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Preface 

Why a Book on Ultra-Low Latency? 

What a silly question! I mean, come on, why not? Everyone loves code that runs 
fast, and low latency programming is the epitome of all that. I’ve been optimizing 
C++ code for over 30 years now, and I wrote a book on C++ efficiency back in 
the 1990s. There’s so much more in the newer versions of C++11 onwards, and 
that means even more ways to go faster! 

Please Leave a Review 

I hope you enjoy the book! Please consider leaving a review on the website where 
you purchased the book. Since few readers do this, each review is important to me, 
and I read them all personally. 

Feedback and Contacts 

Feedback from readers is welcome. Please feel free to tell us what you think of the 
book, the literature review, or our Aussie AI software. Contact us by email 
via support@aussieai.com. 

Other Books by the Author 

If you want fast code, here are a number of other books on efficient C++ coding: 

• Advanced C++ Memory Techniques: Efficiency and Safety 

• Efficient C++ Multithreading: Modern Concurrency Optimization 

• Efficient Modern C++ Data Structures: Container and Algorithm 
Optimizations 

• C++ Low Latency: Multithreading and Hotpath Optimizations 

• Safe C++: Fixing Memory Safety Issues 

 

 

https://www.amazon.com/dp/B0FFJ1V1YS/
https://www.amazon.com/dp/B0FBK56XRM/
https://www.amazon.com/dp/B0F88FPV7L/
https://www.amazon.com/dp/B0F88FPV7L/
https://www.amazon.com/dp/B0F2SNYS3L
https://www.amazon.com/gp/product/B0DK9LM8H3
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And some more with a particular focus on AI and fast LLM backends in C++: 

• RAG Optimization: Accurate and Efficient LLM Applications 

• Generative AI Applications: Planning, Design, and Implementation 

• Generative AI in C++: Coding Transformers and LLMs 

And if you’re a fan of going super-parallel with GPU chips: 

• CUDA C++ Optimization: Programming Faster GPU Kernels 

• CUDA C++ Debugging: Safer GPU Kernels 

About Aussie AI 

Aussie AI is a platform for the development of consumer AI applications, with a 
special focus on AI-based writing and editing tools for fiction. Our premier 
applications offer an extensive range of reports and error checks for both fiction 
and non-fiction writing, from a full-length novel to a short report. Please try it out 
and let us know what you think: https://www.aussieai.com 

Our AI Research 

The primary focus of research at Aussie AI is on optimizing LLM inference 
algorithms (i.e., “running” the model after training or fine-tuning), and our research 
is toward the following aims: 

• Fast on-device model inference algorithms, specifically for smartphones 
and AI PCs. 

• Scaling inference algorithms to large volumes of requests. 

• Efficient GPU inference algorithms (hardware acceleration). 

• Non-GPU inference optimization algorithms (i.e., software methods). 

Disclosure: Minimal AI Authorship 

Despite my being involved in the AI industry, there was almost no AI engine usage 
in creating this book’s text or its coding examples. Some text has been analyzed and 
reviewed using Aussie AI’s editing tools, but not even one paragraph was auto-
created by any generative AI engine. All of the CUDA C++ code is also human-
written, without involvement of any AI coding copilot tools. I mean, who needs 
them? 

 

https://www.amazon.com/dp/B0FCG29V4D/
https://www.amazon.com/dp/B0DMMVCMPQ
https://www.amazon.com/Generative-AI-Coding-Transformers-LLMs/dp/B0D14LHGZ6/
https://www.amazon.com/gp/product/B0DK21QQYD
https://www.amazon.com/gp/product/B0DK19V6NH
https://www.aussieai.com/
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However, AI was used in several ways. AI-assisted search tools, such as “Bing Chat 
with GPT-4”, were very useful in brainstorming topics and researching some of the 
technical issues. The main cover art image was AI-generated, followed by human 
editing. 

Disclaimers 

Although I hope the information is useful to you, neither the content nor code in 
this work is guaranteed for any particular purpose. Nothing herein is intended to 
be personal, medical, financial or legal advice. You should make your own enquiries 
to confirm the appropriateness to your situation of any information. Many code 
examples are simplistic and have been included for explanatory or educational 
benefit, and are therefore lacking in terms of correctness, quality, functionality, or 
reliability. For example, some of the examples are not good at handling the special 
floating-point values such as negative zero, NaN, or Inf. 

Oh, and sometimes I’m being sarcastic, or making a joke, but it’s hard to know 
when, because there’s also a saying that “Truth is often said in jest!” Your AI engine 
certainly won’t be able to help you sort out that conundrum. 

Third-Party License Notices 

Except where expressly noted, all content and code is written by David Spuler or 
the contributors, with copyright and other rights owned by David Spuler and/or 
Aussie AI. 

Additional information, acknowledgments and legal notices in relation to this book, 
the C++ source code, or other Aussie AI software, can be found on the Aussie AI 
Legal Notices page: https://www.aussieai.com/admin/legal-notices. 
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1. Low Latency Programming 

What is Low Latency Programming? 

Low latency programming is coding an algorithm so that it completes the task in 
the fastest time. In many cases, this is effectively the “user response time” or the 
“round-trip time” for a computation. 

The main uses of low latency programming include: 

• AI kernels — latency is the time between submitting a query, and starting 
to get the answer back. 

• Embedded devices — the system must respond quickly, in real time (e.g., 
autonomous self-driving cars are a large embedded device). 

• High-Frequency Trading (HFT) — latency is the time it takes to submit, 
execute, and complete a trade. 

• Game engines — latency is ensuring that the characters or environment 
moves fast enough to be responsive to user inputs and to keep up with the 
frame rate. 

The main programming language used for all of these low latency algorithms is my 
favorite one. I’ve written books on it! 

C++ for Low Latency Programming 

I’m a fan of C++, so you can take this with some grains of salt. The main 
programming languages for fast latency are: 

• C++ 

• C 

• Rust 

• Assembly 

• Hardware acceleration 
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The C++ is under the hood for most of the above cases. Most AI engines are 
Python at the top level, but C++ in the low-level kernels doing all those matrix 
multiplications. Game engines have historically been written in C++, at least for all 
the low-level stuff dealing with frame rates and 3D animation. Similarly, high-
frequency trading is usually running in C++ at the bottom level. 

You can also use C, which is the longstanding precursor to C++. The C 
programming language is obviously fast, as that was its key design point. C is not 
necessarily any faster than C++, so if you used only a C-like subset of C++, the 
two would be the same speed. However, using C does avoid the temptation to use 
some of the slower features that are available in the higher levels of C++. 

Rust is a language that we refuse to talk about much, if you’re any kind of C++ 
programmer. We’ll only learn Rust if absolutely forced to do so. Apparently, Rust 
is also fast, and more memory safe than C++. But there’s also Safe C++, profiles, 
hardened standard C++ libraries, and other variants of C++ to compete against 
Rust, so it’s a whole big shemozzle. 

Assembly language is faster than any of these higher-level languages. If you speak 
directly to the machine, there are various ways to speed up code. But it’s a very low-
level way of programming, and harder to learn, so the best method is to focus on 
optimizing only the main hot paths with assembly. 

Hardware acceleration is the last option: just buy a better rig. Some of the main 
silicon to consider include: 

• GPUs — AI, anyone? Data centers for cloud AI backends have the biggest 
GPUs. Or there’s gaming desktop PCs with lower-end GPUs. 

• FPGA — this is common in high-frequency trading and quant trading. 

Plus, there’s always that CPU to consider. 

CPU versus GPU 

With all this fuss about NVIDIA GPUs for AI, you might think that a GPU is what 
you need.  

Not so fast!  
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The characteristics of AI engines and LLMs that make super-duper GPUs the 
mainstay of acceleration are: 

• Huge numbers of arithmetic computations, and 

• Highly parallelizable algorithms. 

AI engines are number-crunching beasts, mostly doing vector dot product, matrix-
vector and matrix-matrix multiplications. Here’s the thing about GPUs: 

  GPUs have throughput not low latency! 

You didn’t hear this from me, but GPUs actually run slow. The clock speed of a 
high-end GPU is often around 1GHz, whereas a high-end gaming PC has a CPU 
clock speed of 4GHz or more. So, if you couldn’t parallelize an algorithm, it would 
run slower on a GPU than a CPU. The key point is this: 

   Throughput + Parallelization = Low Latency 

AI algorithms are very amenable to parallelization. And GPUs have high 
throughput of parallel operations on all those cores. A multi-core CPU has a dozen 
cores, but a big GPU can have thousands. Hence, it crunches data in parallel with 
high throughput, and the net effect is that a GPU runs AI algorithms with very low 
latency. 

Which explains why those data center GPUs cost more than your car! 

AI Engines 

As already examined above, AI engines have an algorithm structure that’s perfect 
for GPUs. The basic point about AI inference algorithms include: 

• Process all of that data, and 

• Hardly any alternate pathways. 

Yes, for every word that an LLM throws out, it has to crunch through multiplication 
operations on every single number in the model. And that’s just for one word. This 
process repeats over and over, and there are very few ways to shortcut the 
arithmetic without losing accuracy. 
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In fact, there are two main phases in AI inference with different latency 
characteristics: 

• Prompt processing phase (“prefill”) — process all the input tokens. 

• Decoding phase — emit the answer words. 

The prefill phase has these characteristics: 

• Parallel processing of every token in the input text. 

• Compute-bound (because of that parallelization). 

The decoding phase has opposite characteristics: 

• Sequential algorithm (one output token at a time, called “autoregression”). 

• Memory-bound (loading the entire model each time). 

In fact, the situation with compute-bound vs memory-bound is a little more 
nuanced in the decoding phase. It’s memory-bound overall, but the sub-
components of a layer have slightly different characteristics during the decoding 
phase: 

• Attention module — memory-bound (model weights and KV cache data) 

• Feed-forward network (FFN) — compute-bound (model weights) 

Hence, the double sequence of two matrix multiplications is an intense computation 
in the FFN (also known as the Multi-Layer Perceptron or MLP). However, the 
attention mechanism is memory-bound, mainly from needing to load the “KV 
Cache” data and less so from needing model weights. This characteristic affects the 
overall status of the decoding phase more than FFN computations, causing the 
decoding phase to be memory-bound overall. 

High-Frequency Trading 

HFT and quant trading algorithms have some peculiar characteristics with regard 
to low latency programming. The main point to consider about the algorithm is 
there are conceptually two main code pathways: 

• Cold path — analyze, but don’t trade. 

• Hot path — trigger a trade. 
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And here’s the weird part: 

• Cold path — very common. 

• Hot path — rarely executed. 

This is different from most other types of algorithms, where the main path to 
optimize is also the common path. For non-HFT apps, you crank up the profiler, 
run the whole app, find where it’s spinning the most CPU cycles, and optimize that 
code. 

Not for HFT! 

For HFT, the hot path is the rare path. Despite what people think from the name, 
the algorithm is actually trading much less frequently than it decides not to trade. 
Once the analysis decides to trigger a trade, that is a very hot path, and every step 
must execute with minimal latency. There are multiple actions for a single trade 
from initiation, network submission, processing, and finalization. The whole round-
trip latency of this trade execution hot path is hyper-critical. 

But the analysis part of the HFT code can’t be slow either. The hot path is not really 
just “trade” and should really be thought of as “analyze-and-trade.” We can’t have 
the analysis phase running too slow, or we’ll miss the opportunity to trade. So, it’s 
true that once a trade is triggered, that pathway must be super hot, but the analysis 
phase cannot be a laggard either. Optimizing the analysis phase has an element like 
normal performance profiling of code hot spots, along with extra network latency 
issues from the data gathering phase via exchange network connections. 

Intentional Slowness 

Although latency is important, it is worth noting that there are times to go slow. 
The main point is that humans are slower than computers, so the algorithm often 
has to slow down the user interface so that the human user can keep up. 

Game engines are a particular example of this. The computer has to move all of the 
game characters and enemies fast, yes, but also not too fast. The speed of the user’s 
character cannot be too fast for the inputs of the user. Similarly, the enemies cannot 
move too fast, or the user will not be able to evade them or destroy them. 

AI engines don’t really have this problem in text-to-text classic LLMs. The only 
concern for excessive speed is not having the text output too fast to be read. 
However, other types of AI models such as speech and video need to have outputs 
in the right speed range, not too slow, but also not too fast. 
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High-frequency trading is one area that doesn’t really have a “human in the loop.” 
There’s no real need to intentionally slow down the execution of a trade. However, 
there is a need to avoid over-trading too fast, lest the algorithm fail to notice some 
sort of failure. But this is the less common case than simply needing to go as fast 
as possible. Reporting a trade back to a supervising user is the last step, and not in 
the critical path. 
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2. Hardware Acceleration 

Why Hardware Acceleration? 

Hardware acceleration has come a long way since the Intel 8087 floating-point 
coprocessor in 1980. Every CPU now comes with builtin floating-point operations, 
and even opcode instructions that perform complex mathematics like exponentials 
and logarithms in hardware. 

Parallelizing computations is now where the action’s hot in AI, which needs many 
vectors and matrices running in parallel mode (i.e., tensor computations). The most 
powerful parallel computations are GPUs which can chomp through a continuous 
stream of data in parallel. 

GPUs are not the only type of hardware acceleration. Even without GPUs, typical 
CPUs have multi-core and multi-thread parallelism. You can even do small-vector 
parallel instructions in the CPUs using special SIMD opcode instructions. For 
example, x86 CPUs have SIMD accessible via C++ AVX intrinsic functions, and 
Apple M1/M2/M3 chips support Arm Neon for parallelism. 

Types of Hardware Acceleration 

There are lots of different types of silicon chips available for your AI engine. The 
basic types of hardware chips are: 

• Central Processing Unit (CPU) 

• Graphics Processing Unit (GPU) 

• Tensor Processing Unit (TPU) 

• Application-Specific Integrated Circuit (ASIC) 

• Field-Programmable Gate Array (FPGA) 

If you want to build your own hardware, and there are plenty of research papers 
that do, then use an FPGA or ASIC. Even prior to the AI hype, ASICs proved their 
value in the Bitcoin mining boom, and FPGAs were commonly behind Azure, AWS 
and GCP, particularly around security/data protection. 
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If you’re not a hardware designer, you’re more likely to want the main CPU and 
GPU options. CPU parallelism is via AVX or Arm Neon SIMD instructions. For 
GPUs, you’re most likely looking at an NVIDIA chip, from the P100 at the low 
end to the H100 at the top end (with V100 or A100 in the middle). Alternatively, 
the TPU is a special custom AI chip created by Google, and is in the same vein as 
other GPU chips. 

CPU Hardware Acceleration 

Many of the major CPU chips offer builtin hardware acceleration. 

• x86/x64 (Intel/AMD) — AVX SIMD instructions (including AVX-2, 
AVX-512, and AVX-10) 

• ARM — Neon SIMD instructions (e.g., on phones) 

• Apple M1/M2/M3 — ARM Neon, Apple AMX instructions, or Apple 
Neural Engine (ANE). 

AVX intrinsics can be used on x86/x64 platforms with Microsoft MSVS or 
GCC/Clang C++ compilers to run CPU data crunching in parallel. 

The ARM Neon is a hardware acceleration processor. ARM-based architectures can 
run the Neon acceleration opcodes, which are 128-bit SIMD instructions that can 
parallelize both integer and floating-point computations. At the time of writing, the 
current version is based on Armv8. Notably, the Apple iPhone platform is based 
on ARM silicon and has Neon acceleration capabilities. 

Apple M1/M2/M3 chips are based on ARM, so the ARM Neon acceleration works. 
There are also some additional Apple-specific hardware accelerations such as Apple 
AMX and Apple Neural Engine (ANE). 

Detecting CPU Acceleration in C++ 

It is tricky to check what CPU or GPU support is available to your C++ program. 
There are different methods for Microsoft Visual Studio, GCC, and Apple. 

Preprocessor macros. The first point is that you can only use preprocessor macros 
if the “single platform” assumption is true. In other words, if you’re building on the 
single platform that you’re running in production, or you’re a developer toying with 
an engine on your own single PC. 
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In such cases, you can detect the current build environment using preprocessor 
macros. For example, if you’re on a Windows box with Microsoft Visual Studio, 
you might try this: 

    #if __AVX2__ 

       // ... supports AVX2 

    #endif 

This works fine if you are running C++ on your developer desktop machine, and 
don’t plan to run it anywhere else. But this doesn’t check runtime availability for 
AVX2 on your user’s machine. It’s only testing whether you’ve got the AVX2 
architecture flag enabled in your compiler on your build machine. Hence, it’s 
misleading and although you can do a #if or #ifdef test for whatever macro you 
like, it isn’t very helpful for multi-platform programming. 

Run-time platform testing. The #if method can check the major platforms that 
you’re compiling on (e.g., Windows vs Linux vs Apple), but you cannot check what 
exact CPU you are running on, or what capabilities it has. The preprocessor macros 
are processed at compile-time, and can only detect what machine it’s building on. 
This isn’t very useful in determining if your user is running the code on a CPU that 
supports SIMD instructions, or if their box has a GPU on it. 

Instead, you need to call C++ intrinsics to detect CPU capabilities at runtime. On 
the x86/x64 architecture this intrinsic uses the “CPUID” opcode. The C++ intrinsic 
calls differ by compile platform: 

• MSVS: __cpuid or __cpuidex (superseding __isa_available in   
<isa_availability.h>) 

• GCC/Clang: __builtin_cpu_supports or __builtin_cpu_is    
functions. 

GPU Hardware Acceleration 

For the sticklers, AI GPU chips are not really a “GPU” because that stands for 
“Graphics Processing Unit,” and they aren’t used for “Graphics” in an AI 
architecture (even when creating an image). In fact, they’re really a General-Purpose 
GPU (GPGPU), but nothing other than AI matters in the tech industry, so we stole 
the acronym from the gamers. 
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GPUs are great big SIMD processors. There is a huge range of vectorized opcodes 
available for any given GPU. Each GPU isn’t just one vectorized stack of silicon, 
but has lots of separate “cores” that process AI workloads (e.g., FMA) in parallel.  

Each core runs a SIMD operation such as a small matrix multiply or FMA in a 
single GPU clock cycle. For example, a V100 “Tensor Core” can do a 4x4x4 half-
precision (16-bit) matrix/tensor multiply in a cycle, which is a lot more advanced 
than a typical vectorized operation.  

Hence, it’s a parallel-of-parallel architecture with: 

(a) all the GPU cores running in parallel, and 

(b) each core doing vectorized SIMD operations. 

The chips also have their own GPU RAM (sometimes called “VRAM”) and there 
are also multiple levels of caches of that RAM. If you’re assessing the specs of a 
GPU, consider: 

• FLOPs throughput 

• Cores 

• RAM 

• Clock speed 

• Memory bandwidth rate 

• Cooling systems (they run hot!) 

GPU Pricing. If you’re looking at renting a data center GPU, NVIDIA is top of 
the list for AI computations. The choice between a P100, V100, A100, or H100 is 
important. To run a version of Meta Llama2, a V100 is workable for that, but with 
not many instances per box. As of writing, pricing for a V100 runs below a buck an 
hour and there are 730 hours in a month, so you can do the math (pricing varies 
with vendors anyway). You can get an A100 for more than a buck an hour, and a 
H100 for roughly double that (for now). On the horizon, NVIDIA has a H200 
coming mid-2024 with about 141GB RAM (versus the H100’s 80GB), and also the 
B100 in late 2024 for even higher performance than a H200. 

You can also buy a GPU chip outright from your private jet using your diamond-
encrusted phone. Okay, so that’s a bit of an exaggeration. Pricing changes, as of 
writing, you’re looking at around ten grand for a V100 by itself, but pricing is higher 
if it’s part of a “system” on a motherboard or a box (and this confuses ChatGPT if 
you ask it about GPU pricing). 
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Another option is used GPUs, which are cheaper, but might have spent their prior 
life in a Bitcoin-mining forced labor camp. GPUs do have a limited lifetime and can 
overheat with partial or total failure. 

Detecting GPU Support in C++ 

Detecting GPU capabilities that are available at runtime in C++ is even more 
problematic than detecting CPU accelerators or SIMD instructions. The available 
options for GPU detection include: 

• NVIDIA CUDA C++ compiler (nvcc) 

• AMD ROCm 

• Microsoft DirectML (DirectX) 

• Apple Metal 

• Vulkan (vkEnumeratePhysicalDevices, vkGetPhysicalDeviceProperties) 

• Low-level GPU shader APIs 

NVIDIA requires CUDA code to be compiled with their nvcc compiler, and the 
compiler itself has builtin mechanisms for testing the GPU capabilities. That results 
of that output can be used to set #define options within the C++ code too. The 
compiler also comes with some builtin defines. 

GPU detection is not just determining if a GPU is available. More detail will 
typically be required, down to “is feature X available” or “which implementation 
for feature X is available.” For example, NVIDIA has a “GPU Architecture” and a 
“GPU Feature List” to test for capabilities. 

Assembly Language versus Intrinsics 

Assembly language, or “assembler”, is the low-level language for CPU machine 
instructions. Like C++, it is still a symbolic human-readable language, but unlike 
C++, it translates mostly one-to-one to machine code instructions. The syntax for 
assembler is much simpler than C++, and more obscure, but it’s also very, very 
fast. 

When to use assembly language. The first question to ask yourself before writing 
assembler in C++ is whether you need to. The use of assembler should only be 
considered for the most bottlenecking parts of the code, like deep inside the inner 
loops of a GEMM kernel. Otherwise, you’re probably micro-optimizing something 
that’s not that critical. 
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Another question is whether to use “intrinsics” instead of assembler. Each C++ 
compiler has literally hundreds of builtin low-level functions called “intrinsics” that 
are very fast, probably because the compiler-writers have written them in assembler. 
There are also lots of intrinsics to use for GPU operations and CPU SIMD 
extensions such as AVX-512.  

There are also intrinsics that map one-to-one to x86 CPU instruction codes on that 
platform. Look through the long list of C++ intrinsics for your compiler platform 
to see if there’s one that does what you need.  

The use of intrinsics is via a standard C++ function call syntax, so you don’t need 
to learn assembler to take advantage of them. 

Assembly language syntax: Here are some of the basics of assembly language 
coding: 

• Assembly code filenames usually have a suffix of “.S”, “.s” or “.asm” 
(but don’t need to). 

• Inline assembly inside C++ could be added to base code via the inline 
statement asm("string"), __asm__("string"), or the alternative 
syntax of asm { tokens }, depending on the compiler. 

• Comments start with a semicolon (but you can also use C++ comments 
for inline assembly). 

• One line per assembly statement. 

• Jump or branch labels need a suffix colon and should start a line (either 
their own line or before a statement). 

Disadvantages of Assembly Language: The reason that the C language came 
into being was to overcome some of the low-level problems of programming in 
assembly or machine code. There are various downsides to using assembly 
language: 

• Non-portable — assembly is specific to the CPU and many features 
depend on CPU sub-releases. 

• Pitfalls — and you thought C++ had troubles. 

• Maintainability — few programmers know assembly. 

• Complexity — everything’s harder at the low-level. 

To summarize, there’s only two reasons to use assembly language: speed and 
security (of your job). 
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Inline Assembly Language 

Most C++ compilers support features allowing you to specify assembly language 
sequences in the middle of a C++ program, which is called “inline assembly 
language.”  

You don’t need to put assembler into a separate code file, because you can use 
assembly language directives inside C++ sequences. 

The directive to use to introduce an assembly language statement into C++ is 
somewhat compiler-dependent, but the whole concept of assembly language is 
platform-dependent anyway! 

The “asm” expression is the official C++ standard version. This is like a function 
call with a semicolon ending it.  

The asm statement contains the assembly language statements inside a large string 
constant, ending with a newline escape (i.e., “\n”), inside round brackets.  

Multiple assembly commands can be merged by putting two string literals on 
subsequent lines and using the adjacent string literal concatenation feature of C++. 

    asm ( 

      " ; ... instructions\n" // C++ Comment 

      " ; ... more instructions\n"  

    );  

The Microsoft style is different, with a code block rather than an expression. You 
don’t need to put the assembly statements inside a string literal, and you don’t need 
the “\n” newline escapes, either.  

The basic syntax looks like this: 

    __asm { 

       ; ... instructions // C++ comment  

    } 
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This is the Gnu and Clang style with “__asm__” as a C++ function-like expression 
(similar to “asm”): 

    __asm__ ( 

      " ; ... instructions\n" // C++ Comment 

    );  

Mixing C++ and assembly language is not something recommended just for fun. 
Not only do you need to know the assembly statements and all about the CPU 
registers, but you’ll need to know about function calling conventions 
(e.g., __cdecl vs __stdcall vs __thiscall) and name mangling in C++.  

Which actually sounds kind of fun. 
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3. System Optimizations 

Optimizing the Whole System 

There’s a lot of moving pieces in a whole low latency system. Optimizing them is 
an elegant dance, where each component plays a part. There’s no single answer to 
this, and it’s an ongoing process of continuous efficiency improvement. 

Instead, you need to look at all the different components in your hardware and 
software stack. At each layer, you need to consider: 

• Better or newer components 

• Configurations of the component 

• Optimized programming 

The good news is that optimizations to most of the layers are cumulative. You can 
optimize the hardware, the C++ software, and the network, and get a triple benefit. 

Low Latency System Components 

If you want to build a low latency system, here are some of the basic components 
in your stack. A single system may include: 

• Hardware — CPU, GPU, FPGA, NPU, etc. 

• Memory (RAM) 

• Disk storage — e.g., SSD (NVMe) 

• Network interface card (NIC) 

The software stack looks like: 

• Operating system kernel layer — Linux or bust. 

• System software tools and services/daemons 

• Compiler tools and system libraries 

• Middleware software (e.g., Kafka) 

• API/SDK clients (e.g., HFT exchange connectivity) 

• Application software (your C++!) 
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Beyond the single system, there are various other system components: 

• Network switch or router devices 

• Network connections (e.g., wired, optical, microwave) 

• Load balancer devices 

• Backup storage devices 

Combining Multithreading and SIMD CPU 
Instructions 

You can double up! C++ multithreading software can be interleaved with CPU 
SIMD instructions as an optimized optimization. It’s totally allowed, and you can 
even put it on your resume. The idea is basically this structure: 

• Multithreading architecture — higher-level CPU parallelization. 

• SIMD instructions — lower-level CPU vectorization. 

Some of the main CPU architectures with SIMD parallelization include: 

• AVX — x86 (e.g., Intel or AMD) 

• ARM Neon — iOS/Mac 

Note that there are variants of each of these SIMD architectures, available on 
different chips. For example, AVX has AVX-1 (128 bits), AVX-2 (256 bits), AVX-
512 (you can figure it out), and AVX-10 (1024 bits). 

Combining Multithreading and GPU 
Vectorization 

If you’ve sold your car to buy a PC that has both a fast CPU and a high-end 
NVIDIA GPU, there’s good news to think about while you ride the bus: both chips 
run at the same time. (Wow, in parallel, even.) 

In fact, there are “threads” on both the CPU and the GPU. However, C++ CPU 
threads are much higher-level than the CUDA C++ threads on the GPU. The idea 
is: 

• CPU threads — big chunks of work. 

• GPU threads — very granular computations. 
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On the GPU, you might code vector addition with one GPU thread doing the 
addition in every element of the vector, up to the 1024 maximum. And if your 
vector has more than 1024 elements, you’d split it up into 1024 sub-sections and 
use “striding” to do it. But I digress. 

CPU threads are not that granular, and you use them to do large chunks of work, 
not just one addition instruction. For example, you might have threads pulling 
incoming user requests off the queue, and a thread might handle the entire user 
request, perhaps launching some other threads on the CPU or GPU to do so. 

There are some parallels (haha) between coding CPU and GPU threads: 

• Both types of threads have a call stack. 

• Both have “global” or “shared” memory to use across threads. 

• Overhead of thread launches and exits are a thing for both CPU and GPU 
threads. 

Note that there’s also a new generation of “mini-GPUs” called a Neural Processing 
Unit (NPU), which aren’t as powerful as a fully-fledged GPU. NPUs tend to be 
used on “AI Phones” and other “edge” devices, which aren’t as powerful as a PC. 
Most of the comments about combining C++ multithreading and GPU coding also 
apply to the use of NPUs, except a little slower. 

Going for the Triple-Double 

You can even triple up your parallelism: 

• Multithreading/multicore (CPU) 

• SIMD instructions (CPU) 

• GPU vectorization 

Is there a way to do up to four levels of parallelism in just one C++ program? Yes, 
of course: 

• Linux processes (parallelism at a higher level). 

• Networking communications (the NIC runs parallel, too). 

There are some optimizations of those things, too. 
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Advanced Linux O/S Optimizations 

It doesn’t end with the C++ code. There are other things you can optimize in the 
Linux O/S: 

• Process priorities — be nice and turn yours up to eleven! 

• Linux system processes — turn off the various Linux system processes that 
you don’t need (so they don’t compete for CPU time). 

• Kernel bypass — direct NIC manipulations. 

• Overlap communications and compute — e.g., PCIe bus GPU-to-memory 
upload/download. 

• Networking technologies — e.g., TcpDirect and Onload; RDMA. 

• Linux kernel optimizations — e.g., network buffer settings; disable writes 
that update the “file access date” when reading a file. 

• Linux system settings — ensure you don’t have accounting or security 
modes on. 

There’s also some other items on the advanced menu: 

• Overclock your CPU (and the GPU) 

• Buy a bigger box 

• Get a faster SSD disk (e.g., NVMe) 

• Assembly language 

• Microwave communications 

• FPGA 

There’s always more, but I’ve run out of room in your web browser. 

Serving and Deployment Optimizations 

If your software has to do multiple things at once, such as talk to multiple people 
(users), or communicate with multiple stock trading platforms, then there are many 
system-level practicalities that affect latency. 

If your low latency application is a public-facing consumer website, there are a 
number of deployment issues to scale up to a lot of users.  
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Some of the issues to consider in the whole end-to-end latency of a request going 
through a system include: 

• DNS lookup time 

• Connection handshake time 

• SSL time 

• Load balancing 

• Round-robin DNS 

• Parallelization (multiple servers) 

• Utility servers 

• Caching (e.g., etags) 

• CDNs 

• Database lookup time 

• Database indexes 

• Keep-warm server architectures 

Building a low-latency system is more than just coding up some C++. You have to 
put together a bunch of off-the-shelf components. 

Network Optimization 

If your algorithm has to talk between two computers, there’s a network in between. 
The time spent sending data across the wire and back is a key part of the latency. 
Faster algorithms need to optimize the network traffic. The main techniques for 
network optimization include: 

• Higher bandwidth network connections 

• Advanced network protocols 

• Compressing network data sizes 

• Spreading bandwidth usage over time (avoiding peaks) 

• Overlapping computation and communications 

• Direct access to peripherals (local and remote) 

• Direct access to memory (local and remote) 

• Sticky sessions (keeps session data local) 

• Sharing cache data between multiple servers 

There’s a whole book that needs to be written about network optimizations! Should 
be done by Tuesday. 

 



David Spuler                                               46 
 

References 

These are some good articles on optimizing an entire AI LLM backend system: 

1. Character.AI, June 20, 2024, Optimizing AI Inference at 
Character.AI, https://research.character.ai/optimizing-inference/ 

2. Apple, June 2024, Introducing Apple’s On-Device and Server Foundation 
Models, https://machinelearning.apple.com/research/introducing-apple-
foundation-models 

3. Together AI, Nov 13, 2023, Announcing Together Inference Engine – the fastest 
inference available, https://www.together.ai/blog/together-inference-
engine-v1 

4. Ryan Lucchese, Niki Birkner, Yaron Hagai, Virginia Adams, August 13, 
2024, A practitioner’s guide to testing and running large GPU clusters for training 
generative AI models, Together AI, https://www.together.ai/blog/a-
practitioners-guide-to-testing-and-running-large-gpu-clusters-for-training-
generative-ai-models 

And these are some references about entire HFT system optimizations: 

1. Larry Jones, 27 Feb 2025, Mastering Concurrency and Multithreading in C++: 
Unlock the Secrets of Expert-Level 
Skills, https://www.amazon.com.au/Mastering-Concurrency-
Multithreading-Secrets-Expert-Level-ebook/dp/B0DYSB519C/ 

2. Sebastien Donadio, Sourav Ghosh, Romain Rossier, 17 June, 
2022, Developing High-Frequency Trading Systems: Learn how to implement high-
frequency trading from scratch with C++ or Java 
basics, https://www.amazon.com/Developing-High-Frequency-Trading-
Systems-high-frequency-ebook/dp/B09ZV5L2T7/ 

3. Irene Aldridge, April 2013, Wiley, High-Frequency Trading: A Practical Guide 
to Algorithmic Strategies and Trading 
Systems, https://www.amazon.com/High-Frequency-Trading-Practical-
Algorithmic-Strategies-ebook/dp/B00B0H9S5K 

https://research.character.ai/optimizing-inference/
https://machinelearning.apple.com/research/introducing-apple-foundation-models
https://machinelearning.apple.com/research/introducing-apple-foundation-models
https://www.together.ai/blog/together-inference-engine-v1
https://www.together.ai/blog/together-inference-engine-v1
https://www.together.ai/blog/a-practitioners-guide-to-testing-and-running-large-gpu-clusters-for-training-generative-ai-models
https://www.together.ai/blog/a-practitioners-guide-to-testing-and-running-large-gpu-clusters-for-training-generative-ai-models
https://www.together.ai/blog/a-practitioners-guide-to-testing-and-running-large-gpu-clusters-for-training-generative-ai-models
https://www.amazon.com/Mastering-Concurrency-Multithreading-Secrets-Expert-Level-ebook/dp/B0DYSB519C/
https://www.amazon.com/Mastering-Concurrency-Multithreading-Secrets-Expert-Level-ebook/dp/B0DYSB519C/
https://www.amazon.com/Developing-High-Frequency-Trading-Systems-high-frequency-ebook/dp/B09ZV5L2T7/
https://www.amazon.com/Developing-High-Frequency-Trading-Systems-high-frequency-ebook/dp/B09ZV5L2T7/
https://www.amazon.com/High-Frequency-Trading-Practical-Algorithmic-Strategies-ebook/dp/B00B0H9S5K
https://www.amazon.com/High-Frequency-Trading-Practical-Algorithmic-Strategies-ebook/dp/B00B0H9S5K


47                             C++ Ultra-Low Latency 
 

Part II: HFT & Algo Trading 
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4. Trading Engine Components 

Overview of Trading Engines 

What high-level components does a trading system need? At the top-most level, the 
sequence in a HFT trading engine goes something like this: 

• Ingest market data (from exchange) 

• Analyze this data 

• Decide whether to trade 

• Submit trade order (to exchange) 

• Risk management and reconciliation 

Note that if you work at an exchange, the requirements are reversed, and with an 
even higher need for mission critical accuracy, but are also somewhat simpler at a 
high-level: 

• Receive orders from trader clients 

• Matching engine to trigger trade execution 

• Send market data feed out to many traders 

Software Components 

Each of those components is just a small matter of more coding. We do that in 
C++, of course! 

Market data ingestion components include: 

• Exchange network protocol libraries (e.g., UDP multicast client). 

• Market data normalization (converting into your own order objects). 

• Snapshot synchronization support 
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The central management of orders, sometimes called an Order Management System 
(OMS), includes various software components: 

• Order book data structure 

• Crossing detection 

• Matching engine (simulated) 

A more advanced order book may also have: 

• Order rule support (e.g., FIFO vs pro rata) 

• Special exchange status (e.g., pre-open) 

• Iceberg order detection 

• Market microstructure analysis 

• Generalized order book (beyond limit orders) 

Algos are not a big deal in trading, and they’re all published in open-source 
repositories on the internet (I’m kidding). Here are some of the things you’ll need 
for your algo engine: 

• Trading decision engine 

• Method or API to specify algos 

• Common primitives library for algos 

• Transpiler from algo language to C++ (also known as “front-office 
programmers”) 

• Declarative algo specification (yeah, right, dream on!) 

Also, since many algo strategies may require data from more than one financial 
instrument to make a decision to trade, we get to: 

• Multi-instrument order book (multiple assets) 

• Distributed order book management (multiple exchanges) 

• Multi-instrument multi-exchange algo primitives 

Trade submission to the exchange is a whole separate ball of wax: 

• Rate limiter (emulated) 

• Pre-trade risk management 

• Trade submission 

• Trade status management 

• Bad trade handling 
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The risk management and regulatory compliance boffins want their pound of flesh: 

• Risk management engine (pre-trade and post-trade) 

• Position tracking 

• Compliance tracking engine 

• Logging 

• Accounting reconciliation 

All of the above stuff is just for live trading. There are some offline C++ capabilities 
that you’ll need as well: 

• Backtesting — testing if those algo devs can code worth anything. 

• Historical data storage — for backtesting or stress testing. 

• Synthetic data generation — robots do testing better. 

• Compliance reporting — sending it all off somewhere. 

If I’ve counted correctly, that’s 33 major software components. So, no matter how 
great you are at C++, don’t expect to knock out a new trading engine prototype 
over the weekend. 

Low-Level Infrastructure 

To implement any of these financial components, you need some helper 
infrastructure in both hardware and C++ software to make it run fast. Some of the 
C++ code libraries and templates you might need for speed include: 

• TCP and UDP libraries — advanced network socket programming. 

• Disk and file storage — low latency I/O with memory-mapped files and a 
custom filesystem. 

• Statistical primitives — going way beyond the average. 

Looking more specifically at C++ multithreaded coding components that aid in 
C++ optimizations: 

• Thread pools — low-latency multithreading. 

• Memory pools — preallocation of memory for objects. 

• In-memory logging — save that data, but not yet. 

• In-memory counters — tracking statistics for performance and accounting. 

• Lock-free queues — forwarding data very quickly along the execution 
pipeline of components. 
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Hardware is important, of course, arguably even moreso than the C++ software: 

• Co-located Linux servers (proximity access versus connection via 
microwave or fiber optics). 

• Network switches 

• NICs (in servers, with kernel bypass capabilities) 

• FPGA servers 

• GPU parallelization 

• Quantum computing (it’s coming!) 

The need to communicate over the network also adds: 

• UDP multicast for market data feed ingestion. 

• Kernel bypass (hardware support in NIC hardware, plus C++ code). 

• Inter-site network connectivity (around the world we go!). 

• Connectivity to GPU server farm (e.g., for ML models). 

• Out-of-band networking — host network connections for administration. 

Safety, too! Here are some of the custom C++ libraries you may use in low-latency 
programming: 

• Custom assertions — removeable in production code. 

• Self-testing code — ditto for #if DEBUG. 

• Testing harness — unit tests are someone else’s job. 

• Stress testing — using historical data feeds or synthetic data. 

• Timing and benchmarking — proving your code is faster than the intern’s. 

• Error handling — not using standard C++ exceptions. 

There are also various DevOps requirements: 

• Instrumentation — tracing for errors and performance analysis. 

• Monitoring — watch out for red flashing lights. 

• Hardware failure detection — e.g., GPU burn. 

• Kill switch — if it’s redder than red. 

That’s another 23 low-level software components to add to the 33 C++ higher-
level components in the prior section, and about five major hardware categories. 
Building all that should take you two weeks! 
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5. Hotpath Optimizations 

What is Hotpath Optimization? 

Hotpath optimization is a multithreading C++ optimizations in HFT whereby the 
most important code is prioritized and super-optimized. Whereas the traditional 
“hotpath” in C++ code is the most heavily executed code, in HFT the hotpath is a 
rarely executed sequence of high importance (i.e., submitting the trade). Hence, 
optimizing the hotpath can mean different things: 

• Profiling the most heavily executed code (traditional C++ code). 

• Running the GPU profilers on CUDA C++ kernels (for AI applications). 

• Optimizing the rare but most important pathway (HFT applications). 

Using the various C++ profiler tools won’t help you much in HFT hotpath 
optimization. Well, actually it can, but only if you have a way to modify the code in 
test mode so that it always runs the hotpath sequence. But take care with this idea, 
as maybe it shouldn’t really submit a thousand live buy orders to the exchange when 
it’s running under Valgrind in the nightly build. 

Hotpath Optimization Techniques 

The idea with hotpath examination is to put every single instruction under the 
microscope. Especially for HFT, every microsecond counts, and there are many 
ways to squeeze out more speed.  

There are two main categories of optimizations: 

• Concurrency optimizations — multithreading-related code changes. 

• General C++ optimizations — all of the rest! 

With regard to multithreading, the hotpath should not be subjected to any of the 
delays that can beset a single thread.  

 



David Spuler                                               56 
 

Some of the methods for speedup include: 

• CPU pinning — give the hot thread its own core (completely avoids 
context switching) 

• Don’t use locking on the hotpath (as much as possible) via lock-free 
coding, read-only data structures or lock-free algorithms. 

• Cache warming via prefetching of shared data needed by the hotpath. 

• Keep the cache warm all the way down into the NIC. 

• Use a lock-free queue data structure to avoid contention issues. 

• Use custom thread pools with only preallocated memory block pools. 

Other than multithreading changes, there’s another few hundred other types of 
C++ optimizations to consider. There are a number of chapters about this. 

But here’s a smattering of some interesting techniques: 

• Hoist code out of the hotpath by using precomputation. 

• Remove slowpaths by deferring handling of error checks. 

• Maximize compile-time computation (e.g., constexpr, TMP if you 
must). 

• Don’t allocate or free memory; use only preallocated memory or global 
memory. 

• Use in-memory databases for any significant amounts of incoming data. 

• Review data de-serialization and serialization costs. 

• Don’t log, or defer logging to the end, or write to an in-memory logger. 

• Replace every if statement with branchless coding tricks. 

• Examine every code statement in the entire hotpath (even at assembly 
level). 

Odds are high that you’ll find something to improve, no matter how many times 
you look at the same stretch of code. 
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Network Optimizations 

In a network-heavy application, such as HFT, there is a lot of importance in the 
speed of networking. Many of the main optimizations are hardware issues: 

• Custom NIC 

• Fast switches 

Note that there can be multiple networks attached to one server: 

• Public network 

• Private network 

The purpose of a private network is to send messages only between your servers 
and any administrative consoles. This private or “out-of-band” network can be used 
for things like: 

• Monitoring and administration messages 

• Sending data between servers (e.g., quotes data in HFT, or KV cache data 
in LLM inference). 

Although hardware and its related network connections are critical, let’s not forget 
the software. Your C++ code needs to talk to the network, to receive incoming 
data and to emit actions (e.g., a trade in HFT) Network-related optimizations to the 
C++ code in the hotpath can include: 

• Use kernel bypass to custom NICs for fast networking. 

• Keep the client network connection warm (method depends on the API). 

• Use custom wrappers for TCP and UDP network processing. 

For extra speed, you may need to wrap or re-implement the TCP and UDP code. 
Some of the default algorithms for networking introduce some minor safety checks 
and other delays, which interfere with your need for speed. Linux socket 
programming can be a lot of fun. I can remember coding a custom version for 
the select primitive, which is loads of bitmask fiddling. 
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Core Pinning 

Core pinning is a multithreading optimization where a thread is “pinned” to one of 
the cores to give it higher priority. This means that important thread that runs the 
hotpath can have guaranteed CPU availability, rather than waiting for the default 
thread scheduling algorithms. Hence, it can be a solution to avoid lock contention 
worries for the main hotpath thread. 

Core pinning is also called “thread affinity” and has multiple other names (e.g., 
“processor affinity” or “CPU affinity” or “CPU pinning”), but if you hear the words 
“pinning” or “affinity” in relation to threads, this is it. 

Pinning has other meanings in related architectures. There’s a higher-level type of 
pinning whereby whole processes or applications are pinned to a CPU core by the 
operating system, rather than just a single thread, which isn’t quite the same thing. 
Note also that CUDA C++ has another type of “pinned memory” for GPUs, but 
that’s a memory upload optimization rather than a compute improvement. 

The other side of core pinning is that you obviously don’t pin the less important 
threads. All lower-priority threads have fewer cores available, and are downgraded. 

On Windows, you can set up a process-level CPU pinning for an application via 
the GUI. On Linux, there is a “taskset” command that allows running a program 
with core pinning. Both Windows and Linux have non-standard system calls that 
can set up pinning for either a process or a thread. Programmatic C++ APIs on 
Linux are: 

• Pinning processes — sched_setaffinity 

• Pinning threads — pthread_setaffinity_np 

On Windows, these are the C++ APIs: 

• Pinning processes — SetProcessAffinityMask 

• Pinning threads — SetThreadAffinityMask 

The use of core pinning is a very powerful type of hotpath optimization. The main 
pathways are super-optimized because: 

• No context switches 

• Highest priority execution 

• Guaranteed core availability (no delay) 
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In-Memory Logging 

The last thing you want is for your hotpath to block waiting for log messages to get 
written to disk. Hence, your options for logging include: 

• Don’t log! 

• Buy a faster SSD disk (what’s next after NVMe?) 

• Store log messages in memory 

Not logging messages can be an option in some cases. This refers to tracing and 
debugging messages, that aren’t business-critical. Some of the approaches to disable 
logging include: 

• Compiling-out unimportant tracing. 

• Disabling logging but having it still in the code. 

If you use a Boolean control flag to enable or disable logging, this can be an effective 
solution. On the other hand, you can have a lot of these: 

    if (g_debug) { 

        // Log a message 

    } 

These can be inefficient on a hotpath for two reasons: 

• Cost of testing the global flag multiple times, and 

• Extra branches that interfere with branch prediction. 

On the other hand, this can be very flexible and the above costs can be a small price 
to pay in some applications. You can enable or disable the global flag based on: 

• Command-line options (i.e., add a “-debug” setting). 

• Sending a SIGUSR1 signal to the process (toggle debug mode). 

Whatever the choice regarding debug or tracing-related logging, you can’t avoid 
business-related logging. For example, a HFT applications needs to track any actual 
trades sent, and update any risk management applications. 
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The solution for this is to use an in-memory logging C++ class. The features that 
you need include: 

• Log messages are copied to an in-memory queue (preferably lock-free). 

• A separate log-writing class pulls these messages off the queue. 

• The thread writing log messages to disk is low-priority in the background. 

In this way, you can have quite extensive logging, but the critical path is all in 
memory, and the slower writing to disk is deferred to a background task that can 
run in the quiet periods. 
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6. Orders 

Orders 

Orders are the main low-level data for both an exchange and a trading engine. There 
are different types of orders: 

• Limit orders (buy or sell at a set price) 

• Stop orders (buy/sell when a price is reached) 

• Market orders (accept the current price) 

• Pegged orders 

There are two “sides” for every trade, and they have separate orders: buy orders 
and sell orders. The prices of bid orders are called “bids” and for sell orders the 
term is “asks.” Or you can just call them “buys” and “sells” if you prefer. 

Processing of orders differs for exchanges versus trading engines, but there are 
many overlaps. An exchange processes a large volume of incoming orders 
submitted by its trading clients. A trading engine can both submit its own orders, 
and also tracks other orders via the exchange’s market data feed. 

When an order is submitted to an exchange, there are two possibilities: 

• Immediate execution 

• No matches yet 

An immediately executing order is called an “aggressive order” and the exchange 
should execute it against other waiting orders. If no matches, the order goes in the 
“order book” for later execution, in which case it is called a “passive order”. 

The most common scenario is that an exchange has a number of passive orders for 
each stock or other financial instrument. The prices of buys are lower than the sell 
prices. All of the buy orders have prices lower than the lowest sell price; otherwise 
a trade would occur. Hence, an important measure is the highest buy price (“max-
buy” or “max-bid”) and the lowest selling price (“min-sell” or “min-ask”). The 
difference between the max-buy and min-sell is the “spread” or “bid-ask spread.” 
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Market Data Feeds 

For order processing by a trading engine, the exchange provides a data feed about 
all of the buy and sell orders that are currently active on the exchange for each 
financial instrument. the types of incoming market data feed messages includes: 

• Add new order (buy or sell) 

• Modify order 

• Cancel order 

• Trade execution 

• Other administrative messages 

There are a variety of low-level assumptions about the structure of the incoming 
data from a market data feed: 

• New orders (“adds”) should have a unique id that we haven’t seen before. 

• Modify or cancel orders should have an id that was previously added. 

• Modify orders can only do certain types of updates (e.g., price changes are 
usually disallowed and instead the order must cancel and re-submit at the 
new price level). 

Note that these assumptions can fail, and quite often, because a market data feed is 
usually implemented as a UDP multicast protocol. UDP is an unreliable protocol, 
where network messages can be lost or delayed, but it’s faster than TCP. 

To maintain accuracy, there’s a separate data feed that’s slower and more reliable, 
usually over TCP. There’s a whole phase of “snapshot synchronization” logic for 
the entire order book, which uses this separate data feed, and it’s very different 
from the basic UDP market data feed of incoming transactions. 

Order Objects 

Orders are usually represented as a simple structure. They are a frequently-used 
object, and the last thing we want is to have function calls for creating, copying, or 
moving these objects.  

Bitwise copying is fine!  

 

 



63                             C++ Ultra-Low Latency 
 

Here’s an example order of a verbose order structure: 

    struct Order { 

       unsigned long timestamp; 

       int id; 

       int price;  // or: double price; 

       int qty;  

       bool is_buy;  // Side: Buy or sell order? 

    }; 

Note that we will often exclude the “side” data field because we’re often processing 
buy and sell orders separately. For example, an order book usually maintains the 
bids and asks at each price level as a separate data structure. Hence, context tells us 
whether it’s a buy or sell order object, and it’s more efficient not to store an explicit 
field. Even a small bool field adds more than a byte because of alignment issues. 

We could use inheritance of the different types of order structures, by having an 
order base class, and derived buy order and sell order classes. However, that’s not 
the typical low-latency coding style, because to take advantage of such a hierarchy, 
we’d need to use virtual functions, which are elegant but somewhat inefficient. 

Note that there’s only minor differences between a “struct” and a “class” in 
C++. A structure is really like a class, except the data member default to public, and 
a few other obscure difference. 

Hence, you can define member functions for a structure to be class-like, or you can 
make a class have only public data members, like a structure. Just take care with: 

• Default constructors 

• Copy and move constructors 

• Destructors 

• Assignment operators (copy/move) 

You probably just want the defaults. Also, you don’t want your order objects to 
contain some other non-trivial data member objects, or you get the same 
performance problems in those subobjects. 

In some data structures, you might want to store a cut-down version of an order. 
Your internal code probably doesn’t need all of the fields that come in from the 
exchange data feed messages. For example, in a queue based on “order-of-
insertion” you don’t need to store the timestamp. Hence, it’s common to have 
multiple different types of order objects, with fewer data members and a more 
compact size. 
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Integer Prices 

Trading engines usually represent price as integers in real-world code. Some of the 
useful terminology in this regard is: 

• Tick — the smallest possible pricing differential (depends on the stock or 
other instrument). 

• Pip — the smallest difference in Forex pricing (foreign currencies). 

• Basis point (bp) — the different differential in interest rates (usually a 
hundredth of a percent or 0.01%). 

The value of the tick for a stock or futures contract depends on the individual stock, 
financial instrument, or asset. The tick for an asset might be $0.01 (i.e., a cent) or a 
small amount like $0.0001 for low-priced assets, or a relatively large amount such 
as $0.25 (quarter) for a high-priced asset. 

A normal 32-bit “int” or “uint32_t” is usually adequate to represent a price. 
Note that the integer representation of a price indicates a multiple of the tick or 
pip, rather than the actual dollar price. Note that size_t is usually a 64-bit 
unsigned integer, rather than 32-bit, although it depends on the C++ 
implementation. 

Prices cannot usually be negative (except for Swiss interest rates). 
Since UINT_MAX in <climits> is approximately 4.7 billion, the tick values stored 
as a 32-bit integer have these properties: 

• $0.01 — price up to $47 million in 32-bits. 

• $0.25 — price up to $1.175 billion. 

• $$0.0001 — price to $470,000 in 32-bits. 

To avoid issues with 32-bits, trading engines often use 64-bit integers for all prices, 
thereby avoiding the risk of integer overflow and also allowing for negative pricing. 
As required, 64-bits can be used for larger price values than those listed above, or 
for more granular pricing with a smaller tick value. In such cases, 
use uint64_t or unsigned long. 

On the other hand, 32-bit integer arithmetic is marginally faster than the same 
operations on 64-bit integers. This also uses double the space, which affects cache 
lines and other cache locality, so there’s a performance trade-off in terms of both 
space and time. 
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The term “tick” is used for all types of financial instruments, but there are other 
terms. The tick is called a “pip” for Forex currency transactions, which is usually 
0.0001 or 0.01, depending on the currency pair. The term “basis point” refers to 
the smallest difference in interest rates, and is a fraction of a percent (a hundredth 
of a percent). 

The reasons for the use of integers in price representations include: 

• Avoids rounding errors in floating-point computations. 

• Equality tests or comparisons of float or double can suffer rounding 
errors. 

• Integer arithmetic is faster than floating-point. 

Integer quantities. Quantity is also a positive integer, and is usually stored as an 
unsigned integer. This representation can handle a quantity up to 4.7 billion of an 
asset at the given price. 

Negative quantities are usually invalid, and underflow of an unsigned type would 
wrap around to a large unsigned integer, resulting in an error. Zero quantity can be 
used as a representation of a used-up order, or some other marker of a “to-be-
deleted-later” order, since a real order cannot have zero quantity. 

Timestamp integers. Timestamps are also an integer, usually represented as 
an unsigned long to allow representation of the large numbers. Exchanges will 
tag an order with a timestamp, and the origination of timestamps in trading systems 
is usually a hardware-based timestamp. Incoming messages will often be tagged with 
a hardware timestamp in the NIC of the system. 

Consistency Checks on Orders 

Incoming market feed order messages can sometimes be lost, delayed, or corrupted. 
Some of the self-consistency checks to consider include: 

• Positive integers for price, quantity, ID, and timestamp. 

• Huge integers might be underflow (e.g., UINT_MAX is also -1 converted). 

• Timestamps should not be less than the previous one (but it happens with 
UDP). 
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At a higher-level, consistency should also apply to the order book data structure. 
Some consistency checks include: 

• ID should be new for add orders. 

• ID should already exist for modify or cancel orders. 

• Trade executions and subsequent order updates should be consistent. 

• If max-buy and min-sell cross, there should be a trade message incoming. 

Another common error is that zero quantity (or price) might be used to indicate a 
finalized trade, a “to-be-deleted-later” efficiency optimization, or an otherwise 
invalid order. In multithreaded code, that order might be seen before it’s removed. 
Hence, you need to check for this invalid case everywhere, and I do mean 
everywhere. Otherwise, you’ll be re-processing zero-quantity orders over and over, 
because a zero-quantity buy or sell order can always be filled. 
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7. Order Book & Matching 

Engine 

What is an Order Book? 

An order book is a data structure that tracks all the currently active buy orders 
(“bids”) and sell orders (“asks”). Typically, it has tons of data, because it has all the 
buys and sells from every trader who’s in the market today. 

Tracking the order book has a number of commonalities across all changes. There 
are a number of major assumptions when implementing an order book: 

1. Only a single stock — each financial instrument with a price has its own 
order book. 

2. All individual orders are seen — it’s a “market-by-depth” data feed with all 
the juice. 

3. No out-of-order transactions — we track order times implicitly as they are 
received via “order-of-insertion” rather than receiving an explicit 
timestamp and sorting based on its value. 

4. No missing transactions — this is often an invalid assumption (I’m looking 
at you, UDP!), so the order book must be robust for problems such as IDs 
that are not found. 

It’s different for the exchange versus a trading engine client. The exchange is 
managing many trading clients, but a trading engine is only for one exchange. The 
way it works overall is: 

• Exchange — real order book and matching engine to find trades to 
execute. 

• Trading engine — an abstract “model” of what’s happening in the 
exchange. 

The exchange has to detect trades via its “matching engine” and really execute them 
(and do so correctly!). A trading engine is just watching what’s happening, and using 
that information to decide whether or not to submit its own orders.  



David Spuler                                               68 
 

It’s like the exchange has the “real” order book, and the trading engine is 
maintaining its own “model” of what it probably looks like. 

In theory, a trading engine doesn’t need its own matching engine. In practice, 
maintaining an order book means that you know when the bids and asks have 
“crossed” (i.e., a buy is high enough to match a sell), and you can thereby predict 
when a trade message will be coming. In fact, this can be a useful consistency self-
check to confirm that your predictions about incoming trades are correct. 

Matching engines and order books are intricately linked, and their code uses the 
same data structure. It’s not much extra code, and, anyway, you’ll probably also 
need a matching engine for: 

• Unit testing of the order book 

• Backtesting 

Note that a trading engine’s order book is about all the orders and trades, not just 
your own. Tracking your own submitted trades is a totally different component of 
your trading engine. For example, to track whether your order got executed, or to 
know cumulatively what your current “positions” are in the purchased stocks from 
your prior submitted orders, that’s not in the order book.  

It’s some other C++ coder’s problem. 

Order Book Messages 

The input to an order book is mainly a set of messages for: 

• New buys 

• New sells 

• Updates (to quantity) 

• Cancels (remove the order) 

If you’re the exchange, these submitted orders or updates to already-submitted 
orders are received via TCP from multiple clients. If you’re one of the trading 
engines, you see all these messages coming across the network from a market data 
feed, usually via UDP multicast messages. 

The main difference is in trade executions. The exchange has a matching engine 
that has to figure out whether to execute a trade, and then tell everyone about it. A 
client order book in a trading engine doesn’t need to figure this out, because it gets 
told about trades in the incoming messages from the exchange’s market data feed. 
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Let’s examine the types of messages that occur. 

Usually, the bids are priced lower than the asks, in which case there’s no trades. 
When orders come in like this, they go into the order book, and might be executed 
later when things change. These are called “passive orders” and can be buys or sells. 

If a new bid in an incoming buy order raises the price above the min-ask (min-sell), 
then that buy order will trigger a trade to occur. Similarly, if a new sell transaction 
has a lower ask, then it may match with one of the bids, and a trade occurs. 

Market Data Feed Issues 

There are two main types of data feeds, where one is like a fire hose and the other 
more like a faucet. The amount of data affects how “deep” of an order book data 
structure you can maintain from the feed: 

• Market-by-Order (MBO) — full detail about every order, trade or update. 

• Market-by-Price (MBP) — only trades and pricing, not every passive order. 

An MBO data feed shows every order as it comes in from traders, with full detail 
of how many passive orders there are at every price level. MBP is more of an 
aggregation of pricing, showing the total quantities of bids and asks at every price 
level. Hence, an MBP feed is more detailed than just “quotes” about the most recent 
trade prices for a stock, but it’s much less data than an MBO feed. 

Some issues in the structure of an MBO market data feed can affect how you update 
your fully-detailed client-side order book in a trading engine. 

• Are affected order IDs listed in a trade execution message? 

• Do orders affected by a trade execution get modified by followup messages 
changing status or quantity? 

• Is there order status tracking in the feed (e.g., partially filled, filled, or “done 
for day”). 

Some lesser-known types of data feed information: 

• Broken trade — undo a prior trade. 

• Execution with price — specific type of trade message. 
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Order Book versus Matching Engine 

There’s a kind of symbiotic relationship between an order book data structure and 
a matching engine algorithm. The tentative distinction is: 

• Matching engine — detects if a trade is possible. 

• Order book — is told when a trade occurs (by the matching engine). 

If you’re processing a market data feed, then the exchange is detecting trades (via 
its matching engine), and then sending trade messages down the feed. Your order 
book is then receiving a trade message, and doesn’t need to do its own matching to 
detect when trades occur. In fact, many of the market data feed protocols will 
supply the IDs of the orders involved in a trade, so your order book may not need 
to implement the matching logic. 

Except that sometimes it does! 

You need to do matching if you don’t get IDs in trade messages from the feed, 
which is sometimes the case. Another reason is when a trading engine needs to 
predict trades before you hear about them on the feed. Such issues depend on the 
algo that you’re running. 

Matching Engine Logic 

Consider the situations if you get a trade message from a market data feed with 
only: 

• Trade price 

• Trade quantity 

How do you know which orders did the trade? Short answer: you don’t. There could 
be many orders with the right price and enough quantity. 

In these cases, a client-side trading engine has to effectively build your own 
emulation of a matching engine, as part of your client-side order book maintaining 
code.  

Note that mapping an anonymous trade message, without only price and quantity, 
to other orders is effectively the same logic as an exchange doing a matching process 
on an incoming new order. 
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You have to figure out which orders probably did the trade by looking at all the 
buys and sells at the price level, and examine all orders at that price level in the 
order they were received (i.e., order-of-insertion), and which orders have enough 
quantity, and so on. 

Guess what you just coded in your order book ... a matching engine! 

There are also various other scenarios where things get different with order books 
versus matching algorithms: 

1. Exchange matching algorithm — if you’re working on the exchange side, 
then you actually need to implement a live matching engine for real trades 
(scary!). 

2. Backtesting — you may need to emulate a matching algorithm to 
simulate the effect of your fancy algorithm and its submission of orders. 

3. Unit testing — you may need to emulate a matching engine, unless you’re 
just replaying some recorded data feed messages. 

And if you have to code up a real matching algorithm at an exchange, guess what 
data it has to maintain, for each financial instrument, to detect matches based on 
all the incoming trade submissions from its clients...an order book. 

Data Structures for the Order Book 

The first point to note about the order book is that it’s an incremental algorithm. 
You process each market data feed message in sequence, and can maintain an up-
to-date order book in this way. 

Is your order book correct? Not always, since messages can get delayed or even lost 
(usually in a UDP multicast data feed). There’s also a non-incremental secondary 
method call “snapshot synchronization” whereby you can correct your order book. 
Also, some protocols have partial status or statistics messages that can help validate 
your order book is still correct. 

Multiple data structures are required to address the efficiency of various different 
types of requirements.  
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The overall idea would be something like: 

• Hash table — mapping the IDs to order objects. 

• Doubly linked list — order-of-insertion sorted list for processing orders in 
the order they’re received. 

• Heap data structure (priority queue) — maintain the maximum-buy (max-
heap) and minimum-sell (min-heap). 

Do you need all this stuff? 

A hash table is hard to avoid because everything’s keyed off the order IDs. New 
orders come in with a unique ID, which is then used to modify or cancel the order. 
The IDs also usually appear in trade messages, although not always. 

Whether you need a queue or linked list for the FIFO list of orders is discussed 
below. The first point is that it’s actually needed at a price level, and not necessarily 
one huge list of all orders. 

FIFO Order Lists 

The idea of an order list is that it has FIFO logic based on order-of-insertion, which 
is usually equivalent to timestamps. Assuming they have the best price, multiple 
orders at the same price level are supposed to match in the order they were received 
by the exchange. 

Do you always need a linked list or queue of orders? 

If you’re the exchange then, yes, you definitely need to track FIFO status of orders 
at a price level, so as to implement “fairness” of trade execution in the matching 
engine. But what about on the trading engine side? 

It depends on what algo you’re doing. If the market data feed is giving your order 
IDs for trades, then you don’t need to emulate a matching engine, and you don’t 
need those linked lists, unless the algo needs a signal derived from them. 

This situation is a little similar to using a Market-by-Price (MBP) data feed, which 
doesn’t have all the individual trades. However, there are times when you want to 
track all the individual orders and trades, but you don’t really need to know the 
FIFO ordering of them.  
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For example, you might want more price-level data than an MBP feed is giving you, 
such as maintaining all these price-level statistics incrementally: 

• Total volume 

• Total number of orders (queue length) 

• Time frequency of orders (timestamp computations) 

• Last order size and timestamp 

An algo could be using these price-level data points, without necessarily needing 
the full tracking of all the orders in a queue data structure. 

Price-Level FIFO Ladders 

An important aspect of maintaining an order book is that matching orders should 
be processed fairly in a FIFO order. Hence, to process a trade in a matching engine, 
we need a queue of orders. This gives a FIFO ordering with the orders stored 
according to order-of-insertion. 

But the price matters more than the ordering! To process a matching trade, we need 
to find all the orders that are max-buy (or min-sell), and process them in FIFO 
order. There are two basic ways to set up a data structure: 

• One long FIFO queue 

• Per-price FIFO queues 

Using a single FIFO queue is inefficient when we need to process a trade, because 
the whole list may need to be scanned to find the orders at the right price level. 

Having a separate queue (list) for each price level is much faster, because all of the 
items on the list have the same price level (that we want). This aspect of having lists 
of orders for each price level is often called a “ladder” or a “bid/ask ladder.” The 
algorithm becomes: 

1. Find the linked list or queue of orders for that price level. 

2. Scan the order list processing each order record (in FIFO order). 

3. Continue until we have enough quantity or the list ends. 

4. Process the next-best price if we need more quantity (from Step 1). 
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However, there is extra storage cost because each price level needs its own object, 
and must contain the head and tail pointers of a dequeue or doubly-linked list. And 
we need a mapping data structure to find those linked lists for each price level (i.e., 
a hashmap or a very big bucket array). 

Note that this above analysis of FIFO matching is ignoring some other types of 
matching rules. For example, there is pro-rata and hybrid FIFO pro-rata as other 
possibilities, which introduce additional complications if any order has a large 
quantity (which is arguably “unfair”!). 

Heap Data Structures 

Heap data structures, also known as a priority queue, are good at efficiently tracking 
the maximum (or minimum) of a set of values. They are also efficient at updating 
the maximum or minimum under many insertions and deletions of random values. 
Note that the term “heap” in this context has nothing to do with memory 
allocation! 

There are three types of heaps: 

• Max-heap — tracks the maximum value. 

• Min-heap — for the minimum value. 

• Min-max-heap — does both efficiently (we don’t need this). 

Do you need a heap for price levels? It seems like overkill to have a data structure 
just to calculate the maximum buy and minimum sell prices of the order book. 
However, see below for reasons why an incremental algorithm isn’t that easy. In 
short: deletions are tricky to handle without a heap. 

Anyway, actually you don’t need a heap, because you need two! There are typically 
two heaps with a max-heap data structure for the buy orders to track max-bid, and 
another min-heap data structure for the sell orders (min-ask). These two heap data 
structures are completely independent. 

In C++, a max-heap can be implemented using a standard library data structure via 
the std::priority_queue container class.  

A min-heap can be declared using a custom comparator that reverses the logic. The 
default for a max-heap is std::less, but you can use std::greater to create 
a min-heap. Although using a custom comparator would often be inefficient, the 
standard C++ library probably (hopefully) has a builtin template specialization for 
this comparator. However, you need to check by benchmarking! 
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If your min-heap is slow with a custom comparator, there’s another weird 
optimization: negative numbers to the rescue! A maximum of negative values is the 
minimum absolute value. You can make a min-heap from a max-heap by negating 
all the values on the way in, and negating again (to reverse it back to the original 
number) when returning an item from the min-heap. 

There are alternatives to heaps, but you certainly need to track some information 
per price-level, and be able to access it in sorted order (e.g., find the second-best 
price). A heap is the most straight-forward data structure for doing this. 

Ordering Out-of-Order Orders 

The simplest type of order book and matching engine should be based on “order 
of insertion” so that older orders get processed first. However, even when trying to 
maintain this FIFO ordering, there can also be issues with timestamping and lost 
or delayed order messages. This is more of an issue for client-side coding of an 
implicit order book from a market data feed via UDP multicast, rather than an 
exchange server’s incoming transactions over more reliable TCP connections. 

Some orders from the exchange market data feed may be received late due to a 
delay and therefore appear to be “out-of-order” when they arrive at the market data 
ingestion component. Typically, this is due to delays or lost packets in UDP 
multicast messages as they are sent from the exchange’s market data feed to the 
trading engine’s client code. 

How to handle this? 

As a client, we want to keep our order book accurate, but not at too great of a 
performance cost. In the abstract, there are various ways to treat messages that 
come in with a timestamp that indicates they are not received correct order. Some 
issues include: 

• Detection by tracking incoming timestamps versus previous messages. 

• Ignoring timestamps and doing order-of-insertion anyway. 

• Timestamp-based insertion to correctly place the orders in the FIFO list. 

Detection is relatively straight-forward if we assume it’s a rare event and only one 
transaction is received out-of-order. The idea is to simply track the incoming 
timestamp of the most recent order, and compare that with each incoming message. 
However, things get more complex if there could be multiple out-of-order 
transactions, which could be also the wrong order in themselves. Handling these 
obscure cases efficiently is more problematic. 
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One way to do it all efficiently is to detect out-of-order timestamps, but then ignore 
the issue (except maybe logging some in-memory statistics counters). In other 
words, just insert it into the data structure in order-of-insertion, and it will be 
wrongly behind some of the orders with a later timestamp. 

How risky is that? 

The risk is that there’s a match at that price level, and some other transactions get 
processed by a trade, rather than this one (which was actually received earlier by the 
exchange). The importance of an order can also depend on its price level, since 
orders that are unlikely to be crossed won’t see any problem at all. Another point is 
that lost messages occur, so there are whole orders that get missed, and the order 
book will get occasionally updated via the “snapshot synchronization” methods. 

In other words, out-of-order trade or order messages is not the only problem that 
we have with our order book becoming an inaccurate model of the exchange’s order 
book. There are various trade-offs here, and nobody likes to leave it to chance. In 
this case, we actually know there’s a problem, whereas with a lost order, we do not. 

Can we fix it? 

The correction is to try to insert the order wherever it should have been. 
Timestamp-based insertion is inherently a slower operation on the default data 
structure of a FIFO queue of orders. 

Insertion into an order-of-insertion queue is an O(1) insertion at the tail of the 
queue, which is only a couple of operations. But for an out-of-order insertion using 
its timestamp, you now have to scan this queue or deque. The operation of finding 
where exactly to insert is an O(n) linear search to examine all the timestamps on the 
list. It may be a rare event, and the reverse scan down the list might only be a few 
orders previously, but it still introduces a non-deterministic possible slowdown to 
insertion of orders into the order book data structures. 

Another separately indexed data structure may be considered here to map 
timestamps to linked list locations (i.e., unsigned long to a pointer), but that adds 
more complexity to the situation. And it’s not a hashmap, because we need lookups 
with relative ordering of the timestamp keys. Worse still, maintaining some other 
type of index will also slow down all of the other non-problematic order insertions. 
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Incremental Max-Buy and Min-Sell Prices 

A useful optimization is to maintain the current maximum buy and minimum sell 
as two incrementally-updated price values. These are the same numerical types as 
the price type, whether it’s a double or an integer. And there are two separate values: 

• Max-buy price (maximum bid) 

• Min-sell price (minimum ask) 

The first thought is to get excited and think that maybe we don’t need a data 
structure at all to track the price levels. Maybe we can just incrementally maintain 
these two values, and done. 

Does it work? Let’s try it out. The general idea for the incremental algorithm is: 

• New buy orders — if price is more than the max-buy, update the 
incremental max-buy. 

• New sell orders — if price is less than the min-sell, update the incremental 
min-sell. 

• Cancel buy orders — if buy price equals the max-buy, and there are no 
other buy orders at that price level, find the next-highest buy price. 

• Cancel sell orders — if sell price equals the min-sell, and there are no other 
sell orders at that price level, find the next-lowest sell price. 

• Modify orders — these are not allowed to change the price of orders, so 
they don’t affect it. 

• Trades — treated like order cancels for updating the max-buy or min-sell 
values. 

This would be a beautifully efficient algorithm ... if only it worked. It’s super-fast 
for new buy or sell orders, and modify orders don’t affect the incremental values. 
The problem is the deletions. 

Deletions of orders, whether via a cancel message or a trade happening, need to 
find the new max-buy or min-sell. Canceled buy orders below the max-buy price, 
or sell orders above the min-sell price, don’t affect the incremental values, and are 
efficient.  

Also, even if the deletion is an order at the max-buy or min-sell, if there is even one 
other order at that price level, then we also don’t need to do anything. 
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But if a deletion removes the last order at the max-buy or min-sell price, then we 
need to scan all the other price levels. Note that when doing any type of deletion 
or cancel, there shouldn’t be a buy order at a higher price, or a sell order at a lower 
price, if we’ve been correctly tracking the incremental values. So, we’re looking for 
the second-best buy or sell price. 

Alas, the hash table of offer ids is no help here. We need a data structure that tracks 
the price levels of all offers, and one that can efficiently find the maximum or 
minimum, such as: 

• Red-black tree (e.g., std::map) 

• Heap (e.g., std::priority_queue) 

On the upside, you can see that the use of the price-level data structure (heap or 
tree) to find the next-best buy or sell prices is a relatively rare event. Hence, this 
incremental optimization can be very helpful in practical terms. For example, when 
computing mid-quotes or the bid-ask spread, we can just access these two scalar 
variables, rather than querying the price level data structure. 

Finding whether there’s any other orders at that price level actually requires a price-
level data structure anyway. We need to map the new order’s price level to the linked 
list of other orders at that price level.  

There’s also another optimization here: to avoid needing to look up the price level, 
we could store a pointer to the price level object for the current max-heap or min-
sell prices (i.e., we have then four incrementally maintained variables: two prices 
and two pointers to price level data structure objects).  

Also, we’ve probably already found the price level data structure object for other 
reasons (e.g., to add a new order to the linked list of orders for that price level). 
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8. Iceberg Orders 

What are Iceberg Orders? 

Iceberg orders are large orders where most of the quantity is hidden, in the same 
way that most of an iceberg is hidden under the water. Exchanges offer support for 
iceberg orders in terms of auto-replenishment of these orders with more of the 
hidden quantity when the displayed quantity gets traded. The replenished quantity 
is added as a new order with a different ID, so it’s not obvious that it’s a 
replenishment of an iceberg. 

The reason that some traders would want to use iceberg orders is that a large 
quantity can be traded without making it obvious. Hopefully, this avoids price 
slippage that might otherwise occur. 

The effect of icebergs is different for exchanges versus other traders because of the 
information asymmetry. At a high level, the management iceberg orders has aspects 
including: 

• Display quantity is visible to other traders, but a larger total quantity is 
hidden. 

• The exchange knows it’s an iceberg, and has automatic support for this. 

• Other traders don’t know which orders are icebergs (in theory). 

Many exchanges allow the placement of iceberg orders as a special type of bid or 
ask. For example, a hedge fund or institutional investor might wish to make a large 
trade. Even HFT traders may use their own icebergs, although they may also like 
to find icebergs to trade against, because it means there’s a lot of hidden liquidity at 
a price level. 

Exchanges have explicit support for icebergs as an order type. When you place an 
iceberg order with an exchange, you specify: 

• Side (buy or sell) 

• Price 

• Display quantity 

• Total quantity (hidden) 
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• Replenishment (increment) 

The initial quantity is displayed and is the first order. When this order is consumed 
in a trade, a new order is created with the replenishment quantity. The amount of 
replenishment doesn’t need to be the same as the initial quantity. 

This is a simple type of iceberg order with a fixed replenishment quantity and zero 
delay. Some exchanges offer more advanced handling of iceberg orders, such as 
dynamic adjustment of the replenishment size, or auto-delays for when the new 
order appears. These more advanced features can help iceberg orders remain 
hidden and get the best execution prices. 

Iceberg Replenishment Scenarios 

When an iceberg is triggered on the side of an executed trade, the exchange 
automatically “replenishes” the quantity in a new order. In other words, once the 
display quantity is absorbed in a trade, another new order is automatically placed. 

Conceptually, the new order has its own ID and is added to the end of the queue, 
like any other type of order. However, behind the scenes, the exchange may have 
shortcut this cycle with some code optimizations. 

An interesting scenario arises where an aggressive order matches an iceberg order 
at the best price, and one or more orders at a second-best price that is also crossed 
and could be executed. Naively, we would say that the price level has only the single 
iceberg order at the displayed quantity according to the FIFO queue of orders at 
that price level. The replenishment orders are not yet on that queue. Hence, the 
matched iceberg order’s initial display quantity should be used, and there being no 
further liquidity at that price levels, the second-best price orders should be executed 
to fill any remaining capacity. 

But when is the iceberg replenished? Is it before or after switching to a second-best 
price level? 

The naive scenario is not very good, because a better price was on offer by 
replenishing the iceberg and trading with it again, before reverting to the second-
best priced orders only after the iceberg order was exhausted. This is a better 
algorithm for the exchange, and there’s nothing really conceptually wrong with this. 
It’s just doing the replenishments after scanning a single price level, before moving 
to a second-best price level. 
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Iceberg Algorithm Optimizations for 
Exchanges 

There are two types of code optimizations in relation to the processing of iceberg 
orders: 

1. Exchanges optimizing executions that trigger many replenishments. 

2. Other traders trying to figure out which orders are icebergs. 

On the exchange side, some of the situations that can be considered for algorithmic 
optimizations include: 

• Repeated replenishment — iceberg orders getting replenished many times 
in a single trade execution with lots of new orders getting created and then 
executed. 

• Two icebergs colliding — the aggressive order that triggered the trade was 
itself an iceberg, which matched with one (or more) icebergs on the other 
side of the trade. 

Let’s look at what sort of code optimizations are possible. 

The first point is that the exchange knows which orders are iceberg orders. Hence, 
when it’s scanning the list of orders to match at a price level, it can fill the non-
iceberg orders, and the displayed amount of an iceberg order. Note that this is only 
considering a “fair” FIFO filling method, and not more complex variants such as 
“pro rata” algorithms where larger orders get more fill. 

After the first scan of the order list for a price level, the exchange knows it has seen 
some iceberg orders at that price level. Hence, the exchange’s matching engine 
knows that once the list is finished this first scan of the price level, there will be 
new replenishments of one or more iceberg orders at that price level. In fact, after 
this first scan of the best price level, if there’s still quantity to be traded, then: 

There’s only icebergs left! 

According to a naive implementation, the one or more icebergs at that price level 
should be repeatedly: 

1. Creating a new order with a replenished quantity, and 
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2. Executing a trade with the new quantity. 

This could happen many times. Possibly an entire iceberg order is used up, or it 
may have quantity left. Partial fills are also possible at the edge cases. 

In practice, an exchange’s matching engine may use some optimizations here, rather 
than repeatedly doing the same steps. After all, you can calculate how much of the 
available quantity should be consumed by each iceberg based on: 

(a) your active order’s available quantity, 

(b) the iceberg’s hidden remaining quantity, and 

(c) the iceberg’s replenishment rate. 

You can do the arithmetic first, and then create new orders with new IDs. One 
optimization is to do a bulk-insert of all these new orders into the order book. A 
better optimization is not to put them into the order book at all, because they’re 
already been traded out of the order book (before they even went in). However, the 
exchange still needs to emit the various new order and trade execution messages 
for all of these iceberg replenishment orders, so as to try to hide everything. 

Finally, note that these optimizations won’t apply in all situations for an exchange. 
For example, these optimizations are assuming that the client’s iceberg orders are 
immediately replenishable with zero delay, which is not true of all iceberg orders. 

Trader Detection of Hidden Icebergs 

Other trading participants would love to find out which orders are icebergs. In 
theory, there’s nothing to see. But HFT coders and algorithmic traders are nothing 
if not innovative. 

Generally, the strategy for finding icebergs is to watch the market’s sequence of 
events, via the market data feed. Anywhere that the sequence differs from what you 
would normally expect for a non-iceberg order, that’s when you have identified a 
likely candidate. The main idea is: 

Spot icebergs when they execute! 

There’s not much you can do when an iceberg is sitting passively in the order book. 
Similarly, a non-aggressive new iceberg order won’t be easy to spot. The differences 
occur in the executions. 
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To see what can be done to detect market sequence differences, think about the 
process whereby an order will trigger an immediate auto-replenishment by the 
exchange. Some new orders have appeared and been executed in the blink of an 
eye. The IDs of these new replenished orders were not in the order book before, 
but they appear as a sequence of new aggressive orders at the same price point. 
Some of the main things to see is: 

(a) Suddenly created orders immediately executed, and/or 

(b) New orders created with the same quantity. 

So, this analysis of the timing of executions and new orders gives some hints about 
the presence of an iceberg order at a price point. Note that this is assuming basic 
icebergs with replenishment of a fixed size that processes instantaneously with zero 
delay. However, exchanges also offer more advanced types of icebergs with 
dynamic replenishment quantities, time delays, and triggers based on market 
conditions. 

Some other types of indicators that an iceberg may be present include: 

• Price levels sustained despite low apparent available liquidity. 

• Volume spikes at that price level. 

• Recurring market maker indicators in repeated orders (not the individual 
traders, which is secret, but the financial institution through which they’re 
trading, which isn’t). 

Probing Strategies 

And finally, there’s also the idea of issuing your own trades that attempt to find out 
if an order is an iceberg, This is called a “probing strategy” and aims to find hidden 
liquidity in the market. Some of the ideas include: 

• Ping orders — submit small orders watching for replenishments. 

• Layered orders — several orders at multiple price levels. 

• Flash orders — short-duration orders to see if they get swallowed. 

The overall idea is to issue these “probes” and then watch the reaction in the market 
data feed for what trades occur, and how quickly, and whether new orders get 
created. 

If you think you’ve found an iceberg, there are two basic ways to play for an edge: 
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(a) Now — repeatedly trade against the iceberg or others using this extra 
knowledge, and/or 

(b) Later — trade for price changes that will occur after the iceberg is 
finished. 

Many of these probing methods are commonly used by algo traders. These attempts 
to find icebergs can have false positives, whereby it’s not an iceberg, but some other 
algorithmic trader that’s responding with new orders. Furthermore, such methods 
can be expensive if you fail, may change the market unintentionally, and also some 
types of probing may be considered “market manipulation” in some jurisdictions. 
Hence, if you think you can spot icebergs, maybe think about the Titanic. 

Extensions 

1. Examine or code up the matching engine logic for processing trades when 
an iceberg order is matching. 

2. Examine the algorithm for optimizing iceberg matches where multiple 
icebergs match, and the active quantity is large enough for many 
replenishments. 

3. Can you calculate how much each iceberg will consume of an order’s 
quantity using only arithmetic and conditional tests? Try to avoid 
simulating it with a loop. Start with the case of one iceberg, then generalize. 

4. Examine probing methods to detect advanced iceberg orders with delayed 
replenishment and non-fixed quantities. 
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9. Rate Limiter 

What is a Rate Limiter? 

A rate limiter or “throttling” component aims to avoid too many requests hitting a 
server in a time period. For example, a server might have a rate limit policy of “100 
requests per minute” that all clients must adhere to. 

Servers have two basic methods for dealing with an exceeded rate limit: 

• Rejection — disallow the client’s transaction with an error message. 

• Smoothing — instigate a delay or other load reduction method without 
rejecting. 

Servers don’t really like having to force rate limits on their clients. After all, they 
want happy customers. Hence, servers will attempt to improve their capacity in 
other ways: 

• Load balancing technologies 

• Bigger servers with GPUs 

• More C++ low-latency coders 

But at some point, if demand for your service is unlimited, you have to say no. 

Rate limiters are a general technology component and may apply to numerous types 
of servers and services that allow multiple clients: 

• Trading exchanges limiting HFT order submissions. 

• AI servers limiting the number of Norse poems people can request through 
their API. 

• Web sites limiting the number of browser page views or online 
transactions. 

• Email servers limiting the pass-through of emails (spam prevention). 

I’m sure you can think of some more. 
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Client vs Server Rate Limiters 

Servers and clients have different issues, but both can implement a rate limiter C++ 
component. The basic idea is: 

• Servers — block a client from submitting too many orders (keeping it 
minimal). 

• Clients — try to figure out when you can submit an order (so as to 
maximize it). 

There’s a significant architectural difference for the two contexts: 

• Server rate limiter — per-client rate limits for many clients. 

• Client rate limiter — tracks rates viz one server and one client (me!). 

The scalability requirements for the server are much greater. Hence, a server will 
often implement its multi-client rate limiter using an in-memory database such as 
Redis or Memcached. The client-side rate limiter component is much less complex, 
and it’s usually a simple C++ class. 

As you can see, the objectives for servers versus clients are somewhat opposite, but 
the coding issues are similar. The server is effectively maintaining multiple rate 
limiters with one for each client. The client is maintaining one rate limiter 
component for its connection to the server. These are two sides of the same coin: 

Client rate limiters are abstract models of the server rate limiter. 

The server has the real rate limiter that will actually block orders. The client’s rate 
limiter is a theoretical model that attempts to emulate the server-side logic to 
thereby predict whether we can send an order or not. Hence, to implement a client-
side rate limiter you need to know as much as possible about the server’s rate limiter: 

• Rate limit thresholds — e.g., how many transactions in what time period? 

• Rate limit algorithm — e.g., time-based or total transactions? 

The rate limit thresholds are usually part of the documentation. Note that rate limits 
may not be time-based, such as where each client is allowed (or can buy) some 
“credits” and then consumes one or more credits with each submitted request. 
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The algorithm used by the server-side rate limiter may be trickier to discern. There’s 
a whole bunch of theory about the best way to do this on a server. Here’s a selection 
of algorithms: 

• Fixed counts (credits) 

• Token bucket 

• Leaky bucket 

• Fixed window 

• Sliding window (log variant) 

• Sliding window (counter variant) 

There are other low-level features of a server-side rate limiter algorithm to consider: 

• Rate limit violations — does the server reject, smooth, or delay the client 
transaction? 

• Retry permissions — does the server’s rejection include a data field with 
the recommended time for a retry? 

And then you have to code all that into your client rate limiter. 

Rate Limiter Optimizations 

Client-side rate limiters are part of the “hotpath” and are performance-critical. After 
all, a rate limit component is queried immediately before submitting a transaction, 
so any latency in the rate limiter checking will directly worsen trade submission 
latency. 

How to run fast? 

Well, it depends on the server’s algorithm. For example, if the server allows one 
request per minute, then only record the timestamp of your last submission. And 
when the server’s method is one based on a fixed number of credits (e.g., a free trial 
with an upper bound on credits, or a way to purchase a number of credits), then 
the client can just maintain an incremental value of its own credit stache. 

More interesting optimizations arise in the rate limit tracking of fixed window and 
sliding window algorithms. The general idea for the rate limit is: 

N requests in M seconds. 
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In a fixed window algorithm, the allowed limit is reset every M seconds. It’s like the 
server has an interrupt timer running every M seconds, which resets the allowed 
client transactions. Indeed, this is one way to implement it, although it’s not the 
fastest for the server, because it would have to touch every client’s counter every M 
seconds. 

Nevertheless, having a timer running every M seconds is more efficient for the 
client-side implementation. But you have to make sure that your client-side 
interrupt is synchronized with the server’s timestamps, or else chaos ensues. 

A sliding window algorithm is a more accurate way to limit client requests. Whereas 
a fixed window algorithm can be manipulated by the client in a way that allows 2N 
transactions to be submitted, a sliding window will more correctly limit to only N 
client transactions. 

However, it’s also more complicated to code a sliding window algorithm, and 
requires tracking the timestamps of many requests. The methods to implement a 
sliding window rate limiter include: 

• Naive request queue with removals. 

• Fixed array of N timestamps. 

• Ring buffer of N timestamps. 

Compact data representation. But before we look at the code, there’s a space 
optimization, which also helps with speed due to cache locality. The first 
optimization is that we can throw away most of the transaction. We only need the 
timestamp, so we can compact the data significantly. < 

It might be desirable to store other aspects of the request, such as an order ID, 
especially in testing mode. But the algorithms discussed below work only on the 
timestamp, and don’t ever need to go back to the original order or request. In 
production mode, a client-side rate limiter component will tell you whether or not 
you have permission to submit a trade, but it can’t give you a list of the transactions 
you did previously. 

Naive request queue algorithm. The naive algorithm is to realize this is an 
“order-of-insertion” algorithm, so we need a queue, where the orders are stored as 
they are received, with their timestamp being the only important field.  
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The basic idea goes like this: 

• Remove all old transactions on the queue that are outside the M seconds 
time window. 

• Check if there are less than N transactions still in the queue. 

• If so, success, and add our request to the queue. 

• Otherwise, fail with a rejected transaction (and don’t add it to the queue). 

But this idea is not great coding, and I’m understating it here for politeness reasons. 
This method is super-inefficient because we are doing: 

• Insertions of new requests (even if only timestamps). 

• Removals of out-of-date requests. 

• Linear scanning of the request list. 

Fixed array of N items. A key insight is that to manage a rate limit of N items for 
a fixed time period, we only need to track the last N requests. Hence, we only need 
to store the last N items, and we can maintain a fixed array of exactly N items, or 
rather, exactly N timestamp values. Throw that dynamic queue data structure to the 
curb! 

The simplest idea is an order-of-insertion array, but we shouldn’t use an array that 
starts from index zero. Instead, we should use a ring or circular buffer data 
structure. 

Fixed-size ring buffer. The simple idea is to maintain a fixed-size ring buffer 
containing the last N timestamps. This is effectively implementing a fixed-size 
queue of N items in an array or vector container. 

It’s an implementation choice whether to use a compile-time size 
with std::array or a run-time fixed size with std::vector for the ring buffer. 
If the rate limit is rarely changing, then N is a compile-time constant and we can 
use std::array.  

However, we can use std::vector by doing a single heap allocation with 
a reserve() call in the startup phase of the trading application, away from the 
hotpath. The vector method is more flexible because we can load N from a 
configuration file, rather than needing a re-compile. 
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Prefilled ring buffer. One minor optimization is to note that the client-side rate 
limiter in a ring buffer is doing a needless branch. There are two distinct cases: 

1. Startup — the first N transactions. 

2. Ongoing — the rest of the transaction requests. 

If the total number of submitted transactions is less than N, then our queue is only 
partially filled, and the transaction is definitely allowed: we’ve never submitted 
enough transactions, regardless of the time period! 

But branches are not great, as discussed in the chapter on branch prediction. In the 
spirit of branchless coding, let’s not even check for the condition. Instead, we can 
pre-fill the initial ring buffer with N zero timestamp values at startup, and pretend 
like it already has N elements stored in it. Thus, we can remove an “if” statement 
(goodbye, branch, we won’t miss you!). 

Note that doing this also allows a secondary optimization: we no longer need both 
“head” and “tail” indices. The ring buffer is always full, and the most recent item is 
always right next to the oldest timestamp. So, we only need a single offset. 

Unfortunately, we can’t remove everything! If it weren’t for those pesky orders, we 
could do it all at compile-time. 

Advanced Client Rate Limiting Issues 

Computing retry time. An extra feature of our rate limit algorithm is in the 
rejection logic: compute the wait time required until a re-submission of this trade 
would be accepted. This can be returned to the caller as useful information. 
However, it’s not a simple algorithm in our fixed-size ring buffer queue. Whether 
we want to always compute this for the caller, or provide an API for the caller to 
ask for this information, is a judgement call. But if our order is going to be rejected 
anyway, we’re no longer in the hotpath, so adding computations has a low penalty. 

Server timestamps synchronization. There can be a difference in the timestamp 
values of the server, versus your ones. This is a rare issue, and it can cut both ways. 

• False positives — you submit a trade and it gets refused. 

• False negatives — you withhold a trade that would have been allowed. 

The difference in timestamps can occur at both ends of the queue. Depending on 
which end, this rare issue could trigger a false positive or false negative. 
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Extensions 

1. Extend the client-side rate limiter algorithm to use time delays and retries. 
When should a rate limiter suggest a delay versus rejecting the transaction? 

2. Extend the client-side rate limiting algorithm to accept requests from 
multiple threads. 

3. How would you handle false positives? The client rate limiter says the trade 
is allowed, so the trade execution component submits the trade, but the 
exchange server rejects its submission. Add a feature allowing the trade 
execution component to report “bad trades” to the rate limiter. Should it 
report “good trades” to the rate limiter? 

4. Examine the use of lower-precision timestamp values in the ring buffer. 
Instead of a 64-bit unsigned long, can you use 32 bits? Or less? 

5. Analyze the use of differences in timestamps to compact the data type. 
Instead of the full timestamp, can you use the number of clock ticks since 
the program startup timestamp? 

6. Consider how to handle incoming transactions that are out-of-order 
according to their timestamps. For example, your code is accepting 
candidate trade transactions from multiple servers. 

7. What statistics should be tracked and recorded to allow monitoring and 
management of a rate limiter software component in production? 
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10. Slowpath Removal 

What is Slowpath Removal? 

Slowpath removal is a multithreading optimization whereby the cold paths are 
removed, merged, or deferred. The idea is to give priority to the hotpath by avoiding 
any branches leading to the slowpath, as much as possible. 

Not all code belongs on the hotpath. Some examples of slowpath logic include: 

• Error handling 

• Logging 

• Self-testing code 

Note that I really mean removal of these paths. There are actually two optimizations 
in slowpath removal: 

• Avoiding the cost of testing for errors. 

• Removing branches of code instructions. 

We don’t just want to avoid testing for errors, but we actually want there to be zero 
branches in the hotpath code sequence. The reasons for this include: 

• Branch prediction optimizations (i.e., branch elimination), and 

• Instruction cache optimization. 

Another point is that to make the hotpath short, with good latency in the instruction 
prefetch cache, we want to minimize any slowpath code in that path. Hence, if you 
cannot avoid having a slowpath sequence in the hotpath, then you should 
encapsulate it into a separate function, and don’t inline the slowpath function. In this 
way, only the test for that slowpath condition (e.g., an error flag test), and a single 
function call to the slowpath function, is in the instruction block along the hotpath. 

If the hotpath code sequence is short and tight on the CPU, it runs a lot faster than 
if it has to think about alternative pathways. 
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Error Handling Slowpaths 

Error handling is a common example of a slowpath. Most of the failures and 
exception states of execution are not on the hotpath, as they are uncommon events 
compared to success. They’re called exceptions for a reason! 

The problem with errors is that you have to check for them, even though they never 
happen. Okay, yes, so they can happen, and good programmers always check their 
return codes and so on. But when you’re trying to go fast, you want to focus on 
success and winning. 

The choices for error handling are therefore on the scale between two extremes: 

• Repeatedly check every error (slow) 

• Don’t check for any errors (unsafe) 

There are some trade-offs in the middle ground: 

• Check for fewer errors in production, but more in offline self-testing. 

• Use in-memory logging data structures to defer outputting data to log files. 

• Defer error checking until multiple error statuses can be checked at once. 

Deferring Error Checks 

The idea of deferred error checking is to not immediately check every error status. 
Instead, we try to keep going and ignore possible error states, and then check for 
them as late as possible. 

Traditional error checking is to immediately test for a failure return code. Here’s an 
example: 

    bool oksetup = orderobj.setup(ticker, price); 

    if (!oksetup) { 

        // Fail... 

    } 

    bool oktrade = order.obj.submit_trade(); 

    if (!oktrade) { 

        // Fail... 

    } 

    bool oklog = logger.record(ticker, price); 

    if (!oklog) { 

        // Fail... 

    } 
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The basic structure is a long if-else-if sequence, with error handling interleaved 
into the main hotpath. Yes, you could micro-optimize the above, such as by 
avoiding three separate Boolean variables, but you get the idea. This is a slow 
control flow that mixes the hotpath and the slowpath. 

Faster is to run as fast as possible with all the steps, and only check for problems at 
the end. If we can defer error checking until after the trade has submitted, then our 
error handling code is completely out of the hotpath. Here’s the basic concept for 
doing deferred error checking at the end: 

    bool oksetup = orderobj.setup(ticker, price); 

    bool oktrade = order.obj.submit_trade(); 

    bool oklog = logger.record(ticker, price); 

    if (!oktrade || !oksetup || !oklog) { 

        // Fail... 

    } 

We might optimize this using bit flags for error codes and pass-by-reference 
parameters: 

    uint32_t errflags = 0; 

    orderobj.setup(ticker, price, errflags); 

    order.obj.submit_trade(errflags); 

    logger.record(ticker, price, errflags); 

    if (errflags) { 

        // Fail... 

    } 

The tricky part here is whether the trade submitter or logger functions will crash 
when the first function fails. We have to design all the routines to be pass-through, 
or at least non-crashing, even if an earlier routine has had an error. This is easier 
said than done! 

You have to take care to really defer the error checks, not just hide them. For 
example, if your second routine needs to check for an error status from the first 
function (so it doesn’t crash), then you haven’t really deferred the error checking 
until after the hotpath has finished. Instead, it’s just hidden further down the call 
stack inside the individual functions. 
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Removing Error Checks 

Safe C++ programming practices always have us doing a lot of extra work to check 
for a myriad of coding problems: 

• Function parameter validation 

• Function error return code checking 

• Assertion failures 

• Self-testing code failures 

• Memory allocation failures 

• File loading errors (e.g., file not found, disk full) 

• Valgrind runtime checking 

But if we want to go fast, many of these can be removed. Goodbye to slow code! 
Hello, speed. 

Not all of the above error situations are that common, and many of them are under 
our own control, since they’re really just checking for our own coding errors. Some 
error avoidance strategies for the critical code in the hotpath include: 

• Don’t use memory allocation (avoids allocation failures). 

• Avoid disk-full issues with logging via good Linux admin practices and 
lightweight monitoring. 

• Compile-out parameter validation, assertions, and self-testing code for 
production (but include them in unit tests and offline automated test 
harnesses). 

If compiling out all of the safety stuff gives you concerns, here’s the plan: 

• Don’t write buggy code! 

Oh, wait! That’s not so easy. But here’s what we can do: mitigate against human 
frailty by shaking out all the bugs before they get to production. 

One of the main ways to have very fast production code, but mitigate against 
unforeseen coding failures is to max out the use of automated testing in offline 
mode. Here’s the basic plan: 

• CI/CD — faster unit tests. 

• Nightly builds — longer automated tests, static analysis, etc. 
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We can and should run basic unit tests as part of CI/CD, but then we should thrash 
the whole thing to death in nightly builds. This means to enable lots of self-testing 
code and other very slow tests that would cause developer productivity issues if we 
ran them in CI/CD. Hence, nightly builds should run stress tests under Valgrind, 
even running the same tests across multiple platforms, compilers, and optimization 
levels. We maximize the testing offline to mitigate the risk of removing these tests 
in production. 

Never-Failing Functions 

As programmers, we’ve had it drummed into us that every function should return 
a success or failure status. But, why? 

Some functions should never fail. If it’s a function that does not access external 
resources, the most common reasons for failure are internal ones (e.g., called with 
the wrong parameters) or very rare states (e.g., memory allocation failure). Every 
one of these reasons are things under our control: 

• Don’t call it with bad parameters. 

• Don’t use allocated memory. 

As an example, consider a function to set up an order object to submit a trade, 
which is obviously on the hotpath. This is the traditional C++ style: 

    bool ok = orderobj.setup(ticker, price); 

    if (!ok) { 

        // Handle the error... 

    } 

    // Keep going (submit the trade) 

Here’s a faster method whereby we only check for those “under-our-control” 
coding issues in offline regression tests. The basic idea is to have the error checks 
only in test modes: 

#if SELFTEST // unit test mode 

    bool ok = orderobj.setup(ticker, price); 

    if (!ok) { 

        // Handle the error... 

    } 

#else  // Production mode (hotpath) 

    (void) orderobj.setup(ticker, price); 

#endif 

    // Keep going (submit the trade) 
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In fact, we probably should further optimize the function to have void return type 
in production, and never even think about returning an error code. We could use 
tricky #if sequences, or have two versions of the entire function. If we make the 
function inline, then the C++ optimizer might get rid of some of the 
unused return statements, but why do we need them in the first place? 

The main slowness that we can’t get rid of in the hotpath is return codes or 
exceptions from the third-party APIs, network connections, and system resources, 
which could really fail in production. However, we already talked about these above, 
and the strategies to defer these checks to later in the hotpath. 
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Part III: Low-Level Techniques 
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11. Branch Prediction 

What is Branch Prediction? 

Branch prediction is an optimization in the CPU whereby efficiency is improved by 
considering upcoming branches. The CPU in its execution logic tries to predict 
which of the two paths of a branch is more likely to be taken.  

Most CPUs also do “speculative execution” of the future instructions, to get ahead, 
which must be discarded if the “wrong” branch is actually executed by the code. 

For the programmer, these branch prediction capabilities give the opportunity to 
further optimize your code to capitalize on the CPU’s abilities.  

Optimization techniques for the C++ programmer include: 

• Eliminating branches in the hotpath so that the code runs straight and 
narrow (i.e., fast!). 

• Hinting to the compiler about the most likely branches of execution 
(e.g., [[likely]] and [[unlikely]] specifiers). 

• Keep unavoidable branches in the same code neighborhood (e.g., short 
loop bodies). 

Branch prediction has a problem in HFT: the hot path is rarely executed (i.e., 
actually submitting a trade). All of the branch prediction logic would try to run the 
cold path, as it would always be predicted. But what we want is for the branch 
prediction logic to always choose the hot path, even though it would mostly fail to 
be correct.  

Thus, all of HFT is at odds with a whole swathe of computing theory about branch 
prediction. HFT needs a “set opposite world mode” flag, but I’m yet to find one in 
the GCC documentation. 
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Types of Branches 

First things: analyze your hotpath code for branching. The main types of branches 
in C++ code include: 

• if statements and if-else statements. 

• Loop conditions and loop bodies. 

• Loop control statements: break, continue. 

• Function calls and return statements. 

• switch statements (multi-way branching). 

Some of the less obvious types of branches are: 

• Ternary operator (?:) 

• Short-circuiting in the && and || operators 

There are also hidden branches in C++ code features such as: 

• Virtual function calls 

• Function pointers (and function names) 

Branch Compiler Hints 

There are several ways for the programmer to give “hints” to the compiler and its 
optimizer about which pathways are more likely. As always, the compiler is free to 
ignore hints, so you have to check in the assembly output what effect your changes 
have. Some of the ways to give hints include: 

• [[likely]] and [[unlikely]] path attributes (C++20). 

• likely() and unlikely() condition markers (C++20) 

• noexcept attribute (C++11) 

• [[noreturn]] attribute (C++11) 

• [[assume(expression)]] attribute (C++23) 

GCC also has various extensions available to give hints: 

• __builtin_expect(expression, value) (GCC extension) 

• hot (GCC function attribute) 
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It’s common in pre-C++20 Linux code to define your own macro versions for use 
with the GCC compiler: 

    #define likely(expr)   __builtin_expect((expr), 1) 

    #define unlikely(expr) __builtin_expect((expr), 0) 

Branch Profiling 

Branch profiling is the recording of pathway stats to analyze the most likely 
branches. This can also be re-used in the compiler’s optimization mode, so that the 
optimizer can perform branch-aware optimizations. Hence, there is a two-step 
process whereby better branch prediction can be incorporated into your C++ 
executable code. 

GCC has capabilities to store and use branch prediction statistics in its optimization 
phase. The arguments to use are: 

• -fprofile-arcs (GCC command-line argument) 

• -fprofile-generate (GCC command-line argument) 

• -fprofile-use (GCC command-line argument) 

Following this process will allow GCC to generate more optimal code under 
assumptions based on branch frequency in its seen executions. Obviously, this is 
an automatic method, but needs multiple steps in the build: 

• Compile without branch hints 

• Run the tests 

• Output the branch prediction data 

• Re-compile the code with branch optimizations enabled 

Note that for HFT, the fully hot path (i.e., trade execution) is actually a rare branch, 
so this historical branch data won’t be that useful. One solution is to run GCC in a 
test mode in which the hotpath is always dummy-executed! Other early parts of the 
hotpath in HFT can still benefit in both situations, such as the trading decision 
logic, which is always executed on incoming market data. Obviously, non-HFT 
applications can always benefit, as the most likely paths are also the most heavily-
executed. 
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Branch Heuristics 

In the absence of other branch prediction data, the CPU and compiler tools fall 
back on some heuristics. Some of the common ones include: 

• The if code block is more likely to be executed than the else code block. 

• Loops tend to be executed multiple times. 

• Backwards branches are assumed to be loop iterations (and are preferred 
due to the prior assumption). 

Hence, we can make some heuristic recommendations for how to organize your 
code: 

• Put common case code in the if block. 

• Have error handling in the else block. 

• Don’t use once-only loop executions. 

Branch Elimination 

The simplest way to avoid branch prediction issues is to have fewer branches. There 
are various ways to achieve this, ranging from minor code tricks to re-writing your 
entire algorithm to have fewer conditional tests. 

Which branches to eliminate? The worst kinds of branches that need elimination 
include: 

• Long if-else-if sequences 

• Nested if-else statements 

What data is being tested by a branch condition is also critical, and some of the 
problematic branches are based on unpredictable conditions: 

• Branches depending on user inputs 

• Branches depending on random numbers 

• Branches depending on system clocks 

The best types of conditional tests include: 

• Compile-time known tests 

• Predictable conditions 
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The techniques available to eliminate your least favorite branches include: 

• Reorganize the overall algorithm to have fewer branches. 

• Defer or combine error checking for multiple errors so that there’s only 
one error handling branch. 

• Function call optimizations such as inlining and call hierarchy flattening. 

• Loop conditional test reductions such as loop unrolling and iteration 
bounds known at compile-time. 

• Branchless programming techniques and tricks to change conditional paths 
to arithmetic computations. 

Branchless Programming Tricks 

Branchless programming is a variety of coding tricks to get rid of control flow 
branches. The main approach is to remove conditional tests, such as if statements, 
by using a variety of arithmetic computations instead. Code that has no branches in 
a long block can run very fast on a CPU because of instruction prefetching. 

Advantages of branchless programming: 

• Avoids branch prediction issues (CPU speedup). 

