G++ and G efficiency

How o imprave program speed and memory usage




Preface

This book &amines the art of impuing the eficieng/ of programs written in C and
C++. Eficieng is examined at a number ofds of program deslopment. Thehighest
level is the design phase whichvimves choosing the correct data structures and
algorithms for the gien problem. Thenext level is making efective use of program
statements so as toad obvious ineficiencies, and therfal level is using programming
tricks to etract the last drop of speed from your code.

Assumed knowledge

The reader is assumed to be reasonably fluent in C or ®#+introductory discussion

of either C or C++ is gen in this book; for such an introduction the reader is referred to
a good general tebook (such as myvn!). Thereare a small number of cases where
aspects of the languages are discussed becaarsthe experienced programmer may not
be avare of the detalils.

Aims of the book

This book is intended to aid the professional programmer in writing code thfitieraf
in terms of space and timdt isn't a theoretical book about algorithm comyity —

although choosing aa$t algorithm is important, it isaf from a panaceaThis book is
about practical methods of imptiag the eficieng in real-world situations.

The cwerage of C and C++ in oneark is uncommon, Uit eficieng is a bpic where
most comments apply to both languag€st+ is a superset of C and almost all of the
efficienyy improvement methods mentioned in Chapters 3, 4 and 7 relating to C are
relevant to C++. Special techniques that areaable because of the C+ktensions are
discussed in Chapter 5.

Exercises are prxided in most of the chapters tovgithe programmer a chance to
think about some interesting problems and to applylyrgained knaledge. Mostof
the xercises are answered in the appendix.
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Organization of the book

The book aims to a@r the practical aspects offigfiengy, avoiding the theoretical aspects

of the asymptotic compkéty of algorithms for the most partAlgorithm compleity is
covered briefly in the discussion of searching in ChapterBkperience has stm that

the process of writingat programs is done poor justice by merely addressing asymptotic
compleity. The constantdctor is ery important in practice, and most of the techniques
in this book aim to reduce this constant.

Chapter 1 introduces the topic ofiefeng/ by examining the correct ay to approach
improving the eficieng of a program.

Chapter 2 ceers methods of measuring the amount of time and space being used by
the program. This information is ery useful in inding the areas of ink€ieng.
Methods of estimating time and spacéedng/ are examined brieflybut, as is discussed
in the chapterthere is precious little precise information that can kengtbout the art of
estimation.

Chapter 3 ceers some common methods of impirtg the data structures and
algorithms used by a program, without making really fundamental changes to them.
Most of the methods eered would apply equally well to other procedural languages,
such as Bscal. Thechapter is mainly about methods of reducing the conssairfin
the complaity of algorithms.

Chapter 4 gamines some of the spedcimethods that can be used in C (and also C++
because C++ is a superset of Experience with the C language has brought with it a
heritage of tricks that can be used to inwardficiengy.

Chapter 5 gamines the methods of imp@nent of C++ programs that cannot be
used in C programsC++ offers more opportunities for fefieng/ via inline functions
and pass-by-referencélowever, the rigidity of method of d&fing C++ classes can lead
to ineficieng if the programmer uses maiading practices.

Chapter 6 ceers eficient use of the ANSI C standard librarfhough the standard
library functions are écient in most cases, there are some functions that\eréy o
general and hence itiefient.

Chapter 7 ceers methods of improng space difcieng.. The preious chapters va
focused mainly on time reduction, and this chapter restores the balsotaiques both
general and spedifto C are ceered here.

Chapter 8 is the only chapter thatmines dfcieng/ from its highest designvel —
the choice of data structures and algorithiarious abstract data types are coded using
a \variety of diferent data structures, and the bérednd disadantages of each imple-
mentation are contrastedn particular the problem of searching for data isamined
from the point of viev of the relatve wsts of searching, insertion and deletion ifiedif
ent \ersions of the symbol table abstract data typhe common problem of sorting
arrays, advaite of algorithm tats, is also xkamined briefly

Chapter 9 poses a small number of programming problems and then attempts to code
them as dfciently as possibleThe theory of computeragne-playing isxamined briefly
and then an étient implementation of a tic-tac-toe playing program igeld@ed. The
classic problem of determining if an iger is prime is xamined and a number of
solutions are gien.



Chapter 10 assumes that the reader is the implementor of a C or C++ compiler and
concerns itself with the methods that the compiler can use to \mpffocieng. This
chapter is advaite of mine as | hae a esearch interest in the area of compiler design,
particularly static analysis.

Source code offer

A floppy disk containing C and C++ source code for most of the program@es in the
book is &ailable from the author for $20.00, including shipping and handlinggelsar
Simply photocop this page,ifl in your address and the type of disk required, and send it
to the follaving addressPlease makchecks and moneorders payable to véd Spuler

Mail $20.00 to:

Source Code @dr
Spuler & Associates
PO. Box 1262
Aitkervale 4814.
AUSTRALIA

Name:
Address:

Computer:  Macintosh_____ ]=]\Y I—
Diskette: 35" 800K___ 14M___
5.25"  360K___ 720K 12M___

Bug reports

A book is a ery lage document and iteuld be foolish toxpect that it wuld be wholly
correct, despite the magsianount of efort | have expended to assure its correctness.
The author is interested to hear of all forms of errors, including typos, typesetting
glitches, lngs in &ample programs, portability problems in programs, erroneous inform-
ation, etc. As they are discwered, the problems can hopefully be corrected for later
printings. Theauthor can be contacted by postal mail at the addreas afove.
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Chapter 1

Introduction

No one liles a slav program. AlthoughC and C++ programs are generally quitestf
good programming techniques can produce major ivgprents in gecution speed.The
main purpose of this book is taxamnine a lage number of techniques for speeding up
programs.

With falling memory prices, the amount of space a program uses is becoming sec-
ondary to its speedThis is particularly true of the UNIX system, where there is usually
plenty of memory Howeve, in some situations (such as programming on a personal
computer) there is the need to consamemory A number of techniques for conserving
memory are alsoxamined in this book, particularly in Chapter 7.

1.1 Why is C efficient?

Before bginning our discussion of fe€ieng/ techniques, it is interesting to discuss the
origins of C and C++, andkamine wly these languages promotdi eiengy. Although it

is certainly a mistak to gate that C or C++ programs willlways run faster than
programs in other languages, the C and C++ languageisi@sweral features that mak

it easy for the programmer to writdiefent code.

The C language a&s originally deeloped at A&T's Bell Laboratories by Dennis
Ritchie and Kn Thomson.It was intended to reme the turden of programming in
assembler from the programmevhile at the same time retaining most of assenwler’
efficieng. At times, C has been called a "typed assembly language”, and there is some
truth in this description.One of the main reasons forsGificieng is that C programs
manipulate objects that are the same as those manipulated by the nmiathiuatiables
correspond to machineonds, char variables correspond to bytes, pointariables
contain machine addresse#&nother example of a language feature that promotes
efficieng is the register qualifier, which gives the programmer some controvep
register allocation (although as compilers imgothey will rely less and less on the
advice of programmers).
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The early ersions of C had no fofial standard, and the dacto standard as the ref-
erence manual in thédt edition of Kernighan and Ritchig’book titled The C Pogram-
ming Languge For this reason, traditional C is often called K&R [@.1983 an dbrt
was initiated to formally standardize the C language, and in 198%nisleANSI standard
appeared. Th&NSI standard is the deftive reference on the C languagglthough
mary of the changes introduced by ANSI are related to the syntax and semantics of the
language, some of the changefeetfeficieng. As mvered in Chapter 10, the compiler
has more freedom to perform optimizations, such as usiagterffunction call mecha-
nism because of changes to the rules of function prototyping.

The C language is not perfect, and there are stéhuwes for impreement. r
example, traditional C performed dllbat operations using double precision arithmetic
which is needlessly ing€ient. Ewn in ANSI C where the me standard ixes the
problem by permitting the compiler to use single-precision arithmetic, there is no mathe-
matical library acceptinfoat arguments. Useref the<math.h> library pay a per
formance penalty in caersions fromfloat to double , and an "opportunity cost" in
that faster algorithms could be used because less precision is required.

1.2 Why is C++ efficient?

C++ was designed by Bjarne Stroustrup in the early 1980s, and is almost a complete
superset of COne of the primary design objects of C+asato retain the &tieng of C.

