 0; i1 < n; i++) ali] = 0;
for (int j 0; j <= n; j++) b[j] = 0;

David Spuler 528

[TESE)

The way to normalize the loop ranges is to “peel” off the last iteration of the “j
loop:

for (int 1 = 0; 1 < n; i++) a[i] = 0;
for (int j = 0; j < n; j++) b[J] = 0;
b[n] = 0; // Peeled

This example has peeled the longer loop to make it shorter. An alternative would
be “loop spreading” to lengthen the shorter loop, such as by adding an extra
padding element into the array.

Normalizing two loops doesn’t change the number of arithmetic computations.
However, once two loops have normalized ranges, it becomes easier to see
opportunities for further optimizations such as loop fusion or loop fission.

Loop Skewing

Loop skewing is a somewhat mind-bending method to change nested loops to make
them more parallelizable. This technique applies when there are two nested loops,
but the inner loop is difficult to parallelize because of a dependency on the outer
loop variable. The performance advantage from loop skewing is not directly its
usage, but because skewing changes then make possible other loop optimizations,
especially loop interchange, which reorders the inner and outer loop.

The loop skewing solution is far from obvious. The range bounds of the inner loop
are changed by “skewing” them by a factor based on the outer loop variable. And
then, by some magical potion, this somehow breaks the dependence on the outer
loop, and then the inner loop can run fast on a GPU. Who knew?

As a simplistic example, consider two nested loops:

for (int 1 = 0; 1 < 1000; 1i++) {
for (int j = 0; j < 50; j++) {
arr[i] [j] = something;

}

We can skew the inner loop by adding a skew factor based on the outer loop

T2

variable (e.g., “i” or “i+1” or something similar). Add this skew factor to the

EEE

ranges of j, but then subtract the skew factor (“i”) from any usages of the index

TR}

j” inside the inner loop’s body.

529 C++ Ultra-Low Latency

for (int i = 0; 1 < 1000; 1i++) {
for (int J = 1i; j < 50 + 1i; j++) {
arr[i][j - 1] = something;

}

Hence, j has changed from the range (0...50) to the skewed range (i..i+50), by
adding the skew factor “i” to the start and end. The use of “3” in the inner loop
body has changed from “j” to “3-1” (i.e., subtracting the skew factor “i”). The
result is a kind of skewed and “triangular” shape of i and j indices, but the actual
arithmetic calculations are unchanged.

This newly skewed code isn’t any faster, does exactly the same calculations on the
50,000 elements of array arr, and indeed is actually worse because of the extra
“50+1” and “j-1i” computations. However, in some cases, doing this weird
skewing transformation then allows us to follow up with a loop interchange
optimization, switching the inner and outer loops. And I’'m not even going to
pretend to understand this, but there are situations where the non-skewed inner
loop cannot be vectorized or interchanged, but after we’ve skewed the loop, then
we can interchange it, and then we get via hocus pocus a different inner loop that
can then be vectorized. Hopefully, the GPU knows what’s going on.

References

1. Allen, F. E., and Cocke, J. 1972. A catalogne of optimizing transformations. In
Design and Optimization of Compilers, Prentice-Hall, Englewood Cliffs,
N.J., pp. 1-30.

PDF: https://www.clear.rice.edu/comp512/T.ectures/Papers /1971-
allen-catalog.pdf

2. D.F. Bacon, S. L. Graham, and O.]. Sharp. 1994. Compiler transformations
Jfor high-performance computing . ACM Computing Surveys 206, 4 (1994), 345—
420. https://dl.acm.org/doi/10.1145/197405.1974006,

PDF: https://people.cecs.berkeley.edu/~fateman/264/papers/bacon.pd
f (Paper with extensive coverage of numerous compiler auto-
optimizations of program code.)

3. Paul Bilokon, Burak Gunduz, 8 Sep 2023, C++ Design Patterns for Low-
latency Applications Inciuding High-frequency
Trading, https:/ /arxiv.org/abs/2309.04259,

Code: https://github.com/Oburak/imperial hft

4. Eric LaForest, March 19, 2010, Survey of Loop Transformation Techniqgues,

ECE 1754, http://fpgacpu.ca/writings /Surveyl.oopTransformations.pdf

David Spuler 530

https://www.clear.rice.edu/comp512/Lectures/Papers/1971-allen-catalog.pdf
https://www.clear.rice.edu/comp512/Lectures/Papers/1971-allen-catalog.pdf
https://dl.acm.org/doi/10.1145/197405.197406
https://people.eecs.berkeley.edu/~fateman/264/papers/bacon.pdf
https://people.eecs.berkeley.edu/~fateman/264/papers/bacon.pdf
https://arxiv.org/abs/2309.04259
https://github.com/0burak/imperial_hft
http://fpgacpu.ca/writings/SurveyLoopTransformations.pdf

5. B Qiao, O Reiche, F Hannig, 2019, From loop fusion to kernel fusion: A
domain-specific approach to locality optimization, 2019 IEEE/ACM
International Symposium on Code Generation and Optimization
(CGO), https:/ /iecexplote.ieee.org/document/8661176 (Theoty of loop
fusion generalized to graph kernel fusion for image processing.)

6. Kathryn S. McKinley, Steve Carr, Chau-Wen Tseng, 19906, Improving data
locality with loop transformations, ACM Transactions on Programming
Languages and Systems, Volume 18, Issue 4, pp 424—

453, https://dl.acm.org/doi/10.1145/233561.233564

7. B Blainey, C Barton, JN Amaral, 2002, Removing impediments to loop fusion
through code transformations, International Workshop on Languages and
Compilers for Parallel Computing, LCPC 2002: Languages and Compilers
for Parallel Computing pp 309—

328, https://link.springer.com/chapter/10.1007/11596110 21

531 C++ Ultra-Low Latency

https://ieeexplore.ieee.org/document/8661176
https://dl.acm.org/doi/10.1145/233561.233564
https://link.springer.com/chapter/10.1007/11596110_21

David Spuler 532

50. Parallel Data Structures

Bit Vectors

Bit vectors are conceptually an array of N bits with 0 or 1 values. The term “bit set”
is almost synonymous, but has a slightly different meaning. A bit vector maps a
number at the index position to its binary bit value, whereas a bit set specifies
whether a number is in a set of numbers. Both interpretations are valid, depending
mostly on the application, and the underlying implementation of the data structure
is almost identical.

In AI applications, a bit vector may represent a set of weights with 0 or 1 values,
such as with binary quantization or XNOR neural networks. The computation for
vector dot product on two bit vectors can be performed arithmetically using bitwise
arithmetic.

Sparsity optimizations are another application of bit vectors. Pruning can often
create “sparse” weight matrices, with lots of zeros and very few non-zero weights.
A bit vector can then efficiently represent whether a weight in a vector has a non-
zero value, which is then used to avoid doing any computations on zero values. An
alternative to bit vectors for sparsity is to use permutation arrays of indices, as
discussed further below.

Another application of bit vectors occurs in Bloom filter data structures, which are
a probabilistic hybrid of hash tables and bit vectors. In this usage, a bit set represents
whether an input number is found in the set of already-mapped numbers.

In practice, bit vectors or bit sets are often implemented as arrays of unsigned
integers, with the bits packed into each integer. If the undetlying unsigned type is
32-bits or 64-bits, then many bitwise operations on bit vectors can be performed
32 or 64 bits at a time, achieving significant parallelism without using any major
form of hardware acceleration beyond basic CPU instructions. Use of AVX SIMD
instructions can then further vectorize many operations without a GPU. But it
absolutely flies if you use a GPU with bit vectors or bit sets, because that’s two
levels of parallelization.

533 C++ Ultra-Low Latency

There are several pre-built C++ bit set classes that can be considered:

e std::bitset<N> (in <bitset>)
e std::vector<bool>
e Dboost::dynamic_bitset<>

If the maximum size of the bit vector is known at compile-time, which is often the
case with Al models, then std::bitsetis a good choice. If not,
then std: :vector<bool> or boost: :dynamic bitset<> are good choices
for dynamic-sized bit vectors. Alternatively, you can build your own bit vectors, if
there is a particular need to hand-code them or if you just want some fun.

Permutation Arrays

Most of the vectors in Al engines are not just random lists of numbers. Rather, they
are (conceptually) an array of the probabilities of output words, where the position
in the vector indicates which word. So, if we have our logits array,
then logits[0] is the probability of “the” whereas logits[1]is the
probability for “cat”, and so on, up to about 50,000, which is a common
vocabulary size for LLMs.

Problems arise if we want to sort our probabilities in the logit array, and we need
this for our decoding top-k algorithm. We can’t just sort the vector of probability
numbers, because we’ll lose track of which probability maps to which token
number.

Permutation arrays to the rescue! A permutation array is an array that is the same
size as some other array, but maps to the zndices of the other array. A permutation
array for our vocabulary has 50,000 integers, each of which is the index into other
arrays.

The downside of permutation arrays is that they introduce inefficiency in both space
and time. Space usage is increased by having two vectors. The time cost to access a
vector element increases, too. Rather than just looking up the probability for the
nth word in the logits array (l.e., “prob=logits[n]”), we have a two-step
procedure:

1. Look up the index in the nth element of the permutation array (i.e.,
“i=permut [n]”),

2. Use that index to look up the probabilities in the main logits array (i.e.,
“prob=logits[i]”).

David Spuler 534

So, it’s bigger and slower. Some rescue.

However, permutations can be valuable if it allows us to do much less arithmetic
overall, which is the case with “sparse” arrays where most elements are zero. This
is why permutation arrays are used for LLM sparsity optimizations, but not in
normal practice.

Sorting with a Permutation Array: The way to sort another array, indirectly via a
permutation array, is shown in detail for the top-k decoding algorithm. The basic
idea is:

1. Set up the identity permutation.

2. Sort using an indirect procedure: (a) compare elements in the main array
indirectly accessed via the permutation array, (b) swap the indices in the
permutation array (not changing the main array).

So, the original array doesn’t actually get sorted with only the permutation array
changing. If we want to print out the main array in a sorted list, we have to do so
via the permutation array. The original main array is still unsorted if we access it
directly.

Sparsity with Permutation Arrays. Sparsity is an optimization where most of the
weights have been “pruned” to zero, and only a small percentage remain non-zero.
This saves a lot of storage space for the model, and can also run much faster. The
basic vector dot product kernel only needs to calculate with non-zero weights, so
we want a way to avoid processing all of the many zero weights. Again, permutation
arrays are the solution!

Sparse vectors (or matrices or tensors) can be stored as parallel arrays of:

e Non-zero weights only
e Permuted integer index of that non-zero weight in the original vector

These two arrays are much shorter than the original vectors if there is high sparsity.
If sparsity is 90%, then 10% of numbers are non-zero, and the permutation
approach uses two arrays, so it is 20% of the original size. The cost of doing a sparse
dot product has reduced from the full length of the original vectors, down to the
average sparsity factor (i.e., how many non-zero values). In other words, the
number of multiplication computations goes down to 10% FLOPs, although there’s
the extra permutation calculation, so it’s might seem like it’s 20%, but we can often
hardware-accelerate the permutation array step in CPU or GPU architectures.

535 C++ Ultra-Low Latency

Hence, sparse vector dot products are fast. Calculation of the vector dot product
for Al inference need only multiply using the much smaller number of non-zero
weights.

Can we vectorize permuted arrays for hardware acceleration? Short answer: yes.
Permutations can be vectorized with hardware acceleration in both CPU and GPU
versions. The C++ AVX “gather” (load) and “scatter” (store) intrinsics work for
x86 CPUs. Different GPU primitives are available for permuted arrays.

Sparsity doesn’t really work without permutations. A raw full-size vector containing
lots of zeros doesn’t vectorize well, because it still sends all of those zeros for
processing. A permuted index of sparse values works much better because it only
considers non-zero values.

Vector Hashing

Vector hashing is needed in various parts of an Al engine as a speedup. There are
various Al research papers on using hashing for various computations involving
vectors and tensors of higher dimensions. Implementations of such algorithms are
available in open source and commercial “vector database” products that you can
use. Some of the applications for LLMs include inference caching, embeddings, and
RAG architectures.

But how do you hash a full-length vector? Or a matrix? It’s a complicated theoretical
area. One of the main techniques is Locality-Sensitive Hashing (LSH), which is
hashing to find vectors that are “close” in #-dimensional space.

One of the interesting research areas for vector hashing is total precomputation of
vector dot products. Think about precomputation of vector dot products in Al
inference. If you could hash the two vectors, then you could replace the main
bottleneck in Al inference with two hash lookups. Is there a way to efficiently
convert a vector dot product operation on two vectors into a hash lookup, thereby
avolding all those multiplications? What about speedup of matrix multiplication by
hashing?

Remember that you can pre-compute anything about the weights before inference,
because they don’t change during inference. Hence, one of the vectors could
potentially be pre-hashed offline. Maybe you could even use some type of “perfect
hashing” for those vector hashes, if you’ve got a big enough compute budget. But
you can’t pre-hash both of the vectors or pre-compute the dot product, because
the other vectors are dynamically calculated along the way, dependent on inputs.
This is being examined by advanced researchers, and is still a work in progress.

David Spuler 536

Perfect Hashing

Perfect hashing aims to achieve collision-free O(1) hashing at runtime, by investing
a lot of offline compute budget to find an optimal hash function for a set of static
data. There are many possible hash functions, and some are better than others.
Perfect hashing tries to find an optimal hash function within the search space for
possible methods. Mostly, it’s by trial-and-error. Searching for a perfect hash
function typically uses a brute-force and computationally expensive method for
simply trying multiple hash functions and testing them for collisions.

Perfect hashing only works in the situation where all of the possible keys are known
in advance (i.e., static data). Interestingly, this is exactly the situation with Al model
vocabularies!

Hence, the idea of perfect hashing can be used to improve the performance of a
hash table in the tokenizer. The general concept is that different hash tables are
tested with various different meta-parameters (e.g., the hash table size, and
multipliers in the hashing function). So, you can test various different hash
functions against the 50,000 known tokens in the vocabulary, until you find a
“perfect” one where there are no clashes. Amusingly, this longstanding algorithmic
method sounds exactly like doing Neural Architecture Search (INAS) to find the
best AI model hyper-parameters.

Bloom Filters

Bloom filters are a probabilistic data structure based on a combination of hashing
and bit vectors. Multiple hash functions are computed for each key, and this is used
to set bitflags, as described in more detail below. Bloom filters are mentioned in
various research papers on Al, but are not yet used much in industrial Al
applications. Perhaps they should be, as they seem very efficient.

Like hashing, Bloom filters have been used as a data structure to speed up neural
network inference. However, much of the research literature about Bloom filters is
about a different topic: Weightless Neural Networks (WNNs). WNNs have a
different type of neuron based on binary bits, rather than matrix multiplications.
These bitflag neurons can be approximated using Bloom filters. As such, that part
of the research is less relevant to optimization of Transformer inference, and has
not been examined in detail below.

How do Bloom Filters work? Given a key, multiple hash functions are calculated
for that key, and a binary flag is set in a bitflag table for each of those hash offsets.
In this way, an input key maps to a pattern of multiple bits.

537 C++ Ultra-Low Latency

The Bloom filter lookup for a key value works as follows: To test whether a key is
found, the multiple hash functions are computed, and then the bitflag table is
analyzed to see if all those bits are set. If any of the bits are missing, the key is 7o in
the Bloom filter. If all of the bits are found, the key is probably in the Bloom filter,
but it may also be that other keys have coincidentally set all those bits (a “false
positive”), so it is not 100% guaranteed to be present.

If a probabilistic speedup is good enough, then a Bloom filter is all you need. For a
100% accurate table lookup, adding a second different type of backup data structure
needs to be queried to confirm. Hence, the Bloom filter is a fast test to see if a key
is not in a set, but a slow test if the key is found. This makes it an example of
“common case first”, where fast computations skip more involved computations.

The computational complexity of Bloom filters is constant, but not as fast as
hashing. A hash filter uses only a single hash function, so it has O(1) lookup.
However, a Bloom filter uses multiple functions, k, with O(k) lookup complexity.

References

1. Thomas Dean, Mark A Ruzon, Mark Segal, Jonathon Shlens, Sudheendra
Vijayanarasimhan, and Jay Yagnik. 2013. Fast, accurate detection of 100,000 object
classes on a single machine. In Proc.

CVPR. https://web.stanford.edu/class/cs231m/references/hashing-dpm.pdf

2. Braddock Gaskill, 18 Oct 2019, The Bitwise Hashing Trick for Personalized
Search, https:/ /arxiv.org/abs/1910.08646

3. Alexander Golynski, Alessio Orlandi, Rajeev Raman, S. Srinivasa Rao, 10 Aug
2011, Optimal Indexes for Sparse Bit 1ectors, https://arxiv.org/abs/1108.2157

4. Seungmin Yu, Xiaodie Yi, Hayun Lee, Dongkun Shin, 30 Jul 2024, Toward
Efficient Permutation for Hierarchical N:M Sparsity on
GPUs, https://arxiv.org/abs/2407.20496

5. M. Mor, A. S. Fraenkel, 1982, Permutation Generation on V'ector Processors, The
Computer Journal, Volume 25, Issue 4, November 1982, Pages 423—

428, https://doi.org/10.1093/cominl/25.4.423 https://academic.oup.com/comj
nl/article/25/4/423/366370

6. D Liang, M Hashimoto, H Awano, 2021, Bloomca: A memory efficient reservoir
computing hardware implementation using cellular automata and ensemble bloom filter, 2021
Design, Automation & Test in Europe Conference & Exhibition
(DATE), https://ieeexplore.iece.org/abstract/document/9474047

7. Wikipedia, Bloom filter, https://en.wikipedia.org/wiki/Bloom filter

8. Sourin Chakrabarti, 18 Nov 2020 (v2), Efficient image retrieval nsing multi nenral hash
codes and bloom filters, https://arxiv.org/abs/2011.03234

9. Aviim, 22 Dec 2024, How bloom filters made SQLite 10x
Saster, https://avi.im /blag/2024 /sqlite-past-present-future

10. Atsuki Sato, Yusuke Matsui, 6 Feb 2025. Cascaded I _earned Bloom Filter for Optimal
Model-Filter Size Balance and Fast Rejection, https:/ /arxiv.org/abs/2502.03696

David Spuler 538

https://web.stanford.edu/class/cs231m/references/hashing-dpm.pdf
https://arxiv.org/abs/1910.08646
https://arxiv.org/abs/1108.2157
https://arxiv.org/abs/2407.20496
https://doi.org/10.1093/comjnl/25.4.423
https://academic.oup.com/comjnl/article/25/4/423/366370
https://academic.oup.com/comjnl/article/25/4/423/366370
https://ieeexplore.ieee.org/abstract/document/9474047/
https://en.wikipedia.org/wiki/Bloom_filter
https://arxiv.org/abs/2011.03234
https://avi.im/blag/2024/sqlite-past-present-future/
https://arxiv.org/abs/2502.03696

51. Lookup Tables &
Precomputation

Precomputation with Lookup Tables

Look-up tables (LUTSs) are a well-known simple data structure for optimizing code.
They have been used to optimize neural networks in various ways. Some examples
include:

e Precomputed activation functions
e Zero-multiplication networks
e Approximation of non-linear functions

Precalculation or precomputation is a code optimization where results are partially
ot fully calculated ahead of time. This method is similar to caching and computation
reuse but refers to calculations being performed long before they are needed, often
at program startup or compile-time, and stored in lookup tables. Like caching, this
method trades extra space for time.