• Avoids warp divergence in CUDA C++ (GPU speedup). 

• Job security 

Possible general software engineering disadvantages of these branchless arithmetic 
bit tricks: 

• Code complexity — isn’t it a good thing? 

• Unreadable code — as if we care. 

• Maintainability — is someone else’s problem. 

Even worse, the speed benefit might be a mirage. The issues include: 

• De-optimizations from too many arithmetic operators — benchmark your 
tricks! 

• Don’t underestimate the optimizer’s capability on simple code (even if it’s 
“branchy”). 

• Code tricks can confuse the optimizer (undermining any benefit). 

• Memory access costs may dominate over branchless code. 
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One of the risks with branchless code is that it runs too fast, and gets blocked by 
memory access delays. Hence, you may need to combine branchless code sequences 
with software-based memory prefetch primitives, such as with GCC builtins: 

• __builtin_prefetch() 

• _mm_prefetch() 

Branchless Coding Techniques 

Now, let’s look at some of the fun tricks in branchless C++ sequences. The various 
types of methods for branchless coding include: 

• Bit masks 

• Bit arithmetic (bitshifts, bitwise AND/OR/XOR) 

• Mapping Boolean flags to 0 or 1 

• Mapping logical operator results to 0 or 1 

• Multiplications by 0 or 1 using Booleans 

• Lookup tables 

• Conditional move (CMOV) assembly statements 

• Ternary operator (?:) 

Some of the more traditional C++ optimizations techniques can also reduce 
branching as an extra benefit: 

• Loop code hoisting of conditional tests. 

• Compile-time settings and configurations. 

Ternary Operator and CMOV 

Using the C++ ternary operator is one way to help the compiler write branchless 
code. Consider the basic if statement: 

    if (x > y) { 

        max = x; 

    } 

    else { 

        max = y; 

    } 

This can be more concisely written with a ternary operator: 

    max = (x > y) ? x : y; 
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The ternary operator can be implemented in the compiler backend using a CMOV 
(conditional move) register assignment statement. This is a branchless instruction 
that implements the conditional assignment very efficiently. 

In theory, both pieces of code are equivalent, and the compiler really should 
generate identical code. In practice, the use of the ternary operator makes it easier 
on those poor compiler engineers, because it’s 100% guaranteed that an assignment 
is required, whereas the if statement requires a significant amount of extra 
compile-time static analysis to deduce that both assignments are setting the same 
variable. The C++ compiler is more likely to emit a branchless CMOV assembly 
statement with a ternary operator. 

Boolean Flags are 0 and 1 

Another way to reduce branches is to use Boolean flags in arithmetic, using them 
as having the values of integer 0 and 1. Here’s a simple example: 

    bool inc_flag; 

    int x = 0;  

 

    if (inc_flag) { 

        x++; 

    } 

This can be implemented in a branchless manner: 

    x += (int)inc_flag 

Note that the type cast to int is not really needed, but helps with readability, and 
ensures you don’t get compiler or static analyzer warnings. 

Whether that is faster is something that needs testing because it forces an addition 
operator into one of the pathways that previously had none, but at least its 
branchless so it helps with branch prediction. 

That was a simple example, but many other ideas are possible. Instead of this: 

    if (clear_flag) x = 0; 

You can try this branchless version: 

    x *= (int)!clear_flag; 
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It’s not clear that this is faster, since multiplication is an expensive operation, but a 
good compiler can actually notice that it’s a fake multiplication over two possible 
values (0 and 1), and the optimizer can then use a CMOV instruction. Who’s to 
know without checking the assembly code or running a benchmark. 

Logical Operators are 0 and 1 

In the same vein, the Boolean values of the && and || operators can be treated as 
0 and 1 in integer arithmetic expressions. Here’s an example of the maximum 
computation: 

    max = (x > y) * x + (y >= x) * y; 

Note that the optimizer can notice that a multiplication over a Boolean operand 
can be replaced with a CMOV, and there are two here. Again, the ternary operator’s 
single CMOV instruction is probably faster than this possible de-optimization, 
because this version has either two multiplications or two CMOV instructions. 

Bitwise XOR Tricks 

There’s the well-known XOR trick to swap two integer variables without using a 
temporary: 

    x = x ^ y; 

    y = y ^ x; 

    x = x ^ y; 

Don’t worry; nobody understands how this works. But it uses three assignments, 
no temporary variable, and no branches. 

Self XOR to Zero 

There’s also a well-known assembly language trick of zeroing a register using XOR 
with itself. The idea is that instead of an “x=0” statement, do this: 

    x ^= x;  // Self XOR 

The result is zero, and we don’t even need to initialize the variable! However, we 
don’t usually do this in C++, but the equivalent is common in assembly listings and 
compiler backend implementations. 
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Sign Bit Extension Masks 

If you’re doing any arithmetic with negative values, you can use bitwise tricks by 
creating two masks depending on the sign bit. The idea is that the bitmask is: 

• All 0’s if the number is positive (or zero). 

• All 1’s if the number is negative. 

In other words, the bitmask is 32 bits all set to the same bit value as the sign bit. 
The bitmask value is either 0 or 0xFFFFFFFF, which is also that artist previously 
known as -1. One way is a ternary operator: 

    unsigned int mask = (x >= 0) ? 0 : 0xFFFFFFFFu; 

We can also generate this bitmask using the right bitshift operator and sign 
extension: 

    unsigned int mask = x >> 31; 

Yes, I really should portably compute the bitshift count using the standard 
constant CHAR_BIT and sizeof(int) as nicely done in [Farrier, 2025]. 

Subtraction Bit Mask 

Another way to get the same result is by noting the joke about -1 being the same 
value. Hence, this trick with subtraction on 2’s complement signed integers works: 

    unsigned int mask = (unsigned) ( (int)(x < 0) - 1 ); 

The comparison generates an integer 0 or 1, and then we subtract 1 to get either 
0xFFFFFFFF or 0. Hence, we needed to reverse the comparison test to “<” instead.  

All of the type casts are hopefully “free” without runtime costs, and are probably 
not necessary because implicit conversions would work, anyway. 
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Example: RELU Activation Function 

Let’s have a go at making the RELU function branchless. RELU is an “activation 
function” in LLM backends, and it’s quite simple: 

    if (x < 0) { 

        RELU = 0; 

    } 

    else { 

        RELU = x; 

    } 

In other words, change negatives to zero, but leave positives unchanged. Here’s the 
ternary version (faster): 

    RELU = (x < 0) ? 0 : x; 

The mask-by-subtraction version combines with bitwise-and to get: 

    unsigned int mask = (x < 0) - 1; 

    RELU &= mask; 

Another idea for a branchless version of a bitwise RELU is: 

    unsigned int umask = (x >> 31); // All 0’s or 1's 

    RELU = (x | umask); 

Actually, that’s buggy, with the bit masking the wrong way around. Here’s the 
correction: 

    unsigned int umask = ((-x) >> 31); // All 0’s or 1's 

    RELU = (x | umask); 

Beware this might be a de-optimization, because the ternary version might be a 
single CMOV instructions, whereas this version has three operators: negative, right 
bitshift, and bitwise-AND. 
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Sign Bitshift Portability 

There’s a major portability problem with this code, because right bitshift on a 
negative signed integer is actually undefined behavior in C++. The compiler is free 
to shift in zero bits or to sign bit extend on the leftmost bit position, in its sole 
discretion. Hence, you need to check your platform to see what the >> operator 
does, and whether this rightshift bitmask idea will work. 

Note that we cannot fix this by doing the right bitshift on an unsigned type, 
which is guaranteed to shift in a zero bit (well-defined in standard C++, but not 
what we want). Note also that this is only undefined for right bitshift, not for left 
bitshift, which is well-defined and always shifts zero bits in on the right side (again, 
not what we want). 

Of course, you can create the sign-based bitmask more portably by avoiding the 
right bitshift operator, but this loses the branchless benefits: 

    unsigned int mask = (x >= 0) ? 0 : 0xFFFFFFFF; 

That’s safe and slow, and what’s the point of that? 

Lookup Tables 

Precomputation of lookup tables is a fast way to get a double benefit of fast 
computation and branchless code. A good example in the standard C++ library are 
the functions for character types. Here’s a slow branching version: 

    #define islower(c)   (((c) >= 'a') && ((c) <= 'z') ) 

This has lots of computation and there are also branches in the short-circuiting 
logic of the && operator. 

A faster version uses a precomputed lookup table with 256 bytes. 

    #define islower(c)  _islower_table[(unsigned char)(c)] 

This is faster and branchless, at the cost of 256 bytes of global memory, and has 
already been done for you in the standard libraries by those uber-brainy compiler 
engineers. 
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12. Instruction-Level Parallelism 

What is Instruction-Level Parallelism? 

Instruction-Level Parallelism (ILP) is a CPU optimization performed at the lowest 
levels of machine instruction processing. If you thought parallel programming was 
about multithreading, SIMD vectorization and GPU kernels, there’s a whole 
another level deep down in the CPU. 

Modern CPUs are amazingly advanced, and they have been architected to use 
various types of extra parallelism. Some of the types of instruction-level parallelism 
in a modern CPU include: 

• Parallel execution units 

• Pipelined execution of micro-ops 

• Out-of-order execution of instructions 

• Prefetching of instructions 

• Branch prediction Memory data prefetching 

Importantly, the CPU has total parallelism in its instruction execution units. In fact, 
a CPU can typically run four or more machine instructions in parallel in the same 
clock cycle, but using multiple execution units on different parts of the chip. 

Instruction Reordering Optimizations 

Instruction reordering is a type of Instruction-Level Parallelism (ILP), and is an 
optimization performed inside the CPU where it actually runs the machine code 
instructions out-of-order. The way this works in simple terms is: 

• Delay any opcodes that don’t have the data they need (e.g., from memory). 

• Run any instructions that are ready as soon as possible. 

There’s a whole smash of fun to be had researching how this all works in the CPU. 
There are schedulers and “stations” and various queues and caches. Kudos to all 
those hardware engineers. 
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Another special type of fun is for compiler engineers. GCC does a lot of fancy 
optimizations in the code generation backend in terms of taking advantage of 
instruction orders. 

But what about C++? Is there anything you can do in C++ to optimize your code? 
Or with inline assembly instructions? 

Safety first. Most of the discussion of out-of-order execution and C++ occurs in 
relation to safety. Problems can arise across multiple threads if the reads and writes 
from our C++ statements are running out-of-order. I mean, how can it be good to 
just run my C++ code in any random order that the CPU chooses? 

The issue of preventing out-of-order errors involves “memory order.” These are 
especially useful for correctly implementing lock-free algorithms with atomics, but 
they also act as memory barriers that can prevent any undesirable types of out-of-
order execution. 

Speed second. But the goal is to go faster! Rather than stopping the CPU from 
reordering instructions by using memory barriers, let’s maximize it! There are at 
least two major ideas: 

• Minimize memory-waiting delays 

• Exploit out-of-order instructions 

The first point is to minimize the slowdowns whereby instructions get delayed. The 
main one is memory accesses, which has well-known solutions such as: cache hit 
maximization, cache lines, tiled memory accessing, contiguous memory blocks, 
reducing data sizes, etc. 

Other than cache locality, there’s not a lot of discussion anywhere in books or on 
the internet about exploiting out-of-order instruction execution to make code run 
faster. But there’s some discussion of this in Agner Fog’s astounding CPU 
resources; see (Fog, 2024). The key point is: 

Free extra parallelism! 

The average CPU has hidden parallelism in terms of its various computation 
pathways. For example, the CPU can run these two computations in parallel: 

• Integer arithmetic — Arithmetic-Logic Unit (ALU) 

• Floating-point arithmetic — Floating-Point Unit (FPU) 
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That’s not the full list! 

Modern CPUs now have more than one ALU, so they can perform two or more 
integer additions or comparisons in parallel. Some CPUs can also run different 
types of integer arithmetic, such as addition and multiplication, on separate 
pathways. Similarly, some of the SIMD operations run separately from the non-
SIMD instructions. 

Out-of-Order Execution Optimizations 

So, you can see the opportunity here, right? Not only can the CPU run the same 
operations in parallel via SIMD instructions, but it can run two (or more!) different 
types of computations in parallel. 

Unfortunately, the opportunities for huge improvements to your C++ are 
somewhat limited. For example, if you have a computation with both integer and 
floating-point computations, can you parallelize them? Yes, but only in limited 
circumstances, where: 

• The two computations don’t depend on the results of the other. 

• Not requiring memory accesses for the computations. 

• Computation operands are values already in CPU registers. 

If there’s a dependency, they can’t run in parallel. And if they both require memory 
requests, that’s the bottleneck regardless of whether the instructions can run in 
parallel. The data needs to be already loaded from memory into CPU registers to 
run fast. 

That’s quite a list of limitations, but it’s not insurmountable. The optimization 
methods include: 

• Prefetching the memory (e.g., __builtin_prefch() with GCC). 

• Removing “dependency chains” from the code sequence of arithmetic 
instructions. 

One common way to remove data dependencies is to use multiple separate variables 
for intermediate results. 
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Multiple Accumulator Optimizations 

A simple example of using parallel arithmetic computations in a CPU is using 
multiple accumulator variables for vector dot product. Here’s an unrolled version 
for the dot product: 

    float vector_dot_product_unroll2_ILP( 

       const float v1[], const float v2[], int n) 

    { 

        float sum = 0.0f; 

        for (int i = 0; i < n; i += 2) { 

            sum += v1[i] * v2[i]; 

            sum += v1[i+1] * v2[i+1]; 

        } 

        return sum; 

    } 

The problem is there’s a data dependency between the two additions. The two 
multiplications can run in parallel, if the CPU can do so, but the second “sum+=” 
operation must await the completion of the first one. The solution that increases 
the opportunity for CPU instruction-level parallelism is: 

Multiple separate accumulators! 

Hence, the code becomes: 

    float vector_dot_product_unroll2( 

        const float v1[], const float v2[], int n) 

    { 

        float sum = 0.0f, sum2 = 0.0f; // Two accumulators! 

        for (int i = 0; i < n; i += 2) { 

            sum += v1[i] * v2[i]; 

            sum2 += v1[i+1] * v2[i+1]; 

        } 

        return sum + sum2; // Add the accumulators 

    } 

This new version now allows the compiler to use out-of-order execution or other 
instruction-level parallelism optimizations, because the two “+=” operations are 
now independent inside the loop body. 

This function also needs other optimizations applied to it, which are orthogonal to 
this idea of breaking data dependency chains, such as marking the pointers are 
“restricted” and using AVX SIMD vectorized instructions. 
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13. Cache Locality 

What is Cache Locality? 

Cache locality is the idea of staying “local” in our accesses to memory locations to 
maximize the benefits of some hardware caches in the CPU. There are two general 
categories of cache locality: 

• Instruction cache locality — machine code instruction execution. 

• Memory cache locality — data access from memory locations. 

There’s a lot going on in the CPU in terms of caching accesses and also prefetching 
possible future accesses. Cache locality is the idea of ensuring that our C++ code 
maximizes the value of those hardware cache optimizations. 

Caching occurs primarily at a lower-level than multithreading, which means that 
each thread’s execution can benefit from these optimizations. Most of the methods 
to improve cache locality are related to the general code structure, rather than 
specific ways to do thread synchronization or other multi-threading requirements. 
The general ideas include: 

• Tight code blocks and loops — instruction cache locality. 

• Localized and predictable memory access sequences — data cache locality. 

You can do both together if you like, since they have orthogonal speedups. Easier 
said than done! 

There are various tools you can use to examine the rates of cache hits and cache 
misses in the instruction or data caches. Some of the main ones include: 

• perf (Linux) 

• cachegrind (valgrind) 

• Intel VTune 

• gperftools 

• uprof (AMD) 

• likwid-perfctr 
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Depending on how you look at it, these speedups make cache locality either more 
or less important in multithreaded applications versus sequential code. It’s more 
important in multithreading because we have lots of threads in different places 
doing different things, all of which need to have good cache locality. Or maybe it’s 
less important, because the CPU has to throw away all of those per-thread hardware 
caches at every context switch, so why bother with cache locality? I’ll leave it to you 
to judge that. 

Instruction Cache Locality 

The instruction cache stores recently executed machine code instructions in a CPU 
hardware cache. There’s also a separate mechanism of “instruction prefetching” to 
try to load the next instruction that will be executed. As part of this prefetching 
method, there’s also “branch prediction” in the CPU, which attempts to predict 
which of two branch directions will get chosen. 

To get the best out of these instruction speedups, our C++ code should generally 
use: 

• Short and tight loops 

• Fewer branches 

Keeping loops short will mean that the CPU stays within the same block of code, 
maximizing the chances that it already has an instruction in its cache. Interestingly, 
this means that some common code optimizations can be bad for instruction cache 
locality: 

• Inlining of functions 

• Loop unrolling 

Both of these can cut both ways, since they both reduce branches, but also lengthen 
code blocks. Whenever you’re tempted to maximize your use of such optimizations, 
think about the plight of the poor instruction cache as it tries to keep up. 

Branches are another separate issue from short code blocks. In fact, long code 
sequences of compute instructions are fine for branch prediction. To maximize the 
CPU’s branch prediction capability, we should either have few branches, or at least 
have very predictable branches. At the limit, we could use branchless programming, 
which is a set of tricks to get rid of branches. See Chapter 4 for more on branch 
prediction and branchless coding methods. 
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Data Cache Locality 

There are numerous improvements that you can make to improve cache locality for 
the memory access caches. And there are rather a lot of different caches for CPU 
memory accesses: 

• L1 and L2 caches (per-thread) 

• L3 cache (shared) 

• TLB cache (virtual address accesses) 

• NUMA multi-core caching 

There are some general recommendations for the entire application, that aim to 
reduce memory cache misses: 

• Use less memory! 

• Fewer memory allocations 

• Smaller data sizes 

But particular algorithms can also be modified to keep nearby memory in the 
caches. Data structures can affect the level of cache locality, with improvements 
such as: 

• Separate cold data from hot data — improve cache locality for hot data. 

• Structure of Arrays (SoA) vs Array of Structures (AoS) — which one is 
best depends on the context. 

• Contiguous data structures — arrays and vectors, not linked lists or trees. 

• Compact data structures — smaller memory sizes are easier to maintain in 
the cache. 

The code execution of various algorithms can alter the sequence of memory 
accesses, and thereby maximize cache locality. Some well-known improvements 
include: 

• Loop segmenting — process short sub-sequences of a longer array. 

• Tiling algorithms — process 2D “tiles” in a matrix or multidimensional 
data structure (also called “blocking”). 

The goal of these algorithm modifications is to iterate over a small sub-section in 
the data, keeping cache locality during that “hot” computation, and then move on 
to the next part. This works particularly well with matrix multiplication, because it 
involves multiple computations with every element of the matrix. 
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There are also some dynamic approaches whereby you can manually ensure that 
data is already in the cache when you need it: 

• Memory prefetching 

• Cache warming 

See Chapter 3 for more about prefetching and cache warming. 

Memory Hierarchy 

To fully understand the caches, we need to know of all the different types of 
memory used in a C++ program. Handling memory properly is one of the most 
important parts of C++ optimization, because memory access is much slower than 
the CPU. Memory is the bottleneck, and you need to know where the compiler puts 
everything. 

Learn to love the linker-loader! 

When your program starts running, the “loader” puts all sorts of things in different 
places. The basic moving parts that happen before execution starts are: 

• Instructions — the code’s machine instructions. 

• Global read-write memory — initialized or zero-initialized global variables. 

• Read-only data — string literal data. 

To get deeper into the memory segments used by the linker-loader, these are the 
main ones: 

• text — stores the machine code instructions (read-only, executable) 

• bss — all zero’d global data such as global arrays without non-zero 
initializers (read-write) 

• data — Initialized non-zero global variable data (read-write) 

• rodata — read-only data such as string literals or constants (read-only) 

Yes, the “text” segment has a confusing name, and it’s sometimes called the “code” 
segment. According to Wikipedia, BSS stands for “Block Started by Symbol,” but 
you didn’t need to know that. 

All of the above segments are statically resolved, for the most part, by the linker. 
However, once the program gets going, there are more dynamic allocations of 
memory within its virtual address space.  
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The main types of dynamic memory are: 

• Stack memory — the function call stack with parameters and local variables 
(also alloca). 

• Heap memory — dynamically allocated by the C++ new operator or the 
older malloc function. 

• Thread-local storage — via the “thread_local” keyword (C++11). 

See Chapter 8 for more about reducing stack and heap memory, and now let’s 
discuss thread-local storage. 

Thread-Local Storage 

Thread-Local Storage (TLS) is memory that is exclusive to a particular thread. The 
other threads do not have access to it. In C++, this is defined via the 
“thread_local” keyword, available since C++11. The usage is simple: 

    thread_local int tls_variable; 

There are also some earlier and non-standard versions: 

• _Thread_local — older version of specifier. 

• __thread — GCC non-standard modifier with similar semantics. 

• __declspec(thread) — on Microsoft C++. 

The key features of thread_local variables are: 

• Accessible in one thread only. 

• Persistent memory storage. 

• Variables, objects or arrays only (cannot have a thread_local function). 

Per-thread access. If you declare a variable as “thread_local” then the C++ 
compiler has to ensure the semantics. Accesses to that variable in C++ must go to 
the version of that variable for the current thread. Typically, this means that the 
variable has multiple copies, with different addresses for each thread. 

How is it implemented? It’s not necessarily using any particular hardware support 
behind the scenes, and it’s not necessarily using any magic per-thread caching.  
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The C++ compiler can allocate different addresses per thread to the same data, and 
then ensure that accesses within each thread get the correct version. After all, the 
C++ compiler knows that a particular variable is “thread_local” because it’s a 
type specification. 

Persistent memory semantics. The thread_local specifier is very similar to the 
static keyword in terms of its memory persistence. Its effect is similar to: 

• Global variables (with external scope linkage) 

• static file-scope variables 

• static local variables (in a function) 

• static data members (in a C++ class) 

A thread_local variable is created when a thread starts and destroyed when the 
thread finishes. This has some implications: 

• At most one copy is created at program startup. 

• Dynamically created (along with the thread itself). 

• Does not persist across thread shutdown and restarts. 

Note that persistence and scope are different things. Persistence is whether the data 
is maintained across multiple accesses, whereas scope is simply whether its name 
can be referenced within code statements. 

For example, if you use a thread_local variable as a local variable in a function, 
its value will persist across invocations to that function, and always have the same 
address. However, it’s scope is limited to within the function, where its name is 
accessible. This is the same as a static local variable, but with the extra semantics 
that only one thread can see this version. If multiple threads call the function, they’ll 
get different versions of the thread_local variable inside the function. 

Thread-local variables occupy a special niche in the programmer’s bag of tricks. 
You don’t need to wrap accesses with any locking or other synchronizations, which 
is nice. They are like atomics, in that they cannot be messed up by another thread, 
but unlike atomics because they are not shared across threads. The main usage is to 
have some shared code, but also have a special non-shared variable, especially where 
you want the variable to persist, such as having per-thread counters, flags, 
intermediate calculations, and so on. 
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14. Cache Warming 

What is Cache Warming? 

Cache warming is a specific type of prefetching optimization aimed at keeping the 
various memory caches fresh. It typically involves scanning through all the memory 
data required for the “hot path,” even though there’s no real intention to use the 
data (until later). The hot path needs a warm cache, so that when the hot path is 
executed (e.g., a trade execution in HFT), then memory accesses are very fast. 

There are multiple ways to trigger prefetching of data to keep the cache warm: 

• Low-level C++ prefetching primitives. 

• Copy to volatile temporary variables. 

• Explicit dry-run parameters in the code. 

Unlike other types of CPU prefetching, cache warming is something your C++ 
code does directly, rather than a hardware-enabled feature. It’s up to you to 
determine what data is needed the most in hot path computations, and then pre-
load that data on every pass-through. You effectively do a “dry run” of the hot path, 
but access the memory to ensure it’s maintained in the cache. 

Note that cache warming is not always a guaranteed win. Using the “dry run” 
approach can end up with a lot of extra conditional tests: 

    if (!dry_run) { 

        // Do something 

    } 

This can negatively impact performance in two ways: 

• Runtime cost of testing the flag, and 

• Extra branches of code that slow down CPU branch prediction. 

As with everything in multithreading, you really need to time it to see if these costs 
are less than the gain from faster memory cache accesses. 
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Memory Prefetch Primitives 

Although you can “manually” prefetch data in basic C++ code, there are also some 
builtins that are convenient for larger amounts of data. Some of the C++ primitives 
to use for cache warming include: 

• __builtin_prefetch (GCC) 

• _mm_prefetch (GCC) 

Prefetching is more effective on some data structures than others, with a general 
preference for contiguous data blocks. Cache locality issues in the “cache lines” 
with size 64-256 bytes are another reason. As a practical example, contiguous arrays 
are better than dispersed data structures liked links lists and trees. This means 
that std::vector contiguous memory layouts can be more effectively prefetched 
than the spread-out memory used by std::list objects. 

Volatile Temporary Variables 

Another approach for manual prefetching is the use of volatile specifier on 
temporary variables. By assigning data to a volatile temporary variable, the 
optimizer cannot remove an apparently unused assignment. For example, consider 
if we do this: 

    int temp = my_order_book[0]; 

The C++ compiler may notice that “temp” is not used anywhere else, so it can 
throw away that entire assignment statement into nowhere. The solution is to use 
the volatile specifier: 

    volatile int temp = my_order_book[0]; 

The compiler is forced to load the data into memory even when it seems to be 
unused by the remainder of the code, because assigning data to 
a volatile variable is itself a side-effect. 

Note that we only want to declare temporary variables as volatile, but not the 
shared global data arrays we’re trying to prefetch. We don’t want the main data 
structures to have this status. If our main global variables or arrays were declared 
as volatile, this would actually interfere with having them loaded from the 
memory caches. They would be uncached! 
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Dry-Run Executions 

A simple approach to cache warming is to still execute all the steps, even if you’re 
not going to do anything. For example, in HFT, you could call the “execute trade” 
function even if the decision is to not trade any stocks. 

The method is simply to pass a Boolean flag indicating a “dry run” or “test run” or 
“warm-up run” or whatever term you like. A simple conceptual example: 

    if (!dry_run) { 

        orderobj.setup(ticker, price); 

        execute_trade(orderobj); 

    } 

A better way to get more cache warming is to populate all the objects as if you were 
going to actually do a trade. At the very last step, the dry-run flag is tested, and no 
trade gets submitted. 

    orderobj.setup(ticker, price); 

    if (!dry_run) { 

        execute_trade(orderobj); 

    } 

But we really want to warm up the entire path, even the trade execution logic. 
Hence, we go deeper by passing the flag inside: 

    orderobj.setup(ticker, price); 

    execute_trade(orderobj, dry_run); 

And our trade execution code looks like: 

    void execute_trade(Order &order, bool dry_run) 

    { 

        if (!dry_run) { 

            g_order_count++;  // Count total 

            // Other accounting stuff.. 

            // Submit the order... 

        } 

    } 

That isn’t really much better, is it? We didn’t warm anything extra, but just pushed 
the test inside the function. 
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Double Data Trouble 

We really need to actually prefetch some data! One way is to double up all our data. 
The basic data for order count tracking is like this: 

    int g_order_count = 0; 

One common trick is to use an array of two values with two meanings: 

• Live data 

• Dry-run data (unused) 

Hence, our order count becomes: 

    int g_order_count[2] = { 0, 0 }; 

Then we can try this: 

    if (!dry_run) { 

        g_order_count[0]++;  // Live run 

    } 

    else { 

        g_order_count[1]++;  // Dummy 

    } 

The point of the dummy is that we access the [1] array element in order to warm 
up the [0] element (without changing it). This works because of “false sharing” 
with “cache lines,” which is often a slowdown problem, but here they offer an 
advantage. We can warm the cache by touching adjacent array elements, without 
disturbing the main data. (Note that here we don’t use the alignas trick to avoid 
false sharing, because we actually want it to occur!) 

In the spirit of branchless programming, we can make this code tighter by mapping 
the Boolean flag to 0 and 1 integer values: 

    g_order_count[(int)dry_run]++; 

Note that we have actually added extra computation to our hot path! Instead of a 
global variable increment, it’s now an array index lookup plus the increment.  
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We need to measure our optimizations to ensure that the gain from memory cache 
warming is greater than the extra cost of these array indexing operations. (We’ve 
also added a large amount of extra computation to our cold path, including whole 
extra function invocations, but we care less about that.) 

Our conceptual trade execution routine starts to look like: 

    void execute_trade(Order &order, bool dry_run) 

    { 

        g_order_count[(int)dry_run]++;  // Count total 

        // Other accounting stuff.. same tricks 

        if (!dry_run) { 

            // Submit the order... 

        } 

    } 

The idea is that our “dry run” mode has run over as much of the code as possible, 
only stopping short of actually submitting the order. By maintaining the two copies 
of all data, with dry-run and live values, we can prefetch all of those arrays into 
memory caches. 

Problems with Cache Warming 

The above cache warming double-array trick has used false sharing of cache lines 
for good, not evil. And yet it has a problem: false sharing. 

Our use of false sharing was harmless (and helpful) because we assumed only a 
single thread was in use. There’s no cache invalidation slowdown when it’s only one 
thread. The cache warming idea for the L1 and L2 caches requires a single thread, 
although the L3 cache can be warmed for multiple threads. Hence, this cache 
warming idea has limitations: 

• Single thread required for all order submissions (if you want L1/L2 cache 
warming). 

• Thread pools and other multi-thread design patterns are therefore 
problematic. 

We cannot really have a thread pool model where each consumer thread could 
potentially submit a trade. The above cache warming logic only works for one 
thread. If we try to use multiple threads, our cache warming logic is actually a cache 
freezing de-optimization, because we’ve got the “false sharing” problem for real. 
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Even worse, consider what happens if we try to use a thread pool model with the 
following modifications: 

(a) multiple consumers, where each thread tries to decide whether to trade, 

(b) single trade submission thread. 

In other words, multiple decider threads, where each decider then hands off to the 
single trading thread (which is kept warmed). 

But then we’ve made another conceptual error. The hot path should really include 
the decision logic, as the overall latency is from receiving incoming data to 
submitting a trade. However, we haven’t kept the cache warm for these multiple 
“decider” threads, particularly so for all the data they use in deciding whether to 
trade, so the decision modules won’t run fast. 

Possible solutions include: 

• Single thread for all decision and order submission (with L1/L2 warming), 
or 

• Keep multiple threads warm (tricky!), or 

• Modify the cache warming code tricks to use reads only, not writes 
(avoiding the cache invalidation problem), or 

• Only warm up the L3 cache (for multiple threads). 

But these solutions have additional problems: 

• Single order thread idea lacks a failover or backup plan. 

• Single order thread cannot issue two trades without blocking. 

• Warming multiple threads means each thread needs its own copy of the 
data. 

None of these solutions are great, so that’s why they pay you the big bucks. 

Further Optimizing Cache Warming 

Another further iteration of advanced cache warming would be to actually submit 
a dummy order, such as if the exchange connectivity allowed the sending of test-
only transactions. Doing this would allow us to keep warm any of the data structures 
that are actually inside the client API of the exchange connection. 
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The advantage of the use of dry-run cache warming is that all the various data 
structures used to prepare a trade are kept warm in the memory caches (L1/L2/L3). 
The downside is extra processing that occurs whenever you’re not trading. In other 
words, there are extra computations done on the “cold path” every time, just to 
keep the “hot path” all snuggly and warm. 

The code to traverse all the memory data structures can be a significant cost in itself, 
although it only occurs during the cold path. There are several advanced tweaks to 
optimize your cache warming code: 

• Exploit cache line sizes for quicker loading of contiguous data. 

• Limit cache warming to the total L1/L2/L3 cache size. 

A further optimization of cache warming is to use “cache lines” to your advantage. 
The L1/L2 caches don’t work on individual bytes, but on blocks of memory called 
“cache lines”, which are usually sized between 64 bytes and 256 bytes (e.g., Intel is 
usually 64 bytes, Apple M2 is 128 bytes, some other CPUs are 256 bytes). Hence, 
to load a “cache line” of 64 bytes on an Intel CPU, you need to load one of the 
bytes from the 64-byte block. Your C++ code doesn’t need to explicitly touch every 
element of a vector to have the entire vector hot as a fresh-baked oven loaf in the 
cache. Admittedly, this doesn’t speed up the hot path itself, but only the preliminary 
cache warming code. 

An important limitation of cache warming is the maximum sizes of the L1, L2, and 
L3 caches. If you’re trying to warm up the CPU cache for your 7B AI model, that’s 
7 billion floating-point numbers, and trying to keep them all in the CPU cache isn’t 
going to work. On the other hand, you can probably preload an entire 7B model 
into the CPU RAM (i.e., global memory, not the caches), or into the GPU’s VRAM, 
but that’s preloading not cache warming, and it’s a slightly different story. 

If you know your CPU’s cache size, you can optimize your cache warming strategy 
by only trying to prefetch that much data. If you load more data than the cache size, 
the newly warmed data is just evicting other data from the cache that you prefetched 
earlier in the warming code. Hence, prefetching exactly the amount of data equal to 
your CPU cache size is the optimal cache warming strategy. 
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15. AVX Intrinsics 

What are AVX Intrinsics? 

AVX intrinsics are SIMD parallel instructions for x86 and x64 architectures. They 
are actually machine opcodes supported by the x86/x64 CPU, but are wrapped in 
the intrinsic prototypes for easy access from a C++ program. 

The main advantage of SIMD instructions is that they are CPU-supported parallel 
optimizations. Hence, they do not require a GPU, and can even be used on a basic 
Windows laptop. The main downside is that their level of parallelism is nowhere 
near that of a high-end GPU. 

There are multiple generations of the AVX intrinsics based on the x86/x64 CPU 
instructions. Different CPUs support different features, and exactly which intrinsic 
calls can be used will depend on the CPU on which your C++ is running. The basic 
AVX types are: 

• AVX — 128-bit registers = 4 x 32-bit float values 

• AVX-2 — 256-bit registers = 8 x 32-bit float values 

• AVX-512 — 512-bit registers = 16 x 32-bit float values 

• AVX-10 — 512-bit registers (with speedups) 

The AVX intrinsics use C++ type names to declare variables for their registers. 
The float types used to declare the registers in AVX using C++ all have a double-
underscore prefix with “__m128” for 128-bit registers (4 floats), “__m256” for 
256 bit registers (8 floats), and “__m512” for 512 bits (16 floats).  

Similarly, there are also register type names for int types (__m128i, __m256i, 
and __m512i), and types for “double” registers (__m128d, __m256d, 
and __m512d). 

AVX intrinsic functions and their types are declared as ordinary function 
prototypes in header files. The header files that you may need to include for these 
intrinsics include <intrin.h>, <emmintrin.h>, and <immintrin.h>. 
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Useful AVX SIMD vector intrinsics for float types include: 

• Initialize to all-zeros — _mm_setzero_ps, _mm256_setzero_ps 

• Set all values to a single float — _mm_set1_ps, _mm256_set1_ps 

• Set to 4 or 8 values — _mm_set_ps, _mm256_set_ps 

• Load arrays to AVX registers — _mm_loadu_ps, _mm256_loadu_ps 

• Store to float arrays — _mm_storeu_ps, _mm256_storeu_ps 

• Addition — _mm_add_ps, _mm256_add_ps 

• Multiplication — _mm_mul_ps (SSE), _mm256_mul_ps (AVX-2) 

• Vector dot product — _mm_dp_ps, _mm256_dp_ps 

• Fused Multiply-Add (FMA — _mm_fmadd_ps, _mm256_fmadd_ps 

• Horizontal addition (pairwise) — _mm_hadd_ps, _mm256_hadd_ps 

Note that the names of the intrinsic functions have meaningful suffixes. The “_ps” 
suffix means “packed-single-precision” (i.e., float), whereas “_pd” suffix means 
“packed-double-precision” (i.e., double). 

AVX Operations 

The main SIMD instructions are called “vertical” instructions, by convention. They 
take one vector and a second vector (e.g., both are 128-bit), apply an operation 
element-wise in parallel, and put the result into a third register. In other words, they 
return the result of a “pair-wise” or “element-wise” operation on two vectors into 
a third vector. 

For example, vertical addition requires two input vectors and will output a third 
vector with the sums. AVX-512 SIMD addition will add two 512-bit registers full 
with float values on a paired element basis (i.e., adds up 16 pairs of the 32-
bit float values), yielding a third 512-bit vector with the result (16 float values). 

Binary operations. The full list of binary AVX operations is very long. Supported 
AVX operations include: 

• Multiplication 

• Addition 

• Subtraction 

• Division 

• Maximum 

• Minimum 

• Fused Multiply-Add (FMA) 

• Bitwise operations 
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Unary operations. AVX unary intrinsics apply a particular function to all elements 
of an AVX register in parallel, and return the resulting register. Supported AVX 
unary operations include: 

• Clear to zero 

• Set to a constant 

• Casts 

• Conversions 

• Popcount (POPCNT) 

• Leading-zero count (LZCNT) 

Mathematical Functions. Simple float-to-float mathematical functions are 
effectively a type of unary operator. AVX supports a variety of functions with 
vector hardware instructions, such as: 

• Absolute value: abs 

• Error function: erf 

• Reciprocal 

• Rounding, ceiling, floor 

• Roots: sqrt (square root), cube root 

• Inverted roots (e.g., invsqrt) 

• Exponential: exp, exp10 

• Logarithm: log, log10 

• Trigonometric functions 

• Hyperbolic functions 

• Statistics (e.g., Cumulative Distribution Function) 

AVX Horizontal Intrinsics 

Horizontal operations refer to arithmetic across the values within one vector. AVX 
intrinsics exist to do “horizontal” operations across the same vector, such as adding 
horizontal elements of a vector, or finding the maximum of pairs of elements within 
a vector. 

Horizontal SIMD instructions are typically designated with a “h” prefix (e.g., 
“horizontal add” is “hadd”). More specifically, the intrinsic for 128-bit horizontal 
add is “_mm_hadd_ps” and it is “_mm256_hadd_ps” for 256-bits. 

However, do not make the mistake of assuming that these horizontal AVX 
intrinsics are a “reduction” of a vector down to a single float (i.e., vector-to-scalar). 
I mean, they really should do exactly that, but that would be too good to be true. 
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The horizontal intrinsic functions are still effectively “pairwise” operations for 
AVX and AVX-2, except the pairs are within the same vector (i.e., horizontal pairs). 
If you want to add all elements of a vector, or find the maximum, you will need 
multiple calls to these intrinsics, each time processing pairs of numbers, halving the 
number of elements you are examining at each iteration. Hence, for example, 
summing all the float values in a vector with AVX or AVX-2 uses a method of 
“shuffle-and-add” multiple times. 

Thankfully, AVX-512 actually does have horizontal reductions that process all the 
elements in their 512 bit registers. Hence, the 512-bit horizontal add uses a different 
naming convention and uses the prefix of “reduce add” in the intrinsic name 
(e.g., _mm512_reduce_add_ps is a summation reduction). In other words, this 
reduction operates in parallel on all 16 float values in an AVX-512 register, and 
the _mm512_reduce_add_ps intrinsic can add up all 16 float values in one 
operation. This horizontal reduction summation is useful for vectorizing functions 
such as average, and could be used for vector dot products (i.e., do an AVX-512 
SIMD vertical multiplication into a third vector of 16 float values, then a 
horizontal reduction to sum those 16 float values), although there’s an even 
better way with FMA intrinsics. 

Supported AVX horizontal operations for pairwise horizontal calculations (AVX 
or AVX-2) or vector-to-scalar reductions (AVX-512) include floating-point and 
integer versions, with various sizes, for primitives, such as: 

• Addition 

• Maximum 

• Minimum 

• Bitwise operations 

Portability Checking of AVX Versions 

The power of AVX support has changed over the years, with different CPUs having 
different capabilities, not only with AVX, AVX-2 and AVX-512, but also their sub-
releases. And it’s also a little unclear into the future, with reports that some of the 
newer Intel chips have AVX-512 disabled. 

If you write some code using AVX-512 intrinsics, and compile your C++ into an 
executable with the AVX-512 flags on, and then it runs on a lower-capability CPU 
without AVX-512, what happens? Do the AVX-512 intrinsics fail, or are they 
simulated somehow so that they’re slower but still work? Answer: kaboom on 
MSVS. In the MSVS IDE, if you try to call these intrinsics on a CPU that doesn’t 
support it, you get “unhandled exception: illegal instruction.”  
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In other words, the C++ compiler still emits the AVX-512 instruction codes, but 
they aren’t valid, so it excepts at runtime. 

Hence, the calls to AVX-512 are not emulated at run-time on lower-capability 
CPUs. And they aren’t checked, either. That’s up to you! 

Dynamic test required: Firstly, you cannot use the preprocessor. You can’t 
test #if or #ifdef for whether you’ve got AVX-512 in the CPU or not. You can 
use the preprocessor to distinguish between different platforms where you’ll 
compile a separate binary (e.g., ARM Neon for phones or Apple M1/M2/M3 
chipsets). But you cannot choose between AVX/AVX-2/AVX-512 at compile-
time, unless you really plan to ship three separate binary executables. Well, you 
probably could do this if you really, really wanted to. 

The other thing you don’t really want to do is low-level testing of capabilities. You 
don’t want to test a flag right in front of every AVX-512 intrinsic call. Otherwise, 
you’ll lose most of the speedup benefits. Instead, you want this test done much 
higher up, and then have multiple versions of the higher-level kernel operations 
(e.g., vector add, vector multiply, vector dot product, etc.) 

What this means is that you have to check in your runtime code what the CPU’s 
capabilities are, at a very high level in your program. Hence, it is important to check 
your platform has the AVX support that you need, such as via the “cpuid” 
intrinsic at program startup. Then you have a dynamic flag that specifies whether 
you have AVX-512 or not, and you can then choose between an AVX-2 dot 
product or an AVX-512 dot product, or whatever else, during execution. 
Obviously, it gets a bit convoluted when you have to dynamically choose between 
versions for AVX, AVX-2 and AVX-512 (not to mention all the AVX sub-
capabilities and also AVX-10 coming soon). 

Example: Basic AVX SIMD Multiply 

Let us do a basic element-wise SIMD multiply using AVX (version 1) and its 128-
bit registers. This will do a paired vector multiply an array of 4 float numbers (i.e., 
4 x 32-bit float = 128 bits). Each float in the resulting array is a pairwise 
multiplication of the elements in the two operands. 

This is how SIMD instructions work, by operating on each element of the array 
(i.e., “pairwise” or “element-wise”). For example, a “vertical” multiply will take the 
4 float values in one input array, and multiply each of them by the 
corresponding float in the other input array of 4 float numbers, and then will 
return a resulting output array with 4 float values. 
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For testing, let us assume with want to create an AVX function that multiplies 
4 float values element-wise. The test code looks like: 

    float arr1[4] = { 1.0f , 2.5f , 3.14f, 0.0f }; 

    float arr2[4] = { 1.0f , 2.5f , 3.14f, 0.0f }; 

    float resultarr[4]; 

    // Multiply element-wise 

    aussie_multiply_vectors(arr1, arr2, resultarr, 4);   

Testing the results of the multiply as an element-wise multiply of each pair in the 
4 float values (using my home-grown “aussie_testf” unit testing function 
that compares float numbers for equality): 

    aussie_testf(resultarr[0], 1.0f * 1.0f); // Unit tests 

    aussie_testf(resultarr[1], 2.5f * 2.5f); 

    aussie_testf(resultarr[2], 3.14f * 3.14f); 

    aussie_testf(resultarr[3], 0.0f * 0.0f); 

Here’s the low-level C++ code that actually does the SIMD multiply using the 
“_mm_mul_ps” AVX intrinsic function: 

    #include <xmmintrin.h> 

    #include <intrin.h> 

 

    void aussie_avx_multiply_4_floats( 

        float v1[4], float v2[4], float vresult[4]) 

    { 

        // Multiply 4x32-bit float in 128-bit AVX registers 

        __m128 r1 = _mm_loadu_ps(v1);   // Load floats 

        __m128 r2 = _mm_loadu_ps(v2); 

        __m128 dst = _mm_mul_ps(r1, r2); // AVX Multiply 

        _mm_storeu_ps(vresult, dst); // Convert to floats 

    } 

Explaining this code one line at a time: 

1. The header files are included: <xmmintrin.h> and <intrin.h>. 

2. The basic AVX register type is “__m128” which is an AVX 128-bit 
register (i.e., it is 128 bits in the AVX version, not AVX-2 or AVX-512). 

3. The variables “r1” and “r2” are declared as _mm128 registers. The 
names “r1” and “r2” are not important, and are just variable names. 
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4. The intrinsic function “_mm_loadu_ps” is used to convert the arrays 
of 4 float values into the 128-bit register types, and the result is “loaded” 
into the “r1” and “r2” 128-bit types. 

5. Another 128-bit variable “dst” is declared to hold the results of the 
SIMD multiply. The name “dst” can be any variable name. 

6. The main AVX SIMD multiply is performed by the “_mm_mul_ps” 
intrinsic function. The suffix “s” means “single-precision” (i.e., 32-
bit float). This is where the rubber meets the road, and the results of the 
element-wise multiplication of registers “r1” and “r2” are computed and 
saved into the “dst” register. This computation is analogous to the basic 
C++ expression:  

    dst = r1 * r2; 

7. The 128-bit result register variable “dst” is converted back to 32-
bit float values (4 of them), by “storing” the 128 bits into 
the float array using the “_mm_storeu_ps” AVX intrinsic. 

AVX Memory Alignment Issues 

The above example glosses over the issue of managing “alignment” of memory 
addresses on byte boundaries with the “alignas” specifier. Some of the AVX 
SIMD intrinsic calls require that addresses are 16-byte aligned (i.e., this is effectively 
128-bit alignment), which is not guaranteed by the C++ compiler. However, we’ve 
tolerated non-aligned addresses by using the “_mm_storeu_ps” intrinsic, which 
works with either aligned or non-aligned addresses. 

Note that alignment restriction requirements of AVX are somewhat in flux. Not all 
AVX intrinsics require alignment, and they are “relaxed” in many cases. There have 
also been some bugs in compiler toleration of non-aligned addresses in C++ 
intrinsics. Where required, the alignment needs are: 

• AVX-1 — 16-byte alignment (128-bit). 

• AVX-2 — 32-byte alignment (256-bit). 

• AVX-512 — 64-byte alignment (512-bit). 

Since we can sort out alignment at compile-time using the C++ “alignas” 
specifier and “aligned” type attributes, there is no performance penalty (except 
in terms of space) for ensuring greater compatibility across CPU platforms and 
compiler versions by preferring aligned addresses. 
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You can create your own macros to easily test pointer addresses for alignment by 
checking their remainder with the % operator. These examples use bitwise-and to 
replace the slow remainder operator: 

    #define aussie_is_aligned_16(ptr) \ 

        ((((unsigned long)(ptr)) &15ul) == 0) 

    #define aussie_is_aligned_32(ptr) \ 

        ((((unsigned long)(ptr)) &31ul) == 0) 

Although our code to multiply 4 float values tolerates non-alignment, it’s a minor 
slug. The “_mm_storeu_ps” AVX intrinsic is slower if the addresses are not 
aligned, so we should fix the alignment for performance reasons. There’s also 
another “store” intrinsic to convert from 128-bits to 4 floats called 
“_mm_store_ps” (without the “u”) that runs faster, but does not tolerate non-
aligned float arrays.  

Actually, “_mm_storeu_ps” is supposed to be equally as fast as the alternative 
“_mm_store_ps” if the address is correctly aligned, so we can still use that 
intrinsic if we prefer safety, but we need to change the variables to be aligned on 
16-byte boundaries for a speedup. 

To ensure alignment in C++, there is an “alignas” specifier for variable 
declarations. We can use “alignas(16)” to force C++ to create the variables 
with 16-byte alignment of the address where they are stored.  

For example, our unit test harness code could have ensured 16-byte alignment of 
all memory addresses via: 

    // Test with 16-byte alignment 

    alignas(16) float arr1[4] = { 1.0f , 2.5f , 3.14f, 0.0f }; 

    alignas(16) float arr2[4] = { 1.0f , 2.5f , 3.14f, 0.0f }; 

    alignas(16) float resultarr[4]; 

There are various non-standard alternatives to “alignas” in the various 
compilers. For example, MSVS has “__declspec(align(16))” with two prefix 
underscores, and GCC supports “decltype(align(16))”. 
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The AVX code for an alignment-requiring version is not much different, with 
minor changes to the names of the C++ intrinsics: 

    void aussie_avx_multiply_4_floats_aligned( 

          float v1[4], float v2[4], float vresult[4]) 

    { 

        // Use 128-bit registers to multiply 4x32-bit floats... 

        __m128 r1 = _mm_loadu_ps(v1);    // Load floats 128-bits 

        __m128 r2 = _mm_loadu_ps(v2); 

        __m128 dst = _mm_mul_ps(r1, r2);  // Multiply 

        _mm_store_ps(vresult, dst);  // Aligned convert to float 

    } 

Ideally we’d like to ensure that the function is only called with aligned addresses at 
compile-time. The first attempt is to declare “vresult” above as 
“alignas(16)” for type checking of alignment issues, but it fails for function 
parameters. Fortunately, there’s another way using type attributes: 

    __attribute__((aligned(16))) 

Another method is to define our own assertion that uses bitwise tests on the address 
instead: 

    #define is_aligned_16(ptr) \ 

        ((((unsigned long int)(ptr)) & 15) == 0) 

This tests the address is a number that is a multiple of 16 using bitwise-and with 15, 
but this is at runtime and costs extra cycles. 

AVX-2 SIMD Multiplication 

Here is the AVX-2 version of pairwise SIMD multiply with intrinsics for 256-bit 
registers, which is eight 32-bit float variables. 

    void aussie_avx2_multiply_8_floats( 

        float v1[8], float v2[8], float vresult[8]) 

    { 

        // Multiply 8x32-bit floats in 256-bit AVX2 registers 

        __m256 r1 = _mm256_loadu_ps(v1);   // Load floats 

        __m256 r2 = _mm256_loadu_ps(v2); 

        __m256 dst = _mm256_mul_ps(r1, r2);  // Multiply (SIMD) 

        _mm256_storeu_ps(vresult, dst);  // Convert to 8 floats 

    } 
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This is similar to the basic AVX 128-bit version, with some differences: 

• The type for 256-bit registers is “__m256”. 

• The AVX-2 loading intrinsic is “_mm256_loadu_ps”. 

• The AVX-2 multiplication intrinsic is “_mm256_mul_ps”. 

• The conversion back to float uses AVX-2 intrinsic 
“_mm256_storeu_ps”. 

AVX-512 SIMD Multiplication 

Here is the basic 16 float SIMD vector multiplication using 512-bits in AVX-
512. 

    void aussie_avx512_multiply_16_floats( 

        float v1[16], float v2[16], float vresult[16]) 

    { 

        // Multiply 16x32-bit floats in 512-bit registers 

        __m512 r1 = _mm512_loadu_ps(v1); // Load 16 floats 

        __m512 r2 = _mm512_loadu_ps(v2); 

        __m512 dst = _mm512_mul_ps(r1, r2); // Multiply (SIMD) 

        _mm512_storeu_ps(vresult, dst);  // Convert to floats 

    } 

Note that AVX-512 will fail with an “unhandled exception: illegal instruction” (e.g., 
in MSVS) if AVX-512 is not supported on your CPU. 

Example: AVX 128-Bit Dot Product 

The AVX instruction set has a vector dot product intrinsic that wraps an x86 dot 
product instruction. There are versions of the dot product intrinsic for AVX (128-
bit), AVX-2 (256-bit) and AVX-512 (512-bit). 

For basic AVX (128 bits), this is a full vector dot product of two vectors with 4 x 
32-bit float numbers in each vector. One oddity is that although the result is a 
floating-point scalar (i.e., a single 32-bit float), it’s still stored in a 128-bit register, 
and must be extracted using the “_mm_cvtss_f32” intrinsic.  
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The example code looks like: 

    float aussie_avx_vecdot_4_floats(float v1[4], float v2[4]) 

    { 

        // AVX dot product: 2 vectors of 4x32-bit floats 

        __m128 r1 = _mm_loadu_ps(v1);   // Load floats 

        __m128 r2 = _mm_loadu_ps(v2); 

        __m128 dst = _mm_dp_ps(r1, r2, 0xf1); // Dot product 

        float fret = _mm_cvtss_f32(dst);  // Extract float 

        return fret; 

    } 

Example: AVX-2 256-Bit Dot Product 

Here is my attempt at the 256-bit version of a vector dot product of 8 float values 
using AVX-2 instructions, which seems like it should work: 

    float aussie_avx2_vecdot_8_floats_buggy( 

        float v1[8], float v2[8]) 

    { 

        // AVX2 dot product: 2 vectors, 8x32-bit floats 

        __m256 r1 = _mm256_loadu_ps(v1); // Load floats 

        __m256 r2 = _mm256_loadu_ps(v2); 

        __m256 dst = _mm256_dp_ps(r1, r2, 0xf1); // Bug! 

        float fret = _mm256_cvtss_f32(dst);  

        return fret; 

    } 

But it doesn’t! Instead of working on 8 pairs of float numbers, it does the vector 
dot product of only 4 pairs of float values, just like the first AVX code. The 
problem wasn’t related to alignment to 256-bit blocks, because I added 
“alignas(32)” to the arrays passed in. It seems that the “_mm256_dp_ps” 
intrinsic doesn’t actually do 256-bit dot products, but is similar to the 128-bit 
“_mm_dp_ps” intrinsic that does only four float numbers (128 bits). These are 
based on the VDPPS opcode in the x86 instruction for 32-bit float values and 
there is VDPPD for 64-bit double numbers. However, it seems that 
“_mm256_dp_ps” is not using the 256-bit version. Or maybe my code is just 
buggy! 
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16. Contiguous Memory Blocks 

Why Contiguous Memory Blocks? 

A critical part of optimizing low-latency engines is to store data in a contiguous 
memory block so that they have a sequential address space. Processing large chunks 
of data in parallel is the main optimization used in both GPU and CPU SIMD 
acceleration. All of the vectors, matrices, and tensors need their underlying data in 
a block for efficiency. 

Processing data that is in adjacent addresses is much faster than jumping all over 
the place. Vectors should obviously be stored as a simple contiguous array in 
memory. Less obviously, similar comments apply to the linearized memory storage 
of matrices and tensors. 

The use of contiguous memory is an important optimization for both sequential 
and parallel algorithms. The reasons that memory blocks are more efficient include: 

• Data locality (cache hits) 

• Data block GPU uploads (model weights from memory-to-cache) 

• Predictive cache pipelining (in CPU sequential accesses) 

Data locality refers to using data in the same or similar address locations. This is 
helpful for the cache hit rate because data that is already in the cache is much faster 
to access that a non-cached RAM memory address. 

GPU uploads from CPU RAM to the GPU’s Video RAM (VRAM) is done in 
blocks. Obviously, we don’t want to be uploading random bits of data from 
different parts of the RAM. 

Non-GPU architectures also benefit from the use of contiguous memory. This is 
obviously true of CPU SIMD instructions (e.g., AVX on x86), but even in 
sequential execution, the CPU has its own RAM caching methods and often has 
other optimizations of memory accesses. Predictive cache pipelining is where the 
CPU attempts to predict what the next memory location will be, and load it in a 
pipelined speedup, before being asked. This pipelining of memory accesses is much 
faster than doing completely sequential address lookups. 
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Typically, predictive cache pipelining uses the simple heuristic that the next address 
is the most likely next request, which assumes that data is being processed in the 
order of the addresses. Hence, scanning an array in reverse is the worst possible 
order for these CPUs. Similarly, jumping around to different memory addresses, 
such as scanning the column of a matrix using a large “stride,” is also inefficient. 

Low-Level Memory Block Functions 

Memory block operations in the standard C++ libraries are implemented using fast 
assembly language behind the scenes. The main functions in the standard C++ 
library that operate at a low level on binary bytes in a memory block are: 

• memset(): set bytes to a value, usually used to clear bytes to zero. 

• memcpy(): copy bytes. 

• memmove(): copy bytes, but tolerates overlapping regions. 

• memcmp(): compare a sequence of bytes. 

• memchr(): search for a byte in a sequence. 

These functions are lower-level than the modern C++ versions, such 
as std::copy, std::move(), and their “backward” versions. The above listed 
memory block functions are not aware of object-level semantics, and won’t run any 
special functions on memory containing objects. 

Note that unlike the standard string functions (such as strlen), these functions 
do not assume a block is null-terminated by a zero byte. Zero is simply a binary 
value, and these functions don’t stop at a zero byte. All of these functions operate 
on a block of memory with a known maximum byte length. 

Each compiler environment typically offers some extra non-standard byte-wise 
functions that are also fast. Some of the less standardized C++ intrinsics that 
operate on memory blocks include: 

• _memccpy(): copy bytes up to a specified sentinel byte. 

• memicmp() or _memicmp: compare bytes ignoring letter case. 

• bcopy(): copy bytes 

• bzero(): clear bytes to zero. 

• bcmp(): compare bytes. 

• _byteswap_uint64() (Microsoft intrinsic): Swap the bytes of an 
integer. 

• __builtin_bswap16(): GCC function to swap the bytes in an integer. 
There are versions for 32-bit and 64-bit. 
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Fast Memory Block Operations 

The slow way to do things in arrays is one element at a time. The faster way is to 
use the standard memory block functions on the whole array. There are a number 
of standard functions that operate on array data or memory blocks and they are 
very fast. 

Initialize with memset byte fill. The memset function sets all of a memory block 
to a byte value. It is widely used as a fast way to initialize a block of memory to all 
zeros. 

    memset(&x, 0, sizeof(x)); 

Almost all usages of memset will be for the zero byte. The only other usage I’ve 
seen is to fill memory with a dummy non-zero byte as a form of mutation testing 
to catch uses of uninitialized memory. 

    memset(&x, 0x55, sizeof(x)); 

Fast array copying with memcpy. The fast way to copy an entire array is 
with memcpy. Rather than copy each element of an array, one at a time, in a loop, 
the memcpy standard library function can be used to copy the entire array in one 
statement: 

    memcpy(destarr, srcarr, sizeof(srcarr));  

Note that this is a bitwise copy of the array intended for simple data types. For 
example, it won’t run copy constructors if applied to an array of objects. 

The memcpy function does a very fast memory block copy. It is like strcpy in 
that the destination is the first parameter. memcpy will copy everything, even null 
bytes and hidden padding bytes. It keeps going even if it finds a null byte, so it is 
not like strcpy, and will always copy a fixed number of bytes. memcpy is a super-
fast byte copy, but is unsafe, because it does not have well-defined behavior if the 
source and destination blocks overlap. 

Safer byte copy with memmove: The memmove function is a safer version 
of memcpy, which also works correctly if the memory blocks overlap. If the source 
and destination blocks don’t overlap, it’s the same as memcpy, except probably 
slightly slower. If they do overlap, then memmove conceptually will copy the source 
to a temporary area, and then copy it to the destination block. 
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Copying arrays using struct assignment. An alternative method of copying 
arrays is to make a tricky misuse of struct assignments. This is similar to 
how std::array works, which could also be used in a similar vein, but this 
example totally avoids any constructor, copying or move costs (also works in C). 

This method is not portable, is very unreadable and uses pointers incorrectly by 
converting between two different pointer types. However, it can be faster 
than memcpy because it makes use of the assignment operator rather than calling a 
function. On the other hand, memcpy is an intrinsic function that might be inlined 
to assembler instructions by the compiler, so this trick might be a waste of time. 
Benchmarking is recommended here. 

To copy an array using this method it is necessary to declare a new 
dummy struct type that is the same size as the array that is to be copied. Then 
we use type casting to fool the compiler into thinking it is copying structures when 
really it is copying arrays. The method is illustrated below: 

    struct dummy_transfer { // The new struct type 

        int a[MAX]; // This field gives the right size 

    }; 

 

    int a[MAX], b[MAX]; // The array variables being copied 

    static_assert(sizeof(struct dummy_transfer) == sizeof(a)); 

    *(struct dummy_transfer *)a = *(struct dummy_transfer *)b; 

The assignment statement first type casts both “a” and “b” to be pointers to the 
new struct type, and then dereferences these pointers so that the compiler 
believes it is assigning between two structures. The assertion is an efficient compile-
time safety net to ensure that the copying statement will work. Of course, a better 
way entirely is probably to put the array inside a class object, with lovely 
encapsulation and modularity, and then we can simply copy the objects. 

memcmp byte comparisons. The memcmp function does a byte-wise comparison 
in a memory block. Its return value is like strcmp, returning 0 for equality, and a 
negative or positive value otherwise. Note that memcmp is not like strcmp, and 
will not stop when it finds a zero byte. 
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Memory Block Function Pitfalls 

The standard memory block functions are fast, but they are not always safe. Here 
are some of the common pitfalls that commonly occur in everyday coding. 

memset sizeof problem. Here’s another glitch in using memset inside functions: 

    void zero_array(int arr[10]) 

    { 

        memset(&arr, 0, sizeof(arr));  // Bug 

    } 

The problem is not memset, but the sizeof operator on function parameters. An 
array parameter in a function is like a hologram and isn’t really there. It’s not really 
an array, but a pointer, and sizeof(int[10]) is the same as sizeof(int*). 
Hence, sizeof(arr) is probably only 4 or 8, rather than 40 or 80, leaving most 
of the array uninitialized. Personally, I recommend a memset debug wrapper 
function to catch this kind of problem at runtime, or maybe a tricky preprocessor 
macro can detect it at compile-time with a static_assert somehow. 

memset portability issue. Even though it’s a fast zeroing method, the use 
of memset to zero bytes has an obscure portability problem on any architecture 
where all-bytes-zero is not the same as all data types zero. However, on most 
standard platforms, all-bytes-zero is correct for all types: integer zero (ignoring 
endianness), floating-point zero (positive zero is all bits zero), and the null pointer. 

memcpy overlapping blocks error: The only downside with memcpy is that it can 
fail with overlapping ranges for the source and destination blocks, so if you are 
shuffling arrays up or down one element using memcpy, then you have to be 
careful, because the results on overlapping ranges are undefined. Here’s a buggy 
example of using memcpy to remove the first character of a string in place: 

    memcpy(s, s+1, strlen(s+1)+1);  // Bug 

The problem is that the blocks starting at “s” and “s+1” are overlapping. It is 
implementation-defined whether it will be correct. The fix is simply to 
use memmove, which always works correctly for overlaps: 

    memmove(s, s+1, strlen(s+1)+1);  // Correct 
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memcmp return value. A pitfall with memcmp is that you cannot assume that it 
returns 1 or -1, but must compare the return result to zero (like 
the strcmp function). 

    if (memcmp(&a, &b, sizeof(a)) == 1)  // Bug 

    if (memcmp(&a, &b, sizeof(a)) > 0)   // Correct 

memcmp object equality testing. Looking at the memcmp function, you might 
think of it as an opportunity to do a fast equality/inequality test on large objects by 
simply doing a byte-wise test. You would not be the first to think that. 

Consider if you have a complex number class: 

    class MyComplex { 

        float real,imag; 

        // .. etc 

    } 

The brute-force equality test is: 

    bool is_equal(const MyComplex &a, const MyComplex &b) 

    { 

        return (a.real == b.real && a.imag == b.imag); 

    } 

Our idea to optimize this with memcmp looks like: 

    bool is_equal(const MyComplex &a, const MyComplex &b) 

    { 

      return memcmp(&a,&b,sizeof(MyComplex)) == 0; // Bug! 

    } 

Unfortunately, there are multiple obscure pitfalls with this approach: 

• Padding bytes 

• Two types of floating-point zero 

• Multiple types of floating-point NaN (not-a-number) 

• Bitfields 

Padding byte problems. If float is 4 bytes, but the machine has 8-byte alignment, 
then the “real” and “imag” data members will be stored on 8-byte alignment 
addresses, and there will be another 4 bytes each of dummy padding.  
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It doesn’t even have to be on a machine with alignment issue, but can occur with a 
bigger object if we’ve mixed different size objects (e.g., char, int, and pointers). 
The padding bytes will be uninitialized (e.g., for local objects or if allocated with 
“new”), in which case they can contain random values. Since memcmp does not skip 
the padding bytes, its test will fail.  

Now, we could possibly work around this portability issue via the use of memset in 
the constructor, or calloc memory allocation, to zero all of the bytes of an object 
including the padding bytes. 

Negative zero problems. Unfortunately, the next problem is not a portability 
problem, but a fundamental issue with floating-point numbers. There are two zeros! 
There’s the normal zero with all bits zero, and there’s negative zero, with the sign 
bit set, but all other bits zero. Hence, the bitwise testing of both float numbers fails 
if there’s ever a negative zero. 

NaN problems. Similarly, but perhaps less seriously, the representation 
of NaN (Not-a-Number) in floating-point is also not fixed. There are multiple 
values of NaN, both positive and negative. So, memcmp would say the float values 
differ, even if both are NaN. I think this NaN issue is less serious than negative zero, 
because if your computations are generating NaN, then they’re probably already 
failing, and an incorrect memcmp equality test won’t matter as much. 

Bitfield problems. If our structure has any bitfield data members, 
this memcmp idea fails too. Bitfields are a standard C++ feature that is defined with 
a suffix colon and a number of bits like: 

    unsigned int myflag:1; // Boolean bitfield with 1-bit 

With bitfields it’s implementation-defined how this is represented numerically, and 
there might be undefined bits in the same byte, or extra padding bytes again. 

Still want your memcmp speedup? I’ve just shown you about 15 pitfalls, but 
maybe you still want to live on the edge and get that speedup? You can 
use memcmp to do fast array or object comparisons if you’re really, really sure that 
you have: 

• Zero byte initializations. All allocated arrays or objects must be first zero’d 
by memset or calloc. You cannot rely on constructors, and it’s hard to 
put a memset as the first action of the constructor due to initializer lists 
and base classes. You may have to intercept all of the runtime uses for 
the new and new[] memory allocation operators with your own wrapper 
that does memset on the block, rather than use constructor tricks.  
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• Padding. It’s also unclear if you can actually rely on static or global 
variable initialization to carefully zero all the padding bytes in an array or 
object. Probably it works on most platforms, but I doubt it’s fully portable. 
To be sure, use memset on the global variables during program startup. 

• No bit-fields used. That’s easy, at least. 

• Floating-point computations should avoid negative zero and NaN. 

Raw Subarray Memory Blocks 

Passing raw subarray types to functions can be a fast alternative to some of the 
modern C++ contiguous containers (i.e., std::array, std::vector). 
However, the passing of a container object by reference with “const&” parameters 
is also very fast, so don’t assume that raw arrays are always faster. 

If a function accepts a raw array type, it is possible to pass it any array as an 
argument, or any pointer of the right type. In this way, it is possible to pass memory 
blocks or “sub-arrays” to a function by passing the address of a particular array 
element. A function to operate on a particular type of array can be written, and used 
to operate on various arrays. 

    void clear(int a[], int n) 

    { 

        int i; 

        for (i = 0; i < n; i++) 

            a[i] = 0; 

    } 

 

    void test_subarrays() 

    { 

        int a[100]; 

        clear(a, 10); // clear first ten, 0..9 

        clear(a + 50, 10); // clear 50..59  

        clear(&a[50], 10); // clear 50..59 (equivalent) 

    } 

Multidimensional subarrays. It is also legal to pass multi-dimensional arrays to 
functions. However, the sizes of all but the first dimension must be specified in the 
function receiving the array.  
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For example, to pass a two-dimensional array to a function, the function header 
would look like: 

    void fn(int a[][SIZE2]); 

The reason for this restriction is that the compiler cannot determine the address for 
an arbitrary array element if it does not know the sizes of all but one of the 
dimensions. 

Because the sizes of most of the array dimensions must be specified in the function 
declaration it is very difficult to write a function to act on sub-arrays of multi-
dimensional arrays. For example, this idea would be useful to define library 
functions to operate on matrices with different dimensions. Ideally, we would like 
one function to calculate the determinant of a matrix for any dimension (i.e., an n-
by-n matrix where n varies). Consider how we want a determinant function to look: 

    double determinant(double matrix[][], int n); // Bug 

Ideally, the dimensions of the matrix are not specified at compile-time, but are 
specified at run-time by the n argument. This is not possible as a simple C++ 
declaration because the second dimension (i.e., n) needs to be specified in the 
definition of the two-dimensional array type. The best solution is to use dynamic 
multi-dimensional arrays. 

Dynamic Memory Management Pitfalls 

Memory management is really not the strong suit of C++. If your program is 
crashing or behaving badly, it’s highly likely to be some kind of memory problem. 
There are so many pitfalls in C++ dynamic memory management, and even in static 
or global (non-dynamic) memory, that it’s hard to list them all. 

C++ programs have access to a large block of free memory, called the heap. The 
actual size of the available memory depends on the system. This memory is available 
to a C++ program which can allocate itself chunks of memory from this heap. This 
is useful when a C program does not know beforehand how much data is being 
stored, and hence, how much memory is required. Instead of allocating a large array 
for the worst case, the program can allocate itself blocks of memory as required. 

Blocks of dynamic memory can be allocated in two main ways: 

• The C++ style “new” or “new[]” operators 

• The older style malloc() and calloc() functions (inherited from C) 
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Other ways to allocate dynamic memory include: 

• strdup(): make an allocated copy of a string. 

• realloc(): a companion to malloc/calloc that is rarely used. 

Once the memory is no longer needed it is “freed” back to the heap. Again, there 
are two main ways: 

• The C++ style “delete” and “delete[]” operators 

• The older style “free” function 

Some of the main memory problems in a C++ program can include: 

Uninitialized new memory. The new operator does not initialize the 
new chunk of allocated memory. Accidentally using it is a common bug. 

Uninitialized malloc memory. The malloc function also does not 
initialize its allocated memory. Again, use of a memory block that is 
allocated by malloc but hasn’t been properly cleared is a common bug. 
One of the mitigations is to use calloc instead, because calloc does 
zero the bytes of every block it allocates. 

Mismatched new/delete with malloc/free. Memory allocated 
with new should be deallocated by delete, but malloc’d memory 
should be free’d. Never the twain shall meet, or else kaboom. 

Mixing new/new[] and delete/delete[]. Memory allocated 
by new should be released by delete, but memory allocated by the array 
version “new[]” should be freed by the delete[] array version. Again, 
they’re not supposed to mix. 

free(nullptr) is harmless. If it’s so harmless, why is it a pitfall? 
Sure, free(nullptr) is officially defined by the standard to do nothing. 
But if your coding is doing this, it sure walks and talks and quacks like a 
buggy duck. 

strdup(nullptr) is not harmless. This is probably a crash, but even 
on systems where it’s not, it’s clearly a bug in your code if you’re trying to 
duplicate a null pointer. 
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Pitfalls for Non-Dynamic Memory Blocks 

There’s so many pitfalls in management dynamic memory, with either new/delete 
or malloc/free, that surely we’ve run out? No, don’t worry, it’s comforting to know 
that there are still a bunch more insidious problems in other types of non-allocated 
memory. 

Here’s a list of some more fatal memory stomps that aren’t about allocated blocks 
on the heap: 

• Buffer overrun of a global, local, static, or stack buffer variable. 

• Returning the address of a local variable on the stack (i.e., non-
static variable). 

• Trying to write to addresses of string literals (often a crash if they’re non-
writable, but maybe worse behavior if it can be modified). 

• Modifying arr[10] in an array of size 10 (raw arrays or std::array). 

• Uninitialized local variables or local buffers on the stack (non-static). 

• Using an uninitialized local pointer variable to access some random address 
in Timbuktu. 

• Null pointer dereferences. Oh, well, at least you initialized it. 

• Returning the address of a “static” local variable (aliasing problems). 

• Using a negative array index. 

• Modifying a string literal (they’re in read-only memory on Linux). 

The standard C++ library functions can also have problems: 

• strcpy() on overlapping string arguments: strcpy(s, s+1); 

• strncpy() can leave strings without a null byte terminator. 

• memcpy() on overlapping memory blocks (use memmove instead). 

• Trying to free() or delete a global, static, stack or instruction 
address will crash. 

• Double fclose() on file pointers from fopen. 

• Ignoring the return value of erase() in an iterator loop. 
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17. Memory Pools 

What are Memory Pools? 

Memory pools are a C++ optimization where you take control of the memory 
allocation used for a class of objects. The basic idea is to store all objects of the 
same type in a big array, next to each other, rather than being spread out over the 
heap wherever the new operator decides to put them. 

Memory pools are a general optimization that can be used in C++ with 
the new operator, and also in C programming with malloc.  

Some of the related data structures include: 

• Bucket array 

• Hive 

A bucket array is like a memory pool, in that it’s a big memory block, and you put 
your objects in there. However, a bucket array usually handles erasing an object by 
simply marking it as invalid using a Boolean flag. The memory for an erased object 
is not usually re-used when you insert a new object. 

A hive is a generalization of a bucket array, whereby a hive can dynamically expand 
and contract the number of buckets. Notably, there’s a std::hive class to use in 
C++26, which would make a good basis for an advanced type of memory pool.  

However, we’re going to examine some of the simpler types of memory pools first. 
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Why Memory Pools? 

Other than being a fun and gritty project in low-level C++ coding, the goal is speed, 
and this is achieved in various ways: 

• Preallocation — no need to allocate memory on a low-latency hotpath. 

• Fewer allocation calls — one big chunk rather than lots of small ones. 

• Fewer deallocation calls — reusing memory addresses within the pool. 

• No memory fragmentation — we don’t mix small and large memory 
allocations. 

• Less memory overhead — hidden heap memory “control blocks” are not 
needed. 

• Cache locality — all objects are stored contiguously. 

In fact, you can even get the number of memory allocations for your class down to 
zero, if you really want to, by using a global memory pool object. Even the memory 
pool is not on the heap! But this only works for a fixed-size memory pool, and thus, 
only if you’re really sure you won’t need too many objects. 

Memory fragmentation is also a slowdown that can be avoided or reduced with 
memory pools. The problems with fragmentation arise in two ways: 

• Frequent allocations and de-allocations, and 

• Different-sized memory blocks. 

A memory pool is helpful in both respects. The memory pool avoids lots of 
allocations by using one big block, and avoids deallocations by re-using the 
locations inside the block. And because the memory block stores lots of blocks of 
the same size, we aren’t mixing up different size allocations. 

Disadvantages of Memory Pools 

Firstly, this whole idea of memory pools is only about reducing allocated memory 
on the heap. This optimization is not relevant for objects stored on the stack (i.e., 
local variables), or static objects, such as global scope objects or static data 
members. 
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Memory pools are not the only option for optimization memory allocation. In fact, 
the use of an open-source drop-in replacement for the standard C++ memory 
allocators is another significant option: 

• jemalloc — the original FreeBSD allocator, now a Facebook favorite. 

• tcmalloc — from Google, with an Apache 2.0 license. 

The other disadvantages of memory pools include: 

• Fixed maximum number of objects (in the basic versions). 

• Only works for single-sized objects (e.g., one class). 

• Need one memory pool object for each type of object (via templating). 

• Not useful for optimizing variable-sized objects (e.g., strings). 

• Allocating too much memory in one massive chunk. 

However, we can work around a lot of these disadvantages by using a templated 
class for our memory pool. The optimization of memory pools is a general 
algorithm that works for all types of objects. 

Memory Control Block Overhead 

Whenever you allocate memory on the heap, using the new operator or the old-
style malloc function, it returns you the address of the block. But that’s not actually 
the start of the real memory block. 

There’s actually an extra memory control block stored before that address. It 
contains meta-information about the memory block, which is used by the C++ 
standard library to keep track of things. For example, the size of the memory block 
is stored in that control block. 

Whenever you deallocate a memory block by sending the address 
to delete or free, the standard library knows to look backwards a few bytes. 
Hence, it can find the size of the memory block, which helps it to deallocate the 
full block of memory. You don’t need to worry about it, because the standard library 
takes care of it. 

Hence, if you create a memory pool from one big chunk to contain 100 objects, 
rather than 100 separate calls to the new operator, there are 99 fewer memory 
control blocks. This is why memory pools reduce the memory overhead from your 
objects. 
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Fixed-Size Memory Pool Algorithms 

For simplicity, we’re going to limit our first memory pools to just one huge block 
in memory. This means that we can choose the overall capacity of the memory pool, 
but we can’t increase it later by adding a second big block. This makes our memory 
pool more like a vector or array, rather than a dynamic bucket array or hive. 

Even with these restrictions, there are still quite a few choices to make about 
designing our memory pool algorithm. Some of the alternatives include: 

• Boolean flag — storing an “active” flag in each object. 

• Index array — maintaining a list of indices of free blocks as a “free list” 
(instead of a per-object flag). 

• Pointer array — tracking the free list via pointers. 

• Permutation-based free list approach. 

In the first case, we only have one array, and each block contains the “active” flag 
along with the stored user objects. In the other cases, we maintain two arrays, for 
one of the user’s objects, and another as the free list (with either indices, pointers, 
or permutations). 

Disadvantages of Boolean Flag Method 

The first point to remember is that this memory pool is a significant optimization. 
It achieves all the advantages of a memory pool as outlined above: preallocation, 
fewer allocations and deallocations, less memory fragmentation, and so on. Hence, 
it’s a good start, and a worthy improvement to our classes. 

We could stop now, and go home with a smile on our face. 

However, it’s not optimal. There are even better ways to code up a memory pool. 
The suboptimal features of this version of a memory pool include: 

• Mixing hot and cold data 

• Alignment issues for some types 

• Extra padding bytes needed 

• Slow insertions 
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One problem with the above approach is that it mixes “hot” and “cold” data. Your 
objects are probably hot areas of processing that are doing whatever you need. The 
Boolean flags are only used by the memory pool when inserting and deleting 
objects, and are thus cold data for the main processing algorithms. It would be 
better for cache locality if the cold data was separated from our hot objects. 

Memory size is also not optimal. By adding a single Boolean variable to each object, 
it’s not just 1 byte extra, because the compiler probably may have to add a number 
of padding bytes to meet the alignment requirements (depending on what’s inside 
your objects). This will increase the memory size, and worsen cache locality when 
processing multiple objects. 

However, the main problem with the Boolean flag approach is that it’s slow. In fact, 
it has worst case O(n) performance for an insertion, because it might have to scan 
the entire array to find a free block. This worst case won’t happen initially, but the 
performance can degrade as the memory pool fills up, and we do lots of insertions 
and deletions. 

We can do better! 

Boolean Flag Array Method 

One way that we can address some of these issues is by separating all of the Boolean 
“active” flags into a different array. Rather than storing a flag in each object, we 
just store the user’s object in the main block, and have a second block that contains 
the Boolean flags. 

The advantages are that it fixes the hot-cold data problem, addresses alignment 
concerns, and the compiler won’t need to add extra padding to the array of user 
objects. The array of Boolean flags should be one byte per object, but stored in a 
different array. 

Firstly, we move the “active” flag out of the structures: 

    struct Node { 

        unsigned char data[sizeof(T)];  // Raw storage 

    }; 

And put it into a separate array: 

    bool activearr_[N]; 
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The handful of places that used the “active” flag need to be changed to the 
“activearr_” array member. 

We can also fix the alignment issues using the alignas and alignof specifiers: 

    alignas(alignof(T)) std::array<Node, N> arr_; 

Bit packing. This active flag array method can be further improved by using bit 
packing. We only need one bit flag per object, rather than one byte each. Hence, 
we can pack them all into an array of 64-bit unsigned long, and can check for 
a free block using one integer comparison, testing 64 memory blocks at a time. 

In practice, this version is pretty fast. Even so, it is technically still an O(n) worst 
case algorithm for insertion or deletion with large numbers of objects. And there 
are a few ways to fix that. 

Index Array Memory Pool 

The faster solution is to maintain an array of integer indices for the free locations. 
The advantages of this index array approach over the earlier “active” flag method 
include: 

• Insertion and deletion always have O(1) complexity. 

• Separates hot data from cold data. 

• No extra padding bytes needed. 

Here’s the basic definition of the class: 

    template<typename T, int N> 

    class IndexMemoryPool { 

        struct Node { 

            unsigned char data[sizeof(T)]; // Raw storage 

        }; 

    private: 

        alignas(alignof(T)) std::array<Node, N> arr_; 

        int freelist_[N];  // free indexes (stack-like) 

        int ct_; 

        int ctfree_; 

    // ... 

    }; 
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Some of the basic primitives are simple: 

    bool empty() { return ct_ == 0; } 

    bool full() { return ct_ == N; } 

    int capacity() { return N; } 

    int count() { return ct_; } 

    int count_free() { return ctfree_; } 

The index array is a “free list” that tells us where to find a free memory block. After 
a lot of insertions and deletions, if functions a lot like a stack of free locations. At 
the start, it’s a fixed-size stack that’s full with the index of every element available. 

    IndexMemoryPool() : arr_(), ct_(0), ctfree_(N) { 

        for (int i = 0; i < N; i++) { 

            freelist_[i] = i;  // Store all indexes 

        } 

    } 

When we allocate a new block, that’s a “pop” of the stack, because we’re removing 
from the free list: 

    int pop_free_index() 

    { 

        assert(ctfree_ > 0); 

        int index = freelist_[ctfree_ - 1]; 

        assert(index != -1); 

        freelist_[ctfree_ - 1] = -1; // Clear it 

        ctfree_--; 

        return index; 

    } 

The allocation of a block is mostly a call to this “pop” of the free list: 

    T* alloc() { 

        if (full()) return nullptr; // fail! 

        int index = pop_free_index(); 

        assert(index != -1); 

        ct_++; // Incremental count 

        return reinterpret_cast<T*>(&arr_[index]); 

    } 
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And the reverse is true when the caller releases a memory block. This is a push 
operation of a newly free index onto the stack. 

    void push_free_index(int index) 

    { 

        assert(ctfree_ < N); 

        freelist_[ctfree_] = index; 

        ctfree_++; 

    } 

And here’s the version for release the memory: 

    void erase(T* addr) { 

        assert(ct_ >= 0); 

        Node* nptr = reinterpret_cast<Node*>(addr); 

        if (nptr >= reinterpret_cast<Node*>(&arr_[0]) 

          && nptr <= reinterpret_cast<Node*>(&arr_[N - 1]) 

             ) { 

            // Valid pointer... 

            int offset = nptr - &arr_[0]; 

            push_free_index(offset); 

            ct_--;  // Incremental count 

        } 

        else { // Invalid pointer... 

            assert(false); 

        } 

 

    } 

In summary, note that the push and pop of the free list stack is very efficient with 
O(1) complexity. This index array version has constant-time efficiency. 

Boolean Flag Memory Pool 

This is the simplest approach, but not the fastest. Let’s examine it to get some of 
the basic ideas. 

Some of the interesting features of this code include: 

• Boolean flag — stored as a data member in every memory pool record. 

• Pointer arithmetic — used in computing the offset when erasing an object. 

• Incremental count — increment on allocation, decrement on release. 

• Compile-time pool size — this uses std::array rather 
than std::vector. 
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Here’s the basic layout of the memory pool class. 

    template<typename T, int N> 

    class MemoryPool { 

        struct Node { 

            T data; 

            bool active; 

        }; 

    private: 

        std::array<Node, N> arr_; 

        int nextfree_; 

        int ct_; 

        // ... 

    }; 

The constructor has to set all the “active” flags (although using memset would 
be faster than a loop): 

    MemoryPool() : arr_(), nextfree_(0), ct_(0) { 

        for (int i = 0; i < N; i++) arr_[i].active = false; 

    } 

The code maintains the index of the “next free” object. Initially, it’s increasing as 
the first blocks get used, but later it’s necessary to scan linearly. 

    int find_next_free(int offset) { 

        if (offset == -1) offset = 0; 

        int i = offset; 

        do { 

            if (!arr_[i].active) return i; // Found 

            i = (i + 1) % N; 

        } while (i != offset); 

        return -1;  // It’s full! 

    } 

Here’s the code for the allocation of a memory pool block: 

    T* alloc() { 

        if (full()) return nullptr; // fail! 

        assert(nextfree_ != -1); 

        int oldindex = nextfree_; 

        arr_[oldindex].active = true; // Not free 

        nextfree_ = find_next_free(nextfree_); 

        ct_++; // Incremental count 

        return reinterpret_cast<T*>(&arr_[oldindex]); 

    } 
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And here’s the code whereby a block is released by the caller. Note that the index 
computation requires pointers converted to the correct type. This code has some 
safety checks that are quite expensive, and might later be removed for production 
usage. 

    void erase(T* addr) { 

        assert(ct_ >= 0); 

        Node* nptr = reinterpret_cast<Node*>(addr); 

        if (nptr >= reinterpret_cast<Node*>(&arr_[0]) 

          && nptr <= reinterpret_cast<Node*>(&arr_[N - 1]) 

            ) { 

            // Valid pointer... 

            int offset = nptr - &arr_[0]; // Pointer arith 

            assert(nptr->active); 

            nptr->active = false;  // Free now 

            ct_--;  // Incremental count 

            if (nextfree_ == -1) { // Was full? 

                nextfree_ = offset;  

            } 

        } 

        else { // Invalid pointer... 

            assert(false); 

        } 

    } 

Constructor inefficiency. This implementation has a high-level slug if the 
memory pool is instantiated for use with a non-trivial class type. The definition 
for std::array will cause the constructors for every single object to run 
needlessly on the empty storage bytes, when the memory pool is first created or 
defined. The solution here is simply to use bytes instead of the class type for the 
storage declaration: 

    struct Node { 

        unsigned char data [sizeof(T)]; // Raw storage 

        bool active; 

    }; 

But we also need to be careful of memory alignment in this situation. The template 
could be instantiated on any type, some of which will need aligned addresses. 
Character addresses won’t get automatically aligned, so we have to 
use alignas specifier. However, it’s hard to fix in this implementation, because I 
cannot use alignas(alignof(T)). The extra “active” flag in the structure is 
messing everything up. But that’s only one disadvantage of this method. 
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Memory Pools Versus Containers 

Why do you need a memory pool? Why not just use the standard C++ containers 
for your objects? Isn’t a memory pool about the same as std::vector? 

Yes and no. 

Yes, a memory pool for your objects is very similar to managing them all in a 
standard vector. After all, the memory pool code can use a std::vector object 
inside it as the big pool. So, yes, you can manage your objects in a standard vector 
if you: 

• Use a single reserve or resize call to allow the vector to allocate 
memory in one call. 

• Keep track of objects going in and out of the vector. 

In other words, it’s almost the same thing as writing a memory pool, except it’s 
mixed in the middle of your application’s main logic. 

Hence, no, it’s not quite the same thing. There are two types of containers: 

• Contiguous storage containers — it’s very similar. 

• Maps, sets, hash tables — memory management performance gains. 

We’ll examine vectors and arrays in a minute, but first let’s look at the other 
containers. There are two aspects to use normal memory allocation and storing your 
objects in these advanced containers: 

• Allocating memory for your objects — you’ve improved nothing (it’s one 
allocation call per object). 

• Extra container allocations — the container also needs memory allocation 
and a memory pool doesn’t help with that. 

But for the containers based on contiguous memory, the issue is less clear cut. The 
standard containers based on contiguous storage include: 

• std::vector 

• std::array 

• std::inplace_vector (C++26) 



David Spuler                                               174 
 

When you compare a memory pool to using a standard vector of your objects, there 
is less gain to performance. However, creating a memory pool as a standalone class 
has several practical advantages: 

• Separate memory management optimizations from business logic. 

• Ensures only a single (huge) memory allocation occurs (or only a few if it’s 
dynamic). 

• Callers of the interface or API don’t need to know about the memory 
management aspects. 

Creating a memory pool as a separate idiom is good for encapsulating the 
performance optimization aspects of memory management. It encourages 
modularity by isolating high-level business logic from low-level resource 
management. 

Advanced Memory Pools 

Higher-level improvements to the public memory pool interface are also possible. 
Most of the discussion here has been about a memory pool for one type of class, 
with a focus on reducing the number of distinct blocks requested on the heap. More 
advanced memory allocators are well-known, and they offer a variety of generalized 
performance optimizations and convenience features: 

• Thread safety (e.g., a single mutex or a lock-free version). 

• Intercepting the class-specific new and delete operators. 

• Passing arguments to object constructors via parameter packs 
and std::forward() 

• Placement new operator — does not really allocate memory! 

• Custom allocators — memory pools via allocator functor objects. 

Additional memory management features that could be added to a memory pool 
include: 

• Dynamic expansion with multiple chunks rather than a fixed-size pool. 

• Multiple object types supported in the memory pool. 

• Dynamic size of objects allowed by allocating multiple large “pools” or 
memory chunks. 

• Downsizing the memory pool if fewer objects are required. 

Even more general than memory pools is the concept of “custom allocators.” The 
idea of custom allocators is not just to enhance memory handling of a few classes, 
but to take over the whole memory allocation shemozzle from the standard library. 
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Extensions 

1. Build your own simple memory pool templated class. 
2. Add a memory pool to your object class by overloading a set of class-

specific new and delete operators, sending these allocation requests to 
the memory pool instead. 

3. Code up multiple types of memory pools and measure their performance. 
4. Generalize your memory pool class to dynamically manage multiple big 

chunks of memory, rather than just one. 
5. Implement an advanced dynamic memory pool using the new container 

class std::hive (C++26) as the underlying data structure, rather than a 
vector or array. 
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18. Data Compression 

What is Data Compression? 

Data compression is a common efficiency requirement in low-level programming. 
This is the general class of algorithms that aim to make data smaller.  

Generally, there are two main phases: 

• Compression — reducing data to a smaller size. 

• Decompression — inflating the data to its original values. 

There are two main classes of data compression algorithms: 

• Lossless — the original data is fully restored. 

• Lossy — uncompressed data differs and is partially “lost” in some sense. 

Obviously, lossless algorithms are preferable, but some types of lossy algorithms 
can achieve much better compression ratios. Hence, there is a trade-off between 
data size and accuracy of the uncompressed data. 

The best example of lossy compression in the modern era is “quantization” in AI, 
which is a type of “model compression” technique. The billions of 32-bit numbers 
that are an LLM’s “weights” can be shrunk down to fewer bits, often as few as 4 
bits each, while still retaining the general capabilities and knowledge of the original 
model. In this way, LLMs are much smaller to transport over the network, to store 
on disk, and also faster to run on CPUs or GPUs (less memory usage).  

Note that this is not a typical data compression algorithm, because quantized 
models are not “uncompressed” back to 32-bit numbers, but are used in their low-
bit formats. 
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Related Data Algorithms 

Data compression is somewhat related to other common programming tasks, but 
it is not the same as: 

• Encoding — converting data to a simpler representation. 

• Encryption — hiding the data with varying levels of difficulty. 

• Hashing — mapping data to a hash value. 

• Data compaction — using smaller data records. 

• Data structures — organizing data for fast search or other operations. 

Encoding or encryption of data are different requirements to compression. In fact, 
both encoding and encryption can increase the data load and slow things down., 
but have other advantages. 

Encoding neither makes the data smaller nor hides it from prying eyes. The goal of 
encoding is to make it easier to use data, whereas data compression has the central 
aim of reducing size. There are some common encoding algorithms: 

• Base64 (or UUencode) — transmit binary data over text-only streams using 
the subset of printable characters. 

• UTF-8 — internationalization encoding for European letters and Double-
Byte Character Sets (DBCS). 

• Rot-13 — simple semi-encryption method. 

Note that most of these encoding algorithms will actually increase the size rather 
than decrease. This is true of both UTF-8 or UUencode. 

Encryption is a different task, and it’s not related to data compression. The purpose 
is to maintain privacy and security of the data payload, and the way to do that often 
increases its size. Some of the well-known encryption algorithms for “hash” 
creation include: 

• SHA (Secure Hash Algorithm) 

• MD5 (Message Digest 5) 

• AES (Advanced Encryption Standard) 

These algorithms have been used for things like password encryption in the past. 
More recently, these encryption algorithms became known as cryptographic 
algorithms, because they’re used in Bitcoin mining and other “crypto” creations. 
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Low Latency Data Compression 

When there’s too much data, you want to compress it. In low latency programming, 
some example situations where data compression algorithms can be useful include: 

• Disk storage — e.g., compressing large volumes of historical data in files 
or databases. 

• Network data transmission — e.g., sending data off to a different site for 
ML model processing. 

The goals of data compression include: 

1. Reduced space storage on disk or in memory, and/or 

2. Faster network transmission 

Note that the goal is not to make processing faster. In fact, to process the data later, 
you would have to uncompress it first. Both compression and uncompression are 
extra processing costs, so there is a trade-off when considering the benefits of data 
compression algorithms. 

Trading algorithms involve the processing of a lot of data, often aggregated from 
multiple financial exchange locations. Full market data with deep order book details 
grows quickly in size, and compressing this data speeds up historical storage, 
algorithmic analysis for trading storage, and backtesting with this data. 

Data Compression Algorithms 

There is a long history of data compression algorithms from the 1970s and earlier. 
The lossless algorithms from that era include: 

• Run-Length Encoding (RLE) 

• Huffman coding 

• Lempel-Ziv algorithm (LZ) 

Run-length encoding is well-known and unsophisticated. It can do well if the data 
has long “runs” of the same value, which is relatively common in images, but not 
in text. 
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Huffman coding is a more complicated data compression algorithm. It involves 
building a separate data structure that represents the bitwise encodings for different 
patterns. Huffman coding is quite successful as an algorithm, but its main downside 
is the need to convey the dictionary as a separate data structure before decoding 
can begin on the main compressed data. 

The Lempel-Ziv algorithm was a clever idea of overcoming Huffman coding’s main 
disadvantage by building a dictionary incrementally inside the compressed data, 
thereby alleviating the need to pre-send a separate data structure. Several variants 
for LZ data compression have been used: 

• LZ77 — the original 1977 version. 

• LZ78 — an improved version in 1978 by the original researchers. 

• Lempel-Ziv-Welch (LZW) — a further improved and popular algorithm. 

LZ77 is the original LZ algorithm from 1977, using a “sliding window” over the 
text. Each entry in the compressed file includes a character count and an “offset” 
back to a prior occurrence of the same text string. In this way, the explicit dictionary 
required for Huffman encoding is no longer needed, because the strings in the prior 
text are used as if they were a dictionary. 

The LZ78 variant is a modification of the LZ77 algorithm, which uses an explicit 
dictionary data structure. However, this dictionary is used internally by both the 
encoder and decoder, but does not need to be sent from the encoder to the decoder. 
Instead, the decoder can rebuild the dictionary in an incremental fashion as it 
decompresses the text. 

The LZW algorithm became the most widely used data compression algorithm. It 
was used in numerous Unix tools and notably in the GIF image format. 

The improved LZW algorithm modified the LZ78 algorithm to introduce faster 
handling of some failed-match sequences. Initially, it has a “predefined” dictionary 
for all possible symbols, which is used if a text string has no match in the normal 
LZ78 dictionary. For 8-bit data, there are 256 of these predefined symbols, being 
all the single-character strings. Both the encoder and decoder start with this initial 
dictionary. 

The main downside of the LZW algorithm for modern computing is that it’s an 
inherently sequential algorithm, since both the decoder and encoder must 
incrementally build the dictionary from the data sequence. This means that it’s 
difficult to fully parallelize LZW encoding or decoding on multiple CPU threads or 
using GPUs. 
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Parallel Data Compression Algorithms 

Many of the traditional data compression algorithms are difficult to parallelize. The 
problems that need to be overcome include: 

• Inherently incremental algorithms (sequential nature) 

• Variable-length bit strings 

Incremental algorithms. Compression that must start at the beginning of the data 
stream is problematic for parallelization. An example of this is the “sliding window” 
approach in LZ77. The dictionary approach in LZ78 is also difficult to parallelize, 
because it requires a phase to construct the dictionary, before all sub-texts can be 
compressed. 

Bit position offsets. It might seem that the Huffman algorithm could have parallel 
decompression once the dictionary has been sent to the decoder. However, another 
problem arises: given a chunk of data to decode, how does the decoder know which 
bit in the first byte to start with. It could be any of the bit positions. The variable-
length bit strings used by compression mean that you cannot determine this without 
processing from the beginning of the input string. 

Naive parallelism. You can parallelize all of these algorithms by doing a “restart” 
in every chunk, which is sometimes called a “segmented compression” algorithm. 
The LZW algorithm even has a “clear code” for exactly this purpose. But that’s not 
a very good method! I don’t see much difference between that idea and just splitting 
the data into a bunch of files, and then compressing each file. Furthermore, the 
code that’s working on each chunk is running an inherently sequential algorithm, 
rather than one that’s vectorized over SIMD or GPU kernels. Somehow that 
doesn’t seem optimal to me! 

Parallelizing LZW compression. The LZW algorithm also suffers from these 
problems that limit parallelism. The encoder and decoder both build the dictionary 
in an incremental manner from the start, limiting parallelism. And most LZW 
algorithms used variable-length bit representations, which also depend on prior 
input data. 

There are some parallelizations possible for an LZW data compression algorithm, 
but these are not inside the main data compression loop. Rather, the features that 
wrap around the main LZW logic can be separated.  
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Parallel optimizations to the LZW algorithm include: 

• Run the bit packing/unpacking in a separate thread from the 
encoder/decoder. 

• Run the I/O in parallel to the encoding/decoding (i.e., file input, file 
output) by reading or writing chunks to files in separate threads. 

Even this bit packing parallelization runs into problems and requires modification. 
There’s no difficulty if the LZW algorithm uses fixed-width 12-bit codes. However, 
variable-length LZW variants can change the bit positions, leading to difficulty with 
parallel packing and unpacking of chunks. 

Chunk headers. One possible solution to the variable bit position issue is to 
extend the algorithm so that every chunk has a “header” of data. A simple version 
would have an extra two bytes that encode: (a) what bit position to start processing 
for the rest of the data, and (b) how many bits are being used for packing. 

However, this simple two-byte header still has a problem: the number of bits for 
encoding numbers in LZW can increase at any point in the middle of a chunk. A 
more complex header is needed, such as the two bytes indicating the bit position 
and number of bits, along with another two bytes indicating how far along in the 
chunk until the bit sizes increase. 

Newer parallel algorithms. This chapter has only scratched the surface of 
parallelizing data compression algorithms. It is perhaps unsurprising that older 
algorithms designed for sequential processing are difficult to parallelize. However, 
there is an immense body of research in this area, and some newer parallel data 
compression algorithms: 

• Parallel gzip 

• Zstandard 

• Parallel bzip2 

• Parallel LZ4 

• Parallel LZMA 

• BTW parallel Huffman 

There are many options and many research papers to read. 
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19. Modern C++ Containers 

Standard C++ Containers 

Contiguous data containers. The general-purpose containers with contiguous 
data are called “sequence containers” and include several that are well-known and 
often used: 

• std::string — dynamic character arrays. 

• std::vector — dynamic everything arrays. 

• std::array — static fixed-size arrays. 

• std::bitset — fast bit vectors. 

Associative containers and sets. The associative key-value data structures are 
more commonly called a “map,” “dictionary,” or “symbol table” design pattern. 
Note that the “set membership” idiom is usually very similar to the associative 
containers, because the search is the same, but the sets don’t have a payload at the 
end.  

The main types of modern C++ containers for searching include the choice 
between two main types of underlying data structures: 

• Red-black balanced binary trees — logarithmic complexity for search, 
insert and delete. 

• Hash tables (with chaining) — constant-time average complexity (fast!), 
but linear worst-case (slow!). 

The containers include these red-black tree versions: 

• std::map — key-value lookup (dictionary idiom). 

• std::set — key-only set membership lookup. 

And these are the hash tables (my favorite data structure!): 

• std::unordered_map — dictionary hash table for key-value pairs. 

• std::unordered_set — hash table for set membership. 
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There are also variants that allow duplicates, which means multiple copies of the 
same key stored separately in the container. Examples include: 

• std::multiset 

• std::multimap 

• std::unordered_multiset 

• std::unordered_multimap 

Linked list containers. Some of the containers to manage data in dynamically-
allocated linked lists include: 

• std::list — double-linked list 

• std::forward_list — singly-linked list 

Note that the hash table containers (e.g., std::unordered_map) also belong on 
this list because they use “chaining” for collision resolution. This approach 
effectively hangs linked lists off every bucket of the hash table. 

Sorted “flat” containers. There are some newer containers in C++23 that are 
“flat” in the sense that they maintain data in sorted order. These classes include: 

• std::flat_set 

• std::flat_map 

• std::flat_multiset 

• std::flat_multimap 

Special semantics containers. Some of the general-purpose containers with 
different semantics to searching include: 

• std::stack — dynamic FIFO structure. 

• std::queue — queue data structure (single-ended). 

• std::dequeue — double-ended queue. 

• std::priority_queue — implements the “heap” data structure. 

View containers. The various types of “view” containers include: 

• std::string_view 

• std::span 

• std::mdspan — multidimensional view class. 



189                             C++ Ultra-Low Latency 
 

Bit-level data structures. Modern C++ supports both class libraries and utility 
functions for a variety of low-level bit manipulation tasks. Some examples include: 

• std::bitset 

• Bit manipulation utilities in <bit> 

Small utility data structures. Some of the more generic types of “mini-data 
structures” include: 

• std::pair 

• std::tuple 

• Ranges 

• std::optional 

• Permutations 

Multithreading data structures. Parallel coding with synchronization and locking 
is supported in modern C++ with libraries such as: 

• std::thread 

• std::mutex 

• std::lock 

• std::condition_variable 

• std::atomic 

• std::latch 

• std::barrier 

And that’s not the full list of primitives available in the concurrency library. Many 
of these multithreading capabilities have been available since C++11. 

Upcoming C++26 containers. Some of the upcoming containers include: 

• std::hive (C++26) 

• std::inplace_vector (C++26) 

What’s missing? I feel ungrateful to even be writing this list, given the amazing 
amount of work that’s gone into coding up all the above data structures in the 
standard C++ library.  
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Nevertheless, some of my favorites aren’t on the list yet! Data structures that are 
missing from the standard C++ containers library include: 

• Sorted array — indirectly supported only (e.g., std::sort). 

• Tries — 26-way tree for storing text keys based on letters. 

• B-tree — multi-way tree data structure good for disk storage. 

• Graphs — depth-first search, breadth-first search, topological sort. 

• Tri-state Boolean — indirectly supported via std::optional. 

General Container Optimizations 

Containers have a lot of commonalities in their performance patterns. Some general 
comments apply to multiple types of container classes, and making them run faster. 
Consider the following when implementing the usage patterns of your containers: 

• Choose an initial size — avoid container auto-resizing slowdowns. 

• Minimize insertions and deletions — yeah, right, those actions are why we 
use containers! 

• Auto-resizing of containers — watch out for silent slugs! 

• Remove all elements with clear() rather than a loop. 

• Container destruction can be slow. 

Choose your containers wisely: 

• Prefer hash tables when you need fast searching (e.g., the standard 
container class std::unordered_map). 

• Don’t use a key-value associative container if you only need a set. 

• Consider whether you need sorted or unsorted scanning of all elements. 

• Prefer the various contiguous-memory standard C++ container classes 
such as std::array and std::vector for good cache locality. 

Optimizations in relation to the types of data to use in containers: 

• Choose scalar types — objects have more risks of slowdowns from calls to 
constructors, destructors, move operators, etc. 

• Prefer integer keys — faster than std::string or char* in key-value 
pairs. 

• Reduce the sizes of keys and values — minimizes overall container 
memory size and improves cache locality. 



191                             C++ Ultra-Low Latency 
 

Choosing Containers 

This should be a short section of the book because it’s very easy: use the two 
containers std::vector or std::unordered_map, and forget the rest. Oh, 
maybe std::queue and std::stack if you must. 

I’m only half joking, because there are two things that you often want to do quickly: 

• Scanning — std::vector is an array with contiguous data (cache 
locality). 

• Searching — std::unordered_map is a hash table with O(1) average 
complexity for search, insert, and delete. 

So, that’s covered most of the basic data processing requirements. You’re either 
scanning through a set of data to work on it repeatedly. Or you’re looking a key up 
in a dictionary, so you need search to be fast. 

What about the other dynamic classes? Somebody’s spent a whole lot of time on 
them, so surely they’re useful for something? 

There are situations where you might want to consider alternatives to arrays and 
hash tables. For example, there’s std::map, which uses red-black trees and has 
logarithmic complexity for searching, inserting and deletion. But this is not as good 
as O(1) of a hash table. The situations where a hash table might not be the best 
include: 

• Scanning of the whole data set that is stored in sorted order — 
neither std::vector nor std::unordered_map are good at this. 

• Real-time latency-critical situations — where the worst-case linear 
performance of searching a hash table is too risky. 

But if you ask me, you can still use only arrays and hash tables in combination. Hash 
tables aren’t great at scanning because it’s a non-contiguous linked list scan.  

Here’s a funny thought: 

1. Insert repeatedly into the hash table, and then 

2. Linearize the hash table in an array. 
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Those are your main trade-offs. Beyond that, if you’re only searching a set of keys, 
but don’t need to map the key to any other data, then use a set rather than a 
dictionary (officially called an “associative container”). There’s a (slow) red-black 
binary tree in std::set, but fortunately there’s a (faster) hash table for that 
called std::unordered_set. 