Most of the &tra features of C++ do notfatt run-time dfcieng, but merely gve the
compiler more wrk to do at compile-timeSince C++ hilds on C, it benéfs from C%s

use of data objects that are close to the machine: byteds and addresses.

C++ even contains some impred features that promotefigfieng.. The inline
qualifier can be used by programmers to request that a call to a function be replaced auto-
matically by inline code, thus reming the werhead of a function call, and introducing
new opportunities for intefunction optimizations.The C++ concept of eeferencetype
permits lage objects to be passed to functions by reference to wepdficieng, and
they are easier to use than pointers.

Only one aspect of the C++ class enhancements requires run-time support, which may
reduce diciengy — virtual functions. Havever, virtual functions are quite
efficient, and eperienced C++ programmerisd that their use is often morefiefent
than the equelent C code needed to achéethe same ééct. Theefficieng aspects of
virtual  functions are discussed in more detail in Chapter 5.

At the time of writing there is no fo€ial ANSI C++ standard, although the process of
standardization has gen. Thedraft version of the ANSI C++ standard is the reference
manual from Bjarne Stroustrigiook tittedThe C++ Languge

1.3 A methodology for efficiency improvement

How should the huge number of methods of impng program dfcieng/ be gpplied to a
program? Aprogrammes time is usually &r more important than the compuseiso the
guestion is ha to improve pogram eficieng/ with minimal extra time demands on the
programmer Unfortunately the most dective method of impreing a program — using
better data structures and algorithms — often requires a good dedlaopegramming
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effort. Of the code transformations in Chapter 4, those optimizations thatvenpre
program by a signifant amount should be triedlst, and the smaller optimizations used
only when it is important to squeeze out that last bixofespeed.Hence, | suggest the
following steps for impraing the eficieng of a program:

1. Irvoke the compilers kuilt-in optimizer

2. Find a better data structure or algorithm.

3. Profle the code and optimize code at "hot spots".

4. Use the better code transformations.

5. Use less éctive aode transformations, if speed is crucial.

Most C and C++ compilers t@ an option to irvoke an optimizer on the codeThe opti-
mizer, dthough it may not abays yield a major increase in speed, has @rg important
adwantage — the programmer need not change the dddece, if a small imprement
is desired, the optimizer can often yide it without much dbrt. Theoptimizer is dis-
cussed in Section 1.6.

The choice of a better algorithm (usually withfeliént data structures) for a program
is not an easy method of program immment. Simplyidentifying what vould be a
better algorithm is a difcult problem! And once identigd, the nes algorithm must be
implemented by the programmebsting precious man hour#lowever, this is the best
method to achie an orderof-magnitude increase in the prograrpérformance.

The neat step is to prafe the code to determine which functions (or statements) are
accounting for most of the prograsrime; these are the "hot spots" of the prograrhis
identification of costly statements is best aghie by a pofiler (see Section 2.1).
However, if a profiler is not aailable, the programmer can usually guess where a
program will be spending its timedentifying frequently called functions and long loops
is often adequateOnce the hot spots are ideid, all eficienoy measures, lge and
small, should be applied to this codény improvement to the difcieng/ of a gatement,
no matter hav small, will improve te overall eficieng/ greatly if that statement is
executed often.

Once the most costly functions and loopsenkeen optimized, other statements can
also be optimized, although the increase in speed will not be as noticSalhe. of the
better code transformations to apply are loop optimizations, using pass-by-reference for
passing structures or objects to functions, and replacing small functions with macros or
inline  functions.

1.4 Make it right first?

The speed impr@ment techniques in this chapter can be applied either as the program-
mer is writing the code, or after thevé®pment and delgging of the programThe
second approach is often referred to as the énitafight first" rule. However, | believe

that the irst method is preferable simply because optimizing your program once it is
working is a dangerous practice, and often introduces meys. Deferringefficiengy
improvement to theihal development stage can alscagte programmer time in impro

ing the basic algorithms used in a prograbbsing eficieng techniques during the
development of the program is a much sounder method of mpgoeficieng. Snce
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mary of the code transformation techniques samiprogram clarity for a small increase
in speed, it is only wthwhile applying these ideas to parts of the program that clearly
need the xra speed.

1.5 Trade-offs in improving efficiency

The trade-dfbetween program &tieng/ and programmes ime has already been men-
tioned. Thereare numerous other quantities thditaééng may afect:

« Space ‘ersus time-diciengy.

* Robustness of a program.

» Readability and maintainability of a program.
« Portability of a program.

There is almost alays a trade-dfbetween time and space when making programs run
faster Mary of the algorithm impreements in Chapter 3 saddé space forxdra speed.

Changing a program for fefieng/ can introduce xra hugs into a program (although
you could ague that it might reme kugs too). If a piece of code has already been
delugged, imprueing its eficiengy may not be wrth the risk to the ralstness of a
program.

Many of the program transformations used fdr@éng/ can reduce the readability of
a program. Naturallythis also maks it more dficult for a program to be maintained,
and since the major cost in a prograndevdopment gcle is usually maintenance,
improving eficieng/ may not be wrth it in the long run.

Perhaps surprisinglythe eficieng/ of a program can usually be increased without
affecting portability There are some fe¢ieng/ techniques in this book that use machine-
specifc information, lut the portability problems are mentioned in these sections.

Almost all of the dangers of imprimg eficieng/ are dangers for therogrammer
On the other hand, theserof a program will be well pleased bytea eficieng, and this
alone maks eficiengy improvement a verthwhile eercise.

1.6 The C optimizer

The frst step to ta& when impreing the performance of a program is teodke the C
optimizer that is @ailable as an option in most compilerhis optimizer can be used for
a god speed imprement that is simple to aclie and unlikely to introduce n& bugs
into the program (although some optimizersenkeen knavn to hare hugs themseks).
The impravement in speed is often quite noticeable, although thisoably depends on
the implementation.In addition, some optimizers priole options to choose between
optimization tevards speed impre@ment or space reduction.

In the UNIX ewvironment, the optimizer for thec compiler is ivoked using the-O
option:

cc -0 -cfile.c

The use of-O causes all xecutable code generated to be optimized, in terms of space
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and time. The program should ruaster and require slightly less space to ruxote that
some UNIX implementations supportvesl levels of optimization — refer to the
manual entry for thec compiler

In other emironments the method ofvoking the optimizer will depend on what
compiler is used, although it is usually either a command-line option or a menu choice
(for compilers intgrated with a tet editor). Consult your compiler documentation for
information on hw to use the optimizer

1.7 Programmer efficiency

In our commercial wrld it is frequently the cost of oumm time that is the greatest.
Using our evn time eficiently is far more important than writinga$t programs.
Although impraving programming produadity is not the main topic of this book, axfe
methods arexamined briefly here.

The basic method of reducing time spent programming idild bn the verk of
others. Theuse of libraries, including the widasety of commercially &ilable source
code libraries, and the ANSI libraris a god way to huild on the verk of others.
Asking other programmers, including those on the Internet, for code or ideas is also often
fruitful. A literature search can be useful, although it is time-consunfupks and
research papers may well selthe problem at handaf more elgantly, efficiently and
correctlythan you could do yourself.

Building on your evn work is the other main method of prodwdt improvement.
How often hare you coded up a binary tred?ave you ever written a sorting routine 6f
the top of your head and then spent houraidging it? You should perform tasks only
once. Thisdoesnt necessarily mean writing reusable code in its most general semse, b
just having the source codevalable for the most common problemblodifying code
that has already been dejged is &r more time-difcient than writing it from scratch.

1.8 Reducing compile-time

Reducing compile-time is a small method of impng the programmes’ uise of time.
Although the speed of compilation dgaly depends on the ingenuity of the implementor
of your compilerthere are a fe techniques that can makour programs compile more
quickly. One olvious method is to try dérent compilers, if anare available to you.
For example, a UNIX emironment may support bottt andgcc, or CCandg++.

A simple way to reduce compile-time is tov@d using the optimizer To do o,
consult your compiler documentatiotinder UNIX, the optimizer is usually turnedf of
by defiult, hut when using anakefile , the defult method of compilation it -O "
(i.e. optimizer on).This can be turned biby modifying yourmakefile to state eplic-
itly how to compile your fles.