Vectorization of LUTSs is possible with hardware acceleration primitives that
supportt parallel memory accesses using integer indices. For example, the x86 CPU
with AVX intrinsics has a set of “gather” instructions for doing indexed lookup
that can be used to load from a LUT into the internal registers, and “scatter”
instructions for storing the registers back to an indexed LUT.

Typical precalculations are those where the results are computed at program
initialization or compile-time. The best methods generate the results at compile-
time, and are simply loaded as data, such as numeric constants or pre-initialized data
arrays. There are multiple ways to do this:

e Program startup initialization
e Lazy evaluation

e Binary data file

e Precompiled source code

539 C++ Ultra-Low Latency

One method for precomputation of larger amounts of data in an array or lookup
table is to perform the initialization dynamically at program startup. A lookup table
can be populated with the required results, before the main logic of the program
begins. Or alternatively, the idea of “lazy evaluation” allows storing the
precomputation into a lookup table only when the program first needs the data.

A faster alternative is to calculate all this data offline before program startup, and
store the results in a binary data file. This data file can then be loaded into an array
at program startup, without needing to perform any of the arithmetic computations.
Whether this is beneficial depends on the cost of the computations versus the cost
of file loading.

The logical extension of the precomputation method for a large number of numeric
results is to write special C++ code that performs these calculations, but then
outputs the results into a text file in the exact format of a C++ source code file
(rather than a data file), that declares a global array name and the numeric values.
This auto-created C++ code is then linked with your program.

Example: LUT Precomputation for sqrt

Let’s say that you want to optimize a slow non-linear function like “sqrtf” (or
“expf” or “logtf”). These are good candidates for optimization because of their
non-linearity.

The first point is that you’d better do a really good job, because there are actually
hardware instructions for these common math functions, even in x86 architectures.
So, you could easily optimize this into a table lookup, and find that your C++ code
is still slower than the single CPU instruction that’s called by the standard C++
library versions. Hence, investigate the C++ intrinsic functions for common math
functions before you assume that you can do better than electrons zipping through
silicon.

This example investigates precomputing “sqrtf” even though that may not be as
fast as hardware-acceleration. However, the same ideas apply to precomputing
more sophisticated derivative functions, such as Softmax and activation functions,
which are not hardware-supported (or not yet, anyway). The same general ideas

apply.

David Spuler 540

The basic method for table lookup optimization is:

e Declare a big array (the bigger the better).

¢ Run aloop sending every value to the real “sqrtf” function.
e Store each result in the big array.

e Now you have a precomputed table of all possible values.

e Later, use an array index lookup to compute the function fast.

How is than any faster? I mean, we’ve just called “sqrt£” a bazillion times with
numbers that we probably won’t ever need. Yes, there is extra cost, and we are
running slower during program initialization. There are at least two ways to fix this:

1. Load the array values from a pre-built binary data file instead, or,
2. Precompile the array data into a C++ source code file.

However, this complaint underestimates just how many times the code may call
these functions. Even with this startup cost, once that is all done and dusted, we
have a big array of precomputed data that we can use to speed up the program
execution, which is our main goal. And in a production environment, any extra
startup cost is hopefully amortized over many executions.

Example: Precomputing sqrt of integer: For simplicity, we’re going to first
assume that we’re computing a £1oat square root of integers. The function we are
precomputing is “int-to-float” type. This makes it easier, because the int can
be used as an array index.

Here’s my big array with about 65,000 entries:

#define AUSSIE SQRT PRECOMP MAX (lu<<16)
float g sqgrt precomp table[AUSSIE SQRT PRECOMP MAX];

Here’s the unoptimized function “int-to-float” version of “sqrt £” that we are
planning to precompute:

float aussie sqrtf basic_int (int x)

{
return sgrtf ((float)x);

Here’s the initialization call to the precomputation routine, sending in the array, the
size N, and the function pointer:

541 C++ Ultra-Low Latency

aussie generic precompute_ int (
g_sqgrt precomp table, // Big array
AUSSIE SQRT PRECOMP MAX, // N
aussie sqrtf basic_int // Function pointer
)

And here’s the code to run the big precomputation loop:

void aussie generic precompute int (
float arr[], unsigned int maxn, float (*fnptr) (int))

{
for (unsigned int i = 0; i < maxn; i++) {
arr[i] = fnptr(i);

So, that’s all there is to the startup initialization of the lookup table. Once this
function returns, we now have a big array full of data. Here’s what the new
optimized “sqrt£” looks like:

float aussie table lookup sqgrt(int 1)
{

return g sqgrt precomp table[i];

}

And we can either make that function “inline” or use a C++ preprocessor
macro:

#define AUSSIE TABLE LOOKUP SQRT BASIC (i) \
(g sgrt precomp table[(i)])

So, here are a few provisos about this code:
1. Might be slower than sgrt in hardware (needs benchmarking).
2. Unsafe array accesses (e.g., crashes on negatives or larger numbers).

3.unsigned 1int types might overflow and spin infinitely for
precomputing tables of size “1<<32” (change to unsigned long).

4. The memory size of the precomputed table for 1<<16 is already about
262k (65k times 4 bytes).

David Spuler 542

Float-to-Float Precomputation

Using a precomputed table lookup for a float-to-float function is more complicated
than integers. However, this is also the main approximation needed for non-linear
functions, or even the basic math library functions like sqrtf or expf or 1ogt.

Why is it tricky? The reason that f1oat inputs are more difficult is that we need to
convert a float into an array index in order to look it up. For example, we could
try type casts:

int offset = (int)f;

But that limits us to only precalculating values for 1.0, 2.0, 3.0, etc. Our
approximation works poorly on any fractions, and we also haven’t limited the array
index to a fixed finite range, so it won’t work for any negative values or very large
positive values. And the type cast of a £loat is also slow!

Scaled Multiple: Another idea is that we could scale it upwards to get more
decimals:

int offset = (int) (£ * 1000.0f);

This approach at least gives us 3 decimal places: e.g., 1.234 or 23.456, or similar.
We will still have to check for negatives and large values to bound it. But again, this
is even slower!

Bitwise Floating-Point Truncations: The above truncation via a floating-point
scaled multiple is not very fast. Twiddling the bits is much faster. For example,
when we have a standard 32-bit £loat type, it has 1 sign bit, 8 exponent bits, and
23 mantissa bits. This is from left-to-right, with the sign bit as the most significant
bit, and the low-end mantissa bits are the least significant bits. Remember that this
is like Scientific notation:

e Number = Mantissa x 2 Exponent

Also, the sign bit makes it all negative, if set. Note that exponent in 8-bits encodes
the numbers -128 to +127, so that ranges from very small 2"°-128 near-zero values,
to very huge 27127 sized values.

543 C++ Ultra-Low Latency

If the mantissa was in decimal, and it was “1234567” and the exponent was “17”
then we’d have:

e Number = 1.234567 x 10"17

If the mantissa was 23 bits, it’s actually binary digits, with about 3 binary digits per
decimal digit, so a 23-bit mantissa is about 7 or 8 decimal digits. Note that the
mantissa is actually 24 bits, not 23, because there’s an extra “implicit one” mantissa
bit, not that it changes the above calculation, but you needed to know that for C++
trivia night.

So, if we think about it for a year or two, it becomes obvious that the rightmost bits
of the mantissa are simply the rightmost digits in “1.234567”, and if we truncate
some of the rightmost bits, it’s like truncating a very small fraction (e.g., “1.234567”
becomes “1.2345” or whatever).

Hence, a first idea is just to cut off 2 of the 4 bytes of a 32-bit £1oat. This leaves
us with 1 sign bit, 8 exponent bits, and 7 mantissa bits (plus 1 implied bit makes 8
mantissa bits). In decimal, the 8-bit mantissa now encodes only about 2 or 3 decimal
digits, as if we’ve truncated “1.234567” to “1.23”.

Incidentally, congratulations, you’ve created “bloat16” type, which is what Google
did with TPUs, making a 2-byte £1oat format with 1 sign bit, 8 exponent bits, and
7 stored mantissa bits. So, now you can get into your blue telephone booth, time
travel back a decade, file a patent, and retire on your royalties. If you're ever a
contestant on Wheel of Fortune you probably won’t need to know that the “b” in
“bfloat16” stands for “brain float” and that is such a great name. But I digress.

Anyhow, this idea actually works for precomputation. A 2-byte integer
inbloatl6 formatis easy to extract from a 4-byte FP32 float (i.c., the uppermost
two bytes). The trick for bitwise processing is to convert the float to unsigned
int, because the bitwise shift operators don’t work on float (it’s planned for
C++37, as I heard at my fungus collector’s club trivia night).

float £32 = 3.14f;
unsigned u32 = * (unsigned int*)&f32;

Extracting the top-most 2 bytes (16 bits) is simply a right bitshift:

unsigned ubfl6 = (u32 >> 16);

David Spuler 544

Note that here’s a good reason that we had to use “unsigned” integer type. The
right bitshift operator (>>) has undefined behavior on negatives, so “int” type
wouldn’t work predictably (or portably) if the floating-point sign bit was set.

The result is a 16-bit unsigned integer to use as the array index. Hence, there are
only 1<<16=65, 536 entries in our precomputation table. Assuming we store
results as 4-byte £loat values, this makes the precomputation array’s memory size
about 262kb. What’s more, it works for negative f1oat numbers, because the sign
bit is still part of that shemozzle, and we also don’t need to check any minimum or
maximum bounds, because it works for all 32-bit float numbers.

Precomputing with 24-Bit Lookup Tables: Interestingly, none of the above
code is especially tied to 16-bit sizes. The bf1loat16 version truncates 32-bit float
to 16-bit by truncating the rightmost 16 mantissa bits. But we can actually choose
to keep however many mantissa bits we like. The trade-off is that more mantissa
bits increase accuracy, but at the cost of needing a much bigger precomputation
array (doubling the storage size for each extra bit).

Let’s try only cutting the rightmost 8 mantissa bits, leaving us with 24 stored bits
total (i.e., 1 sign bit, 8 exponent bits, and 15 stored mantissa bits). The mantissa bits
reduce from 23 to 15 (plus one implied bit makes 16), so this now stores about 5
decimal digits (e.g., “1.2345”), giving quite good precision on our results. When I
tested the 16-bit version, it had some reasonably large errors of almost 0.1 in
computing sqrt, whereas this 24-bit version has much lower errors, as expected.

Code changes are minor. The bitshift operations simply change from 16 bits to 8
bits (i.e., 32-24=8 bits). This is the precomputation loop for 24 bits:

void aussie generic precompute 24bit float (
float farr[], unsigned int maxn,
float (*fnptr) (float))

for (unsigned int u = 0; u < maxn; u++) {
unsigned int unum = (u << 8u); // 32-24=8 bits
float £ = *(float*) &unum;
farr[u] = fnptr(f);

545 C++ Ultra-Low Latency

And this is the call to the precomputation function in the startup phase:

aussie generic precompute 24bit float (
g sqgrt float 24bit precomp table, // Bigger array
(int)AUSSIE SQRT 24bit MAX, // 1 << 24
aussie sqrtf basic float // Function pointer
)

The table lookup routine also similarly shifts 8 bits, rather than 16, but is otherwise
unchanged:

float aussie table lookup sqrt 24bit float (float f)
{

unsigned u = * (unsigned int¥*)&f;

u >>= 8; // 32-24=8 Dbits

return g sqrt float 24bit precomp tablelu];

Note that this only works if we are sure that both “float” and “unsigned int”
are 32-bits, so we should check that during startup with some assertions
via static_assert. If we are sure of that fact, then not only will it work, but we
don’t also need to check the array bounds. It won’t try a negative array index, and
won’t overflow no matter what bit pattern we send it in as a float.

But there is one problem. If we send the fast table lookup version the
special float value of NaN (“not a number”), then the table lookup routine will
actually return a valid numeric answer, which probably isn’t what we want. Maybe
we need to add a check for that special case, and this needs more testing.

The new size of the precomputation array is 2°24=16, 777,216, so we have
about 16.7 million results If our results are 32-bit float values,
our bloatl6 precomputed array above requires about 262kb, and the new size
with 24-bits is a lookup table (array) of about 67 megabytes. It wouldn’t have
worked on my old TRS-80 CoCo in 1986, but it'll work nowadays.

David Spuler 546

Precalculating C++ Source Files

One way to improve on the precomputation of a big array is to skip it entirely during
startup by writing a lot of code. It’s like using an Al coding copilot, only it’s not
really. I mean, come on, the day an Al writes better code than me is the day that I
retire to the hologram beach with my robot dog companions.

The idea here is to write a program to generate a C++ source file that contains the
global precomputed lookup table. Yes, it’s a C++ program that creates part of a
C++ program, which is almost like your Al has become self-aware, only one step
away from Skyner. Well, maybe not, it’s just a dumb C++ program written by a
dumb human creating some dumb data.

Anyway, this auto-generated C++ code can be compiled and linked into your C++
program, and used like a global array of data in other parts of the program. Zero
calculations are required at runtime, and the data can be read-only.

The benefit is that this auto-generated code method does not even require the time
cost of startup initialization for any precomputations. There’s not even the cost
from data file loading. Instead, the data is auto-loaded by the linker-loader during
executable file instantiation (i.e., when the user starts the app). The only downsides
for the user are that the size of the executable program increases, which means
more disk space usage, and that application program startup may take longer and it
will use more memory (regardless of whether it ever needs this precomputed data).
Also, various offline tasks take longer for the software developers, such as
compilation and linking for testing, which is why we bill per hour.

I tried this out for precalculating GELU with a 24-bit table. The C++ source file
was size 514k for 24-bit precomputation table of size 1<<24. This is what the auto-
generated source code should look like:

// Precomputed table source code: GELU,

// "gelu precomp 24bits.cpp"

float g gelu table precompute 24bits[] = {

0f,
1.793662034335765850782373866611092648039%e-43f,
3.587324068671531701564747733222185296077e-43f,
5.380986103007297552347121599833277944116e-431,
7.174648137343063403129495466444370592155e-431,

b

547 C++ Ultra-Low Latency

Here’s the code to generate the code to generate the code to generate the code:

void aussie generic setup table FP32 24bits PRINT_ SOURCE (
char* nickname,
char* outfname,
float (*fnptr) (float), // e.g., GELU
int maxn, // e.g., 1<<24
float arrout[] // array to store (optional)

// Print C++ of 24-bits GELU precomputed table
if (!fnptr) {
aussie assert (fnptr);
return;
}
// Generate C++ source code so we can pre-compile
// the precomputed GELU table (24-bits)

// There are 2724 = 16.7 million numbers...
FILE* fp = stdout;
bool writingfile = false;

bool add commented number = true;
if (outfname && *outfname) {
fp = fopen (outfname, "w");
if (lfp) {
aussie assert(fp); // file write failed
return; // fail

}

writingfile = true;

add_commented number = false; // No extra comments
}
unsigned int u = 0;

fprintf (fp, "// Precomputed source code: %s, \"%s\"\n",
nickname, outfname);
fprintf (fp, "float g gelu table pre 24bits[] = { \n");
char numbuf[5000] = "";
for (; u < maxn /*1<<24*/ ; u++) { // For 2724=~16.7M
unsigned int uval = u << 8; // zeros in 1lsb
float £ = AUSSIE UINT TO FLOAT (uval);
float g = fnptr(f); // Call GELU or whatever
if (arrout) arrout[u] = g; // Store precomp data

// Format: %g means the smaller of %e or %f
// ... %e 1is exponent format (scientific-like)
char* buf = numbuf;
// Format %g (Number) and suffix "f" (float)
sprintf (buf, "%40.40g9f", g);
if (strchr(buf, 'n')) {
// Nan or "-nan" ... use dummy value
strcpy (buf, "0.0 /*nan*/");
}
// Remove prefix padding spaces...
while (buf[0] == "' ") buf++;

David Spuler 548

// Remove suffix zeros

int len = (int)strlen (buf);
if (buf[len - 1] == 'f') len--; // skip suffix f
if (bufllen - 1] == '0') {
while (len > 5) {
if (bufllen - 1] == '0"'
&& isdigit(bufllen - 2])) {
if (buf[len] == 'f') {
// remove it, but leave 'f'...
bufl[len - 1] = "f';
buf[len] = 0;
}
else {
buf[len - 1] = 0; // remove it
buf[len] = 0;
}
len--;

}

else break;

}

if (add commented number) {
fprintf (fp, "%s // (%40.40f) [%u]l \n",
buf, £, u);
}
else { // No comments...
fprintf (fp, "%s,\n", buf);
}

// Progress update

if (u % 100000 == 0 && u != 0) {
if (writingfile) // Progress to stdout
fprintf (stdout, "%$u -- %s\n", u, buf);

// Comment occasionally
fprintf (fp, "// U= [%ul\n", u);
}

}
fprintf (fp, "}; \n"); // Close initializer...

if (fp && fp != stdout) fclose (fp);

Conclusions on Source Code Generation: Does it work? Yes and no. It builds
the output file quite quickly, zipping through 1<<24 computations and writing to
disk. But I can’t get this 24-bit version with its 500k CPP source file to actually
compile in the Microsoft Visual Studio IDE.

Maybe it works on Windows command-line or Linux GCC, but I haven’t tried.

549 C++ Ultra-Low Latency

Anyway, this self-generating code idea is certainly quite workable for table lookups
of approximations for FP16 numbers (16-bit half-precision floating-point), because
the lookup table needs to “only” contain 2°16=65,536 numbers. This is about a
200k C++ source file in plain text, and creates linked data of about 65k times 4
bytes equals about 256k space usage. This would use half that space if you also store
the computation as 16-bit numbers rather than 32-bit floats or integers.

References

1. Nils Graef, 12 Mar 2024 (v3), Transformer tricks: Precomputing the first
layer, https://arxiv.org/abs /2402.13388 Code: https://github.com/Open
Machine-ai/transformer-tricks (Because the first layer only depends on
the embeddings, it can be precomputed.)