Linearizing Containers 

One common optimization is to perform some “preprocessing” before doing a lot 
of sequential processing of the data. This applies when the startup does a lot of 
insertions, but the main processing is mostly about scanning the data. In this case, 
we can switch to a linearized version of a dynamic container for faster scanning. 
Here’s example code for linearizing a linked list: 

    // Linearize linked list to vector 

    std::list<int> mylist; 

    std::vector<int> vec; 

    // .... 

    int n = mylist.size(); 

    vec.reserve(n); 

    for (auto& iter : mylist) { 

        vec.push_back(iter); 

    } 

This code to linearize is not particularly efficient, because it’s forced to linearly scan 
the linked list, and then insert into the vector one-at-a-time. However, I can’t see a 
way to do a bulk-insert out of a linked list. 

As an alternative, if we no longer needed the linked list version, we could use 
the merge() member function (C++17) to transfer items from the list container 
to the vector. This is particularly effective because merge() changes the internal 
container pointers, but doesn’t call any copy or move methods. 

Changing Containers 

Another idea is to convert our insertion-friendly container to one that’s best for 
fast searches. One idea that goes from binary trees to hash tables is this: 

• Handle the insertion phase with std::map — logarithmic insertion 
complexity with red-black trees. 

• Convert to std::unordered_map (hash table) for faster searches. 
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Note that C++17 has the std::merge() member functions for splicing one 
container into another. There’s also extract() to remove a single item. Note that 
these routines don’t move or copy any user data, but only update container internal 
pointers. This avoids the need for erasing data from one container and re-inserting 
all the data into the other container. 

On the other hand, hash tables also have fast insertion with constant time on 
average, which is better than logarithmic (on average), so why do we need the red-
black trees at all? One reason is that hash tables can degrade to linear performance 
in the worst case. Another reason is that the trees are good at fast processing of the 
data in sorted order, whereas hash tables have unsorted data. 

Maybe we should do the reverse, handling insertions with our hash table, and then 
converting to a red-black tree for scanning in sorted order. No, not really. If we 
want sorted scanning of data, we’d probably do better to export the hash table to 
a std::array or std::vector, and then use std::sort() on the array or 
vector. 

So many choices, so little time! 

Useful Member Functions 

Optimizing containers is about choosing the best one for your requirements, and 
then making the best usage of the interfaces that are provided. You don’t need to 
write your own if you can do better with the standard containers. 

Memory management of the various containers can be further optimized in a 
number of ways. Firstly, you can consider things like whether the container is “full” 
and what “capacity” it has. The main member functions include: 

• size() — number of elements in the data structure. 

• capacity() — maximum allowed with current memory. 

• reserve() — request an amount of memory. 

• resize() — reorganize to a bigger or smaller size. 

• clear() — quickly remove all elements. 

• shrink_to_fit() — request a smaller memory size. 
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The hash table containers, such as std::unordered_map, also have member 
functions to control the number of buckets and the resizing policies: 

• bucket_count() — size of the hash table array. 

• bucket_size() — length of a chain at an index. 

• load_factor() — number of keys divided by hash table size. 

• max_load_factor() — read or set the load factor that will trigger a 
rehash. 

• rehash() — manually trigger a hash table size change and rehash (at your 
discretion). 

You can use these member functions to track how effective the hash table is 
performing. This also allows taking control of the policy of when it will auto-resize 
and rehash into a bigger hash table with more buckets. 

These C++17 member functions are useful sometimes for removing or moving 
multiple elements in a container: 

• extract() — pulls a node out of the container data structure. 

• merge() — efficiently combines two containers. 

Hidden Auto-Resize Slugs 

The auto-resizing capabilities of many C++ containers makes them dynamic and 
easy to use. However, it also hides a common efficiency that has existed since the 
earliest days of the STL: hidden calls to special functions. In fact, there are multiple 
reasons that you might want to avoid container auto-resizing: 

• Slow performance — every object might get moved. 

• Iterator invalidation — all objects could be at new addresses. 

Auto-resizing of a container is probably something you want to avoid for 
performance reasons. In the worst case, it can trigger a significant delay when you’re 
inserting into a container. The cost of an auto-resize may include: 

• Memory allocation — e.g., allocating a new memory block or a hash table 
array. 

• Move assignment calls — not for all container classes. 

• Re-hashing — re-computing this for all the objects. 



195                             C++ Ultra-Low Latency 
 

Note that some containers will call the move assignment operators, whereas others 
will resize the container without actually putting the stored objects in new locations. 
Here’s how it works for some: 

• std::vector — calls move assignments if the allocated block changes. 

• std::unordered_map — zero move operator calls. 

The situation with the hash table is complex, but basically it moved internal pointers 
around, but not your objects. The hash container doesn’t need to move the objects 
inside the nodes on the chained linked list, so doesn’t call move operators for the 
user’s objects on those nodes. However, it does have to do other container-internal 
computations: 

• Re-compute the hash function for every node’s key, and 

• Re-attach the node to a different chained linked list. 

There’s no overall mechanism to control the resizing properties of all containers, 
but we can use various different methods. The main solutions are: 

• Reserve maximum memory, or 

• Manually manage the resizing process. 

Initialization with maximum size. The first idea for avoiding auto-resizing is to 
guess the maximum number of elements we could possibly need to store in the 
containers, and call the reserve() function at the definition of the container 
object. For example, the code could be: 

    std::vector<int> v; 

    v.reserve(1000); 

But not this, which will run 1,000 default constructors in a vector of non-scalar 
type: 

    v.resize(1000);  // Slow! 

And this also would create 1,000 new objects and run their constructors: 

    std::vector<int> v(1000);  // Slug! 

This reservation of memory is a type of “preallocation” optimization. We ensure 
that all memory that could be required is allocated during the initialization phase, 
which ensures that no memory allocations are performed later in the hotpath. 
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Detecting auto-resizing. Alternatively, we can detect when an insertion is likely 
to trigger an auto-resize. The standard container interfaces allow us to know this, 
before we do an insertion: 

    if (v.size() + 1 > v.capacity()) { 

        // Resizing likely on insertion! 

    } 

Unfortunately, there’s not a lot that we can do in this situation. I mean, we could 
just “not insert” as a strategy, but that doesn’t sound great. 

Deferring container auto-resizing. Alternatively, we could detect the situation 10 
insertions ahead of time, still insert the single item, and then do something later to 
manage the resizing, perhaps in a lower-priority thread. 

    const int n_lookahead = 10; 

    if (v.size() + n_lookahead > v.capacity()) { 

        // Resizing will be soon! 

    } 

In standard C++ classes that are more dynamic than the basic std::vector, such 
as std::unordered_map, we can defer the auto-resizing to a more convenient 
time. This is only possible for the dynamic classes based on linked lists or binary 
trees. Note that the hash table classes actually used linked lists, because of linear 
chaining as the collision resolution mechanism. 

We can initialize the hash table to a particular size in the constructor. The bucket 
count is an optional integer parameter to the constructor. 

    std::unordered_map<std::string, int> hmap(1000); 

This only works well if we know the maximum size that we need. For more dynamic 
handling, we can also use the bucket management functions in 
the std::unordered_map interface to detect when the hash table is getting full, 
and take appropriate action. 

The “load factor” is the number of elements stored in the container, divided by the 
hash table array size (i.e., the number of “buckets”). There’s no target load factor 
in the standard definition, but an implementation will typically aim for a load factor 
around 0.5 to 1.0. The container implementation also has a “maximum load factor” 
that will trigger a rehash into a bigger hash table when it’s exceeded. 
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When the load factor is near the maximum value, this means the class will soon be 
increasing the hash table size, and possibly re-hashing every single element.  

Here’s the idea coded up: 

    // Detect rehash risk 

    std::unordered_map<int,string> h; 

    int n_lookahead = 10; 

    float load_estimate = (h.size() + n_lookahead) 

                        / (float) h.bucket_count(); 

    if (load_estimate >= h.max_load_factor()) { 

        // Rehash is likely! 

    } 

In the case of a hash table, we can actually ensure that it won’t rehash by 
manipulating the maximum load factor setting. The max_load_factor method 
has overloads allowing us to both get and set the value.  

Hence, a solution that defers rehashing: increase the maximum load factor setting, 
insert our new object, and then reset the maximum load factor: 

    float old_load_factor = h.max_load_factor(); 

    h.max_load_factor(old_load_factor*2.0f); // Skip rehash 

    h.insert({ x, s });  // Insert the object without fear! 

    h.max_load_factor(old_load_factor);  // reset 

Note that we have to be careful, lest we introduce another hidden slug: never-
resizing our hash tables.  

Don’t defer it forever! 

If you forget to ever rehash your hash table, it won’t crash, but becomes a hidden 
slowdown. The use of chaining means that the standard hash table containers won’t 
fail if they never get auto-resized, but they will degrade to the linear performance 
of a linked list for all operations. 
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Hand-Coding Containers 

The standard containers are elegant and beautiful, but they are designed to be very 
general. Hence, they can sometimes be slower than you could achieve on your own. 
Some of the problems with standard container performance include: 

• Too many allocations and deallocations with new and delete. 

• Non-contiguous storage in dynamic containers (e.g., linked lists, binary 
trees). 

• There is no easy way to change the overall algorithm — e.g., you can’t 
change std::unordered_map to not use linked list chaining for 
collision resolution. 

• General containers may not meet the requirements of your specific 
application. 

In short: sometimes you can do better! 
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20. Move Semantics 

What are Move Semantics? 

Whoever invented move semantics deserves the Nobel prize. Move semantics 
refers to a beautiful and elegant addition to C++ class definitions added in C++11. 
The syntax is concise and the internal definition is semantically consistent in many 
ways. But the most beautiful part of move semantics: it’s all about making C++ 
even faster! 

Move semantics were about making C++ more efficient at a very high level. The 
issues were unnecessary calls to class constructors and copy assignment operators 
in a number of situations, such as: 

• Temporary object creation 

• Returning a class type from a function 

• Overloaded operator return types 

Most of the changes in C++11 that brought in move semantics were done in a way 
that maintained backward compatibility. The new features available in classes 
included: 

• Move constructors 

• Move assignment operators 

Whereas the new special members needed to be added to existing classes, there 
were also a number of automatic compiler optimizations that were enhanced to take 
advantage of move semantics: 

• Copy elision 

• Return Value Optimization (RVO) 

• Named Return Value Optimization (NRVO) 

Some parts of copy elision rely on move operations, whereas other cases of copy 
elision and RVO are actually independent of move semantics, and can be used 
without move special functions. But the optimal choice is to use all of them 
together. 
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Copy Elision 

Copy elision is an automatic C++ compiler optimization that “elides” (removes) 
various “copy” operations on objects. I guess “copy removal” just didn’t have the 
same ring to it? 

Copy elision works in particular situations in the C++ language. These situations 
include: 

• Class-type return statements — the main situation. 

• throw expressions (and handlers) 

• Coroutines 

The effect of copy elision is to avoid a full object copy. Instead, the place where the 
new object is used simply refers to the old object, which would have been copied 
without this optimization. 

Technically, there are other unusual situations, and there are two variants of copy 
elision: 

• Removal of copying, or 

• Downgrading copying to a move operation. 

You don’t need to modify your code to get the benefits of copy elision. In fact, you 
also don’t need to turn the optimizer up to eleven. Copy elision is a normal part of 
the C++ standard. 

Return Value Optimization 

Returning an object type is a special case where the old code used to be inefficient. 
The good news: 

• Return Value Optimization (RVO) is an automatic compiler optimization. 

• Nothing you need to do! 

Well, actually you do need to declare a move constructor and a move assignment 
operator to get the full benefits, but you were doing that already, right? 

 



201                             C++ Ultra-Low Latency 
 

Why was RVO needed? Because return statements used to cause lots of copying 
for objects. This could be worked-around by declaring a reference object parameter, 
which was returned back, instead of having an object return type. But that’s 
inconvenient, and there are also cases where it’s not possible: 

• Binary operator overloads (non-assignment) — e.g., binary “+” operator. 

• Unary operator overloads (non-increment/decrement) — e.g., unary “-” 
operators. 

• Postfix increment/decrement operators — must return the old object (not 
the current one). 

Operator overloading was one of the most beautiful parts of C++ signatures. 
Shame that it used to be inefficient, but now it’s not. 

Any function can return a class object, rather than a pointer or reference, but the 
effect is that the function itself needs to declare a local object to be returned. 
Consider this code: 

    MyClass func(int x) 

    { 

        MyClass ret(x);  // Create object 

        return ret;   // Copy object 

    } 

And then it gets copy constructed again when we call the function: 

    MyClass m = func(3); 

Move semantics solve this problem, in combination with copy elision. This special 
case is called Return Value Optimization (RVO), and allows the compiler to do 
“one-two-skip-a-few” for object copying. 

To get even more technical, this situation is called Named Return Value 
Optimization (NRVO), when a function returns a named local variable (i.e., “ret” 
here). The non-named version of RVO occurs when the function returns an 
unnamed object, such as a temporary object created as the result of a construction 
or operator. 

Some types of RVO are implementation-specific and optional for the compiler to 
do. However, NRVO is “mandated” by the C++17 standard when returning a 
named local object variable. I guess unnamed RVO will be mandated at some time 
in the future, too. 
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RVO is very efficient in that it doesn’t just convert copying to moving, but can in 
fact avoid the complete creation of temporary variables. The compiler can optimize 
the above code so that the return statement constructs or moves the object 
directly into the place where it was called from. This means not only we avoid 
various copies/moves, but also the avoidance of that temporary object’s 
constructor and destructor, too. 

Moving Multiple Objects 

Moving multiple objects arises as an inefficiency in C++ because there’s no multi-
move semantics. Some examples where you want to move multiple contiguous 
objects to a different memory location include: 

• Move capabilities for a custom multi-object container. 

• Shuffling objects along in a sorted array on insertion or deletion. 

• Auto-resizing a std::vector container (bigger or smaller). 

There’s no multi-move constructors or assignment operators in the standard C++ 
language, so there’s only single object moving methods. In practice, you can move 
multiple objects in various ways, such as: 

• Moving them one-by-one 

• std::move(begin, end, dest) overload 

Note that this is the std::move overload that does real runtime work, not the 
simpler version that’s just a type-cast to an R-value reference. 

Unfortunately, all of these ideas are calling the move constructors for every single 
object. This is fine for scalar types or classes with simple inlined versions, but it’s 
still not optimal. 

The workaround for your own class is simply to define a non-special member 
function to do fast moving, which you can call explicitly. But this doesn’t solve the 
general problem of using your new class in a container that may need to bulk-move 
your objects at some point. 
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Generic Move Operator 

Some types of objects are “relocatable” and can used an optimized move method. 
The basic ideas of move semantics refer to the difference between a “shallow copy” 
(also called a “bitwise copy” or a “byte copy”) versus a “deep copy”. The basic idea 
is this: 

• Copy assignment or constructor — deep copy 

• Move assignment or constructor — shallow copy 

The copy constructor has to make a full copy of every data member of the other 
object to create a new object. The old object is unchanged. 

The move constructor needs to transfer all of the data members from the old object 
to the new object. And then the old object needs to be “cleared” in some way, 
which leaves it in a “valid” state (so that its destructor doesn’t crash or deallocate 
memory it no longer owns). Hence, why not do these steps in general as an 
optimization: 

• Shallow move old data members to new object — bitwise copy of all bytes. 

• Clear old object’s data members — zero the old bytes. 

This idea of a relocatable object that is a C++ class object is similar to the type trait 
“std::is_trivially_move_constructible” (C++11). However, this isn’t 
quite what we want, which is a way to specify that our object is relocatable. The 
type trait instead only detects some cases where this is true. Perhaps we could set 
this type trait to “true” for our own class, and the standard container classes will 
honor this type trait setting, but I have my doubts. 

Instead, let’s think about generalizing the idea to all relocatable class types. We can 
even code up the idea: 

    template<typename T> 

    T& generic_move_assignment_buggy(T& newobj, T& oldobj) 

    { 

      memcpy(&newobj, &oldobj, sizeof(T)); // Move bitwise 

      memset(&oldobj, 0, sizeof(T)); 

      return newobj; 

    } 
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Well, that has an aliasing bug if the new and old object are the same. So, let’s fix 
that first: 

    template<typename T> 

    T& generic_move_assignment_safer(T& newobj, T& oldobj) 

    { 

        if (&newobj != &oldobj) {  // Avoid aliasing 

                memcpy(&newobj, &oldobj, sizeof(T)); 

                memset(&oldobj, 0, sizeof(T)); 

        } 

        return newobj; 

    } 

Does this idea work? 

The short answer is: yes and no. Yes, this idea can be used very often, and is 
efficient. 

Let’s look at the good news first. This approach works for all these situations: 

• Scalar types — moving an integer is a bitwise copy anyway. 

• Simple object data members — if this move approach also works for the 
sub-object. 

• Virtual functions — yes, the hidden “vptr” pointer in the old object is 
also moved by the bitwise copy. 

However, technically the full answer is “no,” because there are some problem areas 
when using this approach: 

1. Self-referring pointer data members. 

2. Virtual function problems — vptr is nulled in the old object. 

3. Virtual destructor problems — a problematic special case. 

4. External pointers into the old object (invalidated). 

5. Obscure portability problems with zero byte representations. 

Self-referencing data member problems. This is a problem when the object is 
relying internally on its own address. Self-referring internal pointers (or references) 
are data members inside the object that point to another part of the object. These 
are uncommon, and seem like bad programming style anyway. 
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Note that pointers pointing outside of the object are just fine. In fact, that’s why 
this copy-and-zero approach is efficient, because we don’t need to copy and 
reallocate any pointer data members. A bitwise copy of a pointer or reference is still 
pointing to the right place. 

Virtual function problems. The memset() function has cleared every byte to 
zero, including any of the hidden “vptr” pointers to the virtual function table. 
When there’s any virtual function in a class, then it has a hidden pointer inside the 
object. There are also other places that may have another vptr, including: 

• Base class — but it usually shares a single vptr with the derived class. 

• Multiple inheritance — requires multiple vptr’s in the object. 

• Subobject data members — if they are of a class that has its own virtual 
functions. 

If your code calls any of these virtual functions after it’s been nulled, I’m betting 
against you. Nevertheless, we might be able to work around this by simply not 
calling any virtual functions after this move sequence. 

Virtual function problems. Destructors make it a little more difficult, because it’s 
hard to stop the C++ compiler from calling them. And every class with any other 
virtual function is supposed to make its destructor also virtual. Just ask Scott Meyers 
in the very first edition of his Effective C++ book, which was good advice in the 
1990s, and still remains so. 

Hence, if our object has a virtual destructor, it may try to access the null vptr at 
some point. There’s no simple workaround to “just avoid calling the destructor,” 
since it’s called implicitly. 

External pointers into the object. I feel like we can live with this idea. If there 
are any pointers or references to refer to the old object’s internal data, they are now 
invalidated. But that’s true anyway, because the whole idea of a moved object is that 
it’s going away. 

All bytes zero portability. There’s a theoretical portability problem when 
using memset to clear an object to have all its bytes equal to zero. I’m not sure it 
even applies anymore, as I don’t know of any platform where this is a real problem. 
The concern is whether clearing all the individual bytes to zero will actually clear 
multi-byte data to its equivalent zero or null value.  

 



David Spuler                                               206 
 

In practice, these are all true: 

• Characters — byte zero is always character zero. 

• Integers (signed and unsigned) — all bytes zero is integer zero. 

• Floating-point — all bits zero is floating-point positive zero in the IEEE 
754 standard. 

• Pointers — all bytes zero is the nullptr in any platform I know. 

Hence, I’m not sure it’s a real problem, but every book on C++ portability I’ve read 
has mentioned it, so now I have, too. 

Workaround for fast move problems. I hate to give up on a really efficient idea, 
so we can point to the limitations where we need to ensure: 

• “Relocatable objects” with no internal pointers or references. 

• No virtual functions 

• No virtual destructor 

Maybe we can work around the virtual function problems by not clearing the vptr. 
Here’s the idea: 

    memset((char*)&oldobj + sizeof(void*), 0,  

                    sizeof(T) - sizeof(void*)); 

This assumes that there’s only one vptr, and it’s shared by the base class and 
derived class. Unfortunately, this idea still fails for subobjects with their own virtual 
functions and multiple inheritance where objects can have more than one 
hidden vptr. Anyway, it’s a worthy try, and we could always ban virtual functions, 
which aren’t that efficient anyway! 

Multi-move generic function. This idea can be generalized to moving a 
contiguous array of multiple objects at once. The need for such a “multi-move” 
capability is less often required, but can arise when containers resize, and we also 
need it to implement sorted array insertions and deletions. 

The above “generic” version only works for one object. Let’s think about 
generalizing the idea of bytewise moves and then clearing to zero.  
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Here are some thoughts: 

1. The idea still generally works on a mult-object block, because it’s similar 
to moving one object at a time. 

2. Overlapping ranges of objects are a problem, because the memset will 
wrongly clear some of the newly moved objects. 

Amusingly, note that we did deal with the “overlapping blocks” problem in the 
single-object generic move. It’s the same as the “aliasing” check! 

Detecting overlapping ranges more generally is a bit more intricate to code. Here’s 
my attempt at updating the generic move method to support multiple objects: 

    template<typename T> 

    T& generic_multimove_assignment(T * destarr,T* srcarr,int n) 

    { 

        if (destarr == srcarr) {  // Same exact block 

            // Nothing to do 

        } 

        else { 

            T* enddest = destarr + n; 

            T* endsrc = srcarr + n; 

            if (enddest > src && enddest < endsrc) { 

                // Overlapping (moving left safely) 

                memmove(destarr, srcarr, n * sizeof(T));   

                int num_overlap = enddest - src;  // Ptr arith 

                // Clear non-overlapping part 

                memset(enddest, 0, (n - num_overlap)*sizeof(T)); 

            } 

            else if (endsrc > dest && endsrc < enddest) { 

                // Overlapping (move right safely) 

                memmove(destarr, srcarr, n * sizeof(T));   

                int num_overlap = endsrc - dest;  // Ptr arith 

                // Clear non-overlapping part 

                memset(src, 0, (n - num_overlap) * sizeof(T));   

            } 

            else { 

                // Non-overlapping blocks (move all) 

                memcpy(destarr, srcarr, n * sizeof(T)); 

                memset(srcarr, 0, n * sizeof(T)); // Clear old  

            } 

        } 

        return newobj; 

    } 
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Compiler support? Even with the restrictions to scalar and relocatable objects, 
and other problems listed above, this idea of just moving memory blocks around is 
so efficient that maybe the compiler should provide this as an option automatically? 
Is this the default assignment operator? No, not quite, because the default move 
constructor or assignment operator is a “member-wise move” of all of the data 
members. This is the same as a bitwise move if all data members are trivial, but any 
complex classes as subobjects will need their own move constructors called. 

I like this whole idea a lot more than the normal move member functions, where 
you have to fiddle endlessly with every single data member. Come on, the single 
object version is only two statements! Hence, I’m hereby recommending to the 
standards committee that, like the “=default” specifier, there needs to be a new 
“=fast” specifier added to the C++26 language. 
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21. Arrays 

Arrays are wonderfully efficient! They’re the most basic data structure known to 
humanity. The main features to note about an array include: 

• Contiguous memory storage — great for cache locality. 

• Single type of data — no need to be worried about the type. 

In modern C++, there are several ways to create an array data structure: 

• std::array 

• std::vector 

• std::inplace_vector (C++26) 

There are also some older methods of using arrays that still work in modern C++ 
code: 

• Fixed-size array variable: int arr[10]; 

• Allocated fixed-size array: new int[10]; 

• Old-style allocated array: malloc(sizeof(int)*10); 

Note that the size of arrays in these examples don’t need to be a compile-time 
constant in C++. They can be a variable, where the size of the declared array is 
sorted out at run-time. 

Array Operation Complexity 

There are two main types of arrays to store objects: sorted and unsorted. Well, 
actually, there’s other types of arrays with different semantics (e.g., stacks, queues, 
heaps, ring buffers), but let’s just look at searching and sorting for now. 

Are they fast? Here’s the 10,000 foot view: 

• Unsorted arrays — very fast insertions/deletions, but slow searches (linear) 
and even slower to sort the data. 

• Sorted arrays — faster search (logarithmic), slower insertions/deletions, 
and great if you need sorted data. 
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In more detail, here’s the overall complexity analysis of the basic searching methods: 

• Searching — unsorted is O(n) (linear search) and O(log n) for sorted (binary 
search). 

• Inserting — unsorted is O(1) (add to the end), but O(n) if sorted (shuffle 
required). 

• Deleting — this is O(1) if unsorted (tricky swap method!), but O(n) if 
sorted (also shuffles). 

• Print unsorted — both are O(n) with a linear scan of the array. 

• Print sorted — unsorted is O(n log n) because it requires a sort, but 
only O(n) if already sorted. 

And some other algebraic operations: 

• Maximum/minimum — unsorted is O(n) because it requires a scan, but 
only O(1) if already sorted (choose first or last element). 

• Top-k elements — unsorted requires an O(n log n) sort or at least a “partial 
sort”; only O(k) for a sorted array. 

• Sum or average — both are O(n) because the whole array must be scanned. 

Modern C++ Arrays 

We’re going to implement our own sorted and unsorted arrays to examine the 
algorithms. Standard C++ already has two types of unsorted arrays 
in std::array and std::vector. We could just wrap around those types, but 
I’m going to use low-level raw arrays to show the algorithms in more detail. 

Sorted arrays are trickier. Note that there’s no “sorted array” class in the standard 
C++ library.  

However, there are some primitives we can use to achieve sorted arrays: 

• std::sort() — modern C++ version with a hybrid quicksort/heapsort 
algorithm. 

• qsort() — old-style quicksort with function pointers (not 
recommended). 
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There is also some builtins for “binary search” on a sorted array: 

• std::binary_search() — modern C++ implementation for array. 

• std::equal_range() — binary search that handles duplicate elements 
in the array. 

• bsearch() — old-style binary search with function pointers (not 
recommended). 

If we are inserting into a sorted array, we don’t need binary search exactly, because 
we’re assuming the element isn’t already in the array. Instead, we need a “binary-
like search” method of finding the index location to insert a new item. In other 
words, we need to find the spot where the item fits in the array, but do it 
logarithmically, rather than using a slow linear scan. 

Writing a binary-like search algorithm to find the insertion point is very fiddly 
coding! Fortunately, the standard C++ library has two methods that code it for us: 

• std::lower_bound() — generalizes binary search for insertions. 

• std::upper_bound() — similar version that finds the location above. 

Strictly speaking, std::binary_search() in the C++ standard only requires a 
“partitioned” array rather than a “sorted” array. But for a scalar type with well-
defined comparisons, this is the same thing. 

Custom Array Implementation 

Anyway, let’s look at some of the basic operations in our custom versions of array 
algorithms. We’ll examine the unsorted array version, but the sorted version is 
almost identical. Here’s the overall class members: 

    template<typename T, int N> 

    class UnsortedArray { 

    private: 

        T arr_[N]; 

        int capacity_ = N; 

        int count_ = 0; 

        //... 

    }; 

Note that “capacity_” is somewhat redundant if we’re templating based on a 
compile-time array size. However, it would be useful if we were dynamically 
constructing our arrays at runtime. 
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Here are some of the basic “getter” functions: 

    int size() { return count_; } 

    int count() { return count_; } 

    int capacity() { return N; } 

And here are some of the basic utility functions: 

    bool empty() { return count_ == 0; } 

    bool full() { return count_ == N; } 

Container Deletion Pitfalls 

While we’re on the topic of deletions, let’s look at some common mistakes with 
deletions from C++ containers. There are at least two major pitfalls in using 
the erase() method to remove an object from a C++ container. Here’s the basic 
first attempt: 

    for (auto iter : container) { 

        if (want_to_delete(*iter)) { 

            container.erase(iter);  // Kaboom! 

        } 

    } 

This will crash with a big mushroom cloud. The problem is that we’ve assumed the 
iterator stays valid, whereas the erase() method actually returns an updated 
iterator that we need to use. We can’t use a range for loop to do this, so we have 
to use begin() and end() manually: 

    for (auto iter = container.begin();  

                iter != container.end(); ++iter) { 

        if (want_to_delete(*iter)) { 

            iter = container.erase(iter);  // Use return value 

        } 

    } 

This is not a crash, but still a major bug. The iterator loop skips over the next item 
after the erased object. There are two increments in the deletion sequence: 

1. erase() returns the next valid iterator (after the removed object), and 

2. ++iter skips to the next element (again!). 
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To get it correct, we need to change the idiom to avoid ++iter if we erase 
anything. 

    for (auto iter = container.begin();  

                   iter != container.end(); /*Not here!*/ ) { 

        if (want_to_delete(*iter)) { 

            iter = container.erase(iter);  // Use return value 

        } 

        else { 

            ++iter;  // Only if not erasing! 

        } 

    } 

And now the code finally works! 

Bypassing Interfaces 

The std::array and std::vector classes are designed to allow you to get 
access to the stored data via the data() member function. It’s also guaranteed that 
the data is stored in contiguous memory locations. Note that this is also true 
of std::string, which has a data() member and also c_str(), which 
returns the same address. 

The data() method allows direct access via pointers or low-level array types to 
the data in the standard array or vector containers. Whether doing this is any faster 
is unclear, and needs benchmarking, since many of the member functions are simple 
pass-through inlined functions that work on the internal data anyway. 

But there’s certainly a few pitfalls! The address returned by the data() member is 
not guaranteed forever. There are at least two major types of bugs: 

• Object is destroyed, or 

• Object is moved or modified. 

Since you have a pointer to an object’s data, you want that object to stick around. 
But the object can disappear in a few ways: 

• Stack object goes out of scope (triggering the destructor and unwinding 
the stack). 

• Allocated object is deallocated by the delete operator. 

• Object is moved by a container (e.g., an auto-resize or other “iterator 
invalidation” situation). 
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Even if the object stays around to watch your skills, there’s another problem. If the 
underlying object is modified, then the internal address of the data that you have 
may become invalid. The issues are very similar to the well-known “invalidated 
iterator” problems with containers. Changes to the container that probably 
invalidate the data() pointer include: 

• Insertions and deletions 

• reserve() 

• resize() 

• shrink_to_fit() 

Any of these members that modify the object are allowed to move the data. For 
example, they might allocate a different memory block, and move the whole array 
away from your pointer. But there are a huge number of other situations under 
which an iterator into a container may become invalidated, which presumably also 
invalidates an old address returned from the data() member function.  

Watch out! 
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22. Unsorted Arrays 

Unsorted Arrays Overview 

Unsorted arrays are not an all-star data structure, and don’t get a lot of use for basic 
search requirements. The main features include: 

• Slow search lookups in cases like associative arrays or sets (linear scan cost). 

• Fast insertions and deletions (constant cost, without any “shuffle”). 

• Sorting an unsorted array is costly with O(n log n) complexity. 

Unsorted arrays are very useful if we want fast insertions and deletions, but rarely 
need to search or sort the array. Insertion is very fast with constant time, just by 
adding the new element at the end of the array. Deletions can also be implemented 
in constant time, but only via a trick of swapping the to-be-deleted element with 
the last element. 

Interestingly, we can always fix our unsorted array by sorting it, and that turns out 
to be a decent idea. Let’s examine the two ways to get a sorted array: 

• Build an unsorted array, then sort it, or 

• Incrementally maintain a sorted array. 

The first plan costs O(n) in total to do all the n insertions (unsorted), and then 
costs O(n log n) to sort it with std::sort. The second plan costs O(n) for every 
one of the n insertions into a sorted array, and so we get to O(n^2) quadratic 
complexity for the incremental sorted array approach. In summary, our analysis 
suggests: 

• Unsorted array (sort it later) — complexity of O(n log n). 

• Sorted array (incremental) — quadratic O(n^2) complexity. 

An unsorted array might be the way to go? However, as discussed above, it’s not as 
bad as that sounds if we have scalar types in a sorted array, because the “shuffle” is 
a single memory block copy. 
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Note that an unsorted array is actually sorted in a weird way: by the order of 
insertions. Hence, if you have an ordered sequence of data, they are mapped into 
the array sequence according to the order in which they are processed. If these 
objects have an associated timestamp, your supposedly unsorted array may well be 
sorted implicitly according to the timestamp field. 

Unsorted arrays are underestimated, and can be efficient in practice. An array that 
is unsorted functions as a list of items, but is stored in contiguous memory, which 
can make scanning the array efficient in terms of cache locality (e.g., faster than 
linked lists in std::list or red-black binary trees in std::map). 

Unsorted arrays can be useful for semantics other than basic search lookups. An 
array can efficiently implement a fixed-size stack, but a fixed-size queue is better 
implemented using a ring buffer that progresses around the array in a circular 
fashion. You can also put a balanced binary tree or a heap data structure into an 
array, but we’re getting far away from a basic unsorted array in doing that. 

Linear Search of Unsorted Arrays 

Linear search is the worst part of unsorted arrays. There’s not really a better way to 
search an unsorted array. Here’s a simple hand-coded linear search of the array to 
demonstrate the algorithm that’s happening: 

    int find_linear_search(const T &item) 

    { 

        for (int i = 0; i < count_; i++) { 

            if (item == arr_[i]) return i;  // found 

        } 

        return -1; // not found 

    } 

The above assumes we’re stored our data in a raw array type as the data member. 
If we choose to store the data as std::array or std::vector, we could use 
standard member functions to search the array, such as find(). 

Note that if we were doing a lot of searches of an array without many insertions or 
deletions, here’s an idea: pre-sort the array! This gives us this approach: 

1. Pre-sort the array with std::sort 

2. Use binary search on our newly sorted array (logarithmic complexity). 
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Template Value vs Reference Parameters 

Templating based on a type has a common conundrum about how to choose 
between passing function parameters by reference or value. The desirable efficient 
that we want is usually: 

• Small integer types — pass-by-value. 

• Large class types — pass-by-reference. 

Which signature should we use? 

    int find_linear_search(const T &item)  // Const reference 

    int find_linear_search(T item)  // Pass-by-value 

Which one we desire for larger non-class types, such as long or double, is 
somewhat implementation-dependent and you really need to benchmark to check! 
Unfortunately, there’s no way to alter the signature of a templated function 
according to a compile-time setting. I don’t think there’s a way to do it in type traits. 

However, the most common modern C++ style is to use const reference 
parameters. The reasons are: 

• Large class types — const& references are much faster. 

• Small integer types — it’s not much worse. 

In one sense, I’m not sure about the last point, because: 

1. It’s a micro-optimization, and 

2. The compiler may auto-optimize it anyway. 

But there is a simple solution whereby you can use const& reference parameters 
for generic types, but use pass-by-value for small integers. Template specialization 
to the rescue! Just define specialized versions of templated functions for the handful 
of small integer types: 

    int find_linear_search(int item)  // Pass-by-value 

    { 

        // etc... 

    } 

Now you only have to define about 27 more versions for every type. 
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Fast Linear Search 

You’re thinking that this doesn’t exist, and the heading is an oxymoron. But there 
are situations where linear search on an unsorted array can be faster than the 
alternatives: 

• Small number of elements 

• Sentinel search optimization 

• Low-level support for searching 

• Parallel linear search 

Let’s examine all of these techniques in turn. 

Sentinel linear search optimization. This is an optimization attributable to 
Knuth (1973) in the Mix programming language. The idea is to remove the 
conditional test in the loop (i.e., removing “i < count”) by guaranteeing a 
successful search. The trick is to add an extra element at the end of the array, which 
equals what we’re searching for. 

Note that this requires that we declare our array data member with one more item 
than the capacity. We always need a spare element at the end, even if the array is 
full to capacity. 

        T arr_[N + 1];  // Extra dummy element 

Sentinel-based searching is only good for arrays of scalar types, because it requires 
making a copy of the search element, which is created at the end. The sentinel 
search of an unsorted array still has linear complexity, but has a lower complexity 
constant because each loop iteration is faster in practice. 

Low-Level Search Support 

Some types of CPU have explicit instructions that support scanning a memory 
block for a value. If we’re using an array of characters or bytes, there are these 
candidates: 

• std::find — on an array, vector, or string type. 

• strchr — old-style character strings (null-terminated) 

• memchr — low-level memory blocks of bytes. 
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The modern C++ code using std::find looks something like this: 

    bool find_standard(const T& item) 

    { 

        auto iter = std::find(arr_, item); 

        return iter != arr_.end(); 

    } 

The version that returns the integer index of the element in the array is: 

    int find_standard_index(const T &item) 

    { 

        auto iter = std::find(arr_, item); 

        if (iter == arr_.end()) return -1;  // Fail 

        return iter - arr.begin();  // Pointer arith 

    } 

Note that this idea only works for arrays of contiguous memory. Pointer arithmetic 
doesn’t work well on general iterators for dynamic memory containers. 

Parallel Linear Search 

There are multiple ways that we could parallelize our linear search algorithm. It just 
depends on our budget! Here are some options: 

• CPU SIMD instructions (e.g., AVX or ARM Neon) 

• Multithreading (on CPU) 

• GPU hardware 

SIMD instructions allow use to test multiple values in parallel on a CPU. For 
example, an x86 CPU from Intel or AMD allows the AVX sets of instructions, and 
there are a few versions: 

• AVX — 128 bits (4 x 32-bit integers). 

• AVX-2 — 256 bits (8 x 32-bit integers). 

• AVX-512 — 512 bits (16 x 32-bit integers). 

• AVX-10 — 1024 bits (32 x 32-bit integers). 

CUDA C++ GPU linear search. If we have an NVIDIA GPU, this advanced 
type of parallelism is much more extensive. In fact, we can create 1024 threads, and 
each thread can compare only a few elements with our search key.  
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This sounds like an almost constant-time algorithm on the GPU, but it’s not quite 
that good. In practice, there are two phases: 

1. Compare each loop element in parallel, and 

2. Collate the results. 

The GPU can compare all the array elements 1024 at a time. Hence, it’s not constant 
time, but it’s still linear time divided by 1024. 

Also, at the end we have a synchronization problem with detecting which of the 
threads had a successful result of the comparison. It’s not quite as bad as a 
“horizontal reduction” of the array (e.g., max or sum), but we have to synchronize 
the results in shared memory or global memory.  

We could use “warp shuffle” instructions that coordinate via faster GPU registers, 
but these only work within each warp of 32 threads, so it ends up being like a 
horizontal reduction over each warp. 

Unsorted Array Insertions 

Inserting into an unsorted array is very fast because we can just insert it at the end. 
This is very efficient with constant time complexity.  

The code example for insertion at the end: 

    void insert_end(const T & obj) 

    { 

        if (full()) { 

           throw std::overflow_error("Insert full array"); 

        } 

        else { 

           arr_[count_++] = obj; 

        } 

    } 

There’s nothing much to this code: only one statement! It’s very efficient to insert 
at the end of an array. 
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Insertion at an Index 

Inserting in the middle of an unsorted array seems to be an O(n) operation. If we 
needed to insert into the middle, it would seem slower because of the need to 
shuffle the other elements out of the way. And that would certainly be true of a 
sorted array, where a shuffle is needed to maintain the sorted array. 

But, no, we’re talking about an unsorted array here. Let’s ban the shuffle. 

There’s a move trick to insert into the middle of an unsorted array at a given index 
in O(1) time. The trick is to note that in an unsorted array we only need to move a 
single element out of the way. The idea is two short phases: 

1. Move the existing element “out of the way” and to the end. 

2. Insert the element at that location. 

Here’s a coded version of the “move away to the end” optimization. One fast way 
is to use std::move, which is like a type cast with no runtime code, and this causes 
move assignment on a complex object (or simple byte copying on a scalar type). 
Here’s the code: 

    void insert_at_offset(const T & obj, int offset) 

    { 

        if (full()) { 

           throw std::overflow_error("Insert full array"); 

        } 

        else { 

           // Move to end 

           arr_[count_ + 1] = std::move(arr_[offset]);   

           arr_[offset] = obj;  // Insert at location 

           count_++; 

        } 

    } 

Note that this only works for an unsorted array, not a sorted array. If we wanted a 
sorted order, or we need the implicit order-of-insertion in an unsorted array, then 
this “move to end” idea cannot be used as it will ruin the ordering. 
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Fast Unsorted Array Deletion 

There’s a trick for deleting an arbitrary element from an unsorted array that is often 
missed in articles. Unsorted array deletion need not be O(n) complexity, but can be 
done in O(1) time. 

Deletion of an item from an unsorted array is a two-phase operation: find and 
destroy. Here’s the code to find the element, which uses linear search to find its 
offset, and is thus O(n) unavoidably: 

    void delete_key(const T& item) 

    { 

        int offset = find_linear_search(item); 

        if (offset == -1) { 

          throw std::invalid_argument("Delete not found"); 

        } 

        else { 

          delete_offset_swap(offset); 

        } 

    } 

The naive idea for deleting from an unsorted array that we’ve found here is to 
remove the element and “shuffle” the rest of the elements downwards (to the left) 
so that there’s no “gap” in the array. Doing a shuffle isn’t so bad for scalar types, 
where it’s probably just one call to memmove behind the scenes. But for non-scalar 
objects, we’re moving a lot of objects. Either way, our unsorted array deletion with 
a shuffle has cost complexity of O(n) time. 

There is a faster way! 

First, let’s get rid of the special cases: if there’s only one element in the array, just 
erase it, and set the count to zero. And if the erase location is the end-most object, 
just erase it there, and decrement the count. Otherwise, if the object we want to 
remove is at the front or middle of the array, we do a tricky swap with the end 
element: 

• Swap arr[i] with arr[n-1] 

• Erase at arr[n-1] 

• Decrement n 

This swap idea has changed our unsorted array deletion from O(n) time to the 
optimal O(1) complexity. There’s no loops anywhere! 
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Note that we can use std::swap here, and we may need to explicitly run the 
destructor of objects being destroyed (optional for scalar types). Here’s what the 
code looks like: 

    void delete_offset_swap(int offset) 

    { 

            if (empty()) { 

                throw std::underflow_error("Delete empty arr"); 

            } 

            else if (count_ == 1) { // *** 

                if (!std::is_trivially_destructible<T>::value) { 

                    arr_[0].~T(); // Explicit destructor 

                } 

                count_ = 0; 

            } 

            else { 

                if (offset != count_ - 1) { 

                    // Swap with the end element 

                    std::swap(arr_[offset], arr_[count_ - 1]); 

                } 

                if (!std::is_trivially_destructible<T>::value) { 

                    arr_[count_ - 1].~T(); // Expl destructor 

                } 

                count_--; 

            } 

        } 

The above code uses “type traits” from modern C++ to detect whether or not we 
need to explicitly run the destructor when destroying an object in the array. This is 
very efficient because type traits are evaluated to compile-time constants, so the 
compiler should optimize out the path if not needed (i.e., using “dead code 
elimination”). There are several options available in the type traits library, 
depending on exactly what types we want to support in our array: 

• std::is_trivially_destructible<T>::value 

• std::is_destructible<T>::value 

• std::is_scalar<T>::value 

Actually, the above code has a minor inefficiency. The giveaway is that two code 
sequences with is_trivially_destructible are similar. Can you see it? We 
don’t need to expressly test for count==1 (marked with stars), because the general 
code in the else clause also works for that special case as well. 

And also, what was I thinking? There’s no need to swap the element to the end, 
only to destroy it there. That’s two hidden moves inside std::swap, when we 
only need one moved element.  
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The better idea than swapping is to destroy the object where it is, and then move 
the end element down: 

    if (!std::is_trivially_destructible<T>::value) { 

        arr_[offset].~T(); // Destroy in place 

    } 

    if (offset != count_ - 1) { 

        // Move down the end element 

        arr[offset] = std::move(arr_[count_ - 1]); 

    } 

    count_--; 

Note that std::move() here is only a compile-time type cast operation. It will 
ensure that the move assignment operator is used on complex class types, and is 
also efficient for scalar and other trivial types. 

Yes, moving the end element to the middle of the unsorted array changes some 
addresses. It will certainly invalidate iterators over the container. But so would the 
shuffle of elements, so we’re okay there. 

Note that this only works for an unsorted array data structure. If we did this on a 
sorted array, we’d ruin the sorting order in the array by moving the biggest element 
into the middle of the sequence. Sorted arrays need to do the shuffle. 

One final point is that this fast deletion trick with swapping will break the unofficial 
ordering of the array by its insertion order. If we have timestamps associated with 
our array elements, swapping the end element into the middle will ruin that implicit 
ordering. 
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23. Sorted Arrays 

Sorted Arrays Overview 

There is no standard C++ sorted array class, so we’ve got to implement our own. 
The C++ containers that can be used for sorted arrays include: 

• std::vector — variable size. 

• std::array — fixed size at compile-time. 

• Native C++ arrays — old-style non-container builtin arrays. 

A sorted array has a good search lookup cost, being logarithmic in the total number 
of elements, by using the “binary search” lookup algorithm. However, that’s not as 
good as a hash table (e.g., std::unordered_map), which has O(1) average search 
cost. 

Insertions and deletions have a poor O(n) theoretical complexity, although the first 
phase of finding where to insert or delete is also logarithmic, using an algorithm 
very similar to binary search.  

The linear cost arises because once they find the location, they then need to shuffle 
elements: 

• Make a gap (insertion), or 

• Close a gap (deletion). 

If we’re using a class object for our array, such as std::array or std::vector, 
we can use the insert() method. This is doing a shuffle behind the scenes. 

The main advantage of a sorted array is that it’s, well, sorted, so if we want to 
process the array elements in sorted order, then it’s already done for us. That’s 
desirable because raw sorting of an unsorted array is expensive with its well-
known O(n log n) complexity (e.g., std::sort typically uses a quicksort-heapsort 
hybrid). 
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If we need to use sorted data, there are other options in the C++ containers. 
The std::map container is implemented as a balanced binary tree, called a “red-
black tree,” and this has logarithmic complexity for all major operations: search, 
insertions and deletions. However, a sorted array has good memory cost because it 
uses contiguous storage, so it should not be underestimated! 

Shuffling Array Elements 

Shuffling of array elements along by one location is required for both insertion and 
deletion in sorted arrays. Shuffle right to create a gap for a new insertion, and shuffle 
left to close a gap after deletion. We can also use this idea for unsorted arrays, but 
there are faster tricks, as examined later in this section. 

In practice, shuffling of sorted arrays is quite efficient for scalar types via a memory 
block copy, using the memmove() standard function. Note that memmove() is an 
older function that does a bytewise copy of the memory that ignores object 
constructors and move operators. Presumably, the standard insert() method is 
using fast byte copies for scalar types. 

Here’s an obscure pitfall: we cannot use various other copying methods because 
the shuffle involves overlapping source and destination memory blocks. There does 
not seem to be a version of C++ copying that permits overlaps. These functions 
would be incorrect and lead to undefined behavior on overlapping memory blocks, 
which is definitely true of any array shuffle: 

• std::memcpy (old C-style) 

• std::copy_n 

However, we can use the overloads of the std::move function that work on 
ranges of multiple objects. These version of std::move have a real runtime cost, 
unlike the basic version, which is a compile-time type-cast that converts to a 
movable R-value reference (with no runtime code generated). We also need to pay 
attention to whether we are shuffling to the left or right, because these functions 
don’t work for all overlapping arguments. 

• std::move or std::copy — moving or copying left (i.e., close a gap 
for deletion). 

• std::move_backward or std::copy_backward — for moving or 
copying right (i.e., create a gap for insertion). 
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Note that using the std::copy or std::copy_backward functions also work 
here, but the copying operation is slower than moving for non-scalar types. Hence, 
the std::move versions are more general, but still have some downsides: 

• Expensive for non-scalar objects. 

• Iterators are invalidated on the array. 

• Invalidates any pointers or references to specific objects. 

Unfortunately, the shuffle cost is terrible for complex objects that will require their 
move operators called for every single object. I can’t say that I recommended sorted 
arrays for those types. Note that there are also various types of objects where we 
could still use a memory block move to do a “shallow move” of the objects (i.e., 
“relocatable objects”), rather than individually moving each element. However, 
using this idea requires tricks to prevent the C++ container from doing its move 
thing, such as using a low-level raw array rather than std::vector. 

Binary-Like Sorted Array Insertion 

Sorted arrays are logarithmic for searches, but not quite as good for insertions and 
deletions. Inserting a new element into a sorted array is a three-phase algorithm: 

1. Find the location to insert, 

2. Shuffle elements to the right (create a gap), and 

3. Insert the new element at the location. 

There are three ways to find the location in a sorted array: 

1. Linear search from the front. 

2. Linear search from the back. 

3. Binary-like search (faster!) 

Linear search over a sorted array doesn’t use equality, but finds the first element the 
bigger than the new element. Or to go in reverse, start at the end and look for the 
first element that’s smaller than the new one. 
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The advantage of starting at the end is that we can shuffle as we go, but it’ll have 
terrible cache locality problems in accessing memory addresses in reverse. CPU 
memory prefetch algorithms usually assume a forward access order. 

Anyway, neither of the linear algorithms are fast and they aren’t typically used. 
Instead, binary-like search for the insertion point is much faster, with a logarithmic 
complexity. 

Binary-like search for insertion involves splitting up the array into two intervals, 
and choosing between the two based on the midpoint value. This is not exactly the 
same as binary search, because we’re assuming that the element is not already in the 
array. Hence, it’s like binary search, but we’re looking for smaller versus bigger 
elements in comparison to the new element, rather than seeking equality. 

You can code your own binary insertion algorithm, or the standard C++ library has 
two functions to help: 

• std::lower_bound() 

• std::upper_bound() 

These functions are general methods on many containers, but they require the 
underlying data to be sorted, or “partitioned” is the official term. It means the same 
as “sorted” for everyone except polymaths who like Abelian groups. 

Hopefully, this is coded in the standard library via a binary-like search method, and 
is therefore fast. It should have logarithmic complexity. However, if we follow it up 
with an insert() call, then that’s an array shuffle that’s likely to be linear in cost. 

Note that there’s no equivalent “binary deletion” algorithm when we’re deleting 
from a sorted array. That just uses normal binary search to find the element, such 
as std::binary_search, if it’s there, and then we can remove it. Insertion is 
different to deletion in that sense. 

Sorted Array Deletion 

Deletion of an element in a sorted array is easier than insertion. There are two major 
phases: 

1. Find the element using binary search. 

2. Shuffle the elements left to close the gap. 
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Note that we’re using real binary search, not the binary-like search for insertion, 
because we assume the element is present. We can’t delete an element that’s not in 
the array. Hence, we can use std::binary_search to find the element. 

The deletion phase is a left shuffle of all the array elements. As discussed above, we 
can do a byte copy such as memmmove() or std::move, which both are well-
defined with overlapping memory blocks. 

These methods can be efficient for scalar and other trivial types where bitwise 
shallow copying is allowed, but may trigger a cascade of move constructors or move 
assignments on complex classes. Thus, sorted arrays can be potentially inefficient 
for non-scalars because of the hidden costs of shuffling objects. 

Batched Multiple Insertions in Sorted Arrays 

The optimization here is that we can perform two or more sorted array insertions 
faster if we do them together. There are several possibilities to consider: 

1. Adjacent sequences — if we have two or more items that “fit” between 
two elements of the array, we can insert them in a block, and do only one 
shuffle. 

2. Sorted sequence — if we have a sorted list of two or more new elements 
to insert, we can insert them by doing a single scan of a merge sort (i.e., 
merging two sorted arrays into one longer array). 

These ideas are certainly more efficient than naive repeated insertions, but they are 
special cases. However, looking at those efficiency gains, we get the inspirational 
idea of a more general way to handle a sorted array with lots of insertions: 

1. Defer insertions by storing to-be-inserted data in a separate location. 

2. Batch insert all of the new data later (e.g., every 100 insertions). 

For example, we could store the first 100 to-be-inserted elements in a separate array 
of 100 elements. Or reserve an extra 100 elements at the end of the main vector. 

However, correctness before efficiency. Our to-be-inserted array elements are 
supposedly already inserted into our sorted array, so they should be found by 
search, and should be able to be deleted, too. Hence, both search and deletion 
algorithms will need to look in two locations, which gets complex and bug-prone, 
not to mention less efficient. 
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Even assuming we’ve fixed those bugs, the overall efficiency of this batched-
insertion method is actually not that great. We’ve overlooked the practical problem 
that the batched insertion step needs the 100 extra elements to be in sorted order 
before the merge. So, we’d have to run std::sort() on the new array of 100 
extra elements, before merging them into the main sorted array. 

Alternatively, we could maintain our 100 elements as a sorted array, but then your 
boss might notice this oddity that could be hard to explain on a whiteboard: 
maintaining insertions into a sorted array to optimize insertions into a sorted array. 

I’m not sure how much we’ve actually improved things? My brain is about to 
explode figuring it out, but feel free to talk amongst yourselves. I’m going to analyze 
deletions instead. 

Batched Multiple Deletions in Sorted Arrays 

The deletion of an element in a sorted array is a “find-and-destroy” sequence that 
is quite inefficient. The finding of the element is fast using binary search, with a 
logarithmic cost. However, the shuffle required to remove an array element in the 
middle of the array has linear cost. 

If we’re doing a lot of deletions, the cost is significant from a lot of shuffling. If 
we’re inserting and later deleting n elements into a sorted array, and each deletion 
is linear, then it’s quadratic in complexity. 

Can we do better? 

Yes, and there are multiple ways to do so. Some of the options include: 

• Deleting a range of elements 

• Deferred deletions 

The simplest idea is to delete two or more array elements at once. This reduces 
multiple deletions to a single shuffle operation. However, it’s not always possible 
to know that our many deletions will be in a subrange or even pairs of adjacent 
elements. 

The more general case of multiple random deletions can be optimized via deferred 
deletion algorithms. The idea of deferred deletions is to track multiple deletions, 
possibly in some other ancillary data structure, and then finalize the deletions all at 
once. 
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Deferred Deletions with Extra Data Structure 

The idea of optimizing a large number of deletions is to group multiple deletions 
and then perform them together. For example, if we track the locations to be 
deleted, and can then detect adjacent pairs of elements (or more), then these 
subarrays can be deleted together. This is efficient because we shuffle once per 
deleted subarray rather than once per deleted array element. 

Here’s an idea: store the array indices for deferred deletion. The approach involves: 

1. Store indices of to-be-deleted elements in a secondary data structure, and 

2. Later, we scan this data structure to look for adjacent indices, which can 
be deleted together, which is faster. 

In addition to the gain of processing merged pairs or longer subarrays of elements, 
the shuffle can also be optimized to move smaller chunks around, by removing the 
“gaps” where the to-be-deleted elements are located. 

This approach is workable, and fortunately there’s only two problems: 

1. Bugs, and 

2. Slugs. 

The downsides of this approach of storing the indices of the to-be-deleted elements 
include some major potential bugs: 

• Insertions will mess up the indices in the secondary data structure. 

• Searches will still find the to-be-deleted items. 

Fixing these problems is not easy, and certainly not efficient. And even if we only 
had multiple deletions in a row, this approach is also not especially efficient in 
general, with both space and time overhead: 

• The space overhead of the secondary data structure. 

• Extra time cost of updating a secondary data structure (and destroying it). 

• The algorithm to find adjacent indices is inefficient (e.g., sort the indices). 

The other major problem with this approach of using an extra secondary data 
structure containing deletion offsets is simply: it’s unnecessary. There’s a better way. 
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Deferred Deletion & Vector Defragmentation 

There’s a simple way to handle deferred deletions in a sorted array, and it doesn’t 
even require an extra data structure. The basic strategy looks like: 

1. Mark each deleted element as “to-be-deleted” (later). 

2. Ignore all to-be-deleted elements (e.g., when searching). 

3. Remove all the to-be-deleted elements together (using vector defrag). 

How do you mark an array element for deletion? There are two basic strategies: 

1. Add a new Boolean flag in the array, or 

2. Special values 

Extra Boolean Flag Method. Obviously, if our array elements are large objects, 
then we could just add another bool data member to mark its status. But if our 
array elements are small, such as an array of integers or timestamps or other scalars, 
then adding an extra data field is inefficient in terms of both space and time. 

Extra space cost will be at least a byte per array element, and likely more due to 
alignment considerations. Larger array elements also reduce cache locality and will 
impact speed. 

Special Values Method. The idea of using a special value is to re-use an existing 
data field in the array, rather than adding to its size. Some common special values 
to consider include: 

• 0 

• -1 

• nullptr 

• Negatives 

Usually, we will just use a single, fixed special value such as 0 or -1. However, if 
we want to mark the data, but still be able to know what the original data value was 
at that location, one way is to negate it (reversibly). The slow way to do this is to 
multiply by -1, whereas the faster way is to toggle the sign bit. 
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No matter what method is used, the key point is that we are able to look at an array 
element and decide whether it’s valid or a to-be-deleted array element. We’ll need 
to use that function in all of the other array operations. 

Searching and Insertion with Deferred Deletions. Note that it’s quite tricky to 
ignore the to-be-deleted elements during search and insertion. The binary search 
algorithm may still “find” the number in a to-be-deleted array element, in which 
case you need to check adjacent array elements, as there may be a non-deleted array 
element with the same value. 

Sorted array insertion with some to-be-deleted elements should still work. The 
sorting of the array key should be maintained across both valid and already-deleted 
elements. Inserting a new element will change all the array indices, but note that 
we’re not tracking these indices for our deferred deletion algorithm, so this shuffling 
from insertion doesn’t cause problems with the deletions done later. 

An interesting wrinkle in this method occurs when an insertion matches the 
location of a to-be-deleted element via the binary insertion method. In this case, 
the new element can simply replace the to-be-deleted item, and no shuffle is needed, 
leading to a very efficient insertion. Furthermore, even if not, our shuffle for 
insertion can be shorter, as it only needs to shuffle the elements until the first to-
be-deleted item is found (i.e., only shuffle up to a “gap” in the array). 

Searches and insertions are not the only code to modify. You also need to ignore 
the to-be-deleted elements in any other array operations, such as printing the array 
elements or other linear scan. It’s actually quite error-prone to have to remember 
to handle already-deleted elements in every other operation. Easy to leave an 
insidious bug this way! 

Vector Defragmentation. The final stage of this deferred deletion algorithm is to 
clean up the array to remove all of the to-be-deleted array elements. Until this is 
done, the array could be wasting a significant amount of space. 

The idea of vector defragmentation is to scan the entire array and compact all the 
valid array elements together. This is accomplished via a simple two-pointer 
algorithm. At the end, we need to resize our full array down to the reduced number 
of stored elements. 

Phew! That was a lot of special cases to handle for our delayed deletion algorithm. 
Hope it’s worth it! 
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Many Searches, Insertions & Deletions 

The general case is a sorted array that’s undergoing a large volume of searches, 
insertions, and deletions. A sorted array is not necessarily the best data structure for 
that, but the assumption is that we need a sorted array for some other reason, such 
as fast scanning of the entire array through its contiguous memory. 

Searching is not the problem. The binary search algorithm is very efficient with 
logarithmic complexity in both average and worst-case cost. 

Insertions and deletions in a sorted array are much worse, since both involve a 
“shuffle” that is linear in cost. In both cases, the main optimization to consider is a 
deferred algorithm, where multiple insertions and deletions can be delayed, and 
then performed as a group. Overall, this deferred batching idea doesn’t seem to 
work very well for insertions, but works extremely well for deletions. 

In practice, the shuffle is not that bad, because it’s just a big memory block copy 
using memcpy() or memmove() or similar functions. Thus, if the array elements 
are a scalar, or any other similar “plain old data” object type that doesn’t require a 
move constructor or move assignment operator, then it’s not really O(n) complexity 
to do insertion or deletion in a sorted array. Hence, the benefits of using deferred 
deletion with vector defragmentation may not be as great as they seem. 

Extensions 

1. Benchmark the sorted array implementation with a raw array versus 
using std::vector as the internal data array, especially to see if our 
hand-coded binary search is fast or not. 

2. Explore the use of “shallow copying” on sorted arrays containing 
“relocatable objects” in the shuffle needed for insertions and deletions in 
a sorted array data structure. 

3. Explore the efficiency of calls to move constructors in a “shuffle” for a 
sorted array implemented using std::vector or std::array. 

4. Implement the binary-like search algorithm to find the insertion location 
in a sorted array. (Note that deletion is just the normal binary search to find 
the element.) 

5. Benchmark inserting into an unsorted array and then sorting 
using std::sort, versus incrementally maintaining a sorted array. Do the 
results differ for a scalar integer type versus arrays of an object 
like std::string (which has move operators)? 

6. Implement a hybrid binary-linear search where the binary search reverts to 
linear search once the interval is small enough. 
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7. Implement an AVX SIMD version of linear search over integers that tests 
a number of integers in the array at once. 

8. Implement a “cache-aware” binary search that chooses the middle index at 
the start of a cache line (where possible), and tests all values in that cache 
line immediately using an unrolled linear search. 

9. Implement a binary search that is both cache-aware and uses AVX SIMD 
instructions to test all elements in the same cache line more efficiently. 

10. Implement a sorted array with deferred insertions and deletions. 
11. Is there a better way to optimize insertions into a sorted array via batched 

insertions or deferred insertions (in the general case)? What about if we 
exclude searches and deletions, so that it’s only a sequence of many random 
insertions? Maybe we can build some other data structure with better 
insertion complexity, such as a red-black tree (std::map), and then 
linearize it into the array with a tree traversal at the end. 
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24. Order of Insertion 

Whenever you hear the words “order of insertion” in a set of requirements, it 
should be associated with certain ideas. Note that this is exactly the same as First-
In-First-Out (FIFO), which means that any type of queue is good at this: 

• Linked list queue — std::queue container. 

• Doubly-linked list queue — std::deque container. 

• Array queue or dequeue — a ring buffer. 

However, order-of-insertion is not necessarily a queue data structure. If the 
requirements include insertion or deletion in the middle of the sequence, then it’s 
not really a queue (nor even a dequeue). 

These types of requirements that combine order-of-insertion traversal along with 
generalized insertions and deletions can arise in several practical contexts: 

• Least-Recently-Used (LRU) cache. 

• Operating system paging algorithms. 

• Order book updates (trading engine). 

• Rate limiting (throttling) of requests. 

These all have a time element that causes them to have queue-like need for 
insertion-ordering. However, there needs to also be key-based searches, insertions 
and deletions, so a basic queue is not adequate. 

Hash Table with Order-of-Insertion 

As an example, let’s consider a dream list of requirements for such a data structure: 

1. Fast search, insert and deletion, and 

2. Traversal in order-of-insertion. 

To get to the first three, with fast search, insertion, and deletion, you should 
immediately think: hash tables. 
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Hash tables have average case O(1) complexity for search, insertion and deletions. 
Admittedly, hash table can degrade to linear complexity in the worst case. 
Furthermore, hash tables have a poor traversal cost generally, and totally fail at 
maintaining any order in the traversal. We can’t maintain “order of insertion” with 
just a hash table. 

Hence, to implement traversal in the insertion order we need another data structure. 
The first idea is to have two totally distinct containers, and search them both when 
we’re doing our operations. A better idea is that in our hash table nodes, we can 
insert a pointer to some other node in another data structure, so that we don’t need 
to do two lookups.  

Two options come to mind: 

• Array or vector — contiguous data with good cache locality. 

• Doubly-linked list — non-contiguous linked data structure. 

Let’s look at each of these options. 

Contiguous Array Version 

The idea is to maintain traversal in the order of insertion by maintaining the items 
in a separate std::vector or std::array container. For example, you could maintain an 
array of pointers to the hashed nodes in the array. And each hash node would need 
either a pointer back to the array or an index offset of where the element is found 
in the array. 

The use of an array or vector makes the traversal of items super-fast, by scanning 
the array, in contiguous memory locations. Okay, so actually the cache locality isn’t 
that great, since scanning the pointers in the array has good locality, but then it’s 
jumping via the pointers to the nodes in the hash table, which are in different places 
in memory. 

It’s easy to maintain order-of-insertion in the array, simply by always inserting at 
the end. Our array or vector data structure has a count of how many elements are 
in the array, and we can insert a new item at the end. 

Problems arise with deletion, however. If the need for deletion was only to remove 
an item from a fixed-size array to make room for the next one, then we could 
address this by using a ring buffer implemented as an array (i.e., a fixed-size queue 
in an array). 
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However, if we want to remove arbitrary items from our hash table, and hence from 
our array, the use of a contiguous array causes difficulties. The difficulty is not in 
finding the location for removal, but at the end of this sequence: 

1. Search the hash table for the key. 

2. Find the pointer or index into the array in the hash node. 

3. Remove the node from the hash table container. 

4. Remove the pointer from the array or vector container. 

However, once we try to remove the entry from the array, there’s a gap. There are 
three possible approaches: 

1. Mark the item as “deleted” (i.e., leave a gap). 

2. Shuffle the array elements down. 

3. Move the end array element down into the gap (“swap and pop”). 

None of these solutions are great. They all lead to suboptimal complexity in one or 
other of the methods. 

Marking each item with a “deleted” flag works fine on deletion, but the insertion-
order scan has to skip extra unused elements. There are a few ways to mark the 
elements: 

• Boolean flag inside each element. 

• Separate array of Boolean flags. 

• Packed bit vector representing the Boolean flags. 

Furthermore, with the marking-as-deleted method, the array will fill up, and need 
to have its gaps removed eventually. This is a costly type of “garbage collection” or 
“memory reclamation” algorithm that will have linear complexity. And until it’s 
cleaned up, the method will waste extra memory space for all the deleted gaps. 

Shuffling all of the elements down to fill the gap does maintain the correct order in 
the array. However, it’s an O(n) operation and will also invalidate all the pointers 
into the array from other non-removed elements in our hash table. So, we’d need 
some way of finding all those elements (e.g., reverse pointers), and also the cost for 
updating them all. 
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Finally, the “move end element down” array trick is an O(1) method to cover our 
gap, and would only require updating one non-removed hash node, which is also 
O(1). Admittedly, the need to store reverse pointers from the array back to the hash 
nodes adds O(n) more space. However, it fails completely, because the array is no 
longer sorted in order of insertion. 

Is there a way to salvage the dream of maintaining a contiguous array that is sorted 
by insertion order? There are some tricks to try, like permutation arrays, but I can’t 
see a good solution. 

Doubly-Linked List Version 

A more natural solution is to thread a doubly-linked list through our hash nodes. 
The advantages of a doubly-linked list are: 

1. No fixed size limits. 

2. Easier deletion with O(1) complexity. 

3. Maintains order-of-insertion naturally. 

Note that the linked list has to be doubly-linked so that deletion is easy once we 
find a node to remove. If it’s only a singly-linked list, then we cannot find the 
element before the current node, so we can’t easily unlink the current node. 

The doubly-linked list method is not without downsides. There are problems with 
time and space: 

• Extra space for previous and next pointers in each node. 

• Non-contiguous memory usage for scanning (it’s a linked list!) 

To implement the interleaved doubly-linked list, each node in our hash table needs 
to have “next” and “previous” pointers. We also need to track the head and tail of 
this list at the container level. 

The idea is that a scan in order of insertion is just to run down the doubly-linked 
list in one direction. Hence, when we insert a new item it has to be inserted at the 
end of the list. 
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The reason that this method is better than an array or vector is that it’s easy to 
remove in a linked data structure. There’s no “gap” when we remove an item from 
a linked list. We just update the pointers to the adjacent list elements to point 
around the removed list node. 

Could we use a separate doubly-linked list, such as the std::list container, 
rather than manually threading pointers through our hash table? Yes, but this 
wouldn’t really avoid the space cost of storing “next” and “previous” pointers in 
each hash node, but just move them elsewhere. Additionally, we’d need a pointer 
to the list node in the doubly-linked list stored in the hash nodes. And each insertion 
would need two separate memory allocations for the hash nodes and linked list 
nodes. Hence, threading our doubly-linked list through the nodes themselves seems 
more efficient overall. 
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25. LRU Cache Data Structure 

What is an LRU Cache? 

Least-Recently-Used (LRU) caches are a common requirement in low-latency 
programming. There are several important applications of an LRU cache: 

• Operating system paging algorithms 

• Memory access caches (low-level) 

• Order book updates in trading 

The idea of an LRU cache is to maintain a cache of recently used data, such as 
memory we’ve just accessed, or a piece of data we’ve just updated. But we don’t 
want an unlimited size data structure, so when it gets full, we evict the data that was 
“least recently used” (i.e., the oldest data). 

Note that an LRU cache is a more specific type of cache that just mapping keys to 
the values they were set to. The operations we need to support include: 

• Add a new key to the cache (with its corresponding value). 

• Update a key when it gets re-used again (more recently). 

• Remove the least-recently-used item in the cache (to make room for 
insertions). 

Sounds like a queue? No, it’s not! 

Not a Queue or Deque 

An LRU cache has features that sound like a queue with FIFO ordering. We want 
to evict the oldest items from the cache, which sounds exactly like maintaining a 
queue of elements, and deleting from the tail of the queue will remove the oldest 
element.  
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These features are very queue-like and maintain a FIFO-like order-of-insertion: 

• Add a new item to the end of the queue (the newest item). 

• Remove from the front (to evict the oldest item). 

The feature that’s not like a queue occurs on the “update” of a key that’s already in 
there, which occurs if a cached item is then accessed a second time. This requires 
two problematic operations: 

• Search — find the item already in our LRU cache, and 

• Deletion — remove the item from the middle of the queue. 

It’s starting to sound less-and-less like a queue. There’s no fast searching method 
for std::queue and std::deque, and we’d have to use a linear scan. 

Deletion is also a problem. We need to move an item from the middle of the queue 
back to the head of the queue. This is not like a standard queue, which only allow 
deletions from the end. A standard dequeue container also allows deletions from 
the front, but this doesn’t help us.  

Hence, we can’t just use a queue or dequeue, but need something fancier as our 
implementation of an LRU cache. 

Overall, an LRU cache has similar requirements to the general case earlier: fast 
searches, insertions, and deletions. We also need to maintain order-of-insertion for 
cache evictions, but we need to remove arbitrary nodes from that sequence, so a 
standard queue or dequeue won’t work.  

Note that, unlike the general case, we don’t actually need to traverse the sequence 
in order, but only use it for evictions. 

Nevertheless, the basic idea of an LRU cache implementation is similar to the 
general case of a data structure that maintains ordering by insertion sequence: 

• Hash table for fast searches, insertions, and deletions. 

• Maintain order-of-insertion sorting via an array, vector, or linked list. 

Adding a new node into the cache is simply an insertion into the hash table, and 
adding it to the head of the array or list. This item is the “most recently used” so it 
will now be the last to be evicted from the cache. 
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If our cache is full, adding a new node means removing the oldest. It’s easy to 
remove the “least recently used” by removing it from the hash table, and removing 
the end element from the list (effectively, like a queue).  

We could seemingly implement this queue-like functionality with two possible 
approaches: 

• Statically with a fixed-sized array (i.e., a ring buffer wraparound), or 

• Dynamically via a linked list. 

Only one of these ideas will work! 

Array Implementation Fails 

Let’s consider a contiguous array implementation first, which would be desirable 
for cache locality efficiency. In other words, we use a hash table for searching, 
insertion and deletion, but also maintain a separate array or vector data structure to 
track insertion order.  

In practice, we’d need to use a wrap-around of elements in a ring buffer structure, 
implemented via an array or vector container. 

This is workable for many of the LRU cache requirements. Search and insertion is 
very fast in the hash table. We don’t actually search the array, which is fortunate, 
and inserting into an array with order-of-insertion is just adding it to the end (fast!). 

However, deletion is a problem. We run into a significant efficiency problem arises 
when we need to update a cache item that’s already in the cache from a prior access: 
Every update of a value already in the cache needs to do two things to the array: 

(a) delete the node in its previous place in the array, and 

(b) re-insert the node at the head (it’s now the most-recently used item). 

The key point is that the “previous place” for an item could be anywhere in the 
array or ring buffer. So, we need arbitrary deletions at any location. For the reasons 
discussed in the general case, an array or vector that implements a ring buffer or a 
fixed-size array will fail in this situation. 
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Removing an item from the middle of the array is problematic and needs an 
inefficient shuffle method to fill the gap, followed by trying to update pointers to 
all the array elements that were moved by the shuffle. Alternatively, moving the 
array’s end element down to cover the gap fails because it completely messes up the 
order of elements in the array. 

A ring buffer implemented in an array or vector is no better at handling random 
deletions. Removing from the middle of a wraparound sequence in a ring buffer is 
actually the exact same situation, except rotated, and has the same problems. 

One solution is to not allow cache updates. If an item is already in the cache, we 
could simply not update its position in the sequence. However, this is no longer an 
LRU cache, but more like a Least-Recently-Loaded (LRL) cache, or really a FIFO 
queue version of a cache. 

The requirements for an LRU cache are somewhat different to a FIFO queue. For 
example, all frequently-used items will get evicted from the cache in a fixed order, 
getting no benefit over infrequent accesses. The efficiency of the cache does not 
adapt to access patterns. Overall, it seems that a contiguous data structure is not 
effective for an LRU cache. 

Linked lists to the rescue! 

Doubly-Linked List LRU Cache 

Fortunately, an LRU cache is also fast to implement with a hash table and doubly-
linked list. Note that a singly-linked list fails to provide efficient deletion, so we 
have to double up. Hence, the basic idea is: 

• Hash table — good at efficient search, insertion and deletion (but without 
ordering). 

• Doubly-linked list — maintains data according to order-of-insertion. 

There are two ways to implement our doubly-linked list: 

• Second container — using the standard std::list container separately 
(it’s doubly-linked). 

• Threaded intrusively — use a doubly-linked list that is threaded through 
the hash table nodes. 
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The first solution is workable if we maintain a pointer or iterator into the linked list 
from our hash table nodes. We could make our list contain copies of the whole keys 
(if small), or pointers to the hash table nodes if the keys are a complex object (i.e., 
don’t copy it). But overall, the two container approach is inefficient because we’re 
doubling the number of allocated nodes by doing memory allocation once in the 
hash table, and again in the std::list container. 

A better solution is to intrusively thread our own hand-coded doubly-linked list 
through our hash table nodes. This requires extra space for “next” and “previous” 
pointers in our hash table nodes, but doesn’t require a second memory allocation, 
and also maintains only one copy of the keys. 

Let’s run with that idea and examine the efficiency of the operations: 

• Search — use the hash table to get O(1) average search cost (we don’t 
search the linked list). 

• Insertion — fast O(1) insertion into the hash table, and also O(1) insertion 
at the end of the doubly-linked list. 

• Deletion — fast (O1) deletion from the hash table, and also O(1) deletion 
in the middle of a doubly-linked list (hooray!). 

• Traversal (insertion-ordered) — linear scan of the linked list (easy). 

The linked list needs to be doubly-linked because deletion from the middle of a 
singly-linked list is problematic. Efficient deletion from the middle of a singly-linked 
list needs to go backwards to find the previous node, which doesn’t work with one-
way pointers. 

Deletion from the middle of a doubly-linked list is easy by resetting two pointers, 
in the node prior to us, and the node afterwards. This is fiddly but has only O(1) 
complexity, with just a few pointer operations. Unlike the array version, there’s no 
“shuffling” or other hidden costs, so deletion is also fast, and maintains the order-
of-insertion requirement. 

The deletion algorithm for doubly-linked lists is fiddly with some edge cases, but 
not that difficult. Once the list node to remove is found, we need to update the 
pointers in both the previous and the next node on the list. We also need to handle 
special cases like when the array is empty, or has only one element, or when deletion 
is at the head or tail of the array. 

 

 



David Spuler                                               248 
 

References 

1. Geeks for Geeks, 27 Dec, 2024, LRU Cache - Complete 
Tutorial, https://www.geeksforgeeks.org/lru-cache-implementation/ 

2. Shaila Nasrin, Jan 18, 2025, LRU Cache Implementation in 
C++, https://medium.com/learn-coding-concepts-with-shaila/lru-cache-
implementation-in-c-8a52f259206f 

3. CPP Scripts, May 2025 (accessed), C++ LRU Cache: Mastering Efficiency 
with Ease, https://cppscripts.com/cpp-lru-cache 

4. Peter Goldsborough, May 2025 (accessed), lru-cache: A feature complete LRU 
cache implementation in C++, https://github.com/goldsborough/lru-cache 

5. Tim Day, 2012, LRU cache implementation in 
C++, https://timday.bitbucket.io/lru.html 

https://www.geeksforgeeks.org/lru-cache-implementation/
https://medium.com/learn-coding-concepts-with-shaila/lru-cache-implementation-in-c-8a52f259206f
https://medium.com/learn-coding-concepts-with-shaila/lru-cache-implementation-in-c-8a52f259206f
https://cppscripts.com/cpp-lru-cache
https://github.com/goldsborough/lru-cache
https://timday.bitbucket.io/lru.html


249                             C++ Ultra-Low Latency 
 

26. Fast Ring Buffers 

What is a Ring Buffer? 

A ring buffer is an array-like data structure where the data moves around in a “ring” 
so that the end wraps around to the beginning. It’s also known as a “circular buffer” 
and is often what is meant when people talk about a “fixed-size queue.” 

A ring buffer is stored in a single array or vector of contiguous data, but is not 
accessed in the same idiom. The data is processed in a FIFO (First-In-First-Out) 
idiom, where items are added to the “tail” of the queue, and removed from the 
“head” for processing.  

Hence, a ring buffer is a good choice of data structure for implementing a fixed-
size queue or dequeue (double-ended queue). 

Some of the main design decisions when implementing a ring buffer involve error 
handling: 

• Overflow — inserting into a full buffer 

• Underflow — removing from an empty buffer 

Should the ring buffer throw an exception, or just return a Boolean failure status to 
the caller? 

Simple Ring Buffer 

A basic ring buffer data structure has three main elements: 

• Array or vector of objects (fixed-size) 

• Head index (integer) 

• Tail index (integer) 
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Here’s some code using std::array for a ring buffer: 

    template<typename T, int sz> 

    class RingBuffer { 

    private: 

        std::array<T, sz> arr;  // Fixed-size array 

        int head; 

        int tail; 

        // .... 

    }; 

New objects are inserted at the tail, and retrieved for processing from the head. In 
a typical implementation, the progression goes from left to write, using a “+1” idea 
for the next location. Technically, the ring buffer data could be handled in reverse 
order, but the forward progression around the ring is simpler and allows marginally 
more efficient arithmetic because there are no negatives to handle. 

Thus, the basic primitives needed by a ring buffer: 

• Insert at the tail 

• Remove at the head 

Here’s the basic insertion method: 

    bool push(const T& x) { 

        int newtail = (tail + 1) % sz; 

        if (newtail == head) { 

            // Overflow (full) 

            return false;  

        } 

        tail = newtail; 

        arr[tail] = x;  

        return true;  // success 

    } 

And here’s the “top” method for an interface that allows “top” to access, and “pop” 
to remove: 

    T top() { 

        if (is_empty()) { 

            // Underflow 

            return T(0); 

        } 

        return arr[head]; 

    } 
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The “pop” method actually removes the item from the ring buffer: 

    void pop() { // Just remove (no return) 

        if (is_empty()) { 

            // Throw exception? (optional) 

            return; 

        } 

        else { 

            head = (head + 1) % sz; 

        } 

    } 

And there are also various simple primitives: 

• Capacity — the fixed-size of buffer. 

• Empty — zero elements 

• Full — fixed-size array is full. 

The code is reasonably simple: 

    int capacity() const { return sz; } 

    bool is_empty() const { return head == tail; } 

    bool is_full() const { return (tail+1) % sz == head; } 

Pros and Cons of Ring Buffers 

The main advantage of a ring buffer is that it has contiguous data. This means that 
our fixed-size queue should be faster to access than one stored as a linked list 
using std::queue. 

The main disadvantage of a ring buffer is that it has a fixed size, 
unlike std::queue, which grows dynamically. This ring buffer size doesn’t 
necessarily need to be known at compile-time, but does need to be set when you 
initialize the ring buffer. There are also more advanced types of ring buffers which 
use multiple arrays, which can be dynamically grown in size. 

The other disadvantages are that the ring buffer is very specific to a FIFO access 
pattern. It’s not a fast data structure for these operations: 

• Searching for a value 

• Sorting data 

• Inserting at a random location (rather than the tail) 

• Deleting from a random location (rather than the head) 
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Insertions and deletions are slow because they require a “shuffle” of all objects. 
Note that there’s an interesting wrinkle: we could make insertion and deletions fast 
if we don’t mind violating the FIFO ordering and moving objects around 
(invalidating any pointers or iterators referencing them). The idea is that the ring 
buffer becomes like an unsorted array (with wraparound): 

• Fast random insertion — move the current element at the insertion 
location to a free location at the end of the ring buffer, then insert. 

• Fast random deletion — move the last element to the location we are 
deleting from. 

It’s not all bad news. The data in a ring buffer is mostly stored contiguously, so 
there are some operations that still have good cache locality properties: 

• Scanning or visiting all data elements 

• Random access of data by integer index 

A linear scan of all the elements can be quite fast, provided you don’t mind that it’s 
unsorted (or rather, it’s sorted by order-of-insertion). The data elements are always 
in one or two contiguous data blocks, which is better than dispersed data structures 
like linked lists or binary trees. However, it’s not quite as fast as an array or vector 
scan of objects, which is always one contiguous block. 

Accessing one of the objects via an integer ordinal is still quite fast (i.e., 0...n-1). 
Mainly, it’s just some integer arithmetic with head and tail to find its array offset in 
the ring buffer. 

Incremental Count Optimization 

Computing the count of how many elements are currently inside the ring buffer is 
somewhat tricky: In the above computations, we can compute the “count” of how 
many elements are in the buffer using arithmetic on head and tail indices. 

    int count() const {  

        return (tail >= head) ? tail - head  

                              : sz - (head - tail); 

    } 

An alternative that can be faster, if the count() method is called often, is to 
maintain an incremental count, and store it in the ring buffer.  
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The idea is pretty simple: 

• Insertions — count++ (except if full) 

• Deletions — count-- (except if empty) 

• Count — just return the count variable. 

Hence, the computations during insertion and deletion are only a single integer 
increment or decrement, and the count() function becomes a simple getter of an 
integer data member. In addition, the availability of a “count” variable actually 
allows some optimizations to some of the other methods: 

• empty() — test count==0 

• full() — test count==capacity 

These are much faster than the earlier versions using head and tail index arithmetic. 
Hence, these efficiency gains may override the extra costs from incrementally 
computing the count during object insertions and removals. 

Avoiding Three Integers 

If we use an incremental count optimization for the number of items in the ring 
buffer, we end up with three integer values: 

• Head 

• Tail 

• Count 

It turns out that we don’t need all three, because they are inter-related numbers. We 
can calculate the “tail” variable from the “head” and the “count” value. 

    tail = (head + count) %sz; 

There are actually some other numbers that are also related, which we could also 
use. For example, the total number of insertions and deletions of objects is related 
to the head and tail values, and the count is simply the difference between them. 

Alternative Variable Pairs. It turns out that a ring buffer can be defined by any 
two variables from a set of several related calculations.  
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Some of the possible pairs include: 

• Head and tail 

• Head and count 

• Tail and count 

Note that there are two main implementations of the initialization of head and tail 
values. These yield implementations that differ by one in all calculations, so you 
have to consistently choose between them: 

• head = tail = 0 

• head = 1, tail = 0 

The meanings of head and tail differ slightly in these two variants. Hence, the inter-
relationship with the count is also different by one. Care must be taken to avoid 
off-by-one errors! 

Combining Two Variables. The optimization ideas above reduced our three 
variables (head, tail, and count) down to two variables. Any pair of them will do, 
since they are inter-related. 

But what about reducing it to one variable? Having only one integer variable in our 
ring buffer might be desirable because: 

• Efficient single arithmetic operations. 

• One integer value as an atomic for lock-free versions. 

Can it be done? 

The key point to note is that we really do need two distinct values. However, we 
can put them together into a single integer with encoding and packing ideas. For 
example, we could store the head as 16 bits and the count as 16 bits, and put both 
in a 32-bit unsigned integer.  

Note that this limits the capacity of the ring buffer to 2^16 which is 65,536. We 
could also pack them into a 64-bit unsigned long if we needed more capacity. 
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Modulo Arithmetic Optimizations 

The % operator for modulo arithmetic (or remainders) is one of the slowest 
operations in C++. The typical code we want to optimize in a ring buffer or fixed-
size queue uses this idiom: 

    head = (head + 1) % N; 

Modulo arithmetic is based on division, which is also slow, even on integers. Hence, 
our ring buffer can be improved by getting rid of the percent! 

How? There are several options: 

• Bitwise arithmetic 

• Type casts 

• Ternary operator 

• Branchless coding 

• Unsigned arithmetic 

Bitwise-and trick. Firstly, if we choose the buffer size N, to be a power-of-two, 
then we can use bitwise arithmetic. A remainder of a power-of-two is the bitwise-
and of the number one less. These are equivalent: 

    head = (head + 1) % 16;   // Modulo 

    head = (head + 1) & 15;   // Bitwise-and 

Validating power-of-two. One thing you might want is a safety net to ensure 
nobody uses the ring buffer for a size that’s not a power-of-two. We want this: 

    static_assert(is_power_of_two(N)); // How? 

We can use the Kernighan bit trick: 

    static_assert( (N & (N-1)) == 0);  // Kernighan 

How does this work? 

It’s just magic, and let’s forget about it.  
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No, actually, the Kernighan trick is that “N&(N-1)” clears the value of the 
rightmost bit of a number. Hence, if the number without the rightmost bit equals 
zero, then there’s only one bit set in the number. And the set of numbers with only 
one bit set: powers of two. 

Note that lots of parentheses are necessary around the bitwise operator to avoid an 
operator precedence glitch. Also note that the Kernigan trick fails with a false 
positive if N is zero or negative, so we should add some more safety checks at 
compile-time: 

    static_assert(N > 0); 

Type casts. The use of bitwise-and is limited to powers of two, which is annoying, 
but there’s an even more specific way to do this for some of them: type casts. If we 
can choose the size as 256 (8-bits) or 65,536 (16=bits), we can do this: 

    head = (unsigned char)(head + 1);   // 8-bits 

    head = (unsigned short)(head + 1);  // 16-bits 

Note that type casts are often effectively free after C++ does its optimization thing. 
The register allocation algorithm can just choose to use a value in a different way, 
and propagate that forward to other arithmetic. Thus, a type cast operation may 
result in zero runtime instructions. 

Ternary operator. But why are we using arithmetic in general, when there’s actually 
only one case where we want to reset the value. Another way is to use the ternary 
operator instead of arithmetic. The calculation becomes: 

     head = (head + 1 == N) ? 0 : head + 1; 

We can also implement this logic in two instructions, which is worth a try: 

     head++; 

     if (head == N) head = 0; 

Or if you like short-circuiting operators, you can do this: 

     (++head) == N && (head = 0); 

The compiler probably treats that the same, but you never know, and you might 
want to check the assembly output (e.g., using “gcc -S”). 
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Branchless coding tricks. Another trick is to notice that we just want to zero the 
value in one specific case. Hence, we can use the branchless coding trick of using 
logical operators as 0 or 1 integers. The goal of branchless coding is to remove all 
control flow branches, so that the CPU’s branch prediction logic can run fast. Note 
that the ternary operator is actually like an if statement, and it has two branches. 
The branchless version with only fixed arithmetic is: 

     head = (head + 1) * (head + 1 != N);  // Branchless 

The way this works is to multiply the value by 0 or 1, depending on the logical test. 
Again, we can also try this as two statements: 

     head++; 

     head *= (head != N);  // Branchless 

Note that I doubt the branchless versions are very efficient, because they’ve added 
a multiplication operation. The ternary operator version is likely better, and isn’t 
that bad despite its branches, if you look at the assembly. Most compilers will 
convert it to a single CMOV (conditional move) CPU instruction, which makes it 
effectively branchless, too. 

Unsigned arithmetic. One final trick is to note that we have modulo arithmetic 
for free in the CPU: unsigned integer arithmetic. Overflow of unsigned integers is 
not an exception in C++ and when you think about it, implements the exact 
semantics of modulo arithmetic. Hence, here’s the idea: 

    unsigned char head; 

    ... 

    head++; 

It works! And there’s not a single percent operator anywhere! All this time and we 
had cheap modulo arithmetic hiding in plain sight. 

We really need to time this, because it isn’t 100% guaranteed as faster code. A lot 
of the uses of head will involve converting it from unsigned char to an integer 
offset, such as for array indexing in the vector of objects that makes up the ring 
buffer. A variation of this idea would be to store the head and tail as integers or 
unsigned integers, so that they can be used as the fastest type of normal integer, but 
still use unsigned arithmetic overflow tricks for modulo arithmetic.  
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This is the idea for an N=256 size ring buffer: 

    int head; 

    .... 

    ((unsigned char*)&head)++; 

This relies on the platform being “little endian” with the lowest-order byte stored 
on the left, which is true in most modern CPUs (but not if you’re sending integers 
over the network in “network byte order”). And, yes, you got me, I really should 
use reinterpret_cast here rather than the old C-style type cast. 

Obviously, these tricks of using head and tail as unsigned integers only work for 
a limited set of sizes: 

• N=256 — unsigned char (8-bits) 

• N=65,536 — unsigned short (16-bits) 

• N=4.7 billion — unsigned int (32-bits) 

We can even do decrement and negative calculations this way, since underflow is 
also not an exception, whereas the % operator and negatives don’t talk to each other 
at parties. 

Move Semantics 

If our ring buffer contains complex objects, there are many more considerations 
for making it efficient. One of the biggest inefficiencies in a ring buffer class is 
inserting and deleting any non-trivial objects. If we do it wrong, we’re calling copy 
assignment operators and copy constructors to make new objects in the array, and 
running the destructor when we release an object. 

Move semantics to the rescue! 

The first point to note is that it doesn’t matter for simple data types in our ring 
buffer. Any scalar values like integers or floating-point numbers don’t have any 
copy constructors or destructors to worry about. In fact, this is also true of simple 
structures and classes, so long as they are “plain-old data” or POD data types. 

But anything more complicated than this will have costly calls to copy constructors 
and copy assignment operators.  
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To optimize this, we need to talk about: 

• Move constructor and move assignment operator 

• R-value references 

• Copy elision 

• Return Value Optimization (RVO) 

In practice, the problems arise in both our “push” and “top” versions. The “pop” 
routine causes a copy assignment operator invocation: 

    bool push(const T& x) { 

        // .... 

        arr[tail] = x;  // Copy assignment 

        return true;  // success 

    } 

And the “top” member has the problem of returning an object type, which will use 
a copy constructor call at the return statement. 

    T top() { 

        // ... 

        return arr[head]; // Copy constructor 

    } 

The automatic compiler optimization of “copy elision” might help improve the 
performance of the “top” method. Returning an object is exactly the situation it’s 
meant for. However, we can use move semantics explicitly to ensure it’s improved: 

    bool pop_top_move(T& outobj) { 

        if (is_empty()) { return false;    } 

        ct_incremental--; 

        int oldhead = head; 

        head = (head + 1) % sz; 

        outobj = std::move(arr[oldhead]); // Move assign 

        return true;  // success 

    } 

Note that std::move() is a compile-time type-cast here, without any runtime 
cost. And it’s required to convert to an R-value reference, as otherwise the 
assignment statement would still call a copy assignment operator. 
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Constructor Problems 

One of the performance problems with our ring buffer implementation is 
that std::array calls the constructor for every object whenever a new ring 
buffer object is defined or created. This occurs with this use of std::array for 
our ring buffer: 

    std::array<T, sz> arr;  // Fixed-size array 

How to avoid these constructor calls? After all, our ring buffer is supposedly empty 
with zero objects initially. Some of the solutions that don’t work and will still call 
constructors: 

• Raw arrays 

• Pointer to std::array 

Using a raw array like this will still call all the constructors when our ring buffer is 
created: 

    T arr[sz]; 

Similarly, we could use an allocated copy of std::array, since it’s really an object 
not an array. It works like this: 

    std::array<typename T,sz> * arrptr; 

    .... 

    arrptr = new std::array<T,sz>;  // in constructor 

This allocates our big array in the constructor rather than as a non-allocated data 
member. This adds an extra inefficiency from the extra allocated block, and doesn’t 
work anyway. The new operator will still run all the individual object constructors. 

What about using std::vector instead? 
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Standard Vector Problems 

Using std::vector can be better than std::array, because it delays both its 
memory allocation and its construction of objects: 

    std::vector arr<T>; 

Unfortunately, I’m not a big fan of this approach, because it has other difficulties: 

• Extra memory allocation call (inefficient). 

• Bounds checking failures in debug libraries. 

The first point is that resize() has the same problem with too many constructor 
calls. Doing this in the constructor will still call all the constructors: 

    arr.resize(sz);  // Constructors! 

So, we can call reserve() instead of resize(). That won’t call constructors: 

    std::vector arr<T>; 

    // .... 

    arr.reserve(sz);  // No constructors! 

This has hopefully allocated the memory for all the objects, without running their 
constructors. But this can run into various problems when we try to use the vector 
elements. The problem is on this type of statement in our push method: 

    arr[tail] = x;  

And the same problem still occurs with our code that gets items out of the ring 
buffer. Note that the issue is not move semantics, because this has the same issue: 

    outobj = std::move(arr[oldhead]); // Move assignment 

The issue is bounds checking on the [] operator for std::vector. In theory, the 
reserve() function has allocated valid memory for enough objects. However, 
the size() function is still zero, so the runtime bounds checking will trigger on 
any debug run of the code. 

Yes, maybe some platforms this will work, with no bounds checking. But you can 
run into portability problems. For example, it makes the code fail with spurious 
runtime errors on any type of “hardened” standard C++ library. 
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Explicit Destructor Calls 

Another problem with our ring buffer implementation when instantiated with class 
types is destructor calls. Instead of too many constructor calls, we have too few 
destructor calls. The problems include: 

• Destructor calls missed after move assignments (e.g., popping). 

• Destructor calls on destroying the whole ring buffer. 

One solution: don’t bother. If the object that’s used in a ring buffer doesn’t have 
important destructor actions after a move (and it shouldn’t), or if destroying the 
whole ring buffer is in the shutdown sequence of the application, then you can 
maybe just forget about this problem. 

Another solution is to explicitly call the destructor ourselves. You can call the 
destructor of a class like any other member function using the ~T() syntax. For 
example, in the pop function, we can do: 

    arr[head].~T();  // Explicit destructor 

Basic types don’t need destructor calls, so we ideally want to distinguish trivial types 
from fancy class objects. We can also use type traits to do this, which are 
wonderfully efficient compile-time operators that work during instantiation of the 
template. Here’s how it works: 

    if (!std::is_trivially_destructible<T>::value) { 

        arr[head].~T();  // Explicit destructor 

    } 

The alternative is to note that trivial types have no-op destructors, and the compiler 
would remove them anyway. Hence, the above type trait test may be unnecessary, 
but it’s a fast compile-time test anyway, so either way is fine. 

Note that we are assuming here that the class being used has a destructor that works 
properly after an object has been moved away. In other words, it doesn’t do 
something silly like assuming a pointer in the object is non-null.  

The move assignment operator also needs to properly clear all the non-trivial data 
members, such as pointers, to zero or null values, so that the destructor doesn’t 
access bad memory after a move. 
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Class Interface Bypass 

There are a couple ways to bypass the class interfaces, and thereby avoid the 
inefficiencies of construction and destruction. This makes the caller of our ring 
buffer manage when the objects are created and destroyed. The main ways are: 

• Blocking non-trivial types 

• Raw character buffer arrays 

• Pointers to objects 

Trivial types only. We can make our ring buffer, or other home-grown containers, 
faster simply by disallowing their use with complex objects. We can efficiently 
trigger compiler warnings with the type trails, so that users of the template know to 
only use scalars or other POD types. Here’s some examples using the various 
different settings: 

   static_assert(std::is_pod<T>::value); // Plain-Old Data 

   static_assert(std::is_trivial<T>::value); // Trivial  

Raw character-array memory buffers. The idea is to use a character array as a 
raw buffer, rather than std::array or std::vector, for our container class 
(e.g., our ring buffer). To bypass class constructions by using raw memory buffers, 
we have choices like: 

    char arr[sizeof(T) * sz];  // Static data member 

    char *arr = new char[sizeof(T)*sz]; // Dynamic alloc 

This raw byte idea is workable, but every use of the array has to involve index 
calculations and type casts to object-type pointers. It’s fiddly and annoying, but it’s 
faster, because it avoids constructor calls, and doesn’t need all the extra messing 
around to avoid std::vector bounds checking. There are also concerns with: 

• Uninitialized bytes in the buffer 

• Alignment of addresses 

We really should also initialize the bytes in our array buffer to all nulls in the 
constructor using memset on the whole array. To do this, we also need to make 
sure that all the classes using the ring buffer have properties like: 

• All-bytes-null is a stable but invalid initial status of the object. 

• Destructor doesn’t fail on an all-bytes-null object. 
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We also need to manually take care of alignment of the addresses, since the compiler 
thinks we only have characters, which don’t have alignment issues. There’s 
the alignas standard specifier and various non-standard implementations for 
older language versions. 

If we’re really careful, maybe the initialization is not needed and we can leave out 
the memset call in the constructor. There’s some new “uninitialized memory” 
primitives coming in C++26 that may also help to do so. You can maybe avoid 
needing the null byte initialization, but I’m betting against you when I 
run valgrind on your code. 

Pointers. As much as I admire the design of move semantics, there is a simpler 
way to avoid the overhead of objects moving in and out of our ring buffer. Old-
school coding still works: store pointers to the objects in the ring buffer instead of 
full objects. The upside is avoidance of object copying and moving overhead. 

The downside of pointers is the extra level of indirection, and double hit to memory 
with poor cache locality because of that. And pointers have a few pitfalls with a bad 
reputation as being unsafe, but I’m sure you’ve heard that before. 

Extensions 

1. Implement a reverse ring buffer that uses decremented indices for head 
and tail, rather than addition, so that it grows from right-to-left instead of 
left-to-write. 

2. Implement a dequeue in a ring buffer by adding “insert-at-head” and 
“remove-from-tail” operations for the ring buffer (rather than the normal 
insert-at-tail and remove-from-head idiom). The trick is we’ll need to 
subtract one from indices and go in reverse. 

3. Implement a ring buffer with initialization of “head=1” and “tail=0” 
(rather than “head=tail=0”). All calculations will differ by one, such as the 
“empty” calculations is not “head==tail” anymore. 

4. Implement a ring buffer using two full-size integers that count the number 
of insertions and deletions. Note: the relationship between head and tail 
versus insertions and deletions is not that difficult! 
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27. Perfect Hashing 

What is Perfect Hashing? 

Perfect hashing is the extreme of hashing, where we guarantee that there’s no 
collisions. Hence, the hash function is “perfect” because no pair of two keys map 
to the same hash value. This makes for a super-fast hash lookup with 
guaranteed O(1) search performance, and no need to look up a second hash 
location ever. 

Perfect hashing is faster than normal hash tables. Regular hashing is fast on average, 
with O(1) average search, but collision resolution mechanisms like linear chaining 
or probing can have worst case O(n) search cost. Perfect hashing has 
guaranteed O(1) search complexity for best, average, and worst case. In fact, we 
don’t even code up a collision resolution method at all. 

Unfortunately, the good news stops there, because this only works in a very special 
situation: where the set of keys is known at compile-time. This hash table can only 
contain a fixed set of keys that we know whenever we build the perfect hashing 
code. 

If there are any insertions or deletions, this idea doesn’t work at all, and may require 
us to re-run and re-compile our perfect hashing engine if they occur. Thus, we can 
tolerate insertions and deletions but only if they are rare. Some examples of rarely 
changing sets of strings we might want to look up with perfect hashing include: 

• Special keywords in a programming language tokenizer (e.g., 100 reserved 
words). 

• Common English words in a grammar checker (e.g., 1,000 basic words). 

• Stock tickers on an exchange’s market data feed (e.g., about 5,000). 

• Vocabulary words of an AI model (often 50,000 to 100,000 words). 

Yes, the last one is a bit tricky, because tickers might change daily, in which case we 
might need to re-run our perfect hashing in every overnight build. Also, finding a 
perfect hash function for 100,000 LLM vocabulary strings in a reasonable amount 
of time might be a struggle. 
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Disadvantages of Perfect Hashing 

We already mentioned the main disadvantage of perfect hashing, which is that it 
requires a known set of keys, or at least a very rarely changing set of keys. Other 
disadvantages include: 

• Cost to build — expensive to scan the search space to find a perfect hash 
map. 

• Scalability problems — cannot handle a large number of keys because the 
search space becomes too large. 

• Static data — insertions and deletions invalidate the hash map. 

• Recomputations — increasing the key set requires a total re-run of the 
whole shemozzle. 

Perfect hashing also has some of the disadvantages of a basic hash map 
like std::unordered_map, such as: 

• Unsorted data 

• Scanning all data is somewhat inefficient (and in unsorted order) 

• Cache locality issues because objects are stored randomly in the hash table. 

Perfect hashing is not perfect for every case. Some alternatives data structures to 
consider for search lookup optimization include: 

• Bloom filters 

• Tries 

• Automata (precomputed) 

Or you could just put all your keys in an array and use a GPU to check them all in 
parallel. 

Perfect Hash Functions 

Special hashing algorithms can be used in any situation where the search data is 
known at compile-time. The most efficient solution is to use hashing with a specially 
developed hash function, designed to prevent all collisions. This is called a perfect 
hash function and can only be developed for unchanging data. If a perfect hash 
function can be found, the symbol table can be searched with one computation of 
the hash function and one key comparison to determine if the key is actually there 
at the index. 
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The most difficult aspect of using this method is the search for a perfect hash 
function for a particular set of data. There are a few common methods of doing so: 

• Inspired guesswork 

• Brute-force computation 

• Use a perfect hashing tool (e.g., GNU gperf) 

In some cases, the programmer can work out a function that has no collisions by 
guessing at a function. For example, if the programmer notices that all keys have a 
different first letter then it is easy to compute a perfect hash function as a mapping 
from the 26 letters to a different unique integer, the hash value. There’s a curious 
fact unknown to most AI engineers, that humans are very resourceful and this 
method of “guessing” the function works surprisingly well.  

The brute-force approach involves trying to generate the hash function using a 
computer which tries a number of different hash functions of a particular meta-
pattern, applies the hash function to each key, and report when no collisions occur. 

Further Optimizations of Perfect Hashing 

The general complexity of perfect hashing is O(1), which is true of the best case, 
average, and worst case complexity. Hence, it’s fast for large sizes, but we still might 
want to optimize it a little more! There are two places to try to speed up: 

• Lookup function (online) 

• Perfect hash function creation (offline) 

The basic method of perfect hashing can be optimized so that lookup is even faster. 
Some of the ways that we might super-optimize the search phase include: 

• Not checking the key is present. 

• Using a power-of-two hash table size. 

• Larger hash table size. 

Avoiding string comparisons. The sequence for a perfect hash lookup: 

1. Calculate the perfect hash function. 

2. Find that location in the hash table. 

3. Compare the string at that location with our search key. 
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But why are we doing this string comparison at the end? That’s quite slow. Well, 
sometimes we don’t need to, and it depends on context. For a grammar checker or 
LLM tokenizer, we need to detect whether or not the key is there, because multiple 
words could map to the same hash location. 

On the other hand, a market data feed from a US stock exchange might only contain 
our set of ticket names, so we can assume that only one string could possibly be at 
the hash table location. In other words, we’re assuming that every string is found, 
and there are zero failed searches, so our hash table is mapping of the string to a 
set of data structures (e.g., our order book for that stock). That’s all fine, and it will 
go faster, but the code will break completely if the exchange adds a new stock ticker! 

Another way we could avoid the string comparison is to use two or more perfect 
hash functions. This data structure is known as a Bloom filter, and combines 
multiple bit vectors with multiple hash functions. Bloom filters are a probabilistic 
data structure that can confirm 100% that a key is invalid, but can only confirm that 
a key is likely to be valid, but not with 100% certainty. 

Power-of-two hash table size. The size of the array that is our hash table is one 
main parameter for a perfect hash function, so we have some control over it. Note 
this basic point: the hash table size must be more than the number of keys, or else 
it’s a little hard to avoid collisions! In fact, it’s easier to find a perfect hash function 
if the size is significantly more than the number of keys, so that there are some 
empty slots. 

But what size? For some reason lost in the mists of time, everyone wants to choose 
a prime number, preferably a Mersenne prime, because that supposedly makes hash 
maps more evenly spread. But in the case of perfect hashing, we are looking for 
exact mappings with zero collisions, so it’s perhaps not so important to use a prime. 

Instead, we should use a power-of-two hash table size, because that allows the 
arithmetic in our perfect hash function to be faster. The reason is that most perfect 
hash functions look like this: 

    offset = some_big_number(key) % N; 

The % remainder operator is extremely slow, even on integers. The only reason it is 
used here is to ensure that the hash function maps to between 0 and N-1, 
where N is the hash table size.  
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We can use “strength reduction” to use a faster arithmetic operation, such as: 

• Bitwise-and operator — if N is a power-of-two (e.g., for x%16 do x&15). 