Some compilers may also Ve gtions to control which libraries should be latk
with your program.The deéult is often to link all libraries to the program, allog the
linker to pick out the functions that are actually usédg.ou are certain that you will not
need functions from a certain library (e.g. the math library), change the optiovéntpre
it being linked.
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Some compilers support an option calfgdcompiled headswhereby the compiler
stores the state of internal tables, such as the symbol table, in dedabasteadof then
processing the x& in the headeriles the compiler simply loads the daile fand ignores
the headeriles. This sares the compile-time used in processing the declarations in
headerifes.

The best method of reducing compile-time during the testingegiphg phase of
program deelopment is to break the program into a numberile§ fand use objecildés
(the use of multipleiles is also good programming styldh this way, only the fles that
need to be recompiled into objeide$ are processed by the compilation phase, although
all object fles are usually still linkd in creating theirfal executable. Themethod of
achieving this automatic reblding of object fles depends on the \éronment. The
make utility is recommended in @ironments where it is supported (especially UNIX).
In other emironments, the compiler may support automatic reconstruckonexample,
the intgrated deelopment emironment of Tirbo C++ supports "projects” and recom-
piles only those sourcéds that hge changed.

There are a fe points to note when breaking a program into multigesf Thefirst
is that it is important to genize theseiles correctly and headerilies should be desl-
oped with common declarationglowever, such issues are not the subject of this book
and the reader should consult more generakaeks (e.g. there is an entire chapter on
this topic in my avn book:Compehensive & Thesecond point is that the use of object
files do not alle faster compilation when raldding from scratch, and mawen be
slightly slaver in this situation thandeping the whole program as a single. f Hence,
object fles are most éctive during the testing-delgging phase of program \i#op-
ment when the program is often changed slightly and recompiled.

Another method of reducing compile-time is reducing tbkimes of ifles that the
compiler must read viginclude . Remove any unnecessar¥include lines from the
program (e.g. dohinclude<math.h> unless you actually need tolf a headerife is
included for a single declaration onlglace the declarationxplicitly in the fle and
remove the #include line (however, be warned that this change will lead to non-
portable code, and isewy bad style).It can also help to pvent multiple inclusions of
header ifes, not by placing the traditiongifdef -#endif pairinsidethe headerile,
but by surrounding thefinclude line, as bela:

#ifndef INCLUDED_MYDEFS
#include "mydefs.h"
#endif

whereINCLUDED_MYDEF$® defned in 'mydefs.h ".

1.9 Further reading

An excellent book on difcieng is bn Bentlg’s book: Writing Eficient Pograms This
book is a treasure e d practical techniques for speeding up programs and reducing
the space usage of progranThe techniques are presented usingugant of Riscal and

are easily applied to Cln addition to ceering a huge number of optimization tech-
nigues, it also pnrades real-life anecdotes about vihoprofessional programmers
improved the eficieng of their programs, which are interesting reading in theraselv
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The book,Efficient G by Plum and Brodie presents a number of techniques for
improving the time and spacefiefieng/ of C programs. Maw of the general techniques
used by Bentlgare corered, in addition to techniques spécio C. This book is particu-
larly strong in its ceerage of hav to measure and estimate the time and space require-
ments of a C program, and three of its chapters deal igjadlgifvith these topics.

Many of the code transformation techniques in Chapter 4 come from the theory of
code optimization in compilersFor example, code motion and strength reduction on
induction \ariables are well-knen code optimization technique3he classic reference
for compiler design is by Aho, Sethi and Ullman, and this book contains a good chapter
on code optimization.

One aspect of &tieng is the choice of data structure for a probleknuth’s ook
on data structures for sorting and searching presents much of the theory in the area of
organizing data for dst retrieal. Thebook is also interesting in that it applies a number
of efficiengy techniques to the program code presented (e.g. use of sentinels; unrolling
loops). Allprograms are presented in a mythical form of assembly language called MIX.

Kernighan and Plaugertook, The Elements of Bgramming Stylediscusses numer
ous stylistic issues of programming, includiragivus methods of speeding up a program.
The book usesdttran and PL/I as its programming languages, and most techniques are
easily related to C.

Of the graving number of C and C++ books, avfeontain discussions of fefiency,
usually as part of a generalverage of the languageMly own book,Compehensive C
contains a chapter onfigieng from which this book has gnm. Numerousother C
books also contain sections offi@kng/: David Masters’ book contains a chapter enti-
tled "Program Hfcieny and Testing"; Herbert Schildt’ book has a chapter called
"Efficieng, Porting and Debgging"; Ken Pughs book contains numerous sections on
various aspects of &€ieng. Undoubtedlythere are manother C and C++ books that
cover efficieng/ to some etent. Ofthe mawy C++ books, there are a number that contain
discussions of arious aspects of fefieng.. Bjarne Stroustrug’ dassic tgt The C++
Language covers all of C++ and mentionsfefieng/ aspects in mansections. Jonathan
Shapiros ook A C++ Toolkit has a chapter on performance tuning and another on
memory managementlames Copleis’ book on adanced C++ programming eers
efficieng/ in mary sections. Furthediscussion of C++ books iswgnh in the "Further
reading" section in Chapter 5.

AHO, Alfred V., SETHI, Rai, and ULLMAN, Jefrey D., Compiles — Rinciples,
Techniques and dols Addison-\W\sley, 1986.

BENTLEY, Jon Louis,Writing Efficient Pograms Prentice Hall, 1982.

COPLIEN, James OAdvanced C++ Pogramming Styles and Idiomaddison-W\s-
ley, 1992.

KERNIGHAN Brian W, and PLAJGER, P J, The Elements of Bgramming Style
McGraw-Hill, 1974.

KNUTH, Donald E., The Art of Computer Bgramming (¥l. 3): Sorting and
Seaching, Addison-\Wéslegy, 1973.
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MASTERS, Daid, Introduction to C with Advanced ApplicatiorRrentice Hall,
1991.

PLUM, Thomas, and BBDIE, Jim,Efficient G Pum Hall Inc., 1985.

PUGH, Ken,All on C, Scott, Foresman/Little, Bran Higher Education, 1990.
SCHILDT, Herbert,C: The Complete Refemce Osborne-McGrev-Hill, 1987.
SHAPIRO, Jonathan SA C++ Toolkit, Prentice Hall, 1991.

SPULER, Daid A., Compehensive CPrentice Hall, 1992.

STROUSTRUPR, Bjarne, The C++ Piogramming Languge @nd edn) Addison-\W\s-
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Chapter 2

Measurement and estimation

When changing a program to increadecedngy, it is important to hee a neans of deter
mining whether the changesvearoticeably increased the prograndficieng/ (or even
decreased it!).Techniques for measuring prograniieieng/ range from the stop-atch
method to the use of sophisticated peofsoftware tools. If no profiler is available, the
programmer canan timing information by adding statements to the program, although
there are man pitfalls in attempting to determine the time @éakby a sequence of
statements.

The measurement of the spackedéncg/ of a program is adr more dificult problem
because & tools «ist to examine hav much space a program uselleasuring the
memory usage of the stack and heap is aldocdif because of their dynamic nature.
However, dever use of C or C++ programming constructs can yield reasonable results.

2.1 Profilers for C

When impreing a prograns performance, it is useful to kmowhere the speed bottle-
necks are.There is a saying that 90% of the time is spent in 10% of the ddelece,

ary speed imprgement should aim to speed up the functions that are most frequently
used. Theorogrammer can often tell where the program is spending most of its time (e.g.
where one function is called by all othersit lit is useful to hee a ®ftware tool to
analyze ractly where the program is spending its timdany implementations of C
come with a softare tool called grofiler which is used toxamine the performance of

the program.The most common UNIX prdérs areprof , pixie andgprof .