2. SZ Lin, YC Chen, YH Chang, TW Kuo, HP Li, 2024, LUTIN: Efficient
Nenral Network Inference with Table Lookup, ISLPED °24, August 5-7, 2024,
Newport Beach, CA,

USA, https://dl.acm.org/doi/pdf/10.1145/3665314.3670804

3. S Fanning, Fixed Point Multiplication-Free Implementation of Deep Neural
Networks for Embedded Systems, Masters Thesis, School of Electrical and
Electronic Engineering, University College Dublin
2018, https://seanfanning.eu/posts/projects/low-bitwidth-neural-
networks/Thesis SeanFanning 13360951.pdf

4. Mohammad Samragh Razlighi; Mohsen Imani; Farinaz Koushanfar;
Tajana Rosing LookININ: Neural network with no multiplication, Design,
Automation & Test in Europe Conference & Exhibition (DATE), 27-31
March 2017, https://ieeexplore.ieee.org/document/7927280 (Lookup-
table based multiplication.)

5. Covell M, Marwood D, Baluja S, Johnston N., Table-based nenral units: Fully
quantizing networks for multiply-free inference, 2019, arXiv preprint
arXiv:1906.04798, http:/ /arxiv.org/abs/1906.04798

6. Joonsang Yu, Junki Park, Seongmin Park, Minsoo Kim, Sihwa Lee, Dong
Hyun Lee, Jungwook Choi, Dec 2021, NN-LUT: Neural Approximation of
Non-Linear Operations for Efficient Transformer
Inference, https:/ /arxiv.org/pdf/2112.02191

7. Neelesh Gupta, Narayanan Kannan, Pengmiao Zhang, Viktor Prasanna, 8
Apr 2024, TabConv: Low-Computation CNIN Inference via Table
Lookups, https:/ /arxiv.org/abs/2404.05872

8. Darshan C. Ganji, Saad Ashfaq, Ehsan Saboori, Sudhakar Sah, Saptarshi
Mitra, Mohammad Hossein Askari Hemmat, Alexander Hoffman,
Ahmed Hassanien, Mathieu L.éonardon, 18 Apr 2023, Deep GEMM.:
Accelerated Ultra Low-Precision Inference on CPU Architectures using Lookup
Tables, https:/ /arxiv.org/abs/2304.09049

David Spuler 550

https://arxiv.org/abs/2402.13388
https://github.com/OpenMachine-ai/transformer-tricks
https://github.com/OpenMachine-ai/transformer-tricks
https://dl.acm.org/doi/pdf/10.1145/3665314.3670804
https://seanfanning.eu/posts/projects/low-bitwidth-neural-networks/Thesis_SeanFanning_13360951.pdf
https://seanfanning.eu/posts/projects/low-bitwidth-neural-networks/Thesis_SeanFanning_13360951.pdf
https://ieeexplore.ieee.org/document/7927280
http://arxiv.org/abs/1906.04798
https://arxiv.org/pdf/2112.02191
https://arxiv.org/abs/2404.05872
https://arxiv.org/abs/2304.09049

9.

10.

11.

12.

Grigor Gatchev, Valentin Mollov, 4 Apr 2021, Faster Convolution Inference
Through Using Pre-Calculated Lookup

Tables, https:/ /arxiv.org/abs/2104.01681

Han Guo, William Brandon, Radostin Cholakov, Jonathan Ragan-Kelley,
Eric P. Xing, Yoon Kim, 15 Jul 2024, Fast Matrix Multiplications for Lookup
Table-Quantized 1.LMs, https:/ /arxiv.org/abs/2407.10960

Davis Blalock, John Guttag, 21 Jun 2021, Multiplying Matrices Without
Multiplying, https:/ /arxiv.org/abs/2106.10860

Gunho Park, Hyeokjun Kwon, Jiwoo Kim, Jeongin Bae, Baeseong Park,
Dongsoo Lee, Youngjoo Lee, 10 Mar 2025, FIGL.UT: An Energy-Efficient
Accelerator Design for FP-INT GEMM Using Look-Up

Tables, https:/ /arxiv.org/abs/2503.06862

551 C++ Ultra-Low Latency

https://arxiv.org/abs/2104.01681
https://arxiv.org/abs/2407.10960
https://arxiv.org/abs/2106.10860
https://arxiv.org/abs/2503.06862

David Spuler 552

Appendix A: Long List of Low

Latency Techniques

This is a compilation of coding efficiency and low latency C++ programming
techniques from various books and articles:

AR

C++ Low Latency, David Spuler, March 2025.
CUDA C++ Optimization, David Spuler, June 2024.
Generative Al in C++, David Spuler, March 2024.

500+ LIM Inference Optimization Techniques (blog article)

Low Latency C++ General Software Approaches:

Cache warming

Core pinning (“affinity”)

False sharing (avoiding)

Branch prediction optimizations

Hotpath optimizations

Slowpath removal

Kernel bypass

Lock contention (reducing)

Lock-free programming (with atomics and memory ordering issues)

. Thread pools
. SIMD CPU instructions
. Inline assembly language (“asm” statements)

Intrinsic functions (often closely mapping to machine code instructions)
In-memory logging

. Cache locality (for L1/L.2/1.3 memory caches and instruction caches)
. Specialized data structures
. Thread-Local Storage (TLS) (“thread local” type in C++11)

Shared memory (e.g., shmct1 which is the main “shared memory control”
function, shmget, shm open, ftruncate)

. Memory mapped files/devices (e.g., mmap, munmap)
. Asynchronous programming (std: :async)

553 C++ Ultra-Low Latency

https://www.amazon.com/dp/B0F2SNYS3L/
https://www.amazon.com/dp/B0DJT5JKM9/
https://www.amazon.com/dp/B0CXJKCWX9/
https://www.aussieai.com/blog/llm-inference-optimization

Concurrency-Friendly Data Structures:

21.
22.
23.
24.
25.
26.
217.
28.
29.

30.

31.

32.
33.

34.
35.
36.
37.
38.
39.

40.
41.
42.
43.
44.
45.

46.
47.
48.
49.

Read-only data structures

Reader-friendly data structures (e.g., many readers, one writer)
Copy-on-write data structures (for readers)

Versioned data structures (for readers)

Partition data across threads (vertically: columns)

Shard data across threads (hotizontally: rows)
Read-Copy-Update(RCU)—mostly the same as copy-on-write.
NUMA-aware data structures—reduce cross-node communications
Transactional memory (synchronization efficiency, reduces contention)
— use atomic or isolated transactions (an emerging technology)

Hotpath Optimizations:

Optimize all steps in the hotpath (e.g., data ingestion, decision, trade
execution, logging, risk management)

Profile the hotpath specifically (e.g., a test mode that always runs the
hotpath)

Examine assembly code of the hotpath

Avoid any memory allocation calls on hotpath (e.g., memory pools, use
preallocation)

Avoid free/deallocation of memory on hotpath

Use preallocated memory on hotpath

Review data de-serialization and serialization costs

Use in-memory databases for any significant amounts of incoming data
Keep the client network connection warm (method depends on the API)
Re-use objects to avoid constructor/destructor calls on hotpath

General Tuning Advice:

Avoid micro-optimization

Avoid optimizing error handling code (it’s a slowpath)
Loop optimizations (see below)

Avoid nested loops

Tune inner loop for nested loops

Avoid excessive function wrapper overhead

Performance Profiling Tools:
gprof

perf

prof (older)

pixie (older)

David Spuler 554

50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.

64.
65.
66.
67.
68.
069.
70.
71.

72.
73.
74.
75.

76.
77.
78.
79.
80.

81.

Lock Contention Reduction:

Late lock acquisition

Early lock release

Short critical section of code

Generally reduce total numbers of locks used

Locking fine-grain vs coarse-grain

Use fine-grain locks for contested resources

Use a hybrid fine-grain/coarse-grain lock strategy

Release locks before significant computation

Copy data to temporary variables to unlock before computation

Release locks before blocking for I/O

Release locks before blocking for system calls

Release locks before blocking for networking

Tolerate lockless output overlaps

std::shared mutex and std: :shared lock — for multiple reads,
one writer.

Double lock check method (check first without a lock)

Use std: :promise and std: : future not shared memory.
Thread-specific queues and “work stealing” design pattern

Use a lock-free queue data structure

thread local keyword (C++11)

std::lock guard (C++11)

std: :lock guard early release by scope control

std: :unique lock (C++11) (this allows more granular control than
std::lock guard)

std: :scoped lock (C++17)

Locking with timeouts (try locks)

Avoid spinlock busy waiting

Exponential backoff to avoid spinlock costs

See also “lock-free programming” and “concurrency-friendly structures”

Thread/lock overhead reduction (generally):

Reduce thread launch overhead

Reduce thread destruction overhead

Reduce lock acquisition/release overhead

Reduce lock contention overhead

std: :make shared() or std::allocate shared() standard
functions do only one allocation (combined shared pointer and control
block), whereas shared ptr<type>does two allocations (both the
shared pointer and the control block are separate).

Weak pointer references (std::weak ptr) can delay the deallocating
a shared_ ptr and its object even after the main reference count is zero.

555 C++ Ultra-Low Latency

82.
83.

84.

85.

86.
87.
88.
89.
90.
91.

92.
93.
94.
95.
96.

97.

98.
99.

System code optimizations (general ideas):
Avoid system calls to reduce context switches (in Linux)
Use C++ “intrinsics” functions (highly optimized assembly-level code)

Linux socket programming:

Non-blocking sockets versus using select () with a timeout—allows
thread to do “other” useful work rather than just wait.

poll () orepoll () system call rather than waiting

Context Switching Reduction:

Thread counts (not too many threads)

Thread specialization

Thread specialization (producer-consumer thread model)

Use custom thread pools with only preallocated memory block pools.
spinlocks avoid context switches (good if spins for only a short time)
Avoid context switch cost by thread doing “other” work, not just blocking.

Cache Locality Optimizations:

Tiling/blocking algorithms

Tiling/blocking matrix multiplication (MatMul/ GEMM)

Smaller data type sizes for increased locality

Choose a CPU with a larger L1 “cache line size” (64-256 bytes common)
std::hardware destructive interference size, std::har
dware constructive interference size (C++17)
std::initializer list (C++11) can be used as a standardized
lightweight container with contiguous elements

See also “cache warming (prefetch)” optimizations

See also “false sharing (avoid)” optimizations

Instruction Cache Locality Optimizations:

Prefer shorter blocks of code in the hotpath

Consider not inlining function calls (for instruction cache locality)
See also “branch prediction optimizations”

Branch Prediction Optimizations (General):

100. Branch elimination

101. Branch compiler hints

102. Branch prediction heuristics

103. Branch profiling (two-phase)

104. Branchless programming

105. Tools—measure branch prediction data (e.g., perf)

David Spuler 556

Branch Reductions Techniques:

106. Algorithm-level changes to reduce branches

107. Keep loop bodies short (shorter branches)

108. Reduce far branching (e.g., function calls)

109. Reduce overall use of function calls (see function call optimizations)

110. Reduce use of 1 f statements

111. Reduce use of loops

112. Reduce use of break statements (in loops, not switchl)

113. Reduce use of continue statements

114. Reduce use of switch statements

115. Reduce short-circuiting in &&/ | | operators

116. Reduce short-circuiting of ?: ternary operator

117. Avoid virtual function calls (hidden dynamic branches)

118. Avoid pointer-to-functions (hidden dynamic branches; blocks inlining)

119. Avoid function objects/functors (hidden dynamic branches)

120. Avoid lambda functions passed as arguments (depends on how well the
optimizer can handle them)

121. Reduce long i f-else-if sequences

122. Reduce nested if-else sequences

123. Avoid branches depending on anything unpredictable

124. Avoid branches depending on user inputs

125. Avoid branches depending on random numbers

126. Avoid branches depending on system clocks

127. Sort array data for efficient branch prediction, if scanning through the
linear array comparing the data (e.g., before testing for error range)
See also “compile-time optimizations” (remove branches at compile-time)
See also “loop optimizations” (reduce loop iterations, e.g., loop unrolling)

Branch Prediction Heuristics:
128. Common case code in if block
129. Uncommon case code in else block
130. Error handling code in else block (uncommon code)
131. Avoid zero-iteration loops (never entered)
132. Avoid single-iteration loops (never loop back)

Branch Prediction Compiler Hints:
133. [[1ikely]] and [[unlikely]] path attributes (C++20)
134. 1ikely () and unlikely () expressions (C++20)
135. builtin expect (GCC)
136. LIKELY and UNLIKELY macros via __builtin expect (pre-C++20)
137. [[noreturn]] (C++11)
138. [[assume (expression)]] attribute (C++23)

557 C++ Ultra-Low Latency

139. hot (GCC function attribute)

140. GCC _ builtin unreachable

141. std: :unreachable—helps branch prediction (C++23)

142. [[fallthrough]] — more for safety than speed (C++17)
143. -fdelayed-branch compiler flag

144. -fguess-branch-probability compiler flag

145. -fif-conversion and -fif-conversion2 compiler flags
146. Use “1likely” and “unlikely” in custom assertion mactros
147. Use “likely” and “unlikely” in error handling code macros

Branch Profiling:
148. -fprofile-arcs (GCC option)
149. -fprofile-generate (GCC command-line argument)
150. -fprofile-use (GCC command-line argument)
151. Branch profiling with 100% hotpath (test modes)

Branchless Programming Techniques:
152. Ternary operator preferred over if statements (if CMOV instruction)
153. Boolean variables as 0 or 1 in arithmetic
154. Logical operators (s&/ | |) as 0 or 1 in arithmetic
155. Bitwise operators (&/ |) teplace logical operators (&&/ | |)
156. Sign bit extension bit masks
157. Lookup tables for branchless programming
158. XOR trick to swap two integer variables without a temporary variable

Slowpath Removal:
159. Optimize error checking pathways
160. Remove error checking tests
161. Defer error checking tests to later
162. Combine error checking tests together (and do it later)
163. Avoid adding error checks deeper in the call hierarchy
164. Never-failing functions (cannot return an error)
165. Don’t use memory allocation (avoids memory allocation failure)

Cache Warming Methods:

166. Prefetch memory primitives

167. builtin prefetch (GCC)

168. mm prefetch (GCC)

169. volatile on temporary variables

170. Dry-run execution mode

171. Branchless dry-run execution with arr [2] declarations

172. Use read-only cache warming pathways (avoids cache invalidation for
other threads)

173. Use deep cache warming all the way down into the NIC

David Spuler 558

174. Optimize cache warming by fewer data reads (relies on cache line sizes)
175. Reduce cache warming code to the maximum size of the low-level
memory cache (this avoids redundant warming when cache is already full).

False Sharing (Avoiding):
176. Using alignas (64) or 128 or 256 to avoid false sharing (C++11)
177. Use alignas on all shared memory or atomics (C++11)
178. Tools to automatically detect false sharing (DRD fails?)

Parallelism (General Categories):
179. Multithreading
180. Multiprocess
181. Vectorization
182. Pipelining
183. Parallel execution modes (C++17)
184. Coroutines (C++20)

Advanced C++ Concurrency Data Structures:

185. Read-only (“immutable”) data structures

186. Lock-free algorithms and data structures

187. Linear search can be efficient for small sizes because of cache prefetching
(e.g., rather than binary search; also doesn’t need sorting maintained)

SIMD Instructions:
188. AVX (x86 CPUs)
189. ARM Neon
190. std: : simd (expetimental/C++20)
191. <immintrin.h>

Linux O/S Optimizations:
192. Process priority upgrades (“nice” command or system call)
193. Disable unimportant processes
194. Overclocking CPU
195. Overclocking GPU
196. Disable Security Enhanced (SE) Linux
197. Disable accounting mode in Linux (should be off anyway)

Linux Kernel Optimizations:
198. Scheduling algorithm kernel modifications
199. Tweak TCP/UDP network buffer settings (Linux kernel)
200. Turn off file “last access date” storage (“noatime” in /etc/fstab)

559 C++ Ultra-Low Latency

201
202
203
204

205
206
207
208
209

210
211
212
213

214
215
216
217
218
219

220.

221

222.

223
224
225

226.

227
228
229
230
231

System Hardware Optimizations (Categories):

. Processor hardware (CPU)

. Network optimizations

. Disk optimizations

. RAM Memory optimizations

Processor Hardware Major Categories of Optimizations:
.CPU

. GPU

.NPU

. FPGA

. ASIC

Networking Hardware Optimizations (Categories):
.NIC

. Switches

. Load balancer devices

. Size of the packet buffer of a switch (optimizing for)

Networking Transmission/Protocol Optimizations (Categories):
. Physical proximity

. Co-Lo

. TCP

. UDP (faster than TCP but unreliable)

. Optical networking (optical fiber cables)

. Microwave network transmission

Packet fragment manipulations (e.g., out-of-order)

. Reduce packet fragment collation overhead

Reduce packet consistency checking (error safety overhead)

Networking Software Optimizations:

. TepDirect/Onload

. SolarFlare/OpenOnload (ketnel bypass)

. Exablaze (NIC with kernel bypass support)

DMA

. PCle bus

. Compress data sizes for your network transmissions

. Sticky sessions (avoids sending user-specific caches between servers)

. Shared storage rather than server-to-server networking (e.g., NAS/SAN)
. Use custom wrappers for TCP and UDP network processing

David Spuler 560

GPU & Distributed Networking Optimizations:

232. RDMA
233. nvlink

234, Infiniband
235. RoCE

236. GPUDirect
237. PXN

Deployment Optimizations (Website backends):
238. DNS optimizations
239. Round-Robin DNS (RRDNS)
240. SSL time optimizations
241. etags (website server speedup)
242. Multiple identical servers architecture
243. Use subdomains for static files
244. CDN for static files
245. Compression modes enabled
246. Static files compressed
247. Minify static files (CSS, JavaScript)
248. Merge multiple small files together
249. Use smaller image files (low precision)
250. Merge multiple small icon images into one image file
251. Cache duration settings
252. Database optimizations (vatious, e.g., MySQL/MariaDB/MongoDB)
253. Database indexes
254. Application server optimizations (e.g., Tomcat)

Apache/Nginx Subprocess Optimizations:
255. Use FCGI not classic CGI integrations
256. Flush stdout of subprocesses (partial output eatlier to Apache or Nginx)
257. Close stdout of subprocesses before shutdown sequence (sends finishes
earlier to Apache or Nginx)
258. Early tests for violations and invalidity (fails quickly)

Algorithm Enhancements:
259. Precomputation (lookup tables)
260. Precomputation to data file
261. Precomputation of source code
262. Incremental algorithms
263. Data structure augmentation
264. Parallelization
265. Vectorization
266. Caching

561 C++ Ultra-Low Latency

267. Lazy evaluation

268. Common case first

269. Simple case first

270. Approximate tests first

271. Bounding box approximate tests

272. Bounding sphere approximate tests

273. Avoiding sqgrt by using arithmetic on squares

274. Integer arithmetic on squares: avoid floating-point by working on squares
275. Use variance not standard-deviation (arithmetic on squares)
276. Approximations

277. Compute budget algorithms

278. Probabilistic/stochastic algorithms

279. Skipping algorithms

280. Heuristic algorithms

281. Greedy algorithms

Memory Reduction Strategies:

282. Take care as memory reduction as methods can reduce speed (trade-offs)

283. Reduce allocated memory

284. Smaller data sizes

285. Pack data into smaller integer sizes

286. Pack data into bits

287. Pack data using bit-fields

288. Pack data into unions

289. Use std: :bitvector

290. Use std: :vector<bool> (a special bit-packed template instantiation)

291. Structure packing (also for class data members): reorder different-sized
data members for better packing and fewer padding bytes

292. Structure packing: biggest data types first (heuristic)

293. Structure packing: MSVS /dlreportSingleClassLayout compiler
option to report on it

294. #pragma pack directive reduces padding to reduce size, but may worsen
structure access costs

295. Stack data reductions

296. Avoid deallocation of heap memory when in shutting-down mode

Heap Allocated Memory Reduction Strategies:
297. Fewer allocated memory blocks
298. Avoid frequent small allocations
299. Preallocation of dynamic memory
300. Memory fragmentation avoidance
301. Memory leak avoidance
302. Merge memory allocations together
303. Memory pools (fixed-size allocations, often a type of preallocation)

David Spuler 562

304.
305.
306.
307.
308.
309.
310.
311
312.
313.
314.
315.