• Type cast to unsigned char — if N is 256 (8 bits) 

• Type cast to unsigned short — if N is 65,536 (16 bits). 

• Overflow of unsigned char — if N is 256 (8 bits) 

• Overflow of unsigned short — if N is 65,536 (16 bits). 

We’ve already examined a lot of these optimizations to modulo arithmetic in detail 
for the discussion of ring buffers in Chapter 21. 

Larger hash table size. An important point about hash table sizes is that bigger 
can be better. This is true for both the offline computation of the perfect hash 
function, and the online search lookup. Bigger hash tables have more “gaps” and 
are an easier search space to find a solution. In terms of online search performance, 
a bigger table worsens cache performance, but that’s not likely to be great for a hash 
table anyway. Furthermore, these extra gaps also mean that unsuccessful searches 
will be faster on average, because those keys that map to a gap can avoid the string 
comparison at the end. And memory is cheap, after all. 

Offline search optimizations. The search for a perfect hash function can be very 
expensive, and even impossible. Some of the ways to speed things up include: 

• All of the hash function optimizations. 

• Splitting up the search space (partitioning). 

The first point is that any optimization to the perfect hash function computation 
applies a thousand-fold to the offline search. For example, we also get faster 
computations possible in the offline search for a hash function if we only look at 
power-of-two table sizes. In fact, our offline code does a lot more of those 
computations. 

Search space partitioning optimizations. The search space is combinatorial and 
explodes with large key sets. One approach is to split the keys into multiple perfect 
hash tables, such as by partitioning the key sets. Some of the ways to consider 
partitioning include: 

• First letter — we can use 26 different perfect hash tables. 

• Two letters — this gives 26*26=676 separate hash tables. 

• Length of keys — e.g., stock tickers are at most 5 letters long. 

• Preliminary hash — a simple hash function to start with (e.g., first two 
letters modulo a size smaller than 676). 
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Note that this means running the perfect hash engine multiple times to find a 
different perfect hash function for each partitioned set of keys. However, running 
26 searches for smaller sets of keys will often run faster overall than trying to find 
one super-perfect hash function for every single key. 

Example: ANSI C Keywords 

As an example of the various approaches, let us attempt to develop a perfect hash 
function for a set of C’s 32 keywords for a programming language tool: 

    auto break case char 

    const continue default do 

    double else enum extern 

    float for goto if 

    int long register return 

    short signed sizeof static 

    struct switch typedef union 

    unsigned void volatile while 

Using my own version of “inspired guesswork”, involving a couple of hours of 
poring over ASCII tables, I managed to come up with a reasonable perfect hash 
function. The basic approach I took was to break up the words into groups of about 
five keys by using a test of the string length, and also by making single character 
comparisons on the larger groups of keys with the same length. Once the group 
was small enough I looked for letters in the keys that were unique, often the first 
or second letter, and then examined the ASCII binary values of these letters. This 
way, the hash function extracts certain bits from each letter, and generates a small 
integer, which is then mapped into an “interval” of values for that particular group. 
The function, which produces hash values in the range 0..36, is as follows: 

    int my_hash(char* s) 

    { 

        switch (strlen(s)) { 

        case 2: // Only “if” and “do” 

            return (s[0] & 01) + 2; // 2..3 

        case 3: 

            return (s[0] & 01) + 8; // 8..9 

        case 4: 

            if (s[1] == 'o') // goto, long, void 

                return (s[0] & 03) + 26; // 26..29 

            else // auto, case, char, else, enum 

                return ((s[1] & 14) >> 1) + 30; 

        case 5: // break, const, float, short, union, while 

                // First letter is unique 

                return (s[0] & 07)+(s[0] == 'c') + 10; // 10..16 

        case 6: 
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                if (s[0] == 's') // signed,sizeof,static,struct 

                    return (s[5] & 03) + ((s[5] & 8) >> 3) 

                        + ((s[5] & 16) >> 2) + 18; // 18..22 

                else // Letter not ’s’ - double, return, extern 

                    return (s[0] & 03) + 23; // 22..24 

        case 7: // "typedef", "default" 

                return (s[0] & 16) != 0; 

        case 8: // continue, register, unsigned,volatile 

                // First letter is unique 

                return ((s[0]&04) >> 1)+(s[0] & 01) + 4; // 4..7 

        default: // Can’t be a C keyword 

                return 0; // Pick any number 

        } 

    } 

The second approach is to make the computer perform a brute-force search for a 
perfect hash function. The following program takes a set of keys from a file and 
develops a hash function of the following form: 

    ( Σ C[i] * key[i] ) mod N 

The code attempts brute-force computations with many combinations of the 
constants C[i] and N. If one of these hash functions produces no collisions, a 
perfect hash function has been found. The source code below implements this 
concept. 

    //--------------------------------------------------------- 

    // PERFECT HASH FUNCTION BRUTE-FORCE SEARCH 

    //--------------------------------------------------------- 

    #include <stdio.h> 

    #include <stdlib.h> 

    #include <string.h> 

    #include <ctype.h> 

 

    //--------------------------------------------------------- 

    #define LEN 10 // Maximum length of a word 

 

    //--------------------------------------------------------- 

    char words[MAX][LEN]; // words being hashed 

    int C[LEN]; // coefficients of hash function 

 

    //--------------------------------------------------------- 

    #define MAX_MULTIPLIER 1 // Let C[i] range 0..MAX_MULTIPLIER 

    // 0 means skip, 1 --> use addition 

    #define MAX_MODULUS 1000 

    int G_MODULUS; 

    int G_MODULUS_START_MULTIPLIER = 5; 

    int G_MODULUS_TOP; 

 

    //--------------------------------------------------------- 
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    // Apply the hash function coefficients to a key 

    //--------------------------------------------------------- 

    int compute_hash_perfect(char* s, int modulus) 

    { 

        unsigned int hash = 0; 

        for (int i = 0; i < LEN && s[i] != 0; i++) { 

                hash += s[i] * C[i]; 

        } 

        return hash % modulus; 

    } 

 

    //--------------------------------------------------------- 

    // Try all the combinations of coefficients 

    // This function finds the perfect hash function! 

    //--------------------------------------------------------- 

    void perfect_hash_find_best(int nwords, int nstart) 

    { 

        bool done = false; 

        bool flags[MAX_MODULUS]; // has a key hashed here yet? 

        int modulus = nstart * G_MODULUS_START_MULTIPLIER; 

        do { 

            // Do one possible modulus (table size) 

            for (int i = 0; i < LEN; i++) C[i] = 0;  // Clear 

            do { 

                // Update C[i] coefficients for next attempt 

                C[0]++; 

                for (int i = 0; i < LEN; i++) { 

                    if (C[i] <= MAX_MULTIPLIER) break; 

                    C[i] = 0; 

                    if (i + 1 < LEN) { C[i + 1]++; } 

                } 

 

                memset(&flags, 0, sizeof flags); 

 

                // Scan all strings to count collisions... 

                bool collision = false; 

                for (int num = 0; num < nwords; num++) { 

                    int val = compute_hash_perfect(  

                                  words[num], modulus); 

                    if (flags[val]) { 

                        collision = true; 

                        break; 

                    } 

                    flags[val] = true; 

                } 

                if (!collision) { // report success!! 

                    printf("NO COLLISION: "); 

                    for (int i = 0; i < LEN; i++) { 

                        printf("%2d ", C[i]); 

                    } 

                    printf(", MODULUS = %d ", modulus); 

                    if (modulus == nstart)  

                       printf(" PERFECT!!! (n=%d)",(int)nstart); 
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                    printf("\n"); 

                    break; // exit do loop. Do next MODULUS 

                } 

                // Finish only when all multipliers 

                // are up to MAX_MULTIPLIER 

                done = true;  

                for (int i = 0; i < LEN; i++) { 

                    if (C[i] < MAX_MULTIPLIER) { 

                        done = false; 

                        break; 

                    } 

                } 

            } while (!done); 

            if (done) { 

                printf("FAILED with MODULUS %d\n", modulus); 

            } 

            modulus--; // Try the next modulus value 

        } while (modulus >= nstart); 

    } 

As shown in the source code above, the program is set to find all hash functions 
where the coefficient is either 0 or 1. These functions are a useful special case, as 
no multiplications are actually needed (all the characters with a 1 coefficient are 
simply added). When the program is run as shown on the ANSI C keywords as 
inputs, the best hash function it produces has modulus 134 (i.e., hash table size 134) 
and the following coefficients: 

    NO COLLISION:  1  0  1  1  1  1  1  0  0  0 , MODULUS = 134 

This information can be coded up into a simple perfect hash function. 
Unfortunately, the memset and strncpy calls are necessary to ensure that characters 
beyond the end of the string are considered zero, as is assumed by the hash function 
generator. 

    //-------------------------------------------------- 

    // Computer-generated hash function for C keywords  

    //-------------------------------------------------- 

    int computer_hash(char* s) 

    { 

        char s2[10]; 

        memset(s2, 0, 7);  // zero the first 7 letters 

        strncpy(s2, s, 7); // copy up to 7 letters 

        return ((int)s[0] + (int)s[2] + (int)s[3] 

              + (int)s[4] + (int)s[5] + (int)s[6]) % 134; 

    } 
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This is not a minimal perfect hash function for these 32 keys. If the records to be 
stored with these keys are quite large, the space wastage of 134 hash table entries 
may be too large. A simple method of overcoming this is to add an array of 134 
small integers (i.e., using the char type), where each entry in this array sets each C 
keyword to a unique value in the range 0..31. On the other hand, this may be a de-
optimization as a sparse hash table can be more efficient than a minimal perfect 
hash function. If the table is large, it becomes likely that an unsuccessful search will 
map to a location containing a null pointer entry, and this avoids the need for the 
key comparison. 

Perfect Final Thoughts 

These computations we found here are not minimal perfect hash functions. If the 
stars align, you can sometimes find a mapping that works with the hash table size 
exactly equal to the number of keys. It might take a lot of CPU juice to find one, 
though. Good luck with that! 

All of the hash functions in this section (both human and computer-generated) have 
multiple limitations, such as: 

• ASCII-specific — not portable to the EBCDIC set or other character sets. 

• Little endian — I haven’t checked portability to big endian machines. 

Finally, if you’d rather use a tool for perfect hashing than have as much fun as I just 
did, you can use the GNU gperf tool, which is a perfect hash function generator. 
GNU gperf will output the perfect hash function in C++ for you, and is highly 
customizable. 

Extensions 

1. Generalize the perfect hash functions to use parallel arithmetic in the hash 
function computation, such as AVX or ARM Neon SIMD instructions on 
a CPU or GPU kernel calculations. 

2. Parallelize the search for a perfect hash function on either a CPU (e.g., 
AVX or ARM Neon functions) or on a GPU (e.g., in CUDA C++). 

3. Implement multiple perfect hash functions on the same set of keys to get 
a Bloom filter data structure, where the string comparison can be omitted 
during lookup. 

4. Try out the GNU gperf tool for one of the data sets. 
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28. Matrix Multiplication 

Matrix-Vector Multiplication 

Matrix multiplication by a vector gives another vector. Let us consider the simple 
case first, where the matrix is square with dimensions NxN and the vector is also 
of size N. The matrix has N rows and N columns, and the input vector 
has N elements. The resulting output vector will also have N elements. 
Conceptually, in pseudocode: 

    MAT[N][N] * VIN[N] -> VOUT[N] 

It’s not immediately obvious, or at least, I don’t remember my High School Math 
teacher mentioning it, but matrix-vector multiplication is a bunch of vector dot 
product computations. We need to do a vector dot product for each of the elements 
of the output vector. Each element is a dot product of a matrix row times the input 
vector. Note that the dimensions match for a dot product, with N matrix rows 
and N elements in the input vector. 

Rectangular matrices. The general case of a rectangular matrix multiplied by a 
vector is a little trickier, but not a lot. If our matrix is MxN and the vector is size N, 
then the output vector has size M. Note the two of the dimensions must match: the 
columns of the matrix and the elements of the input vector are both N. However, 
this dimension N “disappears” and the output vector has size only dependent 
on M. The pseudocode: 

    MAT[M][N] * VIN[N] -> VOUT[M] 

The rectangular matrix-vector multiplication is almost identical to square matrix-
vector computations. Each element of the output vector is a dot product of a matrix 
row with the input vector. Again, we note that the dimensions of the matrix rows 
(N) must match the size of the input vector (N), or else we cannot compute it. I 
mean, we could still compute it with mismatched dimensions, such as by assuming 
that the shorter one (matrix row or input vector) had zeros in the missing elements, 
but that sounds a little buggy. 
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Complexity of Matrix-Vector Multiplication. The algorithmic complexity of 
matrix-vector multiplication is quadratic in N, whereas matrix-matrix multiplication 
is cubic in N. The basic matrix-vector multiplication scans N rows of the matrix, 
with each row element performing a computation against each of the N elements 
in the vector, giving two nested loops with an overall O(N^2) cost. 

Memory layout: One important point for the efficiency of matrix-vector 
multiplication is that the default memory layout has contiguous addresses for both 
the matrix row and the vector. Obviously, a vector is just a sequence of memory 
with all the elements in series. Not so obviously, a row of a matrix, when stored as 
a C++ two-dimensional array, is also a contiguous set of data (i.e., a matrix row is 
like a vector). Hence, the dot product multiplication of a matrix row and the input 
vector is simply scanning forward along contiguous addresses for both of its inputs, 
which makes it easy to vectorize. 

Optimizing Matrix-Vector Multiplication 

The version of matrix-vector multiplication with row-wise vector dot products 
needs three parameters, because it outputs to another separate destination vector. 

    void aussie_matmul_vector_basic_out1(const ymatrix m, 

               const float v[], int n, float vout[]) 

    {   // Basic matrix-by-vector using vector dot product 

        for (int i = 0; i < n; i++) { 

          const float* rowvector = &m[i][0]; 

          float sum = aussie_vecdot_basic(rowvector, v,n);   

          vout[i] = sum; 

        } 

    } 

Nested Loop Matrix-Vector Version: The same matrix-vector multiplication 
algorithm in the form of two nested loops is below. This is flattening the call to the 
lower-level vector dot product function and putting its inner summation loop 
directly inside the outer main loop. The basic C++ code looks like: 

    void aussie_matmul_vector_basic_out2(const ymatrix m, 

           const float v[], int n, float vout[]) 

    {   // Basic matrix-by-vector using nested loops.. 

        for (int row = 0; row < n; row++) { 

            float sum = 0.0f; 

            for (int col = 0; col < n; col++) { 

                sum += (m[row][col] * v[col]); 

            } 

            vout[row] = sum; 

        } 

    } 
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Optimizations of matrix-vector multiplication. Various ways to optimize the 
naive nested loop matrix-vector multiplication suggest themselves: 

• Hoisting loop-invariant code (loop code motion) of the “m[row]” 
expression. 

• Loop pointer arithmetic for both loops. 

• Loop unrolling of the inner loop to unroll 4, 8 or more iterations. 

• Loop tiling to unroll a 2x2 tile/block. 

• Vectorization using the AVX1/AVX2 vector dot product versions we 
already examined. 

I tried coding several more of these optimizations and here are the benchmarks: 

    Matrix-Vector (MatMulVec) benchmarks (N=2048, ITER=300): 

    Matrix-vector nested loops: 3480 ticks (3.48 seconds) 

    Matrix-vector nested loops hoisted: 3489 ticks (3.49 sec) 

    Matrix-vector nested ptr-arith: 3415 ticks (3.42 seconds) 

    Matrix-vector unrolled inner (4): 1166 ticks (1.17 seconds) 

    Matrix-vector unrolled inner (8): 938 ticks (0.94 seconds) 

    Matrix-vector nested tiled 2x2: 1995 ticks (2.00 seconds) 

    Matrix-vector vecdot AVX1 DP: 1414 ticks (1.41 seconds) 

    Matrix-vector vecdot AVX2 FMA: 929 ticks (0.93 seconds) 

Interestingly, code hoisting and loop pointer arithmetic were a waste of effort. Loop 
tiling did better than the original, but probably its speedup is primarily from the 
effect of loop unrolling rather than data locality or cache hit rates, since simpler 
loop unrolling did better. Note that the AVX1 version used the “dot product” 
intrinsic but AVX-2 used the FMA intrinsic. Simple loop unrolling also did as well 
as AVX2 hardware vectorization, probably because the versions of AVX1 and 
AVX2 were simply calling the vector dot product functions, so they still had 
function call overhead. Hence, this algorithm can be further optimized by inlining 
to fix the AVX function call overhead, combining AVX intrinsics with unrolling 
for the inner loop, and then some minor final tweaks such as pointer arithmetic. 

Tiled Matrix-Vector Multiplication 

A more detailed analysis of the matrix-vector algorithm shows that it is not optimal 
in at least three areas: 

• Data locality 

• Pipelining AVX intrinsic arithmetic 

• Redundant loads 
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The data locality of the 2x2 tiled version is better, but more improvement is 
possible, starting with the use of AVX intrinsics inside the “sub-kernel” for the tile. 
The AVX instruction sequences of “load, calculate, store” in the earlier non-tiled 
AVX-optimized versions are not allowing for the natural instruction pipelining of 
the AVX intrinsics to calculate multiple sums or FMA operations with near-parallel 
pipelining. And the entire input vector is getting re-loaded repeatedly for every row 
in the matrix. So, we need to examine improvements on three aspects. 

A tiled sub-kernel is the main way to fix data locality and pipelining. Improving data 
locality is somewhat inherent to tiling. The pipelining can be improved by unrolling 
the tiled sub-kernel and reordering the loads and stores so they don’t block the 
arithmetic of AVX intrinsics. 

Can we avoid redundant vector loads? Since it’s unavoidable to access every 
element of every row at least once, the redundant loads of the vector suggest that 
we should modify the algorithm so as to work on a subsection of the vector for 
each of the matrix rows. This suggests an inversion of the main nested loops of the 
algorithm. However, that runs into the major problem that it destroys cache locality, 
by scanning down the column of the first matrix. I benchmarked this loop 
interchange idea, and it actually increased execution time. Maybe we should use the 
transpose of the first matrix, so that it’s in column-major order when scanning its 
columns? No, that’s actually just going back to the original algorithm without the 
loop interchange. 

Anyway, a better plan seems to be to reduce the redundant loading by using 
temporary calculations inside the tile sub-kernel. Here is what a basic tiled/blocked 
algorithm using 2x2 tiles looks like in basic sequential C++: 

    void aussie_matmul_vector_tiled_2x2_better(const ymatrix m, 

            const float v[], int n, float vout[]) 

    {   // Tiled/blocked matrix-by-vector using 2x2 tiling 

        aussie_assert(n % 2 == 0); 

        for (int row = 0; row < n; row += 2) { 

            vout[row] = 0.0f; 

            vout[row + 1] = 0.0f; 

            for (int col = 0; col < n; col += 2) { 

              vout[row] +=  

                  (m[row][col]*v[col]) // row+0,col+0 

                + (m[row][col+1] * v[col+1]) // row+0, col+1 

                  ; 

              vout[row+1] +=  

                  (m[row+1][col]*v[col]) // row+1, col+0 

                + (m[row+1][col+1] * v[col+1])  // row+1, col+1 

                  ;  

            } 

        } 

    } 



279                             C++ Ultra-Low Latency 
 

One minor improvement would be to use memset to clear the whole output vector 
to zero, rather than individual assignments, which I added to the 4x4 tiled version. 
There is another minor improvement is removing the “common sub-expressions” 
of v[col] and v[col+1] and I tried this with no improvement noted in the 2x2 
tiled version, but about 10% improvement in the 4x4 tiled version. The 
computations of m[row] and m[row+1], etc., can also be hoisted out of the inner 
loop, giving another 10% gain for the 4x4 tiled version. The C++ code for the 4x4 
tiled version with a fully unrolled 4x4 sub-kernel now looks like: 

    void aussie_matmul_vector_tiled_4x4_CSE2( 

        const ymatrix m, const float v[], int n, float vout[]) 

    {   // Tiled/blocked matrix-by-vector using 4x4 tiling 

        aussie_assert(n % 4 == 0); 

        memset(vout, 0, sizeof(float) * n); 

        for (int row = 0; row < n; row += 4) { 

            const float* rowvec = &m[row][0]; 

            const float* rowvec1 = &m[row + 1][0]; 

            const float* rowvec2 = &m[row + 2][0]; 

            const float* rowvec3 = &m[row + 3][0]; 

            for (int col = 0; col < n; col += 4) { 

                float fcol0 = v[col]; 

                float fcol1 = v[col + 1]; 

                float fcol2 = v[col + 2]; 

                float fcol3 = v[col + 3]; 

                vout[row] += 

                  (rowvec[col] * fcol0) // row+0, col + 0 

                  + (rowvec[col + 1] * fcol1) // row+0, col + 1 

                  + (rowvec[col + 2] * fcol2) // row+0, col + 2 

                  + (rowvec[col + 3] * fcol3) // row+0, col + 3 

                  ; 

                vout[row + 1] += 

                  (rowvec1[col] * fcol0) // row+1, col + 0 

                  + (rowvec1[col + 1] * fcol1) // row+1, col + 1 

                  + (rowvec1[col + 2] * fcol2) // row+1, col + 2 

                  + (rowvec1[col + 3] * fcol3) // row+1, col + 3 

                  ; 

                vout[row + 2] += 

                  (rowvec2[col] * fcol0) // row+2, col + 0 

                  + (rowvec2[col + 1] * fcol1) // row+2, col + 1 

                  + (rowvec2[col + 2] * fcol2) // row+2, col + 2 

                  + (rowvec2[col + 3] * fcol3) // row+2, col + 3 

                  ; 

                vout[row + 3] += 

                  (rowvec3[col] * fcol0) // row+3, col + 0 

                  + (rowvec3[col + 1] * fcol1) // row+3, col + 1 

                  + (rowvec3[col + 2] * fcol2) // row+3, col + 2 

                  + (rowvec3[col + 3] * fcol3) // row+3, col + 3 

                  ; 

            } 

        } 

    } 
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Matrix-Matrix Multiplication 

Now let’s look at matrix-matrix multiplication, whereas above we looked at matrix-
vector multiplication. The proper MatMul and GEMM kernels are coded for full 
matrix-matrix multiplication. 

Matrix multiplication results in another matrix as the output. For the simple case of 
two square matrices of the same size, the resulting output matrix is also of the same 
dimensions. In pseudocode: 

    M1[N][N] * M2[N][N] -> MOUT[N][N] 

For multiplying two rectangular matrices, or sizes MxN and NxP, we get an output 
matrix of size MxP (i.e., the inner N dimensions disappear). In pseudocode style: 

    M1[M][N] * M2[N][P] -> MOUT[M][P] 

Note that P=1 is the case of matrix-vector multiplication, because an Nx1 matrix 
is actually a vector with N rows of a single element (i.e., one column). 

Algorithmic Complexity. The naive implementation of a matrix-matrix 
multiplication via three nested loops is a cubic algorithm, with O(N^3) complexity. 
The well-known Strassen algorithm has complexity about O(N^2.7), which looks 
like such a massive improvement. Other algorithms such as the Coppersmith-
Winograd algorithm and numerous sub-variants have better asymptotic complexity, 
but with a high constant overhead, making them impracticable for anything but 
very large values of N. 

Basic Matrix-Matrix Multiplication. The basic naive algorithm for matrix 
multiplication is three nested loops. There is nothing fancy here: this is just coding 
up the basic matrix multiplication method that you forgot the second you finished 
your Senior math exam.  

If you don’t believe me, check it out on Wikipedia.  
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Here’s the C++ code: 

    void aussie_matmul_matrix_basic(const ymatrix m1, 

              const ymatrix m2, int n, ymatrix mout) 

    { 

        // Matrix-Matrix mult basic naive n^3 algorithm 

        for (int row = 0; row < n; row++) { 

            for (int col = 0; col < n; col++) { 

                float sum = 0.0f; 

                for (int k = 0; k < n; k++) { 

                    sum += (m1[row][k] * m2[k][col]); 

                } 

                mout[row][col] = sum; 

            } 

        } 

    } 

The two outer loops are scanning the rows of the first matrix, and the columns in 
the second matrix. The innermost of the three loops is doing a vector dot product 
computation over the “k” index variable. However, it’s not a normal vector-vector 
dot product. Instead, it’s the dot product of one “horizontal” vector, which is a row 
of the first matrix, and of a second “vertical” vector, which is a column of the 
second matrix. Hence, the number of rows in the first matrix must equal the 
columns of the second matrix, which is true here because we’re assuming that both 
matrices are square. Hence, the “k” variable is spinning down the n elements of a 
row and a column at the same time. Every element of the NxN output matrix 
requires a vector dot product calculation like this. 

Vectorization. None of these matrix multiplication algorithms are especially good, 
because they are all sequential, rather than parallel algorithms. Neither the naive cubic 
version nor the Strassen algorithm are what we need. What we need for GPUs and 
CPU SIMD intrinsics are vectorizable algorithms for matrix-matrix multiplication. 
Unfortunately, the above simple triple-nested matrix multiplication algorithm 
is not one of them, because non-contiguous storage of the second matrix hampers 
vectorization. 

Memory layout problems for matrix-matrix multiplication: The layout in 
memory for matrix-matrix multiplications is not as fortuitous as it was for matrix-
vector multiplications. Each computation in matrix-matrix multiplication is a vector 
dot product of a row of the first matrix with a column of the second matrix. Each 
row of the first matrix is happily stored in contiguous memory, but the columns in 
the second matrix are not. In fact, the “stride” between two elements of a column 
of a matrix is a very large number of bytes in the default memory layout. 
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The default storage of matrices and two-dimensional arrays in C++ is called “row-
major” storage layout. Row-major storage has each row in contiguous memory. The 
rows are stored one at a time, top to bottom, and adjacent elements in a row are 
also adjacent memory addresses. Columns are a second-class citizen in row-major 
layout, and you have to jump around to find adjacent elements of a column vector. 

The alternative storage method is “column-major” storage layout where the 
columns are stored in contiguous memory, and it’s the rows that are in the smoker’s 
carriage at the back of the train. However, column-major is not the default C++ 
storage mode. 

Hence, to vectorize a matrix-matrix multiplication, we want to keep the first matrix 
in row-major storage, but we need to rearrange the storage of the second matrix to 
be column-major storage, rather than the default row-major storage. Column-major 
storage would help vectorize the columns with each column element in adjacent 
memory locations. The first matrix is fine, but we want the second matrix to be 
stored in a mirror image of itself. 

Hmm, a mirror and a matrix. What does that sound like? A transposed matrix. 

Pseudo-Transposed Second Matrix. The simplest way to get column-major 
order of a matrix (especially if square) is to use the transpose of the matrix, and 
modify the internals of the matrix multiplication function to pretend that the 
transpose is actually the column-major storage of the original second matrix. I call 
it the “fake transpose” method, which is a bit of a misnomer because it is the actual 
transposed matrix, but we modify the matrix multiplication code to access it with 
reversed logic indices. 

Confusing? Yes, I felt the same way, but if you follow it through carefully, you can 
see that the transpose is really very similar to storing the original matrix in column-
major order, where each column element is stored in adjacent memory. The 
columns of the original problematic matrix become fake rows in the fake transpose, 
stored in sequential memory addresses. So, for square matrices, we can take the 
transpose of a matrix, and it’s like the matrix has been converted into column major 
storage. However, we also need to change the C++ code in the matrix 
multiplication kernel, because it assumes row-major order storage of both matrices, 
but now we’ve got row-major storage only for the first matrix, and column-major 
storage for the second one (our fake transpose). 

The main point of optimization with a transpose is that the column becomes a 
contiguous vector from a row in the transposed matrix.  
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Here’s what the matrix multiplication algorithm looks like when it’s working on a 
“fake” transpose: 

    void aussie_matmul_matrix_fake_transpose(const ymatrix m1, 

        const ymatrix m2, int n, ymatrix mout) 

    { 

        // Matrix-Matrix naive n^3 algorithm on a TRANSPOSE 

        for (int row = 0; row < n; row++) { 

            const float* rowvec = &m1[row][0]; 

            for (int col = 0; col < n; col++) { 

                float sum = 0.0f; 

                const float* colvec = &m2[col][0];  // Row! 

                for (int k = 0; k < n; k++) { 

                    sum += (rowvec[k] * colvec[k]); 

                } 

                mout[row][col] = sum; 

            } 

        } 

    } 

Note that the above code assumes the transpose has already been computed. 
However, it is viable to compute a new transpose matrix in a preliminary step and 
still be faster, because transposing a matrix only adds an extra O(N^2) time to 
compute the transpose (and N^2 storage space to store it temporarily), whereas the 
main matrix multiplication is O(N^3) time. 

Perhaps surprisingly, this transpose method is much faster even without any 
vectorization. Because the column vectors are accessed in sequential order from 
contiguous memory, there is much better data locality for the memory cache, and 
also for any predictive pipelining happening in the cache. Here’s the benchmark 
comparison: 

    Matrix-Matrix multi (MatMul) benchmarks (N=2048, ITER=1): 

    Matrix-matrix mult basic: 69479 ticks (69.48 seconds) 

    Matrix-matrix fake transpose: 47469 ticks (47.47 seconds) 

The transpose method is 31% faster with an unchanged basic MatMul algorithm. 
And all we did was permute two indices in a two-dimensional array. This code does 
exactly the same arithmetic computations as the naive version, but accesses memory 
in a different order, giving us a cache speedup. 

There are various other small coding optimizations that can improve the transposed 
MatMul method further. The loop body could be partially unrolled by 4 or 8 
iterations (or more).  
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Here’s the C++ code of the version with an unrolling factor of 8 iterations: 

    void aussie_matmul_matrix_fake_transpose_unrolled8( 

      const ymatrix m1, const ymatrix m2, int n, ymatrix mout) 

    { 

        // Transpose Matrix-Matrix mult 8 iteration unroll 

        aussie_assert(n % 8 == 0); 

        for (int row = 0; row < n; row++) { 

                const float* rowvec = &m1[row][0]; 

                for (int col = 0; col < n; col++) { 

                    float sum = 0.0f; 

                    const float* colvec = &m2[col][0]; 

                    for (int k = 0; k < n; k += 8) { 

                        sum += (rowvec[k] * colvec[k]) 

                            + (rowvec[k + 1] * colvec[k + 1]) 

                            + (rowvec[k + 2] * colvec[k + 2]) 

                            + (rowvec[k + 3] * colvec[k + 3]) 

                            + (rowvec[k + 4] * colvec[k + 4]) 

                            + (rowvec[k + 5] * colvec[k + 5]) 

                            + (rowvec[k + 6] * colvec[k + 6]) 

                            + (rowvec[k + 7] * colvec[k + 7]) 

                            ; 

                        } 

                        mout[row][col] = sum; 

                } 

        } 

    } 

Here are the benchmark results: 

    Matrix-Matrix mult (MatMul) benchmarks (N=2048, ITER=1): 

    Matrix-matrix fake transpose unroll 4: 15221 ticks (15.22 s) 

    Matrix-matrix fake transpose unroll 8: 12151 ticks (12.15 s) 

Further tweaks are possible. The internal loop could be fully unrolled for a known 
vector size. Also, the initialization “sum=0.0f” could be removed by peeling the 
first iteration and starting the loop at “k=1”.  

Pointer arithmetic could be used to avoid loop indices and the double bracket 
accesses. However, these are small fry, and we’re now on the hunt for the Spanish 
mackerel of MatMul optimizations: vectorization. 
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Vectorized MatMul 

Cache speedup is not the only benefit of the transpose method. Once we have 
column-major storage for the second matrix, then both the rows of the first matrix, 
and the columns of the second matrix are in contiguous memory. The computation 
is a normal vector dot product again on two vectors stored as arrays in memory 
(i.e., “rowvec” and “colvec” in the C++ code above). Hence, we can just use all 
of our standard vector dot product speedups again, including vectorization and 
hardware acceleration. 

As an example, here’s the AVX-2 vectorization of the transpose method using the 
FMA 256-bit intrinsics to do the vector dot product in parallel. This parallelizes the 
dot product by 8 elements at a time: 

    void aussie_matmul_matrix_fake_transpose_vecdot_AVX2( 

      const ymatrix m1, const ymatrix m2, int n, ymatrix mout) 

    { 

        // AVX2 Matrix-Matrix multiplication  

        aussie_assert(n % 8 == 0); 

        for (int row = 0; row < n; row++) { 

            const float* rowvec = &m1[row][0]; 

            for (int col = 0; col < n; col++) { 

                const float* colvec = &m2[col][0]; 

                mout[row][col] = aussie_vecdot_FMA_unroll_AVX2( 

                                         rowvec, colvec, n); 

            } 

        } 

    } 

Here are the benchmark results: 

    Matrix-Matrix multi (MatMul) benchmarks (N=2048, ITER=1): 

    Matrix-matrix fake transpose AVX1: 19522 ticks (19.52 s) 

    Matrix-matrix fake transpose AVX2: 12747 ticks (12.75 s) 

If anything, these AVX results are disappointing. Basic loop unrolling techniques 
(in the prior section) did better than AVX1 and the same as AVX2 vectorization. 
However, we haven’t used AVX optimally inside the sequential code here. The 
AVX intrinsic calls should be moved up into the loop body without any function 
call overhead (i.e., inlining the function manually).  

I coded up that idea, and it made almost zero difference! I guess the C++ compiler 
is already inlining it, or function call overhead is a tiny percentage. 
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Further parallelization speedups would include using AVX-512 or AVX-10 
intrinsics for vectorizing 16 elements in parallel. Also desirable are various further 
optimizations of the sequential code around any AVX intrinsics. The inner “col” 
loop could be fully or partially unrolled with multiple AVX sequences and/or 
optimized with pointer arithmetic. 

Loop Tiled/Blocked MatMul 

The triple-nested MatMul version with the vectorized inner loop is still nowhere 
near what is possible. There are three more ways to increase throughput: 

• Data locality within the matrices. 

• Pipelining of the SIMD instructions. 

• Avoiding repeated loads of the same data. 

The data locality of the basic AVX transposed MatMul algorithm is still far from 
optimal, although we fixed the most egregious problem by using the transpose. The 
algorithm is simply scanning down all of the dimensions, without really any attempt 
to maintain data locality. 

The method of calling AVX intrinsics is simply doing “load, FMA, store” repeatedly 
along blocks of 4 or 8 elements, which does not allow for the natural pipelining of 
the FMA instructions. The loads and stores are interrupting the flow of 
computation. 

Secondly, if you look carefully at the “load” operations that are happening in the 
sequence, you realize that it is repeatedly loading the same regions of the matrices. 

Tiling or blocking the MatMul loops are far more effective. The basic idea is that 
instead of scanning sequentially, we process smaller square or rectangular “tiles” or 
“blocks” of the data, one at a time.  

Data locality is the main aim of a tiled algorithm, but it also helps us achieve better 
pipelining of SIMD instructions, because we can load all the data in, and then 
perform multiple arithmetic operations on it without any intervening loads or 
stores.  

And since a tiled MatMul is iterating more carefully over smaller blocks of data 
within the matrices, there’s also less redundant loading of the data overall. 
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Fast Matrix Multiplication Theory 

The main techniques for faster matrix multiplication of general matrices include: 

• Strassen’s algorithm 

• Winograd’s algorithm 

• Fast Fourier Transform (FFT) methods 

Matrix multiplications can also be sped up by restricting our algorithm to only use 
matrices that are of special types: 

• Low-rank matrix factorization 

• Sparse matrices 

• Special matrix methods (e.g., Butterfly matrices, Monarch matrices, etc.) 

Each of these specialized matrix types can have a faster matrix multiplication kernel 
than using the all-purpose GEMM kernel. For example, sparse matrices can be 
stored in a compacted permuted-tuple format, with parallelization of permutation 
arrays for computation. 

Approximate Matrix Multiplication. Approximate Matrix Multiplication (AMM) 
refers to a variety of complicated model optimization techniques that replace matrix 
multiplications with various approximations that avoid the cost of arithmetic 
multiplication, trading off some accuracy.  

These methods are usually distinct from quantization methods, are not specific to 
certain subclasses of matrices, and evoke more advanced mathematics in the theory 
of matrices. 

Note that these algorithms apply at the high-level of how matrices are multiplied 
with other matrices or with vectors (e.g., avoiding some vector dot products), 
whereas there are also low-level optimizations of the arithmetic operation when 
multiplying two numbers.  

These two classes of approximation research are not the same, and are actually 
orthogonal to each other. 
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Multiplying by Transpose 

The transpose of a matrix is commonly used in matrix multiplication algorithms, 
both as part of the algorithms and as a speedup. For example, this occurs in AI 
engines with the QKV matrix computations inside the attention heads, where the 
transpose of K is used, usually denoted as KT in the algebraic formula. 

Note that this is the actual algebraic use of the real transpose, as opposed to the 
unique idea of using a “fake transpose” to get column-major storage of matrices for 
easier vectorization.  

The code to compute the transpose of a matrix is shown below for a square matrix: 

    void aussie_matrix_transpose_basic(const ymatrix m1, 

         int n, ymatrix transpose) 

    { 

        // Transpose: put transpose into the output matrix 

        for (int i = 0; i < n; i++) { 

            for (int j = 0; j < n; j++) { 

                transpose[j][i] = m1[i][j]; 

            } 

        } 

    } 

The funny thing is that if we want to multiply a “real” transpose as the second 
matrix in some computation, then the original non-transposed matrix is the “fake 
transpose” of the “real” transpose.  

How awkward!  

But it’s actually good, because we usually already have the original matrix in 
memory, and we don’t even need to compute the (real) transpose. Instead, to do a 
MatMul of a matrix with this real transpose, we can instead use the original matrix 
as the second operand in the kernel that is based on the column-major storage of a 
fake transpose. Oh, dear, I feel like it’s all circular and I’m digging myself into a 
word pit here! But it all works out in the end, and it’s fast, which is really the one 
and only thing. 
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Part V: Multithreading 

Optimizations 
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29. Multithreading Optimizations 

C++ Multithreading Optimizations 

Multithreading is the art of parallelizing on a multicore CPU, often as part of low 
latency programming. Threads have been around since at least the 1990s (e.g., 
POSIX threads), even before most CPUs even had “cores,” but recent 
advancements have made them much easier to code.  

C++11 introduced a standardized thread library called std::thread (along with 
the supporting extra classes std::mutex and std::atomic), and C++17 then 
introduced a lot more advanced parallelization modes. 

What is Multithreading? 

In this discussion, threads run on the CPU, and you can have many threads per 
CPU (or per “core”). Multithreading and multicore programming are largely the 
same thing, or at least they’re in the same ballpark. 

Other types of threads can differ quite a lot. For example, there is also a slightly 
different idea of “threads” on GPUs in the CUDA C++ programming language.  

You can run 1024 threads on an NVIDIA GPU, but you might not want to do that 
on your CPU lest you run out of stack space. CUDA C++ allows 1024 threads by 
having a quite restricted amount of GPU memory (sometimes called VRAM) 
allocated to the call stacks for each GPU thread in a grid.  

Hence, stack overflow is a thing on GPUs, too. 

 

 

 

 



David Spuler                                               294 
 

How Not to Multithread 

If you’re looking for a short career as a multithreading programmer, here are some 
suggestions: 

• Launch as many CPU threads as you possibly can, ideally one per vector 
element, just like you do in a low-level GPU kernel for AI inference. 

• Put huge buffer objects as local variables on your call stack, and launch 
multiple threads of that. 

• Fix your huge local buffer variables by making them static, because that 
function won’t ever get run twice at the same time. 

• Use mutexes around every access to all your variables, just to be safe. 

• Recursion will get you fired in any coding job, except university lecturer, 
so it’s best to pretend you’ve never heard of it. 

High-Level Multithreading Optimization 

The first point above all else: multithreading is a high-level optimization in itself. Hence, 
you want to be judicious in your choices of where to use your threads, and at what 
level. 

Some of the issues that control the overall concurrency that is achieved via a 
multithreaded architecture include: 

• Abstraction level choices for splitting the work across threads. 

• Thread pool design pattern — avoid creating and destroying threads. 

• Thread specializations — e.g., producer and consumer threads model. 

• Message-passing design pattern to avoid locking — e.g., with a paired 
future and promise. 

Focusing on the data can also be useful to optimize: 

• Multithreading-friendly data structures — e.g., queues (esp. lock-free 
versions). 

• Maximize read-only “immutable” data usage — aims to avoid blocking 
concurrent readers. 

• Advanced data structure read-write models — copy-on-write, versioned 
data structures. 

• Shard data across threads — reduces needed synchronizations (or other 
types of data partitioning). 

• Reduce disk writes — e.g., use in-memory logging with late disk writes. 
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Ways to optimize by focusing on the execution pathways include: 

• Slowpath removal — keep the hot path small and tight. 

• Defer error handing — most error code is uncommonly executed (i.e., a 
slowpath), so avoid, defer or combine error detection code branches. 

• Cache warming — keep the hotpath bubbling away. 

• Full hotpath optimizations — e.g., for HFT, the hotpath is not just “trade” 
but actually the full latency from data feed ingestion to execution, so it’s 
actually “receive-analyze-decide-and-trade.” 

Some of the more pragmatic points include: 

• How many threads? 

• How long should each thread run? 

• When to exit a thread versus waiting. 

There’s no wrong or right answer to these questions, as they depend on the 
application and the problem you’re trying to solve. 

Low-Level Multithreading Optimization 

There are various ways to modify how you run threads in order to optimize their 
concurrency speed. These are not as impactful as the higher-level thread choices, 
but are still important.  

Some methods to change the lower-level thread architectures include: 

• Core pinning (processor affinity) — every popular thread can have a 
favorite core. 

• Early unlocking — e.g., copy data to local variables, release lock, then do 
the computations. 

• Cache locality improvements (L1 cache and memory prefetch cache) 

• Branch reductions —the instruction pointer on the straight-and-narrow. 

• Lock-free algorithms — avoid mutex overhead and blocked thread delays. 
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Ways to avoid slow-downs in multithreading, and therefore increase speed: 

• Minimizing thread launch and shutdown overheads. 

• Releasing locks early by avoiding unnecessary computation, I/O waits, etc. 

• Minimizing context switches 

• Memory reductions (e.g., allocated memory optimizations; reduce thread-
specific call stack size). 

• Avoid spinlocks (busy wait) or mitigate with exponential backoff methods. 

• Avoiding “false sharing” from overlap of CPU memory prefetch cache 
lines (e.g., use alignas(64) to separate unrelated atomics). 

• Check std::lock_guard is not unnecessarily delaying the unlock (i.e., 
till it goes out-of-scope). 

Sequential C++ Code Optimizations 

An important point about the code running in any thread is that: it’s just C++ code. 
Each thread is running a sequential set of instructions, with its own call stack. 
Hence, all of the many ways to optimize normal C++ code also applies to all of the 
code in the thread. 

Hence, all of the basic ideas for C++ code optimizations apply: 

• Compile-time processing — constexpr, constinit, etc. 

• Operator efficiency — e.g., replace multiply with bitshift or addition. 

• Data type optimizations — e.g., integers versus floating-point. 

• Memory optimizations — improve with cache warming (prefetching), 
memory reductions. 

• Loop optimizations — e.g., loop unrolling, code hoisting, and many more. 

• Compiler hints — e.g., [[likely]] statements. 

• Function call optimizations — e.g., inlining, always_inline, etc. 

• C++ class-level optimizations — e.g., specializing member functions. 

• Algorithm improvements — various non-concurrency improvements, 
such as precomputation, caching, approximations, etc. 

So, the bad news is that once you’ve coded your multithreaded algorithm, you still 
have to go and do all the other types of sequential optimizations.  

Oh, come on, who are we kidding? — it’s loads of bonus fun. 
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30. Common Multithreading Bugs 

& Slugs 

Multithreading Bugs Overview 

Modern C++ is hard enough, and multithreading adds another layer of complexity. 
You’re not alone, and bugs abound in parallel multithreaded C++ code! Various 
beginner bugs and simple misunderstandings include: 

• Linux linking problem with the “pthreads” library (needs “-pthread” 
linker option). 

• main() does not wait for other threads and needs to call join(). 

• Calling join() inside the new thread causes a deadlock. 

• Crashing on join() because the thread is no longer “joinable” (test via 
the joinable() method). 

Here are some simple mistakes you can make when trying to convert your 
application to multithreading: 

• Not using any synchronization for your threads (Yikes!). 

• Not locking in all the places. 

• Forgetting locking for cout and cerr output. 

• Not unlocking on all paths. 

• Double-locking a mutex. 

• Double-unlocking a mutex. 

Once you get into running multiple threads, here are some common gotchas in 
terms of assumptions and misunderstandings: 

• Assuming that the standard C++ containers are always thread-safe. 

• Assuming that all simple int or pointer operations are atomic without 
using std::atomic. 

• The volatile specifier is not a synchronization method. 

Let’s examine some of these simpler multithreading mistakes. 
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Main Thread Exits Early 

Here’s a simple “Hello World” program using standard threading. It looks totally 
fine, right? 

    #include <iostream> 

    #include <thread> 

 

    void thread_function() 

    { 

        std::cout << "Hello world!" << std::endl; 

    } 

 

    int main() 

    { 

        std::thread t1(thread_function); 

        return 0; 

    } 

Can you see the bug? The program won’t print anything. 

Why? Because there’s nothing stopping the main() function, which just keeps 
going and exits immediately. It doesn’t wait for the other thread to even start, let 
alone finish, but is indifferent to its plight. 

That’s one of the things to understand, but there are actually a few fundamental 
points to note here: 

• Launching a new thread is a non-blocking operation. 

• Exiting the program kills all unfinished threads. 

• To wait for a thread, call join(). 

Hence, to fix the program, you need to do this in the main() function: 

    std::thread t1(thread_function); 

    t1.join();   // Wait! 

After this change, the main thread will politely wait for the other thread to print its 
message and finish. The join() function has the following features: 

• Blocking call that waits for the other thread to finish. 

• Immediate return if the other thread has already finished. 
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Self-Join Deadlock. Note that you cannot call join() from inside the new 
thread itself. This causes an immediate deadlock, because the join() call in the 
thread is waiting for itself to finish, but it cannot finish because it’s waiting (is 
anyone else a fan of Catch 22?). I feel like this self-join situation is a bug that the 
standard threads library could check for, and maybe it does in the newer “hardened” 
versions of the standard C++ library. 

Anyway, just don’t do that. It’s the main thread that needs to join the new thread 
from the outside, not the other way around. 

Joinable Safety Check. In the above simple code, it’s not necessarily needed, but 
safer thread code would validate that the thread is allowed to join before trying to 
do so, because it crashes if you’re wrong! For example, a “detached” thread is non-
joinable. Here’s the simplest check: 

     

    if (t1.joinable()) t1.join(); // Safer 

Note that in addition to join(), there’s also a method called detach(), but the 
former is much simpler. The main thread still needs to wait for a detached thread 
before exiting, but requires additional synchronization via some other method, 
because you can’t join() a detached thread, as we just discussed. 

Linux Linking Problem 

You may find that a standard C++ program using the standard thread library does 
not compile with GCC on Linux, or at least on older versions. The problem is that 
standard C++ threads are implemented as POSIX threads on Linux with GCC. 

The problem is that the POSIX threads library (usually called “pthreads”) is not 
getting linked properly. You need to add an extra “-pthread” compiler flag to the 
linking step (without an “s”). The error looks like this: 

    .../thread:127: undefined reference to `pthread_create' 

And the fix is to add this linking flag for GCC: 

    -pthread 

Here’s the line in my Makefile for my testing build: 

    LINKFLAGS=-L/usr/lib64/ -g $(PFLAGS) -pthread 
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Volatile Misunderstanding 

This is a common mistake made about a longstanding feature of C++ (and also C). 
The “volatile” specifier in C++ is not for synchronization. In particular, the 
wrong use of this specifier is not useful in multithreading because it: 

• Does not do anything with other threads. 

• Does not make a variable atomic. 

Not only won’t it do anything useful for your multithreading synchronization, but 
it will actually slow your code down because it interferes with the optimizer. 

The purpose of volatile is much more mundane than multithreaded code, and 
relates only to sequential programming, with these features instead: 

• Indicates that this variable or address has “side effects” that the compiler 
does not know about. 

• Blocks the compiler from “optimizing out” reads or writes to this variable. 

The main real-world uses of the volatile specifier include: 

• Mapping an I/O device to a variable or memory address. 

• Stopping compiler optimizations in benchmarking of low-level arithmetic. 

The first one of these is the reason that it exists in the C++ language (and originally 
in C, too). The idea is to tell the compiler that a variable or address represents an 
input or output device. So, if the compiler sees the same variable or address read 
twice, it doesn’t optimize the second one out, which would be faulty if that address 
represents incoming data from a peripheral device or network feed. Similarly, if you 
write the same value to that variable, intending to send two bytes to an output 
device, the compiler is stopped from blocking you. 

The use in benchmarking is a programmer trick that really misuses a language 
feature. But there’s nothing wrong with that, because the standard semantics 
for volatile are well-defined and have existed in the language since forever. It 
was standardized into the C language in the ANSI C standard of 1989/1990, and 
was formally incorporated into C++98. 

The volatile specifier is a wonderful feature of C++ that I’ve used often. But, 
as mentioned above, don’t use volatile as a synchronization method, because 
nowhere in the above list of its features is anything related to multithreading or 
concurrency. 
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Advanced Multithreading Bugs 

As you progress to greater multithreading knowledge, the bugs get harder: 

• Race conditions — a variety of orders that can have different results. 

• Deadlock — often from wrongly-ordered acquisition of multiple locks. 

• Livelock — a weird kind of near-deadlock cycling. 

• Memory order errors — with atomics and lock-free data structures. 

• High-level concurrency issues — sigh, the low-level concurrency code was 
working so well. 

• Thread starvation — a low-priority thread never gets any juice. 

• Priority inversion — weirdly, a low-priority thread gets all the juice. 

That’s more than enough! However, there’s another important category of C++ 
multithreading bugs: 

All the other C++ bugs you already know about. 

Multithreaded code still uses basic sequential C++ code in every thread. There 
might be a few bugs to watch out for in that! 

Multithreading Slugs 

There are plenty of ways to improve the performance of a C++ multithreading 
application. In fact, you could write a whole book on it! 

Some of the higher-level slugs to avoid include: 

• Using sequential code instead of multiple threads (the horrors!). 

• Launching too many threads (leads to thread overhead). 

• Too many runnable threads per core. 

Some possible slowdowns in your locking strategy: 

• Coarse-grained locking for an entire data structure (per-container locking). 

• Using a single per-class mutex as static data member (per-class locking). 

• Using unique locks for read operations, instead of shared read-write locks. 

• Using a mutex for a simple integer counter (or a Boolean status flag), when 
atomics would be enough. 
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Some of the low-level slugs in locking synchronization include: 

• Overlong lock holding with std::lock_guard destructor unlocking. 

• Not freeing a lock when no longer needed (e.g., when doing computation). 

• Holding a lock while doing the last computations, instead of copying data 
to local variables (and then unlocking before the computations). 

• Holding a lock before an I/O operation or blocking kernel system call. 

Some other ideas for areas to address for performance: 

• Thread function arguments are pass-by-value by default (e.g., for objects). 

• Not using a thread pool instead of launching/destroying lots of threads. 

• Don’t do core pinning (thread affinity) with core zero (it’s the main Linux 
kernel core). 

• Blocking calls to select() in socket programming. 

• Not doing any real work in the main thread (it’s a useful worker, too!). 

Fake Multithreading 

One weirdly common slug is “redundant thread computations” due to a simple 
programming bug. This means that you have multiple threads repeating the exact 
same work in multiple threads, but nobody notices because it’s a slug rather than a 
bug. 

For example, if you’re optimizing a “vector-add” operation that takes two vectors 
and outputs a third vector, and the vectors are very long (e.g., in AI), then you might 
try to have different segments of a vector processed in different threads to 
parallelize the operation. But if you mess up the indices, such as if your boss calls 
you away to an important meeting while you’re coding, there might be a problem 
with the loop indices. 

If you actually send work to each thread that has the full index range, rather than a 
sub-segment, then each thread scans the entire vector and outputs the entire third 
vector. This is insidious because the results should be correct, but it’s re-computing 
the same arithmetic operations multiple times in parallel. 

There’s nothing wrong with your high-level design except that the code still 
has n instead of i in the code that assigns jobs to threads. You can go crazy and 
optimize your multithreaded vector-add operation with producer-consumer thread 
pools and lock-free queues, and then add work stealing for load balancing, but if 
your indices are wrong, it’s all moot. Slugs and bugs can live together! 
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31. Thread Overhead 

What is Thread Overhead? 

Thread overhead is the extra cost of creating and destroying threads, at the start 
and end of multithreaded algorithm execution. This is effectively an extra cost that 
you wouldn’t have in a single-threaded C++ application, and is offset against the 
performance gain of parallelizing your code into multiple threads.  

Hence, the two main components of thread overhead are: 

• Launching new threads 

• Destroying a finished thread 

Note that these costs do not involve any other thread, but are specific to a single 
thread. There are some other less obvious causes of extra thread overhead: 

• Constructors of thread_local objects (thread-local storage) 

• Destructors of thread-local objects on thread shutdown 

These per-thread costs are analogous to the startup and shutdown costs of C++ 
global objects in a non-threaded program. A normal C++ program has extra code 
that runs before main() for global object constructors, and destructors that run 
after the application finishes. 

Measuring Basic Thread Overhead 

You’re supposed to use a “thread pool” to avoid all the basic overhead of starting 
and stopping threads. I was wondering how much that overhead would actually be, 
so I decided to time it, using a dummy example. 
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Here’s my simple benchmarking function that just consumes some time, but 
uses volatile to avoid getting optimized away: 

    void thread_function(int n) 

    { 

        for (volatile int i = 0; i < n; i++) { 

            // nothing 

        } 

    } 

I wanted the code to be doing some real instructions, rather than just sleeping for 
a delay, such as with the this_thread::sleep_for() function, in case it made 
any difference to the status of the thread before shutdown. 

Here is the instrumentation I used to try to measure thread startup and shutdown 
overhead using the high-resolution clock in the <chrono> library: 

    { 

    before = std::chrono::high_resolution_clock::now(); 

    before_thread = before; 

    std::thread t1(thread_function, n); 

    after_thread = std::chrono::high_resolution_clock::now(); 

    t1.join(); 

    after_join = std::chrono::high_resolution_clock::now(); 

    } 

    now = std::chrono::high_resolution_clock::now(); 

And the computations of the different costs in microseconds are: 

    diff_thread_function = 

        std::chrono::duration_cast<std::chrono::microseconds> 

           (now - before).count(); 

    startup_thread_function =      

        std::chrono::duration_cast<std::chrono::microseconds> 

           (after_thread - before_thread).count(); 

    shutdown_thread_function =  

        std::chrono::duration_cast<std::chrono::microseconds> 

           (now - after_join).count(); 

    compute_thread_function = 

        std::chrono::duration_cast<std::chrono::microseconds> 

           (after_join - after_thread).count(); 
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Lambda and Functor Threads 

A thread can be defined in other ways than a normal function call, such as function 
pointer (not much different), a lambda function, and a functor (function object). 
Hence, I decided to test the various different ways that a thread body of executable 
instructions could be defined, such as: 

• Standard function (i.e., with a name) 

• Lambda function (anonymous function) 

• Functor (function object) 

The named function is shown above with the timing instrumentation around it. 
Here’s the lambda function version with the anonymous [] syntax: 

    std::thread t1( [](int n) { 

            for (volatile int i = 0; i < n; i++) { 

                // nothing 

            } 

        }, n); 

And here’s a functor for your viewing pleasure, which is a “function object” where 
the operator() has been defined: 

    struct Functor { 

        void operator()(int n) { 

            for (volatile int i = 0; i < n; i++) { 

                // nothing 

            } 

        } 

    }; 

    Functor functor; 

    std::thread t1(functor, n); 

Timing Results 

Timing on Linux with GCC, these are the non-threaded timings: 

    Basic Function: 34 microseconds 

    Basic Function (Repeat): 36 microseconds 

    Basic Inline: 34 microseconds 

    Basic Ptr-to-Fn: 34 microseconds 

    Basic Functor: 32 microseconds 

    Basic Lambda: 34 microseconds 

    Basic std::function: 33 microseconds 
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And these are the threaded calls on Linux with GCC: 

    Thread Func (First): 228 us (init: 144, compute: 84, end: 0) 

    Thread Func (Repeat): 43 us (init: 3, compute: 39, end: 0) 

    Thread Func (Repeat): 41 us (init: 2, compute: 39, end: 0) 

    Thread Lambda: 42 us (init: 2, compute: 39, end: 0) 

    Thread Functor: 40 us (init: 2, compute: 37, end: 0) 

Note that these are microseconds! The overhead from setting up the threads library 
with 200 microseconds is not even half a millisecond. And that’s only the first call, 
with the rest of the threads seeming to have only 2 or 3 microseconds of startup 
overhead on Linux! 

Timing on Windows (MSVS) for the non-threaded function calls: 

    Basic Function: 107 microseconds 

    Basic Function (Repeat): 102 microseconds 

    Basic Inline: 78 microseconds 

    Basic Ptr-to-Fn: 97 microseconds 

    Basic Functor: 136 microseconds 

    Basic Lambda: 87 microseconds 

    Basic std::function: 182 microseconds 

And here are the Windows timings of the thread launches for the same functions: 

    Thread Func (1st): 3387 us (init: 74, compute: 3312, end: 0) 

    Thread Func (Rep): 649 us (init: 41, compute: 607, end: 0) 

    Thread Func (Rep): 729 us (init: 35, compute: 694, end: 0) 

    Thread Lambda: 621 us (init: 34, compute: 586, end: 0) 

    Thread Functor: 539 us (init: 30, compute: 509, end: 0) 

A few conclusions can be drawn: 

• Thread launch overhead is about 26% on Linux (43 vs 34) and 500% (649 
vs 107) on Windows (admittedly, an unfair comparison of a Linux server 
versus a Windows laptop!). 

• The first thread launch has a large extra time cost, which disappears on a 
repeat, perhaps from initialization of the thread mechanisms (or perhaps 
it’s just a cold cache?). 

• There’s not much difference between running a thread body with a 
standard named function, lambda function, or functor (function object) on 
either platform. 
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Limitations. This is a dummy function and the overhead would be proportionally 
less if the thread did more computation. This is a single test of a single function for 
a single iteration count. There might be a few statisticians who want to object to 
that level of sampling. 

Furthermore, as you can see, my timing method isn’t particularly effective at 
separately computing the startup and shutdown costs of a thread. A lot of the 
startup cost and shutdown cost seems to be hidden inside the compute time, while 
the main thread is waiting with the join() call. Nevertheless, the total costs are 
quite indicative of the extra overheads, especially on the very first thread launch. 

Synchronization and Context Switch 
Overhead 

The above discussion is about the overhead of threads starting and stopping. There 
are various other types of overhead that should be optimized in the middle of the 
thread’s execution: 

• Synchronization overhead — extra cost of mutexes, locks, atomics, etc. 

• Thread wait durations — blocked while awaiting a mutex or lock. 

There are also some slowdowns that arise because your code is now split up into 
multiple threads, which have to be scheduled and time-sliced by the OS and the 
hardware. Some of the general areas of cost include: 

• Context switches — cost of swapping threads in and out of CPU. 

• Scheduling costs — the OS choosing which thread to run next. 

There are also some slowdowns that occur in hardware caches during these 
switches, because the OS does not store and reinstate any of the hardware caches. 
The new thread starts with cold hardware caches, leading to cache misses with 
performance problems in several areas: 

• Memory cache invalidation — context switches lose low-level L1/L2/L3 
CPU cache advantages. 

• TLB cache loss — the virtual address cache is lost. 

• CPU instruction pipeline —stalls because execution location has moved. 

• Instruction prefetch — cleared because a new thread starts elsewhere. 

• Memory prefetch cache — the new thread is unlikely to be accessing the 
same memory locations. 

• NUMA cache issues — loss of cache coherence in multicore NUMA. 
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In other words, everything that the CPU does to make executing code run fast gets 
undermined by a context switch. 

What causes a context switch? Context switches can arise at the end of a time-slice 
in scheduling, or can occur whenever the threads uses a primitive that can block 
the thread. Some examples that trigger a context switch include: 

• Synchronization — waiting for a lock or mutex. 

• System calls — those that block, such as for I/O or networking. 

A context switch involves storing all the status of the current thread and then 
overlaying a new context for the new thread. This has its own cost, and also triggers 
a flush of various CPU hardware caches, so the new thread starts its time-slice with 
cold caches. Hence, context switches are expensive, and minimizing the number of 
context switches is an important part of optimizing multithreading code. 
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32. Thread Pools 

What are Thread Pools? 

Threads going swimming in warm ocean water. Who doesn’t love the beach? 

Thread pools are a design pattern in C++ multithreading that avoids the cost for 
creating and destroying threads by using long-running threads. Instead of incurring 
this thread overhead, a “pool” of available threads have been pre-created, which sit 
there until work is available to be done. The main characteristics are: 

• Idle threads wait for work (e.g., off a task queue). 

• Threads are not destroyed after completing a chunk of work. 

Thread pools are mostly used in a “producer-consumer” design pattern, although 
thread pools can also be used in other ways. There are effectively two thread pools 
in this design pattern: 

• Producer thread pool — or sometimes a single producer. 

• Consumer thread pool — always multiple, or what’s the point? 

Typically, one or more producer threads adds work items to a queue, such as when 
it receives new data from a network source. Another group of consumer threads is 
idle while waiting to pull work off the queue. Consumers do the work, return the 
results, and then add themselves back to the pool of idle consumer threads awaiting 
more work. 

Work Queue Implementation 

The typical features of the thread-safe queue used in a producer-consumer work 
queue include: 

• Vector of worker threads 

• Queue of arbitrary tasks (e.g., usually implemented as lambdas, functors 
or std::function wrappers) 

• Stop flag for shutting down 
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The main interfaces are: 

• Enqueue work (push) — by the producer. 

• Deque work (pop) — by the consumer worker threads. 

• Shutdown — tell all the threads to stop. 

For a more advanced thread pool, some extra convenience features of the work 
submission interface to consider include: 

• Work functions with arbitrary arguments (via parameter packs, variadic 
functions) 

• Perfect forwarding of function arguments (e.g., std::forward) 

The work queue can be implemented in various ways: 

• Use std::queue or std::deque inside the thread pool object. 

• Hand-coded locking queue with mutex and condition variable. 

• Lock-free queue with atomics and “Compare-And-Set” (CAS) primitives. 

Thread Pool Example 

I tried hard to make this example simpler; I really did! In fact, my aim was to use 
only explicit function names, and avoid any uses of the syntactic sugar for: 

• Lambda functions 

• std::function 

• Functor mechanics 

However, it was a triple fail. Perhaps the last point was unavoidable, since a worker 
task is a function object. But I also had to add a little lambda function just to get 
the worker thread function to run and another one for the predicate in the condition 
variable wait. I also used std::function for the type of the function objects. 

Anyway, here’s the first attempt at a “simple” thread pool with these features: 

• Wraps around a std::queue of tasks — not anything home-grown. 

• Each task is a function object — so they can be put on a queue. 

• Vector of threads — each one waits forever for a task. 

• Mutex and condition variable for synchronization — i.e., basic locking, not 
lock-free). 

• Stop flag — only used when shutting down the entire thread pool. 
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And here’s the code of the basic interface and private data members: 

    class ThreadPool { 

        using TaskType = std::function<void()>; // Type alias 

      private: 

        std::vector<std::thread> threads_;  // Threads in pool 

        std::queue<TaskType> qtasks_;  // Queue of tasks to run 

        std::mutex mtx_; 

        std::condition_variable cv_; 

        bool stopflag_;  // Shutdown flag (set in destructor) 

        .... 

    }; 

For safety, I’ve deleted some of the whole-thread-pool methods: 

    ThreadPool(const ThreadPool&) = delete; 

    ThreadPool(ThreadPool&&) = delete; 

    ThreadPool& operator=(const ThreadPool&) = delete; 

    ThreadPool& operator=(ThreadPool&) = delete; 

Here’s the basic constructor with the number of threads to create in the pool, by 
adding them to a vector of threads: 

    ThreadPool(size_t nthreads) : stopflag_(false) { 

        for (int i = 0; i < nthreads; i++) { 

            // Create new thread 

            auto tobj = [this]() { worker_thread(); }; 

            threads_.emplace_back(tobj); 

        } 

    } 

Here’s the worker that each thread runs, with an infinite loop waiting for tasks. 

    void worker_thread() { 

        for (;;) { // forever 

            std::unique_lock<std::mutex> lock(mtx_); 

            cv_.wait(lock, [this] {  

                 return !qtasks_.empty() || stopflag_; }); 

            if (!qtasks_.empty()) { 

                TaskType t = qtasks_.front(); 

                qtasks_.pop(); 

                lock.unlock();  // Unlock before running task! 

                t();  // Run the task! 

            } 

            else { // Empty queue 

                if (stopflag_) { return; } // Quit 

            } 

        } 

    } 
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Each thread will only exit if (a) the destructor sets the stop flag, and (b) there’s no 
more tasks still on the work queue. This ensures the whole thread pool gracefully 
shuts down by first finishing all jobs. 

And here’s the destructor, which sets a global stop flag, notifies all the threads, and 
then waits for each one to stop. 

    ~ThreadPool() { 

        std::unique_lock<std::mutex> lock(mtx_); 

        stopflag_ = true; // Set the shutdown flag 

        lock.unlock(); 

        cv_.notify_all(); // Tell everyone to stop 

        for (auto &t : threads_) { 

            t.join(); // Wait for all threads 

        } 

        threads_.clear(); 

    } 

Here’s the enqueue function to add a work task for a thread to run: 

    void enqueue_task(TaskType t) { 

        std::unique_lock<std::mutex> lock(mtx_); 

        qtasks_.emplace(t); 

        lock.unlock(); 

        cv_.notify_one();  // Wake one worker 

    } 

Here are some of the ways to call the enqueue function to submit work to run: 

    p.enqueue_task(my_test_task);  // Ptr-to-function 

    p.enqueue_task(std::function<void()>(my_test_task)); 

    p.enqueue_task([]() { /*lambda function*/ }); 

    auto functor = []() { /*lambda function*/ }; 

    p.enqueue_task(functor); 

The whole thread pool is far from perfect, and I’m sure you can see some areas 
needing work. 
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Problems to Avoid 

There are a lot of little fiddly problems to overcome in the thread pool 
implementation, even with a wrapper around a standard queue object. 

• Fiddly to get the scope right so that the worker function can access the 
queue object, but is also able to be put into a function object. 

• Ensure that we must unlock before running any task (otherwise, all jobs 
are serialized!). 

• Lambda function for the predicate function on the wait of the condition 
variable. 

The above code needs some fixes: 

• Enqueue should warn or throw if the thread pool is already stopped. 

• Should use move semantics fully to avoid copying any task or thread 
objects. 

• Call joinable() before join(), just in case. 

Various fixes to move semantics are needed here. 

• enqueue_task() should use std::move() to move a new task onto 
the queue. 

• worker_thread() should use std::move() to pull a new task off the 
front of the queue. 

Advanced Thread Pool Features 

Some of the features that can be added to a more advanced thread pool 
implementation: 

• Dynamically increase and decrease the number of workers. 

• Priorities for the work jobs to run important work faster. 

• Scheduling of jobs to run with a delay or at a specific time. 

• Work stealing and thread-specific work queues. 

• Support for a graph of interdependent jobs (i.e., a “compute graph” or 
“task graph”). 
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The interface to the thread pool job submission could also need these capabilities: 

• Arguments for tasks (e.g., via parameter packs and std::forward). 

• Status results indicating success or failure (e.g., non-void functions). 

• General capabilities to return answer objects to the work submitter. 

• Interface for the work submitter to query job status. 

Some additional devops infrastructure would be desirable for these thread pool 
classes: 

• Monitoring support via logging, and instrumentation for production usage. 

• Self-monitoring to detect straggler/hang jobs (e.g., never-finishing). 

• Self-test capabilities for use while regression testing (non-production). 

• Timing features for performance measurement (non-production). 

• Statistics reporting for production or testing usage. 

It’s just a small matter of coding. 

Task Graphs 

Thread pools are mostly designed on the assumption that each piece of work is 
independent. Hence, the worker threads don’t depend on each other in any way, 
but only on the producer thread that’s adding work to the queue. This is the simplest 
and also the most common requirement. 

However, work jobs that depend on each other are not uncommon. The overall 
network of dependencies between concurrent jobs can create a “graph” of work to 
be done, with additional synchronization required between the individual workers. 
An example of a more generalized thread pool that supports a work graph is listed 
in the references; see Puyda (2024). 
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33. Fine-Grained vs Coarse 

Locking 

What is Coarse Locking? 

Coarse-grained locking is a simple method of achieving synchronization with 
relatively few lock objects and not many calls to locking primitives. The locks are 
“coarse” because they control large chunks, such as a block of code in an entire 
member function, or access to an entire data structure. Some examples include: 

• Long sequences of code with a lock request to start and release at the end. 

• Single per-class mutex for your entire data structure. 

• One global mutex for all the critical sections of code. 

The effect of coarse-grained locking is to effectively limit all accesses to the code 
block or data structure to be one thread at a time (i.e., full serialization). By 
comparison, fine-grained locking has multiple locks and more frequent locking and 
unlocking requests, but over shorter blocks of code or controlling access to 
portions of a data structure. The fine-grained locking approach is more performant, 
but requires a lot more effort to code correctly. 

Coarse-grained locking can be added to your code relatively quickly. Hence, the 
advantages of coarse locking include: 

• Simplicity 

• Thread-safety (it does work) 

• Low lock overhead in some cases (fewer total calls to locking primitives) 

• Lower risk of concurrency bugs (easy to implement) 

The downsides of coarse locking are mainly about performance: 

• Blocking other threads for longer (poor synchronization) 

• Locking overhead required for read-only accesses 

• Serialization of multiple concurrent readers (low parallelism) 

• Increased lock contention (for the single mutex) 
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Adding Coarse Locking 

A common requirement for locking is to create your own thread-safe containers, 
like stacks and queues, since the standard C++ containers are not actually thread-
safe. If you have a class where you want its main data structure to be thread-safe, 
there’s a surprisingly simple way to add coarse locking.  

The steps are: 

• Add a mutex as a data member. 

• Add a mutex lock and unlock call to every member function. 

Here’s what the mutex data member to control synchronization in every object 
looks like: 

    #include <mutex> 

    #include <vector> 

     

    class MyVector { 

      private: 

        std::mutex mtx_; 

        std::vector<int> vec_; 

        // ... 

      public:  

        int get_count() { return vec_.size(); } 

        // ... 

    }; 

Here’s a sum() class member function, but without any thread synchronization: 

    int sum() { 

        int isum = 0; 

        for (int i = 0; i < vec_.size(); i++) { 

            isum += vec_[i]; 

        } 

        return isum; 

    } 
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The code to add a mutex with lock calls at the top, and unlock calls at the end of a 
function: 

    int sum() { 

        mtx_.lock();  // Acquire lock 

        int isum = 0; 

        for (int i = 0; i < vec_.size(); i++) { 

            isum += vec_[i]; 

        } 

        mtx_.unlock();  // Release lock 

        return isum; 

    } 

Actually, this method of directly using std::mutex is not that good, because you 
have to make temporary copies of internal data, even in simple getters: 

    int get_count() {  

        mtx_.lock();  // Acquire lock 

        int iret = vec_.size();  

        mtx_.unlock();  // Release lock 

        return iret;  

    } 

An even simpler approach is to use the special wrapper class, std::lock_guard, 
which means you only add one lock guard declaration statement to the top of every 
member function. 

    std::lock_guard<std::mutex> lock(mtx_); 

The mutex object is automatically unlocked at the end of the function, or whenever 
it returns, by the destructor of the lock guard wrapper object. This fixes the above 
problems with simple getters so that no temporary variable is needed, because the 
unlocking is automatically occurring after the return expression is calculated (i.e., 
effectively it’s at the closing right brace of a member function, which is where the 
destructor runs).  

The downside is that you actually have two objects: 

• Mutex object (data member) 

• Lock guard object (function-local scope) 
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Here’s how it looks in the code: 

    int get_count() {  

        std::lock_guard<std::mutex> lock(mtx_); // Acquire 

        return vec_.size();  

    } // Release lock here! 

Here’s how the sum() member function looks: 

    int sum() { 

        std::lock_guard<std::mutex> lock(mtx_); // Acquire 

        int isum = 0; 

        for (int i = 0; i < vec_.size(); i++) { 

            isum += vec_[i]; 

        } 

        return isum; 

    } // Implicit lock release here 

Note that we can control the locking and release of a lock guard object by enclosing 
it in a narrower scope block. Here’s the use of a dummy pair of braces to control 
the scope for a marginal efficiency gain: 

    int sum() { 

        int isum = 0; 

        { 

            std::lock_guard<std::mutex> lock(mtx_); // Acquire 

            for (int i = 0; i < vec_.size(); i++) { 

                isum += vec_[i]; 

            } 

        } // Implicit lock release here 

        return isum; 

    } 

As you can see, adding coarse locking to your whole class can be as simple was 
adding a single statement at the top of every member function. The main downsides 
include: 

• Forgetting one of the member functions (concurrency bug). 

• Performance issues from holding the lock too long. 

• Read-only access to your object requires locking calls. 

Note that std::lock_guard is not the only type of lock wrapper class to 
consider.  

 



325                             C++ Ultra-Low Latency 
 

Other examples of standard classes that act as mutex wrappers: 

• std::unique_lock — allows explicit unlock. 

• std::lock — basic multi-mutex handling. 

• std::try_lock — handling of unavailable locks. 

• std::scoped_lock — handles multiple mutexes. 

• std::shared_lock — flexible locking method. 

Notably, there’s the std::unique_lock wrapper, which has the advantage that 
it has an explicit unlock() method. This means you can more easily release the 
lock early if it’s no longer needed, which reduces lock contention and delays in other 
threads. The unique lock wrapper still has the destructor as a backup to release the 
lock if the mutex hasn’t already been unlocked before the end. 

Disadvantages of Coarse Locking 

This approach of using a coarse locking mechanism in literally every member 
function looks really inefficient, and it is! There are significant performance 
problems: 

• Basic getter member functions become needlessly inefficient. 

• Other const member functions need to lock just for read-only access. 

Do we really need to lock the basic getters? For example, if a getter is just returning 
the current count of objects, does it need a lock? Probably not! 

I mean, it returns an integer for the count, which is close to an atomic operation, 
and almost certainly atomic on many CPUs. And if another thread is modifying the 
data structure, changing the count, this is the caller’s synchronization problem. It’s 
really a “higher-level” multithreading problem than the issue here, where we’re only 
trying to keep the data structure itself consistent across multiple calls to its member 
functions. 

However, not all const member functions can avoid needing a lock. For example, 
a sum() function above that scans over all of the elements of the vector still needs 
synchronized access, to avoid some other thread modifying an element in the 
middle of a scan. 

Overall, this coarse-grained locking approach works in terms of thread-safety, but 
is not ideal in terms of performance. We can probably avoid some of the locks in 
the simple getter functions. 
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However, several speed problems remain with this approach: 

• Thread overhead even if the caller is only ever reading. 

• Multiple concurrent readers are needlessly serialized. 

• Not efficient for multiple readers and a single writer. 

The cost overhead from coarse locking can be quite significant. 

Coarse Locking Overhead 

Let’s see how much it costs to add coarse-grained locking via lock guards. I chose 
a basic standard queue container, with just integers. As a control, I declared a basic 
queue wrapper class without any synchronization. 

    template<typename T> 

    class QueueWrapNoSync { 

    private: 

        std::queue<T> m_q; 

    public: 

        int count() const { return m_q.size(); } 

        T front() const { return m_q.front(); } 

        void pop() { m_q.pop(); } 

        void push(T t) { m_q.push(t); } 

    }; 

Next, I created another class with a mutex in the objects, and lock guard statements 
added to every member function. 

    template<typename T> 

    class QueueWrapLockGuard { 

    private: 

        std::queue<T> m_q; 

        std::mutex m_mutex; 

    public: 

        int count() const {  

            std::lock_guard<std::mutex> lock(m_mutex); 

            return m_q.size();  

        } 

        T front() const {  

            std::lock_guard<std::mutex> lock(m_mutex); 

            return m_q.front();  

        } 

 

 



327                             C++ Ultra-Low Latency 
 

        void pop() {  

            std::lock_guard<std::mutex> lock(m_mutex); 

            m_q.pop(); 

        } 

        void push(T t) { 

            std::lock_guard<std::mutex> lock(m_mutex); 

            m_q.push(t); 

        } 

    }; 

Here are the timing results: 

    2 Queues, Sequential (No synch): 64839 microsec 

    1 Queue, 1 Thread (No synch): 35528 microsec 

    2 Different Queues, 2 Threads (No synch): 38123 microsec 

    1 Same Queue, 2 Threads (No synch, Buggy!): 38097 microsec 

    1 Same Queue, 2 Threads (Lock Guard): 56024 microsec 

This shows that two threads running with lock guard synchronization adds about 
47% overhead versus without synchronization, although admittedly it removes the 
bugs. So, it is serializing approximately half of the second thread’s execution, which 
is presumably the amount of time it is blocked waiting for a lock. 

So, here we have coarse-grained locking significantly increasing the time cost, 
because the lock guards effectively serialized most of the interface to our queue. 
We can partially solve this by changing the getter to not use locks, because it’s 
probably atomic, and tweaking the lock guard to release the lock slightly early. 

The full solution to the cost overhead: fine-grained locking! 

Fine-Grained Locking 

Fine-grained locking is using locks over shorter sequence blocks of code or smaller 
parts of a data structure.  

The general ideas are: 

• More locks 

• Smaller portions of data locked 

• Shorter duration lock holds 
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Some of the goals of finer granularity locking include: 

• Lock contention improved 

• Reducing thread blocking delays (less waiting for a lock) 

• Allowing multiple concurrent readers (shared read lock) 

In the above example, it’s difficult to insert granular locks into the queue data 
structure, because it’s a builtin standard container, where we cannot easily modify 
the code. However, we can certainly apply fine-grained locking approaches to our 
own hand-coded containers. Some of the methods to get finer granularity of locking 
include: 

• Lock durations — acquire locks late, release locks early. 

• Granular locks — multiple locks on parts of data structures. 

• Read-write locking — shared reader versus unique writer locks. 

• Lock-free programming — using atomics instead of mutexes. 

Some of these approaches are now discussed, and some are also covered in other 
chapters. 

Granular Data Structure Locking 

Whereas coarse-grained locking has one mutex for the entire data structure or 
container object, fine-grained locking uses many more mutexes or locks. The first 
point about implementing these strategies is to get used to the idea that mutexes 
and locks are just objects. Hence, we can use: 

• Arrays of mutexes and locks 

• Mutex or lock object data members 

Hence, we can put mutexes or other locking objects inside our other objects, or 
part of containers, or whatever we want to do. Hence, we can use much more 
granular approaches that achieve the benefits of fine-grained locking: The idea is to 
use many locks such as: 

• Locks for each individual node in a container. 

• Locks for sub-parts of the data structure. 

Locking each node in a data structure is as fine-grained as it is possible to go in a 
container. The idea is that a writer thread can modify other elements in the 
container, as long as it’s not changing the one that you’re using.  
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This can be effective at avoiding lock contention, as other threads would rarely be 
blocked, but does increase lock overhead for every object. 

A less fine-grained approach is to use fewer locks, but still maintain multiple locks 
per container. Some examples of using fewer locks than per-node, but still having 
many locks for portions of a data structure include: 

• Linked list sub-lists with locking from its sub-head node. 

• Binary tree with locking used on a subtree. 

• Hash table with locks for each bucket chain. 

The idea with these methods is to avoid blocking other threads for every access to 
the entire container. For example, if your hash table has an array of mutexes, one 
per bucket, then readers and writers are only in contention for elements that map 
to the same hash bucket. This reduces lock contention, as it’s a relatively rare event. 

Lock Striping 

Another variant of this approach is called “lock striping,” and is a trade-off between 
the number of mutex objects and lock contention. The idea is to map all our data 
to a smaller number of mutexes. For example, in a hash table with a thousand 
buckets, rather than also using a thousand mutexes, we can use many fewer, and 
map the buckets to mutexes. The idea is like this in our container template: 

    T key[NBUCKETS] hashtable_; 

    std::mutex[NLOCKS] lockarr_; 

    // ... 

    size_t bucket = hash_function(key); 

    size_t lockoffset = bucket % NLOCKS; 

Here, we could have a hash table with 1,000 buckets in the hash table, but only 10 
locks. This is a tenfold reduction in lock contention compared to the coarse locking 
approach of one lock per data structure. 

Lock striping reduces the number of mutexes required, but will slightly increase 
lock contention compared to the granular approach of having one mutex per 
bucket. I’m not sure that I recommend lock striping in this example, because the 
advantage of using fewer mutexes for our hash table is mainly space reduction 
rather than speed, and don’t we have plenty of that? On the other hand, there is 
extra cost per lock in terms of initialization (mutex constructors) and shutdown 
(mutex destructors), so lock striping can reduce this cost compared to fully fine-
grained locking. 
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Lock Segmenting 

Lock segmenting is another middle-of-the-road approach, with similar ideas to lock 
striping, in the sense that it uses fewer locks than data points. The idea is to have 
one lock per “segment” of the data structure being used. This has particular 
applicability to linear data structures, such as vectors and arrays, in areas such as 
linear algebra and AI engines. 

If we have a vector of data, we often want algorithms to operate on “segments” of 
that data, so as to maintain cache locality advantages in a CPU architecture. Note 
that a GPU architecture prefers a striped approach, but that’s in CUDA C++ with 
a totally different type of on-GPU threading model, not in C++ multithreading. 

Doing data processing fast with cache-aware multithreading means that each thread 
operates on a segment of contiguous data, and we have a controller thread that’s 
scheduling different threads to work on segments of the vector. Here’s the idea of 
a hand-coded vector container that’s segmenting the locks according to the data: 

    // Template: NARRAY = size, NLOCKS = lock granularity 

    float arrdata_[NARRAY]; 

    const int NSEGMENTS = NARRAY / NLOCKS; 

    std::mutex lockarr_[NLOCKS]; 

    static_assert(NARRAY % NLOCKS == 0);  // avoid extras 

 

    size_t map_offset_to_lock(size_t offset) { 

        assert(offset < NARRAY); 

        size_t lock_offset = offset / NSEGMENTS; 

        assert(lock_offset < NLOCKS); 

        return lock_offset; 

    } 

Hence, any code that’s working on a segment of the array, does this to figure out 
which mutex to acquire: 

    void process_segment(size_t offset) { 

        size_t lock_offset = map_offset_to_lock(offset); 

        lockarr_[lock_offset].lock(); 

        // ... etc 

        lockarr_[lock_offset].unlock(); 

    } 

The idea is similar to lock striping, but this uses division rather than modulus.  
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Nearby offsets in lock segmenting will usually get the same lock, as they’re in the 
same segment of contiguous data, whereas adjacent elements would get different 
mutexes in the lock striping approach. The advantage of lock segmenting over lock 
striping is that it allows contiguous data processing, whether reading or writing, and 
therefore has cache locality efficiency. 

Higher-Level Concurrency Problems 

Note that higher-level concurrency issues can occur with these approaches, such as 
lock striping or lock segmenting. The problems arise if you have whole-of-data 
algorithms, which limit the value of these middle-level locking ideas. For example, 
consider if you have two high-level methods that work on the entire vector of data: 

• Sum vector — calculate the sum of the whole vector of data, or some other 
linear algebra metric like a dot product (reader). 

• Scale vector — multiply the entire array by a factor (writer). 

If both of these methods acquire locks one segment at a time (or striped), then the 
segment-level operations are going to get interleaved. For example, one of the 
segments being summed might get modified by the scaling method, before getting 
summed, so the sum returned has only calculated results properly on half the 
elements. 

There’s nothing wrong with the concurrency at the segment level, but the 
application-level logic is broken. The concurrency solutions at a higher-level are not 
pretty: 

• Vector-level lock to serialize all whole-of-vector algorithms (a read-write 
lock), or 

• Acquire all of the many locks for each segment or stripe (ugh!). 

It’s not quite that bad, since we’d use read-write locking, so that multiple reader 
algorithms could still run concurrently on the entire array. However, writer 
algorithms would get totally serialized on this approach, blocking all other readers 
and writers, which is not optimal. 

More efficient would be to have a more complex scheduling algorithm, so that the 
“scale vector” method runs in a pipelined fashion, processing one segment behind 
the “sum vector” method, but that’s tricky to do if each such segment is running in 
a different thread. However, if you don’t do this, they’re potentially going to 
interfere with each other at the higher-level, creating actual bugs in the application 
logic, despite being correctly synchronized at the segment level. 
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Read-Write Locking 

An important improvement to lock contention is to allow multiple readers to access 
concurrently, but any “writer” must have unique access. This idea can be used for 
both coarse and fine-grained locking, and can be combined with moderate 
approaches like lock striping or lock segmenting. The goals of the read-write lock 
approach are: 

• Multiple readers at the same time (but not any writers). 

• Every writer needs exclusive control (no other readers or writers). 

This is efficient in situations where there are lots of readers processing the data, and 
fewer writers. However, it can be less successful where readers and writers are 
accessing the data structure with approximately the same frequency, such as passing 
work on a queue in the producer-consumer model. Actually, in that model, both 
the producers and consumers are writers (not just readers), as they each push or 
pop the queue. You can make consumers into readers by using a delayed-pop idea, 
but eventually someone has to clean up the mess. 

The standard C++ library has builtin support for achieving read-write locking. The 
way to achieve this is with a “std::shared_mutex” instead of a basic mutex. 
The changes to our code can be summarized: 

• std::shared_mutex is now used in all of the class member functions 
(using <shared_mutex> header file). 

• Readers request a std::shared_lock over the shared mutex (multiple 
concurrent readers). 

• Writers request a std::unique_lock over the shared mutex (exclusive 
access). 

Here’s the modified code in full: 

    #include <shared_mutex> 

 

    template<typename T> 

    class QueueWrapReadWrite { 

      private: 

        std::queue<T> m_q; 

        std::shared_mutex m_mutex;  // Read-write 

      public: 

        int count() const {  // Reader 

            std::shared_lock<std::shared_mutex> lock(m_mutex);  

            return m_q.size(); 

        } 
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        T front() { // Reader 

            std::shared_lock<std::shared_mutex> lock(m_mutex);  

            return m_q.front(); 

        } 

        void pop() { // Writer 

            std::unique_lock<std::shared_mutex> lock(m_mutex);  

            m_q.pop(); 

        } 

        void push(T t) { // Writer 

            std::unique_lock<std::shared_mutex> lock(m_mutex);  

            m_q.push(t); 

        } 

    }; 

Here is the comparison of speed against the basic lock guard version with non-
concurrent readers: 

    1 Queue, 2 Threads (Lock Guard): 55214 microseconds 

    1 Queue, 2 Threads (Read-Write): 51687 microseconds 

There was about a 6.4% improvement by adding shared reader locking.  

This makes sense, because most of the testing involves write operations 
of push() and pop(), but there is a small gain in concurrency from the read-
only count() and front() operations.  

But overall, it’s still quite a lot of overhead, when you recall the lock guard version 
was 47% extra CPU time compared to without synchronization.  

Maybe we should try a lock-free version. 
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34. Core Pinning 

What is Core Pinning? 

Core pinning is a multithreading optimization where a single thread is “pinned” to 
one of the cores to give it higher priority. This means that important thread that 
runs the hotpath can have guaranteed CPU availability, rather than waiting for the 
default thread scheduling algorithms. Hence, core pinning can be a solution to avoid 
lock contention worries or excessive context switch in the main hotpath thread. 

Core pinning is also called “thread affinity” and has multiple other names (e.g., 
“processor affinity” or “CPU affinity” or “CPU pinning”), but if you hear the words 
“pinning” or “affinity” in relation to threads, this is it. 

Pinning has other meanings in related hardware architectures. There’s a higher-level 
type of pinning whereby whole processes or applications are pinned to a CPU core 
by the operating system, rather than just a single thread, which isn’t quite the same 
thing. Note also that CUDA C++ has another type of “pinned memory” for GPUs, 
but that’s a memory upload optimization rather than a compute improvement. 

The other side of core pinning is that you obviously don’t pin the less important 
threads. All the lower-priority threads have fewer cores available, and are 
downgraded. 

Pros and Cons 

The use of core pinning is a very powerful type of hotpath optimization. The main 
pathways are super-optimized because of these factors: 

• No context switches 

• Fewer cache misses (no invalidated caches) 

• Highest priority execution 

• Guaranteed core availability (no delay) 
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The downsides are fairly obvious: 

• That core isn’t available for other work. 

• Load balancing only available on the other cores. 

And also, you can’t do it too many times, because the CPU hardware only has a 
fixed number of cores. 

Counting Cores 

The code to set up core pinning is really a two-part procedure with these steps: 

1. Determine how many CPU cores are available. 

2. Pin a thread to one of them. 

There are various non-standard ways to interrogate the system for its CPU settings. 
The standard method is to call the hardware_concurrency() function in the 
standard thread library, which tells you how many physical cores are in the CPU. 

    int number_of_cores()  

    { 

        return std::thread::hardware_concurrency(); 

    } 

This has been a standard method since C++11, so it should be available to you. 
Alternatively, non-standard methods include: 

• sysconf() — POSIX version in <unistd.h> for Linux. 

• GetSystemInfo() — Win32 API in <windows.h>. 

• __cpuid() — low-level intrinsic function in <cpuid.h> that wraps 
the CPUID machine instruction on x86 CPUs (Intel/AMD). 

All of these functions offer a whole wealth of other hardware information about 
the CPU, rather than just the number of cores. 
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Setting Up Core Pinning 

There’s no language-supported standard way to set up core pinning using the 
C++11 std::thread library, nor does anything appear forthcoming in C++26 
for this area. However, there are longstanding platform-specific functions to do 
this. 

Sometimes, you don’t need to code up core pinning in C++, but can use OS settings 
or commands. On Windows, you can set up a process-level CPU pinning for an 
application via the GUI. On Linux, there is a “taskset” command that allows 
running a program with core pinning. 

Both Windows and Linux have non-standard C++ system calls that can set up core 
pinning for either a process or a thread. Linux uses the “pthreads” library to do 
core pinning, and Windows has some Win32 features. The sequence at a high-level: 

1. Get a native thread id 

2. Call the platform-specific core pinning API. 

To implement core pinning in C++ on Linux you need to bypass std::thread to 
get to the underlying POSIX thread id, which has type pthread_t as defined 
in <pthread.h>. This is required because all the core pinning calls are POSIX 
functions on Linux. There are at least two ways to do this: 

• pthread_self() — POSIX call to return the id of the current thread. 

• std::thread::native_handle() — returns the “native” thread ID 
of a standard C++ thread object, which is a POSIX thread id on Linux. 

Once you have a valid thread id, then you can set up core pinning for that thread. 
The programmatic C++ APIs on Linux are: 

• Pin processes — sched_setaffinity 

• Pin threads— pthread_setaffinity_np, pthread_attr_setaffinity_np 

On Windows, these are the C++ APIs: 

• Pinning processes — SetProcessAffinityMask() 

• Pinning threads — SetThreadAffinityMask() 

Now let’s look at a full example on Linux. 
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Linux Core Pinning 

Here’s a native pthreads sequence to pin the current thread to a core: 

    #include <pthread.h> 

    #include <unistd.h> 

    #include <sched.h> 

 

    bool pin_me(int corenum) 

    {  

        pthread_t tid = pthread_self(); // Get current thread id 

        cpu_set_t cpuset; 

        CPU_ZERO(&cpuset);         // Clear all core bit flags 

        CPU_SET(corenum, &cpuset);  // Set one core bit flag 

        // Pin the thread! 

        int ret = pthread_setaffinity_np(tid,  

                                sizeof(cpuset), &cpuset); 

        return ret == 0;  // Zero return is success 

    } 

Note that failures can occur when attempting to pin a thread to a core. The process 
needs adequate permissions to do so, and the core number needs to be valid for the 
given system. 

This code uses “cpu_set_t” from <sched.h>, which is a bitmask (or other data 
structure) that represents a mask of one or more cores. There are various bit 
manipulation macros also defined in <sched.h> for use with this bitmask type: 

• CPU_ZERO() — clears all the bits. 

• CPU_SET() — sets one bit. 

• CPU_CLR() — unsets one bit. 

• CPU_ISSET() — tests one bit. 

• CPU_COUNT() — counts how many bits are bit. 

There are also some arithmetic operations on the CPU bit sets in <sched.h>: 

• CPU_EQUAL() — test if two bitsets are equal. 

• CPU_AND() — bitwise-and on all bits. 

• CPU_OR() — bitwise-or on all bits. 

• CPU_XOR() — bitwise-xor on all bits. 

The CPU bitmask type cpu_set_t is not a C++ object, but a raw C-like structure, 
which means it can be copied or moved by bitwise copy using memcpy. 
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Note that pthread_setaffinity_np() can be passed a CPU set with more 
than one bit set, in which case the thread will be migrated to one of those cores. 
You can also examine the bitmasks via pthread_getaffinity_np(). 

Isolating Linux Cores 

To fully implement core pinning of a thread to a particular core on Linux, some 
further actions may be needed. Changes are required to Linux kernel settings to do 
things like: 

• Isolating the core 

• Disabling interrupts 

Some of the Linux kernel parameters you may need to adjust include: 

• nohz or nohz_full 

• isolcpus 

• irqaffinity 

• rcu_nocbs 

There is some industry wisdom to avoid core zero on Linux systems, because that’s 
the CPU core that the kernel always tries to run system tasks on, as described in 
Bernhardt (2023). There’s also a discussion of some odd issues with core 1 on Linux 
in Dawson (2023). 
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35. False Sharing 

False Sharing and Cache Line Sizes 

False sharing is a slug in C++ multithreaded code preventing two threads from 
running as fast as they should. The idea of “false sharing” is that two threads can 
interfere with each other’s memory caching. The sharing is “false” because it can 
occur with data that’s not actually being intentionally shared between the threads, 
but is impeded simply because the memory addresses are too close together. 

Why does it occur? The CPU’s L1 and L2 caches don’t just cache in single bytes, 
16-bit words, or even 32-bit integers. Instead, they have caching in “chunks” in the 
hardware level, which are called “cache lines” (also “cache sectors” or “cache 
blocks” or “cache line sizes” or “bananas in pyjamas” if you prefer). 

How big? Some examples of common sizes of these cache lines include: 

• Intel CPUs — 64 bytes. 

• Apple M2 — 128 bytes. 

• Some AMD and other CPUs — 256 bytes. 

Note that you can get this number for the L1 cache line size in bytes 
programmatically in C++17 via functions declared in the <new> header: 

• hardware_destructive_interference_size()  

• hardware_constructive_interference_size() 

What this means is that, on an Intel CPU, the caches are updated 64 bytes at a time, 
because one “cache line” is read or written as the minimum size. This is good 
because: 

• Cache loads are 64 bytes in parallel (in hardware). 

• Cache writes (updates) store 64 bytes in parallel. 

But this is bad because: 

• Invalidating one cache byte also invalidates all 64 cache line bytes. 
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This is where we have a slowdown from false sharing. If one thread sets any value 
in a 64-byte cache line, then all of the other 63 bytes are also invalidated in the 
cache. If a second thread needs to use any of those other 63 bytes, then it needs a 
cache line refresh. Slowness ensues. 

Example of False Sharing 

A common example would be two integers, each 4 bytes in size, but close together 
so that they sit inside the same 64-byte cache line. The most common problems 
arise with atomics or mutexes close together, but they can affect any global variable. 

Hence, first a simple example without any atomics, mutexes, or other thread 
synchronization. Let’s just look at two threads that are updating their own global 
variable, with no overlap between the threads. In theory, these two threads should 
not affect each other at all. In reality, there are CPU cache lines. 

Here are our two global counter variables: 

   int g_counter1 = 0; 

   int g_counter2 = 0; 

In practice, false sharing is more likely to occur with two atomics declared close 
together. However, in this example we’re just testing with two completely unrelated 
threads, with absolutely zero synchronization happening between them. They really 
shouldn’t impact each other, if not for false sharing. 

Here is the sequential code, which sets two global variables: 

   void runtest1_no_threads(int n) 

   { 

      for (int i = 0; i < n; i++) { 

         g_counter1++; 

      } 

      for (int i = 0; i < n; i++) { 

         g_counter2++; 

      } 

   } 
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Here are the two threads that aim to set those two global variables in parallel. Note 
that each thread only accesses one variable, without any “sharing” going on. 

   void thread1(int n) 

   { 

      for (int i = 0; i < n; i++) { 

         g_counter1++; 

      } 

   } 

 

   void thread2(int n) 

   { 

      for (int i = 0; i < n; i++) { 

         g_counter2++; 

      } 

   } 

And here’s the basic thread launching code: 

   void runtest1_threads(int n) 

   { 

      std::thread t1(thread1, n); 

      std::thread t2(thread2, n); 

      t1.join(); 

      t2.join(); 

   } 

Finally, here is the timing code using <chrono>: 

   g_counter1 = g_counter2 = 0; 

   auto before = std::chrono::high_resolution_clock::now(); 

   runtest1_no_threads(n); 

   auto now = std::chrono::high_resolution_clock::now(); 

   auto diff = std::chrono::duration_cast 

       <std::chrono::microseconds>(now - before).count(); 

   std::cout << "Time (no threads): "  

             << diff << " microseconds" << std::endl; 

Here are the speed results from executing the sequential and threaded code for 100 
million iterations using g++ on Linux. 

   Time (no threads): 256079 microseconds 

   Time (2 threads): 209341 microseconds 
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Note that the threaded code does not actually run twice as fast as the sequential 
code, despite having two threads that should run in parallel. In fact, it only improves 
on the sequential code by about 19%, rather than 50%. Why? 

It’s the magic of false sharing, whereby one thread writing to its variable slows down 
the other unrelated variable that’s only being used by the other thread. The two 
threads are constantly writing to their own variable, which messes with the cached 
value of the other global variable used in the other thread. It’s kind of like 
entanglement in quantum physics, if you like that kind of thing. 

Detecting False Sharing 

According to the documentation, Valgrind’s DRD tool should be able to detect 
false sharing (and numerous other thread errors). However, I ran the command: 

    valgrind --tool=drd ./test1 

I did not get any warnings: 

    ==8618== ERROR SUMMARY: 0 errors from 0 contexts 

On closer reading of the DRD documentation, DRD seems to only detect a false 
sharing situation if the two threads are running on different cores, which may have 
been the reason. 

Solutions for False Sharing 

There are a few coding solutions to prevent false sharing. The basic idea is ensuring 
that the addresses of unrelated thread-shared global addresses are not too close. 
Options include: 

• Putting global variables in random spots throughout your C++ code. 

• Using alignas to enforce address spacing on alignment boundaries. 

The first one is kind of a joke, although it would probably work in most cases. 
However, it’s not technically guaranteed where the linker will put unrelated global 
variables in the address space. 

A more elegant solution is to put variables, especially atomics, on address alignment 
boundaries. The idea is to ensure that each important global variable is alone in its 
64-byte block.  
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The global variables in our declarations become: 

   alignas(64) int g_counter1 = 0; 

   alignas(64) int g_counter2 = 0; 

By declaring them both as alignas(64), it guarantees two things: 

• The variables start on a 64-byte alignment boundary (we don’t care about 
this here), and 

• They are the only variable in that 64 bytes (this fixes false sharing). 

The downside is that each 4-byte integer is stored in 64 bytes, so there’s a total 60 
bytes of unused padding added to global memory usage. But it’s better to pad 
memory than to waste CPU cycles! (On the other hand, the CPU cache lines are 
also loading and storing 60 unused bytes, so we’ve somewhat undermined the 
efficiency advantages of the L1/L2 cache lines for this 64-byte block.) 

Anyway, who cares, it works! Here are the faster speed measurements just from 
adding alignas statements: 

   Time (no threads): 260277 microseconds 

   Time (2 threads): 133947 microseconds 

Wow! It’s almost exactly half the time! The performance gain is about 49%, which 
is much better than 19% (due to false sharing slowdowns), and is close to the 50% 
gain we were aiming for with two threads. Maybe there’s something to this 
multithreading stuff, after all. 

Some Final Tweaks 

As a finesse, you can assure that the addresses are far enough apart by simply 
checking in code. One possible method to make sure that some junior code jockey 
hasn’t deleted your alignas statements: 

    assert( (char*)&var2 - (char*)&var1 >= 64); 

Unfortunately, you can’t do it faster at compile-time, since addresses of global 
variables are not “constant” enough for the compiler: 

    static_assert((char*)&var2-(char*)&var1>=64); // Fails 



David Spuler                                               346 
 

Note that some CPUs have cache line sizes up to 256 bytes. Hence, you might 
need alignas(128) or alignas(256) on those platforms. 

Note also there are various other non-standard ways to achieve alignment, most of 
them having existed on platforms prior to the alignas specifier in the C++ 
standardization. For example, GCC has a whole set of old builtins. Feel free to use 
those old things and charge extra because you’re writing antique C++ code. 

Another point is that false sharing slowdowns can arise for non-global variables, 
such as dynamic allocated memory or stack addresses. It’s not very likely for two 
threads to see contention over stack addresses inside their respective call frames, 
but it can occur with allocated memory blocks that are shared. There are various 
ways to get aligned addresses inside dynamic memory allocation, including aligned 
memory allocation primitives, so the same ideas can solve the problem. 

Nevertheless, atomics declared as global variables are probably the most likely area 
where false sharing can occur. This suggests a general rule: all global atomics should 
be declared as alignas. I’m not sure I agree, and it does sound a bit drastic. This 
does avoid the performance slug of false sharing, but it will also waste significant 
memory with padding bytes. 
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36. Lock Contention 

What is Lock Contention? 

Lock contention is a multithreading slowdown where threads are blocked waiting 
on locks held by other threads. If your code has a lot of busy threads, any of the 
synchronization code (e.g., using mutexes or condition variables) can lead to 
contention over accesses to shared data. 

Note that lock contention is not the same thing as lock overhead. Lock contention 
is the extent to which threads get blocked waiting for a lock. Lock overhead is the 
extra cost of library calls that do lock-related stuff, such as the cost of requesting a 
lock, releasing a lock, creating a mutex, destroying a mutex, etc. 

All multithreaded applications have some level of lock contention, otherwise why 
would it need locks at all? Hence, optimizing to reduce lock contention is something 
that you can’t avoid. General points about lock contention include: 

• More threads means more opportunities for lock contention. 

• So does having more locks (all other things being equal). 

• Unpopular shared data is unlikely to cause contention. 

• Fine-grain locking is desirable for often-used data. 

In the worst case, you get to a deadlock situation, which upgrades the lock 
contention problem from a slug to a bug. 

Optimizing Lock Contention 

General strategies for reducing lock contention include: 

• Short critical sections 

• Reduce total lock requirements 

• Acquire locks late 

• Release locks early 
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Here’s the best one: 

• No synchronization — don’t use any locks at all! 

Unfortunately, the “no locks” plan has its limitations, being mostly limited to read-
only data used by multiple readers. Nevertheless, your first thought should be if 
there’s a way to do this without needing to use a lock. 

Some of the specific strategies for using fewer locks or otherwise reducing 
contention include: 

• Consider using fewer threads (so less contention for locks). 

• Maximize lock-friendly data handling (e.g., “immutable” read-only data). 

• Review lock granularity (fine-grain vs coarse-grain vs a hybrid strategy). 

• Tolerate lockless output (e.g., out-of-order debug messages aren’t so bad). 

• Limit block scope of std::lock_guard to release the lock early. 

• Use std::unique_lock and other variants for more flexibility. 

• Copy data to temporary variables to release locks before processing data. 

• Use queues as the preferred method to transfer large amounts of data. 

• Avoid false sharing (can impact lock contention issues). 

• Release locks before blocking system calls, I/O waits, or network actions. 

Some examples of other advanced strategies include: 

• Reader-friendly containers (e.g., versioned data structures, copy-on-write). 

• Kernel bypass (for I/O efficiency). 

• Double lock check method (first check without lock, then acquire the lock). 

• Exponential backoff when waiting (e.g., avoiding spinlock busy waits). 

• Shard or partition data across multiple threads (avoids need for locks). 

• Use message-passing via std::promise and std::future rather than 
shared memory. 

• Thread-specific queues and “work stealing” design pattern. 

• Lock-free algorithms with atomics not mutexes (very tricky to get right). 
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Avoid Lock Guard Delayed Unlocking 

The std::lock_guard class is a wonderfully safe way to use mutexes, because 
it helps us avoid deadlocks and severe thread starvation if we forget to unlock our 
mutex (as if!). Unfortunately, it’s too easy to use, and coders can forget to unlock. 

The problem is that we can accidentally hold the lock for too long, which increases 
lock contention. Here’s an example of the concept: 

    std::mutex g_my_mutex; 

 

    void process_critical_data() 

    { 

        // Step 1. Lock 

        std::lock_guard<std::mutex> mylockguard(g_my_mutex); 

        // Step 2. Get the data... 