2.1.1 The prof utility

Under UNIX the standard C pitifig utility is called 'prof ". This utility calculates the
percentage time tak by each functionThis is \aluable information when considering
which functions to makmore eficient.
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To useprof , compile the program with thep option tocc (strictly speaking, the
-p option is needed only at the link stage of compilation) and tkesute the program.
Provided the program terminates normally or et , a data fle called"mon.out”
will be generated.This file contains the data to be used prof in preparing an
execution profle for the program.To examine this prdfe, type the command:

prof
If your executable is not called.out , but saymy_prog , the command is:
prof my_prog

This command will generate a pitef of your prograns execution from which the
functions that use the most time can be idietif A sample from the output generated
by prof is:

%time seconds cum% cumsec  procedure (file)
42.1 4.4700 42.1 4.47 stremp (../strcmp.s)
40.6 4.3100 82.7 8.78 CheckWord (spelll.c)

5.9 0.6300 88.6 9.41  fgets (../fgets.c)

4.3 0.4600 92.9 9.87 initialize (spelll.c)

3.0 0.3200 96.0 10.19  tolower (../conv.c)

15 0.1600 97.5 10.35 read (../read.s)

1.0 0.1100 98.5 10.46 malloc (../malloc.c)
0.8 0.0800 99.2 10.54 strlen (../strlen.c)

0.5 0.0500 99.7 10.59 morecore (../malloc.c)
0.1 0.0100 99.8 10.60 open (../open.s)

0.1 0.0100 99.9 10.61  sbrk (../sbrk.s)

0.1 0.0100 100.0 10.62 fstat (../fstat.s)

Note that the percentages calculated are only approximate because ilee pses
sampling techniques during interrupts and these samples might mimtepeofully accu-
rate picture.For example, if the program has ary small anddst function, this function
might be completely missed.

2.1.2 The pixie utility

The prof utility only produces estimates based on statistical sampling of the program
counter at rgular intenals throughout thexecution of the programThe pixie  utility
can be used under UNIX to get more accurate counts on the number of times each
statement in a function ixecuted. Itmeasures the number of times ehakic block is
executed. Abasic block is a sequence of code containing no branches.

The pixie utility is applied to the already generatedeaitable fle. Thereis no
need to recompile thexecutable with thep option. Thecommand:

pixie a.out
will generate a ne executable fle, "a.out.pixie ", which when gecuted will
generate a datadld called 'a.out.Counts ". A data fle of function addresses called
"a.out.Addrs "is dso generatedThe net step is to run the meexecutable:

a.out.pixie
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and then the counilé can be gamined using eithgorof or pixstats . Two possible
commands are:

pixstats a.out

or the use oprof with the-pixie  option:

prof -pixie a.out

Both of these commands will generate aiety of information. prof -pixie will
generate an ordering of functions based on instructyofe counts, another based on
invocations, and a list of instruction counts for each basic blpoistats  generates a
whole wealth of useful information including summaries of opcode disiits and
register usage.For more information ramine the manual entries fpixie , pixs-

tats andprof .

2.2 Timing code

For seveaal reasons it can be useful to time tiecaition of a programln environments

that dont support a prafer tool, the only vay to gther information about a program is to
add timing statements to iEven if a profler is available, it might only indicate which
functions are consuming time, whereas timing instructions can be useful in determining
exactly which statements should be optimized.

If the full execution time for a program is all that is needed, the UNilKe
command can be used to calculate the time required by a prograere are tw
versions — a stand-alone utility fbin , and a commanduilt into csh . The command
to run is usually:

time a.out

A different executable name can also be used and command lijuenants can be speci-
fied. Onnon-UNIX machines the totalxecution time can easily be measured with a
stop-watch.

Timing code can determine the relatifi cieng/ of various operations andvg you
vauable information about writing code for your machine (e.g. whether shiftiragterf
than intger multiplication).

If a more detailed speed analysis is needed, it is possible to add C code to your
program to monitor itswn performance.The basic idea is to use the standard library
functions declared ixtime.h> to monitor the time before and after an actidrhe
most useful function is thelock function which counts the number of clock ticks since
the program bgen executing. Thetime function which leeps track of the real calendar
time could also be useduythit is not a true indication of processor time on gdanulti-
user system such as UNIXheclock function is correct for single user and multi-user
systems.

The clock function returns a alue of typeclock t  which is declared in
<time.h> (typically aslong orint ), and this intgral value counts the number of
clock ticks. The walue can be camrted to seconds by wding by the constant
CLOCKS_PER_SEGIso declared irctime.h> . The basic idea of timing C code is to
call the clock function before and after an operation andmeine the dikerence
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between the number of clock tickEor example, the code belotimes the recution of a
program (gcluding the time used by the progrardartup and termination sequences).

#include <stdio.h>

#include <time.h> [* declare clock() and clock_t */
main()
clock_t before; /* Save old value of clock() */

before = clock();
... I* rest of program */
printf("Execution took %5.2f seconds\n",
(double)(clock() - before) / CLOCKS_PER_SEC);

}

Note that some implementations donbnform to the ANSI standard and return the
number of clock ticks since thidt call to theclock function. Thismeans that a single
call toclock at the end of the programowld return zeroHence, it is more portable to
measure the number of clock ticks betweea talls toclock , one at the start and one
at the end.

Theclock function also has a problem wittraparound on mary implementations.
Because of its high resolution, the number of clock ticks quickdyflows the maximum
value that can be stored by the tygdeck t . On one system thelock function will
wrap around after only 36 minuteH.the program being timed runs for longer than this
period, the use oflock can be dangerousOne solution is to use thame function
declared irctime.h> | but this usually only has resolution to the nearest second.

2.3 Instrumenting programs

Usually the total eecution time of a program is not enough information on which to base
optimization techniquesilt is usually necessary to kwowhich functions are consuming
the most time, onen to know how much time is used by particular groups of statements.
The process of adding timing instructions to a progranxamae its dfciencg is called
instrumenting the program.

Presented belois a snall library of functions to &ep track of time in code blocks
using "clocks". The clocks are referenced by a character string name, and are started and
stopped by the functiorstart_clock andstop_clock . Atthe end of the program
the clock_report function can be used to generate a summary of the times used by
each clock and the percentage of total run-time consumed by that clock.

#include <stdio.h>

#include <time.h> /* declare clock() and clock_t */
#include <string.h>

#include "instrument.h" /* include the interface header file */

typedef int bool;
#define TRUE 1
#define FALSE 0

I* */
[* Structure representing a clock */
I* */
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typedef struct clock_node {

clock_t ticks; /* number of clock ticks recorded */
clock_t last_time; /* time when clock last switched on */
char *name; /* name of clock */
struct clock_node *next; /* next pointer for linked list */
bool clock_on; /* flag if clock started or stopped */
} c lock_type, *clock_ptr;
clock_type *clock_head = NULL; /* head of linked list of clocks */
I* */
/* Set a clock off recording time */
I* */

void start_clock(char *name)

clock_ptr p;

for (p = clock_head; p != NULL; p = p->next) {
if (strcmp(p->name, name) == 0)
break;

if (p == NULL) { /* not found; so create new clock */
p = malloc(sizeof(struct clock_node));

p->name = malloc(strlen(name) + 1); [* store the name */
strcpy(p->name, name);

p->ticks = 0; /* No time on clock yet */

p->next = clock_head; /* add to front of linked list */

p->clock_on = TRUE;
clock_head = p;

}

else if (p->clock_on)
fprintf(stderr, "Error: clock ‘%s’ already on\n", name);
return; /¥ no need to set last_time */

}
p->clock_on = TRUE;

p->last_time = clock(); [* store the current time */
}
I* */
/* Stop a running clock; update its count of elapsed time */
I* *

void stop_clock(char *name)

clock_t ticks = clock(); [* record time first */
clock_ptr p;

for (p = clock_head; p != NULL; p = p->next) {
if (strcmp(p->name, name) == 0)

break;
}
if (p == NULL) { [* error; clock name not found */
fprintf(stderr, "Error: clock ‘%s’ not found\n", name);
return;

}
else if (Ip->clock_on)

fprintf(stderr, "Error: clock ‘%s’ not started\n", name);
p->clock_on = FALSE;

p->ticks += ticks - p->last_time; /* record elapsed time */
}
I* */
/* Print out the profiling report based on all clocks */
/* *

void clock_report(void)

clock_ptr p;
clock_t total = clock(); /* total time for entire program */

13
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fprintf(stderr, "------- CLOCK PROFILE ------- \n");
for (p = clock_head; p != NULL; p = p->next) {
if (p->clock_on)
fprintf(stderr,"Error: clock ‘%s’ not stopped\n”,p->name);
fprintf(stderr, "Clock ‘%s’: %b5.2f secs, %5.2f%%\n", p->name,
p->ticks / (double) CLOCKS_PER_SEC,
p->ticks / (double) total * 100.0);

}

The actual implementation is quite detailgdlocks are referred to by using a character
string name, and the program actually implements an "assecetay” of names and
clocks. Eachclock is stored on a lirdd list and starting up an unkmo clock auto-
matically creates a meclock and adds it to the likl list. Considerable run-time error
checking is added to ensure that the clocks are being used cortéstlpf the library is
simple: include the follving "instrument.h" header ife in the program, and link
the objectite from the C source code alm

I* *

;: INSTRUMENT.H: Header file for insir/umenting library */

void start_clock(char *name);
void stop_clock(char *name);
void clock_report(void);

The program that mas use of the instrumenting library must be medifto include
calls tostart_clock andstop_clock . For example, the program belorecords
how much time is spent in a single function.