316.
317.
318.
319.

320.
321.
322.
323.
324.
325.
326.
327.

328.
329.
330.
331.
332.
333.
334.
335.
336.
337.

Memory pool with O(1) deletion and O(1) insertion via permutation array
Merge fixed-size allocated objects into a large array

Custom memory allocators (generalized)

Class-specific memory allocator

Custom global memory allocator

Late allocation (allocate memory as late as possible)

Eatly free memory (deallocate as early as possible)

. Early delete memory (deallocate eatly)

Avoid realloc (slow, memory fragmentation)

Smart dynamic buffers (hybrid of allocated and non-allocated memory)
std::aligned alloc - memory alignhment improvement (C++17)
std::aligned union (C++11)

Static Memory Size Reductions:
Avoid large global arrays and buffers
Avoid large static arrays and buffers
Avoid large static C++ data members
String literal memory reductions

Stack Memory Size Reductions:

Avoid large local arrays and buffers

Avoid large function non-reference parameter arrays and buffers
Use pass-by-reference on large function parameters

Use integer parameters as local variables

Consider stack versus memory allocation
Flattening/reducing function call hierarchy

Inline small functions (compiler can disappear them)

Use #define macros for small functions (versus inlining)
See also: function call hierarchy flattening

See also: recursion avoidance

Code Size Reduction Strategies:

Code size reductions

DLLs versus static libraries

Remove executable debug information

Avoid the compiler “~g” debug option

Avoid the compiler “~p” profiler option

Unix strip command

Avoid large inline functions (instruction cache locality)
Don’t overuse “always inline” or “force inline”
Template overuse

Google “bloaty” tool

563 C++ Ultra-Low Latency

Standard Library Optimizations (STL Optimizations):

338. String processing efficiency (e.g., “+” for std: : string can be slow)

339. std: : vector of non-trivial class objects calls constructor/destructors

340. Control array size for std: : vector using “reserve ()”

341. Use std: : sort rather than gsort

342. bsearch is not your friend

343. Consider hard-coded arrays versus std: :array versus std: :vector

344. Compare the first letters of strings before calling strcmp

345. Consider type casts to int versus round (), ceil (), floor ()

346. Avoid printf or fprintf format string processing with putchar,
putc, fputc, puts, fputs

347. Hand-code faster versions of the abs and fabs/fabsf primitives that
don’t handle Inf/NaN numbers (but benchmark it).

348. Change strlen("literal") to char arr[]="literal" and
use sizeof (arr) -1

349. Don’t use strlen (s) ina for loop condition

350. Consider your own atoi/itoa versions that don’t handle obscure cases.

351. Avoid sprintf and snprintf (both are slow)

352. sync_with stdio(false)

353. std: :stringstreamis slow (hand-code text field processing instead)

Data Structures:
354. Hashing (basic)
355. Perfect hashing
3506. Bit vectors
357. Bit sets
358. Bloom filters (bit vectors + hashing)
359. Binary tree
360. Sorted atrays
361. Unsorted arrays
362. Stacks
363. Queues
364. Dequeues
365. Vector hashing
366. Permutation arrays
367. Locality-sensitive hashing (LSH)
368. Bit signatures (vector algorithm)
369. K-means clustering (vector algorithm)
370. Hypet-cube (vector algorithm)
371. Approximate nearest neighbor (ANN) (vector algorithm)

David Spuler 564

372.
373.
374.
375.
376.
377.
378.
379
380.
381.
382.
383.
384.
385.
386.
387.
388
389.

390.
391.
392.
393.

394.
395.
396.
397.
398.
399.
400.

401.
402.
403.
404.
405.
406.
407.

Variable Optimizations:

Prefer int types to char or short (usually)

Prefer int types to unsigned int (usually)

Prefer int types to size t (unsigned long; consider uint32 t)
Avoid unnecessary initializations

Re-use objects to avoid initializations/destruction

Avoid temporary variables

Use reference variables instead of full temporary variables

. Avoid creating temporaty objects

Put commonly used data fields first in struct/class

Declare variables as close as possible to usage

if initializer syntax (C++17)

switch initializer syntax (C++17)

Avoid bit-fields (smaller but slower to access or set)

Use memory alignment primitives to avoid slow-downs

Put the most-used data member first (it has a zero offset)

Otder data members most used to least (small offsets are faster, in theory)

. Array initializer lists as local variables (re-initialized each call)

Structure of arrays (SoA) data layout is often more vectorizable than
Array of Structures (AoS).

Arithmetic Optimizations:
Operator strength reduction
Reciprocal multiplication
Integer arithmetic
Use float not double

Expression Optimizations:

Expression transformations

const

mutable keyword — bypasses const (C++98) (speedy but unsafe)
Common subexpression elimination (CSE)

Constant folding

Template fold expressions (C++17) are concise but lots of computation
Expression templates—avoids explicit temporary variables, compiler
optimizes it better.

Constant propagation

Redundant assignment removal

Strength reduction

Algebraic identities

Implicit type conversions (avoiding; type consistency)

explicit keyword (prevent implicit type conversions) (C++98)

Brace initialization syntax {} (avoids implicit narrowing conversions)

565 C++ Ultra-Low Latency

408. auto variable declarations avoid accidental temporaries and implicit type
conversions.

409. Don’t mix float/double types (including their constants)

410. Don’t mix integer types

411. Prefer signed integers over unsigned types

412. Short-circuiting of sub-expressions (using &&/||/?:)

413. Register allocation optimizations

414. mprotect page system call —optimization to make memory writeable

415. <algorithm> simple algorithms: min, max, etc.

416. Range check faster with “ (unsigned) 1<MAX” not “i>=0&& i < MAX”

Memory Block Operations:

417. Prefer contiguous memory blocks (locality, efficient block operations, etc.)

418. Different class types can allow block copying: POD (Plain Old Data),
trivial types, standard memory layout types (e.g., check in a template using
std::is_trivial)

419. Copy arrays by wrapping them in a dummy struct

420. Copy arrays with memcpy

421. Compare arrays with memcmp (very dangerous: padding bytes, negative
zero, NaNs)

422. Use memcpy not memmove if arguments won’t overlap.

423. Linearize multi-dimensional arrays (contiguous memory blocks)

Operator Strength Reduction Optimizations:
424. Replace * with bitshifts
425. Replace * with addition
426. Replace x*2 with x+x
427. Replace % with bitwise-and (&)
428. Replace $ with increment and test
429. Replace % with type casts (if byte sizes)

Bitwise Optimizations:
430. Intrinsic bitwise functions
431. CLZ (count leading zeros) bitwise intrinsics
432. CTZ (count trailing zeros) bitwise intrinsics
433. Popcount bitwise intrinsics (set bit count)
434. Kernighan bit trick (find highest bit set)
435. Fast NOR/NAND/XNOR via assembly instructions
436. Fast LOG2 of integers
437. Fast largest power-of-two of integers

David Spuler 566

Floating-Point Optimizations:

438. Convert float to 32-bit integers (float bit manipulations)

439. FTZ (Flush to Zero) mode

440. DAZ (Denormals Are Zero) mode

441. LOG2 of floating-point is the exponent

442. Zero/negative zero bitwise tests

443. Disallow negative zero (to use faster zero comparisons)

444. NaN (Not-a-Number) bitwise tests

445, Inf/-Inf bitwise tests

446. Avoid denormalized numbers

447. Disable denormalized numbers (subnormals) (compiler/library modes)

448. Avoid underflow in floating-point (ignore it)

449. Avoid overflow in floating-point (ignore it)

450. memcmp float vector equality (disallow special values for
fast f£loat vector equality comparison)

451. Fast detection of special values in float vectors (bitwise operations)

452. Floating-point intrinsic functions (various)

453. Exponent addition: bitshift floating-point by addition of the exponent bits

454. Sign bit flipping/extraction/setting (bitwise tricks)

Compiler Settings for Floating-Point:
455. GCC -ffast-math option — faster math mode.
456. GCC -fno-math-errno — faster math by not setting errno.
457. GCC -ffinite-math-only
458. GCC fno-trapping-math
459. MSVS /fp:precise, /fp:strict, /fp:fast
460. Disable floating-point exceptions

Loop Optimizations:
461. Exit loops eatly (e.g., break or return statements)
462. Finish loop body early (i.e., continue statement)
463. Correct choice of loop
464. Loop unrolling
465. #pragma unroll
466. Loop fusion
467. Loop perforation (probabilistic)
468. Loop tiling/blocking
469. Loop fission
470. Loop reversal (don’t use!)
471. Loop code motion (“hoisting”)
472. Loop distribution
473. Loop iterator strength reduction
474. Loop coalescing

567 C++ Ultra-Low Latency

475.
476.
477.
478.
479.
480.
481.
482.
483.
484.

485.
486.

487.

488.
489.
490.
491.
492.
493.
494.
495.
496.
497.
498.
499.
500.
501.
502.
503.
504.
505.
506.
507.
508.
509.
510.
511.
512.

Loop collapsing

Loop peeling

Loop splitting

Loop interchange

Loop sentinel

Loop strip mining (loop sectioning)
Loop spreading

Loop normalization

Loop skewing

Loop intetleaving

If Statement Optimizations:

Replace if-else-if sequences with switch.
Replace if-else-if sequences with lookup table loop.

Switch Statement Optimizations:

Use compact numeric ranges in switch (compiler can use a LUT)

Compile-Time Optimizations:

inline functions

always inline specifier

GCC flatten inline specifier

gnu_inline GCC specifier

Keep inline functions short (helps compiler to inline)

Keep inline functions in header files (source available to all its calls)
Avoid making virtual functions “inline”—compiles but a slug.
sizeof

Use sizeof with static_assert (e.g., portability checks)
Virtual functions cannot be inlined (although it compiles)
Pointer-to-function usages of functions cannot be inlined
Function objects (functors) cannot always be inlined

Lambda functions cannot always be inlined

inline variables (C++17) (helps with linking)
static_assert (compile-time assertions)

const is good

constexpr (C++11) is great

constexpr functions allow if, switch, loops, etc. (C++14)
constexpr lambda functions (C++17)

constexpr and placement new (C++20)

References to constexpr vatriables (C++20)

if constexpr statements

constinit

consteval

if consteval (C++23)

David Spuler 568

513. Type traits <type_traits> (C++11)

514. typeidis slow (RTTI)

515.std::is_same_ v (type trait test)

516. Template specialization (for specific types)

517. Template specialization (for constant integers)

518. Variadic templates (C++11)

519. Template Meta Programming (TMP) still works, but prefer constexpr
520. Auto-vectorization (by compiler)

521. Auto-unrolling of loops (by compiler)

522. SFINAE tricks (mostly an issue for compiler engineers)

Pointer Aliasing:
523. Reorganize functions with awareness of pointer aliasing issues
524. Restricted pointers (to avoid pointer aliasing slowdowns)
525. -fstrict-aliasing compiler option (alternative to “restrict”)

Pointer Arithmetic:
526. Loop pointer arithmetic
527. End pointer address tricks (Loop pointer arithmetic)
528. Use references not pointers (avoids null testing)
529. Prefer postfix operations with the *ptr++ idiom (not prefix ++ptr)
530. Pointer comparison tricks
531. Pointer difference tricks
532. Avoid safe pointer class wrappers (prefer raw pointers for speed)

Pointer Optimizations (Other):

533. reinterpret cast (helps the optimizer and is effectively a free
compile-time hint)

534. Avoid dynamic_cast (to downcast from a base to a derived class,
which can be helpful for specializing member calls, but dynamic casts can
be expensive at runtime because of RTTT)

Function Optimizations:

535. Return early from functions

5306. Flatten function call hierarchies

537. Callbacks are an extra layer of function call

538. Lambda functions are convenient but are an extra function call layer
(though often inlined)

539. Function objects (functors) are an extra function call

540. Avoid recursion (completely; we’re not in High School anymore)

541. Replace simple recursion with a loop

542. Replace complex recursion with a stack

543. Tail recursion elimination

544. Recursion higher base level

569 C++ Ultra-Low Latency

545. Collapse recursion levels

546. Specialize functions with default arguments (use two versions)

547. Specialize functions with void and non-void versions (if the return
value is often ignored)

548. Avoid function pointers (cannot be inline or constexpr)

549. Merge multiple Boolean function parameters into a “config’” object with
Boolean data fields.

550. noexcept attributes allow compiler to avoid adding extra code (C++11)

551. std::initializer list can be used to return multiple values
(benchmark against other methods)

C++ Class Optimizations:

552. friend functions (bypass interfaces)

553. friend classes (bypass interfaces)

554. Return references rather than objects

555. Avoid temporary class objects in expressions

556. Add extra member functions to avoid temporary object creation

557. Pass objects by reference to functions (i.e., “&” or “const&”)

558. Disable copy constructors with “private” or “= delete”

559. Disable assignment operators with “private” and “= delete”

560. Declare overloaded assignment operators with void return type (except
when defaulting)

561. Re-use objects to avoid constructor and destructor calls

562. Avoid calling the destructor when in shutting down mode

563. Uninitialized memory: std: :uninitialized fill (C++17)

564. CRTP (Curiously Recurring Template Pattern): derived class detives from
base class which is itself a template involving a pointer to the derived class
(optimizes polymorphism to be compile-time, avoiding virtual function
calls; also, this allows more inlining of these calls.)

565. Move constructors

566. Move assighment operators

567. std: :move (C++11, C++14) is usually a compile-time cast.

568. Return object reference types (not complicated objects)

569. Avoid virtual function calls with explicit calls to the specific function

570. Specialize inherited member functions (for the more restrictive type)

571. Avoid overloading the postfix increment/decrement operators

572. Block the overloaded postfix increment/decrement operators
(void body or =delete)

573. Consider skipping destructor cleanup if program is shutting down

574. Avoid accidental double initialization of data members in constructors

575. Avoid redundant initialization of members in constructor and “setup”

576. Specialize member functions with default arguments (use two versions)

577. Default constructors/destructors with “=default” may be more
efficient than hand-coded versions.

David Spuler 570

578. Trick for singleton pattern in multithreading — thread initialization of a
function-local static variable, other threads block, once-only initialization
guaranteed by C++ compiler.

Advanced C++ Compiler Optimizations:

579. Copy elision (compiler auto-optimization with avoidance of calls to copy
constructor in certain cases)

580. Guaranteed copy elision (C++17)

581. Named return value elision (a type of copy elision)

582. Temporary return value elision (a type of copy elision)

583. Copy elision in exception handling (special case for copy elision)

584. Allocation elision (new operator) (C++14)

585. Use xvalue or “expiring value” optimizations (various)

586. Trick: disallow creating an object on the stack, make its destructor private.

587. Trick: to disallow creating an object on the heap: make declarations of
the new and new [] operators private.

Byte Block Operations in C++ Classes: (Use with extreme carel)

588. memset/bzero to zero in a constructor — fast but dangerous,
overwrites internal “vtable” data in object if class has
any virtual functions, does not call constructors of its data members or
base class members; also cannot use an initializer list as this overwrites with
zero after any objects were set by the initializer list.

589. memcpy to bitwise copy in a copy constructor or assignment operator —
fast but dangerous, improperly copies internal vtable data in object if class
has any virtual functions, does not deeply copy any of its members or base
class members nor call their constructors.

590. memcpy to bitwise copy in a move copy constructor or move assighment
operator — fast but dangerous; impropetly copies “vtable”.

591. memcmp to bitwise compare for equality/inequality tests — fast but fails
due to pitfalls: padding bytes, bit-field members, negative versus positive
zero floating-point values, NaN floating-point values.

592. Virtual inheritance — usually for pure virtual base classes; avoids double
objects if the same base class type is inherited in two different pathways.