        // Step 3. Process the data ... 

    } 

The problem is that we haven’t really thought too much about where we should 
unlock. The above code doesn’t release the mutex until after we’ve finished 
processing the data at Step 3, when the function returns, which is needlessly long. 

One way to fix this would be to use some other more flexible locking wrappers that 
allow explicit control of the unlocking. Your basic choices are: 

• std::lock_guard — can only unlock in its destructor (inflexible). 

• std::unique_lock — allows an explicit unlock call (more flexible). 

A simpler solution is to explicitly control the scoping that sets when the destructor 
of std::lock_guard triggers the release of the lock. Here’s a better version: 

    void process_critical_data() 

    { 

        {   // Step 1. Lock 

            std::lock_guard<std::mutex> mylockguard(g_my_mutex); 

            // Step 2. Get the data... 

        } 

        // Step 3. Process the data ... 

    } 

This has added an extra pair of { } braces around the first two steps. This triggers 
the scoping mechanism, so that the std::lock_guard destructor is called and 
the mutex is unlocked immediately after Step 2, at the inner right brace. Then Step 
3 can process the data to its heart’s content without blocking any other threads. 
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Fine-Grain vs Coarse-Grain Locking 

Locking granularity has two basic strategies: go small or go big. Here’s a summary: 

• Coarse-grain — lock an entire data structure while updating it. 

• Fine-grain — lock only in the exact critical code sequence that updates the 
data structure, deep in its internals. 

The characteristics of these strategies can be summarized: 

• Coarse-grain — longer duration, fewer locks overall. 

• Fine-grain — shorter duration, more locks. 

Fine-grain locking improves performance for data that is used often. By limiting 
the granularity of locking, each thread holds the lock for only a short period while 
performing a low-level update, so many threads can have the lock in turn. 

However, fine-grain locking means frequently locks and unlocks, which involves 
some overhead. It also increases the overall complexity of the concurrency 
algorithms by needing multiple locks for small pieces of data, thereby creating 
greater risk of mistakes, such as an incorrect request order for multiple locks causing 
a deadlock. 

Coarse-grain locking can reduce performance because it locks data for a longer 
period of time, when a broader update to a higher-level data structure is performed. 
The chance of lock contention for a long duration is higher than with fine-grain 
locking. Any thread seeking the lock is less likely to find a window to access it if the 
lock is frequently requested, so coarse grain locking is best for rarely-used data. 

The advantage of fewer higher-level locks is simplicity. There is not only a lower 
risk of deadlocking errors, but also fewer chances to go wrong when ensuring 
concurrency is adhered to, and the access to the shared data is properly controlled. 
For example, when updating a large data structure with a single lock, this means 
that concurrency errors cannot occur at a lower level. Thus, it’s easier for the thread 
to maintain a coherent state of the data structure, because there won’t be any 
interleaved changes from other threads. 

Hybrid locking strategy involves using a trade-off: using fine-grain locks for 
frequently-accessed critical sections, and coarse-grain locking for less popular data. 
This can be a pragmatic solution that balances speed with lower development 
complexity and risk mitigation. 
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Lock-Free Algorithms 

Lock-free programming is a method of optimizing multithreaded code to avoid 
locks (i.e., mutexes). The advantages in speed arise from: 

• Overhead of mutexes 

• Lost performance from threads blocked awaiting a resource. 

The main disadvantage of lock-free programming: 

• Your brain will explode. 

The internet is littered with articles about failed attempts to write lock-free 
algorithms, even by some of the best programmers. There are many ways to go 
wrong in the quest to get rid of mutexes. 

Note that “lock-free” programming does not mean that you just search up “mutex” 
in vi, and then hit the “dd” button. No, lock-free programming is not just sequential 
programming. Instead, the idea is to switch to a faster concurrency method than 
mutexes, so this is the main idea: 

• std::mutex — lock-based programming. 

• std::atomic — lock-free programming. 

The overall idea is to use an “atomic” operation instead of a mutex. To make this 
work, it’s usually a quite complex atomic operation, such as a “Compare-And-
Swap” (CAS) operation. 

This is how a CAS operation works, with a number of steps all done atomically in 
one unbreakable sequence: 

• Access a variable (that you want to set atomically). 

• Compare it to the “old” or “expected” value. 

• If it’s equal to the old value, then successfully update to the new value (and 
done). 

• If it’s not equal to the old value, someone else has already updated it, so 
we fail (and then loop around and retry). 

What a mouthful! Fortunately, C++ has the std::atomic class (since C++11) to 
take care of all that.  
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The main routines to use for a CAS instruction are: 

    std::atomic::compare_exchange_weak 

    std::atomic::compare_exchange_strong 

Note that you will also need to know about “memory orders” around atomic 
primitives, as controlled via the std::memory_order library. 

There are also a variety of non-standard methods to achieve lock-free programming 
with primitives in older code platforms, or in a platform-specific manner. Some of 
the primitives are: 

• InterlockedCompareExchange — Win32 version in <winnt.h>. 

• OSAtomicCompareAndSwapInt — iOS/Mac in <OSAtomic.h> 

• __atomic_compare_exchange — older GCC version. 

Note that the std::atomic class is not actually guaranteed to be a lock-free 
atomic operation on every platform. It’s a good idea to test your platform using the 
“is_lock_free” primitive as part of your initialization or self-testing code: 

 
    assert(std::atomic<int>::is_lock_free());  

Thread Pools 

Thread pools are a design pattern in C++ multithreading that avoids the cost of 
creating and destroying threads by using long-running threads. Instead of incurring 
this thread overhead, a “pool” of available threads have been pre-created, which sit 
there until work is available to be done. The main characteristics are: 

• Idle threads wait for work (e.g., off a task queue). 

• Threads are not destroyed after completing a chunk of work. 

Thread pools are mostly used in a “producer-consumer” design pattern, although 
thread pools can also be used in other ways. There are effectively two thread pools 
in this design pattern: 

• Producer thread pool 

• Consumer thread pool 

Typically, one or more producer threads adds work items to a queue, such as when 
it receives new data from a network source (e.g., exchange connection in HFT). 



353                             C++ Ultra-Low Latency 
 

Another group of consumer threads is idle waiting to pull work off the queue. 
Consumers do the work, return the results, and then add themselves back to the 
group of idle consumer threads awaiting more work. 
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37. Atomics & Memory Orders 

What are Atomics? 

Atomic variables are a C++11 features whereby an operation on a variable can be 
done “atomically” and does not require any other cross-thread synchronization. 
The std::atomic library in the <atomic> header file exists to provide these 
capabilities across platforms in standard C++. Note that there’s also a C version 
called _Atomic. 

Atomics are mainly used to implement the “lock-free” versions of thread-safe data 
structures like concurrent stacks and queues. But that’s the advanced stuff! 

The first point is to note that atomics can implement thread-safe algorithms for 
much simpler requirements, such as: 

• Counters 

• Sums 

• Maximum or minimum 

• Boolean flags 

Don’t wrap a mutex or a lock check around a simple counter — use an atomic 
instead. 

Standard Atomic Class 

The atomic library is a templated class with pre-defined instantiations for several 
different types. Hence, you can use atomics with various types of variables: 

    std::atomic<int> g_my_atomic_counter; 

You can instantiate the atomic template with your own class types, but only if it 
satisfies various properties (e.g., trivially copyable). The main use of atomics is with 
scalar types such as integral types or pointers, which are almost always efficient. 
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Implicit atomics. Note that the performance of the atomic library can be very fast 
for simple scalar variables. On many platforms, this will just be a single machine 
code increment instruction on the underlying int variable, but on some obscure 
platforms it might be more complex. For example, on a lot of CPU platforms, the 
reading and writing of an int variable is implicitly atomic, because it runs in only 
a single CPU instruction. Hence, the members for std::atomic<int> might 
simply be a nothingburger that just accesses the integer variable underneath. 

Emulated atomics. On the other hand, some platforms cannot really implement 
atomics properly for more complicated types, but has to use its own locking 
algorithms. Most C++ code using an atomic should still work either way, but this 
gives insight into its performance characteristics on different platforms. 

To check on the status on this platform, there is the is_lock_free() and the 
C++17 is_always_lock_free() member function in std::atomic to test 
whether a particular instantiation is truly atomic, or whether the library has to 
emulate atomicity using hidden locks and mutexes. The first tests whether a 
particular variable is lock free, and the second is whether that type of atomic is 
always lock-free, which is a hair-splitting difference, but occasionally matters. 

Atomic type aliases. If you get tired of typing the angle brackets for the template 
instantiation, there are some handy type aliases available since C++11, such as: 

• atomic_int 

• atomic_short 

• atomic_bool 

• atomic_size_t 

There’s a lot more, but I’m sure you get the idea. 

Basic Atomic Operators 

Integer types are particularly well-supported by the atomic library. In simple cases, 
you can use the atomic variable in a way that mimics its use for the underlying type. 
You can access the integer value of the above atomic just by using its name, and 
use various operator overloads that the atomic library provides for each type, such 
as assignment and increment. 

For example, if you wanted to track a counter of things happening across multiple 
threads, you could just do this in every thread using a global-scope atomic variable: 

    g_my_atomic_counter++; // incremented atomically 
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The unary operators defined for atomics on integer types include: 

• Prefix and postfix ++ (increment) 

• Prefix and postfix -- (decrement) 

There are also various binary operators: 

• Assignment (operator=) 

• Extended assignment (e.g., operator+=) 

Note that although there are not explicitly defined overloads for common binary 
operators (e.g., + or -), you can simply use the name of the atomic variable in such 
expressions, and it should get treated as an integer, via the overloaded type cast 
operator to the underlying type. 

Don’t move or copy atomics. Although you can do various operations on the 
variable wrapped by an atomic, you technically cannot copy or move the entire 
atomic object itself. It has deleted both copy and move versions of constructor and 
assignment operator. 

Advanced Atomic Operations 

An atomic variable is guaranteed by the C++ library to be performed as a single 
indivisible operation. However, there are cases where you want more control over 
the operation on the atomic, and also additional features that control reads and 
writes to the variable. Some of the more complex methods available for atomic 
variables include: 

• load() — get the value (atomically). 

• store() — write a value to the variable. 

• exchange() — store a new value, and return old value. 

These methods also have the ability to define a “memory order” for 
synchronization with other reads and writes to the variable.  

This is a complicated issue in synchronizing atomics across multiple threads for 
lock-free programming. 
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There are more complicated arithmetic operations with similar features. Some of 
the useful operations that you can perform include: 

• fetch_add() — addition 

• fetch_sub() — subtraction 

• fetch_max() — maximum (C++26) 

• fetch_min() — minimum (C++26) 

There are also the binary bitwise operations (since C++11) only for atomics of 
integral types: 

• fetch_and() — bitwise-and operation 

• fetch_or() — bitwise-or 

• fetch_xor() — bitwise-xor 

Atomic flags. The C++11 library also included a class of std::atomic_flag, 
which is useful for concurrency. This is a simple interface that mimics 
synchronization capabilities of mutexes and condition variables. It’s simpler than 
defining your own versions using the basic std::atomic class with a scalar type. 

C++20 Atomics 

C++20 adds some extra member functions to std::atomic that give it new 
functionality that sounds a lot like a condition variable or a spinlock. The goal of 
adding these newer C++20 features was improved efficiency over similar 
synchronization methods. The members are: 

• wait() — blocking call to wait until an atomic changes. 

• notify_one() — notify one waiting thread. 

• notify_all() — notify all the threads that are waiting. 

These primitives allow a thread to wait for an atomic to change, which is a blocking 
call until its value changes (there are no spurious returns where the value has not 
changed). The notification methods allow for one or all threads to be signalled 
about a change to an atomic. 

There’s also some useful type aliases that can help pick the most efficient type of 
atomic on a platform. These types are declared in C++20: 

• atomic_signed_lock_free 

• atomic_unsigned_lock_free 
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Memory Orders 

Memory orders are a feature of advanced atomics that is also defined in <atomic>. 
The goal is to help interleave atomic operations with other atomic or non-atomic 
arithmetic in a way that does not cause race conditions or other synchronization 
failures. The enumeration std::memory_order defines constants for a number 
of “memory orders” that can be used in atomic operations. 

Simple atomics don’t require any fancy memory orders. You don’t really need to 
worry about memory orders for the very simple uses of atomics such as counters, 
which default to the safest and most restrictive memory order. But memory orders 
are critical for implementing advanced lock-free data structures with atomics. 

The idea of memory orders is to block the compiler from doing some reordering 
optimizations that will break your code. If you don’t set any particular memory 
order, then the default memory order is used, which is “sequential consistency” and 
has these properties: 

• The most restrictive memory model — blocking the optimizer. 

• The safest — least likely to cause concurrency bugs. 

• The slowest — compiler reordering optimizations are blocked. 

The definition is std::memory_order_seq_cst from <atomic>. It’s not 
very readable, but I guess no-one on the standards committee wanted to type 
“sequential consistency” in their code. 

There are a number of memory order constants that you can use. Here’s a list to 
help confuse the matter: 

• std::memory_order_relaxed — “relaxed” (the least restrictive, 
fastest, and riskiest). 

• std::memory_order_acquire — “acquire” (restricts memory reads). 

• std::memory_order_release — “release” (restricts memory writes). 

• std::memory_order_consume — “consume” (affects dependent 
operations). 

• std::memory_order_acq_rel — “acquire-release” (both reads and 
writes). 

• std::memory_order_seq_cst — “sequential consistency” (default, 
most restrictive, safest). 

What do they do? Umm, nobody really knows, so just use whatever AI suggests. 
Let’s move on to the next chapter. 
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Using Memory Orders 

If you’re still here, here’s the first point: you don’t define an atomic variable with a 
specific memory order. Rather, the memory orders are passed as optional 
parameters for the major atomic operations: 

• load() — get the value of an atomic variable. 

• store() — set an atomic variable. 

Every operation on an atomic can choose a memory order. Here’s the overall sliding 
scale of options available to you: 

• Relaxed — bugs. 

• Sequential consistency — slugs. 

Or you can choose something in the middle if you really know what you’re doing. 
Pay your money and take your chances. 

Relaxed Memory Order 

The “relaxed” mode doesn’t do much. It’s pretty chill about whatever the compiler 
wants to do, and there are no constraints applied to the optimizer. Hence, it’s the 
fastest and most unsafe, where the compiler is “relaxed” but “stressed” is the 
programmer’s mode. 

Using the relaxed mode is a significant optimization, so it pays to consider when 
you can get away with it. Some of the simpler uses of atomic variables for counters 
or flags don’t need any memory synchronization at all. Let’s declare some atomics: 

    std::atomic<int> g_atomic_counter; 

    std::atomic<bool> g_atomic_shutdown_flag; 

The question is whether there are any other dependent variable reads or writes 
happening around your operation on the atomic variable. Examples where this is 
the case include: 

• Basic atomic counter 

• Global flag for all threads 

If you’re using an atomic<int> variable as a counter of something, it’s quite 
possible that nothing depends on it.  
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You want every thread to be able to increment the counter (without losing one), 
but this is guaranteed by atomic semantics. The default is “sequential consistency” 
for this: 

    g_atomic_counter++; 

But it might actually be faster to do this in “relaxed” mode: 

    g_atomic_counter.fetch_add(1, 

std::memory_order_relaxed); 

Another example is our global “shutdown” flag that tells all the threads to close up 
shop. As an atomic, we can directly assign it, which uses the “sequential 
consistency” memory order: 

    g_atomic_shutdown_flag = true; 

There aren’t really any dependent operations on this flag, other than the threads 
occasionally check it. Note that an atomic flag like this doesn’t do any signalling by 
default, so we’re assuming that other threads are watching, or getting signalled 
another way. In any case, we can probably use “relaxed” mode to set our atomic 
flag: 

    g_atomic_shutdown_flag.store(true, 

                              std::memory_order_relaxed); 

We might also want to test std::atomic_flag, to see if it’s any faster, since it’s 
a pre-defined class with similar semantics. 

Load and Store Memory Orders 

The atomic load() and store() operations allow a memory order to be specified. 
Both of them default to “sequential consistency” (slow and safe), if no memory 
order argument is specified. 

The alternative memory orders are quite limited for these primitives, because some 
memory orders cause undefined behavior. In addition to the default “sequential 
consistency” memory order, the options for a more efficient memory order are: 

• load() — “consume” or “acquire” or “relaxed” 

• store() — “release” or “relaxed” 
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Undefined Behavior 

There are some memory orders that are simply incorrect, and lead to “undefined 
behavior” according to the C++ standard. Some examples include: 

• load() — memory orders that are undefined: 

 memory_order_release and memory_order_acq_rel 

• store() —memory orders that are undefined:   

memory_order_consume, memory_order_acquire and memory_o
rder_acq_rel 

Note that “acquire-release” memory order cannot be used at all with these methods. 

Data Hazards are not Memory Orders 

You may have heard of an ordering issue called “data hazards” that includes 
problems such as: 

• Read-After-Write (RAW) 

• Write-After-Write (WAW) 

• Write-After-Read (WAR) 

• Read-After-Read (RAR) (harmless!) 

However, data hazards are not actually related to memory ordering, nor even to 
multithreading. Instead, data hazards are a pipelining issue inside the CPU’s 
instruction scheduler related to “instruction reordering” and “out-of-order” 
execution. There are many similar concepts in terms of the different orders that can 
cause problems, but memory orders are in multithreading of multiple threads, 
whereas data hazards are inside the CPU related to the instruction ordering within 
a single thread.  

Hence, data hazards can be delegated to the hardware engineers, and us C++ 
programmers have one less thing to worry about! 
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Extensions 

1. Explore the use of std::atomic<bool> versus the convenient 
alternative  std::atomic_flag in modern C++. 

2. Examine the performance of std::atomic for various types, examining 
the costs of primitives such as locking and unlocking, along with basic class 
operations such as construction, destruction, copying and moves. 

3. Research the details of all the various memory orders. 
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38. Lock-Free Data Structures 

What are Lock-Free Data Structures? 

Lock-free programming is a method of optimizing multithreaded code to avoid 
locks (i.e., mutexes) by using atomics instead. Mutexes have a significant overhead, 
whereas atomics are more efficient, but that’s not the only benefit. The advantages 
in speed and lower latency arise from reducing: 

• Overhead of mutexes and lock guards 

• Lock contention overhead 

• Lost performance from threads blocked awaiting a resource. 

• Context switches (avoided) 

Generally speaking, there should be a higher throughput with none of the threads 
blocked to wait, which also avoids context switching. Threads can execute an 
atomic operation and keep going, which is better for CPU utilization, assuming 
there is enough work needing to be done. 

Lock-free algorithms also have some safety and resilience advantages. Since the 
threads no longer block waiting for locks, this avoids some common pitfalls in 
multithreading: 

• Lower risk of deadlock or livelock 

• Reduced chance of priority inversion 

The main disadvantage of lock-free programming: 

• Your brain will explode. 

The internet is littered with articles about failed attempts to write lock-free 
algorithms, even by some of the best programmers. There are many ways to go 
wrong in the quest to get rid of mutexes. 

There are actually some real downsides to lock-free programming, and it’s not an 
automatic performance win.  
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Some issues include: 

• Load balancing properties can change or worsen if no thread ever blocks. 

• Lock-free primitives are not always faster than mutexes or other lock types. 

• Low-contention applications may perform worse under lock-free methods. 

• Weirdly, overall lock contention suffers if nobody ever gets swapped out. 

And worst of all, errors in coding the complex lock-free algorithms can not only 
cause bugs, but can also introduce insidious slugs! 

Implementing Lock-Free Methods 

Lock-free programming is the hardest part of multithreading. If you can do this, 
you can do anything. But the reverse also applies: if you’re still struggling to do 
other types of multithreading, don’t try to do this yet. To do lock-free programming, 
you really need to understand: 

• Overall locking strategies (mutexes, locks) 

• Atomics (basic usage) 

• Memory orders (in relation to atomics) 

Note that “lock-free” programming does not mean that you just search up “mutex” 
in vi, and then hit the “dd” button. No, lock-free programming is not just sequential 
programming. Instead, the idea is to switch to a faster concurrency method than 
mutexes, so this is the main idea: 

• std::mutex — lock-based programming. 

• std::atomic — lock-free programming. 

The overall idea is to use an “atomic” operation instead of a mutex. However, it is 
not adequate to use simple atomic operations, but you need to use the “compound” 
operations. Hence, to make this work, it’s usually a quite complex atomic operation, 
such as a “Compare-And-Swap” (CAS) low-level operation or a “Fetch-and-Add” 
computation. 

Let’s examine the “Compare-And-Swap” approach in detail.  
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This is how a CAS operation works, with a number of steps all done atomically in 
one unbreakable sequence: 

• Access a variable (that you want to set atomically). 

• Compare it to the “old” or “expected” value. 

• If it’s equal to the old value, then successfully update to the new value (and 
done). 

• If it’s not equal to the old value, someone else has already updated it, so 
we fail (and then loop around and retry). 

What a mouthful! Fortunately, C++ has the std::atomic class (since C++11) to 
take care of all that. The main routines to use for a CAS instruction are: 

    std::atomic::compare_exchange_weak 

    std::atomic::compare_exchange_strong 

Note that you will also need to know about “memory orders” around atomic 
primitives, as controlled via the std::memory_order library. 

Weak or Strong CAS? 

Should you use the weak or strong version of the CAS primitive? The strong version 
is guaranteed to not fail for “spurious” reasons, but only if the atomic’s value is not 
what you want. By comparison, the weak version can fail for two reasons: 

• Wrong atomic value 

• Spurious error failures 

Thus, the strong version seems better, but even so, the most common idiom for 
using CAS in lock-free programming is the use of the weak version, but in a loop. 
This idea simply retries if the weak CAS primitive fails, whether due to the 
underlying atomic variable’s value being wrong, or due to the obscure spurious 
failures. 

Both the weak and strong CAS primitives are usually in a loop. The weak CAS can 
fail for two reasons, being spurious failures or another thread modified the value, 
and needs to retry. The strong CAS will not fail for spurious reasons, but can still 
fail for the second reason, and still often needs a loop. The weak version is more 
commonly used because it’s somewhat more efficient, under the assumption that 
spurious failures are rare. 
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Example: Lock-Free Stack Array 

A lock-free stack implemented in an array is a great example to use, because it has 
only one moving piece: the stack pointer. This is an integer index used to identify 
the level of usage in the array, and also doubles as a counter of how many items are 
on the stack. 

Here’s our basic interface for an array-based stack: 

    template<typename T, int N> 

    class LFStackArray { 

    private: 

        std::atomic<int> sp_;   // Stack pointer 

        T arr_[N];              // Fixed-size array 

    public: 

        LFStackArray() : sp_{-1}, arr_{} { } 

        ~LFStackArray() { } 

        LFStackArray(const LFStackArray&) = delete; 

        LFStackArray(LFStackArray&&) = delete; 

        LFStackArray& operator=(const LFStackArray&) = delete; 

        LFStackArray& operator=(LFStackArray&&) = delete; 

    }; 

And here are some basic member functions: 

    bool empty() const { return sp_ == -1; } 

    bool full() const { return sp_ == N - 1; } 

    int count() const { return sp_ + 1; } 

And let’s define the main member functions implementing the stack LIFO 
functionality. The top() function is a const member that does not pop the stack 
(like the standard C++ stack container): 

    T top() const { 

        if (sp_ == -1) { 

            throw std::exception("Stack underflow top"); 

        } 

        else { 

            return arr_[sp_]; 

        } 

    } 
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Here’s the pop() function that decrements the stack pointer: 

    void pop() { 

        if (sp_ == -1) { 

            throw std::exception("Stack underflow pop"); 

        } 

        else { 

            sp_--;  

        } 

    } 

And here’s the push() member function that increments the stack pointer: 

    void push(const T& item) { 

        if (full()) { 

            throw std::exception("Stack overflow"); 

        } 

        else { 

            arr_[++sp_] = item; 

        } 

    } 

See Any Bugs? 

This code will run fine in many cases, but has several concurrency bugs if multiple 
threads are pushing and popping. The sp_ variable is atomic, and all of the 
operations on this variable will be correctly serialized. Problems arise because each 
of the main member functions are accessing the atomic variable twice. 

Any interleaving access in another thread that modifies the stack pointer between 
those two accesses can break the code. Since all the member functions are short, 
and the two accesses are within a few instructions, these bugs would be rare 
situations, but are still an insidious problem. 

One way to fix these problems would be to just remove the exception-handling 
code. All of the extra reads on the stack pointer are to detect overflow and 
underflow conditions. But that’s not a great design decision to make, based solely 
on our lack of expertise in lock-free programming. 
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CAS Versions 

A better idea is to use the “Compare-And-Swap” (CAS) idiom, repeated in a loop, 
for proper lock-free versions. Here’s an updated pop() method: 

  void pop() { 

      int oldsp = sp_.load(); 

      if (oldsp == -1) { 

          throw std::exception("Stack underflow pop"); 

      } 

      while(!sp_.compare_exchange_weak(oldsp, oldsp - 1)) { 

          // Nothing (try again) 

      } 

  } 

Note that in this version using sp_.load() is not really different from just 
using sp_ by name (an implicit load), but the second part uses a different loop. The 
CAS call is used to check that the stack pointer still has the expected value (i.e., not 
modified by some other thread), and we loop around until it’s true. Since this is a 
“weak” CAS call, it call also fail for spurious reasons, but that’s not a problem 
because we just retry in that situation, too. 

What’s missing? 

There are no memory orders specified anywhere, so the atomic calls are defaulting 
to “sequential access” in both the load and CAS loop. That’s the safest memory 
model, but it’s needlessly inefficient here. 

There are three places where we can specify an alternative memory model. But 
which to choose? The best choices are: 

• Initial load() call — “relaxed” memory model (fastest) 

• Weak CAS success — “acquire” memory model 

• Weak CAS failure (retry loop) — “relaxed” memory model (fastest) 

We can get away with relaxed mode for the initial load() because it’s not critical. 
We’re testing for an error, and we also don’t care too much about ordering of 
accesses leading up to the CAS test. 

Similarly, we also don’t much care about ordering whenever the weak CAS call fails, 
whether for spurious reasons or because the value has changed. Either way, we’re 
just looping back to re-try, and the ordering up to the next CAS call doesn’t matter. 
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However, we do care on a successful CAS result, which is when the stack pointer 
is actually being updated to a new value. Hence, we choose “acquire” rather than 
“relaxed” for that option. 

Our new function looks like: 

    void pop() { 

        int oldsp = sp_.load(std::memory_order_relaxed); 

        if (oldsp == -1) { 

            throw std::exception("Stack underflow pop"); 

        } 

        while(!sp_.compare_exchange_weak(oldsp, oldsp - 1,  

            std::memory_order_acquire,   // Success mode 

            std::memory_order_relaxed)   // Failure mode 

            ) { 

            // Nothing (try again) 

        } 

    } 

Still Buggy! 

There’s an obscure problem in the above pop() function that indicates a 
misunderstanding of how the CAS primitives work. They don’t just update the 
atomic, but also the passed-in parameter. 

Let’s consider a stack that currently contains one element, but two threads are both 
trying to pop the stack. Consider this sequence: 

• Thread A: starts and calls load() inside pop() 

• Context switch 

• Thread B: runs a full pop() function to pop the stack (i.e., load() and 
then CAS success). 

• Context switch 

• Thread A: continues, but weak CAS fails (value of sp_ was changed by 
Thread B). 

• Thread A: loops around to retry. 

• Thread A: weak CAS now succeeds using the sp_ value updated by Thread 
B (yes, really) 

The end result of all this is a major bug: 

• The atomic is updated to the wrong stack pointer. 

• The stack hasn’t been popped twice (it should be, once by each thread). 
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The CAS primitive can change the variable passed as the expected value. Hence, 
the value of sp_ in the above code can change before and after the loop, and also 
whenever there’s a loop-around to retry.  

Look at the official signature of the weak CAS function, and you’ll notice that the 
first argument containing the “expected” or “old” value is a non-const reference. 
The second argument is not a reference. 

Why aren’t they the same? 

The compare_exchange_weak() function can modify the expected value (used 
to test), but not the “new” value, used to store. This means that: 

(a) If it succeeds immediately, the “old” variable will have the “new” value. 

(b) If it fails and loops around, the “old” variable will have whatever value 
another thread changed it to. 

When you examine lock-free versions with CAS primitives and loops, you’ll notice 
a few things about the pattern: 

1. The “old” value is retested every loop iteration (after CAS failure). 

2. The “old” value is also retested after the loop (after CAS success). 

3. The “expected” value parameter to weak CAS may also need to be re-
computed each iteration, based on the “old” value (which can change), 
rather than using an unchanging separate variable to contain the expected 
value. 

This is getting complicated! Well, yes, that’s the fun of lock-free coding. 

Anyway, here’s the final version with the corrected weak CAS calls. This defers the 
underflow test until after the loop, where it catches both cases of underflow: initial 
underflow or an underflow caused by some other thread popping the stack out 
from under us. 
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The final code is: 

    void pop() { 

        int oldsp = sp_.load(std::memory_order_relaxed);         

        while (oldsp != -1  

            && !sp_.compare_exchange_weak(oldsp, oldsp - 1, 

                std::memory_order_acquire,   // Success mode 

                std::memory_order_relaxed)   // Failure mode 

            ) { 

            // Nothing (try again) 

        } 

        if (oldsp == -1) { 

            throw std::exception("Stack underflow pop"); 

        } 

    } 

Hopefully, this new version now has all the various concurrent execution sequences 
covered: 

• Success: valid pop on the stack without any changes by another thread. 

• Success: valid pop on the stack but another thread removes one (or more) 
stack elements, but doesn’t fully empty the stack. 

• Underflow: Pop on an already-empty stack. 

• Underflow: Pop on a non-empty stack, but another thread empties the 
stack before us. 

Difficulties with Lock-Free Coding 

What’s so hard about coding a lock-free algorithm? Well, it’s a totally different way 
of thinking about concurrency compared to the use of standard locking 
mechanisms.  

Some of the problems include: 

• Catering for all possible instruction ordering sequences. 

• Choosing the right memory order to guarantee correctness. 

• Higher-level concurrency problems with the interface. 

• Handling the “ABA” problem where updates are missed. 

We’ve already discussed instruction ordering and memory orders in Chapter 7 on 
atomics, so let’s look at the other issues now. 
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High-Level Race Conditions 

Even when we’ve correctly implemented the member functions with atomics and 
memory orders, this lock-free stack is still problematic to use. The stack itself will 
stay consistent no matter what member functions are called in what order, but there 
are higher-level concurrency problems with any paired usage of multiple member 
functions, such as sequences like: 

• Top and then pop 

• Test empty before calling pop 

• Test full before calling push 

What we’d need to do is define some more composite member functions using 
lock-free methods. Ideas for new methods to add in the interface for better usage 
in multithreaded applications include: 

• Top-and-pop 

• Pop-if-not-empty 

• Push-if-not-full 

ABA Problems 

The ABA problem is a more general concurrency issue that can be particularly 
applicable to lock-free sequences. The ABA problem occurs where a shared variable 
undergoes this uncommon sequence with activity in one thread: 

• Initial value — A 

• Update to value — B 

• Second update — A 

The problem occurs in a second thread, and it’s not really obvious why it’s tricky. 
After the ABA sequence, the second thread sees the value as A, which is unchanged 
from the prior value it would have seen. Hence, the second thread doesn’t know 
about the intervening value B. Depending on context, this is sometimes no 
problem, or sometimes a major concurrency error whereby the second thread 
wrongly assumes that nothing has changed, and the data structure hasn’t been 
updated. 

A good example is an array implementation of a lock-free stack. The index value is 
incremented by one on a push, and then decremented back to its prior value by a 
thread doing a pop. This is an ABA sequence on an integer index, whereby another 
thread might assume that the stack index has not changed.  
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If that thread accesses the “top” element, then an ABA sequence occurs in the first 
thread, the second thread may see that the stack index is unchanged and assume the 
same element is still on top of the stack, when in fact, there’s an entirely different 
value. Remember, it’s the atomic integer representing the stack index that’s 
undergone the ABA sequence, not the actual object on the stack. 

This problematic sequence can occur in any synchronization style including both 
locking and lock-free algorithms. It’s quite an insidious bug, because the ABA 
sequence doesn’t occur that often. In particular, a lot of the lock-free methods for 
using a CAS operation in a loop are checking for the old value, and can be 
vulnerable to an ABA sequence. 

C++20 Atomics and Lock-Free 

The C++20 standard introduced some extra primitives to the atomic class, which 
were similar in nature to condition variables and spinlocks (or a hybrid thereof). 
The primitives included: 

• wait() — blocking call to wait until an atomic changes. 

• notify_one() — notify one waiting thread. 

• notify_all() — notify all the threads that are waiting. 

An important point to note is that if you’re using these C++20 primitives to 
implement thread synchronization, it’s more like using locks than a lock-free 
algorithm. Where threads are blocked and waiting on an update to an atomic 
variable, that’s a great feature of C++20, but it’s no longer really a lock-free data 
structure. The main hallmark of lock-free programming, where every thread keeps 
going, is missing in that style. 

Freestanding Atomic Functions 

Standard C++ provides a number of “free-standing” atomic functions that mirror 
the member functions. For example, there is: 

• atomic_fetch_add() — similar to fetch_add(). 

• atomic_fetch_sub() — matches fetch_sub(). 

There are also “explicit” versions of many of these functions: 

• atomic_fetch_add() — default memory order. 

• atomic_fetch_add_explicit() — extra argument for the memory 
order. 
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The differences in all these free-standing versions of the functions compared with 
the main C++ ones are: 

• Not member functions (free-standing). 

• Accept a pointer to an atomic, not a reference. 

• Memory orders can be specified in the “explicit” versions. 

• Consistent with the C-language versions defined in the C11 standard. 

The reason for pointer arguments is that these functions are consistent with the C 
language versions declared in <stdatomic.h> in C11 (not C++11). 

Always Faster? 

Note that lock-free algorithms are not always a speed improvement. There is a 
significant case to be made that lock-free algorithms can increase thread contention. 
Hence, it is important to time your before-and-after if you’re switching from a lock 
implementation to a lock-free version of your thread-safe data structure. Since the 
concern is related to lock contention when there are multiple threads, it is important 
to time performance of your overall application across multiple threads under a 
realistic load, rather than just benchmarking the low-level lock-free queue 
primitives. See the references section for various Stack Overflow conversations 
involving quite animated discussions on when and whether a lock-free algorithm is 
better or worse than locking methods. 

Portability issues 

There are also a variety of non-standard methods to achieve lock-free programming 
with primitives in older code platforms, or in a platform-specific manner. Some of 
the primitives are: 

• InterlockedCompareExchange — Win32 version in <winnt.h>. 

• OSAtomicCompareAndSwapInt — Mac variant in <OSAtomic.h> 

• __atomic_compare_exchange — older GCC version. 

Note that the std::atomic class is not actually guaranteed to be a lock-free 
atomic operation on every platform. It’s a good idea to test your platform using the 
“is_lock_free” primitive as part of your initialization or self-testing code: 

 
    assert(std::atomic<int>::is_lock_free());  
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Extensions 

1. Implement a lock-free version of fine-grained locking using lock striping 
on a vector data structure with an array of atomics instead of mutexes (see 
discussion of “lock striping” in Chapter 4). 

2. Implement a lock segmenting version of lock-free fine-grained locking on 
a vector data structure using atomic arrays, not mutexes (see the discussion 
of “lock segmenting” in Chapter 4). 
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Part VI: Sequential C++ 

Optimizations 
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39. Timing and Benchmarking 

Timing C++ Code 

There are a number of reasons why it can be useful to time the execution of a 
program. Timing C++ code can be useful in determining which statements should 
be optimized whereas profilers may only indicate which functions are consuming 
time. Timing code can also determine the relative efficiency of various operations 
and give you valuable information about writing code for your machine (e.g., is 
shifting faster than integer multiplication?). 

There are several ways to time your C++ code, some of which have existed for 
decades, and some that are newer and standardized. Here’s a list of some options: 

• time shell command 

• time C++ function 

• clock C++ function 

• <chrono> standard C++ class 

Another way to examine the efficiency of a C++ operation is to look at the 
assembly code. This is examined later in the chapter. 

If the full execution time for a program is all that is needed, the 
Linux time command can be used to calculate the time required by a program. 
There are two versions — a stand-alone utility in /bin and a command built 
into csh. The command to run is usually: 

    time a.out 

A different executable name could also be used and command line arguments can 
also be specified. 
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The Chrono Class 

The std::chrono library is an awesome piece of work, and has many features. 
It’s been part of the C++ standard since C++11. I’m only going to touch on a 
handful of basic measurements here. 

Here’s an example of how to measure the duration between two events: 

   auto before = std::chrono::high_resolution_clock::now(); 

   // ... Do something 

   auto now = std::chrono::high_resolution_clock::now(); 

   auto diff = std::chrono::duration_cast 

        <std::chrono::microseconds>(now - before).count(); 

   std::cout << "Time: " << diff  

             << " microseconds" << std::endl; 

There are other ways to do this, as the library is very flexible, with many capabilities. 
Reading the documentation for this class is enough to make my head spin. Someone 
had a lot of time to spend on time! Kudos to them. But one way is good enough 
for timing our C++ code, so let’s move on and leave the rest as an exercise for the 
reader (LOL!). 

The Clock Function 

If a more detailed speed analysis is needed, it is possible to add C++ self-
instrumentation code to your program to monitor its own performance. The basic 
idea is to use the standard library functions to monitor the time before and after an 
action. The advantages of the clock function over the new-
fangled std::chrono library: 

• Measures CPU clock ticks, not wall clock time. 

• Works in C, if you need it, not only C++. 

• Only have to remember one function name! 

The oldest useful function is the “clock” function which has existed since the C 
programming language. The clock function counts the number of clock ticks 
since the program began executing. The “time” function, which keeps track of the 
real calendar time could also be used, but it is not a true indication of processor 
time on a large multi-user system. The clock function is correct for both single 
user and multi-user systems. 
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The clock function returns a value of type clock_t (typically long or int) that 
counts the number of clock ticks. This value can be converted to seconds by 
dividing by the constant CLOCKS_PER_SEC, also declared in <time.h>. 

The basic idea of timing C++ code blocks is to call the clock function before and 
after an operation and examine the difference between the number of clicks. The 
code below examines the relative speed of shift and multiplication operations on 
int operands. 

    void profile_shifts() 

    { 

        const int MILLION = 1000000; 

        const int ITERATIONS = 100 * MILLION; 

 

        int x = 1, y = 2, z = 3; 

 

        clock_t before = clock(); 

        for (int i = 0; i < ITERATIONS; i++) 

            x = y << z; 

        printf("%d Shifts took %f seconds\n", ITERATIONS, 

            (double)(clock() - before) / CLOCKS_PER_SEC); 

 

        before = clock(); 

        for (int i = 0; i < ITERATIONS; i++) 

            x = y * z; 

        printf("%d Multiply took %f seconds\n", ITERATIONS, 

            (double)(clock() - before) / CLOCKS_PER_SEC); 

    } 

Clock Problems 

clock Portability Pitfall. Note that some implementations on older Unix versions 
don’t conform to the C++ standard and return the number of clock ticks since 
the first call to the clock function. This means that a single call to clock at the 
end of the program would always return zero. Hence, it is more portable to measure 
the number of clock ticks between two calls to clock, one at the start and one at the 
end. Obviously, you can also put the first call to “clock” at the start of the “main” 
function to avoid this rare glitch. Note that on implementations that are correct, a 
call at the start of “main” may be non-zero due to the overhead of global and static 
C++ object instantiations (i.e., constructors for global objects), which occurs 
before entering main. 

 

 



David Spuler                                               384 
 

Clock Tick Integer Division Pitfall. Note that the standardized clock_t type 
and CLOCKS_PER_SEC constant are both integers. Hence, here’s a bug: 

    clock_t diff = clock() - before; 

    double seconds = diff / CLOCKS_PER_SEC; // Bug! 

The problem is that it’s integer division, so it inaccurately truncates to an integer. 
You need a typecast to float or double on either side of the division operator. 

    clock_t diff = clock() - before; 

    double seconds = diff / (double)CLOCKS_PER_SEC; // OK 

Clock Tick Overflow Pitfall. The clock function also has a problem with 
wraparound on some implementations. Because of its high resolution, the total 
number of clock ticks can quickly overflow the maximum value that can be stored 
by the type clock_t. On one system the clock function will wrap around after 
only 36 minutes. If the program being timed runs for longer than this period, the 
use of clock can be misleading. One solution is to use the “time” function rather 
than “clock” when executions are longer, but this usually only has resolution to 
the nearest second. 

Benchmarking 

Benchmarking is a slightly different concept to tuning, and refers to testing the 
efficiency of certain operations, such as low-level operators, to find a more efficient 
way to do an operation. For example, if you want to compare multiplication versus 
addition, you write a program to run these operations a few million times. When 
changing a program to increase efficiency, you shouldn’t assume that a certain 
operation is clearly faster, but you should benchmark whether the changes have 
noticeably increased the operation’s efficiency (or even decreased it!). 

Techniques for measuring program efficiency range from the stop-watch method 
to the use of sophisticated profiler software tools. If no profiler is adequate, the 
programmer can gain timing information by adding instrumentation statements to 
the program, although there are many pitfalls in attempting to determine the time 
taken by a sequence of statements. 

The measurement of the memory usage and space-efficiency of a C++ program is 
a slightly more difficult problem. There are several types of memory: instruction 
code, static memory, read-only string literals, initialization data, global/static 
variables, the stack, and the heap. Measuring the memory usage of the stack and 
heap is somewhat difficult because of their dynamic nature.  
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However, various tools exist to measure the different types of memory, and clever 
use of C++ programming constructs can also yield reasonable data. 

Benchmark programs attempt to examine how quickly your machine executes 
certain instructions, which is more useful for examining a single multiplication 
operation. You mainly use benchmarking for code that’s running in low-level 
kernels, such as CPU speedups (e.g., AVX intrinsics) or examining the possible use 
of different GPU primitives. 

Consider benchmarking for timing of low-level arithmetic operations on your 
platform. For example, how would you determine whether the integer 
multiplication operation x*2 could be more efficiently replaced by x<<1? 

How can you time these instructions? You obviously cannot just time a single 
operation of each with the “clock” function, because a single click tick contains 
many CPU cycles. So, you have to time thousands or even millions of such 
operations. 

    for (int i = 0; i < 100 * MILLION; i++) { 

        x << 1; 

    } 

We’ve already noted one problem: there’s all this extra loop overhead time for the 
for loop conditional test (the “<” operator) and its incrementer (i++). The loop 
actually has three operations that are all about the same order-of-magnitude cost 
(i.e., <, ++, <<). To get at the operator cost, we’d need to subtract out the loop 
overhead. We could, for example, try to time an empty loop without any loop body, 
and subtract that from our final cost. 

Benchmarking Problems 

Null effect problems. Another problem is that we cannot easily time the operators 
with these statements in the loop body: 

    x << 1; 

    x * 2; 

The compiler is clever enough to notice that the x<<1 and x*2 statements have no 
effect in the program above (and gives “null effect” warnings). The built-in 
optimizer may even remove them completely. So, they won’t get timed properly, or 
at all, even in a loop. 
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Add volatility? One possible solution is that maybe the compiler can be forced to 
avoid this optimization on the original expressions by declaring x as a “volatile” 
variable. 

    volatile int x = 0; 

The volatile qualifier tells the compiler that all accesses to x are important, and 
that it should not remove any. The intended purpose of volatile is to allow the 
declaration of addresses for memory-mapped I/O, debugger-modified variables, or 
for variables modified by other programs (e.g., a semaphore modified by another 
program running concurrently).  

However, we can use it here to force all accesses to x to occur even if they appear 
pointless. 

On the other hand, by doing this, we’ve lost the ability to see the “real” time cost 
for these operations when they’re running in normal code. Most variables 
aren’t volatile. 

Anyway, it doesn’t even work properly. Unfortunately, the computations of 
the << and * operators in x<<1 and x*2 are not being assigned anywhere, so the 
computations themselves could be optimized out, even though the actual read 
operations on x must occur because x is volatile.  

To force the << and * operations to occur, it is necessary to use their result 
somehow, such as by assigning it to the (volatile) variable x: 

    x = x << 1; 

Although all of the above improvements will enhance the previous version, a far 
better method of improvement is to time a loop that performs a huge number of 
the operations,.  

Hence, we have to use something like these assignment expressions inside a loop: 

    x <<= 1; 

    x *= 2; 
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The code given here examines the relative speed of 10,000 shift and multiplication 
operations on int operands: 

   volatile int x = 0; // volatile to prevent optimizations 

   clock_t before  = clock(); 

   for (int i = 0; i < ITERATIONS; i++) 

       x = x << 1; 

   printf("%d Shifts took %f seconds\n", ITERATIONS, 

       (double)(clock() - before) / CLOCKS_PER_SEC); 

   before = clock(); 

   for (int i = 0; i < ITERATIONS; i++) 

       x = x * 2; 

   printf("%d Multiplications took %f seconds\n", ITERATIONS, 

       (double)(clock() - before) / CLOCKS_PER_SEC); 

Loop Unrolling 

Unfortunately, the above method of measuring the speed of operations is not 
completely accurate, because it also includes the loop overhead (incrementing i 
from 1 to 10,000) and the cost of the assignment of the result to x. The loop 
overhead can be minimized by placing many operations within the loop, as below: 

    volatile int x = 0; // volatile to prevent optimizer 

    clock_t before = clock(); 

    for (int i = 0; i < ITERATIONS; i++) { 

        x = x << 1; x = x << 1; x = x << 1; x = x << 1; 

        x = x << 1; x = x << 1; x = x << 1; x = x << 1; 

        x = x << 1; x = x << 1; x = x << 1; x = x << 1; 

        x = x << 1; x = x << 1; x = x << 1; x = x << 1; 

        x = x << 1; x = x << 1; x = x << 1; x = x << 1; 

    } 

    printf("%d Shifts took %f seconds\n", ITERATIONS*20, 

        (double)(clock() - before) / CLOCKS_PER_SEC); 

    before = clock(); 

    for (int i = 0; i < ITERATIONS; i++) { 

        x = x * 2; x = x * 2; x = x * 2; x = x * 2; 

        x = x * 2; x = x * 2; x = x * 2; x = x * 2; 

        x = x * 2; x = x * 2; x = x * 2; x = x * 2; 

        x = x * 2; x = x * 2; x = x * 2; x = x * 2; 

        x = x * 2; x = x * 2; x = x * 2; x = x * 2; 

    } 

    printf("%d Mult took %f seconds\n", ITERATIONS * 20, 

        (double)(clock() - before) / CLOCKS_PER_SEC); 

Unfortunately, the assignment operations are needed to prevent the optimizer 
removing the computations, as discussed above.  
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The only truly effective method of removing the cost of the assignment from the 
measurement is to time another separate loop, and subtract its time from that of 
the other loops, as below. This method also automatically accounts for the loop 
overhead cost, so the multiple operations inside each loop are not needed (and in 
fact would be incorrect). Our final version of the benchmark program is also made 
more sophisticated to output the relative magnitude of the two operations: 

    void profile_shifts4() 

    { 

        const int MILLION = 1000000; 

        const int ITERATIONS = 1000 * MILLION; 

        volatile int x = 0; // volatile to prevent optimizations 

        double time1, time2; 

        // Time the loop overhead 

        clock_t before = clock(); 

        for (int i = 0; i < ITERATIONS; i++) 

            x = 1; 

        clock_t loop_cost = clock() - before; // overhead 

        double ovtime = (double)(loop_cost) / CLOCKS_PER_SEC; 

        printf("%d overhead: %f seconds\n", ITERATIONS, ovtime); 

 

        // Shifts 

        before = clock(); 

        for (int i = 0; i < ITERATIONS; i++) { 

            x = x << 1; 

        } 

        time1 = (double)(clock() - before - loop_cost) 

                 / CLOCKS_PER_SEC; 

        printf("%d Shifts took %f secs\n", ITERATIONS, time1); 

 

        // Multiplications 

        before = clock(); 

        for (int i = 0; i < ITERATIONS; i++) { 

            x = x * 2; 

        } 

        time2 = (double)(clock() - before - loop_cost) 

                 / CLOCKS_PER_SEC; 

        printf("%d Mult took %f seconds\n", ITERATIONS, time2); 

 

        // Compare both times, and print percentage difference 

        const float ACCURACY = 0.00001f; // maximum error 

        if (fabs(time1 - time2) < ACCURACY) // (almost) equal? 

            printf("Shift and multiplications: same time\n"); 

        else if (time1 < time2) { 

            printf("Shifts faster by %5.2f percent\n", 

                    (time2 - time1) / time2 * 100.0); 

        }  

        else { 

            printf("Multiplications faster by %5.2f percent\n", 

                (time1 - time2) / time1 * 100.0); 

        } 

    } 



389                             C++ Ultra-Low Latency 
 

Limitations of Benchmarking 

Benchmarking of C++ using these timing methods is not perfect, but I’ve always 
found it useful. There are various reasons why this type of benchmarking timing 
results may not be fully correct. 

• Hard to account for parallelism (e.g., GPU throughput) 

• Single-threaded code is not always a true representation. 

• Pipelining speedups often differ in production code (even for sequential 
CPU code, such as AVX intrinsics). 

• Loop overhead is hard to separate from the raw operations (as seen above!) 

• Compiler optimizations might modify or even remove the operations being 
benchmarked. 

• Memory cache hit rates are too high because you’re running tight code 
accessing only a few addresses. 

• Optimization levels in test mode might not match your production version. 

• Debug modes might not match production (e.g., if running in a debugger). 

• Pipelining by the CPU of many instructions makes it appear better than 
reality. 

• Unrealistic non-production conditions are being tested. 

Compiler optimizations. In this day and age of amazing optimization algorithms, 
note that on some platforms the benchmarking code above may indicate that shifts 
and multiplications cost exactly the same. This is most likely an indication that the 
compiler automatically optimizes any multiplications by powers of two into left 
shifts. To get the true cost of a multiplication, the expression should be: 

    x = x * x; 

But even this might be optimized algebraically by a compiler. The only way to know 
for sure what’s actually being benchmarked is to examine the assembly language. 

Examining Assembly Output 

Another way of examining the relative costs of particular operations for a particular 
compiler is to examine the assembly language produced by the compiler. Many 
compilers have an option to produce assembly language output. For example, under 
Linux the command may be: 

    gcc -S main.cpp 
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This will produce the assembly language listing for the C++ source file and store it 
in a new file “main.s” as a human-readable text file. Without the -S option, the 
assembly output would have been passed to the assembler to create the machine 
code executable. GCC also has a “-masm” option that controls the different 
“dialects” of assembly language (e.g., “intel” or “att”). GCC also has a verbosity 
control on assembly output via “-fverbose-asm” and “-fno-verbose-asm” 
options. 

Another way to generate assembly with GCC is the “-save-temps” option. This 
option tells GCC to save the temporary assembly language file that it used for the 
real compilation. Hence, this option can be used with the normal compilation mode 
to both build the code as normal and also output a “.s” assembly file. The 
advantage of this GCC “-save-temps” option over “-S” is that you don’t need 
to create a separate build path for generating assembly text files. 

Reviewing assembly code. Examining assembly language instructions produced 
for C++ operations can be very enlightening. For example, you can determine 
whether the compiler uses a special increment instruction for the ++ operator. 
Whether or not the compiler is performing various optimizations can also be 
examined. 

Counting the number of assembly instructions is a simple measure and gives a 
reasonable indication of how efficiently an operation will be performed. A better 
method is to determine the number of cycles used by each instruction, but this 
requires a rather more intimate knowledge of the assembly language being used. 

Many useful things can be discovered by examining assembly output. For example: 

• Does the expression x*2 generate a multiply instruction or a shift 
instruction (or an addition instruction to do “x+x”)?  

• Does the compiler notice that x=x+1 can be replaced by x++?  

• Is the integer % remainder operator implemented by a sequence of 
instructions? 

Consider the use of the relational operators (e.g., >, <) in expressions such as: 

    flag = x > y; 

This will often produce a sequence of instructions because of the need to assign 
flag the value either 0 or 1.  
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The instructions may well look like the following pseudo-assembly language: 

    LOAD 10($sp) # Load x (from stack) 

    CMP 12($sp) # Compare with y (on stack) 

    BGT $1 # Branch if greater than 

    LOAD 0 # Result of > operation is 0 

    JUMP $2 

    $1: 

    LOAD 1 # Result of > operation is 1 

    $2: 

    STORE 14($sp) # Store in flag (on stack) 

However, review the assembler for the similar test in if statements, such as: 

    if (x > y) ... 

For an if statement, the instructions need not be as complex, because there is no 
need to store the value 0 or 1 anywhere. The assembly language could be similar to 
branches without computations: 

    LOAD 10($sp) # Load x (from stack) 

    CMP 12($sp) # Compare with y (on stack) 

    BLE $1 # Branch if NOT greater than 

    ... # Code for if statement body 

    $1: 

    ... # Statements after if statement 

Examining Object Files 

The objdump command is another useful tool on Linux for analyzing binary object 
files. DUMPBIN is the comparable tool on Windows for MSVS (or you can use 
the LINK command with the “/DUMP” option). These tools can get to the assembly 
language text in reverse, by disassembling the binary instructions that are in the 
object file, in combination with the various symbolic information. 

objdump can be used to examine object files in various ways and there are various 
useful options. The “-d” and “-D” options provide disassembly where you can 
examine a full dump of the assembly code in printable form (as an alternative path 
to the “-S” option). The “-h” option shows the headers of the object file and “-
g” shows debugging information in the file. There are numerous other options and 
the “--help” option can be used to list all options. The objdump command is 
part of Gnu Binutils, which also includes other useful binary file tools such 
as nm, size, strip, and strings utilities. 
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DUMPBIN also has various options that can be used on the DOS command-line. 
The default is “/SUMMARY” for a summary of the information about the object file. 
The “/DISASM” command shows the disassembly of the object file, which is in 
assembly language. Also useful is “/SYMBOLS” to show the symbolic names. 

Performance Tuning Practices 

How should the huge number of methods of improving program efficiency be 
applied to a program? The code transformations that improve the program by a 
significant amount should be tried first, and the smaller optimizations used only 
when it is important to squeeze out that last bit of extra speed in bottlenecks. 
Hence, I suggest the following steps for improving the efficiency of a program: 

1. Time your program to get a baseline (i.e., run a full inference query). 

2. Invoke the C++ compiler’s built-in optimizer. 

3. Profile the code and find the “hot spots.” 

4. Consider a better data structure or algorithm. 

5. Use the major code transformations. 

6. Use smaller code transformations, if speed is crucial. 

The first step is to measure your code’s time cost. Otherwise, how will you know 
whether anything made it better? 

The next step is easy: turn on your optimizer. All modern C++ compilers have an 
option to invoke an optimizer on the code. The optimizer, although it may not 
always yield a major increase in speed, has one very important advantage — the 
programmer need not change the code. Hence, if a small improvement is desired, 
the optimizer can often provide it without much effort. 

Software tuning. Assuming you’re done with all the non-code changes to the 
system (e.g., hardware, networking), it’s time to examine the C++. You can either 
start high by looking at the data structures, or start low by optimizing the busiest 
low-level kernels. 

The choice of a better algorithm (usually with different data structures) for a 
program is not an easy method of program improvement. Simply identifying what 
would be a better algorithm is a difficult problem!  



393                             C++ Ultra-Low Latency 
 

And once identified, the new algorithm must be implemented by the programmer, 
costing precious man hours. However, this is the best method to achieve an order-
of-magnitude increase in the program’s performance. 

The next step is to profile in detail the C++ code to determine which functions (or 
statements) are accounting for most of the program’s time; these are the “hot spots” 
of the program. This identification of costly statements is best achieved by a 
profiler, although if I had to take a guess, I’d say look at your vector dot product 
code. Identifying frequently called functions and deeply nested loops is often 
adequate. Once the hot spots are identified, all efficiency measures, large and small, 
should be applied to this code. Any improvement to the efficiency of a statement, 
no matter how small, will improve the overall efficiency greatly if that statement is 
executed often. 

Once the most costly functions and loops have been optimized, other statements 
can also be optimized, although the increase in speed will not be as noticeable. Some 
of the better code transformations to apply are parallelization, loop optimizations 
(vectorizations), using pass-by-reference for passing structures or objects to 
functions, and replacing small functions with macros or inline functions. 

Make it right first? The speed improvement techniques in C++ can be applied 
either as the programmer is writing the code, or after the development and 
debugging of the program. The second approach is often referred to as the “make 
it right first” rule. However, I believe that the first method is preferable simply 
because optimizing your program once it is working is a dangerous practice, and 
often introduces new bugs. Deferring efficiency improvement to the final 
development stage can also waste programmer time in improving the basic 
algorithms used in a program. Using efficiency techniques during the development 
of the program is a much sounder method of improving efficiency. 

Tuning Trade-offs 

Tuning a program is not always a clear-cut gain. There are numerous other 
quantities that efficiency may affect: 

• Space versus time-efficiency. 

• Robustness of a program. 

• Readability and maintainability of a program. 

• Portability of a program. 
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There is almost always a trade-off between time and space when making programs 
run faster. Many of the algorithm improvements sacrifice space for extra speed, 
such as caching and precalculation. An often overlooked trade-off is between 
program efficiency and a programmer’s time in making the changes. 

Changing a program for efficiency can introduce extra bugs into a program 
(although you could argue that it might remove bugs, too). If a piece of code has 
already been debugged, improving its efficiency may not be worth the risk to the 
robustness of a program. 

Many of the program transformations used for efficiency can reduce the readability 
for a program. Naturally, this also makes it more difficult for a program to be 
maintained, and since the major cost in a program’s development cycle is usually 
maintenance, improving efficiency may not be worth it in the long run. 

Perhaps surprisingly, the efficiency of a program can usually be increased 
significantly without affecting portability. There are some efficiency techniques in 
this book, but there are many generic methods that work across all C++ code. 

Almost all of the dangers of improving efficiency are dangers for the programmer. 
On the other hand, the users of a program will be well pleased by extra 
responsiveness, and this alone makes efficiency improvement a worthwhile 
exercise. 
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40. Bitwise Operations 

C++ Bitwise Operators 

Here’s a refresher on the C++ bitwise operators: 

x & y — binary bitwise-AND 

x | y — binary bitwise-OR 

x ^ y — binary bitwise-XOR 

x << y — binary left bitshift 

x >> y — binary right bitshift 

~x — unary bitwise-complement 

Binary literals. Also, a reminder that C++ also supports binary literal constants 
with a “0b” prefix, similar to the hexadecimal “0x” prefix.  

For example, to represent the constant 10 (ten), your C++ code can use: 

    const int ten = 10;     // decimal 

    const int ten = 0xA;    // hexadecimal 

    const int ten = 012;    // octal 

    const int ten = 0b1010; // binary 

Bitwise badness: A few pitfalls in coding C++ bitwise operators should be 
mentioned: 

• Integer-only: the C++ bitwise operators do not work on floating-point 
data types. 

• Quiet overflow: if you do anything to overflow an integer type, nobody’s 
going to tell you. For example, shifting the sign bit too far left with 
“1<<32” instead of “1<<31” will simply lose it. You might get a compiler 
warning, though. 
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• Two is not better than one. The & operator is bitwise, but && is logical. 
Similarly, | and ||. It’s the reverse for < and << or > and >>. Choose the 
wrong one and you might get a compiler warning, if the stars are aligned 
and the wind is blowing easterly. 

• Operator precedence is tricky and not what you’d expect (it’s arguably 
broken, but rather too late to fix), so use lots of parentheses in bitwise 
expressions, and don’t ignore C++ compilation warnings. 

• Bitwise operators are not always well-defined on negative values (e.g., 
bitwise right shift is officially “undefined behavior” on a negative), so it’s 
best to use “unsigned” types as operands to bitwise operators. Note also 
that it’s often useful to add the suffix letter “u” to integer constants 
(e.g., 10u, 0xAu or 0b1010u), when dealing with bitwise operations. This 
makes the constant of type “unsigned” and avoids various bitwise 
operator problems with signed numbers. 

Bitwise operation algebraic properties: The interaction with zero is an 
important difference between the main operations: 

• Bitwise-AND with zero equals zero:   a & 0 == 0 

• Bitwise-OR with zero equals the other value:   a | 0 == a 

The following inequalities for bitwise operators on non-negative integers can also 
be useful to know: 

• Bitwise-AND only clears bits and is <= each operand:   a & b <= a 

• Bitwise-OR only sets bits and is >= each operand:   a | b >= a 

• Bitwise-AND equals the larger value only for equal numbers. 

• Bitwise-OR equals the larger value only for subset bit patterns. 

Addition versus bitwise operations: The relationship between the bitwise 
operators and the integer “+” operator can be useful to understand: 

• Bitwise-AND is <= the sum of its operands:   a & b <= a + b 

• Bitwise-AND equals addition only if both numbers are zero. 

• Bitwise-OR is >= the sum of its operands:   a | b >= a + b 

• Bitwise-OR equals addition only for disjoint bit sets or zeros. 

Note that these relationships are for positive integer values. Bitwise operators need 
positivity in their daily lives, whereas addition is fine with lots of negativity. 
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Bit Flag Basics 

The main use of C++ bitwise operators is to use bit flags in integer variables, which 
is very efficient in both storage space and execution time. A vanilla “int” can store 
32 bit flags, and a “long” can store 64 bits. The basic bit operations in C++ use 
these bitwise operators: 

• Check a bit — bitwise-AND (&) 

• Set a bit — bitwise-OR (|) 

• Toggle a bit — bitwise-XOR (^) 

• Clear a bit — bitwise-AND with complement (& with ~) 

Here are some example macros for examining the bits in a 32-bit integer, which 
should be of “unsigned int” type: 

    // Bit Flags in Integers 

    #define AUSSIE_ONE_BIT_SET(x, b)   \ 

      (( ((unsigned)(x)) & ((unsigned)(b))) != 0 ) 

    #define AUSSIE_ANY_BITS_SET(x, b) \ 

      (( ((unsigned)(x)) & ((unsigned)(b))) != 0 ) 

    #define AUSSIE_ALL_BITS_SET(x, b) \ 

      ((((unsigned)(x))&((unsigned)(b))) == ((unsigned)(b))) 

    #define AUSSIE_NO_BITS_SET(x, b)  \ 

      (( ((unsigned)(x)) & ((unsigned)(b))) == 0 ) 

The corresponding macros to set and clear these bit flags are: 

    #define AUSSIE_SET_BITS(x, b)    \ 

      (( ((unsigned)(x)) | ((unsigned)(b)))) 

    #define AUSSIE_CLEAR_BITS(x, b)  \ 

      (( ((unsigned)(x)) & (~((unsigned)(b))))) 

    #define AUSSIE_TOGGLE_BITS(x, b) \ 

      (( ((unsigned)(x)) ^ ((unsigned)(b)))) 

Yikes! What a mess! But all those parentheses are necessary to avoid precedence 
issues with preprocessor macros. 
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Bit Sets 

You can consider a 32-bit integer to be a “bit set” of 32 distinct bit flags, where all 
1s represent a bit flag that is in the set. A bit set is an inherently parallel architecture, 
even in ordinary sequential C++ code. The basic idea is that a 32-bit unsigned int 
stores 32 bit flags. Certain actions on the integer as a whole effectively process 32 
bits in parallel. For example, it is very fast to check if any bits are set at all by testing 
whether the whole integer is zero. 

In regards to bit sets stored in an integer, the basic set operations can be 
implemented very efficiently with C++ bitwise operators: 

• Bitwise-AND (&) — intersection 

• Bitwise-OR (|) — union 

• Bitwise-complement (~) — set complement (negated set) 

• Bitwise-and-complement (“A&~B”) — set difference (set minus) 

In addition, there are a number of fast operations that can be useful for bit sets: 

• Integer zero — null set of bits. 

• Integer negative-one — full set of all 1s. 

• Bitwise “popcount” — set cardinality or number of elements. 

Example code with these ideas for 32-bit sets implemented as unsigned integers: 

    u != 0         // Test if any bit is set 

    u3 = u2 & u1;  // Intersection of sets (Bitwise-AND) 

    u3 = u2 | u1;  // Union of sets (Bitwise-OR) 

    u3 = u2 ^ u1;  // Toggle bits in sets (Bitwise-XOR) 

    u3 = ~u1;      // Set complement or inverse 

The total number of bits set out of 32 can be computed fast as a “popcount” 
operation using intrinsic functions, such as “__popcnt” in Microsoft Visual Studio 
and “__builtin_popcount” for GCC (there are also versions for 64-bit longs). 
In x86 architectures, popcount is a single CPU instruction (POPCNT) implemented 
in hardware, and is therefore very fast. 

Note that these C++ macros assume type “unsigned int” with 32 bits, and 
therefore 32 distinct bit flags in a single integer variable. For more bits, the 
“unsigned long” type could be used (64-bit), and there is also the “long long” 
type (128-bit). 
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The above macros would need to be changed to use type casts to “unsigned 
long” rather than just “unsigned” for a 64-bit version. For even more bits, a 
data structure called a “bit vector” can be implemented as an array of unsigned 
integers, which generalizes the bit set idea. 

Bitwise Intrinsic Functions 

Intrinsic functions, or “builtin” functions, are special C++ functions that are 
specific to the compiler environment. For example, Microsoft Visual Studio and 
GCC have different builtins. Intrinsics are usually implemented in very efficient 
ways, often directly mapping to CPU instructions, so they can be very powerful 
optimizations. 

Some of the useful builtin functions for integer bitwise arithmetic are listed below. 
Most of these functions are for “int” or “unsigned int” (32-bit), but have 
other versions for long 64-bit or unsigned long 128-bit types. There isn’t 
usually a version for “short” 16-bit integers. 

Count Leading Zeros (CLZ): Various functions count the leading zeros, or 
similarly, the offset of the first set bit. This is scanning the bits from left-to-right 
and finding the most significant bit. One application of the CLZ intrinsic is a fast 
way to compute a truncated log2 of an integer, or similarly, computing the highest 
power-of-two in a number. 

• _BitScanReverse (Microsoft intrinsic <intrin.h>): Finds the most-
significant bit in a 32-bit integer. There’s also _BitScanReverse64. 

• clz: Count leading zeros (various versions); also sometimes called “nlz” 
for “number leading zeros”. 

• __lzcnt: Leading zeros count in Microsoft Windows intrinsics, 
use <intrin.h> for Microsoft Visual Studio C++. 

• __builtin_clz (count leading zeros): GCC function to count the 
number of leading prefix zeros in an unsigned integer. 

• _CountLeadingZeros: Microsoft <intrin.h> ARM intrinsics. 

For all you silicon addicts, here’s the CPU hardware instructions are underpin these 
intrinsics: 

• BSR: Bit Scan Reverse x86 assembler instruction. 

• LZCNT: x86 instruction for leading-zero count, similar to BSR. 
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Count Trailing Zeros (CTZ): Contrasting to the leading zero functions, these 
functions find the zeros on the right-hand-side of an integer. This is the least-
significant bit. 

• _BitScanForward (Microsoft intrinsic <intrin.h>): Finds the least-
significant bit set. Long int version is _BitScanForward64. 

• __builtin_ctz (count trailing zeros): GCC function counts zero bits 
on the right (least-significant bits). 

• ffs/ffsl: Find first set (least-significant bit). 

• __builtin_ffs (find first set): GCC function: find first set bit from the 
least significant bits (from the right bits). 

The related x86 CPU hardware instructions are: 

• BSF: Bit Scan Forward x86 assembler instruction. 

• TZCNT: x86 instruction for trailing-zero count, similar to BSF. 

If you’d rather code it yourself, there’s Brian Kernighan’s bit trick for LSB: bitwise-
and of n and n-1 (i.e., in C++ n&(n-1) finds the lowest set bit). But using the 
intrinsics should be faster. 

Popcount (Set Bits Count): The count of 1s in a number is known as the 
“popcount” (which is short for population count) and there are various intrinsics: 

• __builtin_popcount: GCC function to count the number of 1s in an 
unsigned integer. 

• BitOperations.PopCount: Microsoft intrinsic function for bitwise 
popcount. 

• __popcnt: AMD x86 popcount intrinsic using POPCNT x86 instruction 
(Microsoft platform) 

• _mm_popcnt_u32: Intel x86 popcount intrinsic using POPCNT x86 
instruction (Microsoft platform); use <intrin.h> on MSVS C++. 

• __builtin_parity: GCC function tracking bitwise binary parity 
(whether the number of 1s is odd or even). 

The x86 CPU hardware instruction is POPCNT, which computes the popcount 
faster than a hummingbird’s wings. 
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Example: Integer Popcount 

The “popcount” is short for “population count” of a binary number, and is the 
number of binary 1s in an integer number. This has applications such as quickly 
counting the number of elements in a bit set or bit vector. 

Bitwise arithmetic can be used to check for a '1' value in each bit of an integer. 
Usually an unsigned type is used (as below), but bit twiddling of signed integers is 
also possible. This is the slow version in C++ that simply loops through each bit, 
checking if it is set: 

   int aussie_popcount_basic(unsigned int x)  

   { 

        // Count number of 1s 

        const int bitcount = 8 * sizeof(x); 

        int ct = 0; 

        for (int i = 0; i < bitcount; i++) { 

            if (AUSSIE_ONE_BIT_SET(x, 1u << i)) ct++; 

        } 

        return ct; 

   } 

Kernighan Popcount Algorithm: A faster version is to use a bit trick found by 
Brian Kernighan, author of The C Programming Language. For all values of n, the 
previous number n-1 has one less bit set. So, if you do bitwise-AND of n and n-
1, it removes the rightmost bit that is 1 (i.e., least significant bit). Hence, you can 
use this to optimize popcount by only looping as many times as there are 1s in the 
number (rather than always doing 32 iterations). Here’s the new C++ code: 

   int aussie_popcount_kernighan_algorithm(unsigned int x)  

   { 

        // Count number of 1s with Kernighan bit trick 

        int ct = 0; 

        while (x != 0) { 

            x = x & (x - 1);  // Remove rightmost 1 bit 

            ct++; 

        } 

        return ct; 

   } 

Intrinsic Popcount Functions: The Kernighan method is faster, but far from 
optimal. To do it super-fast, we have to look at existing builtin function primitives.  
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For example, Microsoft intrinsics include “__popcnt” or “_mm_popcnt_u32” 
(in header file <intrin.h>), whereas GCC has a “__builtin_popcount” 
function, which count the number of 1s in an unsigned integer. On x86 CPUs, the 
underlying intrinsics should be using the x86 assembler instruction named POPCNT.  

Here is some example C++ code that works for Microsoft Visual Studio: 

    int aussie_popcount_intrinsics2(unsigned int x) 

    { 

        return __popcnt(x);  // Microsoft intrinsics 

    } 

Obviously, a faster version is to declare this one-line function as “inline” in a 
header file, or to convert to a C++ preprocessor macro, such as: 

    #define AUSSIE_POPCOUNT(x) (__popcnt((unsigned)(x))) 

Example: Bitwise Log2 on Integers 

Calculating the base-two logarithm of integers can be quite useful. There are various 
algorithms that use logarithms in AI. 

Let’s calculate the integer logarithm of an integer. This means we aren’t doing the 
proper fractional logarithm of a number, but we are truncating it down to the 
nearest integer. For example, log2(7) will be truncated to 2, rather than 2.807. 
Note that we’re assuming the input is unsigned numbers, since logarithms of 
negatives are undefined. Also, we have to decide how to handle zero, 
because log2(0) is undefined (or negative infinity if you prefer). 

A simple way to implement a truncated integer log2 function is to use floating-
point functions and type casts back to int: 

    int aussie_log2_integer_slow(unsigned int u)   

    { 

        // Slow float-to-int version 

        return (int)log2f(u); 

    } 

This works, but it’s inefficient to use floating-point arithmetic on integers. Surely 
there’s a faster way? 
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After some thoughts about binary bits, we notice that log2 of an integer is just the 
index position of the highest bit in a number. The log2 of 1 is 0, because the '1' is 
in position 0. The log2 of 2 (binary 10) is 1 because the leftmost 1 is in position 
1. The log2 of 4 (binary 100) is 2, where the 1 is in index 2. The number 7 is 
binary 111, so log2 is the position of the leftmost 1, which is position 2. 
So, log2(7) is the same as log2(4), but log2(8) is 3. 

There are numerous builtin bitwise functions that can find the leftmost set bit. With 
sudden insight, we note that we can use “CLZ” (count leading zeros) to compute 
how many prefix zeros there are before the leftmost 1 bit (i.e., counts the zeros up 
to the most-significant bit from the left). We can then compute the bit index 
position from the right in a 32-bit integer as “32-CLZ”. It’s on the right track, and 
a bit of testing shows that the formula to use is “32-CLZ-1”. 

Here’s some example code that uses this CLZ method to compute log2 of an 
integer. This works on Microsoft Visual Studio using the <intrin.h> header file 
to declare intrinsics. 

    int aussie_log2_integer_clz_intrinsic(unsigned int u)  

    { 

        // LOG2 using CLZ 

        int clz = __lzcnt(u);  // Count leading zeros 

        const int bits = 8 * sizeof(u); 

        return bits - clz - 1; 

    } 

And here’s the macro version for those who don’t trust compilers to inline properly: 

    #define AUSSIE_LOG2_LZCNT(u) \ 

     ((8*sizeof(unsigned)) - (__lzcnt((unsigned)(u))) - 1) 

And this is actually not optimal. We really should help the C++ optimizer by 
reordering this to move the “-1” subtraction operation next to the other constant, 
noting that “sizeof” is a compile-time constant expression in C++. Putting them 
together would make sure that the compiler correctly merges these operations using 
constant folding. On the x86 implementations, the CLZ builtin functions are 
presumably using the x86 LZCNT or BSR assembler instructions, which are both 
similar and fast. 

Bug alert! Note that you can’t use “ffs” (find first set bit) for this log2 method, 
because it gives you the offset of the least-significant set bit (i.e., the rightmost bit 
rather than the leftmost bit). The other x86 instructions of TZCNT (Trailing Zeros 
Count) and BSF (Bit Scan Forward) are also incorrect. 
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Example: Highest Integer Power-of-Two 

Another simple trick related to the log2 calculation is to truncate a number to its 
largest power-of-2. This is equivalent to the value of its leftmost bit in binary 
representation. 

For example, 8 (binary 1000) stays as 8, because it’s 2^3, but 7 (binary 111) 
reduces down to 4 (binary 100), which is 2^2. As with the truncated 
integer log2 calculation, this method focuses on computing the leftmost 1 bit, 
which is known as the Most-Significant Bit (MSB). 

Whereas the log2 calculation found the index position of that MSB, this power-
of-two calculation requires the value of the MSB. In other words, we need to find 
the bit that is the MSB, and then keep only that bit. A simple way to do this is to 
compute the log2 of the integer efficiently, and then left-shift a 1 by that many 
places (using unsigned type). The basic idea is: 

   int bitoffset = log2_integer_fast(i); 

   int highestpowerof2 = 1u << bitoffset; 

Note that this doesn’t handle cases like zero, so it still needs a bit of extra code 
polishing work. 

Integer Overflow and Underflow 

Integer arithmetic overflow and underflow have traditionally been ignored in C++ 
programs, mostly by assuming that operations won’t exceed the range of 32-bit 
integers. Most platforms don’t fail on integer overflow, and quietly continue, 
without even triggering a signal like SIGFPE (floating-point error). 

The absence of runtime warnings can potentially leave insidious bugs in your code, 
and is also an undefended attack vector for security. Also, perhaps ignoring 
overflow isn’t the best strategy. 

Integers have a fixed range of numbers that they can represent. For example, a 
signed 16-bit integer represents the relatively small range of -32,768 to +32,767, 
and an unsigned 16-bit number can be from 0 to 65,535. A 32-bit signed integer 
has a much bigger range from about negative 2 billion (–2,147,483,648) to 
about positive 2 billion (+2,147,483,647). For an unsigned 32-bit integer, 
there’s no negatives, and the range is from zero up to about 4 billion 
(+4,294,967,295).  
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Feel free to memorize those numbers, as you’ll be needing them at least once a 
decade. The ranges for 64-bit integers are massive numbers around 2^64, which is 
approximately decimal 10^19. 

If integer arithmetic on a data type falls outside the range supported by that integer 
type, then an overflow or underflow occurs. There are symbolic constants for the 
minimum and maximum numbers for many types are in the <limits.h> standard 
header file. 

• int — INT_MAX and INT_MIN 

• unsigned int — UINT_MAX and UINT_MIN 

The effect of integer overflow or underflow is platform-specific, but on most 
platforms, it is usually: nothing! It’s a silent insidious bug in many cases. For a signed 
integer, overflow quietly wraps around from positive to negative, and underflow 
does the reverse. 

Here’s an example of overflow of an int type: 

    int x = INT_MAX; 

    assert(x >= 0); 

    ++x;  // Overflow! 

    assert(x < 0); 

And this is underflow of int: 

    int x = INT_MIN; 

    assert(x < 0); 

    --x;  // Underflow! 

    assert(x > 0); 

Floating-point types can represent much larger magnitude numbers than integers. 
Hence, another way for an integer to overflow is in a conversion from floating-
point numbers. 

    float f = (float)INT_MAX * (float)INT_MAX;  // Fine! 

    int x = (float)f;  // Overflow! 

For an unsigned integer, the results are a little different, since negatives are not 
possible. Instead, overflow wraps around from a large number to zero, and 
underflow (going below zero) wraps around to the largest unsigned number. 
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Preventing Integer Arithmetic Overflow. There’s not really a good way to detect 
arithmetic overflow or underflow before it happens. Post-testing is easier. 

For example, GCC and Clang have some intrinsics, such as 
“__builtin_add_overflow” for addition, which use post-testing of the x86 
CPU overflow or carry flags for detecting integer overflow, and return a Boolean 
flag which you can use. The GCC documentation say it uses “conditional jump on 
overflow after addition” and “conditional jump on carry” for unsigned overflow. 
Here’s an example: 

   if (__builtin_add_overflow(x, y, &z)) { 

       // Overflow! 

   } 

The mainstream prevention strategy is simply to choose a big integer type (at least 
32-bit) and then hope that no outliers occur in your input data. Most programmers 
let the overflow occur and then check. Or rather, just between you and me, most 
programmers simply don’t even check at all! 

Technically, integer overflow is “undefined behavior” on C++, and it’s certainly 
non-portable, so you really should check. But most platforms handle it the same 
way, by quietly wrapping the integers around in two’s complement form. 

Increment overflow. For incrementing integers, you can do a pre-test like: 

    if (INT_MAX == x) { 

        // Overflow! 

    } 

    else { 

        x++;  // Safe increment 

    } 

Addition overflow. And here’s a version to pre-test addition of two positive 
integers for overflow: 

    if (x > INT_MAX - y ) {  // x + y > INT_MAX 

        // Overflow! 

    } 

    else { 

        x += y;  // Add safely 

    } 
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Multiplication overflow. The test for multiplication overflow is even worse 
because it uses division: 

    if (x > INT_MAX / y ) {  // x * y > INT_MAX 

        // Overflow! 

    } 

    else { 

        x *= y;  // Multiply safely 

    } 

Head in the sand approach. Unfortunately, pre-testing for overflow is massively 
inefficient, as shown above. Do you really want to do this for every addition or 
increment? Even post-testing for overflow isn’t much better. Overall, there’s good 
reason why most C++ programmers just skip it, and hope for the best. 

Overflow management. The alternative to ignoring the problem is to consider 
various different risk mitigation strategies for integer overflow: 

• Larger data types (e.g., long) for a larger range. 

• Use floating-point types instead. 

• Use unsigned type for non-negative variables (e.g., sizes, counts). 

• Use size_t for the unsigned variable type (it’s standardized). 

• Enable compiler runtime checks (when debugging/testing) 

• Range checking input numbers (e.g., model weights). 

• Post-testing the sign of arithmetic results. 

• GCC and Clang intrinsic functions with overflow testing. 

• The <stdckdint.h> header file in C23 (that’s the C standard, not 
C++23). 

• Safe integer class wrappers. 

Runtime overflow detection. Some C++ compilers provide limited support for 
runtime error checking of arithmetic. The x86 CPU has builtin overflow detection, 
with a quietly-set overflow flag and a carry flag, which some C++ compiler-writers 
have made use of. 

GCC has an “-ftrapv” option which elevates overflow errors (presumably by 
using post-checking). GCC has defined a number of C++ intrinsic functions which 
you can use to perform overflow-safe integer arithmetic, such as: 

• __builtin_add_overflow — addition 

• __builtin_mul_overflow — multiplication 
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Microsoft Visual Studio C++ provides the “/RTC” option, which stands for “Run-
Time Checks”, or there’s “Basic Runtime Checks” in the MSVS IDE Project 
Settings. However, these MSVS features don’t check much for arithmetic overflow, 
with a focus on stack frame checking and uninitialized variables. The closest is 
“/RTCc” to detect data type truncations at runtime. 

There’s also a runtime debugging tool that focuses on integer overflow and other 
oddities. It’s named “Undefined Behavior Sanitizer” or UBSAN for short. It works 
like Valgrind, by adding runtime instrumentation code. 

Safe integer classes. Currently there’s no standard safe integer types in C++, but 
adding them was unsuccessfully proposed in 2016. If you like a busy CPU, and what 
programmer doesn’t, you can replace all int variables with “safe integer” class 
objects, with many examples of such classes available on the Internet. They’re 
probably not as bad as I’ve implied, since C++ inlining should make the critical 
path quite short. 

Missing Operators: NAND, NOR, XNOR 

Note that there’s no simple operator for NOR, NAND or XNOR in C++. And 
you might need them, since neural networks uses these uncommon bitwise 
operations more than normal C++ coding. For example, XNOR is needed as the 
vector dot product operator for binarized bit vectors, such as in binary quantization 
and also XNOR neural networks. 

These missing operators can be easily simulated using two C++ bitwise operations, 
with a binary bitwise operation and the “~” bitwise two’s complement unary 
operator afterwards. 

    NAND(x,y) = ~(x & y) 

    NOR(x,y)  = ~(x | y) 

    XNOR(x,y) = ~(x ^ y) 

So, you can just code this as fast C++ macros, right? 

    #define NAND(x,y) ~(x & y)  // Bug alert! 

    #define NOR(x,y)  ~(x | y) 

    #define XNOR(x,y) ~(x ^ y) 

No, this is broken in about half a dozen ways.  
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To write macros correctly, you need to ensure there’s parentheses around the whole 
expression, and also around each parameter name, to avoid getting bitten by C++ 
macro expansion operator precedence problems. And these macros also don’t work 
correctly if you pass in a non-unsigned integer. 

Here’s some example C++ macros that work for 32-bits: 

    #define AUSSIE_BITWISE_NAND(x,y) \ 

      (~(((unsigned)(x)) & ((unsigned)(y)))) 

    #define AUSSIE_BITWISE_NOR(x,y)  \ 

      (~(((unsigned)(x)) | ((unsigned)(y)))) 

    #define AUSSIE_BITWISE_XNOR(x,y) \ 

      (~(((unsigned)(x)) ^ ((unsigned)(y)))) 

You could also declare these macros as “inline” functions if you prefer. Note 
that these macros have a lot of parentheses to avoid various insidious precedence 
errors, and they also are limited to 32-bit operations. For 64-bit, you’d need to create 
alternative “unsigned long” versions. 

These NAND/NOR/XNOR macros are convenient, but not very efficient since 
they perform two arithmetic operations. Single-operation versions are available in 
assembler if you really need them, accessible via C++ builtin intrinsic functions 
such as: 

• _kxnor — x86 intrinsic for XNOR bitwise operation. 

• KXNORW/KXNORB/KXNORQ/KXNORD — x86 assembler bitwise XNOR 
operations. 

• VPTESTNMB/VPTESTNMW/VPTESTNMD/VPTESTNMQ — x86 assembler 
bitwise NAND operations. 

Note for the sake of completeness that there are more weird bitwise operators that 
do different things on a pair of bits. There are four input combinations and 
therefore 16 possible binary operator functions. There are three C++ bitwise 
operators (AND/OR/XOR), plus the three extra ones coded above 
(NAND/NOR/XNOR), two trivial always-zero and always-one operations, two 
copy-operand functions, and six other ones that are equivalent to variations with 
negated operands (e.g., “x&~y” is one).  

I’m not sure why you needed to know that. 
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Bitwise AI Applications 

Bitwise operations are a well-known coding trick that has been applied to neural 
network optimization. Bitwise-shifts can be equivalent to multiplication and 
division, but faster. Other bitwise operators can also be used in various ways in 
inference algorithms. Some of the common uses of bitwise operators in AI engines 
include: 

• Arithmetic computation speedups: Bit tricks are used in optimizations 
of multiplication operations with bitshifts, and also faster approximate 
arithmetic methods. 

• Sign bit manipulation: Various optimizations are possible by direct 
bitwise operations on the sign bit of integers or floating-point numbers. 
For example, the RELU activation function tests for negatives, which are 
changed to zero, but positive values are unchanged. This can be 
implemented efficiently as a sign bit test. 

• Floating-point bit operations: The bits of the numeric representations 
of IEEE 754 floating-point numbers, or the Google bfloat16 type, 
include a sign bit, an exponent, and a mantissa. Normal bitwise arithmetic 
operators cannot be applied to floating-point numbers, because the C++ 
bitwise and bitshift operators only work on integer types. However, 
floating-point numbers are really just integers underneath, so there are 
various tricky ways that bitwise operators can be used on the underlying 
IEEE standard bit representations that are used by floating-point numbers. 
This is discussed in the next chapter on floating-point optimizations. 

• Look-up Tables: Algorithms that use table lookups for speed 
improvement typically involve bitwise shifts in computing the table offset. 

• Data structures: Some data structures used in optimization of neural 
networks that involve bits include hashing and Bloom filters. 

Bits of AI Research: Some of the advanced areas where bitwise optimizations 
have been used in neural network research include: 

• Power-of-two quantization (bitshift quantization): By quantizing 
weights to the nearest integer power-of-two, bitwise shifts can replace 
multiplication. 

• Bitserial Operations: Bitserial operations are bitwise operations on all of 
the bits of an integer or bit vector. For example, the “popcount” operation 
counts how many 1s are set in the bits of an unsigned integer. The bitserial 
operations can be useful in neural network inference for computing the 
vector dot products in binary quantization or 2-bit quantization. 
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• Advanced number system division: See dyadic numbers and dyadic 
quantization for an obscure number system involving power-of-two 
division, which can be implemented as bitwise right-shifting. 

• Low-bit integer quantization: When quantized to only a few bits, 
inference can use bitwise arithmetic and bitserial operations to replace 
multiply-accumulate. The main examples are binary quantization and 
ternary quantization, both of which avoid multiplication operations in 
favor of bitwise operations (or addition) and sign bit handling. 

• Shift-add networks: Multiply-and-add (or “multiply-accumulate”) can be 
replaced with bitshift-and-add. 

• Bit arithmetic neural networks. These are neural networks where the 
neurons operate as bitwise operations. For example, see Weightless Neural 
Networks (WNNs). 

• XNOR Networks: XNOR neural networks are similar to binarized 
networks. Their internal operations rely on the bitwise XNOR operation. 
The idea is that XNOR is actually an implementation of the multiplication 
operation on binary values. XNOR is an uncommonly used bitwise 
operation, and there’s no builtin C++ operator for binary XNOR. 
However, there is always hardware XNOR support, such as a 64-bit 
XNOR instruction in the x86 CPU instruction set. 

References on Bitwise Operations 

If I’ve whetted your appetite for bit fiddling magic, there’s plenty more: 

1. Sean Eron Anderson (2005), Bit Twiddling Hacks, Stanford 
University, https://graphics.stanford.edu/~seander/bithacks.html 

2. Ian Brayoni (2020), https://github.com/ianbrayoni/bithacks (Python 
code inspired by Sean Eron Anderson’s Bit Twiddling Hacks.) 

3. Henry S Warren (2012), Hacker’s Delight, 2nd Edition, Addison-Wesley 
Professional, https://www.amazon.com/Hackers-Delight-2nd-Henry-
Warren/dp/0321842685 Code: https://github.com/hcs0/Hackers-
Delight 

4. Antonio Gulli (2014), A Collection of Bit Programming Interview Questions solved 
in C++ Kindle Edition, https://www.amazon.com.au/Collection-
Programming-Interview-Questions-solved-ebook/dp/B00KIIDPUG/ 

5. Jörg Arndt (2010), Matters Computational: Ideas, Algorithms, Source 
Code, https://dl.acm.org/doi/10.5555/1941953, https://www.jjj.de/fxt/f
xtpage.html#fxtbook, 
Code: https://www.jjj.de/bitwizardry/bitwizardrypage.html 

6. Sigrid/Jasper Neuman (2023), Programming 
pages, http://programming.sirrida.de/ 

https://graphics.stanford.edu/~seander/bithacks.html
https://github.com/ianbrayoni/bithacks
https://www.amazon.com/Hackers-Delight-2nd-Henry-Warren/dp/0321842685
https://www.amazon.com/Hackers-Delight-2nd-Henry-Warren/dp/0321842685
https://github.com/hcs0/Hackers-Delight
https://github.com/hcs0/Hackers-Delight
https://www.amazon.com.au/Collection-Programming-Interview-Questions-solved-ebook/dp/B00KIIDPUG/
https://www.amazon.com.au/Collection-Programming-Interview-Questions-solved-ebook/dp/B00KIIDPUG/
https://dl.acm.org/doi/10.5555/1941953
https://www.jjj.de/fxt/fxtpage.html#fxtbook
https://www.jjj.de/fxt/fxtpage.html#fxtbook
https://www.jjj.de/bitwizardry/bitwizardrypage.html
http://programming.sirrida.de/
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7. Harold (2023), Bits, Math and Performance, Sep 
2023, http://bitmath.blogspot.com/ 

8. Stephan Brumme (2023), The bit twiddler, https://bits.stephan-
brumme.com/ 

9. Gurmeet Manku (2008), Fast Bit Counting, 5 Aug 
2008, https://gurmeet.net/puzzles/fast-bit-counting-routines/ 

http://bitmath.blogspot.com/
https://bits.stephan-brumme.com/
https://bits.stephan-brumme.com/
https://gurmeet.net/puzzles/fast-bit-counting-routines/
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41. Floating-Point Computations 

What are Floating-Point Numbers? 

Floating-point numbers are typically stored in 32 bits for single-precision C++ 
“float” types, and it’s actually a 32-bit integer behind the scenes. The main 
floating-point types that you already know from C++ programming are: 

• Single-precision floating-point — 32-bit float (FP32) 

• Double-precision floating-point — 64-bit double (FP64) 

The smaller 16-bit floating-point numbers that are never used in everyday C++ 
coding, but are important for AI, include: 

• Half-precision IEEE type — 16-bit “short float” (FP16) 

• Half-precision Bfloat16 type — 16-bit “Brain float” (BF16) 

If only there was really a “short float” type in C++. The BF16 type is the non-
IEEE 16-bit float version from Google Brain. Note that there is new standardized 
support for these 16-bit types in C++23. 

Which type of floating-point number should you use? That’s when things get tricky, 
because there are many wrinkles in the choice between 32-bit and 16-bit floating-
point. It’s not always clear which floating-point size is the best to use. FP32 is the 
most common size used in basic Transformer inference, but FP16 is a good choice 
for quantization of models, because they are compressed to half the size and retain 
good accuracy. And BF16 has been very effective in terms of GPU-accelerated 
algorithms. 

Some hardware accelerators support different formats and sizes for their parallel 
operations. And there are various software problems with portably coding 16-bit 
floating-point data types in C++, along with variable hardware support for 16-bit 
operations across platforms. 
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Less importantly, there are also some other floating-point sizes, both bigger and 
smaller: 

• Quarter-precision type — 8-bit floating-point (FP8) 

• Quadruple-precision type — 128-bit “quad” floating-point (FP128) 

FP8 is mainly seen in research papers, and hasn’t really caught on for quantization 
(8-bit integers are typically used instead). The bigger sizes FP64 and FP128 aren’t 
really needed to make your model work accurately, so their significant extra cost in 
speed and size isn’t worthwhile for only a small perplexity gain in most use cases. 

Bit Representations of Floating-Point 

Standardized bit patterns are used to represent floating-point numbers in a kind of 
scientific notation. There are three types of bits: 

• Sign bit 

• Exponent bits 

• Mantissa bits 

Firstly, there’s one bit for the sign, indicating whether the whole number is positive 
or negative. Then the remaining bits are split up between the “exponent” (i.e., the 
“power”), and the “mantissa” (also called the “digits” or the “significand” or the 
“fraction”). In a standard 32-bit “float” type used in AI, there is: 

• 1 sign bit 

• 8 exponent bits 

• 23 mantissa bits 

How does that even make a number? Well, it’s like scientific notation, if you are 
familiar with that. The exponent is the power and the mantissa is the digits. 

Let’s pretend computers use decimal digits. If it were in base 10 storage, the decimal 
number 1234 would be stored as: 

• “0” for the sign bit — because non-negative. 

• “3” in the exponent — the power is 10^3=1000. 

• “1234” as the mantissa — the digits make the fraction “1.234”. 

This would represent +1.234x10^3 (which hopefully equals 1234). That’s how 
it would work for a decimal version. 
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But, as you know, silicon beasts are not decimal. A floating-point number is actually 
stored in binary, in a kind of base-two “binary scientific notation” numbering 
scheme. So, conceptually, 1234 would be stored as a power-of-two exponent that 
represents the largest power-of-two, which would be 1024, because 2^10=1024, 
so the exponent has to store power “10” (ten), which is 1010 in binary. And 
the 1234 would be converted to whatever the heck 1234/1024 is when you 
represent that in binary 0’s and 1's, and remove the decimal point (which is 
implicitly “floating,” you see?). 

It’s more complicated than this, of course. That’s what standards are for! The 
exponent bits are actually stored with an “offset” number (also called a “bias”), 
which differs by the size of the exponent bits. And there also some special bit 
patterns for particular numbers, such as zero or “NaN” (not-a-number). 

Clear as mud? Don’t you wish someone could go back in time and invent a base-
10 computer? 

Standardized Bit Representations 

There’s nothing magical about the choices of how many exponent versus mantissa 
bits. In the early days, there were many variations, but then they were mostly 
standardized by the IEEE 754 standard. 

32-bit Floating-Point Numbers: The most common type of floating-point is 32-
bits, such as the C++ “float” type. Other than the sign bit, there are usually 31 
bits to split between the two other types, and the standard method is: 

• Standard FP32 (IEEE754). Usually a “float” in C++, or “single 
precision” number. Standard 32-bit floating-point is represented in binary 
as: 1 sign bit, 8 exponent bits, and 23 mantissa bits (plus an implied prefix 
'1' mantissa bit that isn’t actually stored, so it’s really 24 bits of mantissa 
values). The exponent is stored with offset 127. 

16-bit floating-point Numbers: With the “half” float types, there are 16 bits. 
There are a few common representations of floating-point numbers in different 
numbers of bits.  

The main ones are: 

• Half-precision (FP16). This is the standard 16-bit floating-point number, 
also sometimes called “float16”. Annoyingly, there no standard “short 
float” or other widely used predefined type in C++, although the C++23 
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standard adds one, so this may be changing soon. The most common 
IEEE754-standardized version of FP16 type uses 1 sign bit, 5 exponent 
bits, and 10 stored mantissa bits (plus implicit mantissa bit makes 11 bits). 
The exponent is stored with offset 15. 

• Bfloat16 (brain float 16 or BF16): This is a different 16-bit floating-point 
numeric format, originally proposed by the Google Brain division, 
specifically for use in AI applications. Bfloat16 has 1 sign bit, 8 
exponent bits and offset 127 (like FP32), and 8 mantissa bits (7 stored, 1 
implicit). It is like FP32 but with the two lowermost bytes just thrown away, 
so conversion between bfloat16 and FP32 is simpler than converting 
from FP32 to FP16. 

8-bit Floating-Point (FP8). The use of FP8 mainly appears in quantization 
research papers, but its usage is increasing within industry. There is usually 1 sign 
bit, 4 exponent bits, and 3 mantissa bits (which makes 4 bits with an implied extra 
mantissa bit). The other type of FP8 is 1 sign bit, 5 exponent bits, and 2 stored 
mantissa bits (3 bits total). Interestingly, the NVIDIA H100 GPU supports both of 
these FP8 formats. 

FP16 Problems in C++ 

I already mentioned how there’s not a standard half-precision type in C++, 
although that is fixable in the future, once compilers have implemented the C++23 
standard. Here are some of the attempts at a 16-bit type: 

• __fp16 — only supported by ARM architecture. 

• _Float16 — not portably supported. 

• short float — doesn’t seem to exist (I’m just wishful-thinking!). 

• std::float16_t — defined in the C++23 standard. 

• std::bfloat16_t — defined in the C++23 standard. 

So, as of writing, if you want to code a 16-bit float in a portable way with C++, 
there’s an ugly hack: short int. 

A less fixable obstacle is that converting between FP32 and FP16 is not easy 
because their exponent bit sizes are different. So, it’s fiddly to code, and not very 
efficient. 

The alternative idea is to use “bfloat16” (BF16), which is the upper-most two 
bytes of FP32. Converting is just a bitshift 16 places or playing with bytes, so it’s 
faster than FP16. 
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However, BF16 isn’t high precision. With 8 mantissa bits (7 stored, 1 implicit), that’s 
only about 3 decimal digits, because 8/3.3=3, and 3.3 is log2(10), in case you 
were wondering. But it’s not much worse than FP16, which is only about 4 decimal 
digits using 11 binary mantissa bits. 

Representing Zero 

The sign bit, exponent, and mantissa can represent a lot of numbers, but not zero. 
We cannot just set all the mantissa bits to zero, because that’s not zero, which is 
rather strange. 

There’s an implicit extra “1” bit so all the mantissa bits clear isn’t 0.0000, 
it’s 1.0000. It always starts with a “1” digit and there’s literally no way to 
represent 0.0000. 

Also, the exponent can represent -127 to +128, but setting the exponent to 0 also 
isn’t zero, because 2^0 is 1. And 2^-127 is very small and does get us very close 
to zero, but it’s also not zero. With sudden horrifying insight, we realize: 

There’s no way to represent zero! 

The solution is that the IEEE 754 standard designers decided to treat all bits zero 
as being really zero. All bits zero in the exponent is 0, but then subtracting 
the 127 offset, means that it is -127 (the smallest number). So, if we clear all the 
exponent and mantissa bits to zeros, the number should be 1.0x2^-127, but we 
can all pretend it’s actually zero. Then we can do some pretend coding, ahem, I 
mean microcoding, so that all our Floating-Point Units (FPUs) pretend it’s zero, too. 

Negative zero. Weirdly, there are two zeros: normal zero and negative zero. The 
IEEE 754 standard allows two different bit patterns to mean zero, depending on 
the sign bit. If we clear all the exponent and mantissa to zero, then the sign bit zero 
means zero, but the sign bit set to “1” means “negative zero”. 

I’m not really sure what negative zero even means! But sometimes when you work 
with floats, a 0.000 number will get printed with a “-” in front of it. Maybe it’s 
negative zero, or maybe a tiny negative with hidden digits at the 15th decimal place. 

Fortunately, most of the arithmetic operations treat negative zero the same as zero. 
The C++ compiler handles it automatically. Adding negative zero does nothing, 
and multiplying by negative zero is also zero. But one of the gotcha’s if you’re being 
tricky with the bits of a 32-bit floating-point number, by pretending it’s a 32-bit 
integer: testing for zero isn’t one integer comparison, it’s two! 
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Representing Special Numbers 

We’ve already discussed how zero is handled specially, and has a wonderful 
dichotomy. The full list of special floating-point numbers is: 

• Zero 

• Negative zero 

• +Inf (positive infinity) 

• -Inf (negative infinity) 

• NaN (Not a Number) 

• Denormalized numbers (subnormal numbers) 

Whereas zero is represented by the exponent being all 0s, the special 
numbers Inf and NaN are represented by the exponent with all 1s. So, this means 
that the huge number 2^+128 is not actually represented, but reserved for these 
special values. And honestly, that’s fine, because if 2^+128 isn’t infinity, then I 
don’t know what it is. 

Infinity: Inf is represented by all 1s in the exponent, but all 0s in the mantissa. 
And if the sign bit is 1, then it’s -Inf (negative infinity). 

Not-a-Number: NaN also has all 1s for the exponent, but any other pattern of the 
mantissa bits means NaN. This means that there are many versions of NaN, for all 
variations of the mantissa bits, except when all mantissa bits are 0 (which 
means Inf). Also, if the sign bit is set, then the same patterns are also NaN (another 
kind of “negative NaN”, but that distinction is rarely used). 

Denormalized numbers: Apparently, the designers of the floating-point 
standards think there’s a “huge” difference between 2^-127 and zero. So, they 
decided to “smooth” it out a little by using some special numbers called 
“denormalized numbers” (also called “subnormal numbers”). 

The standard does this by getting rid of the “implicit” mantissa bit. For one special 
exponent value, all 0s, the standard changes the meaning to consider the implicit 
hidden mantissa bit to be a leading 0, rather than a leading 1. 

Hence, the mantissa can represent fractions less than 1.0, such as 0.1101 rather 
than only 1.1101 (in binary). The special exponent with all 0s therefore never 
represents -127, but represents the special value zero (or negative zero) if all the 
mantissa bits are 0s, or a tiny denormalized number if any of the mantissa bits are 
set.  
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And even though the exponent with all 0s should represent -127, we pretend that 
it is -126, one less, for the denormalized numbers, for “smoothness” reasons that 
I leave as an exercise to the reader, mainly because I don’t understand it. Note that 
denormalized numbers can also be tiny negatives if the sign bit is set. 

Denormalized numbers are all very, very tiny, being less than 2^-126, so this 
feature of floating-point standardization is more useful for high-precision scientific 
calculations at NASA or SpaceX, rather than for most applications. In fact, here’s 
the news about denormalized numbers in most coding: 

We don’t use denormalized numbers. 

In fact, we hate them, because they make our FPU run slow. So, really, the slowness 
of our floating-point code is the fault of the FPU hardware engineers, as we’ve long 
suspected. Fortunately, there’s a way to turn denormalized numbers off and run 
faster, which is discussed below. 

To summarize and/or to further confuse things, the exponent has two special cases: 
all 0s and all 1s. If the exponent bits are all 0s, the number is either zero (or negative 
zero) or a denormalized number (a tiny positive or negative). If the exponent bits 
are all 1s, then the number is Inf or NaN (or negative Inf/NaN). 

Testing for Special Values: The C++ standard has a number of fast routines to 
test a floating-point number. Some of the useful ones in <cmath> include: 

• std::isinf() 

• std::isnan() 

• std::isnormal() 

• std::isfinite() 

For more general analysis of floats, std::fpclassify() in <cmath> returns a 
code that matches special enum values:  

    FP_INFINITE, FP_NAN, FP_NORMAL, FP_SUBNORMAL, FP_ZERO 

Unfortunately, it’s hard to distinguish positive and negative infinity, or to detect 
negative zero using these functions. You’ll need to add a call to the 
“std::signbit” function (since C++11 for float arguments or C++23 
for double), which returns true if a floating-point number has the sign bit on. 
There also a “std::copysign” function to copy the sign from one float to 
another, which can be used for sign bit manipulations. Alternatively, define your 
own bitwise macro tricks for these inspections. 
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Underflow and Overflow 

Underflow is when a tiny floating-point number becomes so small that we can only 
represent it as zero. This can be a very tiny positive or negative number. Note that 
a negative number with a huge magnitude (near negative infinity) isn’t underflow; 
that’s actually negative overflow. Underflow refers to tiny fractions. 

Generally, underflow isn’t a problem for most code, because a number that low 
isn’t going to affect the results. Similarly, I don’t think we need to worry much about 
subnormal/denormalized tiny numbers either. If a probability is 2^-127 (or 2^-
126 for denormalized), well, it might as well be zero anyway. 

If we’re using Bfloat16 for 16-bit processing, it still has 8 bit exponents, so the 
lowest value is almost the same number (about 2^-127). If we’ve quantized the 
network to FP16 (also 16-bit but with a 5-bit exponent), then the lowest probability 
we can represent is 2^-31, which is also a tiny probability. 

Generally speaking, applications don’t tend to worry about underflow in floating-
point. If a floating-point calculation underflows, it should just go harmlessly to zero. 
More concerning would be integer underflow, which is a different issue of large 
negatives wrapping around to positives. Floating-point underflow is better behaved. 

Overflow is when a number gets so large that it cannot be represented in floating-
point. Note that there are two types of overflow: positive overflow and negative 
overflow. 

The exponent is the problem for overflow. When the number is larger than the 
highest exponent power, then it’s either a very large positive or a very large-
magnitude negative number.  

For an 8-bit exponent, that means 2^+127 (because +128 is reserved for the 
special Inf/NaN numbers). For a 5-bit exponent in FP16, this means 2^+31, 
which is, coincidentally, also a good salary to request at your next performance 
review. 