#include <stdio.h>
#include "instrument.h" /* include the interface header file */

long sum(long n)
{

long i, total = OL;

start_clock("sum"); I* Start the clock */
for (i=1;i<=n;i++)
total +=i;
stop_clock("sum"); I* Stop the clock */
return total;
}
main()
long i, total = OL;
start_clock("main™); I* Start clock for main */
for (i = 1; i <= 1000; i++)
total += sum(i); /* sum of sums */
printf("sum of sums of 1..1000 = %Id\n", total);
stop_clock("main"); * Stop clock for main */
clock_report(); I* Print out the profile */
}

This example produces the folldng output:

------- CLOCK PROFILE -------
Clock ‘sum’: 0.43 secs, 89.52%
Clock ‘main’: 0.48 secs, 100.00%
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Here we see the main disahage of this implementation of the instrumenting library:
both the clocks hee recorded some of the same timehe clock for tnain " has still
been counting the time used by thleith" function. D avoid this problem it becomes
necessary to werite the code to turn bthe clock before a function call and turn it back
on aftervards:

start_clock("main"); I* Start clock for main */
for (i=1;i<=1000; i++)

stop_clock("main™); /* Stop clock before */

total += sum(i);

start_clock("main"); I* Start clock after */
stop_clock("main™); /* Stop clock for main */

This produces the more useful pl®butput:

------- CLOCK PROFILE -------
Clock ‘sum’: 0.45 secs, 78.91%
Clock ‘main’: 0.05 secs, 8.84%

An alternatve is to improve the instrumenting library so that it counts using only a single
clock at ay one time. A useful profle of the entire program euld then simply require
calls tostart_clock andstop_clock  at the start and end of each function (taking
care to place &top_clock  call before gery return statement). Thisand other
extensions to the library ar@lored in the gercises at the end of the chapt&f course,

all possible instrumenting libraries fuf from the same disadutage in that the
programmer must do a lot ofank to generate a pritg. An automatic prdfing tool
should be used if one isailable.

2.4 Benchmark timing programs

Benchmark programs attempt tgaeine hev quickly your machine xecutes certain
instructions. Br example, hav would you determine whether the igég multiplication
operationx*2 could be more €itiently replaced bx<<1? The olvious method is to
time a single operation, as in:

#include <stdio.h>

#include <time.h> /* declare clock and clock_t */
main()
int x;
clock_t before; /* Save old value of clock() */

before = clock();
X << 1; [ * p erform shift operation */
printf("x<<1 took %f seconds\n",

(double)(clock() - before) / CLOCKS_PER_SEC);

before = clock();

X * 2,

printf("x*2 took %f seconds\n",
(double)(clock() - before) / CLOCKS_PER_SEC);

/ * p erform multiplication */
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Unfortunately this program outputs 0.000000 for both operatiofisere are a number of
reasons for theaflure of the simple approach aleo

« Single operations takless time than a clock tick.

« %f prints only 6 decimal digits of itsalue.

« The operations are possibly being renrtbby the compiler
« The cost of callinglock is relatvely large.

The main problem is that the amount of timeetaky these single operations is so short
that it is less than a single clock ticklence, both calls to clock return the same number
of clock ticks and the dérence is zero.

Even if the operations did takmore than a clock tick, printing out the number of
seconds using %f is the wrong approach because it prints out onlysthé flecimal
digits of the fraction, and will still print zero fomlues such as 0.000000This problem
can be solgd by using therintf  format specitation %.20f to print out 20 decimal
digits, or simply by printing the actual number of clock ticks as agénte

Another problem is that if the compiler is wbe enough to notice that the<<1 and
x*2 statements ha ro efect in the program abe, its huilt-in optimizer may remee
them. Thecompiler can be forced tovaid this optimization by declaring as
volatile . The volatile qualifier tells the compiler that all accessesxtcare
important, and that it should not remeoany. The intended purpose wblatile is to
allow the declaration of addresses for memory-mapped 1/O, orafiables modiéd by
other programs (e.g. a semaphore niedibby another program running concurrently).
However, we can use it here to force all accesses to occur by declaring as belw:

volatile int x;

Unfortunately the computations of the< and* operators inx<<1l andx*2 are not
being assigned gwhere, so the computations themsslcould be optimized outyen

though the actual read operationsxomust occur becauseis volatile . To force the
<< and* operations to occuiit is necessary to use their result somgheauch as by
assigning it to thevplatile ) variablex:

X = X << 1;

Unfortunately the volatile qualifier is not supported by some older non-ANSI
compilers. Programmertssing such compilers may V& resort to compiledependent
tricks to preent the optimizer from remang operations. Fortunately non-ANSI
compilers will tend not to perform these optimizations because of their recognized
dangers.

Although all of the abee improvements will enhance the pieus \ersion, a &r
better method of impr@ment is to time a loop that performs a huge number of the oper
ations, as follars; the code gen here eamines the relate peed of 10,000 shift and
multiplication operations oimt operands:
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#include <stdio.h>
#include <time.h>

#define ITERATIONS 10000

main()

}

inti;
volatile int x; [* volatile to prevent optimizations */
clock_t before;

before = clock();
for (i = 0; i < ITERATIONS; i++)
X = X << 1,
printf("%d Shifts took %5.2f seconds\n", ITERATIONS,
(double)(clock() - before) / CLOCKS_PER_SEC);

before = clock();
for (i = 0; i < ITERATIONS; i++)
X =Xx%*2,;
printf("%d Multiplications took %5.2f seconds\n",ITERATIONS,
(double)(clock() - before) / CLOCKS_PER_SEC);

Unfortunately the abe@e method of measuring the speed of operations is not completely
accurate, because it also includes the loaghead (incrementing from 1 to 10,000)

and the cost of the assignment of the resutt tdhe loop @erhead can be minimized by
placing maw operations within the loop, as balo

#include <stdio.h>
#include <time.h> /* declare clock and clock_t */

#define ITERATIONS 10000

main()

}

inti;
volatile int x; /* volatile to prevent optimizations */
clock_t before;

before = clock();
for (i = 0; i < ITERATIONS; i++) {
<< 1; <
<< 1;
<< 1;
<< 1;
<< 1;

<
<
<
<
<

X X X X X
o
X X X X X
X X X X X
i

X X X X X
ANNNANNAN

PRERE
X X X X X
o n
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}
printf("%d Shifts took %f seconds\n", ITERATIONS * 20,
(double)(clock() - before) / CLOCKS_PER_SEC);

before = clock();
for (i = 0; i < ITERATIONS; i++) {
* : X * 2 -

X X X X X
I
X X X X

I n
X X X X X
EE I
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’
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}
printf("%d Multiplications took %f seconds\n",ITERATIONS*20,
(double)(clock() - before) / CLOCKS_PER_SEC);

Unfortunately this assignment operation is needed tag@rethe optimizer remang the
computations, as discussed @aho The assignment can be rewed in any "stupid”
compilers where the computation will occugaelless of whether its result is usethe
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only truly efective method of remwing the cost of the assignment from the measurement

is to time another separate loop, and subtract its time from that of the other loops, as
belon. This method also automatically accounts for the looghead cost, so the mul-

tiple operations inside each loop are not needed (anactmbuld be incorrect).Our

final version of the benchmark program is also made more sophisticated to output the rel-
ative magnitude of the tev operations:

#include <stdio.h>
#include <time.h> /* declare clock and clock_t */
#include <math.h> /* declare fabs() */