Timing C++ Methods:
593. std::chrono C++ class (highly granular)
594. clock () C/C++ function
595. time command (Linux shell)
596. time () function (granularity is only in seconds)
597. gettimeofday ()

571 C++ Ultra-Low Latency

Benchmarking C++ Methods:

598. Loop unrolling for accurate benchmarking

599. Use volatile specifier for accurate benchmarking
600. Loop overhead measurement for accurate benchmarking
601. Google Benchmark: Apache 2 license;

code: https://github.com/google/benchmark

Compiler Settings:
602. Optimizer settings
603. Optimizing for space/memory size (compiler flags)

General Build & Software Development Practices for Efficiency:
604. Maintain separate builds for slow testables versus production executables
605. Compile-out assertions
606. Compile-out self-testing code
607. Compile-out debug code or tracing code
608. Ensure test code not accidentally left in production (test a global flag

based on these macros at startup)

CUDA C++ GPU Optimizations:
609. Coalesced memory accesses
610. Thread specialization (GPU)
611. GPU thread pools
612. Producer-consumer thread pools
613. GPU kernel optimizations
614. Striding (GPU kernels)
615. Overlapping GPU uploads and compute
616. Ovetlapping with recomputation/rematerialization
617. Offloading to CPU
618. Pinned memory blocks
619. Warp divergence (warp coherence)
620. Grid optimizations
621. Grid size optimizations

Core Utility Classes (Efficiency Helpers): (to build for overall
efficiency practices)

622. Bitwise macro library (bitflag management)

623. Floating-point fast bitwise operations macro library

624. Benchmarking/timing library

625. Smart buffer library (reduce allocations by combining allocated/non-
allocated memory management)

626. TCP/UDP wrapper library

627. Specialized data structures for small amounts of data (faster than STL)

David Spuler 572

https://github.com/google/benchmark

628. Sorted array and binary search (small array size)

629. Lock-free queues

630. Perfect hashing library

631. Bit vector data structures (possibly based on STL)

632. Bit set data structures (possibly based on STL)

633. Bloom filter library

634. Vector hashing library

635. Caching utilities library

636. Source code precomputation library

637. Basic data and statistics on vectors (e.g., averages, std dev/variance, etc.)

638. Incremental vector algorithms (averages, min, max, etc.)

639. Branchless coding primitives library

640. Graph library for locking analysis

641. Data compression library

642. Approximate tests library

643. Math library (versus STL)

644. Memoty pools library (fixed-size custom memory allocators)

645. Custom memory allocator library

646. Placement new operator versions

647. Placement delete operator (write your own)

648. Multi-dimensional array library (linearize your vectors, matrices, tables,
of tensors)

Al Kernel Optimizations (using LLM Inference Optimizations for
non-Al low latency applications): (subset of methods to consider)

Reference: 500+ LIM Inference Optimization Techniques (blog article)

649. Kernel fusion
650. Kernel fission
651. Kernel tiling/blocking
652. Quantization (integer-based approximation of floating-point)
653. Low-bit quantization
654. Binary quantization (1-bit)
655. Integer-only arithmetic
656. Floating-point quantization (FP16/FP8/FP4)
657. Mixed precision quantization
658. Logarithmic quantization
659. Dyadic quantization
660. Low rank matrices
661. MatMul/ GEMM optimizations (many)
662. MatMul data locality optimizations
663. Sparse MatMul
664. Approximate matrix multiplication
665. Contiguous memory block matrix multiplication
573 C++ Ultra-Low Latency

https://www.aussieai.com/blog/llm-inference-optimization

666.
667.
. Tiled/blocked MatMul
669.
670.
671.
672.
673.
674.
675.
676.
677.
678.
679.
680.
681.
682.
683.
684.
685.
686.
687.
688.
689.
690.
691.
692.
693.
694.
695.
696.
697.
698.
699.
700.
701.
702.
703.
704.
705.
706.
707.
708.
709.

668

Cached transpose MatMul
Fused transpose MatMul

Sparsification (Pruning/Sparsity)

Token pruning (input compression)
Token skipping

Token merging

Data compression algorithms

Early exiting (of layers)

Caching optimizations

Vector computation caching

Zero skipping

Negative skipping

Padding optimizations

Zero padding removal
Zero-multiplication arithmetic
Adder/addition (zero-multiply)

Bitshifts (zero-multiply)

Bitshift-add (zero-multiply)

Double bitshift-add (zero-multiply)
Add-as-integer (zero-multiply)
Logarithmic arithmetic (zero-multiply)
Hadamard element-wise matrix multiplication
End-to-end integer arithmetic

Table lookup matrix multiplication
Weight clustering (grouped quantization)
Vector quantization

Parameter sharing

Activation function optimizations (non-linear functions)
Precomputation of Activation functions
Approximation of Activation functions
Integer-only approximation of Activation functions
Fused activation functions
Normalization optimizations (non-linear vector data functions)
Fused normalization optimizations

FFN optimizations (double MatMul)
FFN approximations

FFN integer-only

Decoding algorithm optimizations
Speculative decoding

Multi-token decoding

Ensemble decoding
Consensus/majotity-vote decoding
Easy-hard queries

David Spuler 574

710.
711.
712.
713.
714.
715.
716.
717.
718.
719.
720.
721.
722.
723.
724.
725.
726.
727.
. Approximate division
729.

728

Batching computations
Advanced number systems
Posit numbers

Dyadic numbers

Hybrid number systems

Fixed point numbers (integers not floating-point)

Block floating-point (BFP) hybrids
Logarithmic number system (LNS)
Disaggregation (prefill/decoding)
Computation re-use

Conditional computation
Approximate caching

Addition arithmetic optimizations
Approximate addition

Bitwise arithmetic optimizations
Fast multiplication arithmetic
Approximate multiplication
Logarithmic approximate multiplication

Bitserial arithmetic

575

C++ Ultra-Low Latency

David Spuler 576

Appendix B: C++ Slug Catalog

Slug Hunting Advice

This appendix is about speeding up your C++ programs through general
improvements to sequential or parallel coding. Before we begin with anything that’s
actually useful, I have to introduce the obligatory wrist-slapping politically-correct
deslugging advice for programmers. Hence, here are some general nuggets of advice
when attempting to speed up your program:

e Profile twice, code once. Performance profiling tools exist for a reason.

e Don’t micro-optimize. Unless you’re into that kind of thing. But really, try
to sit on your hands.

e Do macro-optimize. Think about your data structures and algorithms.

e Optimizing introduces new bugs. 100% guaranteed! Don’t optimize the
night before your release. Re-run your test suite.

e Don’t optimize exception handling. T'weaking rarely-executed code is a
poor use of your geniousness.

e Use open source third-party libraties that have already been optimized by
others.

Or just ignore that advice and go crazy. It’s just too much fun optimizing when the
alternative is dreary debugging. Pro tip: it’s even more fun writing a book on
optimizing!

Where to hunt slugs? Some of the common large-scale issues with coding
inefficiency in typical C++ programs include:

e Function call hierarchies

e Nested loops

e Overuse of memory allocation

e Constructor and destructor inefficiencies

e Inefficient algorithms (e.g., linear search of arrays)

e Unnecessary overhead or wrappers

e Recursion. After you've coded up your university assignments (remember
Tower of Hanoi, anyone?), please forget recursion exists.

577 C++ Ultra-Low Latency

C++ Speedup Techniques: Some of the general ways to speed up C++ programs
at the design structure or algorithmic level include:

e Faster data structures (e.g., hash tables).

e Faster algorithms (e.g., fix linear search to something faster like, you know,
hashing again).

e Parallelize via multi-threading, multi-process, multi-core, multi-GPU,
multi-something.

e Vectorization (parallelize your important loops)

e Precompute expensive functions into a lookup table at compile-time (e.g.,
activation functions).

e Cache any complex calculations to trade extra space for time savings (e.g.,
KV caching).

e Change floating-point to integer operations (quantization, anyoner)

e Replace recursion with iteration. Subtract ten bonus points if you need to
do this.

Some of the high-level C++ coding optimizations include:

e Tlatten function call hierarchies (stop wrapping everything so much, and
inline the small functions at the bottom).

e Optimize loops, especially nested loops (e.g., move loop-invariant code
out, loop unrolling, vectorization, etc.)

e Templates are effectively a compile-time optimization that improves speed
at the cost of code space.

e Reduce memory allocation (use less memory overall or replace memory
allocation with temporary stack buffers).

e Operator strength reduction (e.g., replace “*” with “+”, a pipe dream of all
Al engineers).

e Declare variables as close as possible to where they are used. This avoids
instantiating objects that aren’t needed on some paths.

e Use pointer arithmetic, especially for loops over arrays.

e Bitwise operations are fast, but the basic C++ integer operations are also
fast too, nowadays. Benchmark, don’t assume.

e Use short-circuiting of the &&and | | operators, and also the
ternary ? : operator, to avoid expensive function calls.

David Spuler 578

And finally, some things you might forget (and some that are forgettable):

e Benchmark any important changes (e.g., operator strength reductions).

e Turn up your C++ optimizer. There are higher settings you could try.

¢ Add compile-time optimization hints (e.g., constexpr and restrict).
e Overclock your PC (like a gamer).

e Sell your car to buy a better GPU.

e Put every function in a header file and make them all inline.

e Reorder your case labels. Surely it helps.

e Change i++ to ++1 in everyone else’s code.

C++ Class Slugs

The C++ class features are designed to add encapsulation and modularity, while
retaining speed, but there’s still plenty of ways that slugs can crawl into your classes.
C++ class optimizations include:

e Ensure small member functions are inline, especially those that do “get”
and “set”.

¢ Addinline to other friend or non-class functions (esp. if small or
commonly used).

e DPass objects to functions using “const&” (pass-by-reference), rather than
pass-by-value.

e Watch out for temporary objects. These can occur in simple assignments
or function call expressions or in weird ways like accidentally making your
overloaded assignment operator have the wrong type.

e Use reference variables instead of copying objects into temporary variables.

e Take care templating class objects (e.g., when using
the std: :vector class for a vector of your class objects). Lots of
hidden calls to constructors and destructors may arise in resizing.

e Use the initializer list in the constructor for initializing data members.

e Use friend functions for faster accesses to internal object data.

e Block accidental calls to the copy constructor or class assighment operator
(i.e., if you aren’t defining them, make a dummy version thatis “private”
with a “void” function body).

e Avoid returning objects if you can. Return a reference if it’s safe to do so.

e Take care with “wrapper” classes like “smart pointers”, “smart integers”
or “smart buffers”. Usually, they’re safer but slower. How smart is that?

579 C++ Ultra-Low Latency

Bypass interfaces with friend functions

Using friend functions may be faster because they can bypass class getter and
setter member functions. If a class declaration has a good deal of private data, it
is common C++ style to declare an interface of public member functions to access
private data. Although the class interface can be quite efficient if member functions
are declared as inline, the need to call a function to access a data value can still
make it inefficient in some cases. The wuse of friend functions
and friend classes can be efficient because this bypasses the class interface. For
example, a2 member function to set a data member may perform some range
checking on the value, but if we can be sure that a particular function will not use
incorrect data, a friend function can be used to bypass this checking.

friend functions (or friend classes) should not be considered unless the
function needs very fast access to data members, and the member functions to
access the data perform other computations. Note that a member function, with its
special privileges, also bypasses the class interface (because it is part of it),
and friend functions should not be used where member functions would be
more appropriate. Programming style is the consideration here, as they would both
have similar efficiency.

A good example of friend function efficiency occurs when an operator function
operates on two different classes, such as when we need an operator that multiplies
aMatrix object by a Vector object to yield a new Vector. Assume that both
classes have member functions to access individual elements of
the Vector or Matrix. Consider the declaration of the multiply function as
neither a class member nor a friend function, as in:

const int N = 10; // Number of elements in vector/matrix
class Vector {
double data[N];
public:
double get element (int i) const { return datali]; }
void set element (int i,double value) { datal[i]= value; }
}7

class Matrix {
double data[N] [N];
public:
double get element (int i, int J) const {
return data[il [i]; }

}7

David Spuler 580

Vector operator * (const Matrix& m, const Vectoré& v)
{
Vector temp;
// multiply matrix by vector
for (int i = 0; i < N; i++) { // for each row
double sum = 0.0; // sum of N multiplications
for (int j = 0; j < N; J++) {
sum += m.get element (i, Jj) * v.get element (Jj);
}
temp.set element (i, sum); // store new element
}

return temp; // return new vector

This will be horribly inefficient because the operator* () function must go
through both class interfaces to access elements. Although it isn’t necessarily any
less efficient here, if range checking of the array index i were present in the
member functions to set or access the elements, this would cause inefficiency.

Note that if the Vector class overloaded the [] operator instead of using
aget_element member function, this would make no difference to efficiency—
notational convenience is gained but the operator[] function has the same cost
as any other function.

One alternative to consider is to make the operator* function another member
of the Vector class, but this will still mean wusing the interface for
the Matrix class. A more efficient solution is to make the operator* function
a friend of both Matrix and Vector classes, thus allowing it direct access to
their individual data elements, bypassing any range checking on array indices. The
more efficient version, using a friend function, is:

const int N = 10; // Number of elements in vector/matrix
class Matrix;
class Vector {
double datal[N];

public:

friend Vector operator* (const Matrix& m, const Vector& v);
}i
class Matrix {

double data[N] [N];

public:
friend Vector operator * (const Matrix& m, const Vectoré&

}r

581 C++ Ultra-Low Latency

Vector operator * (const Matrix& m, const Vector& v)
{
Vector temp;
// multiply matrix by vector
for (int i = 0; i < N; i++) { // for each row
double sum 0.0; // sum of N multiplications
for (int j = 0; j < N; J++) {
sum += m.data[i][j] * v.datal[j]; // access data

}
temp.datal[i] = sum; // store new vector element
}

return temp; // return new vector

The disadvantage of using friend functions is the same as their advantage: they
pierce class encapsulation. Because a friend function makes use of hidden private
data members, and any change to the class may require a change to the definition
of the friend function, whereas in the first version of the operator* function,
the use of the “get element” functions of both Vector and Matrix meant
that it would need no changes, provided the “get element” functions were
correctly changed within the class.

Avoid Virtual Functions

Object-oriented programming purists will hate me for this section.
C++ virtual functions are a wonderful incarnation of OOP and they can be
beautiful and elegant. But you need to avoid them sometimes if speed is your goal.

They’re also very fast function calls, even though done dynamically.
Although virtual function calls seem like they’re complicated and possibly slow,
they’re actually very carefully designed to be very fast to call in C++ class
hierarchies. There’s lots of painstaking work for compiler designers to get them to
compile correctly, but their runtime efficiency is great for programmers. The
implementation is effectively a small lookup table with function pointers. It’s a
couple more assembler statements before the function call, and the overhead of
calling a function will dwatf that cost.

So, why do I say to review your use of virtual functions? Because they’re an
optimizer blocker. Since they’re a dynamic runtime function call, there’s much less
opportunity for the C++ compile-time optimizations to remove these calls. Indeed,
the compiler cannot always determine what function is being called and you can
lose these speedups:

e inline functions
e constexpr function evaluation

David Spuler 582

Hence, I say you have to choose carefully in the use of virtual functions. Avoid
them for speed-critical functions, and don’t use them only for good OOP style
when you don’t really need them. But also, don’t be afraid of using them in other
instances because they’re only marginally slower than a non-inlined function call.
Kudos to the C++ language designers for that!

Avoid unnecessary virtual function calls

The use of virtual functions, when they are not needed, is obviously
inefficient. virtual functions are needed only when dealing with pointers or
references to objects of unknown type. If the program never uses pointers or
references to objects, or if it does not have any derived classes, no function needs
to bevirtualand the wuse ofvirtual wastes space. In addition,
because virtual functions relate only to the use of derived classes, declaring any
functions as virtual in a class that has no derived classes is also unnecessarily
inefficient.

One common situation where virtual may appear necessary, but need not be,
occurs with redefining a member function in a derived class. This does not
necessarily mean that the function must be defined as virtual in the base class
(nor in the derived class — the virtual keyword is never needed in the derived
class). Of course, if the program starts using pointers or references to these classes,
the functions may need to be virtual, in which case it may be better style to
declare the member function as virtual.

A call to avirtual function need not always be a “real” virtual call. For
example, passing an object by reference (either as a reference or as a pointer type)
can occur when changing functions to pass-by-reference for efficiency
improvement.

Any calls to virtual functions inside that (not necessarily virtual) function
will be such that the compiler cannot know that an ordinary function call to the
member function would suffice. It does not perform any global analysis to
determine that all arguments to the function are base objects, and not derived
objects. For example, in the following code, it isn’t clear that the call to the
(virtual) print function could be replaced by an ordinary call:

void print base object(Base & object)
{
object.print();

583 C++ Ultra-Low Latency

The overhead of virtual function calls can be removed whenever the programmer
can be sure that only one type of pointer/reference to an object is being used. In
particular, whenever a programmer can be sure that a pointer/reference to a base
class object points to a particular object, the qualified member function name can
be used. For example, the virtual call uses:

p->print () ;
And the more efficient code that avoids a virtual function call is:
p->Base::print();

An example of extra information making this change possible occurs when a
program uses a number of different (homogeneous) linked lists, with each linked
list containing the same type of object (one with base objects, one with derived
objects). When implementing a print list function to print out a linked list,
you can write it generally to call a virtual-declared print object function:

void LinkedList::print list()
{
for (Base *temp = head; temp != NULL; temp=temp->next())
temp->print object();

This means that each call to print object has the run-time overhead of
avirtual function call. A more efficient alternative is to make use of the
knowledge that each list must contain the same type of object, and have two
different print list functions (i.e., use a virtual function to do the dirty
work of printing the objects).

void Base::print list hidden()

{
for (Base *temp = this; temp != NULL; temp=temp->next())
temp->Base::print object();

}

void Derived::print list hidden ()

{
for (Derived *temp = this; temp != NULL;
temp = (Derived*)temp->next())
temp->Derived: :print object();

}

void LinkedList::print list()

{
if (head != NULL)

head->print list hidden(); // call virtual function
}

David Spuler 584

With this approach, all of the lower-level calls to print object can be bound at
compile-time and the only virtual call is the call to print list hidden at
the very top. Hence, by using our knowledge about the linked lists, we have reduced
the number of run-time virtual function calls.

Specialize inherited member functions

In an inheritance hierarchy, the derived class is a specialized version of the base
class. This means that member functions inherited from the base class can often be
rewritten more efficiently to make use of the known special features of the derived
class objects.

Example: Triangular Matrix Algebra. As an example, consider a class
“UTMatrix” (upper triangular matrix) which is derived from class “Matrix” and
represents matrices where all elements below the main diagonal are zero.

The general matrix “add” function of theMatrix class is inherited by
the UTMatrix class, and it will work correctly. However, this inherited function is
inefficient and it is more efficient to add a new member function to
the UTMatrix class to add two upper triangular matrices avoiding all additions
involving elements below the diagonal (because they are known to be zero).

In fact, it is also more efficient to write special functions to add ordinary matrices
to upper triangular matrices. The computation of the determinant of a triangular
matrix is also more efficient than that for a general square matrix, so this member
function should also be rewritten in the UTMatrix class.

Example: Complex Numbers. As another example, consider a class
“Imaginary” (imaginary numbers) derived from another class “Complex”
(complex numbers). For all operations involving Imaginary objects, it is certain
that the real part of the complex number is zero. Hence, it is more efficient to
rewrite all inherited operations that use the real part of a Complex object, such as:
addition, multiplication, norm, etc.

The main disadvantage of specializing member functions is that the code reuse
advantage of inheritance is negated; more programmer time must be spent on
recoding the specialized member functions. Other disadvantages are the increased
probability of error, most special cases to test, and an increase in executable code
size.

585 C++ Ultra-Low Latency

Assignment Operator Return Type

The return type of the overloaded assignment operator should usually be a
reference type or void. A common mistake is to make it return a class object.
Consider the following class declaration:

class Integer {
private: int wval;

public:
Integer operator = (const Integer &x);
//
bi
Integer Integer::operator = (const Integer &x)

{
val = x.val; // copy data
return *this; // return left operand

This declaration of the assignment operator to return an object permits expressions
using the result of assignment, such as:

Integer x, y, z;
x = x + (y = z); // embedded assignment
x =y = z; // multiple assignment

However, it needlessly calls the constructor and destructor for a temporary object,
leading to inefficiency, and occasionally to error. The correct declaration of the
assighment operator is to return a const reference to Integer. This simply
requires an & in the return type declaration, as follows:

const Integer& Integer::operator = (const Integer &x)
{

// ... same as above

Note that const is required because the use of a non-const reference return type
is slightly undesirable because it allows the very strange (and probably incorrect)
multiple assignhment:

Although the failure to declare the return type as a reference above was a slug, rather
than a bug, it can be more dangerous.