Overflow can be a problem, but usually only in the low-bit processing code where 
arithmetic computations can sometimes go too high. When overflow occurs, it 
could become a special floating-point number (NaN or Inf), or an integer number 
might toggle over to negative (e.g., if integer-only-arithmetic quantized). 
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FTZ and DAZ CPU Modes 

In many CPUs, the need to handle overflow, underflow and denormalized values 
is a cause of inefficiency. The CPU can do floating-point computations faster if it 
can ignore those situations. This would be in violation of the IEEE 754 standard, 
but sometimes you have to sacrifice greatness for speed. 

There are two commonly used modifications to CPUs that speed up floating-point 
arithmetic, by ignoring underflow and tiny numbers: 

Flush-To-Zero (FTZ). This mode means that when the results are 
“subnormal” they are “flushed” to zero instead of calculating the correct 
“denormalized” result. Since these denormalized numbers are tiny, this 
isn’t a concern in most code. 

Denormalized-Are-Zero (DAZ). This is similar to FTZ, but allows 
treating inputs that are some type of denormalized floating-point as a zero 
input. 

Both these modes, FTZ and DAZ, are only relevant to very tiny numbers, well 
below the resolution that most applications need to worry about, so you can totally 
enable them, provided we can figure out how to do so. CPUs with support for the 
FTZ and DAZ modes include x86 CPUs and ARM Cortex cores, and likely other 
processors. Google TPU doesn’t support FTZ/DAZ because it operates 
on bfloat16 floating-point numbers. 

Enabling FTZ and DAZ. Finding details on how to enable FTZ and DAZ is quite 
hard! For command-line options, it seems to be “-ftz” on Linux/Mac or 
“/Qftz” on Windows. To control these modes dynamically in C++ code, you need 
to modify the MXCSR x86-64 CPU control register at runtime to set (or clear) the 
bits corresponding to FTZ and DAZ. Some of the primitives available to do so via 
GCC intrinsics include: 

• __builtin_ia32_ldmxcsr 

• __builtin_ia32_stmxcsr 

• _mm_getcsr 

• _mm_setcsr 

In MSVS, there are preprocessor macros for FTZ in <xmmintrin.h> and for 
DAZ in <pmmintrin.h> header files. These control the FTZ and DAZ bits in 
the MXCSR, which is a CPU register with flags to control the CPU and the FPU.  
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The C++ snippet to enable these modes looks like: 

    #include <xmmintrin.h> 

    #include <pmmintrin.h> 

 

    void aussie_float_enable_FTZ_DAZ(bool ftz, bool daz) 

    { 

      if (ftz) {    // FTZ mode 

        _MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON); 

      } 

      else { 

        _MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_OFF); 

      } 

 

      if (daz) {    // DAZ mode 

        _MM_SET_DENORMALS_ZERO_MODE(_MM_DENORMALS_ZERO_ON); 

      } 

      else { 

        _MM_SET_DENORMALS_ZERO_MODE(_MM_DENORMALS_ZERO_OFF); 

      } 

    } 

These intrinsics for FTZ and DAZ are dynamic C++ calls. You can also disable 
these modes in C++, or switch back-and-forth between them dynamically. The 
MXCSR values are per-thread, so these modes must be set at the start of every new 
thread. 

Negative Zero 

Floating-point representations have two zeros: positive zero (the usual “0.0f” one) 
and negative zero (“-0.0f”). Note that there’s no negative zero in integers, but 
only in floating-point types, because integers use two’s complement in C++. 

Usually, you don’t have to worry about negative zero float values, because all of the 
floating-point operations treat zero and negative zero as equal. Negative zero is not 
less than positive zero, but is equal instead. For example, the “==” and “!=” 
operators should correctly handle both zeros as the same, and testing “f==0.0f” 
will succeed for zero and negative zero. 

Normal C++ operations on float types will automatically handle negative zero 
for you, such as “<” will treat the two zeros are equal, not less-than. This happens 
at the cost of some inefficiency. 
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Detecting Negative Zero. Testing for negative zero is not easy. Unfortunately, 
you cannot use the std::fpclassify function because it returns FP_ZERO for 
both positive and negative zero. Here are some fast macros for 32-bit floats that 
look at the bits by pretending it’s an unsigned 32-bit integer: 

    #define AUSSIE_FLOAT_TO_UINT(f)  (*(unsigned int*)&f) 

    #define AUSSIE_FLOAT_IS_POSITIVE_ZERO(f) \ 

        (((AUSSIE_FLOAT_TO_UINT(f) )) == 0)  // All 0s 

    #define AUSSIE_FLOAT_IS_NEGATIVE_ZERO(f)  \  

        (((AUSSIE_FLOAT_TO_UINT(f) )) == (1u<<31)) // Sign bit 

Note that these macros only work for float variables, not constants, because the 
address-of “&” operator gets a compilation error for floating-point constants 
(e.g., 0.0f or -0.0f). Also, these only work for 32-bit float types, and 
comparable macros are needed for 64-bit double or 128-bit long double types. 

Pitfall: Bitwise tricks on negative zero. There are some pitfalls with negative 
zero if you are trying to subvert the normal floating-point number representations 
and do bitwise operations on them (as I just did above!). 

For example, if you’re doing bitwise tests on a float, you may still need to test for 
two values of zero, such as using one or both of the above zero testing macros. 

For magnitude comparisons of float types via their underlying bits, there’s also a 
problem. Whereas positive zero is all-bits-zero and will equal integer zero or 
unsigned integer zero, negative zero has the uppermost bit set (the sign bit), so it 
will be a negative integer or a very large unsigned number. Hence, negative zero will 
sort as less than positive zero if using signed integer tests, or will sort as massively 
greater than many numbers if using unsigned integers for testing. 

The problem with negative zero also means that doing any bitwise comparisons will 
fail. You cannot just compare the underlying integers for equality against each other, 
nor can you use byte-wise testing. For example, using memcmp for equality testing 
a float vector will occasionally fail for float values where positive zero 
compares against negative zero, leading to insidious bugs. 

Optimization by Suppressing Negative Zero. Since negative zero introduces an 
inefficiency into basic float operations (e.g., == or != with 0.0), can we block it 
for a speedup?  

Are there any settings that fix the CPU or the compiler to ignore negative zero? 
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The FTZ and DAZ modes are mainly for subnormal numbers, not negative zero. 
I’m not aware of any hardware CPU modes specifically for disallowing skipping 
negative zeros, and I wonder whether they would actually be a de-optimization 
anyway, by forcing the FPU to explicitly check for negative zeros. Apparently, FTZ 
might help avoid negative zero in computations, but I’m not sure it’s 100% of cases. 
There is a GCC flag “-ffast-math” which disables the production of negative 
zero in software. 

Negative Zero. Can we speed up the floating-point computations of our code by 
blocking all floating-point negative zeros? Then the FPU or GPU can assume 
there’s only one type of zero, and run faster. We could either run in a negative-zero-
disabled mode, or use our own bitwise test for floating point zero as all-bits-zero 
(i.e., using the unsigned integer trick). 

What about zero values at runtime? Can we guarantee that it never contains a 
negative zero, and thereby speed up analysis? 

Getting to the Bits in C++ 

The basic 32-bit floating-point number in C++ is a float with a size of 4 bytes. 
How can you manipulate the bits in a floating-point value, using the 32-
bit float type? You cannot use any of the C++ bitwise operators on floating-
point numbers, as they only work for integers. 

The trick is to convert it to an unsigned integer (32-bit) with the same bits, and then 
use the integer bitwise operations. The obvious way to convert 
a float to unsigned is casting: 

    float f = 3.14f; 

    unsigned int u = (unsigned)f;  // Fail! 

Nope. That doesn’t get to the bits, because it does a proper conversion between 
floating-point numbers and integers, which is usually what you want when you 
aren’t thinking about bits (i.e., all normal people). 

To get to the bits in C++, we have to trick the compiler into thinking that it’s 
already got an unsigned integer with pointer type casts: 

    unsigned int u = *(unsigned int*)(&f);  // Tricky! 
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That’s a bit old-school casting. Here’s the modern way with reinterpret_cast: 

    unsigned int u = *reinterpret_cast<unsigned int*>(&f); 

Once we have the bits, then we can twiddle the bits of our unsigned integer to our 
heart’s content. When we’re finished, we can do the same trick in reverse to re-
create a floating-point number: 

    f = *(float *)(&u);   // Floating again... 

    f = *reinterpret_cast<float*> (&u); // Trendy version 

And here’s a timely reminder that it’s important to use an “unsigned” type in 
C++ for the bit faking code, because the “>>” right-shift operator has undefined 
behavior on negatives. 

Other Methods: Type casts aren’t the only way in C++. There’s also a trick 
involving “union” structures, and you can also directly copy the bits to a differently 
typed variable using “memcpy” or “bcopy”. 

It seems to me that this type cast trick should be the fastest way, because a good 
compiler should convert the address-of, reinterpret_cast and indirection 
sequence into a simple variable copy, especially with the “reinterpret_cast” 
hint. However, I haven’t actually benchmarked the speed of the different methods. 

Pitfalls and Portability 

Bitwise manipulation of float data is not the most portable code in the world. Let’s 
examine some of the possible pitfalls in using these techniques. 

Bitwise zero testing: If you’ve gone to the trouble to access the bits of a floating-
point number, you might as well use them. Obviously, testing for “0.0” is a 
common requirement, so let’s make it faster: 

    #define FLOAT_IS_ZERO(f) \ 

     ((*reinterpret_cast<unsigned int*>(&f)) == 0u) // Bug! 

Oops! We forgot about negative zero. There are two zeros in floating-point, 
depending on the sign bit, and it’s hard to test it efficiently with bitwise operations 
(e.g., mask the sign bit or shift left first). 
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Strict anti-aliasing rule. An important point about all this is that most of it is 
platform-dependent, and officially “undefined behavior”. Some of it is standardized 
by IEEE 754, but many variations are possible. Another issue is that there’s a “strict 
anti-aliasing rule” that specifies that many of these tricks are officially non-standard 
methods. Accessing a floating-point number as if it’s an unsigned number is a 
technical violation of this rule. The “reinterpret_cast” method is probably 
less likely to run afoul of this problem, but it’s still not guaranteed. 

Anyway, the union trick and the use of memcpy don’t really strike me as being 
particularly more portable, although memcpy might be less likely to be optimized 
wrongly by a compiler making wrong assumptions. Some additional risk mitigations 
are warranted, such as adding a lot of unit tests of even the most basic arithmetic 
operations. However, you’re still not officially covered against an over-zealous 
optimizer that might rely on there being no aliases allowed. 

Byte sizes. Another much simpler portability issue is checking the byte sizes of 
data types, which can vary across platforms. Most of this bit-fiddling stuff relies on 
particular 16-bit and 32-bit layouts. It doesn’t hurt to add some self-tests to your 
code so you don’t get bitten on a different platform, or even by a different set of 
compiler options: 

   aussie_assert(sizeof(int) == 4); 

   aussie_assert(sizeof(short int) == 2); 

   aussie_assert(sizeof(float) == 4); 

   aussie_assert(sizeof(unsigned int) == 4); 

Also note that for this to work well, both types must be the same size. So, this 
would be a useful code portability check if it worked: 

   #if sizeof(float) != sizeof(unsigned int) // Fails! 

   #error Big blue bug 

   #endif 

This macro preprocessor trick doesn’t work because sizeof isn’t allowed in a 
preprocessor expression, because the preprocessing phase precedes the syntax 
analysis. A better version uses a “static_assert” statement, which does 
compile-time checking in a more powerful way. 

  static_assert(sizeof(float)==sizeof(unsigned), "Bug!"); 
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Floating-Point Builtin Functions 

The alternative to directly accessing the bits as an unsigned integer is to use the 
existing C++ functions. There are various existing functions for bitwise 
manipulation of floating-point numbers, in two categories: standard C++ library 
functions and compiler-specific intrinsics. 

C++ has standard functions for the manipulation of floating-point numbers, and 
their bitwise representations. 

• std::signbit — Portably test the sign bit of a floating-point number. 

• std::copysign — Portably copies the sign bit from one float, 
merging it with the value of another (i.e., another’s exponent and mantissa). 

There are also various compiler-specific “intrinsics” or “builtins” to manipulate 
floating-point numbers. For the Microsoft Visual Studio C++ platform, these are 
in <intrin.h> and there are also versions for GCC and other compilers. 

• frexp — Get the mantissa and exponent. 

• ldexp — Bitshifting by an integer shift-count. 

• scalbn — Also integer bitshift on a float. 

• logb — Extracts the exponent. 

• ilogb — Extracts the exponent to integer. 

• modf — Splits into whole and fractional parts. 

• fma — Fused multiply add on float (Microsoft intrinsic) 

• remainder — Get fractional part of floating-point (Microsoft intrinsic) 

• _fcvt — Low-level convert float to string (Microsoft intrinsic) 

For many of the listed functions, there are additional versions for different floating-
point data types, such as float, double and long double. For example, 
“frexp” will split a double type into its significand (fractional part) and exponent 
integer, but there’s also “frexpf” for 32-bit float types, and “frexpl” for long 
double types. 

Floating-Point Bit Tricks for AI 

Once you’ve got the bits into an unsigned integer, what can you do? 

Assuming you’re willing to throw the standards documents to the curb, you can do 
quite a lot. The bits can be directly manipulated in non-obvious ways to speed up 
some types of floating-point arithmetic with integer bitwise arithmetic on the 
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underlying bits. Examples of floating-point bit manipulations used to optimize 
neural networks include: 

• Sign bit flipping: this can be used for fast non-multiplication binarized 
networks with floating-point computations. 

• Exponent bit manipulations: bitshifting float values in logarithmic 
quantization can be implemented as integer addition on the exponent bits 
of a float. 

• Add-as-integer networks: This method simply adds the underlying bit 
representations together as integers, to create a type of multiplication-free 
neural network. Weirdly, this simple trick implements an approximate 
multiplication algorithm known as Mitchell’s algorithm. 

• Fast log2 computation on float types using the exponent bits directly. 

The first step is to extract the bit patterns. Let’s assume it’s a standard 32-bit float 
type with 1 sign bit, 8 exponent bits, and 23 stored mantissa bits. You can get the 
different bits: 

   int signbit = (u >> 31); 

   int exponent = ( (u >> 23) & 255 );  // Fail! 

   int mantissa = ( u & ((1 << 23) - 1 )); 

Nice try, but that’s only 2 out of 3. The exponent is wrong here! The bits are correct, 
but it’s not the right number. We have to subtract the “offset” (or “bias”) of the 
exponent, which is 127 for an 8-bit exponent. This is correct: 

   int exponent = ( (u >> 23) & 255 ) - 127; // Correct! 

Note that the sign bit and mantissa can be stored as unsigned (i.e., positive or 
zero), but the exponent must be a signed integer, even though it is extracted from 
the bits of an unsigned int. For a fraction like decimal 0.25 (i.e., a quarter), this is 
equal to 2^-2, so the exponent is -2. In an 8-bit exponent, the range of the 
exponent is -128 to +127. Note that the sign bit in a float specifies the overall 
sign of the whole number, and is not the sign of the exponent. 

Here are some macro versions of the above bit extractions: 

    #define AUSSIE_FLOAT_SIGN(f) \ 

      ((*(unsigned *)&(f)) >> 31u)  // Leftmost bit 

    #define AUSSIE_FLOAT_EXPONENT(f) \ 

      ((int)(((((*(unsigned*)&(f)))>> 23u) & 255) - 127))  

    #define AUSSIE_FLOAT_MANTISSA(f) \ 

      ((*(unsigned*)&(f)) & 0x007fffffu) // Right 23 bits 
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Note that these macros don’t work for constants, but give a compilation error such 
as “l-value required”. This is because of the “&” address-of operator trick being 
used needs a variable, not a constant. I don’t see an easy way around it for bitwise 
trickery. 

If you dislike bits for some strange reason, here’s a simple way to define the sign 
bit macro using the “<” operator, which also works on constants: 

    #define AUSSIE_FLOAT_SIGN(f) ((f) < 0.0f) // Sign test 

Example: Add-as-int Approximate Multiply 

The add-as-integer method suggested by Mogami (2020) simply adds the integer bit 
representation of two floating-point variables, as if they are integers. It’s quite 
surprising that this has any useful meaning, but it’s actually a type of approximate 
multiplication called Mitchell’s algorithm. Here’s what the C++ code looks like on 
32-bit float types: 

    float aussie_add_as_int_mogami(float f1, float f2) 

    { 

        // Add as integer Mogami(2020) 

        int c = *(int*)&(f1)+*(int*)&(f2)-0x3f800000;  

        return *(float*)&c; 

    } 

The magic number 0x3f800000 is (obviously) equal to “127<<23” and its 
purpose is to fix up the offset of the exponent. Otherwise, there are two offsets 
with value 127 combined. (Is there a faster way? It’s annoying to waste a whole 
addition operation on what’s just an adjustment.) 

Note that this algorithm is one exceptional case where we don’t want to 
use unsigned integer types when tweaking bit representations. This trick needs 
the temporary variable of type “int” and the pointers to be “int*” so that it can 
correctly handle the sign bits of the two floating-point numbers. 

This add-as-integer algorithm is not restricted to 32-bit float data. It should also 
work for 16-bit floating-point numbers in both float16 and bfloat16 formats, 
provided the magic number is changed to a different bitshift count and an added 
offset of 15 (not 127) for 5-bit exponents. 
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Example: Float Bitshift via Integer Addition 

This is another surprising bitwise trick on floating-point numbers. You cannot 
perform the standard bitshift operators on float types in C++, so you cannot 
easily speed up floating-point multiplication via bitshifts in the same way as for 
integers. 

Bitshifts are a fast way of doing an integer multiplication by a power-of-two (e.g., 
“x<<1” is the same as “x*2”). Note that it also doesn’t work to convert 
the float to its unsigned int bit version and shift it using integer bitshift 
operators. 

On some platforms, there are some builtin special functions such 
as ldexp and scalbn for doing bitshifting on float data. The ldexp function 
accepts an integer power, and then bitshifts a floating-point number by this many 
places. The ldexp function is for double types, ldexpf is for float, 
and ldexpl is for long double types. The scalbn set of functions appears to 
be almost identical to ldexp functions. There is also a reverse function “frexp” 
which extracts the significant (fraction) and the power-of-two for a floating-point 
argument. 

Although we can’t bitshift floating-pointer values, there is an intriguing alternative 
optimization using integer arithmetic directly: addition. The suggestion in the 
DenseShift paper (Li et al., 2023) is to simply add the shift count to the exponent 
bits using integer addition. 

Here’s some example C++ code that works for 32-bit floating-point numbers: 

    float aussie_float_bitshift_add_int(float f1, int bits)    

    { 

        // Bitshift float by adding int to exponent bits 

        // FP32 = 1 sign bit, 8 exponent, 23 mantissa 

        unsigned int u = *(unsigned int*)&f1; // Get the bits 

        if (u == 0) return f1;  // special case, don’t change 

        u += (bits << 23);  // Add shift count to exponent 

        return *(float*)&u; // Convert back to float 

    } 

How does it work? Well, it makes a certain kind of sense. The exponent in a 
floating-point representation is a power-of-two, and we are bitshifting, which is 
increasing the number by a power-of-two. Hence, we can increase the power-of-
two by adding 1 to the exponent, and it also works for adding by more than 1. 
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Note that this code also works for bitshift of a negative count (e.g., bitshift of -1 
subtracts from the exponent and thereby halves the number) or zero (unchanged). 
However, this exponent-addition trick can overflow if the resulting number 
overflows or underflows the exponent range (e.g., -128 to +127). 

This method has thereby improved the runtime performance of floating-point 
multiplication by changing it to integer addition. The idea works provided we are 
multiplying by a power-of-two, which is done in logarithmic quantization. 
However, it’s a little tricky in that special formats like zero (and NaN) are 
problematic for this algorithm. I had to add the test “u==0” which slows things 
down (maybe there’s a better way?). Also, this approach can theoretically overflow 
the exponent bits, messing up the sign bit, but that’s only if the float is very big 
or very tiny. Checking for all these wrinkles will slow down the code. 

Example: Log2 Floating-Point is Exponent 

The log2 function for float types is a non-linear function that is quite expensive 
to compute. We already computed log2 of an integer with low-level bit fiddling 
methods based on a count-leading-zeros algorithm in the bitwise operations 
chapter. There’s also a different bitwise trick for log2 of floating-point numbers. 
This method computes the truncated integer version of the log2 algorithm (e.g., 
for use in logarithmic power-of-two quantization). There’s a very easy way: 

    The base-2 logarithm is the exponent! 

It’s sitting right there, already calculated, hidden in plain sight amongst the 32 bits 
of your friendly float variables. Here’s some C++ code to extract it: 

    int ilog2_exponent(float f)  // Log2 for 32-bit float 

    { 

        unsigned int u = *(unsigned int*)&f; 

        int iexp = ((u >> 23) & 255);  // 8-bit exponent 

        iexp -= 127;  // Remove the “offset” 

        return iexp; 

    } 

Alternatively, for greater portability and probably extra speed, too, there are some 
standardized builtin C++ functions available across various platforms (including 
Linux and Microsoft) that can extract the exponent: frexp, ldexp, ilogb, 
and scalbn, are some that come to mind. 
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42. Arithmetic Optimizations 

Types of Arithmetic Optimizations 

There are two basic ways that arithmetic computations can be sped up whilst 
retaining the same results: 

• Single operator improvements 

• Expression-level optimizations (multiple operators) 

As an example of single operator optimizations, consider replacing the 
multiplication operator. Alternative forms of arithmetic include bitwise shifting or 
addition. The ways to do fewer multiplications tend to involve higher-level 
algorithmic changes to the model, such as pruning or quantization. 

Some of the methods of speeding up arithmetic come from the theory of compiler 
optimization (e.g., strength reduction, sub-expression elimination). Hence, the 
compiler will often automatically perform these types of optimizations (when the 
optimizer is invoked). To some extent, this makes these transformations redundant.  

Even so, good programming practice is to avoid situations where these 
optimizations are needed on a large scale. The compiler does not look at the 
program as a whole and can miss some “obvious” optimizations. 

Operator Strength Reduction 

Individual operations in C++ can be optimized in several ways. The general term 
is “strength reduction” because a stronger operator with high computation 
complexity is “reduced” to an equivalent operator that is simpler and faster.  

Strength reduction is a technique used in automatic optimization by compilers, but 
can also be used by programmers to improve algorithms. 
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The main “strong” operations that we’re trying to avoid are: 

• Floating-point arithmetic (even addition) 

• Multiplication 

• Division 

• Remainder (% operator) 

• Math functions (e.g., sqrtf or expf) 

Strength reduction has particular relevance to AI engines because the main 
bottleneck is floating-point multiplication. Many of the research papers on 
speedups are about replacing the floating-point multiplication operation with 
something simpler, like addition or integer arithmetic. 

Some of the general approaches in regard to strength reduction include: 

• Bitwise operations (e.g., bitshifts can replace multiplication) 

• Multiplication is slower than addition. 

• Avoid division and modulo/remainder operators (they’re the worst!) 

• Use integer arithmetic rather than floating-point (where possible) 

• Use float single-precision arithmetic, not double-precision. 

• Approximate arithmetic (e.g., for math functions) 

Bitshift for multiplication: The canonical example that everybody knows is that 
shift operators can replace multiplications by a power of two. But it’s only for 
integers, not for floating-point numbers. Here’s a dummy example of integer 
multiplication; 

   y = x * 4; 

This can be more efficiently coded as a left bitshift: 

   y = x << 2; 

Bug alert! If you’re making this code change, you’re likely to introduce some bugs. 
The “<<” and “*” operators have different precedence levels, so make sure you 
add more parentheses. Also, consider whether you need to use “unsigned” type 
when switching to a bitwise operator. 
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Right shift for division: The use of bitshifting works for division, too (but only 
for unsigned): 

   y = x / 4;   

   y = x >> 2u;  // faster 

Bitwise remainder calculations: The arithmetic modulus operator (remainder) 
can also be optimized for power-of-two operands (but only on integers): 

   y = x % 512;    // Remainder (mod) 

   y = x & 511u;   // Bitwise-AND 

And here’s another one with integer relative comparisons versus bitwise-and, 
although this one might not necessarily be faster: 

   if (x >= 512) 

   if (x & ~511u)  // Bitwise-AND of complement (unsigned) 

Avoiding multiplication: There are some simple cases even with the most basic 
operators that have multiple options: 

    y = x * 2; 

    y = x + x;   // Addition 

    y = x << 1;  // Shift 

Automatic Strength Reduction: In theory, C++ compilers could know what will 
be faster on its platform, and perform all these optimizations automatically when 
compiling the program. The optimizers probably do some of them, but they cannot 
do them all. 

Intrinsic Functions: Other more advanced types of strength reduction involve 
avoiding costly primitives, such as mathematical functions. For example, there are 
bitwise arithmetic tricks to quickly compute the integer log2 function. 

GPU Strength Reduction: One final note is that when doing AI coding work, we 
aren’t as concerned about which C++ operator works the best. The more important 
concern is which operation is most efficient in the GPU or other non-GPU 
hardware acceleration (e.g., AVX-512 on CPU). 

Finally, note that these optimizations are local optimizations, and the same ideas 
apply globally to the entire AI engine architecture. There’s been a lot of research 
trying to change all of the arithmetic in model inference from multiplication to 
bitshifting, such as using addition or bitshifts. 
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Avoid % Remainder Operations 

One common use of the remainder operator is the use of modulo arithmetic, such 
as the wraparound array implementation of a queue abstract data type, where the 
value of a variable is cyclically counted from 0 up to N-1, and then back to 0. The 
most common idiom for coding this is: 

    x = (x + 1) % N; 

However, the % operator is expensive, and in this case it is not really needed. The 
following code sequence performs the same task more efficiently: 

    if (x == N - 1) 

        x = 0; 

    else 

        x++; 

This can also be written more concisely, but not necessarily more efficiently, as an 
expression with the “?:” ternary operator: 

    (x == N - 1) ? (x = 0) : (x++); 

Another example of a clever avoidance of % is when the operand is similar to the 
usual byte or word size. For example, consider this remainder: 

    x % 256 

This can be more efficiently coded with bitwise-and using: 

    x & 255 

But this can be even more efficiently coded as a type cast: 

    (unsigned char) x 

The conversion to this “unsigned char” type will be efficiently implemented by 
grabbing a byte out of a word. Unfortunately, this method is not portable to all 
obscure systems, as it relies on an “overflow” being handled harmlessly, and on 
“unsigned char” always containing 8 bits. 
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Reciprocal Multiplication 

Division is a slow operation, whether in a CPU or a GPU. Multiplication is often 
significantly faster than division, and in some cases a division can be replaced by a 
multiplication using the reciprocal. A case in point is floating-point division by a 
constant. For example, consider the division: 

    f = g / 100.0; 

This can be replaced by the multiplication: 

    f = g * 0.01;  // Reciprocal 

If the divisor is a symbolic constant, it is possible to replace the symbolic constant 
with a hard-coded constant (or another symbolic constant). However, it is more 
convenient to replace the constant with an explicit reciprocal calculation. For 
example, consider the code: 

    f = g / DIVISOR; 

This can be rewritten as: 

    f = g * (1.0 / DIVISOR); 

The compiler should calculate the reciprocal using “constant folding” at compile-
time. Note that the brackets around the division expression are probably not strictly 
necessary because optimizers know about associativity, but are certainly helpful to 
make life easier for the optimizer (and these poor critters need a break every now 
and then). 

If the divisor is a complex expression, the compiler might not automate the efficient 
use of a reciprocal. Here’s the slow version of division by a scale factor: 

    v[i] /= sqrtf(3.14159f); 

Here’s the faster way using the reciprocal of the constant: 

    v[i] *= 1.0f / sqrtf(3.14159f); 
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And we really should pre-calculate this constant using constant folding and 
a static variable: 

    static const float scalefactor = 1.0f / sqrtf(3.14159f); 

    v[i] *= scalefactor; 

Integer Arithmetic 

Real arithmetic is slow compared to integer arithmetic. Hence, it is favorable to 
replace real arithmetic by equivalent integer arithmetic. Real arithmetic can be 
replaced by integer arithmetic when only limited precision is required (e.g., 1-3 
decimal places). To do this, work in integer units that are 10, 100 or 1000 times 
larger (for 1, 2 and 3 decimal places) so that the decimal places appear as the lower 
digits of the integers. 

To convert the integer into its true integer and fractional parts is quite simple. To 
get at the fractional part, calculate the number modulo 10, 100 or 1000 (using 
the % operator). To get the true integer part, divide by 10 or 100 or 1000 — 
remember that integer division truncates the fractional part. 

A good example is: when working in dollars and cents, do calculations in terms of 
cents (an integer). Then when printing it out, convert to dollars and cents using: 

    cents = value % 100; 

    dollars = value / 100; 

However, note that this is now using two of the worst integer operators: remainder 
and division. The hierarchy of cost for integer operations is similar to floating-point: 
integer addition and subtraction are faster than multiplication, but division is still 
the worst, even for integers. 

There appears little to be done to replace integer division with multiplication. 
Multiplying by the reciprocal will change an integer operation to a floating-point 
operation and will probably increase execution time. A power-of-two integer 
division could be done via the “>>” right bitshift operator, provided that it cannot 
be negative and uses an unsigned type. 
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Expression Transformations 

Expression-level types of arithmetic improvements on an expression with multiple 
operations include: 

• Constant folding (compile-time precomputation of constant expressions) 

• Common subexpression elimination (only computing things once in 
expressions) 

• Algebraic identities in computations 

• Type consistency (avoid conversions) 

Common Subexpression Elimination 

Common subexpression elimination (CSE) is avoiding the recomputation of the 
same expression twice. There are many cases where the same computation appears 
multiple times in a single expression, or across the control flow of a program. 
Compiler optimizers attempt to automatically detect such cases and reuse the first 
computation. 

In a complicated expression, there are often repeated sub-expressions. These are 
inefficient as they require the computer to calculate the same value twice or more. 
To save time, calculate the sub-expression first and store it in a temporary variable. 
Then replace the sub-expression with the temporary variable. For example: 

    x = (i * i) + (i * i); 

With a temporary variable, this becomes: 

    temp = i * i; 

    x = temp + temp; 

Note that this attempt to be concise is incorrect: 

    x = (temp = i * i) + temp; // Bug 

This may fail because of its reliance on the order of evaluation of the + operator. It 
is not actually guaranteed in C++ that the + operator is evaluated left-to-right. 

Common sub-expressions do not occur only in single expressions. It often happens 
that a program computes the same thing in subsequent statements.  
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For example, consider the code sequence: 

    if (x > y && x > 10) { 

        // ... 

    } 

    if (x > y && y > 10) { 

        // ... 

    } 

The Boolean condition “x>y” need be calculated only once: 

    temp = (x > y); 

    if (temp && x>10) { 

        // ... 

    } 

    if (temp && y>10) { 

        // ... 

    } 

Algebraic Identities 

The calculations in some complicated expressions can be reduced by transforming 
the expression into another equivalent form. The aim when using algebraic 
identities is to group the operations differently, to reduce the total number of 
arithmetic operations. Care must be taken to ensure that the new expression has 
equivalent meaning. For example, the short-circuiting of the logical operators can 
cause differences. Some useful algebraic identities are: 

    2 * x == x + x == x << 1 

    a * x + a * y == a * (x + y) 

    -x + -y == -(x + y) 

There are also Boolean algebraic identities that can be used to perform fewer logical 
operations: 

    (a && b) || (a && c) == a && (b || c) 

    (a || b) && (a || c) == a || (b && c) 

    !a && !b == !(a || b) 

    !a || !b == !(a && b) 
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Float Type Conversions 

Hidden unnecessary C++ type conversions are a common source of extra 
inefficiency. The main type in a Transformer is usually “float” (32-bit), rather 
than “double” (64-bit). Avoid unnecessary type conversion code in two ways: 

• Don’t mix float and double 

• Don’t mix float and int 

The use of float and int tends to be something professional C++ programmers 
are aware of, after having been burned a few times, and doesn’t occur that often by 
accident. 

However, inadvertently mixing float and double is difficult to avoid, and 
sneaks into your code all the time. For example, here’s some C++ code that looks 
perfectly correct: 

    float scalefactor = sqrt(2.0) * 3.14159; 

You know this isn’t AI code because it doesn’t have 27 decimal places for pi, which 
we’ve memorized by rote. AI engines don’t really need anywhere near that much 
precision, but it looks good for the boss. 

The above code is also a small slug, because it may be unnecessarily using 
“double” size arithmetic, although the compiler might fix it with constant folding 
(but emit a warning anyway). Here’s the corrected code: 

    float scalefactor = sqrtf(2.0f) * 3.14159f; 

Note that this example shows there are two places where an “f” suffix is needed to 
signify that float arithmetic is required: 

• Numeric constants (i.e., “2.0f” specifying a 32-bit float, rather than 
“2.0”, which is a 64-bit double constant). 

• Standard C++ functions (i.e., the “sqrtf” function returns float rather 
than “sqrt” returning double). 

Without the suffix “f”, in both cases the default is double type constants 
and double arithmetic functions. A lot of C++ compilers will warn about these 
type conversions losing precision, so if you aim for warning-free compilation as a 
quality goal, you’ll also fix most of these wasteful hidden type conversions. 
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43. Compile-Time Optimizations 

C++ Compile-time Techniques 

Compile-time processing is the optimal way to run a program. All the work is done 
by the compiler and none by your program. There are literally zero instructions 
executed on the CPU at runtime, whether it’s doing training or inference. It will be 
blindingly fast for your users. 

If only all code could be like that! 

The reality is that programmers are still needed and that code still needs to run 
(sigh!). But to make it faster, there are lots of ways to have more computation done 
by the compiler, long before it ever goes near a user. 

The C++ programming language has numerous features that help perform work at 
compile-time. These include ways to explicitly control what goes to the compiler, 
or to give more information to the compiler so that its optimizer can do good work 
on your behalf. Some of the various C++ language features to consider include: 

• Conditional compilation — #if/#ifdef statements 

• inline functions 

• Templates — these expand at compile-time 

• Symbolic constants — const or #define 

• Function-like macros — #define with parameters 

• Constant hints — constexpr, if constexpr, etc. 

• Global and static variable initializations 

• static data members — fixed data in C++ classes 

• Type traits — compile-time type testing 

• Restricted pointers — ignore aliasing risks 

But when we’re doing AI, there’s another compile-time data structure to consider: 
the whole LLM model itself. 
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C++ Optimizers 

Every C++ compiler has optimization built into the code generation phase. 
Typically, there are ways to specify that a higher degree of code optimization should 
be performed. Methods to control the settings include: 

• Command-line arguments (e.g., “-O1” or “/O1”) 

• Configuration settings (e.g., Project Settings in the MSVS IDE) 

• #pragma preprocessor directives 

Take note of the meaning of the optimizer settings. For example, on MSVS the 
setting “/O1” optimizes for memory, not speed! Also, don’t be like me and assume 
that the defaults are going to be what you want.  

Looking at the MSVS IDE optimizer settings in my AUSSIE project file, I found: 

• “Optimization” was “disabled” by default. 

• “Enable Intrinsic Functions” was “No” by default. Why not? 

• “Favor Size or Speed” was “neither” by default. Come on, why is there no 
“both” option? 

• “Inline Function Expansion” was “default” at least. 

When to enable the optimizer? Should you run the optimizer at every build? At 
what level? 

Note that your policy should not be to turn up the optimization to maximum level 
just before you ship your code to users, because your code can change in a very bad 
way.  

Don’t assume that turning the optimizer mode up to super-crunch is always an easy 
win, as optimization can trigger latent glitches in your code by reorganizing memory 
or reordering instructions. 

What does the optimizer do? In order to optimize code, it’s important to know 
what sorts of optimizations your compiler is doing automatically. Compilers have 
been doing optimizations for literally 50 years, and the state-of-the-art is quite 
amazing, with an extensive body of research theory.  
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Some of the main automated compiler optimizations include: 

• Constant folding/propagation 

• Constant expression evaluation 

• Common subexpression elimination 

• Redundant assignment removal 

• Strength reduction 

• Algebraic optimizations 

• Register allocation 

• Loop optimizations (e.g., unrolling) 

• Auto-vectorization 

If you make simple changes to your code with some of the obvious things above, 
it’s not going to give you a speedup. The compiler has already done it for you. 

However, there’s a limit to what compilers can do. They certainly can’t make 
architectural changes, and there’s also many mid-level algorithmic changes that 
cannot be automated. 

Function calls inside expressions are a good example of code changes that might 
need to be manually optimized. When the compiler sees a function call used in 
arithmetic, it isn’t always able to know what that function is going to do, and has to 
be conservative by avoiding possibly incorrect optimizations. 

Floating-Point Optimizer Options 

Some C++ compilers have optimizations that you can use to speed up your 
Floating-Point Unit (FPU). Some of the options for GCC include: 

• “-ffast-math” option — This option is a broad enabler of multiple 
floating-point speedups, such as -fno-math-errno and -ffinite-
math-only. It also disables negative zero. 

• “-fno-math-errno” option — This allows the standard library math 
functions such as sqrt to run faster and also be more amenable to 
parallelization, simply by allowing them to never set the global “errno” 
variable. The use of errno was once a great way to track error codes, but 
it’s also a blocker for thread-safety and parallelization. And let’s be frank: 
you weren’t ever checking errno anyway, so turn it off! 

• “-ffinite-math-only” — This mode allows GCC math library 
functions to skip any checks for Inf or NaN, which can make them 
marginally faster. 
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Microsoft Visual Studio C++ also has its own set of FPU options: 

• “Floating-Point Model” settings in a Project’s Property Pages under 
“C++” for “Code Generation” has options “/fp:precise”, 
“/fp:strict”, or “/fp:fast” 

• “Enable Floating-Point Exceptions” can be turned off if you like. 

People Helping Parsers 

The humble C++ compiler needs your attention. Hat in hand, the compiler is sitting 
there saying “I am but a poor, helpless lexer, without even a single neural network. 
Please help me.” Hence, please consider donating your time to help a poor 
struggling compiler in your neighborhood. 

There is a long history of the C++ compiler needing “hints” about optimization 
from the programmer. The early C++ language in the 1990s had a “register” 
specifier that hinted to the compiler that a variable was going to be highly used, and 
the compiler should optimize it by putting the variable in a CPU register. The 
“register” keyword has since been deprecated in C++17, which indicates that 
compiler register allocation algorithms no longer benefit from human help. 

Some of the other longstanding C++ keywords that can be used for efficiency-
related purposes include: 

• inline 

• const 

• static 

And with the evolving C++ standards, there’s a whole new set of directives that are 
hints to the compiler about how to optimize: 

• constexpr 

• constinit 

• consteval 

• reinterpret_cast 

• restricted pointers (“restrict”) 

• [[likely]] and [[unlikely]] path attributes 

The constexpr and related directives help the compiler do “constant folding” 
and “constant propagation” to compute as much as possible at compile-time, 
thereby avoiding any runtime cost for lots of code.  
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In fact, the idea is extended to its logical asymptote, whereby you can declare an 
entire function as “constexpr” and then expect the poor compiler to interpret 
the whole mess at compile-time. Pity the overworked compiler designers. 

The “restrict” pointer declarations help the compiler with advanced 
optimizations like loop unrolling and vectorization by telling the compiler to ignore 
potential “aliasing” of pointer variables, allowing much more powerful code 
transformations on loops. The restricted pointer optimizations have now been 
formalized in C++23, but non-standard versions have long existed. The possible 
benefit is that restricted pointer specifications might help the compiler do auto-
vectorization of loops into parallel hardware-assisted code. 

How much do these help? It’s rather unclear, and the compiler is free to simply 
ignore these hints. Compilers already did a lot of constant propagation 
optimizations before the “constexpr” directives came along, so presumably 
compiler designers have upped their game even further now. 

Inline Functions 

Placing the keyword “inline” before any function declarations makes that 
function instantly disappear in a puff of smoke. Well, sort of. It gives your C++ 
compiler the hint to optimize the code by putting the function’s body there instead 
of the function call. This is faster, but means there are many copies of the function’s 
statements, so it increases code size. 

Which functions should you inline? General wisdom is to do inlining for these types 
of C++ functions: 

• Short functions (esp. single-statement functions) 

• Getters and setters in a class 

• Frequently called functions at the bottom of the call hierarchy. 

The inline specifier is just a hint. Your compiler is free to completely ignore you. 
In fact, this choice will probably disappear in a few years, as compilers become 
better than humans at choosing which functions to inline. 

If you want to force the compiler to inline, use preprocessor macros. However, 
there’s a whole minefield of problems in function-like macros. For example, you 
need to add parentheses around the whole expression and also around each 
parameter’s appearance in the replacement text. Hence, inline functions are 
much safer than macros. 
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The value of inline functions is not only from avoiding function call overhead. 
The merging of the statements into the caller’s code also allows many other 
optimizations to be applied there as follow-up transformations. Constants can be 
propagated further through the inlined statements, which is similar to constexpr, 
but the range of optimizations is much larger with inline. 

GCC has some additional C++ language features related to inlining. There is the 
“always_inline” function attribute which says to always inline this function, 
and the “flatten” attribute which says to inline every call to other functions 
inside this function. There is also the “gnu_inline” attribute that prevents 
creation of a non-inlined function body. 

inline function limitations 

The inline specifier is wonderful when it works. A very important point to note 
about inline functions is that the inline specifier, by itself, is not enough to 
guarantee that inline code will be generated. The other requirement is that the 
compiler must know the function body code, where the function is called. 

Hence, an inline keyword in a function prototype declaration is not enough. The 
executable statements inside the function’s definition (i.e., the function body) must 
be available to the C++ compiler. Otherwise, how is the compiler to know what 
inline code to expand a function call into? I guess in theory the C++ compiler could 
maintain a huge database of all the functions in your source code, or scan through 
all the CPP files to find it, and that would be amazing, but we’re not there yet. In 
practice, the compiler will only inline functions where it has seen the function body 
within the current C++ source file or an included header file.  

This requirement imposes two restrictions on the use of inline functions: 

1. Member functions declared as inline should include the 
function body inside the same header file as the class declaration. 
This can be achieved by placing the function body of a member 
function inside the class declaration. For a more readable style 
when there are many inline member functions, the class 
declaration can declare the function prototypes, and then provide 
the inline function definitions immediately after it, in the same 
header file. This restriction ensures that whenever the class 
declaration is included as a header file, the member function body 
is available for inlining. 

2.  
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2. Non-member inline functions must be defined before they are used 
within a source file, preferably by placing the inline functions in a header 
file. Placing inline functions at the top of a source file allows the inlining 
of any function calls later in the same source file, but calls to the functions 
from a different source file cannot be inlined by the compiler unless 
the inline function definition is placed in a header file. 

Non-inlined functions 

Some functions declared as inline will not be expanded into inline code by the 
compiler, simply because they are too complicated for the compiler to handle. In 
this case, the inline specifier is ignored and the function is treated like any other 
function. The sophistication of the inline code generation depends on the compiler 
implementor. 

Even if a compiler could theoretically inline a function, the compiler is sometimes 
still forced to generate a “real” function. There are various possible reasons for this: 

1. The name of an inline function is used as a pointer-to-function 
constant. 

2. A call to the inline function from within another source file. 

3. virtual member functions. 

When an inline function is called from a source file, where the function body 
has not been made available, the compiler generates a real function call (simply 
because it cannot inline the function). Hence, the real function must exist and be 
linked like any other function. Fortunately, the placement of inline functions in 
header files as discussed above will avoid this for any function the compiler decides 
to inline. 

Inline Variables 

Since C++17 you can define a variable as “inline”. What does this do? 

Basically, it’s not really much of a speedup, but makes it easier to manage global 
constants, global variables, or static data members in C++ classes. You can 
declare these variables as “inline” in a header file, with an initializer: 

    inline int g_x = 3; 
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Then you can with wild abandon include that header file all over the place without 
any problems whatsoever. The C++ linker is required to: 

• Merge all of them into one variable at link-time. 

• Guarantee that it’s initialized as specified. 

• Have the same address for that variable everywhere. 

I find this addition to C++ somewhat humorous because it fixes up a huge mess 
that’s existed since old K&R C code, and I’ve battled against it many times trying 
to get my program linked. I’m not going to irritate myself by repeating all the quirks, 
but it was always messy whether you had a global variable that was extern or non-
extern, initialized or non-initialized, in a header file or a non-header file. So, if 
you ask me, the way that “extern” variable declarations “worked” was always 
broken, and now it’s fixed in C++17. Hooray! (A bit late for me.) 

Overall, allowing “inline” for variables is helpful to efficiency because you can 
be guaranteed about constants, static members, or global variables at compile-
time. And it’s always nice to get your program to link. 

Constant Specifiers 

The “const” keyword means that something is constant, and cannot be modified. 
It is helpful for efficiency, but its role is also to help detect programming errors, 
where code accidentally attempts to modify a constant variable or object. There are 
multiple places where “const” can be used. 

• Symbolic constants 

• const variables 

• const objects 

• const function parameters (i.e., “const&” idiom) 

• const member functions (read-only) 

But don’t get me started on “const correctness.” I’ve seen too many dawns 
fighting with compilers about const. Anyway, let’s move on, and assume we 
love const. 

Basic const symbols. Symbolic constants can be declared as a representation of a 
numeric value or other type data (instead of using #define symbols): 

    const float pi = 3.14; 
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Set-once variables with const. Variables can be made constant via “const”, 
which is effectively the same as a symbolic constant, except that the initializer need 
not be a compile-time constant. It is a “set-only-once” variable. The C++ compiler 
ensures that const variables cannot be modified, once they are initialized. 

    const int scale_factor = get_config("scale"); 

    const int primes[] = { 2, 3, 5, 7, 11, 13, 17 }; 

Function parameters and const. The const specifier can ensure that function 
parameters are not modified, especially for arrays passed by reference. const on a 
scalar parameter type such as int is not as useful, only ensuring that the code inside 
the function doesn’t modify the parameter (which isn’t really a problem anyway). 
However, the idiom of “const&” to specify a const reference as a function 
parameter allows constant pass-by-reference of object parameters, which is 
extremely important for C++ efficiency. 

Instantiate-only objects with const. Class objects can be declared 
as const variables. When the variable is a const object, it can be instantiated via 
a constructor, but cannot be modified thereafter. 

    const Complex cfactor(3.14, 1.0); 

Member functions declared const. Class member functions can be declared by 
adding the keyword “const” immediately after the function parameter list: 

    int MyVector::count() const; 

The C++ compiler blocks a const member function from modifying data 
members, although it can still change “static” data members. For const object 
variables, the C++ compiler ensures that any calls to non-const member 
functions are disallowed. 

Non-member functions. Note that a non-member function cannot be const. 
The actions of a friend function or other non-class function are controlled by 
using const on the parameters, rather than the whole function itself. 

Beyond const. Newer C++ features have generalized and improved some of the 
uses of const. The “constexpr” specifier is more powerful in terms of allowing 
compile-time optimizations, as are its trickier derivatives “constinit” and 
“consteval.” The newer use of “inline” on a variable (yes, a variable, not a 
function, supported since C++17), can be helpful for safely sharing constants 
across multiple files. 
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Constant Expressions Specifier 

The constexpr keyword is an optimization hint for the compiler that’s more 
powerful than “const.” Whereas const only guarantees that something won’t 
change, constexpr is a guarantee by the human that something can be evaluated 
at compile-time. 

The compiler should use the constexpr hint to try to propagate constant values 
throughout the evaluation of expressions and function calls, producing an overall 
speedup. However, if the compiler doesn’t have the capability to do the level of 
compile-time optimization required, or if the human has told the machine a bald-
faced lie, there’s no penalty and the code just runs like it never had 
a constexpr specifier. 

There’s not a whole lot of difference between const and constexpr if you use 
it only for named constants: 

    const float PI = 3.14f; 

    constexpr float PI = 3.14f;  // Same same 

constexpr functions 

The real power is when you use constexpr for functions. 

    const float SQRTPI = sqrtf(3.14f);   // Works? 

    constexpr float SQRTPI = sqrtf(3.14f); // Works? 

Oh, dear! I just tested this code snippet, and the const version works, whereas 
the constexpr version fails to compile, which is the opposite of what I was 
expecting. According to an informed source that was trained on Internet 
scrapings, sqrtf is not going to be declared as a “constexpr” function until 
C++26. Alas, by then all C++ programmers will have been replaced by robots, so 
feel free to skip this section. 

The apparently futuristic idea is that sqrtf should have a “constexpr” keyword 
in its declaration, because the function return value can be computed at compile-
time if you pass it a constant argument. In other words, the compiler can evaluate 
“sqrtf(3.14f)” at compile-time. Hence, the whole function should be declared 
“constexpr” in the standard library header file.  
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The const version is also probably not evaluating the sqrtf function at compile-
time, but just calling it dynamically whenever the const variable is first initialized 
(this non-compile-time initialization is allowed for const variables, provided you 
don’t later attempt to change its value). 

Anyway, you can already declare your own function with the “constexpr” 
specifier. 

    constexpr int twice(int x) 

    { 

        return x + x; 

    } 

constexpr functions vs inline functions 

A lot of the same value in terms of optimization can be had by making a function 
just inline rather than constexpr. Note that you can use both, but 
officially constexpr for functions implies inline on the function as well. 

Is constexpr any better than just inline? If you pass a constant argument to a 
small inline function, then the expansion of the function body will trigger 
various constant propagation optimizations, effectively evaluating most of it at 
compile-time, which is almost the same as constexpr. 

constexpr is supposed to be more formal in guaranteeing that the result of a 
function is a compile-time constant, and the compiler is honor-bound to do 
“compile-time function evaluation” to get the constant return value. Also, 
a constexpr function is more officially usable as a compile-time constant, so that 
you can use an expression with a constexpr function’s return value in various 
places where C++ needs a constant (e.g., an array size declaration, 
some template situations, etc.). 

An inline function is also supposed to be optimized at run-time for non-constant 
arguments, and constexpr functions are implicitly inline functions. The code 
generation requirements of dynamic inlining are often more advanced that constant 
expression evaluation. 

Also, the limitations on how a constexpr function can be structured are a lot 
easier to code than the unrestricted nature of an inline function body. However, 
as a practical matter, the compile-time evaluation of expressions and the code 
generation for inlined expressions have a lot of overlap, so I expect C++ compilers 
will mostly try to do both on every type of function. 
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The inline keyword also serves a weird secondary purpose, by guaranteeing that 
there’s only one copy of the function. This means we can include header files with 
the full definition of that inline function anywhere we like, without getting a 
compiler error at link-time about multiple definitions. But this isn’t a performance 
optimization, and the linker feature of inline is almost the opposite of what we 
want in making a function inline, because we don’t want a real function to be 
called at all. 

if constexpr statements 

There is an alternative usage of constexpr in terms of “if” statement conditions 
(since C++17): 

   if constexpr(cond) 

This new syntax tags the condition as being amenable to computation at compile-
time. Hence, the compiler should optimize the if statement to a constant value, 
and it can then determine at compile-time which branch should be executed. So, 
there is a double speedup from: 

(a) the condition computation is removed at run-time, and 

(b) code size reduction from unexecuted “dead code” being removed. 

In fact, this determines at compile-time which code block will be parsed, so there 
are cases where you can avoid a compile-time error in templates by wrapping it 
inside an “if constexpr” check. This can be useful in compile-time situations 
such as template expansion, where you can prevent some expressions from being 
compiled, and also code bloat can be reduced. 

constinit variables 

The constinit specifier is like a hybrid between: 

• consteval and  

• static  

The constinit specifier declares a variable that is static, with lifetime scope, 
that is initialized at compile-time. 
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A variable declared as constinit must be initialized, and cannot be modified (like 
“const”). However, the initializer needn’t be a “constant expression” although it 
must be able to be calculated at compile-time. 

Huh? That makes no sense. Sure, it does in the world of C++ standards. A 
“constant expression” with only constant arithmetic is a special subset of the full 
set of expressions that can be calculated at compile-time. 

The best example is a call to a function that has one path where it’s constant, and 
another path where it’s not. The definition of “somefunc” has two paths: 

    int somefunc() 

    { 

        if (something) return 27; 

        else return some_random_number(); 

    } 

The “somefunc” function cannot be declared “const” or “constexpr” because 
it isn’t always a constant on all paths. 

However, if we’re using “somefunc” at program startup initialization, we can try: 

    constinit int s_myconst = somefunc(); 

Here, if we know that it will use the constant path for some reason, the initialization 
of “s_myconst” will go through the fixed path to get the compile-time constant 
value of 27, we can tell the compiler that by declaring the variable as constinit. 

Anyway, now that you’ve been forced to learn all that, just forget it. You’ll be rarely 
if ever needing constinit. 

consteval functions 

Use consteval for functions that are always constant. A consteval function is 
strictly declared so that every invocation of the function must return a compile-time 
constant. 

The consteval keyword is a subset of the constexpr functions (and it also 
implies inline on a function). Although a constexpr function is constant if its 
arguments are constant, it can also return a dynamic return value for non-constant 
arguments. 
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When would you use consteval versus constexpr functions? I mean, when 
you ask your boss to make you a cup of coffee, do you like to ask politely or do you 
issue commands? Supposedly constexpr is optional for the C++ compiler, 
whereas consteval is mandating compile-time evaluation. 

Personally, I can’t see much difference in general usage, since the compiler will 
probably optimize a constexpr function at compile-time if it’s capable enough. 
Hence, for most regular functions I don’t see very much benefit to using 
the consteval specifier over constexpr. There are some complicated places in 
C++ where it helps to guarantee a compile-time constant, such as reflexive types 
and other tricks in compile-time template usage. 

Templates 

C++ templates can be used for compile-time optimizations, rather than merely as 
a programming convenience for algorithm generality and interface improvement. 
By specializing templated code for a particular type or constant parameter, the effect 
is that the resulting code is more specific, giving the compiler an opportunity for 
better optimizations. 

For example, if we have vector and matrix classes, then rather than having our code 
dynamically check whether our precision is 32-bit float, or 8-bit integers, or some 
other low-level type, we can use templated versions of the vector and matrix classes. 
This generates different functions for each type of data. At the cost of some extra 
code space, we’ve given the compiler the chance to do a much better job of 
optimizing the code for the specific low-level data types. 

Going beyond just using template code to write the same algorithm for different 
types, there are ways to optimize code that is templated to do more at compile-time: 

• Template class and function specializations 

• Constant template parameters 

• Compile-time conditional tests on types (e.g., sizeof, type traits, etc.) 

• if constexpr syntax 

• Variadic templates 

• Template Metaprogramming (TMP) techniques 

• SFINAE techniques 

Constants can be used to instantiate template code in a way that helps the 
compiler to optimize by evaluating constant expressions. Template parameters 
don’t need to be types, but can also be constant variables or numbers, such as the 
size of an array.  
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Using a template in this way is as efficient as hard-coding the array size, which helps 
the compiler to know exactly what it can optimize, such as if the array size is used 
in any computations. 

If you think you can do better than the compiler’s optimizer, remember that you 
can also override the generic template code. For example, you can instantiate your 
own specific version of a template class for a particular type. Similarly, you can 
provide a generic function declaration that instantiates a templated function with 
your explicit version. 

An alternative to specializing a version of a template class or function is to use 
compile-time tests inside the generic template code. For example, you can use 
conditional tests involving compile-time operations: 

• sizeof 

• typeid 

• std::is_same_v 

• if constexpr conditional test syntax 

Next level templating 

C++ templates are a very powerful programming mechanism. In fact, you can 
define entire projects as templates inside header files. To get the most speedup out 
of template optimizations at compile-time, consider these methods: 

• Type traits 

• Variadic templates 

• SFINAE 

• Template Meta-Programming (TMP) 

Type traits are a generic feature of C++ (since C++11) that you can use to 
interrogate the type of a variable. They are declared in the <type_traits> header 
file and there are numerous ways that you can test the type of a variable. The above 
example std::is_same_v is one example. As another example, there 
is std::is_signed and std::is_unsigned to test whether it’s a signed or 
unsigned type. There’s also std::is_pointer and std::is_array and 
various others. Combining type traits with “if constexpr” gives a powerful way 
to ensure templated code gets evaluated at compile-time, and to specialize blocks 
of code for particular types. 
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Variadic templates are another way to level up your code and have been 
supported since C++11. These are variable-argument templates via the use of the 
ellipsis “...” operator in a template declaration. This allows templates to accept 
a variable number of parameters for instantiation. 

SFINAE. Another optimization for advanced templating is to rely on SFINAE 
semantics. This refers to “Substitution Failure Is Not An Error” and means 
that template instantiation that fails should not itself trigger a compilation error 
that prevents execution. More specifically, if the compiler tries and fails to 
instantiate a template, but there’s another way to run it, such as a different 
overloaded function available, then the code should execute via the non-templated 
method. Relying on this capability in C++ not only avoids having compilation 
errors that block some advanced template usages, but can also be used to ensure 
compile-time calculations. However, although there are some good uses cases in 
making templates faster, SFINAE is an obscure programming technique that isn’t 
widely used in everyday C++ programming. 

Template Meta-Programming. Further optimization of templated code at 
compile-time is possible via the technique called “Template Meta-Programming” 
(TMP). Note that this refers to an unusual usage of templates in C++, where the 
idea goes beyond just using templates of code for different types (i.e., normal 
templating of classes). TMP is an advanced coding method that uses (misuses, 
perhaps) instantiation semantics of templates as a way of generating compile-time 
code, even for some conditional branches. However, this is an obscure method that 
is rarely needed, because most of the effects can be achieved via preprocessor 
macros, function inlining, and using “constexpr” in modern C++. 
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44. Zero Runtime Cost Operations 

You want free CPU cycles? You got it! There are plenty of “freebies” in C++! 

We’ve already talked about compile-time operations in C++, but here’s a summary 
of some of the “hints” you can give to the compiler for a free gain, usually via 
helping the optimizer to do fancier optimizations: 

• inline 

• template 

• const 

• constexpr (also consteval and constinit) 

• noexcept 

• static_assert 

• Restricted pointers (e.g., __restrict) 

• likely/unlikely or __builtin_expect (expressions) 

• [[likely]] and [[unlikely]] path attributes 

I’ve missed a bunch of them, so you should re-read those chapters. Those are well-
known optimizations via programmer hints. 

Here are some other ones that are useful. If you see these keywords, these are free 
or compile-time operations: 

• auto types (type deduction) 

• decltype 

• final 

• override 

• explicit 

• [[nodiscard]] (function attribute) 

• = delete 

But there’s always more.  
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Here are some advanced C++ language features that you might think cost real CPU 
juice, but are free for various language design reasons: 

• Type traits — compile-time type operators (not RTTI). 

• Concepts (C++20) — compile-time guarantees. 

• Static reflection (C++26) — fixing RTTI inefficiencies. 

• Profiles — safety with compile-time validation. 

• Curious Recurring Template Pattern (CRTP) — useful for devirtualization. 

• Structured bindings — grouped assignments are compile-time processed. 

Type traits are a form of Compile-Time Type Information (CTTI) and work at 
compile-time.  

Some examples are operations like std::is_trivial or std::is_same. 
However, note that you have to be careful not to move across into the much darker 
side of RTTI, which is dynamic_cast and typeid. 

Free Type Cast Operations 

There are various arithmetic operations that can look real, but actually disappear in 
a puff of compiler smoke. The first item on the list is type casts, which have many 
freebies: 

• reinterpret_cast 

• static_cast 

• const_cast 

• std::move (move semantics) 

• std::forward (perfect forwarding) 

Note that std::move is effectively a compile-time type cast, which turns an l-
value into an r-value (I’m simplifying the idea here).  

However, there are also overloaded versions of std::move with two or more 
arguments that really do move bytes at runtime (effectively doing memcpy), so be 
aware of the distinction between free uses of std::move for move semantics 
versus real byte movers. 

Arithmetic type casts between similarly represented numbers can often be 
optimized away.  
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For example, these are usually free, or at least very fast: 

• Downsizing integer type casts (e.g., int to char). 

• Upsizing integer type casts (e.g., char to int) 

• Floating-point type conversions (e.g., float to double) 

Differently sized integer types seem like they would cost real instructions to convert 
between them. If a char is one byte and an int is four bytes, you’d think there’s 
an operation that adds or removes three bytes. However, the compiler has many 
tricks up its sleeves here, such as: 

• Copy propagation 

• Register allocation 

• Peephole optimizations 

This is often true of the conversions between any of the many and varied integer 
types, from a 1-byte char to a 16-byte long long. In the cases where the 
compiler cannot find a way to do it freely, the operation is very inexpensive anyway. 

But note that not all type casts are free. In particular, converting between integers 
and floating-point types is expensive, in both directions, because the way these two 
types of values are represented is very different. Be careful with explicit type casts, 
but also any expressions that mix integer and floating-point types may have implicit 
type casts. 

Optimized Away 

Here’s a somewhat random list of stuff that should get optimized away by the 
compiler. We can be reasonably sure these are free: 

• Constant expressions (via “constant folding” and constexpr features) 

• Small getter member functions (via inlining) 

• Null-effect expressions (useful for compiling-out assertions) 

• Unnecessary temporary variables (removed by copy propagation, peephole 
optimizations, and register allocation) 

• Wrongly typed constants (e.g., using 1 or 1U or 1.0 or 1.0f should be 
implicitly type-converted at compile-time). 

• Double negation (using “!!(x)” is a common trick). 

• Algebraic simplifications (e.g., plus zero, subtract zero, times one, and 
many more). 
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• Explicit zero conditional tests (e.g., if (x != 0) or if (ptr != 

nullptr) equates to if(x) or if(ptr) at runtime). 

• First data member in an object or structure (it’s offset is zero, so there’s a 
“plus zero” in the address calculation that is optimized away). 

• Assertions and #if DEBUG (if compiled-out for production). 

The compiler optimization of “dead code elimination” will make these control flow 
features free: 

• while(1) — using for(;;) isn’t faster! 

• if(true) or if(1) or if(0) or whatever 

• do...while(0) — a common macro trick. 

• Short-circuited constants in || or && operators 

• Tested constants in the ?: ternary operator 

You can always check the assembly code with “gcc -S” or the MSVS assembly 
debug window. 

Standard Container Operations 

A lot of the standard containers have many optimized specializations for builtin 
types. Hence, if you’re using std::vector<int>, you can expect operations 
like push_back are inlined and very fast.  

All of the contiguous containers and the non-contiguous linked containers would 
maintain incremental variables, making begin() and end() calls very fast.  

Similarly, most of the containers maintain an incrementer counter of objects inside, 
so all calls to std::size are as fast as a getter accessing an integer data member 
(inlined, of course). 

There are some relatively simple standard C++ data types where operations can 
often be inlined or optimized away by the compiler: 

• std::pair 

• std::tuple 

• std::optional 

• std::expected 

• std::variant (modern C++ unions) 
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Finally, note that some calls to containers can lead to memory allocations, which is 
a slowdown. And various containers when used on your own non-scalar objects 
can trigger many calls to constructors or assignment operators, which is slow 
regardless of whether it calls copy or move versions.  

I mean, moving is better than copying an object, but the optimizer can only do so 
much. 

The Opposite of Free 

There are also features of C++ that look like they should be free, but are actually 
costly. Perhaps we should call them “costlies”? 

Elegance and the beauty of short code sequences is not the same thing as fast. Here 
are some examples of beautiful things that can be slow: 

• Calls to virtual functions 

• RTTI (i.e., dynamic_cast and typeid) 

• Lambdas, functors and other function objects 

• std::function 

• Comparators (except maybe standard ones like std::less) 

• Fold expressions 

• Exception handling 

The issue with lambdas and function objects is not clear-cut. If you use a lambda 
with a simple capture and an immediate assignment to a functor variable, which is 
then called, the optimizer probably can handle this and inline the function call. 
However, if you declare your own complex lambda as a comparator that is sent to 
a function (e.g., to std::sort), all of the calls to that lambda are probably not 
inlined, leading to a performance bottleneck. 

Also, if you use a standard builtin comparator object like std::greater and pass 
it to std::sort or other library functions, it’s likely that the operation has a pre-
coded template specialization for that comparator, meaning it won’t really be using 
it as a function call.  

However, you might want to benchmark this or look at the standard library source 
to confirm there is such a specialization! 
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And here are some more slugs that are less obvious, because the code is concise 
and looks like it should be fast: 

• Operator overloading (looks like a single instruction, but it’s a function call, 
even if it’s inlined). 

• Initializer lists (can call lots of copy constructors). 

• Pointer-to-function types (cannot be inlined). 

• Implicit type conversions (especially via overloaded type cast operators). 

• Temporary object creation (accidental) 

• Type casts between int and float (explicit or implicit) 

• Container resize() calls 

Modern C++ is becoming such a complex language with conflicting goals of 
elegance and performance, so it’s hard to know which things are freebies or costlies. 
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45. String Optimizations 

Efficient Strings 

The C++ std::string class is a beautiful and elegant class that has been well-
designed and near-optimally implemented.  

Its main advantages include: 

• High-level abstraction of string coding 

• Automates management of memory buffer allocation 

• Safety (e.g., no buffer overflows when appending or concatenating) 

• Moderately efficient 

Note that I only said efficiency was “moderate”! As classes go, it’s one of the most 
efficient, with lots of inline member functions and implementations super-
optimized by compiler engineers. Some of the fast parts of the standard string class 
include: 

• Small String Optimization (SSO) 

• Fast to copy 

• Fast move semantics 

But it’s still not as efficient as bypassing the string interfaces and doing low-level 
string processing directly with char* pointers and arrays. 

So, here we have a perfect example of the maxim: don’t optimize prematurely! I’m not 
advocating to replace all strings with C-style string operations, but if your profiler 
finds a hot-spot in a C++ string operation, you can do better.  

Furthermore, if you’re doing a very string-intensive application, such as text 
processing, the lowest level kernels that spin through the document probably 
shouldn’t use the string class. 
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Common String Operations 

If you have a string, and you want to do some work on that string, 
the std::string class is often very fast. In the situations where it’s not, you can 
also revert to old-style efficient coding on char* pointers by using the interface-
bypassing data() or c_str() methods to get to the raw character array. 

String length. The length() method is extremely fast, and always so. The 
comparison goes like this: 

• length() — always blazingly fast. 

• strlen() — slow on very long strings. 

Since the string class maintains the string length incrementally as a data member, 
it’s already been precalculated. Hence, it’s an inlined access to an already-computed 
integer. 

In comparison, C-style null-terminated strings must scan for the null byte. 
Hence, strlen() is slow on very long strings, whereas length() is still fast. 

String Equality Comparisons. Which method is faster is unclear, depending on 
the implementation of operator==, but my money’s on the string class. In 
particular, it can compare the lengths quickly, since it has that precomputed for 
both strings. The full list of ways to compare strings: 

• operator==() — fast version. 

• compare() — explicit method version. 

• strcmp() — old-style string comparisons. 

Case-Ignoring String Equality Comparisons. There’s not a standard case-
ignoring version of the compare() method. However, there are non-standard 
implementations: 

• stricmp() — Windows (MSVS) 

• strcasecmp() — Linux (GCC) 

String Search. This is a very simple and long-standing requirement. Your options 
are pretty obvious: 

• find() — simple and fast! 

• strstr() — the old C function. 
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Case-Ignoring String Search. There’s not a standard method function named 
“ifind” or “stristr”, but there are ways to get there: 

• strcasestr() — Linux 

• StrStrIA() on Windows in shlwapi.h 

Reverse String Search. There the string class method rfind() for reverse string 
searching. There’s not really a good alternative in the older C-style libraries. 

Character Search. Searching a string for the first occurrence of a string characters. 
The options include: 

• find(char) — string class overload. 

• strchr() — old-style C function. 

Reverse Character Search. The options here are: 

• rfind(char) — another class overload. 

• strrchr() — reverse long-standing C function. 

Note that the rfind() version is likely faster than the older function on very long 
strings, because it has the string length precalculated in the string object and can 
jump straight to the end, whereas strrchr() has to scan inefficiently from the 
beginning of the string. 

Multi-Character Search. If you want to search for a prefix or suffix of several 
characters, rather than just one, then the C++ string class has what you need: 

• find_first_of() — first character from a set. 

• find_first_not_of() — first character not in the set. 

The suffix versions are: 

• find_last_of() 

• find_last_not_of() 

Prefix and Suffix Tests. The standard C++ methods on the string class are: 

• starts_with() (C++20) 

• ends_with() (C++20) 



David Spuler                                               468 
 

Other options include: 

• string::find() — search forwards 

• string::rfind() — reverse search 

• LastIndexOf — Win32 version 

There’s also some other options: 

• remove_prefix() in string_view (C++17) 

• remove_suffix() in string_view (C++17) 

You can always code your own versions: 

  inline bool STRPREFIX(const char *s, const char *prefix)  

  { 

      return strncmp(s, prefix, strlen(prefix)) == 0; 

  } 

Here’s a modern C++ style version: 

    inline bool string_prefix( 

      const std::string& str, const std::string& prefix) 

    { 

        return str.find(prefix) == 0; 

    } 

And here’s the same idea for suffix, using the “reverse find” method: 

    inline bool string_suffix( 

        const std::string& str, const std::string& suffix) 

    { 

        return str.rfind(suffix) + suffix.length() 

           == str.length(); // Buggy! 

    } 

Actually, that’s a bit careless of the failure return -1 from rfind().  
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Here’s a fixed version: 

    inline bool string_suffix( 

        const std::string& str, const std::string& suffix) 

    { 

        int offset = str.rfind(suffix); 

        if (offset == -1) return false;  // not found 

        return offset + suffix.length() == str.length(); 

    } 

Note that rfind is needlessly inefficient here if the string is very long and the suffix 
is not present. It keeps on scanning all the way to the start of the string, rather than 
quitting early. There’s certainly a faster way to do it, such as comparing the two 
lengths, using them to compute the address of where the suffix would be, and then 
use basic string equality testing. 

Case-Ignoring Prefix and Suffix Tests. There’s not much help with this in the 
standard libraries, so you’ll have to roll your own with strnicmp (Windows) 
or strncasecmp (Linux): 

    inline bool STRIPREFIX( 

      const char *s, const char *prefix) 

    { 

      return strncasecmp(s, prefix, strlen(prefix)) == 0; 

    } 

Here’s my attempt at a fast suffix version, which mixes C++ and C coding, but 
won’t be slow on a long string: 

    inline bool string_strisuffix( 

        const std::string& str, const std::string& suffix) 

    { 

        int strlen = str.length(); 

        int suffixlen = suffix.length(); 

        if (suffixlen > strlen) return false; 

        int offset = strlen - suffixlen; 

        const char* raw = str.c_str(); 

        raw += offset; 

        const char* suffixraw = suffix.c_str(); 

        return stricmp(raw, suffixraw) == 0; 

    } 

I’m sure that you could do better! 
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String Class Inefficiencies 

What’s so bad about the standard string class? Nothing, unless you want to do a 
whole lot of processing of strings. Here’s a list of some of its problems: 

1. It’s a large object (e.g., 40 bytes). 

2. Sequences of binary + operators. 

3. Too many calls to new and delete. 

4. No way to use a larger non-allocated buffer. 

5. Cannot use reference counting and copy-on-write. 

A lot of these concerns can be summarized: it’s too easy to use! 

Programmers tend to get comfortable with the very convenient ways 
that std::string can be used in C++ programs. In comparison, doing C-style 
string processing with low-level character buffers is painful!  

Hence, there’s a tendency to forget that C++ strings are significant objects that 
invoke memory allocation on all but the smallest of text strings. 

String Memory Layout 

The std::string class creates objects of a reasonable size, unlike C-
style char* The string class is quite complicated, although great compiler 
engineers have made it look easy.  

Some of the main points about string efficiency are: 

• Small String Optimization (SSO) is standard (with a small internal buffer). 

• Reference counting is not enabled (and nor is Copy-On-Write). 

The use of SSO makes sense because otherwise even just declaring an empty string 
object would cause a memory allocation call to the new operator: 

    std::string s1;   // No memory allocation! 
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We can interrogate the string objects about their features using standard member 
functions such as data(). If the pointer to the data is inside the object itself, then 
we’re using SSO. And if two objects created from each other (via copy constructor 
and/or assignment operator) have the same data buffer address, then reference 
counting is enabled. 

Here is some code that uses standard string member calls to determine some details 
about the layout of a string object. 

    void print_string_details() 

    { 

        std::string str; 

        cout << "Sizeof std::string = " << sizeof(std::string) 

            << " bytes" << endl; 

        int bytes = str.capacity() + 1; 

        int header = (sizeof(str) - bytes); 

        cout << "Capacity std::string = " << str.capacity()  

             << " characters ("  

             << bytes << " bytes)" << endl; 

        const char* datastr = str.data(); 

        char* saddr = reinterpret_cast<char*>(& str); 

        bool is_sso = datastr >= saddr  

                      && datastr < saddr + sizeof(std::string); 

        cout << "Short String Optimization (SSO): "  

             << (is_sso ? "yes" : "no") << endl; 

        cout << "Reference counting: "  

             << (string_is_reference_counted(bytes*100) ? 

                 "yes" : "no") << endl; 

        int offset = (int)(datastr - saddr); 

        if (offset == 0) { 

            cout << "Buffer start of object (offset=0)" << endl; 

        } 

        else if (offset + bytes == sizeof(std::string)) { 

            cout << "Buffer at end string (offset = "  

                 << offset << ")" << endl; 

        } 

        else { 

            cout << "Buffer middle of string (offset = "  

                 << offset << ")" << endl; 

        } 

        cout << "Header block bytes = " << header << " ("  

             << offset << " before buffer, "  

             << (header - offset) << " after buffer)" << endl;      

    } 
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And here are the results in MSVS on my Windows laptop: 

    Sizeof std::string = 40 bytes 

    Capacity std::string = 15 characters (16 bytes) 

    Short String Optimization (SSO): yes 

    Reference counting: no 

    Buffer in middle of string (offset = 8) 

    Header block bytes = 24 (8 before buffer, 16 after buffer) 

As to the 24 header bytes here, that could be 3 pointers (8 bytes or 64-bits each), 
or maybe it’s 1 pointer to the buffer and 2 different 64-bit integers for length and 
capacity. We can go exploring in the memory layout of the header block inside a 
string object to try to answer that question. It’s non-standard coding that is 
implementation-specific, but plenty of people have done it! 
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46. Pointer Arithmetic 

What is Pointer Arithmetic? 

Pointer arithmetic is a tricky C++ optimization that can often be used to remove 
incremented variables in loops. Instead, a pointer can be incremented each loop 
iteration. This changes an array access “arr[i]” into a pointer access “*ptr” and 
is usually faster. 

What is pointer arithmetic? Arrays and pointers are buddies in C++ and there’s 
a way that mathematical arithmetic operators can work on both. Consider the 
declarations: 

    int arr[10]; 

    int *ptr; 

To start with, we can set the pointer at the array, and C++ allows us to use index 
notation on a pointer: 

    ptr = arr; 

    x = ptr[3]; 

Here, x will get the value of arr[3] via ptr[3]. The pointer and array are 
equivalent. Note that the “&” address-of operator can be optionally used here. We 
could have written “ptr=&arr” to copy the address, but it’s optional. 

C++ allows array index accesses on pointers with “ptr[3]” as above. We can also 
do this using “pointer arithmetic” with the “+” operator and the “*” pointer de-
reference operator: 

    x = *(ptr + 3);  // Same as ptr[3] 

The expression “ptr+3” is the address of the third element in the array 
(i.e., &arr[3]), and the “*” dereference operator gets the value pointed to by the 
pointer (i.e., arr[3]). 
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Why does this work? If ptr is pointing to the start of an integer, shouldn’t 
“ptr+3” be a weird address in the middle of an integer? 

No, because C++ does “pointer arithmetic” on pointers. Because “ptr” is an 
“int*” type pointer, the compiler knows to work on “int” data. With pointer 
arithmetic, the “+” operation adds a multiple of the bytes of the size of int types. 
So “ptr+1” is not the address 1 more than ptr, it’s actually 4 more than ptr for 
a 4-byte int (assuming 32-bit integers). And “ptr+3” is actually the address 
“ptr+12” in terms of bytes. 

Which Operators Do Pointer Arithmetic? Pointer arithmetic works with a 
number of arithmetic operators: 

• Increment — ptr++ adds 1*size bytes to ptr. 

• Decrement — ptr-- subtracts 1*size bytes from ptr. 

• Addition — ptr + n adds n*size bytes. 

• Subtraction — ptr-n subtracts n*size bytes. 

• Assign-Add — ptr += n adds n*size bytes to ptr. 

• Assign-Subtract — ptr -=n subtracts n*size bytes from ptr. 

Note that there’s no pointer arithmetic multiplication or division. Actually, I was 
told that C++37 was going to have a C++ pointer multiplication operator that 
scanned down an array doing paired multiplications, adding them up as it went, and 
all in one CPU cycle, but then someone woke me up. 

Pointer Comparisons: You can also compare pointers, which isn’t really doing 
any special pointer arithmetic, but works as normal comparisons on their addresses: 

• Equality tests — ptr1 == ptr2 or ptr1 != ptr2 

• Less than — ptr1 < ptr2 or ptr1 <= ptr2 

• Greater than — ptr2 > ptr2 or ptr1 >= ptr2 

Segmented Memory Model Pointer Comparisons: Note that there’s a weird 
portability gotcha in relative pointer comparisons (i.e., less-than or greater-than). 
They’re only guaranteed to work in very limited scenarios by the C++ standard, 
such as when the pointers are both operating over the same array data.  

Programmers tend to think of the address space as one huge contiguous range of 
addresses, where you can compare all of the pointers in the program against each 
other, and make some coding assumptions based on that.  
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However, there are architectures where pointer addressing is more complicated, 
such as where pointers are a multi-part number pointing into different memory 
banks with a more convoluted segmented addressing scheme. For example, 
pointers to allocated heap memory might be separate from the pointers to global 
static data, and not easily comparable. 

Pointer Differences: You can subtract two pointers using the normal “-” 
subtraction operator. The result is not the number of bytes between them, but the 
number of objects. Hence, the two pointers must be of the same type (i.e., pointing 
to the same type of object). Consider this code: 

    int arr[10]; 

    int *ptr1 = &arr[1]; 

    int *ptr2 = &arr[2]; 

    int diff = ptr2 - ptr1; 

The value of “diff” should be 1 in C++ (rather than 4 bytes), because the two 
pointers are one element apart (i.e., 1 integer difference). Note that “diff” is a 
signed integer here, and the value of subtracting two pointers can be negative (e.g., 
“ptr1-ptr2” above would be “-1” instead). Technically, the official type of the 
difference between two pointers is “std::ptrdiff_t” which is an 
implementation-specific integral signed type that you can use if you’re also the sort 
of person who alphabetizes their pantry. 

Adding Pointers Fails: Note that adding two pointers with “ptr1 + ptr2” is 
meaningless and usually a compilation error. Also invalid are weird things like the 
“+=” or “-=” operators on two pointers. Even though “-” is valid on two pointers, 
“ptr1-=ptr2” fails to compile because the result of “ptr1-ptr2” is a non-
pointer type. 

Char Star Pointers (Size 1 Byte): Note that if you want to avoid pointer 
arithmetic, and see the actual numeric value of addresses, you can use a “char*” 
type pointer (or “unsigned char*”). Since sizeof(char) is 1 byte, then all 
of the pointer arithmetic will just add the expected number of bytes (e.g., ptr++ on 
a char* pointer adds 1 to the address). If you want to know the actual total number 
of bytes between two pointers, then cast them to “char*” type before doing the 
pointer subtraction. 

    int diffbytes = (char*)ptr2 - (char*)ptr1; 

Stride of an Array. A useful piece of terminology when processing lots of data in 
memory is the “stride” of an array. This means the number of bytes between 
adjacent array elements.  
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We can try to compute it as follows: 

    int arr[100]; 

    int stride = &arr[2] - &arr[1];  // Wrong 

Nope, that’s a fail. This isn’t the stride, because it did pointer arithmetic. The 
addresses of array elements are really pointers, so the stride variable above is always 
1 (the adjacent elements are 1 apart in pointer arithmetic). We need to convert 
to char pointers to get the stride in bytes. 

    int arr[100]; 

    int stride = (char*)&arr[2] - (char*)&arr[1]; 

Can’t we just use sizeof to get the stride? Isn’t the stride above going to equal 4, 
which is sizeof(int)? Yes, in the example above the use of sizeof is correct, 
but no, that is not true in general. The stride will often equal the element size, but 
may be larger. For a simply packed array of integers or other simple types, the stride 
is almost certainly the size of the array element type. But this is not always true, 
such as if it’s an array of a larger object with an awkward size that requires padding 
bytes for address alignment considerations. 

Loop Unrolling Stride. The term “stride” also has a secondary meaning when 
talking about array processing with loop unrolling. The stride of an unrolled loop 
is how long of a segment is being processed in each section of loop unrolling code. 
For example, if a loop is unrolled with AVX-2’s 256-bit registers (equals 8 32-
bit floats), then the stride when discussed in the literature is either 8 floats or 
8x4=32 bytes. 

Void Pointer Arithmetic Fails: Note also that pointer arithmetic on a generic 
“void*” pointer should be a compile error, because it points to unknown size 
objects. Some C++ compilers will allow pointer arithmetic on void pointers with a 
warning, and pretend it’s a “char*” pointer instead. 

Finally, I don’t think you can increment a “function pointer” in valid pointer 
arithmetic, but you’re welcome to try. 
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Pointers and Arrays 

There is a close relationship in C++ between arrays and pointers. Array names are, 
in many ways, just pointers to the first element in the array. The array indexing 
operation is identical to a pointer expression involving address arithmetic.  

The following algebraic identities hold: 

    array[exp] == *(array + exp) 

    &array[exp] == array + exp 

These relationships have a number of consequences. First, the commutativity 
of + means that exp1[exp2] is equivalent to exp2[exp1], which leads to weird 
syntax tricks like “n[ptr]” instead of “ptr[n]”. 

Another consequence is that, in many situations, pointer variables can be used 
instead of arrays. For example, it is legal to apply the array indexing operator (i.e., 
square brackets) to a pointer. For example: 

    x = ptr[3];  

Just like arr[3], this sets x to equal the third element away from ptr, 
where ptr is pointing into an array. 

Array Function Parameters: The array and function relationship is complicated 
when an array is a function parameter. When an array is passed to a function, the 
address of the first element of the array is passed. An array formal parameter is 
implemented as a pointer variable (i.e., a pointer pointing to the start of the array). 

This explains why arrays are passed by reference, not by value. A local copy of the 
array is not used inside the function. Instead, a pointer to the original array is used. 
Hence, any change to an element of the local array variable is actually changing the 
original array (i.e., pass-by-reference instead of pass-by-value). 

The differences between pointers and arrays are few. The main one is that an array 
name is not a variable, whereas a pointer is. Hence, an ordinary array name declared 
as a local variable cannot be assigned to, or incremented, whereas a local pointer 
variable can be. An array is similar to a constant pointer (e.g., int *const ptr). 
Note that this is untrue when the array is a function parameter, when it can be 
incremented or modified. 
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There are also the differences between pointers and arrays in relation to 
initializations. Consider the two initializations: 

   char *p = "hello"; 

   char arr[100] = "hello"; 

For the pointer p, the string “hello” is stored in separate memory. Only the 
required number of bytes are allocated (six, because of the extra character zero 
added by the compiler to terminate the string). For the character array “arr”, 100 
bytes are allocated, but only the first six are filled. 

Pointer Arithmetic Loop Optimizations 

The main way that we use pointer arithmetic for optimization is to change a loop 
over an array into loop pointer arithmetic. Note that this is primarily a sequential 
code optimization, and does not change anything in terms of vectorization for 
parallel execution. 

Pointer arithmetic is mainly used to get rid of an incrementer variable in sequential 
code. Here’s a vector dot product with basic incremented loop variable i++ and 
array index syntax v1[i] used inside the loop: 

    float aussie_vecdot_basic(float v1[],float v2[], int n) 

    { 

        // Basic vector dot product 

        float sum = 0.0f; 

        for (int i = 0; i < n; i++) { 

            sum += v1[i] * v2[i]; 

        } 

        return sum; 

    } 

And here’s the same code when converted to pointer arithmetic: 

    float aussie_vecdot_ptr(float v1[], float v2[], int n) 

    { 

        // Pointer arithmetic vector dot product 

        float sum = 0.0f; 

        float* endv1 = v1 + n;  // v1 plus n*4 bytes 

        for (; v1 < endv1; v1++,v2++) { 

                sum += (*v1) * (*v2); 

        } 

        return sum; 

    } 
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How does this work? We got rid of the temporary variable “i” by using pointer 
arithmetic “*v1” instead of array indices “v1[i]”. We are also using the function 
parameters “v1” and “v2” as temporary local variables, as permitted in C++, so 
we don’t need an extra temporary pointer variable. 

The way this works with pointer arithmetic is v1 and v2 are treated as pointers, 
which works due to the near-equivalence of pointers and arrays in C++. Rather 
than using an array index “i” we increment both these pointer-array variables: 

    v1++,v2++ 

These for loop incrementers “v1++” and “v2++” are both adding 4 bytes (the size 
of a 32-bit float) to the pointers. Also note these two increment statements are 
separated by the C++ comma operator, not by a semicolon. 

The “endv1” end marker is calculated as the address of “v1[0]” plus “n*4” bytes, 
because the “+” operator in “v1+n” is pointer arithmetic addition, which is auto-
scaled by the size of the pointed-to object (i.e., 4 bytes for 32-bit float here), rather 
than normal integer addition. 

Note that a further micro-optimization is possible. We can change the less-than test 
(“v1 < endv1”) to an inequality test (“v1 != endv1”), because equality tests 
are slightly faster than less-than tests. Since this test is effectively inside the loop 
and done every iteration, this might be worth doing. 

The trade-off is safety: it’ll become an infinite loop if you get the pointer math 
slightly wrong, but hey, your code has no bugs, right? 

Smart Pointers 

Smart pointers are a programming idiom to make C++ pointers safer. They are not 
a speed optimization, and in fact, they are a wrapper that adds extra logic around 
the use of a raw pointer, and will be marginally slower. However, they avoid many 
C++ pointer pitfalls, thereby improving reliability, and will reduce total allocated 
memory usage by avoiding memory leaks. There may even be an indirect benefit to 
execution speed if overall memory management is improved. 

Programmers have been defining their own smart pointer wrapper classes for 
decades, but there is now standard support for the idea in the C++ library. In the 
typical idiom, a smart pointer tracks the creation and destruction of the object it 
points to, which ensures that the destructor is called.  



David Spuler                                               480 
 

This helps avoid “memory leaks” in standard C++ pointers where an object is 
allocated with “new”, but is never deallocated by “delete”. 

The C++ standard libraries have various templates to support smart pointers, 
mostly since C++11, so they are longstanding features. 

• std::shared_ptr 

• std::unique_ptr 

• std::weak_ptr 

std::shared_ptr is a reference-counted shared pointer implementation. The 
idea is that it tracks the total number of pointers to an object, and then automatically 
destroys the object whenever there’s no more pointers to it. This occurs when the 
last of the “shared_ptr” objects is itself destroyed, and then the reference count 
for the underlying object is zero. 

std::unique_ptr is a one-to-one mapping of a smart pointer to an object. 
Whenever the unique_ptr object is destroyed (e.g., goes out of scope as a local 
variable), then both the smart pointer and its underlying object are destroyed or 
otherwise cleaned up. The unique_ptr object can refer to a single object 
allocated by “new” or a single array-of-objects allocated by the “new[]” operator. 

std::weak_ptr is a less commonly used type that has relevance 
to std::shared_ptr in some complicated scenarios. Usually, you should choose 
either of std::unique_ptr or std::shared_ptr, depending on how many 
pointers will point to the underlying object. 

Pointers vs References 

Overall, pointers are a good and bad feature of C++. They are low-level variables 
that allow efficient processing of memory addresses, so we can code some very fast 
methods with pointers. They allow us to get very close to the machine. 

On the downside, there are pointer pitfalls. Pointers trip up novices and 
experienced programmers alike. There is an immense list of common faults with 
pointer manipulation, and coding problems with pointers and memory 
management are probably half of the causes of bugs in C++ (at least). There are 
some tools that mitigate against pointer problems (e.g., Linux Valgrind) but it is a 
never-ending battle against them. 

Pointers and arrays were implemented very similarly, and came from the earliest 
designs of the original C language.  
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Basically, arrays are treated as a specific type of pointer, with various differences 
depending on whether they are variables or function parameters. 

Then came C++ to the rescue. References arrived with the new-fangled 
programming language (cleverly named as “C++”) and were thoughtfully designed 
as a type of safe pointer that cannot be null, but is just as efficient as a pointer 
because the constraints on references are enforced at compile-time. 

C++ allows two ways to indirectly refer to an object without needing to create a 
whole new copy: pointers and references. The syntax is either “*” or “&” for their 
declarations. 

    MyVector *myptr = &mv;  // Pointer to mv object 

    MyVector &myref = mv;   // Reference to mv object 

Pointers and references are more efficient than spinning up a new copy of the 
object, especially when the underlying object is a complicated object. And when 
you have a function call, you should definitely avoid sending in a whole object. 

    void processit(MyVector v)  // Slow 

    { 

        // .... 

    } 

This is inefficient because the whole MyVector object will get copied, via whatever 
copy constructor you have defined, which is slow. And if you haven’t defined a 
copy constructor, then the compiler uses default bitwise copy of a structure, which 
is not only slow, but also rarely what you want, and often a bug. 

The faster reference version is to use a “const” reference (or non-const if you’re 
modifying it inside the function): 

    void processit(const MyVector & v) // Reference argument 

    { 

        // .... 

    } 

The pointer version is: 

    void processit(MyVector * v)  // Pointer argument 

    { 

        // .... 

    } 
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Which is faster in C++ — pointers or references? The short answer of “not any 
difference” is the general view, because references are implemented as pointers by 
the compiler behind the scenes. The two functions above are not going to be 
significantly different in terms of speed. 

The slightly longer answer is that references can be faster because there’s no null 
case. A reference must always be referring to an object for the duration of its scope. 
The C++ compiler ensures that references cannot occur without an object: 

    MyVector &v;          // Cannot do this 

    MyVector &v = NULL;   // Nor this 

    MyVector &v = 0;      // Nor this 

A reference must be initialized from an object, and you cannot set references equal 
to pointers, because you actually have to de-reference the pointer with the “*” 
operator, which crashes if it’s a null pointer: 

    MyVector &v = myptr;  // Disallowed 

    MyVector &v = *myptr; // Works if non-null 

There’s no way in C++ to get a zero value into a reference variable (we hope). For 
example, the address-of operator (&) applied to a reference variable returns the 
address of the referenced object, not the memory location of the reference itself. 
Hence, references are always referring to something and they cannot be equivalent 
to the null pointer. 

References are slightly faster: The guarantee of an object for a reference fixes all 
those null pointer core dumps, and also relieves the programmer of the burden of 
testing for null pointers. The compiler does this guarantee for references at compile-
time, so there’s no hidden null check being done by the compiler at run-time, 
making it efficient. So, there’s a minor speed improvement from using references, 
by not having to add safety checks for “ptr!=NULL” throughout the function call 
hierarchy. 

Pointers can be better than references if you need a “null” situation to occur. For 
example, you’re processing an object that may or may not exist, and you need the 
pointer to be allowed to be “NULL” if there’s no object. This should occur rarely, 
and references should be preferred in many cases. 

And finally, references aren’t very useful when you’re trying to scan through the 
data in vectors, matrices, or tensors in an AI engine. You can’t do pointer arithmetic 
on a reference in C++. 
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47. Algorithm Speedups 

Algorithm Optimization Techniques 

This chapter presents some of the theory of the general techniques for optimizing 
algorithms. Changing the underlying algorithms used by the program is often the 
only real way to gain a large speed increase.  

In particular, the algorithms and data structures used can often be modified to give 
a significant speed increase. Is there a better way to do what your program does? Is 
it doing too much unnecessary calculation? Although much depends on the 
programmer’s ingenuity, there are some common techniques for improving 
performance of algorithms. 

• Parallelization and vectorization 

• Precomputation (save time by using space) 

• Recomputation (save space by using time) 

• Caching and computation reuse 

• Greedy algorithms (immediate computation) 

• Skipping algorithms 

• Arithmetic strength reduction 

• Integer arithmetic 

• Change recursion to loops 

• Incremental algorithms 

• Choose a better data structure 

The idea of “skipping” computations also has various sub-methods: 

• Lazy algorithms (delay computation until needed) 

• Common case first 

• Simple case first 

• Approximate tests first 
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Lookup Table Precomputation 

Lookup tables are so widely used in AI engines that they’re usually abbreviated as 
LUTs. The aim is to precompute results and replace frequently called costly 
function evaluations with table lookup (i.e., array references). Note that this use of 
precalculation is only worthwhile if some calculations are repeated and computing 
the same result. 

As an example, we can replace a call to “sqrtf” with a precalculated table of square 
roots. In the subsequent calculations where square root is needed, a call to 
the sqrtf function is replaced by a table lookup. 

The precalculation uses two separate functions: one to perform the precalculation, 
and another to access the values by table lookup. The precalculate function must 
be called once via a global initialization routine for the class. Alternatively, every 
call to the square_root function could self-check a static Boolean flag indicating 
whether the values have been precalculated yet, and call the precalculate function if 
not, but this is needlessly slower for every access. 

Even more efficient is to use “offline precomputation” before your program even 
runs. This is a more efficient method whereby the data is not precalculated during 
initialization of the program, but is done earlier in an “offline” mode (e.g., as part 
of your build process). For example, the precomputed results are either stored to a 
data file, or converted to a C++ source file that is linked. 

Another good example of precalculation is the Boolean functions on characters 
(e.g., isupper). To improve performance, it is possible to implemented these 
functions as a precomputed array of 256 bool values, or 256 bytes with 0 
if isupper is false, and 1 if isupper is true. Then isupper is evaluated by 
indexing the character into the precomputed table: 

    #define isupper(ch) ( precomputed_array[ch] ) 

In fact, many C++ compilers implement the isupper test and other functions 
in <ctype.h> as a table lookup over the 256 character values (plus an extra one 
for EOF), with a precalculated single bit flag per function — that is, one bit 
indicating isupper, another bit for islower, etc. 
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Lazy Evaluation 

The idea of lazy evaluation is a slight amendment to precalculation or data structure 
augmentation. Full precomputation during program startup can be inefficient when 
only some of the values are needed. 

Lazy evaluation works in a “lazy” manner, by only doing work when asked. Instead 
of precalculating every result, results are calculated only as needed. To use this 
method, some way is needed of indicating whether a result is already in the table. 
When seeking a result, it is necessary to check if the required value is already present. 
If so, table lookup is used to get the result. If not, the value must be calculated, 
stored in the table and that entry marked as present. 

The precomputation of sqrtf can be modified to become lazy evaluation by 
adding another array of Boolean flags, indicating which of the square roots have 
been computed. When calculating a square root, the function checks if it has been 
computed, and calculates it if not. 

    float square_root_lazy_eval(int n) 

    { 

        static float sqrt_table[NUM_PREC + 1]; // values 

        static bool precalc[NUM_PREC + 1];     // flags 

 

        if (!precalc[n]) { // precalculated? 

            sqrt_table[n] = sqrtf((float)n); // real sqrt 

            precalc[n] = true; // Mark as computed 

        } 

        return sqrt_table[n]; 

    } 

The use of lazy evaluation is slower than complete precalculation if all of the values 
are eventually calculated, because of the overhead of checking whether calculation 
is needed. Also, there’s only an efficiency gain for values that are calculated twice 
or more. However, lazy evaluation can make the program faster overall if not all 
calculations are needed, but some are needed many times. Any unnecessary 
calculations are avoided. How lazy! 
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Source Code Precomputation 

The examples of the precomputation of square roots in the previous two sections 
are not particularly efficient because they must still call the sqrtf function a 
number of times. A far more efficient alternative is to use C++’s compile-time 
initialization of arrays to set up the precomputed sqrt_table array inside the 
C++ source code. Hence, the square_root function becomes a simple lookup into 
an array variable as follows. Note that the array is declared as “static” so that the 
initialization occurs at compile-time. 

    float square_root_precalc(int n) 

    { 

        const int NUM_PRECALC = 100; // Precalculate to 100 

        static float sqrt_table[] = { 

          0.000000f, 1.000000f, 1.414214f, 1.732051f, 

          2.000000f, 2.236068f, 2.449490f, 2.645751f, 

          2.828427f, 3.000000f, 3.162278f, 3.316625f, 

          //... etc ..... 

        }; 

        if (n >= NUM_PRECALC) return sqrtf((float)n); 

        return sqrt_table[n]; 

    } 

The simplest way to produce the values for the precomputed array is to write 
another program to produce them. Once the values are produced, this program 
could be discarded, or it could be left in the build process. The following program 
was used to produce the declaration of sqrt_table used in the square_root 
function given above. The output from the following program was copy-pasted into 
the source code for the program above. 

    void generate_sqrt_table() 

    { 

        const int NUM = 100; // Precalculate to 100 

        printf("static float sqrt_table[] = {\n"); 

        for (int i = 0; i < NUM; i++) { 

            printf("%ff", sqrtf((float)i)); 

            if (i + 1 < NUM) 

                printf(", "); // comma after all but last 

            if (i % 4 == 3 && i + 1 < NUM) 

                printf("\n"); // newline every 4 numbers 

        } 

        printf("\n};\n"); // finish off declaration 

    } 
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Source code precomputation should always be more efficient than lazy evaluation 
and run-time precomputation. However, source code precomputation is only 
applicable when the function can be computed at compile-time (e.g., any 
“constexpr” function). If the computation involves any variables whose values 
are known only at run-time, either lazy evaluation or run-time precomputation may 
be needed. 

Incremental Algorithms 

It is often easier to modify what has already been done than to start from scratch. 
This idea can be used to write faster algorithms. However, changing an existing 
algorithm to use incremental calculations will usually require a total redesign of the 
algorithm. 

A simple example of an incremental algorithm is counting the number of symbols 
in a hash table. The non-incremental way to count them is to traverse the hash table, 
counting the number of entries along each hashed chain. The incremental method 
is to keeping a running count — increment it when a symbol is inserted; decrement 
it when a symbol is deleted. The incremental method is better if the count will be 
required many times. If the count is not required, there has been a small extra 
amount of unnecessary overhead. 

Another good example appears in graphics animation when managing the buffers. 
When displaying a new screen, it is usually more efficient to change the existing 
screen buffer than to redraw the whole screen. The idea is to set only those pixels 
that need to be changed. 

For another example, a chess-playing program uses a game tree and the minimax 
algorithm with a static evaluation function. This function usually analyses the 
material balance (i.e., how many pieces each side has), along with other chess 
strategy factors. A simple but inefficient method of computing the material value 
of a position is to add the values of each piece on the 64 squares.  

The efficient incremental algorithm is to subtract the value of the piece from a 
running count whenever any piece is captured by the opponent. 
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Common Case First 

When testing for a number of different conditions, it is best to test the most 
common case first. If it is true, the other tests are not executed. When using 
multiple if-else-if statements, place the common case first. For example, 
consider the binary search function: 

    if (key > a[i]) { 

        // ... 

    } 

    else if (key < a[i]) { 

        // ... 

    } 

    else { // equality 

        // ... 

    } 

Equality is least likely of all the three conditions, and hence it goes last. Greater-
than and less-than are more common, so they go first. 

The idea of common case first also appears in Boolean expressions using && or ||. 
The short-circuiting of these operators makes them very efficient when the 
common case is first. For ||, the most likely condition should be placed first (i.e., 
most likely to be true). For &&, the most unlikely condition should be placed first 
(i.e., most likely to be false). 

Simple Case First 

This method is similar to common case first — the idea is to test the simplest 
condition first. More complicated and time-consuming computations can be 
avoided if the first test succeeds (or fails, depending on the context). This idea 
appears in two main situations: 

• if-if construct (nested if statements), and 

• logical operators (&& and ||). 

The simplest test should be the first of a pair of nested if statements and should 
also be the first operand of a && or || operator. In the examples below, the sub-
expression “x!=0” is evaluated first because it is the simplest and hence the least 
expensive to evaluate.  
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This is the nested-if example: 

    if (x != 0) { 

        if (expensive_fn(x) != 0) { 

            // ... 

        } 

    } 

This is the && short-circuiting method: 

    if (x != 0 && expensive_fn(x) != 0) { 

        // ... 

    } 

Special Solution of Simple cases 

In addition to putting a simple case first, it can also be efficient to solve simple cases 
differently to the general case. When solving a problem, simple cases can often be 
solved by specially designed fast functions. These “special solutions” can involve 
table lookup of precalculated values (e.g., storing the first ten factorials in an array) 
or just a fast algorithm for small cases (e.g., sorting less than five numbers quickly). 

In general, the special solution of simple cases will give some speed increase if the 
simple cases are fairly common. The advantage of simple case precalculation over 
full precalculation is flexibility — it is not limited to those values that can be stored 
in a fixed size table. 

The use of table lookup for simple cases for the factorial function is shown below. 
The use of the method here gives speed increase for all cases, not just the simple 
ones, because the recursive definition of factorial eventually breaks the problem 
down to a simple case. 

    int factorial_precalc(int n) 

    { 

        const int NUM_PRECALC = 5; // How many 

        static int s_precalc[NUM_PRECALC + 1] =  

            { 1, 1, 2, 6, 24, 120 }; 

 

        if (n <= NUM_PRECALC) 

            return s_precalc[n]; 

        else 

            return n * factorial_precalc(n - 1); 

    } 
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Approximate Tests 

Many algorithms can be improved by avoiding complex calculations with a fast 
preliminary test that is often successful. This is a special type of common and simple 
case optimization combined. This method is only worthwhile when avoiding the 
complicated test is highly probable; if avoiding it is unlikely, the extra simple test 
reduces efficiency because it adds (slightly) to the run-time cost. 

Zero skipping. In an AI engine, a common example is “zero skipping.” A low-
cost test of a weight against zero can avoid the complexity of computing vector and 
matrix operations with that weight. 

Bounding Sphere Tests in Ray Tracing. As an example in 3D graphics, to 
implement a ray tracing algorithm for graphical image rendering, it is necessary to 
determine whether a ray strikes an object. Since the objects are often complex and 
more often than not the ray will miss an object by a large amount of space, a simple 
test can be used to quickly identify rays that are close enough to the object to 
intersect with it. A good simple test is to determine if the ray intersects with the 
bounding sphere of an object, as it is relatively efficient to determine this. If the ray 
does intersect the sphere, the more expensive tests are applied to determine if the 
ray intersects with the object. If the ray does not intersect with the sphere, the cost 
of the more expensive tests has been avoided. Interestingly, the simplicity of testing 
the intersection of a ray with a sphere helps explain why there are so many ray-
traced images of spherical objects. 

Bounding-box 2D collision detection. The similar idea of a bounding rectangle 
is useful for collision detection in coding 2D arcade games. Collision detection 
usually involves testing many pairs of objects in a two-dimensional setting, and the 
tests are complicated because of the different shapes of the objects. The more 
complicated tests can be avoided by examining whether the bounding rectangles of 
each object are intersecting. If they do intersect, then a closer examination of 
whether the objects have pixels that overlap is carried out. 

Rectangle Shapes. For yet another example of using a simple test to avoid 
complicated tests, consider the problem of a GUI-based drawing program. 
Typically, the user can select a vertex (e.g., the end of a line segment) by clicking 
“close” to the vertex. In other words, the user must click the mouse within a 
specified radius of the point. Hence, when the mouse is clicked, the program must 
compare the mouse location with all the currently active vertices. The obvious 
method is to use the distance formula for two points and apply the following test 
on the x and y coordinates of the mouse and all points. 
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Here's the code: 

   const float DISTANCE = 2.0f; 

   float diffx = xMouse - xPoint; 

   float diffy = yMouse - yPoint; 

   float distance = sqrtf( diffx * diffx + diffy * diffy); 

   if (distance <= DISTANCE) { 

        // clicked! ... 

   } 

Firstly, the efficiency of this test can be improved simply by avoiding the calculation 
of the square root. Squaring both sides of the equation gives the equivalent test: 

   float distance_squared = diffx * diffx + diffy * diffy; 

   if (distance_squared <= DISTANCE * DISTANCE) { 

        // clicked! ... 