#define ITERATIONS 10000

main()

int i;

volatile int x; /* volatile to prevent optimizations */
clock_t before;

clock_t loop_cost; /* time of loop overhead and assignments */
double timel, time2;

before = clock(); /* time loop overhead */
for (i = 0; i < ITERATIONS; i++)
X =1;
loop_cost = clock() - before;
before = clock();
for (i = 0; i < ITERATIONS; i++) {
X = X << 1;
}
timel = (double)(clock() - before - loop_cost) / CLOCKS_PER_SEC;
printf("%d Shifts took %f seconds\n", ITERATIONS, timel);

before = clock();
for (i = 0; i < ITERATIONS; i++) {
X =X*2;

}
time2 = (double)(clock() - before - loop_cost) / CLOCKS_PER_SEC;
printf("%d Multiplications took %f seconds\n”, ITERATIONS, time2);

/* Compare both times, and print out percentage difference */

#define ACCURACY 0.00001 /* maximum difference for equal reals */

}

if (fabs(timel - time2) < ACCURACY) /* (almost) equal? */
printf("Shift and multiplications took the same time\n");
else
if (timel < time2)
printf("Shifts faster by %5.2f percent\n",
(time2 - timel) / time2 * 100.0);
else
printf("Multiplications faster by %5.2f percent\n”,
(timel - time2) / timel * 100.0);

Finally, note that on some machines the codevabtay indicate that shifts and multipli-
cations cost the sam@his is most lilely an indication that the compiler automatically
optimizes ap multiplications by pavers of tw into left shifts. To get the true cost of a
multiplication, the gpression should be:

X

X * X ;
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but on a mmpiler that does perform the optimization of multiplications to shifts auto-
matically, the programmer will seldom be able to rmaky changes that the compiler
does not, so the relad st of shift and multiply is unimportant.

2.5 Examining assembly output

Another vay of examining the relatie csts of particular operations for a particular
compiler is to gamine the assembly language produced by the compiary
compilers hge an option to produce assembly language outpltr example, under
UNIX the command:

cc -S main.c

will produce the assembly language listing for theil€ &nd store it in a e file
"main.s ". Without the-S option, the assembly outputowid have been passed to the
assembler to create the machine codewable.

Examining assembly language instructions produced for C operations carybe v
enlightening. Br example, you can determine whether the compiler uses a special incre-
ment instruction for the+ operator Whether or not the compiler is performingrious
optimizations can also b&amined.

Counting the number of assembly instructions is a simple measurevasnd gason-
able indication of hw efficiently an operation will be performed better method is to
determine the number af/cles used by each instructionutbthis requires a rather more
intimate knavledge of the assembly language being used.

Many useful things can be diseered by &amining assembly output-or example,
does thexpressiornx*2 generate a multiply instruction or a shift instruction (or an addi-
tion instruction)?Does the compiler notice thatx+1 can be replaced by++? Is the
% operator implemented by a sequence of instructiodsihg the relational operators
(e.g.>, <) in expressions such as:

flag=x>y;
will often produce a sequence of instructions because of the need to fiagigrihe

value either 0 or 1.The instructions may well look lkthe folloving pseudo-assembly
language:

LOAD 10($sp) # Load x (from stack)
CMP  12($sp) # Compare with y (on stack)
BGT $1 # Branch if greater than
LOAD O # Result of > operation is 0
JUMP  $2

$1:

s LOAD 1 # Result of > operation is 1

2:

HH*

STORE 14($sp) Store in flag (on stack)
However, in Stuations such as:

if (X >y)
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the instructions need not be as compleecause there is no need to store #ieev0 or 1
arnywhere. Theassembly language could be similar to:

LOAD 10($sp) # Load x (from stack)
CMP  12($sp) # Compare with y (on stack)

BLE $1 # Branch if NOT greater than
# Code for if statement body
$1:
# Statements after if statement

2.6 Measuring code size and static space

In general, it is more ditcult to measure o much space a program is using than to
measure hw much time it is using.However, most ewironments preide some means of
determining the size of instructions and static data inxecugable programlf nothing
else, the size of thexecutable fle can be a reasonable guide.

Under UNIX, a useful command is th&ize command, which >amines an
executable program and reports the memory used by its instructions and its global or
local static  variables. Havever, it does not (and cannot) report the stack or heap
usage because the amount of such memory used is dynamic, and hence cannot be found
by analysing thexecutable. Theommand:

size a.out

produces output similar to the foling:

text data bss dec hex
20480 8192 0 28672 7000

The "text" value refers to the machine code instructions for the program &uth.the
"data" and "bss" areas refer to global and Istatic  variables. Thé'data" area refers
to variables which hae teen eplicitly initialized; the "bss" area refers tanables with
implicit initialization which deéult to zero.

If the code size is needed on a per function basis, most UNiKoaments support
the nm command. Thizommand diers on diferent UNIX \ariants, ot will usually
print out information including the start and end address of a function, from which the
size of a function can berally computed.

MS-DOS users may be able ind out about xecutable size by>@amining the output
produced by some C compilers at the link stage (although not all compilers will produce
such output).Alternatively, the MS-DOSlink command with thémap option can be
used. B use thdink command, the objeciiés are linled using a command such as:

link /map *.obj

2.7 Measuring heap usage

The measurement of dynamic memory usagel\ing the stack and heap iarfmore dif-
ficult than measuring code size because of its dynamic nafheeamount of memory
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used will depend on the prograsrexecution; that is, it will depend on the program’
inputs.

Measurement of the amount of heap space used can beeddiiexdding etra code
to keep track of ancalls tomalloc , calloc ,realloc andfree , or any uses of the
C++ new and delete operators. Therogrammer can either addtea code to the
program in ap place that memory allocation is used, or else write a library of allocation
functions similar to those in Section 6.8s a \ery simple method, the folling macros
may be useful:

#define malloc(n) ((mem_used += (n)), malloc(n))
#define calloc(n,m) ((mem_used += (n) * (m)), calloc(n,m))

These macros are dangerous in thay thay evaluate ay side efects to their ajuments
twice, hut they are still useful. Note that these macros are self-referential, which gek le
in ANSI C, lut may cause infite loops with older preprocessors.

Unfortunately it is dfficult to decrementinem_used for each call tdree , because
the size of the block is not passedree . If it was knoevn hav malloc encoded the
size in the block headehefree function could possibly be implemented as something
like the hackd method bele:

#define free(p) \
(mem_used -= *((int*)(p) - 1), free(p)) /* CORRECT? */

However, this uses machine-dependent kexlge, is non-portable and may natrk for
a particular implementation ahalloc .

Although | can think of no useful preprocessor hack for the @w anddelete
operators, the memory allocation requirements for a particular class can be monitored by
overloading thenew anddelete  operators for that clasg=or example, the werloaded
operators could be implemented as:

void *Object::operator new(size_t n)

mem_used +=n;
return ::new Object; /Il Call global new operator

void Object::operator delete(void *p)

mem_used -= sizeof(Object);
::delete p; /I Call global delete operator

2.8 Measuring stack usage

Measuring the size of the program stack esyvdifficult. In mary cases, the stack is
totally beyond the programmes’ wmntrol. Havever, some compilers for personal
computers praide options such as enabling run-time stack checking and setting the max-
imum stack size.Run-time checking is a usefulay to determine whether or not the
worst case will run short of stack space, simply bgcating the program.If stack
checking does not report an error when the progranxdsuged with its wrst case
inputs, the program is not using too much stack space.
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If the actual amount of stack space used must berknibcan be found by repeatedly
running the program onawst case inputs and progresty reducing the alleved stack
size. Thesmallest stack size for which the program does aibis the amount of stack
space being used.

This approach isery slaw, and what is really needed is a sading tool that amines
all possible sequences of function calls in the C source code, determines the maximum
number of functions in scope atyaone time, and then adds up the sizes of their local
variables and parameterélthough this may appear to be a theoretical impossipitity
maximum stack depth can be found by a depthtfsearch of the function call graph (in
the absence of recursion)his does not sobsthe Halting Problem, which euld require
the resolution of whether this maximum stack depth is attained at rundtinfertunate-
ly, the author is notwaare of such a softare tool.

2.9 Estimating time and space requirements

Although estimating the &€ieng/ of a proposed project is important in ascertaining its
feasibility, it is dfficult to find arything concrete to say about &g at these estimates.
Producing adance estimates is more of an art than a science.