David Spuler 586

For aMyString class with dynamic allocation, using an object return type
of MyString instead of MyString& will cause a temporaty object to be created
at the return statement, using the copy constructor with “*this” as the
argument. If the copy constructor is defined correctly, this is often just an instance
of inefficiency, but it may also lead to fatal errors related to temporary objects.
When the copy constructor isn’t defined correctly, the programmer has an error
with an increased level of complexity caused by temporary objects.

Return Type Void: Note that it may be far better simply to declare the retutn type
of the assignment operator as void, rather than a reference type. Although this
prohibits embedded assignments in expressions and also multiple assignments,
these are poor style anyway and should probably be discouraged. Using return
type voidis also slightly more efficient because no value need be returned.
However, returning the reference type is the more common C++ idiom.

Singleton Classes

In a one-instance class there will only ever be one object defined from it. There are
called “singletons” in the “design patterns” parlance. In this situation the class can
be defined very efficiently by making use of compile-time initialization with data
members declared as “static” members.

An example is a hash table implementation of a symbol table (e.g., in a compiler
keyword table or an Al vocabulary table used by the tokenizer), where only one
symbol table will ever be used. The crucial fragment from this code is:

class SymbolTable {
private:
Node * table[TABLE SIZE]; // Hash table - array of ptrs
public:
SymbolTable(); // constructor
}i

SymbolTable: :SymbolTable ()

{
for (int i = 0; i < TABLE SIZE; i++) // all ptrs NULL
table[i] = NULL;

If there will only be one hash table, the constructor is needlessly inefficient. A more
efficient version declares the hash table as a static data member and the implicit
initialization to zero will set all the pointers to NULL at compile-time. The efficient
code for a one-instance hash table is:

587 C++ Ultra-Low Latency

class SymbolTable { // ONE INSTANCE ONLY
private:
static Node *table[TABLE SIZE]; // Compile-time init
public:
SymbolTable() { } // constructor does nothing

i
Temporary Objects and Destruction

Temporary objects are created automatically by the compiler in a number of
situations. This is a similar idea to that of a C++ compiler generating temporary
values for intermediate results of a computation. However, a temporary with class
type will have its constructor and destructor activated, so temporary objects can be
quite expensive.

For example, try the following class to demonstrate how a temporary object is
defined for intermediate expression results, particularly that returned by
the + operator:

#include <iostream.h>
class Integer {
private: int val;

public:
Integer () { val = 0; cout << "Constructor\n"; }
~Integer () { cout << "Destructor\n"; }

Integer (const Integer é&x)
{
val = x.val;
cout << "Copy Constructor\n";
}
void operator=(int x) { val = x; }
void operator=(const Integer &x) { val = x.val; }
friend Integer operator+(Integer &x, Integer &y);

bi

Integer operator+(Integer &x, Integer &y)

{
Integer temp; // user-defined temporary
temp.val = x.val + y.val;
return temp; // creates compiler temporary

int main ()
{
Integer i, j, k;
k =i+ 9;
}
David Spuler 588

There are 4 calls to the ordinary constructor corresponding to i, j, k, and temp;
there is a single call to the copy constructor that occurs when
the return statement creates a temporary object for the object returned from
operator +. This temporary object is the result of 1+7 and is then assigned to k.

In this case there are poor performance and no errors related to temporary objects
and in most cases, temporary objects are transparent to the programmer for a
correctly defined class (i.e., having both assignment operator and copy constructor).
However, if the programmer unwittingly stores a reference or pointer to members
of a temporary object, there may be errors in a later use of the reference or pointer.
The problem is that temporary objects can be destroyed by the compiler as soon as
they have been used in the computation, and so the reference or pointer is no longer
valid. However, since the timing of the destruction of temporaries is undefined,
some compilers will not exhibit an error for such code because they leave the
destruction of temporaries till late; it depends on how aggressively a particular
compiler performs its internal code optimization.

Overloaded Postfix Increment Operator

The postfix increment operator (x++) is a big slimy slug. I’'m not talking about
your for loop with “i++” versus “++1” for an integer, which is the same on any
compiler since about the 1990s, despite the endless online arguments about it. 'm
talking about overloaded increment and decrement operators for classes.

In C++ you can declare separate prefix and postfix increment overloaded operators
for a class, by putting an extra dummy “int” parameter in the postfix version. You
can also leave out a postfix version, and the prefix version will be called for both
usages. The default call to prefix versions is not a slug, but a potential bug if you
copy-paste code or use postfix ++ in template code. Also, returning the current
object for the prefix increment operator is only a minor slug, because you’re
returning a reference to the current object (and a reference is really just a pointer).

Postfix operations are much worse. They are slower than airport queues at
Thanksgiving. The semantics of the postfix increment operator (x++) in the C++
language are effectively:

1. Create a temporaty copy of your object.
2. Increment the current object.

3. Return the temporary object.

589 C++ Ultra-Low Latency

If you actually do this big shemozzle for a class object, you’ve got a whole lot of
processing happening on a temporary object that’s probably not even used. Maybe
the optimizer will cut a lot of it as dead code, or maybe not. With the horrors of
that echoing in your mind, here’s my first suggestion:

Don’t even declare postfix overloaded operators for your class.

Don’t overload the postfix increment operator. In fact, you can stop it being used
by declaring a dummy version that is “private” (stops external usage) with a
“void” function body (stops internal usages).

private:
void operator++ (MyClass &x, int) void; // Postfix denied!
void operator--(MyClass &x, int) void;

Void Return Type: Note that attempts to call a postfix ++ operator on a class type
may occur in template instantiation with your type. If it’s your template, change the
template code to use prefix operators. If you really must define an overloaded
postfix increment or decrement operator, then here’s my second suggestion:

Make the return type “void”

Hence, a basic usage of “x++” will compile and work correctly. Not only will it be
efficient to not return anything, but the compiler will also ensure that nothing more
fancy will run. A compilation error will block any use of postfix ++ that relies on
the operator returning the old object. In other words, this will be fine:

x++;

But this will get a compiler error alerting you to a problem:
y = x++; // Error

Standard Vector Object Resizing

The standard vector class is usually very efficient for basic data types, but you
need to take care if you instantiate it with a class type. The risk is that you’ll have
hidden calls to this class type’s constructors and destructors, potentially for every
element of the vector, under various circumstances.

This slug is a type of “hidden copy constructor call” problem. If you don’t manage
the size of the standard C++ vector class objects in the initialization or via the
“reserve” method, there can be a lot of hidden resizing happening behind the

David Spuler 590

scenes whenever you are adding elements to the vector. This will at least be doing
bitwise copies of the elements of each vector. But it’s even worse if the vector
contains complex objects with a defined copy constructor. When it’s resizing
the vector, it will call the copy constructor for each and every object that is an
element of the vector because it needs to move them all.

Even for basic data types there can be some cost to copying the data when resizing.
You can take control of this with the “reserve” function, so that
the vector object doesn’t need to keep resizing itself if you’re adding to it.

Skipping Destructor Cleanup

It’s really good OOP coding style for your destructor to carefully clean up every
resource your object needed, and you know, beautiful coding idioms are just so very
important. I certainly wouldn’t want to be the person to tell you to do some ugly
hack, even if it made everything a whole boatload faster. Umm, really, I wouldn’t
want to, but if you promise not to tell anyone you heard it from me...

Typically, destructor cleanup means calling “delete” on allocated memory used
by the data members, and for complex objects, it may also mean closing files. And
I often find that the cost of the destructor starts becoming significant in its own
right. And one destructor call can trigger lots more, like roaches, only without the
social skills. If you call “delete” on any member objects or worse, arrays-of-
objects, then those destructors get called, and this triggers a whole blam of code
that cascades down the object hierarchy.

Here’s a thought: don’t cleanup!
This is an optimization worth considering in some cases:

e Batch jobs
e Re-launching server daemons
e Program is shutting down anyway

If your program is a run-once batch job, and it’s not going to be running again with
a new request, or even if it’s an Al inference server process that handles 1,000 user
queries, after which another copy will launch in its place, then you can make like a
teenager, and don’t cleanup. Thumb your nose at Valgrind and comment out all
those delete lines in your destructors.

Let the memory leak!

591 C++ Ultra-Low Latency

Program exit is a special case that you can detect. If your program is exiting
“cleanly” then it does destructor calls to all of the global objects, and so on. And
you usually know in the code when the program is shutting down, whether from a
user choice, a timeout or limit exceeded, or something internal like an assertion
failure. One idea is to use a global Boolean flag that says “I’m shutting down” and
then check it inside all of the main destructors:

MyClass::~MyClass ()
{

if (g_aussie im shutting down) return; // Skip!

// Lots of stylistically beautiful code

Is it safe? What happens if you just skip all the cleanup? Well, nothing bad in many
cases. The operating system cleans up the allocated memory as part of
reclaiming a// of the memory. Files are a bit more of a complicated story. Standard
C++ shutdown should also propetly close any files opened for reading, although
you might possibly lose some buffered output written to a log file, so maybe you
should still flush buffers or close those files.

This idea of skipping destructors isn’t always workable. It’s not always clear that
ending the process will propetly save buffered output in closing files. As another
more complex example, if there’s an abnormal disconnect from a database session
or a remote network connection hangup (e.g., socket session not ended propetly),
there might be some other consequences, like error messages in the logs locally or
for the remote peer.

Initializer lists for member objects

When a class declaration contains a class object as one of its members it is important
to use the correct method of initialization to retain efficiency. Consider the
declaration of a class B containing a member object from class A:

class A {
private:
int val;
public:
A() { val = 0; }
A(int x) { val = x; }
void operator = (int i) { wval = i; }
b

David Spuler 592

class B {
private:
A a; // member is itself an object
public:
B() { a =1; } // INEFFICIENT
bi

Declaring an object of type B will cause the default constructor for the member
object of type A to be invoked immediately before the default constructor for B.
Then the = operator for class A is used to set the member object, a. Hence, the
constructor for Binvolves a call to A’s default constructor and a call to the
assignment operator. The call to A’s default constructor is redundant and should be
avoided. Fortunately, C++ provides a convenient syntax for passing arguments to
constructors of member objects. The default constructor for B should be recoded
to use the initializer list:

B() : a(l) { } // EFFICIENT

This initialization syntax causes the constant 1 to be passed to the constructor for
the member object, a (the constructor accepting the int parameter is called,
instead of the default constructor). Thus, instead of calling the default constructor
and the assignment operator for A, only the int constructor for A is called.

This initialization method is efficient whenever calling the default constructor for a
member object is not appropriate, for instance, when the member object is
initialized by a call to the assignhment operator within the main object’s constructor
(as above, where B’s constructor assigned to its member of type A). This common
form of initialization can be used for any type of data member (i.e., not only class
objects), although it will be neither more nor less efficient than assignment for built-
in types. The special initialization syntax should be used wherever it is applicable,
since it can never be less efficient than assignment to the data members within the
constructor, and will often be more efficient.

Initializer lists for base objects

Base objects. Similar efficiency considerations apply to constructors in derived
classes, since the data member(s) in the base class act like an object member. The
constructor for the base class is always called when a derived class object is
constructed. When the default constructor for the base class is of no use to a
derived class object, it is more efficient to pass arguments directly to a non-default
base class constructor, using the special initialization syntax. The same syntax
applies as for data member initialization, except that the type name of the base class
is used instead of the name of a data member. A contrived example of this form in
initialization is:

593 C++ Ultra-Low Latency

class Derived : public Base {
public:
Derived() : Base(0) { } // Call Base(int) constr
}i

Avoid temporary objects

In the same way that temporary integer variables are used to compute an integer
expression, so too are temporary objects used in non-trivial expressions involving
class objects. For example, consider this code where the Complex class has defined
the + and = operators:

Complex cl,c2,c3;
cl = c2 + c3;

This is likely to create a temporary Complex object as the result of the addition, and
this temporary object is then passed as an operand to the = operator. In other
words, the expression is actually evaluated as:

operator=(cl, operator+(c2, c3));

A temporary object must be created to store the “+” sub-expression computed for
the second argument, and then passed to the “=" operator. Whether the operands
to operator= are passed by reference or by value has no effect on whether a
temporary is created in this situation (it will only affect the creation of new objects
inside the operator= function).

One (rather inelegant) method of avoiding this creation of temporaries is to create
a specialized function to handle it:

void AssignThree (Complex&cl, Complexé&c?2, Complexé&c3);

AssignThree (cl,c2,c3); // cl = c2 + c3;

The function should probably be a £riend function to allow efficient access to the
data members of the three Complex objects.

The problems with this solution are its very poor style (because the neatness of the
use of overloaded operators is lost), and also its non-general character. More
complicated expressions will still generate temporaries, unless more special
functions are added as friend functions, leading to even worse style. This “cure”
is perhaps worse than the disease.

David Spuler 594

Avoid temporaries via extra member functions

There are situations where the removal of temporaries does not lead to poor style.
Consider the following definition of a minimal Complex class:

class complex {
private:
double re; // real part
double im; // imaginary part
public:
// Constructors
complex () { re = 0.0; im = 0.0; }
complex (double r) { re = r; im = 0.0; }
complex (double r, double i) { re = r
// Copy constructor
complex (complex &c) { re = c.re; im = c.im; }
// Overloaded assignment operator
void operator = (complex & d) {
re = d.re; im = d.im; }
// Overloaded + operator
friend complex operator+ (complex &cl, complex &c2);

-
3
1
-
—

bi

inline complex operator + (complex &cl, complex &c2)

{

return complex(cl.re + c2.re, cl.im + c2.im);

}
Consider this class definition when used in the following code sequence:

complex cl, c2;
cl = 2.0;
c2 =cl + 3.0;

The effect is identical to:

cl complex (2.0); // invoke "double" constructor for 2.0
c2 = cl + complex(3.0); // invoke "double" constr for 3.0

The C++ compiler automatically creates two temporary objects from
the double constants, and calls the double constructor to do so. The inefficiency
of the creation of a temporary object and the call to the constructor can be avoided
by adding a few more functions to the class declaration:

void operator = (double d) { re = d; im = 0.0; }
friend complex operator + (double d, complex &c2);
friend complex operator + (complex &cl, double d);

595 C++ Ultra-Low Latency

If these functions are present, then the double constants are passed directly to
the double parameters of these functions. No temporary object is created, and
hence the constructor is not called. Note that two symmetric versions
of operator+ are required because the C++ compiler cannot assume that the
commutativity of + holds for user-defined class objects.

By making the “interface” efficient for mixing complex and double variables, the
creation of temporaries has been reduced. This can be generalized: it is better to
provide member or friend functions to class X for a specific parameter type Y,
than to provide only a constructor to create new X’s from Y’s.

Declare objects close to use

The C++ language allows variable declarations to appear almost anywhere within a
program. Although the placement of variable declarations may seem unrelated to
efficiency, it can have some effect when objects with non-trivial constructors are
declared. For efficiency reasons, an object must be declared as close to its first use
as possible. In particular, the C style of declaring all variables at the top of a function
is often inefficient. Consider the C++ code below:

void dummy (...)

{

complex c; // create object
if (...) |
// use c

}
The complex object is not used if the condition in the if statement is false — the
constructor and destructor for the unused object are called needlessly.

Declare Objects with Full Initialization
Another consideration is that objects should not be declared until there is enough
information to construct them fully. For example, given a user-defined class

“complex”, consider the following code:

complex c; // construct c
//

c =1.0; // initialize c
This is less efficient than calling the correct constructor directly by using:

complex c(1.0); // construct and initialize c

David Spuler 596

The first code sequence involves a call to the default constructor and the
overloaded operator=, whereas the second declaration calls only the (double)
constructor for the complex class.

Unfortunately, there are practical limits to the extent to which objects can be
declared near their first use. If the first use of an object is inside a compound
statement, and the object must also be used outside the compound statement, the
scope resolution rules prevent the declaration from being placed inside the
compound statement. For example, consider the code below:

double d;
complex c;
while(....) {

cin >> d; // get double value from user
c=d; // set complex number

}

cout << c¢; // print the complex number

In this sequence, it would be more efficient to declare “c” inside the loop block
using the direct call to a double constructor:

complex c(d);

However, this would prevent the use of ¢ outside the scope of the braces. This
limitation is an unfortunate consequence of the programming language design
choice to make braces both the method of grouping statements and the scoping
mechanism in C++ (but there are many more important advantages supporting this
decision). Unfortunately, it is not even possible to remove the braces in the above
example, using the comma operator as by:

while(....)
cin >> d, complex c(d); // FAILS: compilation error

C++ syntax prevents a declaration from being an operand of the comma operator.

Nothing Constructors. What we really want is a way to declare a class type
variable, but 7oz run its constructor. I'm not aware of a good way to do this. One
way would be to use pointers and dynamically allocated “complex’ objects, which
is successful and standardized, but this adds extra memory management overhead.

Here’s a thought. Maybe something like this works? Declare a dummy constructor
with a dummy parameter type:

597 C++ Ultra-Low Latency

class Banana { };
complex (Banana b) { } // nothing!

Then your call to the dummy constructor is hopefully optimized to nothing:

Banana b;
complex c(b); // Nothing!

Data Member Optimizations

These optimizations apply to C++ objects or structures. There are various ways to
speed up the data accesses and writes to a data member in an object.

Avoid bit-fields. Bit-fields are a special C++ feature designed to reduce space in
an object or structure.

struct node {
unsigned int visited :1; // bit-field
i

Avoid bit-fields if you want runtime speedup. They are great at reducing memory
size, but often at the cost of extra run-time overhead on any accesses to these fields.
Hence, for improved efficiency, at the cost of space wastage, remove the “:1”
qualification and change to a small data type such as bool, char, or unsigned
char.

Memory alignment: If there are mixed size data members, or there are some with
“alignas” alignhment settings, then memory alignment issues can needlessly create
an oversize object. This is more of a problem in terms of unnecessary space usage,
but adds inefficiencies in the need to initialize or copy the extra padding bytes for
large arrays of objects. The general rules for minimizing size are to: (a) order
members from large to small, and (b) group like-sized data types together.

Most used data member first. The machine code for an access to a structure or
object’s data fields usually involve a base address of the object, to which is added
an offset that is specific to each field. References to the first field of a structure can
often be more efficient because there is no need to add an offset (i.e., the offset is
zero). Hence, the most used class data member or structure field should be placed
first in the declarations.

David Spuler 598

Order data members by usage. It’s not just the first data member whose order
matters. Memory access issues such as data locality, predictive caching and memory
access pipelining mean that all of the most-used data members should be close
together in an object. In very large objects, there are some platforms where smaller
offsets are more quickly calculated, such as data members with less than 128 or 256
as their offset. Hence, a simple optimization is to order the data member
declarations according to their usage.