   } 

However, the multiplications involved in computing the squares of the two sub-
expressions on the left are quite expensive, although the square on the right-hand 
side will be a compile-time constant. A simple test can be used to avoid the 
expensive multiplications in most cases. If the difference between either the x or 
the y coordinates is greater than DISTANCE, then the points cannot be close 
enough. Although the cost of these tests is quite high because the absolute value 
for the difference must be found, it should still cost less than two multiplications, 
and will be more efficient if there are many widely spaced points to be tested. The 
code using this idea is: 

    bool check_point_clicked(int xm, int ym, int xp, int yp) 

    { 

        const float DISTANCE = 2.0f; 

        int xd = xp >= xm ? xp - xm : xm - xp; 

        if (xd > DISTANCE) 

            return false; 

        int yd = yp >= ym ? yp - ym : ym - yp; 

        if (yd > DISTANCE) 

            return false; 

        return xd * xd + yd * yd <= DISTANCE * DISTANCE; 

    } 

Of course, algorithm improvements are even more effective. The best way for 
improving the efficiency of this program is to avoid the need for multiplications 
entirely, by changing the program specifications (!) so that the definition of clicking 
“close enough” to a vertex with a mouse refers to clicking within a square around 
the point, instead of a circle. Squares don’t need multiplication. 
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Augmenting Data Structures 

An interesting type of caching is where the data is stored inside the main data 
structure, rather than in a separate cache. Instead of recalculating derivative data 
every time you need it, a faster way is to store the data in the data structure. This is 
a form of caching that saves the time of recalculation, which need be done only 
once. If the data ever changes, the calculations must be redone and stored again. 
Hence, this method works best where data is unchanging, but can also tolerate 
modifications. 

As an example of augmentation, consider a struct defined to represent a line 
segment (e.g., in a CAD drawing program). The struct contains four fields, for the 
x and y coordinates of the start and end points: 

    struct line_segment { 

        int x1, y1; // Start point 

        int x2, y2; // End point 

    }; 

Consider the computation of the length of the line segment, using: 

    float flen = sqrtf((y2 - y1) * (y2 - y1)  

                     + (x2 - x1) * (x2 - x1)); 

If the length is a common calculation, it can be beneficial to cache the length of the 
line segment as an extra field in the struct: 

    struct line_segment { 

        int x1, y1; // Start point 

        int x2, y2; // End point 

        float length; // Length of line segment 

    }; 

Whenever this length is needed during calculation it is immediately available as a 
field member. However, it is important to be careful that there is no consistency 
problem (where the length field is not the true length of the line segment). The 
main danger is that the length field won’t be recalculated every time one of the 
other fields change. 
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48. Memory Reduction 

Optimizations 

Memory Reduction in C++ 

There are many general techniques for reducing the memory requirements of a 
C++ program. These techniques herein aim to reduce memory usage of a program 
so that: 

(a) your C++ does not waste too much time on memory management 
activity, such as allocating too much memory, and 

(b) your C++ code can execute on a low-memory platform, such as an IoT 
embedded device. 

In these days of cheap gigabytes of memory in every PC, memory reduction 
techniques are perhaps not as important as those for increasing speed. However, 
there are certainly situations when reducing space requirements is far more 
important than increasing the speed of a program. This section discusses a number 
of general techniques for reducing C++ memory requirements. 

Unfortunately, reducing space requirements can also lead to loss of speed. There is 
often a trade-off between space efficiency and time efficiency. Every C++ program 
uses memory for a number of different purposes, and each of these areas needs to 
be attacked separately. The memory usage of the program can be divided into the 
following memory sections: 

• Executable instructions 

• Static storage 

• Stack storage 

• Heap storage 

The executable instructions for a program are usually stored in one contiguous 
block of memory. Static storage refers to memory used by global and 
local static variables, string constants and (possibly) floating-point constants. 
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Stack storage refers to the dynamic storage of non-static local variables. Heap 
storage refers to the memory space that is dynamically allocated using the new and 
delete operators and the malloc/calloc/free standard library functions. 

The memory requirements for the executable instructions are largely independent 
of the other memory areas, whereas the techniques for reducing the memory 
required for the other three areas are often similar. However, care must be taken 
that applying a technique to reduce data space does not increase the amount of 
C++ code too greatly, thus increasing the executable size. 

Compact Data Representation 

Different algorithms may store data differently and thereby reduce memory 
requirements. There are many ways to represent data, and all have varying space 
usage. For example, storing all the primes less than 1000 can be done with a list of 
integers, a list of the incremental differences between successive primes, or a bit 
vector with one bit for each integer up to 1000. 

Different data structures. The program should be examined to determine if a 
large space reduction can be achieved by changing to different data structures. For 
example, the program could use arrays instead of linked lists or binary trees to avoid 
the extra space due to pointer storage. However, this also wastes more space if the 
array is not full, and it is even better to use dynamic arrays, which do not waste any 
storage, as exactly the right amount of memory is allocated. Unfortunately, using 
different data structures can sometimes reduce the time-efficiency of programs. 

Data compression. Compressing data can reduce space requirements when large 
amounts of data are involved. Hmm, let’s pause for a moment and try to think of 
an example application with lots of data. Just jump in whenever you’re ready. 

Billions or trillions of weights in an LLM are a good candidate. Model compression 
is the theoretical term and involves either using smaller data sizes (e.g., 8-bit integer 
weights instead of 32-bit float data) or “pruning” of weights we don’t need. More 
generally, data compression algorithms have been used in research on AI models, 
such as sparsity, run-length encoding and Huffman encoding. 

Proceduralization. Another data representation technique is to use a function to 
represent data. Instead of a list of the first 1,000 primes, you could create an 
“is_prime” function that contains a big C++ switch statement, with all the 
primes as case values, which return true. You could also write a piece of code to 
create this source code automatically. 
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Recomputation. Another example of proceduralization, consider storage for 
several images generated by a fractal algorithm: the simplest method of storing the 
images is to store them as large image files. But a much more space-efficient method 
is simply to store the values of any arguments passed to the function creating the 
fractal images. This way, the images can be recreated by calling the fractal generation 
function with the correct arguments. The only space used is a few extra values 
containing the arguments and the code instructions for the function. However, the 
recalculation of an image by this method is extremely time-inefficient. 

Reducing Data Size 

There are many techniques for reducing the size of program data. These techniques 
apply to all three types of memory — static, stack and heap storage. In some cases, 
a method may increase the memory storage in one area to decrease the memory 
usage in another, which is valid only if the total storage requirements decrease. 

Use char arrays not std::string. The use of std::string is very 
convenient, but if your program has many strings, the extra storage used by 
the string objects can add up. Consider managing your own raw char arrays as 
C-style strings if you really need the space. 

Avoid max-size arrays or buffers. When using an array data structure or buffer, 
there is temptation to be lazy and just make it bigger than it will need to be. Avoid 
this temptation and optimize the memory usage properly. Change an oversize array 
into a dynamically allocated array, if size can be determined easily at runtime. 

Smart buffers or smart array classes. An alternative to using an oversize array or 
buffer is to create “smart” classes that manage this, by automatically extending the 
array or buffer if more elements are needed. The std::vector class is a good 
way to do this. 

Bit vectors. These can be used where information can be reduced to a single 
Boolean value, such as bit flags or masks. The use of bit vectors is very compact in 
terms of space, and there are standard C++ libraries to implement these efficiently. 

Unions. When using a lot of structures, space can be reduced by overlaying the 
data fields. This can only be done if the fields to be overlayed are mutually exclusive 
(i.e., they never have active data in them at the same time). There is a special C++ 
data type for this purpose: the union. 
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Linearize multi-dimensional dynamic arrays. Use the simpler and smaller size 
of a one-dimensional array, with the two-dimensional structure mapped onto it with 
index calculations. This adds more runtime cost, but saves space over multiple 
levels of dynamic array allocations. 

Reusing space. One way to conserve memory is to reuse the space used by a 
variable. The union data type is an example of this general idea, and another is 
reusing variables for different purposes. For example, rather than letting several 
functions each have a local temporary buffer, they could all use the same global 
variable (although this is a very dangerous practice). As another example, if a 
program uses two similar arrays, examine whether the two arrays can share the same 
storage (possibly as a union). Note that I don’t recommend any of these 
approaches: too dangerous! 

Small data types: short, char. Instead of using arrays of int, use arrays 
of short, char or unsigned char. There is no problem with this method, 
provided large integer values are not being stored (e.g., larger than 127 for char, 
or larger than 255 for unsigned char). This technique is also worthwhile when 
applied to int fields in objects although alignment restrictions may limit the 
improvement — use the sizeof operator to determine if the size of the object has 
been reduced. Smaller local variables could also be declared as a smaller type, but 
this may increase the executable size due to type conversions. Note that speed can 
be compromised by using smaller data types because of the type conversions that 
often result. Similarly, use float instead of double, where the greater precision 
of results is not important (e.g., an AI model). 

Bit-fields in objects. When storing small integers in objects or structures, there is 
a way to specify exactly the number of bits required. These types are called “bit-
fields” and can only be used for fields inside objects, structures or unions. You 
cannot declare a local variable with a bit-field type. When using bit-fields, small 
integers or Boolean flags are automatically packed into a struct or union. This 
reduces storage requirements significantly, but reduces speed because it is necessary 
to pack and unpack bits. 

Parallel arrays versus arrays of objects or structures. Because of alignment 
restrictions, an object or structure may have unusable extra padding bytes. The 
number of padding bytes can be determined by using the sizeof operator, and 
subtracting the sizes of each individual field from the size of the object. If there are 
padding bytes, replacing an array of struct with a number of “parallel” arrays 
removes the need for this padding. 
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Packing. When dealing with large arrays of small integers, it can be more efficient 
to pack them together (i.e., more than one value per word), particularly when the 
information is binary (true or false), because only one bit per value is needed. The 
easiest way in C++ is to use std::bitset. Note that bit-fields are a method for 
packing provided by the compiler that can support more than one bit. They are also 
much easier to use than coding it yourself. 

Packing object arrays with #pragma pack. Microsoft C++ compilers support 
the “#pragma pack” preprocessor directive, which can specify the packing and 
alignment characteristics of an object. This can allow arrays of these objects to be 
packed more closely into storage. 

Reordering fields in objects and structures. Because of the word alignment on 
some machines, the order of fields in an object or structure can change the total 
size of the object. This only applies to objects containing different size fields. A 
general rule for minimizing the space is to order the fields from largest to smallest. 
This heuristic may not give the best ordering — examine the size of a few different 
orderings using the sizeof operator, if space is crucial. This is a machine-
dependent optimization, and may not work well on some machines. 

Store integer codes instead of string names. If you’re storing a string to 
represent some particular type or a limited set of names, or something with a finite 
set, then you can use an enum instead. If you need to generate the actual string 
name, use an array lookup or a switch statement to return the equivalent string 
constant. For example, when dealing with AI word tokens, which are indeed fixed 
and finite, use the integer token code without storing the word as a string, while 
maintaining a single copy of the vocabulary strings (which you need anyway for the 
tokenizing algorithm). 

Measuring Code Size and Static Storage 

In general, it is more difficult to measure how much space a program is using than 
to measure how much time it is using. However, most environments provide some 
means of determining the size of instructions and static data in an executable 
program. If nothing else, the size of the executable file can be a reasonable guide. 

The size command. Under Linux and UNIX, a useful command is the “size” 
command, which examines an executable program and reports the memory used 
by its instructions and its global or local static variables. However, it does not 
(and cannot) report the stack or heap usage because the amount of such memory 
used is dynamic, and hence cannot be found by analyzing the executable.  



David Spuler                                               498 
 

The command is simply: 

    size a.out 

This produces output similar to the following: 

    text data bss dec hex 

    20480 8192 0 28672 7000 

The “text” value refers to the machine code instructions for the program code. 
Both the “data” and “bss” areas refer to global and local static variables. The 
“data” area refers to variables which have been explicitly initialized with values (e.g., 
string literals or initialized global variables); the “bss” area refers to variables with 
implicit initialization which defaults to zero (e.g., global variables or arrays without 
non-zero initializers). 

Function Code Sizes: If the code size is needed on a per-function basis, Linux 
and most other UNIX environments support the “nm” command. Windows also 
supports the nm command. 

    nm a.out 

The nm command differs slightly across older UNIX variants, but will usually print 
out information including the start and end address of a function, from which the 
size of a function can be trivially computed. 

Link Maps: Window users may be able to use a “link map” report. This allows to 
find out about executable size by examining the output produced by some C++ 
compilers at the link stage (although not all compilers will produce useful output).  

For example, the DOS “link” command with the “/map” option can be used 
when linking the object files: 

    link /map *.obj 
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Code Bloat 

The size of the executable depends on the size of your C++ source code. Hence, 
the obvious way to reduce executable size is to go to the beach.  

Take a day off! Stop writing code, for goodness sake! 

Remove unnecessary code. Methods to reduce the number of executable 
statements in your program could involve deleting non-crucial functions from the 
program, and eliminating any dead code or old redundant code that has been “left 
in” for various reasons. The use of compile-time initialization of global 
and static variables instead of assignment statements is another method for 
reducing code size. Turning off debug code such as assertions, debug tracing, and 
self-testing code can also work, but this loses the supportability benefit of shipping 
a fully testable version. 

Compile-for-space options. Another possibility is that your compiler may 
support an option that causes the optimizer to focus on space reduction. This 
causes it to generate executable instructions that are as compact as possible, rather 
than being as fast as possible. 

Avoid using large libraries. Pay attention to what code libraries you are linking 
with. Some of them are quite extensive, and may be much more than you need. Try 
to use the basic standard libraries as much as possible. 

Template overuse. Templates are a common cause of “code bloat” and their 
usage should be reviewed. This is particularly true if you are using an integer-
parameterized template in order to gain compile-time efficiency, or an approach 
such as Template Meta-Programming (TMP). If these templates are used with a 
large number of constant values, many copies of the template’s executable code will 
be generated. 

Avoid large inline functions. Overuse of inline functions has the potential 
to create more executable code. Try to limit your use of inline to small functions 
where the overhead of the function call is significant compared to the relatively low 
runtime cost of the function body. Don’t inline large functions that are doing lots 
of processing each call. 
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Inline tiny functions. Although inlining large functions can cause code bloat, the 
reverse is usually true for very small functions. All of those getter and setter member 
functions have about one instruction. The code generated from an inlined call to 
these tiny functions may be much smaller than the instructions to call a real 
function. 

constexpr is inline, too. Remember that constexpr functions are also 
effectively a type of inline function. Again, try to limit these to relatively small 
functions. If a constexpr function is called with non-constant values, or is 
beyond the compiler’s ability to properly inline, then multiple copies of the 
executable code may result. 

Library linkage. The size of the executable depends not only on the C++ code, 
but also on the extra library functions that are linked by the linker. Although it may 
seem that the programmer has no control over this, there are some techniques for 
reducing the amount of linked code. The techniques depend largely on how “smart” 
your linker is — that is, whether the linker links only the functions you need. 

Use DLLs for common libraries. Dynamic link libraries (DLLs) are one way to 
reduce the size of the executable, because the library executable code is loaded at 
runtime. If the DLL is a commonly used library, such as the standard C++ runtime 
libraries, not only will your executable smaller, but it’s also efficient at runtime 
because it will be loaded only once into memory, even if many programs are using 
the code. However, making your own special code into a DLL isn’t likely to offer 
much memory benefit at runtime, since it will simply be loaded dynamically rather 
than immediately at load-time. However, if it’s a library that isn’t needed in many 
invocations of your program, you can save memory by deferring loading of the 
library until you can determine whether it will be required. 

Remove executable debug information. Executable size can be reduced by 
avoiding generation of the “debug” information and symbol table information. For 
example, with GCC don’t use the “-g” debugging information or “-p” profiling 
instrumentation options. Linux programmers can also use the “strip” utility 
which strips symbol table information from the executable after it has been created. 
However, the extra symbol table information is more relevant to the amount of 
disk space the executable file uses than to the amount of memory it uses during 
runtime execution. 
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Reducing Static Storage 

Static storage refers to the memory for global and local static variables, string 
constants and floating-point constants. All of the general size-reduction above can 
reduce the size of the global and static variables. 

String literal static memory. The space requirements for string constants can be 
reduced if the compiler has an option to merge identical string constants (which 
arise quite frequently).  

If there is no such option, or the option does not merge string constants across 
object files (which is quite likely), merging string constants can be achieved by the 
programmer, although the method is far from elegant. For example, including this 
variable in a header file and using it in multiple source files may create multiple 
copies of the string literal: 

    #define TITLE "A very long string ... " 

Instead, a global variable can be declared to hold the string constant and the name 
of this char array is used instead of the string constant. In modern C++ you can 
use “inline variables” to avoid linker problems with multiple definitions. 

inline const char TITLE[] = "A very long string ... "; 

This change is unlikely to reduce the speed of the program, nor does it increase 
memory requirements even if TITLE is used only once (there may seem to be an 
extra 4 bytes to hold a pointer value pointing at where the string of characters is 
stored, but this is not so). 

Large global variables. If there is a large global or static variable or array, the 
amount of static storage can be reduced by allocating it on the heap 
using malloc or the new operator, or by making it an automatic variable.  

This is particularly useful if the object has a short “lifetime”, in the sense that it is 
used only briefly (e.g., the array is used as temporary storage inside a function). 
When the variable is used all the time, this change doesn’t reduce the overall space 
problem, but simply moves the problem to another area. 
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Stack Usage 

Stack storage refers to memory storage used for function calls, and includes (non-
static) local variables, function parameters and system information used to keep 
track of function calls. Hence, the basic methods of reducing stack storage are: 

• Use fewer and smaller automatic local variables. 

• Use fewer and smaller function parameters. 

• Use “const&” to pass objects by reference. 

• Use global or static local variables instead. 

• Reduce the depth of function call nesting. 

• Avoid recursion (always). 

Data sizes. The size of parameters and local variables can be reduced using the 
general methods of using smaller data types. Another method is to avoid passing 
large objects and to only large objects by reference (which is faster anyway). Don’t 
use large arrays or buffers as local variables, but prefer allocated buffers or global 
buffers, or declare them as local static variables. 

Fewer parameters. The number of parameters can be reduced by using global 
variables, or by packing a number of parameters into an object and passing the 
whole object (which is often faster, too). 

Fewer local variables. The number of local variables can be reduced by re-using 
local variables, although this can introduce bugs if not enough care is taken. 
Common examples of reusable variables are scratch variables, such as temporaries 
or for loop index variables. Another method of reducing the number of local 
variables is to use parameters as if they were local variables (this is safe because of 
call-by-value). Overall, most of these suggestions are minor improvements, unless 
you’re using very large arrays or objects as local variables. 

Flatten call hierarchies. Reducing the depth of function call nesting (especially by 
avoiding recursion) also reduces stack space requirements. This can be achieved by 
using preprocessor macros or inline functions (but this may increase code size). 
You can also refactor your code to avoid too many layers of wrapping functions in 
interfaces. Naturally, recursion should be avoided as much as possible by using 
iterative loop algorithms or tail recursion elimination. 
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Reducing Heap Usage 

Your C++ IDE should support tools that track heap or stack usage dynamically. 
For example, MSVS has a “heap profiler” tool that you can enable. Linux tools such 
as Valgrind can be very usual to examine heap memory usage. The amount of heap 
storage depends on the size of blocks, the number of blocks and how quickly blocks 
are deallocated. The size can be reduced using the general techniques of reducing 
data sizes (e.g., small data types, packing, unions). 

Fewer allocation calls. The number of heap blocks affects heap usage in the 
obvious way (more blocks means more memory) and because of the fixed space 
overhead of a few hidden bytes to store information about the block (so 
that delete or free can de-allocate it). When small blocks are used, it can be 
useful to pack more than one block together to avoid this fixed overhead. 

Avoid small frequent allocations. If your frequently-used class allocates a small 
amount of memory in a constructor and then deallocates it in the destructor, 
consider alternatives. Small amounts of data could be stored in extra fields. 

Memory leaks waste memory. Obviously, avoiding memory leaks which are 
never returned to the heap is important to reducing heap memory usage. There are 
many tools and debug libraries available to detect leaks, and ongoing use of these 
tools will reduce overall heap fragmentation. 

Early deallocation of memory. It’s a win if you have avoided leaking the memory, 
but that’s not the end of the story. All allocated memory should be returned to the 
heap as early as possible. If memory is not deallocated, unused memory (called 
“garbage”) can accumulate and reduce the available memory. 

Avoid realloc. Measure and manage any calls to realloc, as they can be a 
significant cause of heap memory fragmentation. And they’re also not time-
efficient, so reducing them is a win-win. 

Manage std::vector sizes via “reserve”. The “resize” operations in the 
container std::vector can lead to lots of extra unnecessary allocation requests. 
Judicious use of the “reserve” function can avoid this. 

Linearize multi-dimensional allocated arrays. One big allocation of a linear 
array is much more efficient on the heap than allocating separate blocks for rows 
or lower-dimensions of the array. An array of pointers into the linearized large block 
is only one more allocation, and has the same efficiency as having each pointer be 
a separate dynamically allocated subarray. 
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Smart buffers. Use objects that contain a limited amount of memory, which is used 
for the typical cases. If a longer string, or larger array is required, it needs to allocate 
memory. Overall, this can massively reduce the number of blocks. 

Memory fragmentation. Reduce memory fragmentation by reducing both 
allocations and deallocations. It’s also important to manage the different sizes of 
allocations, as varying block lengths cause more fragmentation. 

Per-class allocators. In severe situations, take control of your class’s dynamic 
objects by defining your own per-class allocators. Since the allocators knows that 
all block requests will be the same size, it can not only be faster, but also better at 
reusing memory blocks and avoiding memory fragmentation. But this method can 
also be a big fail if coded lazily to first allocate one huge chunk of memory. These 
allocators should dynamically manage requests for more storage, using a reasonable 
incremental size, rather than guessing their maximum requirements up front. 
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49. Loop Vectorization 

Sequential vs Parallel Loop Optimizations 

Loops are often sources of inefficiency and can be optimized in numerous ways. 
And the basic algorithms for neural networks are full of loops, with nesting to 
multiple levels in tensor operations. Increasing throughput of GPU data processing 
is one of the main goals achieved by loop optimizations. 

Not all loop transformations are created equal. Some of them are best for sequential 
code optimizations, whereas other loop transformations are used to parallelize 
loops for vectorization. Loop transformations that are good for both sequential and 
parallel loop optimization include: 

• Loop unrolling —reduce test overhead and parallelize the body. 

• Loop peeling — unroll the first few iterations. 

• Loop coalescing — flatten nested loops. 

• Loop splitting — split out subportions of the iteration range. 

• Loop collapsing — another way to flatten nested loops. 

• Loop interchange — switch inner and outer loop iterators of nested loops. 

• Loop reordering — change the ranges of inner and outer nested loops. 

Some loop transformations are mainly for sequential improvements, and are not 
parallelization in themselves. However, these techniques can sometimes help with 
parallelization if they enable another followup loop parallelization optimization. 
Loop transformation optimizations which tend to be good for sequential code 
optimizations but not parallelization include: 

• Loop fusion — combine or “fuse” the bodies of two loops. 

• Duff’s device — amusing but impractical coding trick for loop unrolling. 

• Loop code motion — move or “hoist” loop-invariant calculations from 
the loop body to pre-loop initialization. 

• Loop perforation — randomly skip some loop iterations; it’s really a thing. 

• Loop sentinel — fake it till you make it. 

• Loop iterator strength reduction — change “*” to “+” if you can. 

• Loop reversal — going backwards, and yet, still making progress! 
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Parallelizing loop optimizations with a main goal of vectorization of the loop body 
include: 

• Loop fission — opposite of loop fusion; split a single loop body into two. 

• Loop tiling — process sub-parts of contiguous data in separate loops. 

• Loop distribution — split two sub-parts of a loop body into two simpler 
separate loops. 

Loop Fusion 

Loop fusion is a well-known code optimization where two separate loops are 
merged into a single loop. This does not change the amount of in-loop computation 
in either loop body, but reduces the loop overhead of the exit test by half. There is 
also often a benefit from data locality that reduces data movement and temporary 
data storage, which can also improve overall speed. 

Note that loop fusion is not great at vectorization, because complicated loop bodies 
are actually harder to parallelize. Most of the benefits arise in traditional sequential 
code execution, which is why its theory dates back many decades. For modern 
parallel execution on GPUs, loop fusion is often a poor choice, and more benefits 
may arise from loop fission (the opposite of fusion) and loop vectorization. 

Example: Loop Fusion: The general idea is to combine the body of two loops 
into a single loop. Here is a simplistic example with the (non-fused) loops for 
initializing two vectors using two sequential loops: 

   for (i = 0; i < n; i++) v1[i] = 0; 

   for (i = 0; i < n; i++) v2[i] = 0; 

And here is the version with loop fusion: 

   for (i = 0; i < n; i++) { 

       v1[i] = 0; 

       v2[i] = 0; 

   } 

Note that the loop fusion version incurs the same number of assignments for 
initialization, but only half of the loop overhead cost (i.e., half of the “i < n” and 
“i++” operators have been optimized away). And for the sake of argument, let’s 
pretend that we don’t know a better way to initialize a vector data structure in C++ 
like memset or calloc or load-time static variable initialization. 
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Loop Perforation 

The intentional introduction of randomness to executable code is known as a 
“stochastic” algorithm. Personally, I’m more familiar with the unintentional 
introduction of randomness, otherwise known as a “bug,” but now when it happens 
you can tell your boss that you were adding “stochastic functionality.” 

Code perforation is an optimization technique that trades accuracy for speed, by 
randomly (ahem, I mean, stochastically) skipping some computations. Essentially, 
using loop perforation is similar to an approximation with a random element, but 
in a generalized way for any iterative code. It’s kind of like how teenage children 
randomly skip their homework. 

Loop perforation skips iterations of a loop in a probabilistic manner. Randomly 
skipping some percentage of the loop bodies doesn’t sound like a good plan, but it 
has its merits. In an AI inference computation, there’s so much going on that no-
one’s going to notice a few missed beats. Apparently it can even be useful. Well, at 
least it’s faster to do nothing. 

Example: Loop Perforation: Here is an example of adding loop perforation to a 
vector dot product computation. This is an incredibly slow version, and is not 
recommended, but is just to give the idea of skipping a percentage of the iterations: 

    float aussie_vecdot_perf(float v1[],float v2[],int n,int pc)    

    { 

        // Loop perforation -- vector dot product 

        float sum = 0.0; 

        for (int i = 0; i < n; i++) { 

            if ( ( rand() % 100 ) + 1 <= pc) { 

                // This iteration is perforated... 

                continue; // Skip it... 

            } 

            sum += v1[i] * v2[i]; 

        } 

        return sum; 

    } 

Loop Unrolling 

Loop unrolling is a code optimization where the body of a loop is repeated in 
sequential code. This speeds up the algorithm because the overhead of both the 
incrementer and the loop iteration test is avoided.  
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In some cases, the entire loop can be unrolled, usually when the loop iterations are 
finite and known at compile-time. In other cases of partially unrolling, the loop 
body can be repeated multiple times, and thereby the loop test only occurs every 
few iterations. 

For an AI engine, loop unrolling is used as an optimization in a few places. It is one 
of the optimizations used by kernel fusion, along with loop fusion and others. Since 
many meta-parameters of AI models are finite and fixed numbers (e.g., the “model 
dimension”), there are many cases where an entire loop can be unrolled and then 
vectorized into the GPU. 

The logical extension of loop rolling is done by machine learning compilers, at least 
from a conceptual point of view. These ML compilers unroll the inference loop and 
the lower-level loops in matrix operations, thereby creating a finite graph 
representation of the entire inference sequence. If all is unrolled, there are no loops 
in the graph (an “acyclic” graph) and it is of finite size. The process of model 
inference is propagation of data through the graph. There are many “graph 
optimizations” that can be made on this graph representation of the AI model. 

Example: C++ Loop Unrolling of Vector Dot Product. Here is the basic C++ 
non-unrolled vector dot product code: 

   float aussie_vecdot_basic(float v1[], float v2[], int n) 

   { 

        // Basic vector dot product 

        float sum = 0.0; 

        for (int i = 0; i < n; i++) { 

            sum += v1[i] * v2[i]; 

        } 

        return sum; 

   } 

If we know the value of n, e.g., that n=5, then we can completely unroll it: 

   return v1[0] * v2[0] 

        + v1[1] * v2[1] 

        + v1[2] * v2[2] 

        + v1[3] * v2[3] 

        + v1[4] * v2[4] 

        ; 

If we don’t know the value of n, we can still unroll multiple iterations. Here’s an 
example of 4-level loop unrolling of vector dot product in C++ by assuming 
that n is a multiple of 4: 
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   float aussie_vecdot_unroll4(float v1[],float v2[],int n) 

   {    // Loop-unrolled Vector dot product  

        if (n % 4 != 0) { 

            aussie_assert(n % 4 == 0); 

            return 0.0; // fail 

        } 

        float sum = 0.0; 

        for (int i = 0; i < n; ) { 

            sum += v1[i] * v2[i]; i++; 

            sum += v1[i] * v2[i]; i++; 

            sum += v1[i] * v2[i]; i++; 

            sum += v1[i] * v2[i]; i++; 

        } 

        return sum; 

   } 

And here’s a generalization of that 4-level unrolling with extra code to handle the 
leftover cases if n is not a multiple of 4. Although the extra cases look messy, they 
are not actually the main performance bottleneck. 

  float aussie_vecdot_unroll4b(float v1[],float v2[],int n) 

  {    

      // Better loop-unrolled Vector dot product  

      int i = 0; 

      float sum = 0.0; 

      if (n % 4 != 0) { 

          // Handle the extra cases... 

          switch (n % 4) { 

          case 1: sum += v1[i] * v2[i]; i++; 

              break; 

          case 2:  

              sum += v1[i] * v2[i]; i++; 

              sum += v1[i] * v2[i]; i++; 

              break; 

          case 3: 

              sum += v1[i] * v2[i]; i++; 

              sum += v1[i] * v2[i]; i++; 

              sum += v1[i] * v2[i]; i++; 

              break; 

          default: aussie_assert_not_reached(); break; 

          } // end switch 

          // Keep going with rest of the vector 

      } 

      for (; i < n; ) {  // Unrolled 4 times... 

          sum += v1[i] * v2[i]; i++; 

          sum += v1[i] * v2[i]; i++; 

          sum += v1[i] * v2[i]; i++; 

          sum += v1[i] * v2[i]; i++; 

      } 

      return sum; 

    } 
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This code is just an example for explanation. There are various further code 
optimizations that can be done for production-level efficiency. For parallelization, 
the loop body should call an intrinsic function to vectorize the method. For an AI 
engine, we could choose our model dimension and other meta-parameters as 
multiples of the loop unrolling factor, and thereby avoid ever having any of the 
“leftover” cases. 

For sequential code, we could change it to use pointer arithmetic rather than array 
indices, we might try replacing the four i++ operators with i+=4, change the 
integer modulo operator (%) to a bitwise-and operator test (i.e., use “n&3” not 
“n%4”, which works since 4 is a power-of-two), and it also might be better to use 
“+” rather than the “+=” operator. Finally, if we carefully code the leftover cases, 
the main loop could be unrolled to many more levels than just four. 

Duff’s Device for Loop Unrolling 

There’s a neat coding trick called “Duff’s Device” for loop unrolling, which uses 
a switch with case fallthrough to mimic assembler coding style. However, it’s 
not great for vectorization as it’s likely to confuse the compiler, so may be mostly 
of theoretical interest. 

    float aussie_unroll4_duff(float v1[],float v2[], int n)   

    { 

        // Unrolled dot product with Duff’s Device  

        int i = 0; 

        float sum = 0.0; 

        switch (n % 4) { 

            for (; i < n; ) { 

                case 0: sum += v1[i] * v2[i]; i++; 

                case 3: sum += v1[i] * v2[i]; i++; 

                case 2: sum += v1[i] * v2[i]; i++; 

                case 1: sum += v1[i] * v2[i]; i++; 

                default:; 

            } // end for 

        } // end switch 

        return sum; 

    } 

What’s happening here? My brain hurts looking at this code! The trick is that the 
outside switch branches into a case that is inside the body of a for loop. This 
is not normal everyday coding, because there’s a loop inside a switch, and the 
loop body crosses over several case statements.  



511                             C++ Ultra-Low Latency 
 

Also, none of the case statements has a “break” statement and they instead rely 
on fallthrough semantics. Similarly, the “default” clause is mainly just to avoid 
getting a spurious compilation warning (i.e., “missing default”), and also has no 
“break” with only a lonely semicolon. Note also that the case labels are written 
in reverse order from top to bottom (3..2..1), except for 0 at the top. 

How does this even work? The first point is that it does. This code performs the 
exactly correct number of iterations for any value of n (except n==0), and similar 
versions with an unrolling factor of more than 4 will also work (i.e., if you change 
“n%4” and add more case constants). The code looks like a hack, but actually uses 
standardized C++ semantics of case fallthrough and switch multi-way control 
flow and should work on all platforms. Branching into the middle of a loop with a 
switch is valid in C++ provided it doesn’t bypass any local variable initialization 
(hence, don’t put “sum” into the switch). Also, the case fallthrough semantics 
(i.e., without a “break” ending each “case”) are standard for C and C++ since 
inception. Finally, note that this code is buggy for n==0, because it incorrectly does 
4 iterations, so it ideally needs a parameter validation assertion at the start. 

Bug alert! Note that you cannot tweak the “i++” instruction using the standard 
idiom: 

   sum += v1[i] * v2[i++];  // Bug! 

The obscure problem is that the “*” operator doesn’t guarantee left-to-right 
evaluation of its operands. The code assumes a computation evaluation order 
of: v1[i], v2[i], *, i++, starting from the left. However, the C++ optimizer can 
legally do this order of operations: v2[i], i++, v1[i], *, which is not what you 
intended and gets the wrong array element for v1[i].  

This code might be unreliable across platforms, or it might work in the debugger 
mode, but fall over once you turn on high levels of optimization. So, there is an 
“order of evaluation” pitfall if you put “++” in an operand of the “*” operator or 
many other binary arithmetic operators. 

Is Duff’s Device any faster? The short answer is “not really,” although it looks 
very appealing (or appalling). Firstly, note that this trick is not actually very useful 
for vectorization, because a switch cannot branch into the middle of a vectorized 
intrinsic (i.e., if you replace the loop body with a SIMD instruction). Furthermore, 
although I haven’t tested it, I doubt many optimizers will be able to auto-optimize 
that complex control flow with SIMD instructions. In sequential code, this method 
also isn’t much faster, as it doesn’t really have any fewer operations than a basic 
unrolled loop (i.e., with extra cases handled separately before or after the main 
loop).  
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The above example of Duff’s Device can be further sped up using pointer 
arithmetic and “looping down to zero” optimizations, but so can the other unrolled 
versions. However, there is a minor speed advantage in terms of “instruction 
locality” because the above code is very concise. 

The main advantage of Duff’s Device is to bamboozle your colleagues. You can 
use Duff’s Device with any unrolling factor, not just 4 as in the example shown 
above (e.g., change to 8 by using “n%8” and adding cases for 4, 5, 6, and 7, ordered 
from 7 down to 1, leaving 0 on top). Actually, the unrolling factor needn’t be a 
power-of-two. Make it a prime number for extra bonus points. If you want more 
of this kind of coding trickery, also search up Jensen’s device and Pigeon’s device. 

Loop Tiling or Blocking 

When you hear about a “tiled MatMul” or a “blocked GEMM,” this is the “tiling” 
or “blocking” optimization method it refers to. MatMul is matrix multiplication and 
GEMM is General Matrix Multiplication (i.e., the same thing). Tiling is the 
optimization that most applies to speeding up matrix or tensor multiplication in AI 
engines. 

This optimization is for two-dimensional data (e.g., matrices). When you hear 
“tiles” or “blocks,” think squares or rectangles of data. For example, if you have a 
512x512 matrix, then a tiled algorithm might act on 16x16 sized chunks, one at a 
time. Loop tiling is an optimization of two-dimensional or three-dimensional data 
such as matrices or tensors. The one-dimensional equivalent of processing sub-
parts of a one-dimensional array is called “strip mining”, “loop sectioning” or often 
simply “vectorization.” 

In other words, tiling means operating on small subsections of a matrix. If you hear 
“tiled tensor” that could mean two-dimensional data (i.e., just a fancy name for a 
matrix), or alternatively it might refer to three-dimensional data, in which case, don’t 
think anything or else your head will hurt. 

Loop tiling is a method of executing sub-parts of nested loops in a way that 
maximizes data locality, increases cache utilization, and improves parallel execution. 
This is also called “loop blocking” because it processes the data a “block” at a time, 
although the term “tiling” is more widely used in research. The two-dimensional 
sub-partitions of the data that are square or rectangular are called “tiles” or 
“blocks”. 
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The same number of arithmetic operations are performed in a tiled versus non-tiled 
algorithm. However, there should be fewer loads of the data into memory with 
tiling. The downside is that tiling introduces additional loop overhead. In fact, 
rather than flattening nested loops over a 2-D array (e.g., 512x512), tiling often 
introduces additional levels of nesting! The two small loops that spin through the 
16x16 square shape of a single “tile” or “block” are often newly added inner loops. 
So, loop tiling often adds two new layers of nested loops inside your already-nested 
loops. It makes you wonder how it can even be faster! 

Example: Tiled Matrix Clear: For these examples, there is a type “ymatrix” 
type: 

    typedef float ymatrix[ROWS][COLUMNS]; 

If we forget about memset, here is the simple code to clear a matrix one element 
at a time in a brute-force nested loop (non-tiled): 

    void aussie_clear_matrix(ymatrix m) 

    { 

        for (int i = 0; i < ROWS; i++) { 

            for (int j = 0; j < COLUMNS; j++) { 

                m[i][j] = 0.0; 

            } 

        } 

    } 

Now we decide to add a 4x4 square tile optimization to this code. The result is an 
extra two levels of nested loops. Here is the basic code which assumes that the row 
and column dimensions are exact multiples of the tile size, so there’s no extra 
leftover cases to handle: 

    void aussie_clear_matrix_tiled(ymatrix m) 

    { 

        const int TILEX = 4, TILEY = 4; // 4x4 tile size 

        static_assert(ROWS % TILEX == 0, "Exact X"); 

        static_assert(COLUMNS % TILEY == 0, "Exact Y"); 

        for (int i = 0; i < ROWS; i += TILEX) { 

          for (int j = 0; j < COLUMNS; j += TILEY) { 

              // Do the 4x4 tile... 

              for (int tx=i; tx < i+TILEX; tx++) { 

                  for (int ty=j; ty < j+TILEY; ty++) { 

                      m[tx][tiley] = 0.0f; 

                  } 

              } 

          } 

        } 

    } 
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Unrolled Tiles. One followup optimization trick with a tiled loop algorithm is to 
apply loop unrolling to the two inner loops. This avoids the extra overhead of the 
two extra inner loops, but retains the data locality benefits of tiling. This 
optimization results in a fully “unrolled tile” computation without any extra inner 
loops. In the above example, the two inner loops of a 4x4 tile would be replaced 
with 16 unrolled computations in sequence. Or for a vectorized version, a fully 
unrolled tile would be 4 sequential calls to vectorized intrinsics that each do 4 
operations in parallel (e.g., AVX intrinsics each do 4 float operations in parallel). 

Example: Tiled Matrix Multiplication: Tiling techniques are widely used inside 
neural network code to improve the efficiency of MatMul and thereby get better 
throughput of tensor calculations from a GPU. Matrix multiplication is a good 
candidate for this optimization because it has O(n^3) arithmetic calculations, but 
uses only O(n^2) data. Hence, a naive matrix multiplication algorithm that doesn’t 
address locality will re-load the same data into memory many times, whereas a tiled 
algorithm can reuse the same data more efficiently. 

A tiled version of MatMul processes “tiles” or “blocks” of each matrix one at a time 
(i.e., small square or rectangular sections), with the aim of keeping small parts of 
the matrix in the memory cache while they are processed. The algorithm progresses 
across the matrix a tile/block at a time, rather than scanning all the way down one 
dimension (row or column). The same number of multiplication operations are 
performed as a non-tiled MatMul, but data locality and cache freshness should 
improve the overall speed. 

Loop Fission 

Loop fission is an optimization that is the opposite of loop fusion. Instead of fusing 
two loops into one, we take one loop and split parts of it into two loops. Loop 
fission also been called other names such as “loop splitting” or “loop distribution.” 

Loop fission can be more efficient for parallel execution (e.g., vectorization for 
GPUs), but is often slower for sequential execution. Whereas loop fusion aims to 
remove the overhead of one of the loops, loop fission tolerates an increased loop 
overhead in return for simpler loop bodies that can be parallelized. The kernel 
optimization of “kernel fission” is based on loop fission, and loop fission is one 
technique used to achieve vectorization for GPUs. 

The main reason to use loop fission is hardware acceleration via loop parallelization. 
A complicated single loop can often run faster if split into two simpler loops, if 
hardware acceleration can be accessed.  
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This is true even if the two resulting loops must run sequentially, because the 
iterations of each loop are parallelized, but there’s a double benefit if the two whole 
loops can also run in parallel. 

Example: Loop Fission in BatchNorm: A good example arises in part of the 
code for batch normalization. Each element of the vector needs to have two 
operations performed on it: subtract the mean (re-centering) and multiply by a 
variance factor (re-scaling). The naive implementation of the second half loop in 
BatchNorm looks like this: 

    float denom = sqrtf(varc + eps); // Scale factor 

    for (int i = 0; i < n; i++) { 

        // Normalize: re-center and scale 

        v[i] = (v[i] - fmean) / denom;  

    } 

This is difficult to hardware accelerate because it’s unlikely that there’s a combined 
“subtract-and-then-divide” operation to apply to all elements of a vector in parallel. 
The first point is that maybe there’s an “add-and-then-multiply,” in which case we 
can use the negative of the additive factor and the reciprocal of the scaling factor. 
However, assuming there’s not, loop fission can be used to split the single 
complicated loop into two sequential loops. 

    float negmean = -fmean;  // Use negative for addition 

    float denom = sqrtf(varc + eps); // std. deviation 

    float recip = 1.0f / denom;  // reciprocal multiply 

    // Loop 1: Re-center using mean 

    aussie_vector_add_scalar(v, n, negmean); 

    // Loop 2: Re-scale by factor 

    aussie_vector_multiply_scalar(v, n, recip); 

Each of the two loops is now easy to hardware accelerate, because they are both 
very simple vector operations: “multiply-by-scalar” and “add-scalar.” Every 
platform is likely to have hardware acceleration APIs for those simpler operations. 
So, to summarize, we got an explosive boost to hypersonic rocket speed using 
atomic operations with loop fission.  

Isn’t that just the bomb? 
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Loop Reversal 

Loop reversal is the optimization of making the loops go backwards. It does the 
same number of arithmetic operations, but in reverse order, so there is no change 
in the total arithmetic operations. 

This goal is a speedup by “looping down to zero” with a faster loop test, but it is 
often a de-optimization even for sequential execution. Typical CPU processors rely 
on ascending order of memory accesses for predictive cache pipelining, and reverse 
array access is a worst case for that. 

Loop reversal is also not a useful parallelization method in itself. Vectorization for 
GPU computation doesn’t really work in reverse. However, reversing a loop can 
sometimes be useful as an initial transformation on nested loops if reversing the 
inner loop’s direction allows another followup loop vectorization technique. 

Example: Reversed Vector Dot Product: Loop reversal can be used on vector 
dot product, as below, but it probably shouldn’t be. Here’s the basic idea: 

    float aussie_vecdot_rev(float v1[], float v2[], int n) 

    { 

        float sum = 0.0; 

        for (int i = n - 1; i >= 0; i--) { 

            sum += v1[i] * v2[i]; 

        } 

        return sum; 

    } 

Note that there are several coding pitfalls to avoid. The loop variable “i” cannot 
be “unsigned” or “size_t” type, because the test “i>=0” would never fail, 
creating an infinite loop. Also, the reversed loop needs to start at “n-1” and must 
use “i>=0” (not “i>0”) to avoid an off-by-one error. The above code also craters 
for “n<=0” and needs a safety test. 
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Loop Code Motion 

Loop code motion is moving loop-invariant code from inside the loop body to the 
pre-initialization code for the loop. Any code that has the same value should not be 
performed inside the loop body. Instead, it should be pre-calculated before the 
loop, and stored in a temporary variable. This is sometimes called “hoisting” the 
code out of the loop. 

Example: Loop Code Motion: One common example of unnecessary 
recalculation of loop-invariant values is in the loop test. The code in the Boolean 
test for the loop is actually part of the loop body. 

An example of code that re-calculates the loop limit: 

   for (i = 0; i < vec.num_elements(); i++) { 

      // ... 

   } 

The “num_elements” call is probably loop-invariant, assuming the vector doesn’t 
change size during processing. Maybe the “num_elements” function is declared 
“inline” and the C++ compiler will fix it anyway. Nevertheless, this is a candidate 
for loop code motion, using a temporary variable instead: 

   int n = vec.num_elements();  // Loop-invariant value 

   for (i = 0; i < n; i++) { 

      // ... 

   } 

Loop Distribution 

Loop distribution is type of loop code motion that creates two loops from a single 
loop that contain an “if” statement. The hoisted code is a conditional test. Some 
early papers in the 1990s called it “loop unswitching.” Some papers use the term 
“loop distribution” with the different meaning of splitting a loop into two loops, 
which we call “loop fission.” 

The goal of loop distribution is to move an “if” test out of the loop body, by 
creating two loops, and ends up creating two separate loops on two pathways. This 
sounds similar to loop fission, but loop distribution is a more general optimization 
that doesn’t require parallelization to get a speed improvement (whereas loop 
fission does).  
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Instead, loop distribution gets a benefit in ordinary sequential execution because it 
moves the if-test computation out of the loop body to a once-only pre-
initialization test (i.e., “hoisted”). Note that only one of the two loops is executed 
each time, and these two loops are never executed in parallel, so this technique is 
not really a type of loop fission. 

Example: Loop Distribution: Here’s a dummy example of implementing an 
“add-or-subtract” function using a passed-in Boolean flag. 

    void aussie_vector_addition_slow( 

        float v[], int n,  

        bool do_add, float scalar) 

    { 

        for (int i = 0; i < n; i++) { 

            if (do_add)  

                v[i] += scalar; // Add 

            else 

                v[i] -= scalar; // Subtract 

        } 

    } 

The problem is that the test “if(do_add)” is computed for every loop iteration, 
and yet “do_add” is a loop-invariant flag variable. The faster version is to use loop 
distribution to move the if-test into the loop initialization, and then split the two 
pathways inside the loop to instead have two separate loops. Here’s the faster 
version: 

    void aussie_vector_addition_loop_distribution( 

        float v[], int n,  

        bool do_add, float scalar) 

    { 

        if (do_add) { // Add scalar 

            for (int i = 0; i < n; i++) { 

                v[i] += scalar;  // Add 

            } 

        } 

        else {  // Subtract scalar 

            for (int i = 0; i < n; i++) { 

                v[i] -= scalar; // Subtract 

            } 

        } 

    } 

This example is still far from optimal. For starters, it should be using pointer 
arithmetic rather than array indices. 
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Loop Reordering 

In neural networks, there are many loops, and many ways of nesting them, or 
running them in sequence. The convolution layers in CNNs can have literally seven 
layers of nested loops. Hence, there are various research papers exploring different 
orders to perform the various computations. 

Loop reordering is the general class of optimizations that involves reordering loops 
or their iterations. This can refer to changing the ordering of two sequential loops 
or two nested loops. The reordering optimization to reverse the inner and outer 
nested loops is more precisely called “loop interchange.” A single loop can also be 
reordered with “loop reversal.” 

Loop reordering is an optimization that doesn’t reduce the total computations, 
because it always executes the same number of iterations as the original version. 
However, loop reordering may have several benefits: 

• Vectorization. Putting the loop in a different order may make it more 
vectorizable, or may allow other loop transformations to be applied before 
vectorization. 

• Data locality. Reordering the loops may improve data locality and cache 
access speed by doing the operations in a different order. This reduces the 
cost of accessing the data into memory (or low-level caches), rather than 
the cost of the arithmetic. It is therefore related to memory/dataflow 
optimizations and pipelining optimizations. 

• Reduced loop overhead. Both loop interchange and loop reversal can 
reduce the general overhead of loop testing. Loop interchange allows the 
shorter loop to be on the outside. Loop reversal allows “looping down to 
zero” which reduces overhead. 

Loop Iterator Strength Reduction 

Loop strength reduction is the arithmetic optimization of “strength reduction” 
applied to loop iteration variables. For example, strength reduction aims to replace 
multiplication with addition. Consider this loop: 

    for (int i = 0; i < n; i++) { 

        a[i] = 10 * i; 

    } 
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This can be optimized to change the multiplication into an incremental addition: 

    for (int i = 0, x = 0; i < n; i++) { 

        a[i] = x; 

        x += 10; 

    } 

Note that the loop strength reduction optimization isn’t a good choice for loop 
parallelization. Although it would be desirable to change a vectorized multiplication 
to addition, this optimization has changed to an incremental algorithm. This makes 
each loop iteration dependent on the prior one, with the results dependent on the 
previous computation, so they cannot be done in parallel. 

Loop Coalescing 

Loop coalescing is a loop optimization that involves flattening two nested loops 
into one non-nested loop. Typically, loop coalescing will still operate on a 2-
dimensional array, whereas flattening both the nested loops and the array is called 
“loop collapsing.” 

As a dummy example, consider a matrix initialization via nested loops: 

    for (int i = 0; i < n; i++) { 

        for (int j = 0; j < m; j++) { 

            arr[i][j] = 0.0f; 

        } 

    } 

Loop coalescing involves changing to a single loop, but still using two indices i and 
j, which are calculated from the main linear index. 

    int maxx = n * m; 

    for (int x = 0; i < maxx; x++) { 

        int i = x / n; 

        int j = x % m; 

        arr[i][j] = 0.0f; 

    } 

The benefit in speed from loop coalescing can arise by simplifying the loop, which 
makes it easier to parallelize via hardware acceleration, and also maybe a different 
data access pattern which might improve data locality and cache freshness. 
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This optimization is not always possible, as nested loop logic is often quite 
complicated, and flattening a nested loop may actually worsen data locality in many 
instances. However, the linear nature of a simple loop can make the code to send 
off chunks to a GPU much easier. 

Loop Collapsing 

Loop collapsing is closely related to loop coalescing, since both aim to flatten nested 
loops, but loop collapsing is a special situation where the array is also flattened to 
one dimension. 

Consider a matrix initialization via nested loops over a 2-dimensional array: 

    for (int i = 0; i < n; i++) { 

        for (int j = 0; j < m; j++) { 

            arr[i][j] = 0.0f; 

        } 

    } 

The loop collapsed version has one big loop over a different one-dimensional array: 

    int maxx = n * m; 

    for (int x = 0; x < maxx; x++) { 

        arr2[x] = 0.0f; 

    } 

This loop transformation to a single loop is obviously more amenable to 
vectorization. 

Loop Peeling 

Loop peeling is a type of loop unrolling that involves unraveling only the first few 
iterations of a long loop. This is also similar to “loop splitting” with two sections, 
where the first section is over the early range, and the second range is the main 
section of all remaining iterations. 

Loop peeling is beneficial to the overall loop efficiency if there is code in the loop 
body that is only required for one or two early iterations, which can then be 
removed from the main loop body. Similarly, there can be benefit in unraveling the 
last few iterations of a loop, which is a similar technique. 
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One common case of loop peeling is when the first iteration is different from the 
rest, so peeling off a single iteration is valuable. 

    for (int i = 0; i < n; i++) { 

        arr[i] = (i == 0) ? 0.0f : 1.0f; 

    } 

In this case, we can peel off the first “i==0” iteration into a single unrolled 
instruction, and change the main loop to start at 1. This is also a trivial form of 
“loop distribution,” where we are hoisting an “if” conditional test out of the loop. 
The new code becomes: 

    arr[0] = 0.0f;  // Peeled 

    for (int i = 1 /*not 0*/ ; i < n; i++) { 

        arr[i] = 1.0f; 

    } 

This peeled version is faster in terms of both sequential or parallel execution. The 
loop body has less computation and is also more amenable to vectorization. 

Loop Splitting 

Loop splitting refers to splitting the sequential iterations of a loop into two loops, 
which each perform part of the original loop’s iterations. Loop splitting is closely 
related to “loop sectioning” (“strip mining”), but often relates to more complex 
arithmetic in the loop body. Note that “loop peeling” is a special case of loop 
splitting where the first section is a small range of a few initial iterations, but these 
few iterations are unrolled rather than looped. 

Loop splitting takes a single loop and transforms it into at least two “split-out” 
loops, one for the early iterations, and one for the remainder. However, loops can 
also be split out into more than two loops. 

In loop splitting, each split-out loop is shorter than the original loop. Unlike loop 
fission, the two loops operate over different subportions of the iterator variable 
range, executing the same number of total iterations, rather than double iterations 
as in loop fission. 
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Example: Loop Splitting: Here’s some example code to “sqrtize” a vector, using 
a cached optimization for the numbers up to 100. 

    void aussie_vector_do_sqrt(float v[], int n) 

    { 

        for (int i = 0; i < n; i++) { 

            if (i < 100) { // Fast cases 

                v[i] = aussie_sqrt_optimized(v[i]); 

            } 

            else {  // General case 

                v[i] = sqrtf(v[i]); 

            } 

        } 

    } 

However, we can use loop splitting to split this big loop into two shorter disjoint 
ranges. Instead of 0..n-1, we do 0..99, and then 100..n-1. Each loop header is over 
part of the range, and has a simpler loop body. Note that this code fails with an 
array bounds violation for small values of n less than 100. 

    void aussie_vector_do_sqrt_loop_splitting( 

          float v[], int n) 

    { 

        for (int i = 0; i < 100; i++) { // Fast cases                 

            v[i] = aussie_sqrt_optimized(v[i]); 

        } 

        for (int i = 100; i < n; i++) { // General cases 

            v[i] = sqrtf(v[i]); 

        } 

    } 

The loop splitting optimization is beneficial if the loop body has different sections 
of code that only relate to a subset of the iterator range. Hence, the loop bodies for 
the two loops can be reduced to execute less code. Overall, there is still the same 
number of iterations performed in the two loops combined, but each loop performs 
only a proportion of the original iterations on a simpler loop body. This optimizes 
sequential execution and the simpler code in each loop body may make 
vectorization of one or both subloops easier. Furthermore, both subloops could 
run in parallel. 
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Loop Interchange 

Loop interchange is an optimization of nested loops that switches the inner and 
outer loops. In a typical nested loop, the outer loop body and loop test is executed 
rarely, almost lazily, whereas the inner loop body is scrambling along in a frantic 
mess. Loop interchange simply switches them, reversing their roles. 

Why is this an optimization? Although the same number of loop iterations still 
occur in total, and the newly-made inner loop body is also thrashed, various 
improvements can arise from reversing the iterator variables, usually to make the 
innermost loop the longest. Possible optimizations result from: 

• Fewer outside computations. A shorter outside loop reduces the arithmetic 
operations of the outer loop, whereas the inner loop’s number of 
computations is unchanged in either loop structure. 

• Data locality. Another possible improvement is in data locality, which can 
reduce cache misses and speeds up the overall execution. Note that this 
benefit is not guaranteed just by switching loops, and sometimes loop 
interchange can worsen data locality; careful analysis is needed. 

• Inner loop vectorization. Another important possibility is that reversing 
nested loops can create opportunities to apply other loop optimizations to 
the new inner loop, notably to vectorize the inner loop. 

Shortest loop outside, longest innermost loop: One of the considerations of 
loop interchange is the optimization of putting the shortest loop on the outside, 
and making the innermost loop with the longest range of iterations. This is an 
optimization for both sequential or parallel execution. For sequential execution, 
there is less overhead from the outer loop, because it is shorter. For parallelization, 
there is improved vectorization of the inner loop, which now has a longer range. 

Consider this example: 

    for (int i = 0; i < 1000; i++) { 

        for (int j = 0; j < 50; j++) { 

            // ... 

        } 

    } 

The current loop nesting has the longest loop (to 1000) on the outside, and the 
shorter loop (to 50) as the innermost loop.  
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Loop interchange simply makes it the reverse nesting: 

    for (int j = 0; j < 50; j++) { 

        for (int i = 0; i < 1000; i++) { 

            // ... 

        } 

   } 

Considering sequential execution, the inner loop body is executed the same number 
of times, so there’s no difference. This also includes the inner loop’s conditional 
test and incrementer, which are different variables in the two examples, but also 
execute the same number of times (50,000 times). However, consider the different 
outer loops. The first example is 1000 iterations, whereas the second example’s 
outer loop is only 50 times. Hence, the loop reordering optimization of “shortest 
outer loop” and “longest innermost loop” has saved 950 of the outer loop’s 
calculations (i.e., loop test and incrementer). Any extra code that’s in the outer loop, 
either before or after the inner loop, would also be executed fewer times. 

There is also an advantage for vectorization. In the first example, we could possibly 
have 1000 vectorized operations of data size 50. In the interchanged loops, there 
are 50 operations on vectors size 1000. Hence, there is more opportunity for much 
larger vectorization gains in the second format with the longest inner loop. 

Loop Sentinel 

Loop sentinels are an optimization that removes the overhead of checking an array 
index or pointer scanning an array or pointer chain. The technique does this by 
adding a pretend extra element onto the end of the array, in a way that we can 
pretend to succeed.  

And since we’re guaranteed to always succeed, we don’t need to check for failure 
while scanning the loop. 

This technique is not particularly useful for vectorization, but is quite powerful for 
long sequential scanning of arrays. It also has the downside of requiring at least one 
writeable array element, so it cannot run on read-only arrays. 
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Example: Check Vector Negatives: Here’s the basic loop sentinel version that 
sets up a dummy success in v[n]: 

   bool aussie_vector_has_negative_sentinel( 

       float v[], int n) 

   { 

        v[n] = -99.0;  // Dummy negative (BUG!) 

        int i = 0; 

        for ( ; /*GONE!*/; i++) { 

            if (v[i] < 0.0) break;  // Found negative 

        } 

        if (i == n) return false;  // Fake success 

        return true;  // Found a negative (for real) 

   } 

However, this is actually buggy, since “v[n]” is potentially an array overflow. A 
better version can manipulate the last valid element “v[n-1]” instead of modifying 
“v[n]”. Then, we have to remember to fix it before we leave town. And we also 
have to remember to check the last vector element that we temporarily overwrote 
wasn’t also a real success. 

    bool aussie_vector_has_negative_sentinel2( 

        float v[], int n) 

    { 

        float save = v[n - 1];  // Save it! 

        v[n - 1] = -99.0;  // Dummy negative at end 

        int i = 0; 

        for ( ; /*GONE!*/; i++) { 

            if (v[i] < 0.0) break;  // Found negative 

        } 

        v[n - 1] = save;  // Restore it! 

        if (i == n - 1) { 

            // At the dummy (fake success) 

            if (save < 0.0) return true; // Must check 

            return false;   

        } 

        return true;  // Found a negative (for real) 

    } 
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Loop Strip Mining (Loop Sectioning) 

Loop strip mining is a loop optimization that scans or “mines” various “strips” in 
an array. It is related to “loop tiling” on arrays in two dimensions, but strip mining 
only applies to processing one-dimensional arrays. Loop strip mining is also called 
“loop sectioning” because it breaks an array up into sections that are operated on. 

For a basic example, consider a simple array initialization: 

    for (int i = 0; i < n; i++) { 

        arr[i] = 0.0f; 

    } 

Let’s assume we can parallelize this with 16 elements at a time (e.g., 512 bits total 
parallel processing, which is 16 separate 32-bit float variables). So, we want to 
process “strips” of length 16. For simplicity, let us assume that n is divisible exactly 
by 16, so there’s no leftover work after the main loop. 

    for (int i = 0; i < n; i += 16) { 

        // Initialize arr[i]...arr[i+15] in parallel 

    } 

Obviously, this is a dummy example, where memset would do better for zeroing 
the array. Also, this really looks exactly like “vectorization” to me, where we are 
vectorizing 512 bits at a time (16 floats), and indeed the research mentions 
vectorization as one application. But loop strip mining and vectorization are not 
exactly the same techniques, because loop strip mining is a more general idea with 
other applications. 

Loop Spreading 

Loop spreading is an optimization of two non-nested sequential loops that have 
different iteration ranges. Typically, this refers to where the end ranges differ 
significantly. If the loop ranges only differ by an off-by-one issue, then only loop 
normalization is required. 

Loop spreading modifies one of the loops, so that part of this loop fully overlaps 
with the other loop (i.e., ideally one loop “spreads out” further to match the other 
loop’s end bounds). Hence, after loop spreading has occurred, this subloop can be 
fused with the other loop, and possibly parallelized. The remaining iterations that 
are not overlapping then have to be addressed in a followup partial loop (only for 
one of the loops). 
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Loop spreading mainly enables loop fusion as a followup optimization. For using 
loop fission on the two loops, it is not necessary to do loop spreading, since the 
two loops are already split apart, and each loop could already potentially be 
vectorized independently. 

Loop Normalization 

Loop normalization is not directly an optimization, but is a preliminary loop 
transformation that can make further loop optimizations easier. Followup 
optimizations might be to fuse the two loops with loop fusion, or to parallelize each 
loop, such as with loop fission or vectorization. 

The goal of loop normalization is to make the loop iteration variables act across the 
same range. This applies to two sequential loops, rather than nested loops. Hence, 
loop normalization is needed when two loops in sequence are starting at different 
offsets (e.g., one is i=1 and another starts at i=0), or are finished at different 
endpoints (e.g., n versus n-1). 

If two loops have the same number of computations, but with different ranges, 
then one loop can be changed with an offset. For example, these loops differ with 
ranges 0..n-1 and 1..n: 

    for (int i = 0; i < n; i++) a[i] = 0; 

    for (int j = 1; j <= n; j++) b[j] = 0; 

These can be adjusted to the same ranges with a “j+1” index offset, as follows: 

    for (int i = 0; i < n; i++) a[i] = 0; 

    for (int j = 0; j < n; j++) b[j+1] = 0; 

If the two loops have a different number of iterations, typically off by 1 or 2, then 
“loop peeling” can be used to unroll and split off one or two iterations and shorten 
the longer loop, so that both loops have the same number of iterations over the 
same range. For example, in this example, one loop is 0..n-1 and another 
is 0..n: 

    for (int i = 0; i < n; i++) a[i] = 0; 

    for (int j = 0; j <= n; j++) b[j] = 0; 
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The way to normalize the loop ranges is to “peel” off the last iteration of the “j” 
loop: 

    for (int i = 0; i < n; i++) a[i] = 0; 

    for (int j = 0; j < n; j++) b[j] = 0; 

    b[n] = 0;  // Peeled 

This example has peeled the longer loop to make it shorter. An alternative would 
be “loop spreading” to lengthen the shorter loop, such as by adding an extra 
padding element into the array. 

Normalizing two loops doesn’t change the number of arithmetic computations. 
However, once two loops have normalized ranges, it becomes easier to see 
opportunities for further optimizations such as loop fusion or loop fission. 

Loop Skewing 

Loop skewing is a somewhat mind-bending method to change nested loops to make 
them more parallelizable. This technique applies when there are two nested loops, 
but the inner loop is difficult to parallelize because of a dependency on the outer 
loop variable. The performance advantage from loop skewing is not directly its 
usage, but because skewing changes then make possible other loop optimizations, 
especially loop interchange, which reorders the inner and outer loop. 

The loop skewing solution is far from obvious. The range bounds of the inner loop 
are changed by “skewing” them by a factor based on the outer loop variable. And 
then, by some magical potion, this somehow breaks the dependence on the outer 
loop, and then the inner loop can run fast on a GPU. Who knew? 

As a simplistic example, consider two nested loops: 

    for (int i = 0; i < 1000; i++) { 

        for (int j = 0; j < 50; j++) { 

            arr[i][j] = something; 

        } 

    } 

We can skew the inner loop by adding a skew factor based on the outer loop 
variable (e.g., “i” or “i+1” or something similar). Add this skew factor to the 
ranges of j, but then subtract the skew factor (“i”) from any usages of the index 
“j” inside the inner loop’s body. 
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    for (int i = 0; i < 1000; i++) { 

        for (int j = i; j < 50 + i; j++) { 

            arr[i][j - i] = something; 

        } 

    } 

Hence, j has changed from the range (0...50) to the skewed range (i...i+50), by 
adding the skew factor “i” to the start and end. The use of “j” in the inner loop 
body has changed from “j” to “j-i” (i.e., subtracting the skew factor “i”). The 
result is a kind of skewed and “triangular” shape of i and j indices, but the actual 
arithmetic calculations are unchanged. 

This newly skewed code isn’t any faster, does exactly the same calculations on the 
50,000 elements of array arr, and indeed is actually worse because of the extra 
“50+i” and “j-i” computations. However, in some cases, doing this weird 
skewing transformation then allows us to follow up with a loop interchange 
optimization, switching the inner and outer loops. And I’m not even going to 
pretend to understand this, but there are situations where the non-skewed inner 
loop cannot be vectorized or interchanged, but after we’ve skewed the loop, then 
we can interchange it, and then we get via hocus pocus a different inner loop that 
can then be vectorized. Hopefully, the GPU knows what’s going on. 
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50. Parallel Data Structures 

Bit Vectors 

Bit vectors are conceptually an array of N bits with 0 or 1 values. The term “bit set” 
is almost synonymous, but has a slightly different meaning. A bit vector maps a 
number at the index position to its binary bit value, whereas a bit set specifies 
whether a number is in a set of numbers. Both interpretations are valid, depending 
mostly on the application, and the underlying implementation of the data structure 
is almost identical. 

In AI applications, a bit vector may represent a set of weights with 0 or 1 values, 
such as with binary quantization or XNOR neural networks. The computation for 
vector dot product on two bit vectors can be performed arithmetically using bitwise 
arithmetic. 

Sparsity optimizations are another application of bit vectors. Pruning can often 
create “sparse” weight matrices, with lots of zeros and very few non-zero weights. 
A bit vector can then efficiently represent whether a weight in a vector has a non-
zero value, which is then used to avoid doing any computations on zero values. An 
alternative to bit vectors for sparsity is to use permutation arrays of indices, as 
discussed further below. 

Another application of bit vectors occurs in Bloom filter data structures, which are 
a probabilistic hybrid of hash tables and bit vectors. In this usage, a bit set represents 
whether an input number is found in the set of already-mapped numbers. 

In practice, bit vectors or bit sets are often implemented as arrays of unsigned 
integers, with the bits packed into each integer. If the underlying unsigned type is 
32-bits or 64-bits, then many bitwise operations on bit vectors can be performed 
32 or 64 bits at a time, achieving significant parallelism without using any major 
form of hardware acceleration beyond basic CPU instructions. Use of AVX SIMD 
instructions can then further vectorize many operations without a GPU. But it 
absolutely flies if you use a GPU with bit vectors or bit sets, because that’s two 
levels of parallelization. 
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There are several pre-built C++ bit set classes that can be considered: 

• std::bitset<N> (in <bitset>) 

• std::vector<bool> 

• boost::dynamic_bitset<> 

If the maximum size of the bit vector is known at compile-time, which is often the 
case with AI models, then std::bitset is a good choice. If not, 
then std::vector<bool> or boost::dynamic_bitset<> are good choices 
for dynamic-sized bit vectors. Alternatively, you can build your own bit vectors, if 
there is a particular need to hand-code them or if you just want some fun. 

Permutation Arrays 

Most of the vectors in AI engines are not just random lists of numbers. Rather, they 
are (conceptually) an array of the probabilities of output words, where the position 
in the vector indicates which word. So, if we have our logits array, 
then logits[0] is the probability of “the” whereas logits[1] is the 
probability for “cat”, and so on, up to about 50,000, which is a common 
vocabulary size for LLMs. 

Problems arise if we want to sort our probabilities in the logit array, and we need 
this for our decoding top-k algorithm. We can’t just sort the vector of probability 
numbers, because we’ll lose track of which probability maps to which token 
number. 

Permutation arrays to the rescue! A permutation array is an array that is the same 
size as some other array, but maps to the indices of the other array. A permutation 
array for our vocabulary has 50,000 integers, each of which is the index into other 
arrays. 

The downside of permutation arrays is that they introduce inefficiency in both space 
and time. Space usage is increased by having two vectors. The time cost to access a 
vector element increases, too. Rather than just looking up the probability for the 
nth word in the logits array (i.e., “prob=logits[n]”), we have a two-step 
procedure: 

1. Look up the index in the nth element of the permutation array (i.e., 
“i=permut[n]”), 

2. Use that index to look up the probabilities in the main logits array (i.e., 
“prob=logits[i]”). 
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So, it’s bigger and slower. Some rescue. 

However, permutations can be valuable if it allows us to do much less arithmetic 
overall, which is the case with “sparse” arrays where most elements are zero. This 
is why permutation arrays are used for LLM sparsity optimizations, but not in 
normal practice. 

Sorting with a Permutation Array: The way to sort another array, indirectly via a 
permutation array, is shown in detail for the top-k decoding algorithm. The basic 
idea is: 

1. Set up the identity permutation. 

2. Sort using an indirect procedure: (a) compare elements in the main array 
indirectly accessed via the permutation array, (b) swap the indices in the 
permutation array (not changing the main array). 

So, the original array doesn’t actually get sorted with only the permutation array 
changing. If we want to print out the main array in a sorted list, we have to do so 
via the permutation array. The original main array is still unsorted if we access it 
directly. 

Sparsity with Permutation Arrays. Sparsity is an optimization where most of the 
weights have been “pruned” to zero, and only a small percentage remain non-zero. 
This saves a lot of storage space for the model, and can also run much faster. The 
basic vector dot product kernel only needs to calculate with non-zero weights, so 
we want a way to avoid processing all of the many zero weights. Again, permutation 
arrays are the solution! 

Sparse vectors (or matrices or tensors) can be stored as parallel arrays of: 

• Non-zero weights only 

• Permuted integer index of that non-zero weight in the original vector 

These two arrays are much shorter than the original vectors if there is high sparsity. 
If sparsity is 90%, then 10% of numbers are non-zero, and the permutation 
approach uses two arrays, so it is 20% of the original size. The cost of doing a sparse 
dot product has reduced from the full length of the original vectors, down to the 
average sparsity factor (i.e., how many non-zero values). In other words, the 
number of multiplication computations goes down to 10% FLOPs, although there’s 
the extra permutation calculation, so it’s might seem like it’s 20%, but we can often 
hardware-accelerate the permutation array step in CPU or GPU architectures.  
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Hence, sparse vector dot products are fast. Calculation of the vector dot product 
for AI inference need only multiply using the much smaller number of non-zero 
weights. 

Can we vectorize permuted arrays for hardware acceleration? Short answer: yes. 
Permutations can be vectorized with hardware acceleration in both CPU and GPU 
versions. The C++ AVX “gather” (load) and “scatter” (store) intrinsics work for 
x86 CPUs. Different GPU primitives are available for permuted arrays. 

Sparsity doesn’t really work without permutations. A raw full-size vector containing 
lots of zeros doesn’t vectorize well, because it still sends all of those zeros for 
processing. A permuted index of sparse values works much better because it only 
considers non-zero values. 

Vector Hashing 

Vector hashing is needed in various parts of an AI engine as a speedup. There are 
various AI research papers on using hashing for various computations involving 
vectors and tensors of higher dimensions. Implementations of such algorithms are 
available in open source and commercial “vector database” products that you can 
use. Some of the applications for LLMs include inference caching, embeddings, and 
RAG architectures. 

But how do you hash a full-length vector? Or a matrix? It’s a complicated theoretical 
area. One of the main techniques is Locality-Sensitive Hashing (LSH), which is 
hashing to find vectors that are “close” in n-dimensional space. 

One of the interesting research areas for vector hashing is total precomputation of 
vector dot products. Think about precomputation of vector dot products in AI 
inference. If you could hash the two vectors, then you could replace the main 
bottleneck in AI inference with two hash lookups. Is there a way to efficiently 
convert a vector dot product operation on two vectors into a hash lookup, thereby 
avoiding all those multiplications? What about speedup of matrix multiplication by 
hashing? 

Remember that you can pre-compute anything about the weights before inference, 
because they don’t change during inference. Hence, one of the vectors could 
potentially be pre-hashed offline. Maybe you could even use some type of “perfect 
hashing” for those vector hashes, if you’ve got a big enough compute budget. But 
you can’t pre-hash both of the vectors or pre-compute the dot product, because 
the other vectors are dynamically calculated along the way, dependent on inputs. 
This is being examined by advanced researchers, and is still a work in progress. 
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Perfect Hashing 

Perfect hashing aims to achieve collision-free O(1) hashing at runtime, by investing 
a lot of offline compute budget to find an optimal hash function for a set of static 
data. There are many possible hash functions, and some are better than others. 
Perfect hashing tries to find an optimal hash function within the search space for 
possible methods. Mostly, it’s by trial-and-error. Searching for a perfect hash 
function typically uses a brute-force and computationally expensive method for 
simply trying multiple hash functions and testing them for collisions. 

Perfect hashing only works in the situation where all of the possible keys are known 
in advance (i.e., static data). Interestingly, this is exactly the situation with AI model 
vocabularies! 

Hence, the idea of perfect hashing can be used to improve the performance of a 
hash table in the tokenizer. The general concept is that different hash tables are 
tested with various different meta-parameters (e.g., the hash table size, and 
multipliers in the hashing function). So, you can test various different hash 
functions against the 50,000 known tokens in the vocabulary, until you find a 
“perfect” one where there are no clashes. Amusingly, this longstanding algorithmic 
method sounds exactly like doing Neural Architecture Search (NAS) to find the 
best AI model hyper-parameters. 

Bloom Filters 

Bloom filters are a probabilistic data structure based on a combination of hashing 
and bit vectors. Multiple hash functions are computed for each key, and this is used 
to set bitflags, as described in more detail below. Bloom filters are mentioned in 
various research papers on AI, but are not yet used much in industrial AI 
applications. Perhaps they should be, as they seem very efficient. 

Like hashing, Bloom filters have been used as a data structure to speed up neural 
network inference. However, much of the research literature about Bloom filters is 
about a different topic: Weightless Neural Networks (WNNs). WNNs have a 
different type of neuron based on binary bits, rather than matrix multiplications. 
These bitflag neurons can be approximated using Bloom filters. As such, that part 
of the research is less relevant to optimization of Transformer inference, and has 
not been examined in detail below. 

How do Bloom Filters work? Given a key, multiple hash functions are calculated 
for that key, and a binary flag is set in a bitflag table for each of those hash offsets. 
In this way, an input key maps to a pattern of multiple bits. 
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The Bloom filter lookup for a key value works as follows: To test whether a key is 
found, the multiple hash functions are computed, and then the bitflag table is 
analyzed to see if all those bits are set. If any of the bits are missing, the key is not in 
the Bloom filter. If all of the bits are found, the key is probably in the Bloom filter, 
but it may also be that other keys have coincidentally set all those bits (a “false 
positive”), so it is not 100% guaranteed to be present. 

If a probabilistic speedup is good enough, then a Bloom filter is all you need. For a 
100% accurate table lookup, adding a second different type of backup data structure 
needs to be queried to confirm. Hence, the Bloom filter is a fast test to see if a key 
is not in a set, but a slow test if the key is found. This makes it an example of 
“common case first”, where fast computations skip more involved computations. 

The computational complexity of Bloom filters is constant, but not as fast as 
hashing. A hash filter uses only a single hash function, so it has O(1) lookup. 
However, a Bloom filter uses multiple functions, k, with O(k) lookup complexity. 
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51. Lookup Tables & 

Precomputation 

Precomputation with Lookup Tables 

Look-up tables (LUTs) are a well-known simple data structure for optimizing code. 
They have been used to optimize neural networks in various ways. Some examples 
include: 

• Precomputed activation functions 

• Zero-multiplication networks 

• Approximation of non-linear functions 

Precalculation or precomputation is a code optimization where results are partially 
or fully calculated ahead of time. This method is similar to caching and computation 
reuse but refers to calculations being performed long before they are needed, often 
at program startup or compile-time, and stored in lookup tables. Like caching, this 
method trades extra space for time. 

Vectorization of LUTs is possible with hardware acceleration primitives that 
support parallel memory accesses using integer indices. For example, the x86 CPU 
with AVX intrinsics has a set of “gather” instructions for doing indexed lookup 
that can be used to load from a LUT into the internal registers, and “scatter” 
instructions for storing the registers back to an indexed LUT. 

Typical precalculations are those where the results are computed at program 
initialization or compile-time. The best methods generate the results at compile-
time, and are simply loaded as data, such as numeric constants or pre-initialized data 
arrays. There are multiple ways to do this: 

• Program startup initialization 

• Lazy evaluation 

• Binary data file 

• Precompiled source code 
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One method for precomputation of larger amounts of data in an array or lookup 
table is to perform the initialization dynamically at program startup. A lookup table 
can be populated with the required results, before the main logic of the program 
begins. Or alternatively, the idea of “lazy evaluation” allows storing the 
precomputation into a lookup table only when the program first needs the data. 

A faster alternative is to calculate all this data offline before program startup, and 
store the results in a binary data file. This data file can then be loaded into an array 
at program startup, without needing to perform any of the arithmetic computations. 
Whether this is beneficial depends on the cost of the computations versus the cost 
of file loading. 

The logical extension of the precomputation method for a large number of numeric 
results is to write special C++ code that performs these calculations, but then 
outputs the results into a text file in the exact format of a C++ source code file 
(rather than a data file), that declares a global array name and the numeric values. 
This auto-created C++ code is then linked with your program. 

Example: LUT Precomputation for sqrt 

Let’s say that you want to optimize a slow non-linear function like “sqrtf” (or 
“expf” or “logf”). These are good candidates for optimization because of their 
non-linearity. 

The first point is that you’d better do a really good job, because there are actually 
hardware instructions for these common math functions, even in x86 architectures. 
So, you could easily optimize this into a table lookup, and find that your C++ code 
is still slower than the single CPU instruction that’s called by the standard C++ 
library versions. Hence, investigate the C++ intrinsic functions for common math 
functions before you assume that you can do better than electrons zipping through 
silicon. 

This example investigates precomputing “sqrtf” even though that may not be as 
fast as hardware-acceleration. However, the same ideas apply to precomputing 
more sophisticated derivative functions, such as Softmax and activation functions, 
which are not hardware-supported (or not yet, anyway). The same general ideas 
apply. 
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The basic method for table lookup optimization is: 

• Declare a big array (the bigger the better). 

• Run a loop sending every value to the real “sqrtf” function. 

• Store each result in the big array. 

• Now you have a precomputed table of all possible values. 

• Later, use an array index lookup to compute the function fast. 

How is than any faster? I mean, we’ve just called “sqrtf” a bazillion times with 
numbers that we probably won’t ever need. Yes, there is extra cost, and we are 
running slower during program initialization. There are at least two ways to fix this: 

1. Load the array values from a pre-built binary data file instead, or, 

2. Precompile the array data into a C++ source code file. 

However, this complaint underestimates just how many times the code may call 
these functions. Even with this startup cost, once that is all done and dusted, we 
have a big array of precomputed data that we can use to speed up the program 
execution, which is our main goal. And in a production environment, any extra 
startup cost is hopefully amortized over many executions. 

Example: Precomputing sqrt of integer: For simplicity, we’re going to first 
assume that we’re computing a float square root of integers. The function we are 
precomputing is “int-to-float” type. This makes it easier, because the int can 
be used as an array index. 

Here’s my big array with about 65,000 entries: 

    #define AUSSIE_SQRT_PRECOMP_MAX (1u<<16) 

    float g_sqrt_precomp_table[AUSSIE_SQRT_PRECOMP_MAX]; 

Here’s the unoptimized function “int-to-float” version of “sqrtf” that we are 
planning to precompute: 

    float aussie_sqrtf_basic_int(int x) 

    { 

        return sqrtf((float)x); 

    } 

Here’s the initialization call to the precomputation routine, sending in the array, the 
size N, and the function pointer: 
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    aussie_generic_precompute_int( 

        g_sqrt_precomp_table,   // Big array 

        AUSSIE_SQRT_PRECOMP_MAX,  // N 

        aussie_sqrtf_basic_int    // Function pointer 

    ); 

And here’s the code to run the big precomputation loop: 

    void aussie_generic_precompute_int( 

      float arr[], unsigned int maxn, float (*fnptr)(int)) 

    { 

        for (unsigned int i = 0; i < maxn; i++) { 

                arr[i] = fnptr(i); 

        } 

    } 

So, that’s all there is to the startup initialization of the lookup table. Once this 
function returns, we now have a big array full of data. Here’s what the new 
optimized “sqrtf” looks like: 

    float aussie_table_lookup_sqrt(int i) 

    { 

        return g_sqrt_precomp_table[i]; 

    } 

And we can either make that function “inline” or use a C++ preprocessor 
macro: 

    #define AUSSIE_TABLE_LOOKUP_SQRT_BASIC(i) \ 

         ( g_sqrt_precomp_table[(i)] ) 

So, here are a few provisos about this code: 

1. Might be slower than sqrt in hardware (needs benchmarking). 

2. Unsafe array accesses (e.g., crashes on negatives or larger numbers). 

3. unsigned int types might overflow and spin infinitely for 
precomputing tables of size “1<<32” (change to unsigned long). 

4. The memory size of the precomputed table for 1<<16 is already about 
262k (65k times 4 bytes). 
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Float-to-Float Precomputation 

Using a precomputed table lookup for a float-to-float function is more complicated 
than integers. However, this is also the main approximation needed for non-linear 
functions, or even the basic math library functions like sqrtf or expf or logf. 

Why is it tricky? The reason that float inputs are more difficult is that we need to 
convert a float into an array index in order to look it up. For example, we could 
try type casts: 

   int offset = (int)f; 

But that limits us to only precalculating values for 1.0, 2.0, 3.0, etc. Our 
approximation works poorly on any fractions, and we also haven’t limited the array 
index to a fixed finite range, so it won’t work for any negative values or very large 
positive values. And the type cast of a float is also slow! 

Scaled Multiple: Another idea is that we could scale it upwards to get more 
decimals: 

   int offset = (int) (f * 1000.0f); 

This approach at least gives us 3 decimal places: e.g., 1.234 or 23.456, or similar. 
We will still have to check for negatives and large values to bound it. But again, this 
is even slower! 

Bitwise Floating-Point Truncations: The above truncation via a floating-point 
scaled multiple is not very fast. Twiddling the bits is much faster. For example, 
when we have a standard 32-bit float type, it has 1 sign bit, 8 exponent bits, and 
23 mantissa bits. This is from left-to-right, with the sign bit as the most significant 
bit, and the low-end mantissa bits are the least significant bits. Remember that this 
is like Scientific notation: 

• Number = Mantissa x 2 ^ Exponent 

Also, the sign bit makes it all negative, if set. Note that exponent in 8-bits encodes 
the numbers -128 to +127, so that ranges from very small 2^-128 near-zero values, 
to very huge 2^127 sized values. 
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If the mantissa was in decimal, and it was “1234567” and the exponent was “17” 
then we’d have: 

• Number = 1.234567 x 10^17 

If the mantissa was 23 bits, it’s actually binary digits, with about 3 binary digits per 
decimal digit, so a 23-bit mantissa is about 7 or 8 decimal digits. Note that the 
mantissa is actually 24 bits, not 23, because there’s an extra “implicit one” mantissa 
bit, not that it changes the above calculation, but you needed to know that for C++ 
trivia night. 

So, if we think about it for a year or two, it becomes obvious that the rightmost bits 
of the mantissa are simply the rightmost digits in “1.234567”, and if we truncate 
some of the rightmost bits, it’s like truncating a very small fraction (e.g., “1.234567” 
becomes “1.2345” or whatever). 

Hence, a first idea is just to cut off 2 of the 4 bytes of a 32-bit float. This leaves 
us with 1 sign bit, 8 exponent bits, and 7 mantissa bits (plus 1 implied bit makes 8 
mantissa bits). In decimal, the 8-bit mantissa now encodes only about 2 or 3 decimal 
digits, as if we’ve truncated “1.234567” to “1.23”. 

Incidentally, congratulations, you’ve created “bloat16” type, which is what Google 
did with TPUs, making a 2-byte float format with 1 sign bit, 8 exponent bits, and 
7 stored mantissa bits. So, now you can get into your blue telephone booth, time 
travel back a decade, file a patent, and retire on your royalties. If you’re ever a 
contestant on Wheel of Fortune you probably won’t need to know that the “b” in 
“bfloat16” stands for “brain float” and that is such a great name. But I digress. 

Anyhow, this idea actually works for precomputation. A 2-byte integer 
in bloat16 format is easy to extract from a 4-byte FP32 float (i.e., the uppermost 
two bytes). The trick for bitwise processing is to convert the float to unsigned 
int, because the bitwise shift operators don’t work on float (it’s planned for 
C++37, as I heard at my fungus collector’s club trivia night). 

   float f32 = 3.14f; 

   unsigned u32 = *(unsigned int*)&f32; 

Extracting the top-most 2 bytes (16 bits) is simply a right bitshift: 

   unsigned ubf16 = ( u32 >> 16 ); 
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Note that here’s a good reason that we had to use “unsigned” integer type. The 
right bitshift operator (>>) has undefined behavior on negatives, so “int” type 
wouldn’t work predictably (or portably) if the floating-point sign bit was set. 

The result is a 16-bit unsigned integer to use as the array index. Hence, there are 
only 1<<16=65,536 entries in our precomputation table. Assuming we store 
results as 4-byte float values, this makes the precomputation array’s memory size 
about 262kb. What’s more, it works for negative float numbers, because the sign 
bit is still part of that shemozzle, and we also don’t need to check any minimum or 
maximum bounds, because it works for all 32-bit float numbers. 

Precomputing with 24-Bit Lookup Tables: Interestingly, none of the above 
code is especially tied to 16-bit sizes. The bfloat16 version truncates 32-bit float 
to 16-bit by truncating the rightmost 16 mantissa bits. But we can actually choose 
to keep however many mantissa bits we like. The trade-off is that more mantissa 
bits increase accuracy, but at the cost of needing a much bigger precomputation 
array (doubling the storage size for each extra bit). 

Let’s try only cutting the rightmost 8 mantissa bits, leaving us with 24 stored bits 
total (i.e., 1 sign bit, 8 exponent bits, and 15 stored mantissa bits). The mantissa bits 
reduce from 23 to 15 (plus one implied bit makes 16), so this now stores about 5 
decimal digits (e.g., “1.2345”), giving quite good precision on our results. When I 
tested the 16-bit version, it had some reasonably large errors of almost 0.1 in 
computing sqrt, whereas this 24-bit version has much lower errors, as expected. 

Code changes are minor. The bitshift operations simply change from 16 bits to 8 
bits (i.e., 32-24=8 bits). This is the precomputation loop for 24 bits: 

    void aussie_generic_precompute_24bit_float( 

        float farr[], unsigned int maxn,  

        float (*fnptr)(float)) 

    { 

        for (unsigned int u = 0; u < maxn; u++) { 

            unsigned int unum = (u << 8u); // 32-24=8 bits 

            float f = *(float*)&unum; 

            farr[u] = fnptr(f); 

        } 

    } 
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And this is the call to the precomputation function in the startup phase: 

    aussie_generic_precompute_24bit_float( 

        g_sqrt_float_24bit_precomp_table, // Bigger array 

        (int)AUSSIE_SQRT_24bit_MAX,    // 1 << 24 

        aussie_sqrtf_basic_float       // Function pointer 

    ); 

The table lookup routine also similarly shifts 8 bits, rather than 16, but is otherwise 
unchanged: 

    float aussie_table_lookup_sqrt_24bit_float(float f) 

    { 

        unsigned u = *(unsigned int*)&f; 

        u >>= 8;  // 32-24=8 bits 

        return g_sqrt_float_24bit_precomp_table[u]; 

    } 

Note that this only works if we are sure that both “float” and “unsigned int” 
are 32-bits, so we should check that during startup with some assertions 
via static_assert. If we are sure of that fact, then not only will it work, but we 
don’t also need to check the array bounds. It won’t try a negative array index, and 
won’t overflow no matter what bit pattern we send it in as a float. 

But there is one problem. If we send the fast table lookup version the 
special float value of NaN (“not a number”), then the table lookup routine will 
actually return a valid numeric answer, which probably isn’t what we want. Maybe 
we need to add a check for that special case, and this needs more testing. 

The new size of the precomputation array is 2^24=16,777,216, so we have 
about 16.7 million results If our results are 32-bit float values, 
our bloat16 precomputed array above requires about 262kb, and the new size 
with 24-bits is a lookup table (array) of about 67 megabytes. It wouldn’t have 
worked on my old TRS-80 CoCo in 1986, but it’ll work nowadays. 
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Precalculating C++ Source Files 

One way to improve on the precomputation of a big array is to skip it entirely during 
startup by writing a lot of code. It’s like using an AI coding copilot, only it’s not 
really. I mean, come on, the day an AI writes better code than me is the day that I 
retire to the hologram beach with my robot dog companions. 

The idea here is to write a program to generate a C++ source file that contains the 
global precomputed lookup table. Yes, it’s a C++ program that creates part of a 
C++ program, which is almost like your AI has become self-aware, only one step 
away from Skynet. Well, maybe not, it’s just a dumb C++ program written by a 
dumb human creating some dumb data. 

Anyway, this auto-generated C++ code can be compiled and linked into your C++ 
program, and used like a global array of data in other parts of the program. Zero 
calculations are required at runtime, and the data can be read-only. 

The benefit is that this auto-generated code method does not even require the time 
cost of startup initialization for any precomputations. There’s not even the cost 
from data file loading. Instead, the data is auto-loaded by the linker-loader during 
executable file instantiation (i.e., when the user starts the app). The only downsides 
for the user are that the size of the executable program increases, which means 
more disk space usage, and that application program startup may take longer and it 
will use more memory (regardless of whether it ever needs this precomputed data). 
Also, various offline tasks take longer for the software developers, such as 
compilation and linking for testing, which is why we bill per hour. 

I tried this out for precalculating GELU with a 24-bit table. The C++ source file 
was size 514k for 24-bit precomputation table of size 1<<24. This is what the auto-
generated source code should look like: 

    // Precomputed table source code: GELU, 

    // "gelu_precomp_24bits.cpp" 

    float g_gelu_table_precompute_24bits[] = {  

    0f, 

    1.793662034335765850782373866611092648039e-43f, 

    3.587324068671531701564747733222185296077e-43f, 

    5.380986103007297552347121599833277944116e-43f, 

    7.174648137343063403129495466444370592155e-43f, 

    ... 

    ... 

    }; 
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Here’s the code to generate the code to generate the code to generate the code: 

   void aussie_generic_setup_table_FP32_24bits_PRINT_SOURCE(  

        char* nickname, 

        char* outfname, 

        float (*fnptr)(float),  // e.g., GELU 

        int maxn,  // e.g., 1<<24 

        float arrout[]  // array to store (optional) 

    ) 

    { 

        // Print C++ of 24-bits GELU precomputed table  

        if (!fnptr) { 

            aussie_assert(fnptr); 

            return; 

        } 

        // Generate C++ source code so we can pre-compile 

        // the precomputed GELU table (24-bits) 

        // There are 2^24 = 16.7 million numbers... 

        FILE* fp = stdout; 

        bool writingfile = false; 

        bool add_commented_number = true; 

        if (outfname && *outfname) { 

            fp = fopen(outfname, "w"); 

            if (!fp) { 

                aussie_assert(fp);  // file write failed 

                return;  // fail 

            } 

            writingfile = true; 

            add_commented_number = false;  // No extra comments 

        } 

        unsigned int u = 0; 

        fprintf(fp, "// Precomputed source code: %s, \"%s\"\n", 

             nickname, outfname); 

        fprintf(fp, "float g_gelu_table_pre_24bits[] = { \n"); 

        char numbuf[5000] = ""; 

        for (; u < maxn /*1<<24*/ ; u++) {  // For 2^24=~16.7M 

                unsigned int uval = u << 8; // zeros in lsb 

                float f = AUSSIE_UINT_TO_FLOAT(uval); 

                float g = fnptr(f);  // Call GELU or whatever 

                if (arrout) arrout[u] = g; // Store precomp data 

 

                // Format: %g means the smaller of %e or %f 

                // ... %e is exponent format (scientific-like) 

                char* buf = numbuf; 

                // Format %g (Number) and suffix "f" (float) 

                sprintf(buf, "%40.40gf", g);  

                if (strchr(buf, 'n')) { 

                        // Nan or "-nan" ... use dummy value  

                        strcpy(buf, "0.0 /*nan*/"); 

                } 

                // Remove prefix padding spaces... 

                while (buf[0] == ' ') buf++; 
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                // Remove suffix zeros ... 

                int len = (int)strlen(buf); 

                if (buf[len - 1] == 'f') len--; // skip suffix f 

                if (buf[len - 1] == '0') { 

                    while (len > 5) { 

                        if (buf[len - 1] == '0'  

                            && isdigit(buf[len - 2])) { 

                            if (buf[len] == 'f') { 

                                // remove it, but leave 'f'... 

                                buf[len - 1] = 'f';   

                                buf[len] = 0; 

                            } 

                            else { 

                                buf[len - 1] = 0; // remove it 

                                buf[len] = 0; 

                            } 

                            len--; 

                        } 

                        else break; 

                    } 

                } 

 

                if (add_commented_number) { 

                        fprintf(fp, "%s // (%40.40f) [%u] \n", 

                            buf, f, u); 

                } 

                else {  // No comments... 

                        fprintf(fp, "%s,\n", buf); 

                } 

 

                // Progress update 

                if (u % 100000 == 0 && u != 0) { 

                    if (writingfile) // Progress to stdout 

                        fprintf(stdout, "%u -- %s\n", u, buf);   

                    // Comment occasionally 

                    fprintf(fp, "// U= [%u]\n", u);   

                } 

        } 

        fprintf(fp, "}; \n");  // Close initializer... 

        if (fp && fp != stdout) fclose(fp); 

    } 

Conclusions on Source Code Generation: Does it work? Yes and no. It builds 
the output file quite quickly, zipping through 1<<24 computations and writing to 
disk. But I can’t get this 24-bit version with its 500k CPP source file to actually 
compile in the Microsoft Visual Studio IDE.  

Maybe it works on Windows command-line or Linux GCC, but I haven’t tried. 
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Anyway, this self-generating code idea is certainly quite workable for table lookups 
of approximations for FP16 numbers (16-bit half-precision floating-point), because 
the lookup table needs to “only” contain 2^16=65,536 numbers. This is about a 
200k C++ source file in plain text, and creates linked data of about 65k times 4 
bytes equals about 256k space usage. This would use half that space if you also store 
the computation as 16-bit numbers rather than 32-bit floats or integers. 
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Appendix A: Long List of Low 

Latency Techniques 

This is a compilation of coding efficiency and low latency C++ programming 
techniques from various books and articles: 

• C++ Low Latency, David Spuler, March 2025. 

• CUDA C++ Optimization, David Spuler, June 2024. 

• Generative AI in C++, David Spuler, March 2024. 

• 500+ LLM Inference Optimization Techniques (blog article) 

Low Latency C++ General Software Approaches: 

1. Cache warming 
2. Core pinning (“affinity”) 
3. False sharing (avoiding) 
4. Branch prediction optimizations 
5. Hotpath optimizations 
6. Slowpath removal 
7. Kernel bypass 
8. Lock contention (reducing) 
9. Lock-free programming (with atomics and memory ordering issues) 
10. Thread pools 
11. SIMD CPU instructions 
12. Inline assembly language (“asm” statements) 
13. Intrinsic functions (often closely mapping to machine code instructions) 
14. In-memory logging 
15. Cache locality (for L1/L2/L3 memory caches and instruction caches) 
16. Specialized data structures 
17. Thread-Local Storage (TLS) (“thread_local” type in C++11) 
18. Shared memory (e.g., shmctl which is the main “shared memory control” 

function, shmget, shm_open, ftruncate) 
19. Memory mapped files/devices (e.g., mmap, munmap) 
20. Asynchronous programming (std::async) 

 
 

https://www.amazon.com/dp/B0F2SNYS3L/
https://www.amazon.com/dp/B0DJT5JKM9/
https://www.amazon.com/dp/B0CXJKCWX9/
https://www.aussieai.com/blog/llm-inference-optimization
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Concurrency-Friendly Data Structures: 

21. Read-only data structures 
22. Reader-friendly data structures (e.g., many readers, one writer) 
23. Copy-on-write data structures (for readers) 
24. Versioned data structures (for readers) 
25. Partition data across threads (vertically: columns) 
26. Shard data across threads (horizontally: rows) 
27. Read-Copy-Update(RCU)—mostly the same as copy-on-write. 
28. NUMA-aware data structures—reduce cross-node communications 
29. Transactional memory (synchronization efficiency, reduces contention) 

— use atomic or isolated transactions (an emerging technology) 
 
Hotpath Optimizations: 

30. Optimize all steps in the hotpath (e.g., data ingestion, decision, trade 
execution, logging, risk management) 

31. Profile the hotpath specifically (e.g., a test mode that always runs the 
hotpath) 

32. Examine assembly code of the hotpath 
33. Avoid any memory allocation calls on hotpath (e.g., memory pools, use 

preallocation) 
34. Avoid free/deallocation of memory on hotpath 
35. Use preallocated memory on hotpath 
36. Review data de-serialization and serialization costs 
37. Use in-memory databases for any significant amounts of incoming data 
38. Keep the client network connection warm (method depends on the API) 
39. Re-use objects to avoid constructor/destructor calls on hotpath 

 
General Tuning Advice: 

40. Avoid micro-optimization 
41. Avoid optimizing error handling code (it’s a slowpath) 
42. Loop optimizations (see below) 
43. Avoid nested loops 
44. Tune inner loop for nested loops 
45. Avoid excessive function wrapper overhead 

 
Performance Profiling Tools: 

46. gprof 
47. perf 
48. prof (older) 
49. pixie (older) 
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Lock Contention Reduction: 

50. Late lock acquisition 
51. Early lock release 
52. Short critical section of code 
53. Generally reduce total numbers of locks used 
54. Locking fine-grain vs coarse-grain 
55. Use fine-grain locks for contested resources 
56. Use a hybrid fine-grain/coarse-grain lock strategy 
57. Release locks before significant computation 
58. Copy data to temporary variables to unlock before computation 
59. Release locks before blocking for I/O 
60. Release locks before blocking for system calls 
61. Release locks before blocking for networking 
62. Tolerate lockless output overlaps 
63. std::shared_mutex and std::shared_lock — for multiple reads, 

one writer. 
64. Double lock check method (check first without a lock) 
65. Use std::promise and std::future not shared memory. 
66. Thread-specific queues and “work stealing” design pattern 
67. Use a lock-free queue data structure 
68. thread_local keyword (C++11) 
69. std::lock_guard (C++11) 
70. std::lock_guard early release by scope control 
71. std::unique_lock (C++11) (this allows more granular control than 

std::lock_guard) 
72. std::scoped_lock (C++17) 
73. Locking with timeouts (try locks) 
74. Avoid spinlock busy waiting 
75. Exponential backoff to avoid spinlock costs 

See also “lock-free programming” and “concurrency-friendly structures” 
 
Thread/lock overhead reduction (generally): 

76. Reduce thread launch overhead 
77. Reduce thread destruction overhead 
78. Reduce lock acquisition/release overhead 
79. Reduce lock contention overhead 
80. std::make_shared() or std::allocate_shared() standard 

functions do only one allocation (combined shared pointer and control 
block), whereas shared_ptr<type> does two allocations (both the 
shared pointer and the control block are separate). 

81. Weak pointer references (std::weak_ptr) can delay the deallocating 
a shared_ptr and its object even after the main reference count is zero. 
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System code optimizations (general ideas): 

82. Avoid system calls to reduce context switches (in Linux) 
83. Use C++ “intrinsics” functions (highly optimized assembly-level code) 

 
Linux socket programming: 

84. Non-blocking sockets versus using select() with a timeout—allows 
thread to do “other” useful work rather than just wait. 

85. poll() or epoll() system call rather than waiting 
 
Context Switching Reduction: 

86. Thread counts (not too many threads) 
87. Thread specialization 
88. Thread specialization (producer-consumer thread model) 
89. Use custom thread pools with only preallocated memory block pools. 
90. spinlocks avoid context switches (good if spins for only a short time) 
91. Avoid context switch cost by thread doing “other” work, not just blocking. 

 
Cache Locality Optimizations: 

92. Tiling/blocking algorithms 
93. Tiling/blocking matrix multiplication (MatMul/GEMM) 
94. Smaller data type sizes for increased locality 
95. Choose a CPU with a larger L1 “cache line size” (64-256 bytes common) 
96. std::hardware_destructive_interference_size, std::har

dware_constructive_interference_size (C++17) 
97. std::initializer_list (C++11) can be used as a standardized 

lightweight container with contiguous elements 
See also “cache warming (prefetch)” optimizations 
See also “false sharing (avoid)” optimizations 
 
Instruction Cache Locality Optimizations: 

98. Prefer shorter blocks of code in the hotpath 
99. Consider not inlining function calls (for instruction cache locality) 

See also “branch prediction optimizations” 
 
Branch Prediction Optimizations (General): 

100.  Branch elimination 
101.  Branch compiler hints 
102.  Branch prediction heuristics 
103.  Branch profiling (two-phase) 
104.  Branchless programming 
105.  Tools—measure branch prediction data (e.g., perf) 
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Branch Reductions Techniques: 

106.  Algorithm-level changes to reduce branches 
107.  Keep loop bodies short (shorter branches) 
108.  Reduce far branching (e.g., function calls) 
109.  Reduce overall use of function calls (see function call optimizations) 
110.  Reduce use of if statements 
111.  Reduce use of loops 
112.  Reduce use of break statements (in loops, not switch!) 
113.  Reduce use of continue statements 
114.  Reduce use of switch statements 
115.  Reduce short-circuiting in &&/|| operators 
116.  Reduce short-circuiting of ?: ternary operator 
117.  Avoid virtual function calls (hidden dynamic branches) 
118.  Avoid pointer-to-functions (hidden dynamic branches; blocks inlining) 
119.  Avoid function objects/functors (hidden dynamic branches) 
120.  Avoid lambda functions passed as arguments (depends on how well the 

optimizer can handle them) 
121.  Reduce long if-else-if sequences 
122.  Reduce nested if-else sequences 
123.  Avoid branches depending on anything unpredictable 
124.  Avoid branches depending on user inputs 
125.  Avoid branches depending on random numbers 
126.  Avoid branches depending on system clocks 
127.  Sort array data for efficient branch prediction, if scanning through the 

linear array comparing the data (e.g., before testing for error range) 
See also “compile-time optimizations” (remove branches at compile-time) 
See also “loop optimizations” (reduce loop iterations, e.g., loop unrolling) 
 
Branch Prediction Heuristics: 

128.  Common case code in if block 
129.  Uncommon case code in else block 
130.  Error handling code in else block (uncommon code) 
131.  Avoid zero-iteration loops (never entered) 
132.  Avoid single-iteration loops (never loop back) 

 
Branch Prediction Compiler Hints: 

133.  [[likely]] and [[unlikely]] path attributes (C++20) 
134.  likely() and unlikely() expressions (C++20) 
135.  __builtin_expect (GCC) 
136.  LIKELY and UNLIKELY macros via __builtin_expect (pre-C++20) 
137.  [[noreturn]] (C++11) 
138.  [[assume(expression)]] attribute (C++23) 
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139.  hot (GCC function attribute) 
140.  GCC __builtin_unreachable 
141.  std::unreachable—helps branch prediction (C++23) 
142.  [[fallthrough]] — more for safety than speed (C++17) 
143.  -fdelayed-branch compiler flag 
144.  -fguess-branch-probability compiler flag 
145.  -fif-conversion and -fif-conversion2 compiler flags 
146.  Use “likely” and “unlikely” in custom assertion macros 
147.  Use “likely” and “unlikely” in error handling code macros 

 
Branch Profiling: 

148.  -fprofile-arcs (GCC option) 
149.  -fprofile-generate (GCC command-line argument) 
150.  -fprofile-use (GCC command-line argument) 
151.  Branch profiling with 100% hotpath (test modes) 

 
Branchless Programming Techniques: 

152.  Ternary operator preferred over if statements (if CMOV instruction) 
153.  Boolean variables as 0 or 1 in arithmetic 
154.  Logical operators (&&/||) as 0 or 1 in arithmetic 
155.  Bitwise operators (&/|) replace logical operators (&&/||) 
156.  Sign bit extension bit masks 
157.  Lookup tables for branchless programming 
158.  XOR trick to swap two integer variables without a temporary variable 

 
Slowpath Removal: 

159.  Optimize error checking pathways 
160.  Remove error checking tests 
161.  Defer error checking tests to later 
162.  Combine error checking tests together (and do it later) 
163.  Avoid adding error checks deeper in the call hierarchy 
164.  Never-failing functions (cannot return an error) 
165.  Don’t use memory allocation (avoids memory allocation failure) 

 
Cache Warming Methods: 

166.  Prefetch memory primitives 
167.  __builtin_prefetch (GCC) 
168.  _mm_prefetch (GCC) 
169.  volatile on temporary variables 
170.  Dry-run execution mode 
171.  Branchless dry-run execution with arr[2] declarations 
172.  Use read-only cache warming pathways (avoids cache invalidation for 

other threads) 
173.  Use deep cache warming all the way down into the NIC 
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174.  Optimize cache warming by fewer data reads (relies on cache line sizes) 
175.  Reduce cache warming code to the maximum size of the low-level 

memory cache (this avoids redundant warming when cache is already full). 
 