Experience is probably the best source of methods for producing an accurate estimate.
Hence it is wise to seek out others wheehnplemented a similar project, or to perform
a literature search for relent papers and bookdJnfortunately neither of these methods
is guaranteed to succeed and the implementor may be forced to go it alone.

The only other realistic means of estimation relies on a good understanding of the
various data structures and algorithms that will be used by the prodviaiking realistic
assumptions about the input canyide some means okamining the performance of a
data structureHow a data structure performs undepist case assumptions may also be
of great importance.

An alternatve b these methods of plucking estimates out of the air is to code up a
prototype ‘ersion of the program, which implements only the most important parts of the
project (especially those which will Yiathe biggest impact)The eficieng of the proto-
type can then be measured by using tiréous techniques outlined earlier in this chapter
Even if the prototype is too infe€ient, at least the problem has been idetifarly in
the deelopment gcle, when the ivestment in the project is relady low.

2.10 Summary

« A profiler is an important tool for identifying "hot spots" in code.
e If no profiler is avallable, the programmer can "instrument" the progrant, this
requires a good deal offeft.

e Theclock ANSI C library function can be used to time codet bare is needed
because wen the fne resolution of thelock function will be much lager than the
time for a single instruction.

» Benchmarks should time a ¢gr number of operations, with alhnables declared as
volatile
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* If the compiler has an option to produce an assembly listing, this cawminéned to
see what the compiler is doing and therabg-tune €fcieng/ methods.

» Executable size and static storage can x@nmened by using the UNISize andnm
commands, or think /map ~ command in MS-DOS.

» Heap usage can be monitored by redeff malloc andfree in C, ornew and
delete in C++.

* Run-time stack werflow checking can be used to measure stack usage.
» Advance estimates of either time or spadeziging are very difficult.

2.11 Further reading

Plum and Brodies book Efficient C gives good caerage of the issues of measurement
and estimation of space and timé-@éng. It contains chapters on time measurement

and space measurement, and also a discussion of time and space estimatatheartw
chapters.

PLUM, Thomas, and BBDIE, Jim,Efficient C, Pum Hall Inc., 1985.

2.12 Exercises

1. Considerthe method of timing loopvaerhead in Section 2.4 which timed a loop

containing the statemert1l. Why does this &il if the compiler implements this
assignment statement as a special set-to-one instruddon?can the benchmark
timing method be impneed to avoid this (rare) pitall?

2. Why does the instrumenting library callock at the end o$tart_clock , but
at the bginning ofstop_clock ? Modify the program instrumenting library in
Section 2.3 to use macros that call tleock function after calling
start_clock and before callingtop_clock . This avoids including the wer-
head of calling these functions as part of the tirhiént: You may need to use
global \ariables.

3. Modify the 'instrument.h " header ile to remwe alls to start_clock ,
stop_clock and clock_report (by #define ’'ing them to &pand to
nothing) if a particular macro name is idedd, say NO_INSTRUMENT This
allows instrumenting code to be rewad by conditional compilation.

4. [adwanced] Modify the instrumenting library tovad measuring the same time

twice on diferent clocks.This has the adntage that a clock at the start and end of
a function will truly indicate hv much time the program spent inside the function

body Hint: Implementing the better library will\olve gopping the (single) clock
that is on (if ag) in a call tostart_clock , and restarting this stopped clock
when the n& clock is itself turned df
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5. [adwanced] Estimation is easier when the completed program is alreathbie.
Why is estimation still needed in this situationfivestigate the methods of estimat-
ing the follaving quantities from the source code:

a) BExecutable size.
b) Static data size.
c) Stack usage.

d) Heap usage.

e) Run-time dfcieng.



Chapter 3

Algorithm improvements

Changing the underlying algorithms used by the program is often the only agabw
gan a lage speed increasén particular the data structures used can often be rextlif
to give a ggnificant speed increasés there a better ay to do what your program does?
Is it doing too much unnecessary calculatiohithough much depends on the ingenuity
of the programmer there are some common techniques forimgrthe performance of
algorithms and their data structures.

3.1 Augmenting data structures

Instead of recalculating dataeey time you need it, aabter vay is to store the data in the
data structureThis saes the time of recalculation, which need be done only oticthe
data @er changes, the calculations must be redone and stoegd. algencethis method
works best where data is unchanging.

As an &ample of augmentation, considersar uct defined to represent a line
segment. Thestruct contains fouriglds, for thex andy coordinates of the start and
end points:

struct |ine_segnment ({

int x1, yi; /* Start point */
} int x2, y2; /* End point */

If the computation of the length of the linegs®ent, using:
len = sgrt((y2 - yl) * (y2 - y1) + (x2 - x1) * (x2 - x1));

is @ common calculation, it can be beciaf to store the length of the linegseent as an
extra field in thest ruct :

25
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struct |ine_segnment ({

int x1, yi; /* Start point */
int x2, y2; /* End point */
doubl e | engt h; /* Length of line segnent */

I

Whenever this length is needed during calculation it is immediatehilable as aiéld

member Howeva, it is important to be careful that there is no consistgmoblem

(where thd engt h field is not the true length of the linegsgent). Themain danger is
that thel engt h field won’t be recalculated wery time one of the otherdlds change.

3.2 Storing precomputed results: table lookup

This method aims to replace frequently-called costly functieauations with table
lookup (i.e. array referenceslror example, when calculating the square root ofgets,
it is possible to precalculate a table of square roots agféndefrom 1 to 100In the main
calculations, a call to theqrt function is replaced by a table lookughe use of
precomputation of theqr t function (applied to inigers) is shan belav:

#define NUM 100 /* Precal culate to 100 */
doubl e sqrt_tabl e[ NUM + 1]; /* Table of values */

voi d precal cul ate(voi d)

tr
int i;
for (i =0; i < NUM i++)
sqrt_table[i] = sqrt((double)i); [/* Use real sqrt */
}

doubl e square_root (int n)

{
}

The precalculation uses twseparate functions: one to perform the precalculation, and
another to calculate theales. Thepr ecal cul at e function must be called once by
mai n. Alternatvely, every call to thesquar e_r oot function could check at ati c
boolean flag indicating whether thalues hge been precalculated yet, and call three-
cal cul at e function if not. Note that this use of precalculation is onlgriiwhile if
some calculations are repeated (i.e. computing the same result).

A common e@ample of precalculation is boolean functions on characters (e.qg.
i supper). To improve performance, it is possible to precompute an array of 256 bytes
with O if i supper is false, and 1 if supper is true. Theni supper is evaluated by
indexing the character into the precomputed table:

return sqrt_table[n];

#define i supper(ch) preconput ed_array[ ch]

This is faster safer and more portable than the use of a boolepression such as:
#define i supper(ch) ((ch) >="A && (ch) <="'27")
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which has the danger of siddegdts in the macro gument, and will dil for a non-ASCII
character set.

In fact, may systems implement this function and the other functions in
<ct ype. h> as a table lookupver the 256 characters (plus axtra one forEOF), with
precalculated onéit per function — that is, a bit indicatingsupper , another bit for
i sl ower, ec.

3.3 Lazy evaluation

This method is a slight amendment to precalculation or data structure augmentation.
Instead of precalculatingvery result, results are calculated only as needexluse this
method, it is necessary to indicate sonvelwhether a result is already in the table.
When seeking a result, it is necessary to check if the requated is already presentf

it is, table lookup is used to get the resuftnot, the \alue must be calculated, stored in

the table and that entry mak as present.

The precomputation afgr t in the preious section can be mouifl to become lazy
evduation by adding another array of boolean flags, indicating which of the square roots
have been computedWhen calculating a square root, the function checks if it has been
computed, and calculates it if not.

#defi ne NUM_PREC 100 /* Precal culate to 100 */
doubl e square_root(int n)

static double sqgrt_tabl e[ NUM PREC+1] ;

* Tabl e of val ues */
static int precal c[ NUM_PREC+1] ; *

Array of flags */

~~

if (!precalc[n]) { /* precal cul ated? */
sqrt_table[n] = sqgrt((double)n); /* Use real sqrt() */
precal c[n] = TRUE; /* Mark as conputed */

return sqrt_table[n];

}

The use of lazywaluation is slaver than complete precalculation if all of thelues are
evantually calculated (because of thevedhead of checking whether calculation is
needed). Hwoever, it can male the program dster eerall if not all calculations are
needed. Ay unnecessary calculations ariaed.