Function Slugs

Functions are an important building block of your code. Some ways to get the slugs
out of functions include:

e Declare small functions inline.

e Avoid recursion.

e Pass objects by reference.

e Avoid function pointers.

e Specialize functions with default arguments.

Avoid Function Pointers

C++ allows a data type called a “function pointer” or a “pointer to a function” as
part of its standard language. These are carefully type controlled, so they are
reasonably efficient. However, they are not any faster than regular function calls,
just because they’re a fancy pointer construct, and there’s a simple reason that
they’re not super-efficient: zhey’re function calls!

A function pointer is a call to a function, so it has the whole sequence to implement.
It’s not much worse than a standard function call, but there’s another problem.
Function pointers make it difficult for the C++ compiler to get rid of the function
call. The use of a function pointer will obscure much of the normal compile-time
optimization logic. Hence, function pointers can be less efficient for:

e inline functions
e constexpr functions

e Intrinsic functions

In summary, they’re a neat feature of C++, but not an efficiency gain. Use function
pointers if they are convenient, but not as a speedup.

599 C++ Ultra-Low Latency

Change recursion to iteration

Recursion is an elegant method of problem solution, but often incurs unnecessary
function call overhead. Where possible, recursion should be replaced with an
iterative algorithm. For example, the famous example of a recursive “factorial”
function would always be coded in a loop by professional programmers.

Fibonacci numbers. With a little insight, many recursive algorithms can be coded
without recursion. For example, the Fibonacci number sequence (1,1,2,3,5,8,13,...)
is defined by having the next number as the sum of the previous two numbers, with
the following recursive rules:

Fib(0) =1
Fib(1l) =1
Fib(n) = Fib(n-1) + Fib(n-2)

This has the obvious and very elegant recursive implementation:

int fibonacci (int n)
{
if (n <=1)
return 1;
else
return fibonacci(n - 1) + fibonacci(n - 2);

However, there is no need to use recursion here, and a short loop is adequate. A
non-recursive computation of the Fibonacci numbers is shown below:

int fibonacci (int n)
{
int small = 1, large = 1; // FO = Fl1 =1
while (n > 1) {
int temp = small + large; // Fn = Fn-1 + Fn-2

small = large;
large = temp;
n--;

}

return large;

David Spuler 600

Binary Trees. There are many examples of common algorithms that are
unnecessarily coded using recursion. Almost all linked list algorithms can be coded
without recursion, as can the most common binary search tree operations: search,
insertion and deletion. For example, the recursive implementation of tree insertion
is:

void insert (Tree *root, Tree new node)

{

if (*root == NULL) // Found bottom of tree
*root = new node; // insert here
else {
if (new_node->data <= (*root)->data)
insert (& (*root)->left, new node);
else

insert (& (*root)->right, new node);

The non-recursive version of binary tree insertion is given below. It is somewhat
less elegant, uses a few more variables, but should be more efficient.

void insert (Tree *root, Tree new node)

{

Tree temp = *root;
if (temp == NULL) // empty tree special case

*root = new node;
else {

for (i:) |

if (new node->data <= temp->data) { // go left?
if (temp->left == NULL) { // leaf?
temp->left = new node; // insert it

return; // finished
}
else
temp = temp->left; // go left
}
else { // going right
if (temp->right == NULL) { // leaf?
temp->right = new node; // insert it
return; // finished
}
else
temp = temp->right; // go right

601 C++ Ultra-Low Latency

I’'m sorry, Professor! Your recursive code is short and beautifully elegant, but mine
is longer, uglier, and faster! Maybe I shouldn’t tell my Professor that I’ve never
coded a binary tree since finishing my degree?

Hash tables ate the name of the game.
Eliminating tail recursion

Recursion is rarely a good solution, but some types of recursive algorithms are not
easy to change to loops, because they would require a stack data structure to do so.
If a stack is needed, there may be little gain in removing recursion fully — it depends
on how efficiently recursion is implemented by the compiler on the builtin C++
function call stack, versus your skill in hand-coding a stack data structure.

In these situations, a simpler optimization is still possible without a stack. Partial
recursion elimination without the need for a stack is possible via the elimination of
“tail recursion.” Tail recursion occurs when the last action of the recutsive
procedure is to call itself.

A simple modification changes this last recursive call to become a loop back to the
top of the current invocation. For example, consider the preorder traversal of a
binary tree. The simplest recursive algorithm is:

void preorder (node ptr root)
{
if (root != NULL) {
visit (root) ;
preorder (root->left);
preorder (root->right); // Tail recursion here

Tail recursion can be eliminated by replacing the if statement with a while loop.
The transformation effectively reduces recursion by half, as the second recursive
call is eliminated. This reduction in recursion is achieved with virtually no extra
overhead!

void preorder (node ptr root)
{
while (root != NULL) { // while loop replaces if
visit (root) ;
preorder (root->left);
root = root->right; // Move to right subtree

David Spuler 602

Replacing recursion with a stack

Some recursive algorithms cannot be easily replaced by iterative loop equivalents.
For example, in the preorder binary tree traversal above, we were unable to remove
both of the recursive calls. In these situations, recursion can be replaced with an
algorithm using a stack data structure.

All recursive algorithms can be replaced by a stack because recursive algorithms are
actually using an implicit stack (the program stack of function calls). Whether use
of a stack will be more efficient than recursion depends on a number of factors.
The choice of a stack over recursion is machine-dependent. In particular, it is quite
likely that the program stack is supported by efficient low-level instructions and
that (recursive) function calls are executed very efficiently. Can you do better?

On the other hand, recursion requires that much information be stored on the stack
(i.e., parameters, automatic local variables, machine registers), whereas an algorithm
making use of an explicit stack will usually only need to store a few items, making
it potentially faster than the function call stack. If the maximum size of the required
stack is known beforehand, a stack can be quite efficiently implemented as an array,
whereas a dynamic stack as a linked list will usually be more costly because of the
cost of memory allocation.

The following shows the preorder traversal with tail recursion elimination removing
one recursive call and an explicit stack replacing the other. In this case, the explicit
stack need only store pointers.

void preorder (node ptr root)
{
stack type S;
init stack(S); // set to empty stack
while (root != NULL || !is empty stack(S)) {
if (root != NULL) {
visit(root); // visit a tree node
push (S, root->right); // save right subtree
root = root->left; // go to left subtree
}
else
root = pop(S); // get node from stack

603 C++ Ultra-Low Latency

Collapsing recursive calls. If you can’t be bothered changing a recursive
algorithm to a loop or stack, here’s a smaller optimization to consider. By
channeling the spirit of loop unrolling, we can “collapse” one or more levels of
recursion into sequential code. The method of “function call collapsing” can be
applied to recursive functions in this limited sense. Obviously, it isn’t possible to
collapse a recursive function call completely into inline code, but it is possible to
collapse a few levels of recursive calls at a time, reducing the total number of
recursive calls by a constant factor.

Moving the recursive base case higher. The simplest method is to test the base
case one level higher up. In the simple implementation of the preorder traversal ,
the recursive base case is “root==NULL”. If this occurs, the function call does
nothing. One simple method of avoiding these unnecessary function calls is to test
for the base case before the recursive call. The new function becomes:

void preorder (node ptr root)
{
while (root != NULL) {
visit (root) ;
if (root->left != NULL) // Test moved up
preorder (root->left);

}

root = root->right;

Collapsing multiple levels of recursion. By converting multiple levels of
recursive calls into sequential code, the function does much more work each time,
but makes recursive calls less frequently, thereby reducing function call overhead.
For example, the preorder traversal can be rewritten so that the current node and
its two children are handled by the function, and then recursive calls are made for
any of the children’s children:

void preorder (node ptr root)
{
if (root != NULL) {
visit (root);
if (root->left != NULL) { // do left child
visit (root->left);
preorder (root->left->left);
preorder (root->left->right);
}
if (root->right != NULL) { // do right child
visit (root->right);
preorder (root->right->left);
preorder (root->right->right) ;

}}
David Spuler 604

But alas, we’ve reverted here to a fully recursive version again, just to show function
call collapsing. The above method should also be combined with (a) tail recursion
elimination, and (b) a stack data structure. This is left as an exercise for the reader
(thankfully), and as a project scope estimate, I suggest two weeks!

Use Parameters as local variables

Parameters to functions can be used as if they were local variables. Because of C++
call-by-value parameter passing of basic types (not arrays), the modification of a
parameter inside the function does not change the values of any variables not local
to the function. This method saves on initialization time, and on stack space. In the
example below, to zero an array, the size is counted down, rather than having a
local variable counting up.

void zero_ array(int arr[], int n)

{
while (n > 0)
arr[--n] = 0;

This code also has the optimization of “looping down to zero”. Note that we have
to be careful that this code doesn’t access arr[n], but does correctly
clear arr [0]. I think it works correctly, but my brain is on fire trying to check it.

Pass function parameters by reference

Passing objects or large parameters by value is an inefficiency. The C++ language
provides a very convenient method of achieving pass-by-reference, by simply
using & in the parameter declaration. One method of improving efficiency is to pass
objects to functions as reference parameters.

Behind the scenes, pass-by-reference is like passing a single pointer as the
parameter. This avoids not only the cost of copying a large object onto the stack,
but also the cost of the copy constructor and destructor for the object within the
function (i.e., the parameter is a separate object when passed by value).

A function parameter can be changed to use pass-by-reference parameters only if it
does not change the object. Fortunately, modifications to parameters can be
detected simply by qualifying the parameter declaration with const, thus forcing
the compiler to warn about any modifications to the object within the function. An
example of the use of reference parameters in the definition of a Complex object
is shown below:

605 C++ Ultra-Low Latency

class Complex {
double r, 1i;
public:
Complex & operator += (const Complex & c);
// c is passed by reference for efficiency
// The return type is also a reference

}i

Complex & Complex::operator += (const Complex & c)
{
r += c.r; // add to both data fields
i += c.i;
return *this; // return reference to updated object

Const reference parameters. Passing the argument by reference improves
efficiency by avoiding big objects. Note that the parameter is declared “const” as
well as “&” indicating a reference. This “consts&” pattern is the common C++
idiom for simulating a non-modified pass-by-value object send into a function as a
faster reference type.

Returning References. This code also has a second optimization: reference return
types. Making the return value a reference is also efficient, because
the return statement does not invoke the copy constructor. Note that a returned
reference is necessary only if the user of the Complex class uses complicated
expressions such as x+=y+=z. If such expressions are not required, efficiency can
be improved by making the return type void.

Objects Only. The use of references is best limited to class objects, and also to
structures and unions. Arrays are already passed by reference in C++ and hence
there is no need to change them. The use of references for scalar types
(integers, float, double, and pointers) is unlikely to give much improvement, if
any, and might even be slower for some.

Pitfall: Temporary Objects. Another disadvantage of using reference parameters
for scalar types like “int” is the inefficiency caused if a constant value is passed as
an argument (i.e., a number not a variable). Paradoxically, passing a constant
argument to a reference parameter is not an error in C++, but instead a new
temporary object with this type is created automatically by the compiler and its
address passed.

David Spuler 606

Implicit “this” object. Note that the object to which a member function is applied
is already passed by reference in a certain sense, because it is using the implicit
“this” parameter. Hence, the simple types of member function calls are already
efficiently using a hidden type of pass-by-reference of the object itself. Consider
this code:

int MyClass::fn() // member function

{

return x;

It is not faster with a non-member friend function call that uses an explicit
reference parameter. This code will not be more efficient (and is probably less
efficient):

int fn (MyClass & object) // friend function
{

return object.x;

Specialize functions with default arguments

Every default function argument is a place where you can optimize. Default
arguments to functions are not a source of inefficiency in themselves, and cost no
more than using a fixed-argument function and passing some constants explicitly.
However, the use of default arguments indicates the possibility of improving
efficiency by replacing a single function with a number of specialized functions.

How to do this? Instead of one function with a default argument, create two
functions using function overloading. The specialization of the function into two
separate functions will often make other optimization techniques possible, thus
improving overall efficiency at the cost of some duplication of executable code. As
an example of the possibilities that can exist, consider the function with default
arguments:

void indent (int n = 4) // default argument n=4

{
for (int i = 0; 1 < n; i++)
cout.put (’ ’);

Rewriting this single function as one general function and one specialized function
leads to opportunities for optimization in the specialized function.

607 C++ Ultra-Low Latency

In this case, loop unrolling can be employed:

void indent () // Specialized function (n=4)

{

14 14

// Loop completely unrolled

()
cout.put (" 7);

")

()

’
14 14

’

}

void indent (int n) // General function
{
for (int i = 0; 1 < n; i++)
cout.put (' ");

Note that this optimization is also limited in scope, as there any need to change any
other code that calls the functions. The C++ compiler will automatically make the
correct choice of which overloaded function to call. Another thought for improved
readability is to name the specialized function differently (e.g., indent4), which
requires calls to the function to be changed. However, default arguments are
certainly convenient and the slight increase in efficiency should be balanced against
the loss of good programming style.

Medium-Sized Slugs

There are a lot more examples of possible inefficiencies in C++ coding. Some of
the types of errors that are “medium-sized” slugs include:

e Automatic array initializations with constant data.

e Loop test function calls (i.e., expensive loop conditional tests).

e Member initializations in the constructor body (they should be in the
initializer lists).

e Program startup hidden initializations (global or static object
constructors).

e Small non-inline functions called frequently.

e Busy wait loops.

e Unnecessary code inside loops.

e C++ classes wrapping simple data types (e.g., overuse of “smart pointers”
or “smart integer” classes).

e Opveruse of standard string concatenation operations.

e Recursion is almost always a slug.

David Spuler 608

Automatic Array Repeated Initialization

A simple example of unnecessary double initializations is any type of large local
variable, such as an automatic array. When a function makes use of a large array
variable with constant data, or even a large constant object, the variable should
probably be declared as both “const” and “static”, even if it need not retain its
value between calls. Consider the following code example:

char *convert (int day)
{
char *days[] = { "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday",
"Saturday", "Sunday" };
return days|[day];

The initialization of array “days” illustrates an inefficiency. The initialization for
“days” occurs every time the convert function is entered. It would be much more
efficient to declare “days” as a static variable to avoid it being re-initialized, and
also “const” to help the compiler optimize.

Data Structure Double Initialization

If you have an initialization routine that does a lot of work, it sometimes becomes
a slug by accident. I'm not talking about a single variable initialization, but the
initialization of a large program data structure at startup, like a precomputed
lookup-table or a perfect hashing algorithm. In the design patterns vocabulary, such
a situation is a “singleton” data structure, where only a single object ever exists in
the program. It’s easy to lose track of whether its initialization routine has been
called, and then it gets called twice (or morel).

An example would be some of the precomputation methods whereby a large
lookup-table is initialized at program startup. For example, a 24-bit lookup table
has been used elsewhere in this book to optimize Al activation functions such as
GELU.

The way to avoid the slug of double-initialization is simply to track calls to the
initialization routine.

609 C++ Ultra-Low Latency

The idiom that I use is a local static variable of type bool at the start of the
initialization function:

static bool s once = false;

if (s_once) {
aussie assert(!s once); // Should be once only
return; // Avoid double intialization!

}

s _once = true;

Another way is to actually count the calls with an integer, which is a generalization
that works for additional scenarios:

static int s calls = 0;
++s calls;
if (s_calls > 1) {
aussie assert(s calls <= 1);
return; // Avoid double intialization!

You can wrap these multiple lines of source code up into a single
“aussie assert once” macro, if you want a simpler method.

Singleton global objects. If you’ve done the hard yards to declare a big data
structure like this as its own class, then you can simply instantiate only one object
(.e., as a global). The C++ class infrastructure does well in ensuring that a
constructor is only called once. Even so, it may be worthwhile to declare
a static data member and use similar logic to ensure that initialization on this
object isn’t ever done twice.

In any of these situations, it’s a worthwhile investment of a couple of CPU
instructions, an increment and a test, to avoid accidentally running the whole
routine again. Since the code is virtually identical for all cases, to avoid copy-paste
typos, you could even hide these few statements behind a standard C++
preprocessor macro with a name of your choosing Or you could even use
an inline function with the “return” statement changed to throwing an
exception.

Busy waiting for input

Humans are very slow compared to computers. In particular, a computer can do
much work in the background, even when handling the (slow) interactive input of
a human.

David Spuler 610

Hence, one method of improving efficiency is to perform background processing
while awaiting input, instead of using blocking input that waits for a keypress before
doing anything. In other words, you can’t use std::cin or scanf for non-blocking
keypress polling.

A common example of this idea is chess-playing programs that “think” during their
opponent’s time. The computer can continue its game-tree analysis while waiting
for the player to press a key or click a mouse. The C++ standard provides no simple
standardized function for non-blocking input. In general, there are two ways:

e Keyboard polling API calls (non-portable).
e Multi-threading with input on one thread and processing on another.

There are various non-portable ways to poll for key presses. For example, on
Windows there’s the “_getch” or “kbhit” functions (also “_kbhit”), which are
all deprecated. Assuming you’ve found a workable polling API call, at some regular
interval, perhaps before each node of the game tree is analyzed, the chess program
checks if a key has been pressed. If a key has been pressed, the chess program stores
information about its current analysis, and processes the uset’s keystroke. Unless
the key press completes the user’s move, the background analysis can continue after
processing the key.

Overall, there’s no simple and standardized way to do non-blocking input in C++.
This is probably because of C’s ancestry, where it was difficult to poll the keyboard
on a traditional UNIX line terminal. Multi-threading can be used in C++ to achieve
the result instead.

Slow disk I/O

The cost of performing I/O on disk files can make up a large proportion of the
run-time cost of some programs. For reducing the amount of data to be read from
or written to the disk, the main methods are:

e Use smaller records.

e Cache frequently used records.
e Buffer multiple reads or writes.
e Compress data.

e Use better data structures.

611 C++ Ultra-Low Latency

A very simple method of reducing disk I/O is to reduce the size of records being
read or written. This can be achieved using many of the methods to create smaller
objects. There are various methods in C++ to reduce a class object’s byte size:
unions, bit-fields, packing, smaller data types, or reordering data members.

Caching is useful if some records are being read more often than others. It is a very
general idea and there are many possible implementations. You can even create
your own caching mechanism.

It may be possible to keep all of the most frequently used records in main memory,
writing them to disk only at the end of the program (even caching records in
memory and writing them to disk for every modification will still avoid the cost of
multiple disk reads).

If this method cannot be used, try using several memory locations for record 1/0O,
and whenever a read operation is required, examine these in-memory records first.
If any of them is the required record, the cost of a disk read is avoided. Caching
always has a slight overhead, and may increase run-time slightly if the desired
records are rarely in memory; however, it will never increase the amount of disk
I/0O and the computational overhead is likely to be small compared to the cost of
reading a record from disk.