False Sharing (Avoiding): 

176.  Using alignas(64) or 128 or 256 to avoid false sharing (C++11) 
177.  Use alignas on all shared memory or atomics (C++11) 
178.  Tools to automatically detect false sharing (DRD fails?) 

 
Parallelism (General Categories): 

179.  Multithreading 
180.  Multiprocess 
181.  Vectorization 
182.  Pipelining 
183.  Parallel execution modes (C++17) 
184.  Coroutines (C++20) 

 
Advanced C++ Concurrency Data Structures: 

185.  Read-only (“immutable”) data structures 
186.  Lock-free algorithms and data structures 
187.  Linear search can be efficient for small sizes because of cache prefetching 

(e.g., rather than binary search; also doesn’t need sorting maintained) 
 
SIMD Instructions: 

188.  AVX (x86 CPUs) 
189.  ARM Neon 
190.  std::simd (experimental/C++26) 
191.  <immintrin.h> 

 
Linux O/S Optimizations: 

192.  Process priority upgrades (“nice” command or system call) 
193.  Disable unimportant processes 
194.  Overclocking CPU 
195.  Overclocking GPU 
196.  Disable Security Enhanced (SE) Linux 
197.  Disable accounting mode in Linux (should be off anyway) 

 
Linux Kernel Optimizations: 

198.  Scheduling algorithm kernel modifications 
199.  Tweak TCP/UDP network buffer settings (Linux kernel) 
200.  Turn off file “last access date” storage (“noatime” in /etc/fstab) 

 
 



David Spuler                                               560 
 

System Hardware Optimizations (Categories): 

201.  Processor hardware (CPU) 
202.  Network optimizations 
203.  Disk optimizations 
204.  RAM Memory optimizations 

 
Processor Hardware Major Categories of Optimizations: 

205.  CPU 
206.  GPU 
207.  NPU 
208.  FPGA 
209.  ASIC 

 
Networking Hardware Optimizations (Categories): 

210.  NIC 
211.  Switches 
212.  Load balancer devices 
213.  Size of the packet buffer of a switch (optimizing for) 

 
Networking Transmission/Protocol Optimizations (Categories): 

214.  Physical proximity 
215.  Co-Lo 
216.  TCP 
217.  UDP (faster than TCP but unreliable) 
218.  Optical networking (optical fiber cables) 
219.  Microwave network transmission 
220.  Packet fragment manipulations (e.g., out-of-order) 
221.  Reduce packet fragment collation overhead 
222.  Reduce packet consistency checking (error safety overhead) 

 
Networking Software Optimizations: 

223.  TcpDirect/Onload 
224.  SolarFlare/OpenOnload (kernel bypass) 
225.  Exablaze (NIC with kernel bypass support) 
226.  DMA 
227.  PCIe bus 
228.  Compress data sizes for your network transmissions 
229.  Sticky sessions (avoids sending user-specific caches between servers) 
230.  Shared storage rather than server-to-server networking (e.g., NAS/SAN) 
231.  Use custom wrappers for TCP and UDP network processing 
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GPU & Distributed Networking Optimizations: 

232.  RDMA 
233.  nvlink 
234.  Infiniband 
235.  RoCE 
236.  GPUDirect 
237.  PXN 

 
Deployment Optimizations (Website backends): 

238.  DNS optimizations 
239.  Round-Robin DNS (RRDNS) 
240.  SSL time optimizations 
241.  etags (website server speedup) 
242.  Multiple identical servers architecture 
243.  Use subdomains for static files 
244.  CDN for static files 
245.  Compression modes enabled 
246.  Static files compressed 
247.  Minify static files (CSS, JavaScript) 
248.  Merge multiple small files together 
249.  Use smaller image files (low precision) 
250.  Merge multiple small icon images into one image file 
251.  Cache duration settings 
252.  Database optimizations (various, e.g., MySQL/MariaDB/MongoDB) 
253.  Database indexes 
254.  Application server optimizations (e.g., Tomcat) 

 
Apache/Nginx Subprocess Optimizations: 

255.  Use FCGI not classic CGI integrations 
256.  Flush stdout of subprocesses (partial output earlier to Apache or Nginx) 
257.  Close stdout of subprocesses before shutdown sequence (sends finishes 

earlier to Apache or Nginx) 
258.  Early tests for violations and invalidity (fails quickly) 

 
Algorithm Enhancements: 

259.  Precomputation (lookup tables) 
260.  Precomputation to data file 
261.  Precomputation of source code 
262.  Incremental algorithms 
263.  Data structure augmentation 
264.  Parallelization 
265.  Vectorization 
266.  Caching 
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267.  Lazy evaluation 
268.  Common case first 
269.  Simple case first 
270.  Approximate tests first 
271.  Bounding box approximate tests 
272.  Bounding sphere approximate tests 
273.  Avoiding sqrt by using arithmetic on squares 
274.  Integer arithmetic on squares: avoid floating-point by working on squares 
275.  Use variance not standard-deviation (arithmetic on squares) 
276.  Approximations 
277.  Compute budget algorithms 
278.  Probabilistic/stochastic algorithms 
279.  Skipping algorithms 
280.  Heuristic algorithms 
281.  Greedy algorithms 

 
Memory Reduction Strategies: 

282.  Take care as memory reduction as methods can reduce speed (trade-offs) 
283.  Reduce allocated memory 
284.  Smaller data sizes 
285.  Pack data into smaller integer sizes 
286.  Pack data into bits 
287.  Pack data using bit-fields 
288.  Pack data into unions 
289.  Use std::bitvector 
290.  Use std::vector<bool> (a special bit-packed template instantiation) 
291.  Structure packing (also for class data members): reorder different-sized 

data members for better packing and fewer padding bytes 
292.  Structure packing: biggest data types first (heuristic) 
293.  Structure packing: MSVS /d1reportSingleClassLayout compiler 

option to report on it 
294.  #pragma pack directive reduces padding to reduce size, but may worsen 

structure access costs 
295.  Stack data reductions 
296.  Avoid deallocation of heap memory when in shutting-down mode 

 
Heap Allocated Memory Reduction Strategies: 

297.  Fewer allocated memory blocks 
298.  Avoid frequent small allocations 
299.  Preallocation of dynamic memory 
300.  Memory fragmentation avoidance 
301.  Memory leak avoidance 
302.  Merge memory allocations together 
303.  Memory pools (fixed-size allocations, often a type of preallocation) 
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304.  Memory pool with O(1) deletion and O(1) insertion via permutation array 
305.  Merge fixed-size allocated objects into a large array 
306.  Custom memory allocators (generalized) 
307.  Class-specific memory allocator 
308.  Custom global memory allocator 
309.  Late allocation (allocate memory as late as possible) 
310.  Early free memory (deallocate as early as possible) 
311.  Early delete memory (deallocate early) 
312.  Avoid realloc (slow, memory fragmentation) 
313.  Smart dynamic buffers (hybrid of allocated and non-allocated memory) 
314.  std::aligned_alloc - memory alignment improvement (C++17) 
315.  std::aligned_union (C++11) 

 
Static Memory Size Reductions: 

316.  Avoid large global arrays and buffers 
317.  Avoid large static arrays and buffers 
318.  Avoid large static C++ data members 
319.  String literal memory reductions 

 
Stack Memory Size Reductions: 

320.  Avoid large local arrays and buffers 
321.  Avoid large function non-reference parameter arrays and buffers 
322.  Use pass-by-reference on large function parameters 
323.  Use integer parameters as local variables 
324.  Consider stack versus memory allocation 
325.  Flattening/reducing function call hierarchy 
326.  Inline small functions (compiler can disappear them) 
327.  Use #define macros for small functions (versus inlining) 

See also: function call hierarchy flattening 
See also: recursion avoidance 
 
Code Size Reduction Strategies: 

328.  Code size reductions 
329.  DLLs versus static libraries 
330.  Remove executable debug information 
331.  Avoid the compiler “-g” debug option 
332.  Avoid the compiler “-p” profiler option 
333.  Unix strip command 
334.  Avoid large inline functions (instruction cache locality) 
335.  Don’t overuse “always inline” or “force inline” 
336.  Template overuse 
337.  Google “bloaty” tool 
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Standard Library Optimizations (STL Optimizations): 

338.  String processing efficiency (e.g., “+” for std::string can be slow) 
339.  std::vector of non-trivial class objects calls constructor/destructors 
340.  Control array size for std::vector using “reserve()” 
341.  Use std::sort rather than qsort 
342.  bsearch is not your friend 
343.  Consider hard-coded arrays versus std::array versus std::vector 
344.  Compare the first letters of strings before calling strcmp 
345.  Consider type casts to int versus round(), ceil(), floor() 
346.  Avoid printf or fprintf format string processing with putchar, 

putc, fputc, puts, fputs 
347.  Hand-code faster versions of the abs and fabs/fabsf primitives that 

don’t handle Inf/NaN numbers (but benchmark it). 
348.  Change strlen("literal") to char arr[]="literal" and 

use sizeof(arr)-1 
349.  Don’t use strlen(s) in a for loop condition 
350.  Consider your own atoi/itoa versions that don’t handle obscure cases. 
351.  Avoid sprintf and snprintf (both are slow) 
352.  sync_with_stdio(false) 
353.  std::stringstream is slow (hand-code text field processing instead) 

 
Data Structures: 

354.  Hashing (basic) 
355.  Perfect hashing 
356.  Bit vectors 
357.  Bit sets 
358.  Bloom filters (bit vectors + hashing) 
359.  Binary tree 
360.  Sorted arrays 
361.  Unsorted arrays 
362.  Stacks 
363.  Queues 
364.  Dequeues 
365.  Vector hashing 
366.  Permutation arrays 
367.  Locality-sensitive hashing (LSH) 
368.  Bit signatures (vector algorithm) 
369.  K-means clustering (vector algorithm) 
370.  Hyper-cube (vector algorithm) 
371.  Approximate nearest neighbor (ANN) (vector algorithm) 
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Variable Optimizations: 

372.  Prefer int types to char or short (usually) 
373.  Prefer int types to unsigned int (usually) 
374.  Prefer int types to size_t (unsigned long; consider uint32_t) 
375.  Avoid unnecessary initializations 
376.  Re-use objects to avoid initializations/destruction 
377.  Avoid temporary variables 
378.  Use reference variables instead of full temporary variables 
379.  Avoid creating temporary objects 
380.  Put commonly used data fields first in struct/class 
381.  Declare variables as close as possible to usage 
382.  if initializer syntax (C++17) 
383.  switch initializer syntax (C++17) 
384.  Avoid bit-fields (smaller but slower to access or set) 
385.  Use memory alignment primitives to avoid slow-downs 
386.  Put the most-used data member first (it has a zero offset) 
387.  Order data members most used to least (small offsets are faster, in theory) 
388.  Array initializer lists as local variables (re-initialized each call) 
389.  Structure of arrays (SoA) data layout is often more vectorizable than  

Array of Structures (AoS). 
 
Arithmetic Optimizations: 

390.  Operator strength reduction 
391.  Reciprocal multiplication 
392.  Integer arithmetic 
393.  Use float not double 

 
Expression Optimizations: 

394.  Expression transformations 
395.  const 
396.  mutable keyword — bypasses const (C++98) (speedy but unsafe) 
397.  Common subexpression elimination (CSE) 
398.  Constant folding 
399.  Template fold expressions (C++17) are concise but lots of computation 
400.  Expression templates—avoids explicit temporary variables, compiler 

optimizes it better. 
401.  Constant propagation 
402.  Redundant assignment removal 
403.  Strength reduction 
404.  Algebraic identities 
405.  Implicit type conversions (avoiding; type consistency) 
406.  explicit keyword (prevent implicit type conversions) (C++98) 
407.  Brace initialization syntax {} (avoids implicit narrowing conversions) 
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408.  auto variable declarations avoid accidental temporaries and implicit type 
conversions. 

409.  Don’t mix float/double types (including their constants) 
410.  Don’t mix integer types 
411.  Prefer signed integers over unsigned types 
412.  Short-circuiting of sub-expressions (using &&/||/?:) 
413.  Register allocation optimizations 
414.  mprotect page system call —optimization to make memory writeable 
415.  <algorithm> simple algorithms: min, max, etc. 
416.  Range check faster with “(unsigned)i<MAX” not “i>=0&& i < MAX” 

 
Memory Block Operations: 

417.  Prefer contiguous memory blocks (locality, efficient block operations, etc.) 
418.  Different class types can allow block copying: POD (Plain Old Data), 

trivial types, standard memory layout types (e.g., check in a template using 
std::is_trivial) 

419.  Copy arrays by wrapping them in a dummy struct 
420.  Copy arrays with memcpy 
421.  Compare arrays with memcmp (very dangerous: padding bytes, negative 

zero, NaNs) 
422.  Use memcpy not memmove if arguments won’t overlap. 
423.  Linearize multi-dimensional arrays (contiguous memory blocks) 

 
Operator Strength Reduction Optimizations: 

424.  Replace * with bitshifts 
425.  Replace * with addition 
426.  Replace x*2 with x+x 
427.  Replace % with bitwise-and (&) 
428.  Replace % with increment and test 
429.  Replace % with type casts (if byte sizes) 

  
Bitwise Optimizations: 

430.  Intrinsic bitwise functions 
431.  CLZ (count leading zeros) bitwise intrinsics 
432.  CTZ (count trailing zeros) bitwise intrinsics 
433.  Popcount bitwise intrinsics (set bit count) 
434.  Kernighan bit trick (find highest bit set) 
435.  Fast NOR/NAND/XNOR via assembly instructions 
436.  Fast LOG2 of integers 
437.  Fast largest power-of-two of integers 
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Floating-Point Optimizations: 

438.  Convert float to 32-bit integers (float bit manipulations) 
439.  FTZ (Flush to Zero) mode 
440.  DAZ (Denormals Are Zero) mode 
441.  LOG2 of floating-point is the exponent 
442.  Zero/negative zero bitwise tests 
443.  Disallow negative zero (to use faster zero comparisons) 
444.  NaN (Not-a-Number) bitwise tests 
445.  Inf/-Inf bitwise tests 
446.  Avoid denormalized numbers 
447.  Disable denormalized numbers (subnormals) (compiler/library modes) 
448.  Avoid underflow in floating-point (ignore it) 
449.  Avoid overflow in floating-point (ignore it) 
450.  memcmp float vector equality (disallow special values for 

fast float vector equality comparison) 
451.  Fast detection of special values in float vectors (bitwise operations) 
452.  Floating-point intrinsic functions (various) 
453.  Exponent addition: bitshift floating-point by addition of the exponent bits 
454.  Sign bit flipping/extraction/setting (bitwise tricks) 

 
Compiler Settings for Floating-Point: 

455.  GCC -ffast-math option — faster math mode. 
456.  GCC -fno-math-errno — faster math by not setting errno. 
457.  GCC -ffinite-math-only 
458.  GCC fno-trapping-math 
459.  MSVS /fp:precise, /fp:strict, /fp:fast 
460.  Disable floating-point exceptions 

 
Loop Optimizations: 

461.  Exit loops early (e.g., break or return statements) 
462.  Finish loop body early (i.e., continue statement) 
463.  Correct choice of loop 
464.  Loop unrolling 
465.  #pragma unroll 
466.  Loop fusion 
467.  Loop perforation (probabilistic) 
468.  Loop tiling/blocking 
469.  Loop fission 
470.  Loop reversal (don’t use!) 
471.  Loop code motion (“hoisting”) 
472.  Loop distribution 
473.  Loop iterator strength reduction 
474.  Loop coalescing 
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475.  Loop collapsing 
476.  Loop peeling 
477.  Loop splitting 
478.  Loop interchange 
479.  Loop sentinel 
480.  Loop strip mining (loop sectioning) 
481.  Loop spreading 
482.  Loop normalization 
483.  Loop skewing 
484.  Loop interleaving 

  
If Statement Optimizations: 

485.  Replace if-else-if sequences with switch. 
486.  Replace if-else-if sequences with lookup table loop. 

 
Switch Statement Optimizations: 

487.  Use compact numeric ranges in switch (compiler can use a LUT) 
 
Compile-Time Optimizations: 

488.  inline functions 
489.  always_inline specifier 
490.  GCC flatten_inline specifier 
491.  gnu_inline GCC specifier 
492.  Keep inline functions short (helps compiler to inline) 
493.  Keep inline functions in header files (source available to all its calls) 
494.  Avoid making virtual functions “inline”—compiles but a slug. 
495.  sizeof 
496.  Use sizeof with static_assert (e.g., portability checks) 
497.  Virtual functions cannot be inlined (although it compiles) 
498.  Pointer-to-function usages of functions cannot be inlined 
499.  Function objects (functors) cannot always be inlined 
500.  Lambda functions cannot always be inlined 
501.  inline variables (C++17) (helps with linking) 
502.  static_assert (compile-time assertions) 
503.  const is good 
504.  constexpr (C++11) is great 
505.  constexpr functions allow if, switch, loops, etc. (C++14) 
506.  constexpr lambda functions (C++17) 
507.  constexpr and placement new (C++26) 
508.  References to constexpr variables (C++26) 
509.  if constexpr statements 
510.  constinit 
511.  consteval 
512.  if consteval (C++23) 
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513.  Type traits <type_traits> (C++11) 
514.  typeid is slow (RTTI) 
515.  std::is_same_v (type trait test) 
516.  Template specialization (for specific types) 
517.  Template specialization (for constant integers) 
518.  Variadic templates (C++11) 
519.  Template Meta Programming (TMP) still works, but prefer constexpr 
520.  Auto-vectorization (by compiler) 
521.  Auto-unrolling of loops (by compiler) 
522.  SFINAE tricks (mostly an issue for compiler engineers) 

 
Pointer Aliasing: 

523.  Reorganize functions with awareness of pointer aliasing issues 
524.  Restricted pointers (to avoid pointer aliasing slowdowns) 
525.  -fstrict-aliasing compiler option (alternative to “restrict”) 

 
Pointer Arithmetic: 

526.  Loop pointer arithmetic 
527.  End pointer address tricks (Loop pointer arithmetic) 
528.  Use references not pointers (avoids null testing) 
529.  Prefer postfix operations with the *ptr++ idiom (not prefix ++ptr) 
530.  Pointer comparison tricks 
531.  Pointer difference tricks 
532.  Avoid safe pointer class wrappers (prefer raw pointers for speed) 

 
Pointer Optimizations (Other): 

533.  reinterpret_cast (helps the optimizer and is effectively a free 
compile-time hint) 

534.  Avoid dynamic_cast (to downcast from a base to a derived class, 
which can be helpful for specializing member calls, but dynamic casts can 
be expensive at runtime because of RTTI) 
 
Function Optimizations: 

535.  Return early from functions 
536.  Flatten function call hierarchies 
537.  Callbacks are an extra layer of function call 
538.  Lambda functions are convenient but are an extra function call layer 

(though often inlined) 
539.  Function objects (functors) are an extra function call 
540.  Avoid recursion (completely; we’re not in High School anymore) 
541.  Replace simple recursion with a loop 
542.  Replace complex recursion with a stack 
543.  Tail recursion elimination 
544.  Recursion higher base level 
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545.  Collapse recursion levels 
546.  Specialize functions with default arguments (use two versions) 
547.  Specialize functions with void and non-void versions (if the return 

value is often ignored) 
548.  Avoid function pointers (cannot be inline or constexpr) 
549.  Merge multiple Boolean function parameters into a “config” object with 

Boolean data fields. 
550.  noexcept attributes allow compiler to avoid adding extra code (C++11) 
551.  std::initializer_list can be used to return multiple values 

(benchmark against other methods) 
 
C++ Class Optimizations: 

552.  friend functions (bypass interfaces) 
553.  friend classes (bypass interfaces) 
554.  Return references rather than objects 
555.  Avoid temporary class objects in expressions 
556.  Add extra member functions to avoid temporary object creation 
557.  Pass objects by reference to functions (i.e., “&” or “const&”) 
558.  Disable copy constructors with “private” or “= delete” 
559.  Disable assignment operators with “private” and “= delete” 
560.  Declare overloaded assignment operators with void return type (except 

when defaulting) 
561.  Re-use objects to avoid constructor and destructor calls 
562.  Avoid calling the destructor when in shutting down mode 
563.  Uninitialized memory: std::uninitialized_fill (C++17) 
564.  CRTP (Curiously Recurring Template Pattern): derived class derives from 

base class which is itself a template involving a pointer to the derived class 
(optimizes polymorphism to be compile-time, avoiding virtual function 
calls; also, this allows more inlining of these calls.) 

565.  Move constructors 
566.  Move assignment operators 
567.  std::move (C++11, C++14) is usually a compile-time cast. 
568.  Return object reference types (not complicated objects) 
569.  Avoid virtual function calls with explicit calls to the specific function 
570.  Specialize inherited member functions (for the more restrictive type) 
571.  Avoid overloading the postfix increment/decrement operators 
572.  Block the overloaded postfix increment/decrement operators 

(void body or =delete) 
573.  Consider skipping destructor cleanup if program is shutting down 
574.  Avoid accidental double initialization of data members in constructors 
575.  Avoid redundant initialization of members in constructor and “setup”  
576.  Specialize member functions with default arguments (use two versions) 
577.  Default constructors/destructors with “=default” may be more 

efficient than hand-coded versions. 
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578.  Trick for singleton pattern in multithreading — thread initialization of a 
function-local static variable, other threads block, once-only initialization 
guaranteed by C++ compiler. 
 
Advanced C++ Compiler Optimizations: 

579.  Copy elision (compiler auto-optimization with avoidance of calls to copy 
constructor in certain cases) 

580.  Guaranteed copy elision (C++17) 
581.  Named return value elision (a type of copy elision) 
582.  Temporary return value elision (a type of copy elision) 
583.  Copy elision in exception handling (special case for copy elision) 
584.  Allocation elision (new operator) (C++14) 
585.  Use xvalue or “expiring value” optimizations (various) 
586.  Trick: disallow creating an object on the stack, make its destructor private. 
587.  Trick: to disallow creating an object on the heap: make declarations of 

the new and new[] operators private. 
 
Byte Block Operations in C++ Classes: (Use with extreme care!) 

588.  memset/bzero to zero in a constructor — fast but dangerous, 
overwrites internal “vtable” data in object if class has 
any virtual functions, does not call constructors of its data members or 
base class members; also cannot use an initializer list as this overwrites with 
zero after any objects were set by the initializer list. 

589.  memcpy to bitwise copy in a copy constructor or assignment operator — 
fast but dangerous, improperly copies internal vtable data in object if class 
has any virtual functions, does not deeply copy any of its members or base 
class members nor call their constructors. 

590.  memcpy to bitwise copy in a move copy constructor or move assignment 
operator — fast but dangerous; improperly copies “vtable”. 

591.  memcmp to bitwise compare for equality/inequality tests — fast but fails 
due to pitfalls: padding bytes, bit-field members, negative versus positive 
zero floating-point values, NaN floating-point values. 

592.  Virtual inheritance — usually for pure virtual base classes; avoids double 
objects if the same base class type is inherited in two different pathways. 
 
Timing C++ Methods: 

593.  std::chrono C++ class (highly granular) 
594.  clock() C/C++ function 
595.  time command (Linux shell) 
596.  time() function (granularity is only in seconds) 
597.  gettimeofday() 
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Benchmarking C++ Methods: 

598.  Loop unrolling for accurate benchmarking 
599.  Use volatile specifier for accurate benchmarking 
600.  Loop overhead measurement for accurate benchmarking 
601.  Google Benchmark: Apache 2 license; 

code: https://github.com/google/benchmark 
 
Compiler Settings: 

602.  Optimizer settings 
603.  Optimizing for space/memory size (compiler flags) 

 
General Build & Software Development Practices for Efficiency: 

604.  Maintain separate builds for slow testables versus production executables 
605.  Compile-out assertions 
606.  Compile-out self-testing code 
607.  Compile-out debug code or tracing code 
608.  Ensure test code not accidentally left in production (test a global flag 

based on these macros at startup) 
 
CUDA C++ GPU Optimizations: 

609.  Coalesced memory accesses 
610.  Thread specialization (GPU) 
611.  GPU thread pools 
612.  Producer-consumer thread pools 
613.  GPU kernel optimizations 
614.  Striding (GPU kernels) 
615.  Overlapping GPU uploads and compute 
616.  Overlapping with recomputation/rematerialization 
617.  Offloading to CPU 
618.  Pinned memory blocks 
619.  Warp divergence (warp coherence) 
620.  Grid optimizations 
621.  Grid size optimizations 

 
Core Utility Classes (Efficiency Helpers): (to build for overall 
efficiency practices) 

622.  Bitwise macro library (bitflag management) 
623.  Floating-point fast bitwise operations macro library 
624.  Benchmarking/timing library 
625.  Smart buffer library (reduce allocations by combining allocated/non-

allocated memory management) 
626.  TCP/UDP wrapper library 
627.  Specialized data structures for small amounts of data (faster than STL) 

https://github.com/google/benchmark
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628.  Sorted array and binary search (small array size) 
629.  Lock-free queues 
630.  Perfect hashing library 
631.  Bit vector data structures (possibly based on STL) 
632.  Bit set data structures (possibly based on STL) 
633.  Bloom filter library 
634.  Vector hashing library 
635.  Caching utilities library 
636.  Source code precomputation library 
637.  Basic data and statistics on vectors (e.g., averages, std dev/variance, etc.) 
638.  Incremental vector algorithms (averages, min, max, etc.) 
639.  Branchless coding primitives library 
640.  Graph library for locking analysis 
641.  Data compression library 
642.  Approximate tests library 
643.  Math library (versus STL) 
644.  Memory pools library (fixed-size custom memory allocators) 
645.  Custom memory allocator library 
646.  Placement new operator versions 
647.  Placement delete operator (write your own) 
648.  Multi-dimensional array library (linearize your vectors, matrices, tables, 

or tensors) 

AI Kernel Optimizations (using LLM Inference Optimizations for 
non-AI low latency applications): (subset of methods to consider) 
Reference: 500+ LLM Inference Optimization Techniques (blog article) 

649.  Kernel fusion 
650.  Kernel fission 
651.  Kernel tiling/blocking 
652.  Quantization (integer-based approximation of floating-point) 
653.  Low-bit quantization 
654.  Binary quantization (1-bit) 
655.  Integer-only arithmetic 
656.  Floating-point quantization (FP16/FP8/FP4) 
657.  Mixed precision quantization 
658.  Logarithmic quantization 
659.  Dyadic quantization 
660.  Low rank matrices 
661.  MatMul/GEMM optimizations (many) 
662.  MatMul data locality optimizations 
663.  Sparse MatMul 
664.  Approximate matrix multiplication 
665.  Contiguous memory block matrix multiplication 

https://www.aussieai.com/blog/llm-inference-optimization
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666.  Cached transpose MatMul 
667.  Fused transpose MatMul 
668.  Tiled/blocked MatMul 
669.  Sparsification (Pruning/Sparsity) 
670.  Token pruning (input compression) 
671.  Token skipping 
672.  Token merging 
673.  Data compression algorithms 
674.  Early exiting (of layers) 
675.  Caching optimizations 
676.  Vector computation caching 
677.  Zero skipping 
678.  Negative skipping 
679.  Padding optimizations 
680.  Zero padding removal 
681.  Zero-multiplication arithmetic 
682.  Adder/addition (zero-multiply) 
683.  Bitshifts (zero-multiply) 
684.  Bitshift-add (zero-multiply) 
685.  Double bitshift-add (zero-multiply) 
686.  Add-as-integer (zero-multiply) 
687.  Logarithmic arithmetic (zero-multiply) 
688.  Hadamard element-wise matrix multiplication 
689.  End-to-end integer arithmetic 
690.  Table lookup matrix multiplication 
691.  Weight clustering (grouped quantization) 
692.  Vector quantization 
693.  Parameter sharing 
694.  Activation function optimizations (non-linear functions) 
695.  Precomputation of Activation functions 
696.  Approximation of Activation functions 
697.  Integer-only approximation of Activation functions 
698.  Fused activation functions 
699.  Normalization optimizations (non-linear vector data functions) 
700.  Fused normalization optimizations 
701.  FFN optimizations (double MatMul) 
702.  FFN approximations 
703.  FFN integer-only 
704.  Decoding algorithm optimizations 
705.  Speculative decoding 
706.  Multi-token decoding 
707.  Ensemble decoding 
708.  Consensus/majority-vote decoding 
709.  Easy-hard queries 
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710.  Batching computations 
711.  Advanced number systems 
712.  Posit numbers 
713.  Dyadic numbers 
714.  Hybrid number systems 
715.  Fixed point numbers (integers not floating-point) 
716.  Block floating-point (BFP) hybrids 
717.  Logarithmic number system (LNS) 
718.  Disaggregation (prefill/decoding) 
719.  Computation re-use 
720.  Conditional computation 
721.  Approximate caching 
722.  Addition arithmetic optimizations 
723.  Approximate addition 
724.  Bitwise arithmetic optimizations 
725.  Fast multiplication arithmetic 
726.  Approximate multiplication 
727.  Logarithmic approximate multiplication 
728.  Approximate division 
729.  Bitserial arithmetic 
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Appendix B: C++ Slug Catalog 

Slug Hunting Advice 

This appendix is about speeding up your C++ programs through general 
improvements to sequential or parallel coding. Before we begin with anything that’s 
actually useful, I have to introduce the obligatory wrist-slapping politically-correct 
deslugging advice for programmers. Hence, here are some general nuggets of advice 
when attempting to speed up your program: 

• Profile twice, code once. Performance profiling tools exist for a reason. 

• Don’t micro-optimize. Unless you’re into that kind of thing. But really, try 
to sit on your hands. 

• Do macro-optimize. Think about your data structures and algorithms. 

• Optimizing introduces new bugs. 100% guaranteed! Don’t optimize the 
night before your release. Re-run your test suite. 

• Don’t optimize exception handling. Tweaking rarely-executed code is a 
poor use of your geniousness. 

• Use open source third-party libraries that have already been optimized by 
others. 

Or just ignore that advice and go crazy. It’s just too much fun optimizing when the 
alternative is dreary debugging. Pro tip: it’s even more fun writing a book on 
optimizing! 

Where to hunt slugs? Some of the common large-scale issues with coding 
inefficiency in typical C++ programs include: 

• Function call hierarchies 

• Nested loops 

• Overuse of memory allocation 

• Constructor and destructor inefficiencies 

• Inefficient algorithms (e.g., linear search of arrays) 

• Unnecessary overhead or wrappers 

• Recursion. After you’ve coded up your university assignments (remember 
Tower of Hanoi, anyone?), please forget recursion exists. 
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C++ Speedup Techniques: Some of the general ways to speed up C++ programs 
at the design structure or algorithmic level include: 

• Faster data structures (e.g., hash tables). 

• Faster algorithms (e.g., fix linear search to something faster like, you know, 
hashing again). 

• Parallelize via multi-threading, multi-process, multi-core, multi-GPU, 
multi-something. 

• Vectorization (parallelize your important loops) 

• Precompute expensive functions into a lookup table at compile-time (e.g., 
activation functions). 

• Cache any complex calculations to trade extra space for time savings (e.g., 
KV caching). 

• Change floating-point to integer operations (quantization, anyone?) 

• Replace recursion with iteration. Subtract ten bonus points if you need to 
do this. 

Some of the high-level C++ coding optimizations include: 

• Flatten function call hierarchies (stop wrapping everything so much, and 
inline the small functions at the bottom). 

• Optimize loops, especially nested loops (e.g., move loop-invariant code 
out, loop unrolling, vectorization, etc.) 

• Templates are effectively a compile-time optimization that improves speed 
at the cost of code space. 

• Reduce memory allocation (use less memory overall or replace memory 
allocation with temporary stack buffers). 

• Operator strength reduction (e.g., replace “*” with “+”, a pipe dream of all 
AI engineers). 

• Declare variables as close as possible to where they are used. This avoids 
instantiating objects that aren’t needed on some paths. 

• Use pointer arithmetic, especially for loops over arrays. 

• Bitwise operations are fast, but the basic C++ integer operations are also 
fast too, nowadays. Benchmark, don’t assume. 

• Use short-circuiting of the && and || operators, and also the 
ternary ?: operator, to avoid expensive function calls. 
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And finally, some things you might forget (and some that are forgettable): 

• Benchmark any important changes (e.g., operator strength reductions). 

• Turn up your C++ optimizer. There are higher settings you could try. 

• Add compile-time optimization hints (e.g., constexpr and restrict). 

• Overclock your PC (like a gamer). 

• Sell your car to buy a better GPU. 

• Put every function in a header file and make them all inline. 

• Reorder your case labels. Surely it helps. 

• Change i++ to ++i in everyone else’s code. 

C++ Class Slugs 

The C++ class features are designed to add encapsulation and modularity, while 
retaining speed, but there’s still plenty of ways that slugs can crawl into your classes. 
C++ class optimizations include: 

• Ensure small member functions are inline, especially those that do “get” 
and “set”. 

• Add inline to other friend or non-class functions (esp. if small or 
commonly used). 

• Pass objects to functions using “const&” (pass-by-reference), rather than 
pass-by-value. 

• Watch out for temporary objects. These can occur in simple assignments 
or function call expressions or in weird ways like accidentally making your 
overloaded assignment operator have the wrong type. 

• Use reference variables instead of copying objects into temporary variables. 

• Take care templating class objects (e.g., when using 
the std::vector class for a vector of your class objects). Lots of 
hidden calls to constructors and destructors may arise in resizing. 

• Use the initializer list in the constructor for initializing data members. 

• Use friend functions for faster accesses to internal object data. 

• Block accidental calls to the copy constructor or class assignment operator 
(i.e., if you aren’t defining them, make a dummy version that is “private” 
with a “void” function body). 

• Avoid returning objects if you can. Return a reference if it’s safe to do so. 

• Take care with “wrapper” classes like “smart pointers”, “smart integers” 
or “smart buffers”. Usually, they’re safer but slower. How smart is that? 
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Bypass interfaces with friend functions 

Using friend functions may be faster because they can bypass class getter and 
setter member functions. If a class declaration has a good deal of private data, it 
is common C++ style to declare an interface of public member functions to access 
private data. Although the class interface can be quite efficient if member functions 
are declared as inline, the need to call a function to access a data value can still 
make it inefficient in some cases. The use of friend functions 
and friend classes can be efficient because this bypasses the class interface. For 
example, a member function to set a data member may perform some range 
checking on the value, but if we can be sure that a particular function will not use 
incorrect data, a friend function can be used to bypass this checking. 

friend functions (or friend classes) should not be considered unless the 
function needs very fast access to data members, and the member functions to 
access the data perform other computations. Note that a member function, with its 
special privileges, also bypasses the class interface (because it is part of it), 
and friend functions should not be used where member functions would be 
more appropriate. Programming style is the consideration here, as they would both 
have similar efficiency. 

A good example of friend function efficiency occurs when an operator function 
operates on two different classes, such as when we need an operator that multiplies 
a Matrix object by a Vector object to yield a new Vector. Assume that both 
classes have member functions to access individual elements of 
the Vector or Matrix. Consider the declaration of the multiply function as 
neither a class member nor a friend function, as in: 

    const int N = 10; // Number of elements in vector/matrix 

    class Vector { 

        double data[N]; 

    public: 

        double get_element(int i) const { return data[i]; } 

        void set_element(int i,double value) { data[i]= value; } 

    }; 

 

    class Matrix { 

       double data[N][N]; 

    public: 

       double get_element(int i, int j) const {  

            return data[i][i]; } 

    }; 
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    Vector operator * (const Matrix& m, const Vector& v) 

    { 

        Vector temp; 

        // multiply matrix by vector 

        for (int i = 0; i < N; i++) { // for each row 

            double sum = 0.0; // sum of N multiplications 

            for (int j = 0; j < N; j++) { 

                sum += m.get_element(i, j) * v.get_element(j); 

            } 

            temp.set_element(i, sum); // store new element 

        } 

        return temp; // return new vector 

    } 

This will be horribly inefficient because the operator*() function must go 
through both class interfaces to access elements. Although it isn’t necessarily any 
less efficient here, if range checking of the array index i were present in the 
member functions to set or access the elements, this would cause inefficiency. 

Note that if the Vector class overloaded the [] operator instead of using 
a get_element member function, this would make no difference to efficiency—
notational convenience is gained but the operator[] function has the same cost 
as any other function. 

One alternative to consider is to make the operator* function another member 
of the Vector class, but this will still mean using the interface for 
the Matrix class. A more efficient solution is to make the operator* function 
a friend of both Matrix and Vector classes, thus allowing it direct access to 
their individual data elements, bypassing any range checking on array indices. The 
more efficient version, using a friend function, is: 

    const int N = 10; // Number of elements in vector/matrix 

    class Matrix; 

    class Vector { 

        double data[N]; 

    public: 

      friend Vector operator*(const Matrix& m, const Vector& v); 

    }; 

 

    class Matrix { 

      double data[N][N]; 

    public: 

      friend Vector operator * (const Matrix& m, const Vector& 

v); 

    }; 
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    Vector operator * (const Matrix& m, const Vector& v) 

    { 

        Vector temp; 

        // multiply matrix by vector 

        for (int i = 0; i < N; i++) { // for each row 

            double sum = 0.0; // sum of N multiplications 

            for (int j = 0; j < N; j++) { 

                sum += m.data[i][j] * v.data[j]; // access data 

            } 

            temp.data[i] = sum; // store new vector element 

        } 

        return temp; // return new vector 

    } 

The disadvantage of using friend functions is the same as their advantage: they 
pierce class encapsulation. Because a friend function makes use of hidden private 
data members, and any change to the class may require a change to the definition 
of the friend function, whereas in the first version of the operator* function, 
the use of the “get_element” functions of both Vector and Matrix meant 
that it would need no changes, provided the “get_element” functions were 
correctly changed within the class. 

Avoid Virtual Functions 

Object-oriented programming purists will hate me for this section. 
C++ virtual functions are a wonderful incarnation of OOP and they can be 
beautiful and elegant. But you need to avoid them sometimes if speed is your goal. 

They’re also very fast function calls, even though done dynamically. 
Although virtual function calls seem like they’re complicated and possibly slow, 
they’re actually very carefully designed to be very fast to call in C++ class 
hierarchies. There’s lots of painstaking work for compiler designers to get them to 
compile correctly, but their runtime efficiency is great for programmers. The 
implementation is effectively a small lookup table with function pointers. It’s a 
couple more assembler statements before the function call, and the overhead of 
calling a function will dwarf that cost. 

So, why do I say to review your use of virtual functions? Because they’re an 
optimizer blocker. Since they’re a dynamic runtime function call, there’s much less 
opportunity for the C++ compile-time optimizations to remove these calls. Indeed, 
the compiler cannot always determine what function is being called and you can 
lose these speedups: 

• inline functions 

• constexpr function evaluation 
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Hence, I say you have to choose carefully in the use of virtual functions. Avoid 
them for speed-critical functions, and don’t use them only for good OOP style 
when you don’t really need them. But also, don’t be afraid of using them in other 
instances because they’re only marginally slower than a non-inlined function call. 
Kudos to the C++ language designers for that! 

Avoid unnecessary virtual function calls 

The use of virtual functions, when they are not needed, is obviously 
inefficient. virtual functions are needed only when dealing with pointers or 
references to objects of unknown type. If the program never uses pointers or 
references to objects, or if it does not have any derived classes, no function needs 
to be virtual and the use of virtual wastes space. In addition, 
because virtual functions relate only to the use of derived classes, declaring any 
functions as virtual in a class that has no derived classes is also unnecessarily 
inefficient. 

One common situation where virtual may appear necessary, but need not be, 
occurs with redefining a member function in a derived class. This does not 
necessarily mean that the function must be defined as virtual in the base class 
(nor in the derived class — the virtual keyword is never needed in the derived 
class). Of course, if the program starts using pointers or references to these classes, 
the functions may need to be virtual, in which case it may be better style to 
declare the member function as virtual. 

A call to a virtual function need not always be a “real” virtual call. For 
example, passing an object by reference (either as a reference or as a pointer type) 
can occur when changing functions to pass-by-reference for efficiency 
improvement.  

Any calls to virtual functions inside that (not necessarily virtual) function 
will be such that the compiler cannot know that an ordinary function call to the 
member function would suffice. It does not perform any global analysis to 
determine that all arguments to the function are base objects, and not derived 
objects. For example, in the following code, it isn’t clear that the call to the 
(virtual) print function could be replaced by an ordinary call: 

    void print_base_object( Base & object) 

    { 

        object.print(); 

    } 
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The overhead of virtual function calls can be removed whenever the programmer 
can be sure that only one type of pointer/reference to an object is being used. In 
particular, whenever a programmer can be sure that a pointer/reference to a base 
class object points to a particular object, the qualified member function name can 
be used. For example, the virtual call uses: 

    p->print(); 

And the more efficient code that avoids a virtual function call is: 

    p->Base::print(); 

An example of extra information making this change possible occurs when a 
program uses a number of different (homogeneous) linked lists, with each linked 
list containing the same type of object (one with base objects, one with derived 
objects). When implementing a print_list function to print out a linked list, 
you can write it generally to call a virtual-declared print_object function: 

    void LinkedList::print_list() 

    { 

        for (Base *temp = head; temp != NULL; temp=temp->next()) 

            temp->print_object(); 

    } 

This means that each call to print_object has the run-time overhead of 
a virtual function call. A more efficient alternative is to make use of the 
knowledge that each list must contain the same type of object, and have two 
different print_list functions (i.e., use a virtual function to do the dirty 
work of printing the objects). 

    void Base::print_list_hidden() 

    { 

        for (Base *temp = this; temp != NULL; temp=temp->next()) 

        temp->Base::print_object(); 

    } 

 

    void Derived::print_list_hidden() 

    { 

        for (Derived *temp = this; temp != NULL; 

        temp = (Derived*)temp->next()) 

        temp->Derived::print_object(); 

    } 

    void LinkedList::print_list() 

    { 

        if (head != NULL) 

            head->print_list_hidden(); // call virtual function 

    } 
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With this approach, all of the lower-level calls to print_object can be bound at 
compile-time and the only virtual call is the call to print_list_hidden at 
the very top. Hence, by using our knowledge about the linked lists, we have reduced 
the number of run-time virtual function calls. 

Specialize inherited member functions 

In an inheritance hierarchy, the derived class is a specialized version of the base 
class. This means that member functions inherited from the base class can often be 
rewritten more efficiently to make use of the known special features of the derived 
class objects. 

Example: Triangular Matrix Algebra. As an example, consider a class 
“UTMatrix” (upper triangular matrix) which is derived from class “Matrix” and 
represents matrices where all elements below the main diagonal are zero. 

The general matrix “add” function of the Matrix class is inherited by 
the UTMatrix class, and it will work correctly. However, this inherited function is 
inefficient and it is more efficient to add a new member function to 
the UTMatrix class to add two upper triangular matrices avoiding all additions 
involving elements below the diagonal (because they are known to be zero). 

In fact, it is also more efficient to write special functions to add ordinary matrices 
to upper triangular matrices. The computation of the determinant of a triangular 
matrix is also more efficient than that for a general square matrix, so this member 
function should also be rewritten in the UTMatrix class. 

Example: Complex Numbers. As another example, consider a class 
“Imaginary” (imaginary numbers) derived from another class “Complex” 
(complex numbers). For all operations involving Imaginary objects, it is certain 
that the real part of the complex number is zero. Hence, it is more efficient to 
rewrite all inherited operations that use the real part of a Complex object, such as: 
addition, multiplication, norm, etc. 

The main disadvantage of specializing member functions is that the code reuse 
advantage of inheritance is negated; more programmer time must be spent on 
recoding the specialized member functions. Other disadvantages are the increased 
probability of error, most special cases to test, and an increase in executable code 
size. 
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Assignment Operator Return Type 

The return type of the overloaded assignment operator should usually be a 
reference type or void. A common mistake is to make it return a class object. 
Consider the following class declaration: 

    class Integer { 

        private: int val; 

        public: 

        Integer operator = (const Integer &x); 

        // ... 

    }; 

 

    Integer Integer::operator = (const Integer &x) 

    { 

        val = x.val; // copy data 

        return *this; // return left operand 

    } 

This declaration of the assignment operator to return an object permits expressions 
using the result of assignment, such as: 

    Integer x, y, z; 

    x = x + (y = z); // embedded assignment 

    x = y = z; // multiple assignment 

However, it needlessly calls the constructor and destructor for a temporary object, 
leading to inefficiency, and occasionally to error. The correct declaration of the 
assignment operator is to return a const reference to Integer. This simply 
requires an & in the return type declaration, as follows: 

    const Integer& Integer::operator = (const Integer &x) 

    { 

        // ... same as above 

    } 

Note that const is required because the use of a non-const reference return type 
is slightly undesirable because it allows the very strange (and probably incorrect) 
multiple assignment: 

    (x = y) = z; 

Although the failure to declare the return type as a reference above was a slug, rather 
than a bug, it can be more dangerous.  
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For a MyString class with dynamic allocation, using an object return type 
of MyString instead of MyString& will cause a temporary object to be created 
at the return statement, using the copy constructor with “*this” as the 
argument. If the copy constructor is defined correctly, this is often just an instance 
of inefficiency, but it may also lead to fatal errors related to temporary objects. 
When the copy constructor isn’t defined correctly, the programmer has an error 
with an increased level of complexity caused by temporary objects. 

Return Type Void: Note that it may be far better simply to declare the return type 
of the assignment operator as void, rather than a reference type. Although this 
prohibits embedded assignments in expressions and also multiple assignments, 
these are poor style anyway and should probably be discouraged. Using return 
type void is also slightly more efficient because no value need be returned. 
However, returning the reference type is the more common C++ idiom. 

Singleton Classes 

In a one-instance class there will only ever be one object defined from it. There are 
called “singletons” in the “design patterns” parlance. In this situation the class can 
be defined very efficiently by making use of compile-time initialization with data 
members declared as “static” members. 

An example is a hash table implementation of a symbol table (e.g., in a compiler 
keyword table or an AI vocabulary table used by the tokenizer), where only one 
symbol table will ever be used. The crucial fragment from this code is: 

    class SymbolTable { 

      private: 

        Node * table[TABLE_SIZE]; // Hash table - array of ptrs 

      public: 

        SymbolTable(); // constructor 

    }; 

 

    //--------------------------------------------------- 

    // Constructor - initialize the hash table to empty 

    //--------------------------------------------------- 

    SymbolTable::SymbolTable() 

    { 

        for (int i = 0; i < TABLE_SIZE; i++) // all ptrs NULL 

        table[i] = NULL; 

    } 

If there will only be one hash table, the constructor is needlessly inefficient. A more 
efficient version declares the hash table as a static data member and the implicit 
initialization to zero will set all the pointers to NULL at compile-time. The efficient 
code for a one-instance hash table is: 
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    class SymbolTable { // ONE INSTANCE ONLY 

      private: 

        static Node *table[TABLE_SIZE]; // Compile-time init 

      public: 

        SymbolTable() { } // constructor does nothing 

    }; 

Temporary Objects and Destruction 

Temporary objects are created automatically by the compiler in a number of 
situations. This is a similar idea to that of a C++ compiler generating temporary 
values for intermediate results of a computation. However, a temporary with class 
type will have its constructor and destructor activated, so temporary objects can be 
quite expensive. 

For example, try the following class to demonstrate how a temporary object is 
defined for intermediate expression results, particularly that returned by 
the + operator: 

    #include <iostream.h> 

    class Integer { 

    private: int val; 

    public: 

        Integer() { val = 0; cout << "Constructor\n"; } 

        ~Integer() { cout << "Destructor\n"; } 

        Integer(const Integer &x) 

        {  

            val = x.val; 

            cout << "Copy Constructor\n"; 

        } 

        void operator=(int x) { val = x; } 

        void operator=(const Integer &x) { val = x.val; } 

        friend Integer operator+(Integer &x, Integer &y); 

    }; 

 

    Integer operator+(Integer &x, Integer &y) 

    { 

        Integer temp; // user-defined temporary 

        temp.val = x.val + y.val; 

        return temp; // creates compiler temporary 

    } 

 

    int main() 

    { 

        Integer i, j, k; 

        k = i + j; 

    } 
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There are 4 calls to the ordinary constructor corresponding to i, j, k, and temp; 
there is a single call to the copy constructor that occurs when 
the return statement creates a temporary object for the object returned from 
operator +. This temporary object is the result of i+j and is then assigned to k. 

In this case there are poor performance and no errors related to temporary objects 
and in most cases, temporary objects are transparent to the programmer for a 
correctly defined class (i.e., having both assignment operator and copy constructor). 
However, if the programmer unwittingly stores a reference or pointer to members 
of a temporary object, there may be errors in a later use of the reference or pointer. 
The problem is that temporary objects can be destroyed by the compiler as soon as 
they have been used in the computation, and so the reference or pointer is no longer 
valid. However, since the timing of the destruction of temporaries is undefined, 
some compilers will not exhibit an error for such code because they leave the 
destruction of temporaries till late; it depends on how aggressively a particular 
compiler performs its internal code optimization. 

Overloaded Postfix Increment Operator 

The postfix increment operator (x++) is a big slimy slug. I’m not talking about 
your for loop with “i++” versus “++i” for an integer, which is the same on any 
compiler since about the 1990s, despite the endless online arguments about it. I’m 
talking about overloaded increment and decrement operators for classes. 

In C++ you can declare separate prefix and postfix increment overloaded operators 
for a class, by putting an extra dummy “int” parameter in the postfix version. You 
can also leave out a postfix version, and the prefix version will be called for both 
usages. The default call to prefix versions is not a slug, but a potential bug if you 
copy-paste code or use postfix ++ in template code. Also, returning the current 
object for the prefix increment operator is only a minor slug, because you’re 
returning a reference to the current object (and a reference is really just a pointer). 

Postfix operations are much worse. They are slower than airport queues at 
Thanksgiving. The semantics of the postfix increment operator (x++) in the C++ 
language are effectively: 

1. Create a temporary copy of your object. 

2. Increment the current object. 

3. Return the temporary object. 
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If you actually do this big shemozzle for a class object, you’ve got a whole lot of 
processing happening on a temporary object that’s probably not even used. Maybe 
the optimizer will cut a lot of it as dead code, or maybe not. With the horrors of 
that echoing in your mind, here’s my first suggestion: 

Don’t even declare postfix overloaded operators for your class. 

Don’t overload the postfix increment operator. In fact, you can stop it being used 
by declaring a dummy version that is “private” (stops external usage) with a 
“void” function body (stops internal usages). 

    private: 

        void operator++(MyClass &x, int) void;   // Postfix denied! 

        void operator--(MyClass &x, int) void; 

Void Return Type: Note that attempts to call a postfix ++ operator on a class type 
may occur in template instantiation with your type. If it’s your template, change the 
template code to use prefix operators. If you really must define an overloaded 
postfix increment or decrement operator, then here’s my second suggestion: 

Make the return type “void” 

Hence, a basic usage of “x++” will compile and work correctly. Not only will it be 
efficient to not return anything, but the compiler will also ensure that nothing more 
fancy will run. A compilation error will block any use of postfix ++ that relies on 
the operator returning the old object. In other words, this will be fine: 

    x++; 

But this will get a compiler error alerting you to a problem: 

    y = x++;   // Error 

Standard Vector Object Resizing 

The standard vector class is usually very efficient for basic data types, but you 
need to take care if you instantiate it with a class type. The risk is that you’ll have 
hidden calls to this class type’s constructors and destructors, potentially for every 
element of the vector, under various circumstances. 

This slug is a type of “hidden copy constructor call” problem. If you don’t manage 
the size of the standard C++ vector class objects in the initialization or via the 
“reserve” method, there can be a lot of hidden resizing happening behind the 
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scenes whenever you are adding elements to the vector. This will at least be doing 
bitwise copies of the elements of each vector. But it’s even worse if the vector 
contains complex objects with a defined copy constructor. When it’s resizing 
the vector, it will call the copy constructor for each and every object that is an 
element of the vector because it needs to move them all. 

Even for basic data types there can be some cost to copying the data when resizing. 
You can take control of this with the “reserve” function, so that 
the vector object doesn’t need to keep resizing itself if you’re adding to it. 

Skipping Destructor Cleanup 

It’s really good OOP coding style for your destructor to carefully clean up every 
resource your object needed, and you know, beautiful coding idioms are just so very 
important. I certainly wouldn’t want to be the person to tell you to do some ugly 
hack, even if it made everything a whole boatload faster. Umm, really, I wouldn’t 
want to, but if you promise not to tell anyone you heard it from me... 

Typically, destructor cleanup means calling “delete” on allocated memory used 
by the data members, and for complex objects, it may also mean closing files. And 
I often find that the cost of the destructor starts becoming significant in its own 
right. And one destructor call can trigger lots more, like roaches, only without the 
social skills. If you call “delete” on any member objects or worse, arrays-of-
objects, then those destructors get called, and this triggers a whole blam of code 
that cascades down the object hierarchy. 

Here’s a thought: don’t cleanup! 

This is an optimization worth considering in some cases: 

• Batch jobs 

• Re-launching server daemons 

• Program is shutting down anyway 

If your program is a run-once batch job, and it’s not going to be running again with 
a new request, or even if it’s an AI inference server process that handles 1,000 user 
queries, after which another copy will launch in its place, then you can make like a 
teenager, and don’t cleanup. Thumb your nose at Valgrind and comment out all 
those delete lines in your destructors. 

Let the memory leak! 
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Program exit is a special case that you can detect. If your program is exiting 
“cleanly” then it does destructor calls to all of the global objects, and so on. And 
you usually know in the code when the program is shutting down, whether from a 
user choice, a timeout or limit exceeded, or something internal like an assertion 
failure. One idea is to use a global Boolean flag that says “I’m shutting down” and 
then check it inside all of the main destructors: 

   MyClass::~MyClass() 

   { 

        if (g_aussie_im_shutting_down) return;  // Skip! 

        ... 

        // Lots of stylistically beautiful code 

   } 

Is it safe? What happens if you just skip all the cleanup? Well, nothing bad in many 
cases. The operating system cleans up the allocated memory as part of 
reclaiming all of the memory. Files are a bit more of a complicated story. Standard 
C++ shutdown should also properly close any files opened for reading, although 
you might possibly lose some buffered output written to a log file, so maybe you 
should still flush buffers or close those files. 

This idea of skipping destructors isn’t always workable. It’s not always clear that 
ending the process will properly save buffered output in closing files. As another 
more complex example, if there’s an abnormal disconnect from a database session 
or a remote network connection hangup (e.g., socket session not ended properly), 
there might be some other consequences, like error messages in the logs locally or 
for the remote peer. 

Initializer lists for member objects 

When a class declaration contains a class object as one of its members it is important 
to use the correct method of initialization to retain efficiency. Consider the 
declaration of a class B containing a member object from class A: 

    class A { 

      private: 

        int val; 

      public: 

        A() { val = 0; } 

        A(int x) { val = x; } 

        void operator = (int i) { val = i; } 

    }; 
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    class B { 

      private: 

        A a; // member is itself an object 

      public: 

        B() { a = 1; } // INEFFICIENT 

    }; 

Declaring an object of type B will cause the default constructor for the member 
object of type A to be invoked immediately before the default constructor for B. 
Then the = operator for class A is used to set the member object, a. Hence, the 
constructor for B involves a call to A’s default constructor and a call to the 
assignment operator. The call to A’s default constructor is redundant and should be 
avoided. Fortunately, C++ provides a convenient syntax for passing arguments to 
constructors of member objects. The default constructor for B should be recoded 
to use the initializer list: 

    B() : a(1) { } // EFFICIENT 

This initialization syntax causes the constant 1 to be passed to the constructor for 
the member object, a (the constructor accepting the int parameter is called, 
instead of the default constructor). Thus, instead of calling the default constructor 
and the assignment operator for A, only the int constructor for A is called. 

This initialization method is efficient whenever calling the default constructor for a 
member object is not appropriate, for instance, when the member object is 
initialized by a call to the assignment operator within the main object’s constructor 
(as above, where B’s constructor assigned to its member of type A). This common 
form of initialization can be used for any type of data member (i.e., not only class 
objects), although it will be neither more nor less efficient than assignment for built-
in types. The special initialization syntax should be used wherever it is applicable, 
since it can never be less efficient than assignment to the data members within the 
constructor, and will often be more efficient. 

Initializer lists for base objects 

Base objects. Similar efficiency considerations apply to constructors in derived 
classes, since the data member(s) in the base class act like an object member. The 
constructor for the base class is always called when a derived class object is 
constructed. When the default constructor for the base class is of no use to a 
derived class object, it is more efficient to pass arguments directly to a non-default 
base class constructor, using the special initialization syntax. The same syntax 
applies as for data member initialization, except that the type name of the base class 
is used instead of the name of a data member. A contrived example of this form in 
initialization is: 
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    class Derived : public Base { 

      public: 

        Derived() : Base(0) { } // Call Base(int) constr 

    }; 

Avoid temporary objects 

In the same way that temporary integer variables are used to compute an integer 
expression, so too are temporary objects used in non-trivial expressions involving 
class objects. For example, consider this code where the Complex class has defined 
the + and = operators: 

    Complex c1,c2,c3; 

    c1 = c2 + c3; 

This is likely to create a temporary Complex object as the result of the addition, and 
this temporary object is then passed as an operand to the = operator. In other 
words, the expression is actually evaluated as: 

    operator=( c1, operator+(c2, c3) ); 

A temporary object must be created to store the “+” sub-expression computed for 
the second argument, and then passed to the “=” operator. Whether the operands 
to operator= are passed by reference or by value has no effect on whether a 
temporary is created in this situation (it will only affect the creation of new objects 
inside the operator= function). 

One (rather inelegant) method of avoiding this creation of temporaries is to create 
a specialized function to handle it: 

    void AssignThree(Complex&c1, Complex&c2, Complex&c3); 

    ... 

    AssignThree(c1,c2,c3); // c1 = c2 + c3; 

The function should probably be a friend function to allow efficient access to the 
data members of the three Complex objects. 

The problems with this solution are its very poor style (because the neatness of the 
use of overloaded operators is lost), and also its non-general character. More 
complicated expressions will still generate temporaries, unless more special 
functions are added as friend functions, leading to even worse style. This “cure” 
is perhaps worse than the disease. 
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Avoid temporaries via extra member functions 

There are situations where the removal of temporaries does not lead to poor style. 
Consider the following definition of a minimal Complex class: 

    class complex { 

      private: 

        double re; // real part 

        double im; // imaginary part 

      public: 

        // Constructors 

        complex() { re = 0.0; im = 0.0; } 

        complex(double r) { re = r; im = 0.0; } 

        complex(double r, double i) { re = r; im = i; } 

        // Copy constructor 

        complex(complex &c) { re = c.re; im = c.im; } 

        // Overloaded assignment operator 

        void operator = (complex & d) {  

               re = d.re; im = d.im; } 

        // Overloaded + operator 

        friend complex operator+(complex &c1, complex &c2); 

    }; 

 

    inline complex operator + (complex &c1, complex &c2) 

    { 

        return complex(c1.re + c2.re, c1.im + c2.im); 

    } 

Consider this class definition when used in the following code sequence: 

    complex c1, c2; 

    c1 = 2.0; 

    c2 = c1 + 3.0; 

The effect is identical to: 

    c1 = complex(2.0); // invoke "double" constructor for 2.0 

    c2 = c1 + complex(3.0); // invoke "double" constr for 3.0 

The C++ compiler automatically creates two temporary objects from 
the double constants, and calls the double constructor to do so. The inefficiency 
of the creation of a temporary object and the call to the constructor can be avoided 
by adding a few more functions to the class declaration: 

    void operator = (double d) { re = d; im = 0.0; } 

    friend complex operator + (double d, complex &c2); 

    friend complex operator + (complex &c1, double d); 
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If these functions are present, then the double constants are passed directly to 
the double parameters of these functions. No temporary object is created, and 
hence the constructor is not called. Note that two symmetric versions 
of operator+ are required because the C++ compiler cannot assume that the 
commutativity of + holds for user-defined class objects. 

By making the “interface” efficient for mixing complex and double variables, the 
creation of temporaries has been reduced. This can be generalized: it is better to 
provide member or friend functions to class X for a specific parameter type Y, 
than to provide only a constructor to create new X’s from Y’s. 

Declare objects close to use 

The C++ language allows variable declarations to appear almost anywhere within a 
program. Although the placement of variable declarations may seem unrelated to 
efficiency, it can have some effect when objects with non-trivial constructors are 
declared. For efficiency reasons, an object must be declared as close to its first use 
as possible. In particular, the C style of declaring all variables at the top of a function 
is often inefficient. Consider the C++ code below: 

    void dummy(...) 

    { 

        complex c; // create object 

        if (... ) { 

            .... // use c 

        } 

    } 

The complex object is not used if the condition in the if statement is false — the 
constructor and destructor for the unused object are called needlessly. 

Declare Objects with Full Initialization 

Another consideration is that objects should not be declared until there is enough 
information to construct them fully. For example, given a user-defined class 
“complex”, consider the following code: 

    complex c; // construct c 

    // .... 

    c = 1.0; // initialize c 

This is less efficient than calling the correct constructor directly by using: 

    complex c(1.0); // construct and initialize c 
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The first code sequence involves a call to the default constructor and the 
overloaded operator=, whereas the second declaration calls only the (double) 
constructor for the complex class. 

Unfortunately, there are practical limits to the extent to which objects can be 
declared near their first use. If the first use of an object is inside a compound 
statement, and the object must also be used outside the compound statement, the 
scope resolution rules prevent the declaration from being placed inside the 
compound statement. For example, consider the code below: 

    double d; 

    complex c; 

    while(....) { 

        cin >> d; // get double value from user 

        c=d; // set complex number 

    } 

    cout << c; // print the complex number 

In this sequence, it would be more efficient to declare “c” inside the loop block 
using the direct call to a double constructor: 

    complex c(d); 

However, this would prevent the use of c outside the scope of the braces. This 
limitation is an unfortunate consequence of the programming language design 
choice to make braces both the method of grouping statements and the scoping 
mechanism in C++ (but there are many more important advantages supporting this 
decision). Unfortunately, it is not even possible to remove the braces in the above 
example, using the comma operator as by: 

    while(....) 

        cin >> d, complex c(d); // FAILS: compilation error 

C++ syntax prevents a declaration from being an operand of the comma operator. 

Nothing Constructors. What we really want is a way to declare a class type 
variable, but not run its constructor. I’m not aware of a good way to do this. One 
way would be to use pointers and dynamically allocated “complex” objects, which 
is successful and standardized, but this adds extra memory management overhead. 

Here’s a thought. Maybe something like this works? Declare a dummy constructor 
with a dummy parameter type: 
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    class Banana { }; 

    complex(Banana b) {  } // nothing! 

Then your call to the dummy constructor is hopefully optimized to nothing: 

    Banana b; 

    complex c(b);  // Nothing! 

Data Member Optimizations 

These optimizations apply to C++ objects or structures. There are various ways to 
speed up the data accesses and writes to a data member in an object. 

Avoid bit-fields. Bit-fields are a special C++ feature designed to reduce space in 
an object or structure. 

    struct node { 

        unsigned int visited :1; // bit-field  

    }; 

Avoid bit-fields if you want runtime speedup. They are great at reducing memory 
size, but often at the cost of extra run-time overhead on any accesses to these fields. 
Hence, for improved efficiency, at the cost of space wastage, remove the “:1” 
qualification and change to a small data type such as bool, char, or unsigned 
char. 

Memory alignment: If there are mixed size data members, or there are some with 
“alignas” alignment settings, then memory alignment issues can needlessly create 
an oversize object. This is more of a problem in terms of unnecessary space usage, 
but adds inefficiencies in the need to initialize or copy the extra padding bytes for 
large arrays of objects. The general rules for minimizing size are to: (a) order 
members from large to small, and (b) group like-sized data types together. 

Most used data member first. The machine code for an access to a structure or 
object’s data fields usually involve a base address of the object, to which is added 
an offset that is specific to each field. References to the first field of a structure can 
often be more efficient because there is no need to add an offset (i.e., the offset is 
zero). Hence, the most used class data member or structure field should be placed 
first in the declarations. 
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Order data members by usage. It’s not just the first data member whose order 
matters. Memory access issues such as data locality, predictive caching and memory 
access pipelining mean that all of the most-used data members should be close 
together in an object. In very large objects, there are some platforms where smaller 
offsets are more quickly calculated, such as data members with less than 128 or 256 
as their offset. Hence, a simple optimization is to order the data member 
declarations according to their usage. 

Function Slugs 

Functions are an important building block of your code. Some ways to get the slugs 
out of functions include: 

• Declare small functions inline. 

• Avoid recursion. 

• Pass objects by reference. 

• Avoid function pointers. 

• Specialize functions with default arguments. 

Avoid Function Pointers 

C++ allows a data type called a “function pointer” or a “pointer to a function” as 
part of its standard language. These are carefully type controlled, so they are 
reasonably efficient. However, they are not any faster than regular function calls, 
just because they’re a fancy pointer construct, and there’s a simple reason that 
they’re not super-efficient: they’re function calls! 

A function pointer is a call to a function, so it has the whole sequence to implement. 
It’s not much worse than a standard function call, but there’s another problem. 
Function pointers make it difficult for the C++ compiler to get rid of the function 
call. The use of a function pointer will obscure much of the normal compile-time 
optimization logic. Hence, function pointers can be less efficient for: 

• inline functions 

• constexpr functions 

• Intrinsic functions 

In summary, they’re a neat feature of C++, but not an efficiency gain. Use function 
pointers if they are convenient, but not as a speedup. 
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Change recursion to iteration 

Recursion is an elegant method of problem solution, but often incurs unnecessary 
function call overhead. Where possible, recursion should be replaced with an 
iterative algorithm. For example, the famous example of a recursive “factorial” 
function would always be coded in a loop by professional programmers. 

Fibonacci numbers. With a little insight, many recursive algorithms can be coded 
without recursion. For example, the Fibonacci number sequence (1,1,2,3,5,8,13,...) 
is defined by having the next number as the sum of the previous two numbers, with 
the following recursive rules: 

    Fib(0) = 1 

    Fib(1) = 1 

    Fib(n) = Fib(n−1) + Fib(n−2) 

This has the obvious and very elegant recursive implementation: 

    int fibonacci(int n) 

    { 

        if (n <= 1 ) 

            return 1; 

        else 

            return fibonacci(n - 1) + fibonacci(n - 2); 

    } 

However, there is no need to use recursion here, and a short loop is adequate. A 
non-recursive computation of the Fibonacci numbers is shown below: 

    int fibonacci(int n) 

    { 

        int small = 1, large = 1;  // F0 = F1 = 1 

        while (n > 1) { 

            int temp = small + large; // Fn = Fn-1 + Fn-2 

            small = large; 

            large = temp; 

            n--; 

        } 

        return large; 

    } 
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Binary Trees. There are many examples of common algorithms that are 
unnecessarily coded using recursion. Almost all linked list algorithms can be coded 
without recursion, as can the most common binary search tree operations: search, 
insertion and deletion. For example, the recursive implementation of tree insertion 
is: 

    void insert(Tree *root, Tree new_node) 

    { 

        if (*root == NULL) // Found bottom of tree  

            *root = new_node; // insert here  

        else { 

            if (new_node->data <= (*root)->data) 

                insert(&(*root)->left, new_node); 

            else 

                insert(&(*root)->right, new_node); 

        } 

    } 

The non-recursive version of binary tree insertion is given below. It is somewhat 
less elegant, uses a few more variables, but should be more efficient. 

    void insert(Tree *root, Tree new_node) 

    { 

        Tree temp = *root; 

        if (temp == NULL) // empty tree special case 

            *root = new_node; 

        else { 

            for (;;) { 

                if (new_node->data <= temp->data) { // go left? 

                    if (temp->left == NULL) { // leaf? 

                        temp->left = new_node; // insert it 

                        return; // finished 

                    } 

                    else 

                        temp = temp->left; // go left 

                } 

                else { // going right 

                    if (temp->right == NULL) { // leaf? 

                        temp->right = new_node; // insert it 

                        return; // finished 

                    } 

                    else 

                        temp = temp->right; // go right 

                } 

            } 

        } 

    } 
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I’m sorry, Professor! Your recursive code is short and beautifully elegant, but mine 
is longer, uglier, and faster! Maybe I shouldn’t tell my Professor that I’ve never 
coded a binary tree since finishing my degree?  

Hash tables are the name of the game. 

Eliminating tail recursion 

Recursion is rarely a good solution, but some types of recursive algorithms are not 
easy to change to loops, because they would require a stack data structure to do so. 
If a stack is needed, there may be little gain in removing recursion fully — it depends 
on how efficiently recursion is implemented by the compiler on the builtin C++ 
function call stack, versus your skill in hand-coding a stack data structure. 

In these situations, a simpler optimization is still possible without a stack. Partial 
recursion elimination without the need for a stack is possible via the elimination of 
“tail recursion.” Tail recursion occurs when the last action of the recursive 
procedure is to call itself. 

A simple modification changes this last recursive call to become a loop back to the 
top of the current invocation. For example, consider the preorder traversal of a 
binary tree. The simplest recursive algorithm is: 

    void preorder(node_ptr root) 

    { 

        if (root != NULL) { 

            visit(root); 

            preorder(root->left); 

            preorder(root->right); // Tail recursion here 

        } 

    } 

Tail recursion can be eliminated by replacing the if statement with a while loop. 
The transformation effectively reduces recursion by half, as the second recursive 
call is eliminated. This reduction in recursion is achieved with virtually no extra 
overhead! 

    void preorder(node_ptr root) 

    { 

        while (root != NULL) { // while loop replaces if 

            visit(root); 

            preorder(root->left); 

            root = root->right; // Move to right subtree 

        } 

    } 
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Replacing recursion with a stack 

Some recursive algorithms cannot be easily replaced by iterative loop equivalents. 
For example, in the preorder binary tree traversal above, we were unable to remove 
both of the recursive calls. In these situations, recursion can be replaced with an 
algorithm using a stack data structure. 

All recursive algorithms can be replaced by a stack because recursive algorithms are 
actually using an implicit stack (the program stack of function calls). Whether use 
of a stack will be more efficient than recursion depends on a number of factors. 
The choice of a stack over recursion is machine-dependent. In particular, it is quite 
likely that the program stack is supported by efficient low-level instructions and 
that (recursive) function calls are executed very efficiently. Can you do better? 

On the other hand, recursion requires that much information be stored on the stack 
(i.e., parameters, automatic local variables, machine registers), whereas an algorithm 
making use of an explicit stack will usually only need to store a few items, making 
it potentially faster than the function call stack. If the maximum size of the required 
stack is known beforehand, a stack can be quite efficiently implemented as an array, 
whereas a dynamic stack as a linked list will usually be more costly because of the 
cost of memory allocation. 

The following shows the preorder traversal with tail recursion elimination removing 
one recursive call and an explicit stack replacing the other. In this case, the explicit 
stack need only store pointers. 

    void preorder(node_ptr root) 

    { 

        stack_type S; 

        init_stack(S); // set to empty stack 

        while (root != NULL || !is_empty_stack(S)) { 

            if (root != NULL) { 

                visit(root); // visit a tree node 

                push(S, root->right); // save right subtree 

                root = root->left; // go to left subtree 

            } 

            else 

                root = pop(S); // get node from stack 

        } 

    } 
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Collapsing recursive calls. If you can’t be bothered changing a recursive 
algorithm to a loop or stack, here’s a smaller optimization to consider. By 
channeling the spirit of loop unrolling, we can “collapse” one or more levels of 
recursion into sequential code. The method of “function call collapsing” can be 
applied to recursive functions in this limited sense. Obviously, it isn’t possible to 
collapse a recursive function call completely into inline code, but it is possible to 
collapse a few levels of recursive calls at a time, reducing the total number of 
recursive calls by a constant factor. 

Moving the recursive base case higher. The simplest method is to test the base 
case one level higher up. In the simple implementation of the preorder traversal , 
the recursive base case is “root==NULL”. If this occurs, the function call does 
nothing. One simple method of avoiding these unnecessary function calls is to test 
for the base case before the recursive call. The new function becomes: 

    void preorder(node_ptr root) 

    { 

        while (root != NULL) { 

            visit(root); 

            if (root->left != NULL) // Test moved up 

                preorder(root->left); 

            } 

            root = root->right; 

        } 

    } 

Collapsing multiple levels of recursion. By converting multiple levels of 
recursive calls into sequential code, the function does much more work each time, 
but makes recursive calls less frequently, thereby reducing function call overhead. 
For example, the preorder traversal can be rewritten so that the current node and 
its two children are handled by the function, and then recursive calls are made for 
any of the children’s children: 

    void preorder(node_ptr root) 

    { 

        if (root != NULL) { 

            visit(root); 

            if (root->left != NULL) { // do left child 

                visit(root->left); 

                preorder(root->left->left); 

                preorder(root->left->right); 

            } 

            if (root->right != NULL) { // do right child 

                visit(root->right); 

                preorder(root->right->left); 

                preorder(root->right->right); 

            } 

        }} 
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But alas, we’ve reverted here to a fully recursive version again, just to show function 
call collapsing. The above method should also be combined with (a) tail recursion 
elimination, and (b) a stack data structure. This is left as an exercise for the reader 
(thankfully), and as a project scope estimate, I suggest two weeks! 

Use Parameters as local variables 

Parameters to functions can be used as if they were local variables. Because of C++ 
call-by-value parameter passing of basic types (not arrays), the modification of a 
parameter inside the function does not change the values of any variables not local 
to the function. This method saves on initialization time, and on stack space. In the 
example below, to zero an array, the size is counted down, rather than having a 
local variable counting up. 

    void zero_array(int arr[], int n) 

    { 

        while (n > 0) 

            arr[--n] = 0; 

    } 

This code also has the optimization of “looping down to zero”. Note that we have 
to be careful that this code doesn’t access arr[n], but does correctly 
clear arr[0]. I think it works correctly, but my brain is on fire trying to check it. 

Pass function parameters by reference 

Passing objects or large parameters by value is an inefficiency. The C++ language 
provides a very convenient method of achieving pass-by-reference, by simply 
using & in the parameter declaration. One method of improving efficiency is to pass 
objects to functions as reference parameters. 

Behind the scenes, pass-by-reference is like passing a single pointer as the 
parameter. This avoids not only the cost of copying a large object onto the stack, 
but also the cost of the copy constructor and destructor for the object within the 
function (i.e., the parameter is a separate object when passed by value). 

A function parameter can be changed to use pass-by-reference parameters only if it 
does not change the object. Fortunately, modifications to parameters can be 
detected simply by qualifying the parameter declaration with const, thus forcing 
the compiler to warn about any modifications to the object within the function. An 
example of the use of reference parameters in the definition of a Complex object 
is shown below: 
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    class Complex { 

        double r, i; 

      public: 

        Complex & operator += (const Complex & c); 

        // c is passed by reference for efficiency 

        // The return type is also a reference 

    }; 

 

    Complex & Complex::operator += (const Complex & c) 

    { 

        r += c.r; // add to both data fields 

        i += c.i; 

        return *this; // return reference to updated object 

    } 

Const reference parameters. Passing the argument by reference improves 
efficiency by avoiding big objects. Note that the parameter is declared “const” as 
well as “&” indicating a reference. This “const&” pattern is the common C++ 
idiom for simulating a non-modified pass-by-value object send into a function as a 
faster reference type. 

Returning References. This code also has a second optimization: reference return 
types. Making the return value a reference is also efficient, because 
the return statement does not invoke the copy constructor. Note that a returned 
reference is necessary only if the user of the Complex class uses complicated 
expressions such as x+=y+=z. If such expressions are not required, efficiency can 
be improved by making the return type void. 

Objects Only. The use of references is best limited to class objects, and also to 
structures and unions. Arrays are already passed by reference in C++ and hence 
there is no need to change them. The use of references for scalar types 
(integers, float, double, and pointers) is unlikely to give much improvement, if 
any, and might even be slower for some. 

Pitfall: Temporary Objects. Another disadvantage of using reference parameters 
for scalar types like “int” is the inefficiency caused if a constant value is passed as 
an argument (i.e., a number not a variable). Paradoxically, passing a constant 
argument to a reference parameter is not an error in C++, but instead a new 
temporary object with this type is created automatically by the compiler and its 
address passed. 
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Implicit “this” object. Note that the object to which a member function is applied 
is already passed by reference in a certain sense, because it is using the implicit 
“this” parameter. Hence, the simple types of member function calls are already 
efficiently using a hidden type of pass-by-reference of the object itself. Consider 
this code: 

    int MyClass::fn() // member function 

    { 

        return x; 

    } 

It is not faster with a non-member friend function call that uses an explicit 
reference parameter. This code will not be more efficient (and is probably less 
efficient): 

    int fn(MyClass & object) // friend function 

    { 

        return object.x; 

    } 

Specialize functions with default arguments 

Every default function argument is a place where you can optimize. Default 
arguments to functions are not a source of inefficiency in themselves, and cost no 
more than using a fixed-argument function and passing some constants explicitly. 
However, the use of default arguments indicates the possibility of improving 
efficiency by replacing a single function with a number of specialized functions. 

How to do this? Instead of one function with a default argument, create two 
functions using function overloading. The specialization of the function into two 
separate functions will often make other optimization techniques possible, thus 
improving overall efficiency at the cost of some duplication of executable code. As 
an example of the possibilities that can exist, consider the function with default 
arguments: 

    void indent(int n = 4) // default argument n=4 

    { 

        for (int i = 0; i < n; i++) 

            cout.put(’ ’); 

    } 

Rewriting this single function as one general function and one specialized function 
leads to opportunities for optimization in the specialized function.  
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In this case, loop unrolling can be employed: 

    void indent() // Specialized function (n=4) 

    { 

        cout.put(’ ’); // Loop completely unrolled 

        cout.put(’ ’); 

        cout.put(’ ’); 

        cout.put(’ ’); 

    } 

 

    void indent(int n) // General function 

    { 

        for (int i = 0; i < n; i++) 

            cout.put(’ ’); 

    } 

Note that this optimization is also limited in scope, as there any need to change any 
other code that calls the functions. The C++ compiler will automatically make the 
correct choice of which overloaded function to call. Another thought for improved 
readability is to name the specialized function differently (e.g., indent4), which 
requires calls to the function to be changed. However, default arguments are 
certainly convenient and the slight increase in efficiency should be balanced against 
the loss of good programming style. 

Medium-Sized Slugs 

There are a lot more examples of possible inefficiencies in C++ coding. Some of 
the types of errors that are “medium-sized” slugs include: 

• Automatic array initializations with constant data. 

• Loop test function calls (i.e., expensive loop conditional tests). 

• Member initializations in the constructor body (they should be in the 
initializer lists). 

• Program startup hidden initializations (global or static object 
constructors). 

• Small non-inline functions called frequently. 

• Busy wait loops. 

• Unnecessary code inside loops. 

• C++ classes wrapping simple data types (e.g., overuse of “smart pointers” 
or “smart integer” classes). 

• Overuse of standard string concatenation operations. 

• Recursion is almost always a slug. 



609                             C++ Ultra-Low Latency 
 

Automatic Array Repeated Initialization 

A simple example of unnecessary double initializations is any type of large local 
variable, such as an automatic array. When a function makes use of a large array 
variable with constant data, or even a large constant object, the variable should 
probably be declared as both “const” and “static”, even if it need not retain its 
value between calls. Consider the following code example: 

    char *convert(int day) 

    { 

        char *days[] = { "Monday", "Tuesday", "Wednesday", 

                    "Thursday", "Friday",  

                    "Saturday", "Sunday" }; 

        return days[day]; 

    } 

The initialization of array “days” illustrates an inefficiency. The initialization for 
“days” occurs every time the convert function is entered. It would be much more 
efficient to declare “days” as a static variable to avoid it being re-initialized, and 
also “const” to help the compiler optimize. 

Data Structure Double Initialization 

If you have an initialization routine that does a lot of work, it sometimes becomes 
a slug by accident. I’m not talking about a single variable initialization, but the 
initialization of a large program data structure at startup, like a precomputed 
lookup-table or a perfect hashing algorithm. In the design patterns vocabulary, such 
a situation is a “singleton” data structure, where only a single object ever exists in 
the program. It’s easy to lose track of whether its initialization routine has been 
called, and then it gets called twice (or more!). 

An example would be some of the precomputation methods whereby a large 
lookup-table is initialized at program startup. For example, a 24-bit lookup table 
has been used elsewhere in this book to optimize AI activation functions such as 
GELU. 

The way to avoid the slug of double-initialization is simply to track calls to the 
initialization routine.  
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The idiom that I use is a local static variable of type bool at the start of the 
initialization function: 

    static bool s_once = false; 

    if (s_once) { 

        aussie_assert(!s_once);  // Should be once only 

        return;  // Avoid double intialization! 

    } 

    s_once = true; 

Another way is to actually count the calls with an integer, which is a generalization 
that works for additional scenarios: 

    static int s_calls = 0; 

    ++s_calls; 

    if (s_calls > 1) { 

        aussie_assert(s_calls <= 1); 

        return;  // Avoid double intialization! 

    } 

You can wrap these multiple lines of source code up into a single 
“aussie_assert_once” macro, if you want a simpler method. 

Singleton global objects. If you’ve done the hard yards to declare a big data 
structure like this as its own class, then you can simply instantiate only one object 
(i.e., as a global). The C++ class infrastructure does well in ensuring that a 
constructor is only called once. Even so, it may be worthwhile to declare 
a static data member and use similar logic to ensure that initialization on this 
object isn’t ever done twice. 

In any of these situations, it’s a worthwhile investment of a couple of CPU 
instructions, an increment and a test, to avoid accidentally running the whole 
routine again. Since the code is virtually identical for all cases, to avoid copy-paste 
typos, you could even hide these few statements behind a standard C++ 
preprocessor macro with a name of your choosing Or you could even use 
an inline function with the “return” statement changed to throwing an 
exception. 

Busy waiting for input 

Humans are very slow compared to computers. In particular, a computer can do 
much work in the background, even when handling the (slow) interactive input of 
a human.  
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Hence, one method of improving efficiency is to perform background processing 
while awaiting input, instead of using blocking input that waits for a keypress before 
doing anything. In other words, you can’t use std::cin or scanf for non-blocking 
keypress polling. 

A common example of this idea is chess-playing programs that “think” during their 
opponent’s time. The computer can continue its game-tree analysis while waiting 
for the player to press a key or click a mouse. The C++ standard provides no simple 
standardized function for non-blocking input. In general, there are two ways: 

• Keyboard polling API calls (non-portable). 

• Multi-threading with input on one thread and processing on another. 

There are various non-portable ways to poll for key presses. For example, on 
Windows there’s the “_getch” or “kbhit” functions (also “_kbhit”), which are 
all deprecated. Assuming you’ve found a workable polling API call, at some regular 
interval, perhaps before each node of the game tree is analyzed, the chess program 
checks if a key has been pressed. If a key has been pressed, the chess program stores 
information about its current analysis, and processes the user’s keystroke. Unless 
the key press completes the user’s move, the background analysis can continue after 
processing the key. 

Overall, there’s no simple and standardized way to do non-blocking input in C++. 
This is probably because of C’s ancestry, where it was difficult to poll the keyboard 
on a traditional UNIX line terminal. Multi-threading can be used in C++ to achieve 
the result instead. 

Slow disk I/O 

The cost of performing I/O on disk files can make up a large proportion of the 
run-time cost of some programs. For reducing the amount of data to be read from 
or written to the disk, the main methods are: 

• Use smaller records. 

• Cache frequently used records. 

• Buffer multiple reads or writes. 

• Compress data. 

• Use better data structures. 
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A very simple method of reducing disk I/O is to reduce the size of records being 
read or written. This can be achieved using many of the methods to create smaller 
objects. There are various methods in C++ to reduce a class object’s byte size: 
unions, bit-fields, packing, smaller data types, or reordering data members. 

Caching is useful if some records are being read more often than others. It is a very 
general idea and there are many possible implementations. You can even create 
your own caching mechanism. 

It may be possible to keep all of the most frequently used records in main memory, 
writing them to disk only at the end of the program (even caching records in 
memory and writing them to disk for every modification will still avoid the cost of 
multiple disk reads). 

If this method cannot be used, try using several memory locations for record I/O, 
and whenever a read operation is required, examine these in-memory records first. 
If any of them is the required record, the cost of a disk read is avoided. Caching 
always has a slight overhead, and may increase run-time slightly if the desired 
records are rarely in memory; however, it will never increase the amount of disk 
I/O and the computational overhead is likely to be small compared to the cost of 
reading a record from disk. 

When reading or writing multiple contiguous records, disk I/O can be speeded up 
by reading in a number of records each time. The advantage is that buffering 
multiple operations reduces the number of disk seek operations. For example, when 
using <stdio.h>, the buffering can be changed using 
the setbuf and setvbuf functions. 

Another alternative is to use other low-level I/O functions, such as the 
Linux open, read and write functions. However, this method reduces 
portability of the code. 

When the amounts of data being read are quite massive, the level of disk I/O can 
be reduced by compressing the data in the file. Read and write operations then have 
the overhead of uncompressing or compressing the data, but the cost of this 
computation may well be less than that of the disk I/O (or it might also be more; 
be careful!). However, methods of compressing data are beyond the scope of this 
book. 

The use of a different data structure for data in disk files is often worthwhile. In 
particular, if the disk file is being searched, then many search algorithms are 
applicable. For example, binary search can be performed on a direct access file if 
the data is sorted.  
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However, even binary search is inefficient for large disk files, and data structures 
specifically intended for disk data should be used. The B-tree is a commonly used 
data structure, and hashing is another possibility. Unfortunately, these algorithms 
are highly advanced and again beyond the scope of this book. 

Incorrect choice of loop 

Although the choice of loop is largely a matter of style, there is an important 
difference between the post-tested “do” loop, and the pre-tested “for” and 
“while” loops. The loop condition of a do-while loop is not evaluated on the 
first iteration and the loop body is always executed at least once. However, 
a for or while loop condition is evaluated before the first iteration and the loop 
body need not be executed at all. A common form of minor inefficiency is declaring 
loops that are always executed the first time, such as: 

    bool done = false; 

    while(!done) { 

        // .... 

    } 

It is more efficient to use the do loop, which avoids a single evaluation of the loop 
condition: 

    bool done = false; 

    do { 

        // .... 

    } while(!done); 

The use of the correct type of loop is also helpful to the optimizer. It is valuable to 
know that a code segment is always executed once. 

Infinite loops are control flow structures that can also be detected and used by the 
optimizer. Hence, you should code an infinite loop explicitly by using one of the 
common idioms: 

    for(;;)       // Forever 

    while(1)      // Common 

    do..while(1)  // Not commonly used 

This allows the compiler to generate efficient code, because you’ve made it easy for 
the compiler to recognize the loop as infinite. 
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Exit loops and functions early 

Control structures should be exited as soon as possible, including function paths 
and loops. This means judicious use of return for functions 
and break or continue for loops. 

Using “return” as early as possible in a function is efficient. It prevents 
unnecessary code being executed. Testing for edge cases at the start of a function 
is an example of using the return statement to do “easy cases first” or “simple 
cases first” optimizations. 

Exit loops early. Similarly, both break and continue are efficient, as no more 
of a loop is executed than is necessary. For example, consider the code using a 
Boolean variable “done” to indicate the end of the loop, as in: 

    done = false; 

    while (!done) { 

        ch = get_user_choice(); 

        if (ch == ’q’) 

            done = false; 

        else 

            ... // rest of loop 

    } 

The faster code has a break statement used to exit the loop immediately: 

    while (1) { // Infinite loop 

        ch = get_user_choice(); 

        if (ch == ’q’) 

            break; // EXIT EARLY! 

        else 

            ... // rest of loop 

    } 

Unfortunately, the overuse of jump statements such as break and continue can 
make the control flow of a program less clear, but professional C++ programmers 
are used to these statements being used often. 
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More Slug Repellent 

There’s plenty of other optimizations in the other chapters on compile-time 
optimizations, code transformations, loop optimizations, and AVX vectorization. 
Well, actually most of the book! Nevertheless, here’s a list of some more C++ code 
optimization techniques for you to consider. Some of the bigger ideas: 

• Use “move constructors” instead of copy constructors where appropriate 
(since C++11). 

• Use static data members where appropriate, so they are initialized once 
only. 

• Use std::sort rather than qsort. 

• Don’t put try..catch inside an inner loop that’s a bottleneck. 

• Use std::bitset for bit sets or bit vectors. 

• Use the “iterators” design pattern rather than returning a full scan of a data 
structure all at once (saves memory and allows early exit). 

• Consider basic C++ arrays instead of std::vector if it has a fixed size 
(known at compile-time) or its maximum size is small enough. 

• Consider C++20 coroutines where appropriate for the architecture. 

• Structure of arrays (SoA) data layout is more vectorizable than the Array 
of Structures (AoS). 

And some of the smaller optimizations: 

• Commonly used object or struct fields should be first. On some platforms, 
smaller offsets from the start of an object are accessed faster. Also, the very 
first field has offset zero, which is optimized away, so put the most used 
field first. 

• Avoid long else-if sequences. You are effectively doing linear search on 
the problem space in a long block of if-else-if statements. The best 
alternative is to use a switch statement, if the conditions are constants. 
For non-constant conditions or string comparisons, consider tabularizing 
the options and/or using heuristics to bifurcate the search space (e.g., start 
with a switch on the first letter of a string). 

• Use compact numeric ranges for switch. If the case numbers are close 
together, the compiler will probably use a lookup-table in assembler. If the 
cases are sparse, it can be forced to do an if-else-if equivalent in 
machine code. 

• Correct choice of loop. If the condition is true at the first iteration, use do-
while loops. 

• Instead of range checking a signed integer with “i>=0 && i < MAX” use 
a typecast with “(unsigned)i<MAX” because negatives become large 
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unsigned positives, and a cast from int to unsigned int isn’t a real 
instruction at run-time. 

• Enable the FTZ (“flush-to-zero”) and/or DAZ (“denormals-are-zero”) 
floating-point modes on your CPU, even though they violate the IEEE 
754 standard. You probably don’t care about tiny floating-point numbers 
in your weight or probability calculations. 

• Enable GCC’s floating-point arithmetic speedup options: -ffast-
math, -fno-math-errno, -fno-trapping-math, and -ffinite-
math-only. 

• bsearch is slow. Choose a better method. 

• Use static_assert rather than assert (e.g., to check data type sizes). 

• Copy arrays by wrapping them in a dummy struct and using 
C++ struct bitwise assignment. It might be faster than memcpy. 

• Use memcpy rather than memmove if you’re sure the arguments won’t 
overlap. 

• Move local non-static objects outside of a critical loop. Reuse the same 
object rather than re-running constructors and destructors every loop 
iteration. Add a “reset” member function if needed. 

• Use scaling factors that are a power-of-two, so that multiplication or 
division can be a bitshift. 

• Specialize a function with a void and non-void version if you find 
yourself ignoring the return value sometimes. This avoids all of the 
calculations to determine the return value inside the void function, 
because the function itself cannot tell whether or not the caller will use its 
return value. 

• Prefer pre-increment (++i) to post-increment (i++) for non-scalar values. 
And it’s better to use pre-increment even for “int” types, even though it’s 
the same, just to get into the habit. 

• Use the GCC __builtin_unreachable() statement and the 
“noreturn” function attribute to help the GCC optimizer identify dead 
code paths, allowing unreachable code removal (not that we care that 
much) and also better optimization of path-specific optimizations on other 
live paths (e.g., compile-time constant propagation). 

• Test the first character of two strings directly with character tests before 
calling strcmp. 

• Replace calls to “round”, “floor” or “ceil” functions with a type cast 
to int (as an approximation). 

• Consider using the simpler putchar, putc, fputc, puts, 
fputs functions rather than printf or fprintf. 

• Write your own versions of abs and fabs/fabsf (but benchmark it). 

• Avoid the floating-point pow function for computing integer powers. 

• Instead of strlen("literal") declare it as an 
initialized char[] array variable and use sizeof(arr)-1. 
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• Merge a large number of function parameters into an object. Don’t pass 10 
Boolean flags as differently named function parameters. Create an object 
or structure and make them fields instead. 

• Avoid calling strlen in a “for” loop conditional. 
Compute strlen before the loop, or test for the null byte. 

• Merge multiple Boolean function parameters into a bit set. packed into 
an int or long. The gain from passing fewer values as function 
arguments will be offset by the cost of packing and unpacking bits, but still 
should be better. 

• Use int type mostly, not char or short. Maybe prefer int to size_t, 
too. 

• Specialize functions being called with a constant for an argument using a 
template function with an integer field. This will increase code size, but the 
constant will be propagated more at compile-time, and you also don’t have 
the cost of passing it as an argument. 

• Add “noexcept” specifiers to functions wherever it applies, because this 
allows the compiler to know not to worry about adding any extra exception 
handling code. 

• If you’re “searching” an array or set of constant integers, known at 
compile-time, consider “proceduralization” by putting the numbers as 
cases in a switch. (Trust the compiler engineers.) 

• Consider writing your own faster atoi/itoa functions, as the standard 
libraries need to handle lots of rare cases, making them slower. (I’m not 
sure I agree and you might want to benchmark.) 

• Don’t overuse “alignas” to specify address alignments if you don’t need 
them, as the enforcement of alignment requirements can impose runtime 
cost. 

• sprintf is a slow and unsafe function. snprintf is safer but still slow. 
Find another way. 

• Post-increment can be faster in pointer arithmetic, so prefer using the 
normal idiom “*ptr++” rather than “*++ptr” to scan a vector. 

 

 

 

 

 



David Spuler                                               618 
 

References 

1. Agner Fog, 2023, Optimizing software in C++: An optimization guide for Windows, 
Linux, and Mac platforms, 
PDF: https://www.agner.org/optimize/optimizing_cpp.pdf 

2. Kurt Guntheroth, 2016, Optimized C++: Proven Techniques for Heightened 
Performance, O'Reilly Media, https://www.amazon.com/dp/1491922060 

3. Dov Bulka and David Mayhew, 1999, Efficient C++: Performance Programming 
Techniques, https://www.amazon.com//dp/0201379503 

4. Fedor G. Pikus, 2021, The Art of Writing Efficient Programs: An advanced programmer’s 
guide to efficient hardware utilization and compiler optimizations using C++ examples, Packt 
Publishing, https://www.amazon.com/dp/1800208111 

5. ISO/IEC, Feb 15, 2006, Technical Report on C++ Performance, ISO/IEC TR 
18015:2006(E), https://www.open-
std.org/jtc1/sc22/wg21/docs/TR18015.pdf (Design of the C++ language from 
an efficiency perspective, including discussion of virtual functions and other 
language features.) 

6. Nicolai M. Josuttis, 2012, The C++ Standard Library: A Tutorial and Reference, 
Second Edition, Supplementary Chapter, https://www.amazon.com/Standard-
Library-Tutorial-Reference-2nd/dp/0321623215, PDF (extra 
chapter): http://www.cppstdlib.com/cppstdlib_supplementary.pdf (C++ 
optimizations such as bit sets and user-defined memory allocators.) 

7. Bjarne Stroustrup, 2013, The Essence of C++ with examples in C++84, C++98, 
C++11, and C++14, PDF Slides: http://www.staroceans.org/e-
book/essenceOfC++.pdf 

8. Wikibooks, 2023, Optimizing C++/Writing efficient code/Performance improving features, 
Wikibooks, https://en.wikibooks.org/wiki/Optimizing_C%2B%2B/Writing_eff
icient_code/Performance_improving_features 

9. Dave Abrahams et. al., 2003, Technical Report on C++ 
Performance, http://web.archive.org/web/20040608203404/http://www.research
.att.com/~bs/performanceTR.pdf 

10. Jakob Engblom, 2001, Getting the Least Out of Your C 
Compiler, https://www.engbloms.se/publications/engblom-esc-sf-2001.pdf 

11. Jon Louis Bentley, 1982, Writing Efficient Programs, Prentice Hall. 
12. Thomas Plum and Jim Brodie, 1985, Efficient C, Plum Hall Inc. 
13. Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman, 1986, Compilers—Principles, 

Techniques and Tools, Addison-Wesley. 
14. Donald E. Knuth, 1973, The Art of Computer Programming (Vol. 3): Sorting and 

Searching, Addison-Wesley. 
15. James O. Coplien, 1992, Advanced C++ Programming Styles and Idioms, Addison-

Wesley. 
16. Jonathan S. Shapiro, 1991, A C++ Toolkit, Prentice Hall. 
17. Bjarne Stroustrup, 1991, The C++ Programming Language (2nd edition), Addison-

Wesley. 

https://www.agner.org/optimize/optimizing_cpp.pdf
https://www.amazon.com/dp/1491922060
https://www.amazon.com/dp/0201379503
https://www.amazon.com/dp/1800208111
https://www.open-std.org/jtc1/sc22/wg21/docs/TR18015.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/TR18015.pdf
https://www.amazon.com/Standard-Library-Tutorial-Reference-2nd/dp/0321623215
https://www.amazon.com/Standard-Library-Tutorial-Reference-2nd/dp/0321623215
http://www.cppstdlib.com/cppstdlib_supplementary.pdf
http://www.staroceans.org/e-book/essenceOfC++.pdf
http://www.staroceans.org/e-book/essenceOfC++.pdf
https://en.wikibooks.org/wiki/Optimizing_C%2B%2B/Writing_efficient_code/Performance_improving_features
https://en.wikibooks.org/wiki/Optimizing_C%2B%2B/Writing_efficient_code/Performance_improving_features
http://web.archive.org/web/20040608203404/http:/www.research.att.com/~bs/performanceTR.pdf
http://web.archive.org/web/20040608203404/http:/www.research.att.com/~bs/performanceTR.pdf
https://www.engbloms.se/publications/engblom-esc-sf-2001.pdf


619                             C++ Ultra-Low Latency 
 

Appendix C: Source Code 

Tester Object Instrumentation Class 

This code is for “object instrumentation” that can be useful for performance 
analysis, and also for debugging and unit testing. 

Here’s a test usage to see what constructors and move operations are performed 
by push_back in the std::vector class: 

    Tester::reset_counters(); 

    std::vector<Tester> vectest4; 

    for (int i = 1; i <= 100; i++)  

        vectest4.push_back(i); 

    Tester::print_report(); 

Here’s the full code: 

    class Tester { 

    private:  // Static data members 

        static bool traceall_; 

        static int count_default_constructor; 

        static int count_copy_constructor; 

        static int count_move_constructor; 

        static int count_copy_assignment; 

        static int count_move_assignment; 

        static int count_destructor; 

        static int count_int_constructor; 

 

    private:  // Object data members 

        int ival_; 

        bool trace_; 

    public: 

        Tester() { 

            ival_ = 0; 

            count_default_constructor++; 

            trace_ = false; 

            if (traceall_) { 

                cout << "Tester: default constructor: "  

                     << ival_ << endl; 

            } 

        } 
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        Tester(int val) { 

            count_int_constructor++; 

            ival_ = val; 

            trace_ = false; 

            if (traceall_) { 

                cout << "Tester: int constructor: "  

                     << ival_ << endl; 

            } 

        } 

 

        Tester(const Tester &other)  // Copy constructor 

        { 

            ival_ = other.ival_; 

            trace_ = other.trace_; 

            count_copy_constructor++; 

            if (trace_ || traceall_) { 

                cout << "Tester: copy constructor: "  

                     << ival_ << endl; 

            } 

        } 

 

        Tester(Tester&& other) noexcept  // Move constructor 

        { 

            ival_ = other.ival_; 

            trace_ = other.trace_; 

            other.ival_ = -1;  // Invalidate moved data 

            count_move_constructor++; 

            if (trace_ || traceall_) { 

                cout << "Tester: move constructor: "  

                     << ival_ << endl; 

            } 

        } 

 

        Tester& operator=(const Tester& other)  // Copy assign 

        { 

            count_copy_assignment++; 

            if (this != &other) {  // Avoid aliasing 

                ival_ = other.ival_; 

                if (trace_ || traceall_) { 

                    cout << "Tester: copy assignment: "  

                         << ival_ << endl; 

                } 

            } 

            else { 

                if (trace_ || traceall_) { 

                    cout << "Tester: copy assignment aliasing: " 

                         << ival_ << endl; 

                } 

            } 

            return *this; 

        } 
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        Tester& operator=(Tester&& other) noexcept  // Move  

        { 

            count_move_assignment++; 

            if (this != &other) {  // Avoid aliasing 

                ival_ = other.ival_; 

                if (trace_ || traceall_) { 

                    cout << "Tester: move assignment: "  

                         << ival_ << endl; 

                } 

            } 

            else { 

                if (trace_ || traceall_) { 

                    cout << "Tester: move assignment aliasing: " 

                         << ival_ << endl; 

                } 

            } 

            other.ival_ = -1;  // Invalidate moved data 

            return *this; 

        } 

 

        ~Tester() 

        { 

            count_destructor++; 

            if (trace_ || traceall_) { 

                cout << "Tester: destructor: " << ival_ << endl; 

            } 

            ival_ = -1;  // Safety 

        } 

 

        // Equality operators 

        bool operator==(const Tester& other) {  

              return ival_ == other.ival_;  

        } 

 

 

        // Setters for object members 

        void trace(bool bval) { trace_ = bval; } 

 

        // Setters for static data members 

        static void traceall(bool bval) { traceall_ = bval; } 

        static void reset_counters() { 

            count_default_constructor = 0; 

            count_copy_constructor = 0; 

            count_move_constructor = 0; 

            count_copy_assignment = 0; 

            count_move_assignment = 0; 

            count_destructor = 0; 

            count_int_constructor = 0; 

        } 
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        static void print_report() { 

            cout << "Tester Count Report" << endl; 

            cout << "- Default constructor: "  

                 << count_default_constructor << endl; 

            cout << "- Int constructor: "  

                 << count_int_constructor << endl; 

            cout << "- Copy constructor: "  

                 << count_copy_constructor << endl; 

            cout << "- Move constructor: "  

                 << count_move_constructor << endl; 

            cout << "- Copy assignment: "  

                 << count_copy_assignment << endl; 

            cout << "- Move assignment: "  

                 << count_move_assignment << endl; 

            cout << "- Destructor: "   

                 << count_destructor << endl; 

        } 

 

        static void selftest() { 

            // Constructors should equal destructors 

            // ... but move constructors don’t increase count 

            int errors = 0; 

            int total_constructors = count_default_constructor 

                   + count_int_constructor 

                   + count_copy_constructor; 

            if (total_constructors != count_destructor) { 

                if (total_constructors > count_destructor) { 

                    cout << "Tester selftest: constructors ("  

                         << total_constructors  

                         << ") more than destructors ("  

                         << count_destructor << ")" << endl; 

                    errors++; 

                } 

                else { 

                    cout << "Tester selftest: destructors ("  

                         << count_destructor  

                         << ") more than constructors ("  

                         << total_constructors << ")" << endl; 

                    errors++; 

                } 

            } 

 

            if (errors == 0) { 

                cout << "Tester selftest: no errors found"  

                     << endl; 

            } 

        } 

    }; 
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    // Define Tester static data members 

    bool Tester::traceall_ = false; 

    int Tester::count_default_constructor = 0; 

    int Tester::count_copy_constructor = 0; 

    int Tester::count_move_constructor = 0; 

    int Tester::count_copy_assignment = 0; 

    int Tester::count_move_assignment = 0; 

    int Tester::count_destructor = 0; 

    int Tester::count_int_constructor = 0; 

Intercepted new and delete 

This source code is the global scope intercept functions for 
the new and delete operators. The library tracks basic statistics about calls and 
bytes allocated. 

    // Global counters 

    unsigned long int s_new_count = 0; 

    unsigned long int s_newarr_count = 0; 

    unsigned long int s_delete_count = 0; 

    unsigned long int s_deletearr_count = 0; 

    unsigned long int s_new_bytes = 0; 

    unsigned long int s_newarr_bytes = 0; 

 

    void memory_reset_counters() 

    { 

        s_new_count = 0; 

        s_newarr_count = 0; 

        s_delete_count = 0; 

        s_deletearr_count = 0; 

        s_new_bytes = 0; 

        s_newarr_bytes = 0; 

    } 

 

    void memory_report() 

    { 

        cout << "MEMORY CALLS REPORT" << endl; 

        cout << "- new calls: " << s_new_count << endl; 

        cout << "- new[] calls: " << s_newarr_count << endl; 

        cout << "- delete calls: " << s_delete_count << endl; 

        cout << "- delete[] calls: " << s_deletearr_count  

             << endl; 

        cout << "MEMORY SIZE REPORT" << endl; 

        cout << "- new bytes: " << s_new_bytes << endl; 

        cout << "- new[] bytes: " << s_newarr_bytes << endl; 

    } 

 

    void* operator new(size_t n) 

    { 

        s_new_count++;  

        s_new_bytes += n; 
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        return malloc(n); 

    } 

 

    void* operator new[](size_t n) 

    { 

        s_newarr_count++; 

        s_newarr_bytes += n; 

        return malloc(n); 

    } 

 

    void operator delete(void* v) 

    { 

        s_delete_count++; 

        free(v); 

    } 

 

    void operator delete[](void* v) 

    { 

        s_deletearr_count++; 

        free(v); 

    } 

 