When reading or writing multiple contiguous records, disk I/O can be speeded up
by reading in a number of records each time. The advantage is that buffering
multiple operations reduces the number of disk seek operations. For example, when
using <stdio.h>, the buffering can be changed using
the setbuf and setvbuf functions.

Another alternative is to use other low-level I/O functions, such as the
Linux open, read and write functions. However, this method reduces
portability of the code.

When the amounts of data being read are quite massive, the level of disk I/O can
be reduced by compressing the data in the file. Read and write operations then have
the overhead of uncompressing or compressing the data, but the cost of this
computation may well be less than that of the disk I/O (or it might also be more;
be carefull). However, methods of compressing data are beyond the scope of this
book.

The use of a different data structure for data in disk files is often worthwhile. In
particular, if the disk file is being searched, then many search algorithms are
applicable. For example, binary search can be performed on a direct access file if
the data is sorted.

David Spuler 612

However, even binary search is inefficient for large disk files, and data structures
specifically intended for disk data should be used. The B-tree is a commonly used
data structure, and hashing is another possibility. Unfortunately, these algorithms
are highly advanced and again beyond the scope of this book.

Incorrect choice of loop

Although the choice of loop is largely a matter of style, there is an important
difference between the post-tested “do” loop, and the pre-tested “for” and
“while” loops. The loop condition of a do-while loop is not evaluated on the
first iteration and the loop body is always executed at least once. However,
a for or while loop condition is evaluated before the first iteration and the loop
body need not be executed at all. A common form of minor inefficiency is declaring
loops that are always executed the first time, such as:

bool done = false;
while (!done) {
//

}

It is more efficient to use the do loop, which avoids a single evaluation of the loop
condition:

bool done = false;
do {
//

} while (!done) ;

The use of the correct type of loop is also helpful to the optimizer. It is valuable to
know that a code segment is always executed once.

Infinite loops are control flow structures that can also be detected and used by the
optimizer. Hence, you should code an infinite loop explicitly by using one of the
common idioms:

for(;;) // Forever
while (1) // Common
do..while(l) // Not commonly used

This allows the compiler to generate efficient code, because you’ve made it easy for
the compiler to recognize the loop as infinite.

613 C++ Ultra-Low Latency

Exit loops and functions early

Control structures should be exited as soon as possible, including function paths
and loops. This means judicious wuse of returnfor functions
and break or continue for loops.

Using “return” as early as possible in a function is efficient. It prevents
unnecessary code being executed. Testing for edge cases at the start of a function
is an example of using the return statement to do “easy cases first” or “simple
cases first” optimizations.

Exit loops early. Similarly, both break and continue are efficient, as no more
of a loop is executed than is necessary. For example, consider the code using a
Boolean variable “done” to indicate the end of the loop, as in:

done = false;
while (!done) {
ch = get user choice();
if (ch == "qgq’)
done = false;
else

// rest of loop

The faster code has a break statement used to exit the loop immediately:

while (1) { // Infinite loop
ch = get user choice();
if (ch == "q’)
break; // EXIT EARLY!
else
// rest of loop

Unfortunately, the overuse of jump statements such as break and continue can
make the control flow of a program less clear, but professional C++ programmers
are used to these statements being used often.

David Spuler 614

More Slug Repellent

There’s plenty of other optimizations in the other chapters on compile-time
optimizations, code transformations, loop optimizations, and AVX vectorization.
Well, actually most of the book! Nevertheless, here’s a list of some more C++ code
optimization techniques for you to consider. Some of the bigger ideas:

e Use “move constructors” instead of copy constructors where appropriate
(since C++11).

e Use static data members where appropriate, so they are initialized once
only.

e Use std: :sort rather than gsort.

e Don’t put try..catch inside an inner loop that’s a bottleneck.

e Use std::bitset for bit sets or bit vectors.

e Use the “iterators” design pattern rather than returning a full scan of a data
structure all at once (saves memory and allows eatly exit).

e Consider basic C++ arrays instead of std: :vector if it has a fixed size
(known at compile-time) or its maximum size is small enough.

e Consider C++20 coroutines where appropriate for the architecture.

e Structure of arrays (SoA) data layout is more vectorizable than the Array
of Structures (AoS).

And some of the smaller optimizations:

e Commonly used object or struct fields should be first. On some platforms,
smaller offsets from the start of an object are accessed faster. Also, the very
first field has offset zero, which is optimized away, so put the most used
field first.

e Avoidlong else-if sequences. You are effectively doing linear search on
the problem space in a long block of if-else-if statements. The best
alternative is to use a switch statement, if the conditions are constants.
For non-constant conditions or string comparisons, consider tabularizing
the options and/or using heuristics to bifurcate the search space (e.g., start
with a switch on the first letter of a string).

e Use compact numeric ranges for switch. If the case numbers are close
together, the compiler will probably use a lookup-table in assembler. If the
cases are sparse, it can be forced to do an if-else-if equivalent in
machine code.

e Correct choice of loop. If the condition is true at the first iteration, use do-
while loops.

e Instead of range checking a signed integer with “1>=0 && i < MAX” use
a typecast with “(unsigned) i<MAX” because negatives become large

615 C++ Ultra-Low Latency

unsigned positives, and a cast from int to unsigned int isn’t a real
instruction at run-time.

e Enable the FTZ (“flush-to-zero”) and/or DAZ (“denormals-ate-zero”)
floating-point modes on your CPU, even though they violate the IEEE
754 standard. You probably don’t care about tiny floating-point numbers
in your weight or probability calculations.

e Enable GCC’s floating-point arithmetic speedup options: ~ffast-
math, -fno-math-errno, -fno-trapping-math, and -ffinite-
math-only.

e Dbsearch is slow. Choose a better method.

e Use static assert rather than assert (e.g., to check data type sizes).

e Copy arrays by wrapping them in a dummy struct and using
C++ struct bitwise assignment. It might be faster than memcpy.

e Use memcpy rather than memmove if you’re sure the arguments won’t
overlap.

e Move local non-static objects outside of a critical loop. Reuse the same
object rather than re-running constructors and destructors every loop
iteration. Add a “reset” member function if needed.

e Use scaling factors that are a power-of-two, so that multiplication or
division can be a bitshift.

e Specialize a function with a voidand non-void version if you find
yourself ignoring the return value sometimes. This avoids all of the
calculations to determine the return value inside the void function,
because the function itself cannot tell whether or not the caller will use its
return value.

e Prefer pre-increment (++1) to post-increment (i++) for non-scalar values.
And it’s better to use pre-increment even for “int” types, even though it’s
the same, just to get into the habit.

e Use the GCC_ builtin unreachable () statement and the
“noreturn” function attribute to help the GCC optimizer identify dead
code paths, allowing unreachable code removal (not that we care that
much) and also better optimization of path-specific optimizations on other
live paths (e.g., compile-time constant propagation).

e Test the first character of two strings directly with character tests before
calling strcmp.

e Replace calls to “round”, “floor” or “ceil” functions with a type cast
to int (as an approximation).

e Consider using the simpler putchar, putc, fputc, puts,
fputs functions rather than printf or fprintf.

e Write your own versions of abs and fabs/fabsf (but benchmark it).

e Avoid the floating-point pow function for computing integer powers.

e Instead of strlen("literal") declare it as an
initialized char [] atray variable and use sizeof (arr) -1.

David Spuler 616

Merge a large number of function parameters into an object. Don’t pass 10
Boolean flags as differently named function parameters. Create an object
or structure and make them fields instead.

Avoid calling strlenina “for” loop conditional.

Compute strlen before the loop, or test for the null byte.

Merge multiple Boolean function parameters into a bit set. packed into
an int or long. The gain from passing fewer values as function
arguments will be offset by the cost of packing and unpacking bits, but still
should be better.

Use int type mostly, not char or short. Maybe prefer int to size t,
too.

Specialize functions being called with a constant for an argument using a
template function with an integer field. This will increase code size, but the
constant will be propagated more at compile-time, and you also don’t have
the cost of passing it as an argument.

Add “noexcept” specifiers to functions wherever it applies, because this
allows the compiler to know not to worty about adding any extra exception
handling code.

If you’re “searching” an array or set of constant integers, known at
compile-time, consider “proceduralization” by putting the numbers as
cases in a switch. (Trust the compiler engineers.)

Consider writing your own faster atoi/itoa functions, as the standard
libraries need to handle lots of rare cases, making them slower. (I’'m not
sure I agree and you might want to benchmark.)

Don’t overuse “alignas” to specify address alignments if you don’t need
them, as the enforcement of alignment requirements can impose runtime
cost.

sprintf is a slow and unsafe function. snprintf is safer but still slow.
Find another way.

Post-increment can be faster in pointer arithmetic, so prefer using the
normal idiom “*ptr++” rather than “*++ptr” to scan a vector.

617 C++ Ultra-Low Latency

References

10.
11.
12.
13.
14.
15.

16.
17.

Agner Fog, 2023, Optimizing software in C++: An optimization guide for Windows,
Linux, and Mac platforms,

PDF: https://www.agner.org/optimize/optimizin

Kurt Guntheroth, 2016, Optimized C++: Proven Technigues for Heightened

Performance, O'Reilly Media, https://www.amazon.com/dp/1491922060

Dov Bulka and David Mayhew, 1999, Efficient C++: Performance Programming
Technigues, https:/ /www.amazon.com//dp/0201379503

Fedor G. Pikus, 2021, The Art of Writing Efficient Programs: An advanced programmer’s
guide to efficient hardware utilization and compiler optimizations using C++ examples, Packt
Publishing, https://www.amazon.com/dp/1800208111

ISO/IEC, Feb 15, 2006, Technical Report on C++ Performance, 1ISO /TEC TR
18015:2006(E), https://www.open-

std.org/jtc1/sc22/wg21/docs/TR18015.pdf (Design of the C++ language from
an efficiency perspective, including discussion of virtual functions and other
language features.)

Nicolai M. Josuttis, 2012, The C++ Standard Library: A Tutorial and Reference,
Second Edition, Supplementary Chapter, https://www.amazon.com/Standard-
Library-Tutorial-Reference-2nd/dp/0321623215, PDF (extra

chapter): http://www.cppstdlib.com/cppstdlib_supplementary.pdf (C++
optimizations such as bit sets and user-defined memory allocators.)

Bjarne Stroustrup, 2013, The Essence of C++ with examples in C++84, C++98,
C++11, and C++14, PDF Slides: http://www.staroceans.org/e-
book/essenceOfC++.pdf

Wikibooks, 2023, Optimizing C++/ Writing efficient code/ Performance improving features,
Wikibooks, https://en.wikibooks.org/wiki/Optimizing C%2B%2B/Writing eff
icient code/Performance improving features

Dave Abrahams et. al., 2003, Technical Report on C++

Performance, http:/ /web.archive.org/web/20040608203404 /http:/ /www.research

.att.com/~bs/performanceTR.pdf
Jakob Engblom, 2001, Getting the Least Out of Your C

Compiler, https:/ /www.engbloms.se/publications/engblom-esc-sf-2001.pdf
Jon Louis Bentley, 1982, Writing Efficient Programs, Prentice Hall.

Thomas Plum and Jim Brodie, 1985, Efficient C, Plum Hall Inc.

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman, 1986, Compilers—Principles,
Technigues and Tools, Addison-Wesley.

Donald E. Knuth, 1973, The Art of Computer Programming (Vol. 3): Sorting and
Searching, Addison-Wesley.

James O. Coplien, 1992, Adpanced C++ Programming Styles and Idioms, Addison-
Wesley.

Jonathan S. Shapiro, 1991, A C++ Toolkit, Prentice Hall.

Bjarne Stroustrup, 1991, The C++ Programming Langnage (2nd edition), Addison-
Wesley.

David Spuler 618

https://www.agner.org/optimize/optimizing_cpp.pdf
https://www.amazon.com/dp/1491922060
https://www.amazon.com/dp/0201379503
https://www.amazon.com/dp/1800208111
https://www.open-std.org/jtc1/sc22/wg21/docs/TR18015.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/TR18015.pdf
https://www.amazon.com/Standard-Library-Tutorial-Reference-2nd/dp/0321623215
https://www.amazon.com/Standard-Library-Tutorial-Reference-2nd/dp/0321623215
http://www.cppstdlib.com/cppstdlib_supplementary.pdf
http://www.staroceans.org/e-book/essenceOfC++.pdf
http://www.staroceans.org/e-book/essenceOfC++.pdf
https://en.wikibooks.org/wiki/Optimizing_C%2B%2B/Writing_efficient_code/Performance_improving_features
https://en.wikibooks.org/wiki/Optimizing_C%2B%2B/Writing_efficient_code/Performance_improving_features
http://web.archive.org/web/20040608203404/http:/www.research.att.com/~bs/performanceTR.pdf
http://web.archive.org/web/20040608203404/http:/www.research.att.com/~bs/performanceTR.pdf
https://www.engbloms.se/publications/engblom-esc-sf-2001.pdf

Appendix C: Source Code

Tester Object Instrumentation Class

This code is for “object instrumentation” that can be useful for performance
analysis, and also for debugging and unit testing.

Here’s a test usage to see what constructors and move operations are performed
by push backin the std: :vector class:

Tester::reset counters();

std: :vector<Tester> vectest4;

for (int i = 1; 1 <= 100; 1i++)
vectest4.push back(i);

Tester::print report();

Here’s the full code:

class Tester {

private: // Static data members
static bool traceall ;
static int count default constructor;
static int count copy constructor;
static int count move constructor;
static int count copy assignment;
static int count move assignment;
static int count destructor;
static int count int constructor;

private: // Object data members
int ival ;
bool trace ;
public:
Tester () {
ival = 0;
count default constructor++;
trace = false;
if (traceall) {
cout << "Tester: default constructor: "
<< ival << endl;

619 C++ Ultra-Low Latency

Tester (int val) {

count int constructor++;

ival = val;
trace = false;
if (traceall) {

cout << "Tester: int constructor: "
<< ival << endl;

Tester (const Tester &other) // Copy constructor

{

ival = other.ival ;
trace = other.trace ;
count copy constructor++;
if (trace || traceall) {
cout << "Tester: copy constructor: "
<< ival << endl;

Tester (Tester&& other) noexcept // Move constructor

{

ival = other.ival ;
trace = other.trace ;
other.ival = -1; // Invalidate moved data
count move constructor++;
if (trace_ || traceall) {
cout << "Tester: move constructor: "
<< ival << endl;

Tester& operator=(const Tester& other) // Copy assign

{

David Spuler

count copy assignment++;

if (this != g&other) { // Avoid aliasing
ival = other.ival ;
if (trace_ || traceall) {

cout << "Tester: copy assignment: "
<< ival << endl;

}
else {
if (trace_ || traceall) {
cout << "Tester: copy assignment aliasing:
<< ival << endl;
}
}

return *this;

620

"

Tester& operator=(Tester&& other) noexcept // Move

{

count move assignment++;

if (this != &other) { // Avoid aliasing
ival = other.ival ;
if (trace || traceall) {

cout << "Tester: move assignment:
<< ival << endl;

}

else {
if (trace_ || traceall) {
cout << "Tester: move assignment aliasing: "
<< ival << endl;
}
}
other.ival = -1; // Invalidate moved data

return *this;

~Tester ()

{

count destructor++;

if (trace || traceall) {

cout << "Tester: destructor: " << ival_ << endl;
}
ival_= -1; // Safety

}

// Equality operators
bool operator==(const Tester& other) {
return ival == other.ival ;

}

// Setters for object members
void trace(bool bval) { trace = bval; }

// Setters for static data members
static void traceall (bool bval) { traceall = bval; }
static void reset counters() {

count default constructor = 0;

count copy constructor = 0;
count move constructor = 0;
count copy assignment = 0;
count move assignment = 0;
count destructor = 0;

count int constructor = 0;

621 C++ Ultra-Low Latency

static void print report() {
cout << "Tester Count Report" << endl;

cout << "- Default constructor: "

<< count default constructor << endl;
cout << "- Int constructor: "

<< count int constructor << endl;
cout << "- Copy constructor: "

<< count copy constructor << endl;
cout << "- Move constructor: "

<< count move constructor << endl;
cout << "- Copy assignment: "

<< count copy assignment << endl;
cout << "- Move assignment: "

<< count move assignment << endl;
cout << "- Destructor: "

<< count destructor << endl;

static void selftest () {
// Constructors should equal destructors
// ... but move constructors don’t increase count
int errors = 0;
int total constructors = count default constructor
+ count int constructor
+ count copy constructor;
if (total constructors != count destructor) ({
if (total constructors > count destructor) {
cout << "Tester selftest: constructors ("
<< total constructors

<< ") more than destructors ("
<< count destructor << ")" << endl;
errors++;

}
else {
cout << "Tester selftest: destructors ("
<< count destructor

<< ") more than constructors ("
<< total constructors << ")" << endl;
errors++;
}
}
if (errors == 0) {
cout << "Tester selftest: no errors found"
<< endl;

David Spuler 622

// Define Tester static data members

bool Tester::traceall = false;

int Tester::count default constructor = 0;
int Tester::count copy constructor = 0;
int Tester::count move constructor = 0;
int Tester::count copy assignment = 0;

int Tester::count move assignment = 0;

int Tester::count destructor = 0;

int Tester::count int constructor = 0;

Intercepted new and delete

This source code is the global scope intercept functions for
the new and delete operators. The library tracks basic statistics about calls and
bytes allocated.

// Global counters

unsigned long int s new count = 0;
unsigned long int s newarr count = 0;
unsigned long int s delete count = 0;
unsigned long int s deletearr count = 0;
unsigned long int s new bytes = 0;
unsigned long int s newarr bytes = 0;

void memory reset counters()

{

s _new_count = 0;
s newarr count = 0;
s_delete count = 0;

s deletearr count = 0;
s _new bytes = 0;
s newarr bytes = 0;

}

void memory report ()

{
cout << "MEMORY CALLS REPORT" << endl;

cout << "- new calls: " << s new_count << endl;
cout << "- new[] calls: " << s newarr count << endl;
cout << "- delete calls: " << s delete_ count << endl;
cout << "- delete[] calls: " << s deletearr count
<< endl;
cout << "MEMORY SIZE REPORT" << endl;
cout << "- new bytes: " << s new _bytes << endl;
cout << "- new[] bytes: " << s newarr bytes << endl;

}

void* operator new(size t n)
{
s _new_count++;
s_new_bytes += n;

623 C++ Ultra-Low Latency

return malloc(n);

}

void* operator newl[] (size t n)

{
S newarr count++;
s _newarr bytes += n;
return malloc(n);

void operator delete(void* v)

{

s _delete count++;
free(v);

void operator delete[] (void* v)

{

s _deletearr count++;
free(v);

David Spuler 624