3.4 Compile-time initialization and precomputation

The xamples of the precomputation of square roots in theiqure two sections are not
particularly eficient because tlyemust still call thesqrt function a number of timesA
far more eficient alternatie is to use C5 compile-time initialization of arrays to set up
the precomputedqrt _t abl e array Hence, thesquar e_r oot function becomes a
simple lookup into an arrayaviable as follaws. Notethat the array is declared as
st ati ¢ so that the initialization occurs at compile-tim&utomatic array initialization
is legd in ANSI C so it is important not to omit trst at i ¢ keyword; otherwise the
initialization will occur &ery time the function is entered.
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#define NUM 100 /* Precalculate to 100 */

doubl e square_root (int n)

static double sqrt_table[] = {

0. 000000, 1.000000, 1.414214, 1.732051, 2.000000,
2.236068, 2.449490, 2.645751, 2.828427, 3.000000,
3.162278, 3.316625, 3.464102, 3.605551, 3.741657,
3.872983, 4.000000, 4.123106, 4.242641, 4.358899,
4.472136, 4.582576, 4.690416, 4.795832, 4.898979,
5. 000000, 5.099020, 5.196152, 5.291503, 5.385165,
5.477226, 5.567764, 5.656854, 5.744563, 5.830952,
5.916080, 6.000000, 6.082763, 6.164414, 6.244998,
6. 324555, 6.403124, 6.480741, 6.557439, 6.633250,
6. 708204, 6.782330, 6.855655, 6.928203, 7.000000,
7.071068, 7.141428, 7.211103, 7.280110, 7.348469,
7.416198, 7.483315, 7.549834, 7.615773, 7.681146,
7.745967, 7.810250, 7.874008, 7.937254, 8.000000,
8. 062258, 8.124038, 8.185353, 8.246211, 8.306624,
8.366600, 8.426150, 8.485281, 8.544004, 8.602325
8. 660254, 8.717798, 8.774964, 8.831761, 8.888194,
8.944272, 9.000000, 9.055385, 9.110434, 9.165151,
9. 219544, 9.273618, 9.327379, 9.380832, 9.433981,
9. 486833, 9.539392, 9.591663, 9.643651, 9.695360,
9. 746794, 9.797959, 9.848858, 9.899495, 9.949874
b

return sqrt_table[n];

}

The simplest wy to produce thealues for the precomputed array is to write another
program to produce thenOnce the alues are produced, this program can be discarded.
The following program vas used to produce the declaratiosgf t _t abl e used in the
squar e_r oot function given éove. The output from the follwing program vas redi-
rected into the source code for the progranvabo

/*
/* Produce C declaration for square root table */
/*

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#i ncl ude <mat h. h>

#define NUM 100 /* Precalculate to 100 */
int main()
int i;
puts("static double sqrt_table[] = {");
for(i = 0; i < NUM i++)
printf("%", sqrt((double)i));
if(i + 1 < NUM
printf(", "); /* comma after all but last */
if(i %5 ==4 & i + 1 < NUM
printf("\n"); /* newmine every 5 |lines */
}
printf("\n};\n"); /* finish off C declaration */
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Compile-time precomputation shouldvals be more difcient than lazy wluation and
run-time precomputation.However, compile-time precomputation is only applicable
when the function can be computed at compile-tiiethe computation wolves ay
variables whosealues are knen only at run-time, either lazywauation or run-time pre-
computation may be useful.

3.5 Special solution of simple cases

When solving a problem, simple cases can often beeddby specially designedsdt
functions. Theséspecial solutions" can wolve the table lookup of precalculatedlues
(e.g. storing theiffst ten fctorials in an array) or just ast algorithm for small cases (e.g.
sorting less thariie numbers quickly).

In general, the special solution of simple cases wil gobme speed increase if the
simple cases araifly common. The adantage of simple case precalculatiorerdfull
precalculation is fleibility — it is not limited to those alues that can be stored inixeefl
size table.

The use of table lookup for simple cases for tlaet ori al function is shan
belon. The method here s Peed increase for all cases, not just the simple ones,
because the recuvsi cefinition of f act ori al eventually breaks the problem @a to a
simple case.

#def i ne NUM_PRECALCULATED 5 /* How many precal cul ated */

int factorial (int n)
static precal c[ NUM PRECALCULATED+1] = {1, 1, 2, 6, 24, 120};

if (n <= NUM_PRECALCULATED)
return precal c[n];

el se
return n * factorial(n - 1);

3.6 Incremental algorithms

It is often easier to modify what has already been done than to start from sdnaich.
idea can be used to writeaster algorithms. Unfortunately changing an xsting
algorithm to use incremental calculations will usually require total redesign of the
algorithm.

A simple example of an incremental algorithm is counting the number of symbols in a
symbol table. The non-incremental ay to count them is to warse the symbol table,
counting the number of entrief.he incremental method is t@ép a running count —
increment it when a symbol is inserted; decrement it when a symbol is deléted.
incremental method is better if the count will be required most tiigke count is not
required, there has been some unnecessarfiead.

Another good xkample appears in graphics animatidéthen displaying a e screen
it is usually more difcient to change thexesting screen than to redvahe whole screen.
The idea is to set only those gl that need to be changed.
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In a chess-playing program using ante tree and the minimax algorithm (see
Chapter 9), the statiocvaluation function usually analyses the material balance (ive. ho
mary pieces each side hash simple kut ineficient method of computing the material
value of a position is to add thealues of each piece on the 64 squarBse eficient
incremental algorithm is to subtract thedue of the piece from a running count wheme
it is captured by the opponent.

3.7 Using simple tests to avoid expensive tests

Marny agorithms can be impked by pruning of the alternaties by using a &st test that

is often successfulThis is only vorthwhile when aoiding the complicated test is highly
probable; if &oiding it is unlikely, the etra simple test reducedfigieng/ because it adds
(slightly) to the run-time cost.

For example, to implement a ray tracing algorithm for graphical image rendering, it is
necessary to determine whether a ray etrilan object.Since the objects are often
comple and more often than not the ray will miss an object bygelamount of space, a
simple test can be used to quickly identify rays that are close enough to the object to
intersect with it. A good simple test is to determine if the ray intersects wittboed-
ing sphere of an object, as it is relagly efficient to determine thislf the ray does inter
sect the sphere, the mopgensve tests are applied to determine if the ray intersects with
the object. If the ray does not intersect with the sphere, the cost of the mpeasve
tests has beervaided. Interestinglythe simplicity of testing the intersection of a ray
with a sphere helpsplain why there are so mamray-traced images of spherical objects.

The similar idea of dounding rectangle is useful for collision detection in arcade
games. Collisiordetection usually wolves testing manpairs of objects in a tardimen-
sional setting, and the tests are complicated because offérentifshapes of the objects.
The more complicated tests can lweided by &amining whether the bounding rectan-
gles of each object are intersectinif.they do intersect, then a closekamination of
whether the objects hia pxels that eerlap is carried out.

For yet anotherxample of using a simple test teodd complicated tests, consider the
problem of a graphical dnang program, where the user can seleceiex (e.g. the end
of a line sgment) by clicking "close" to theewtex. In other words, the user must click
the mouse within a speidfl radius of the pointHence, when the mouse is clk the
program must compare the mouse location with all the currentlyeaetitices. The
obvious method is to use the distance formula far paints and apply the folleing test
on thex andy coordinates of the mouse and all points:

The eficiencg of this test can be impved by avoiding the calculation of the square root.
Squaring both sides of the equationegithe equialent test:

(XPoinl - XMouse)2 + (yPoinl - yMouse)2 < DISTANCE2

However, the multiplications ixolved in computing the squares of theotwub-ex-
pressions on the left are quitepensve, adthough the square on the right-hand side will
be a compile-time constanf simple test can be used twced the multiplications in
most caseslf the difference between either tixeor they coordinates is greater than
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DI STANCE, then the points cannot be close enouglthough the cost of these tests is
quite high because the absolutdue of the diierence must be found, it should still cost
less than tw multiplications, and will be more &€ient if there are manwidely spaced
points to be testedThe code using this idea is:

int check_point(int x_npuse, int y_npuse, int x_point, int y_point)
int x_diff, y diff;

x_diff = x_point >= x_npuse ? x_point - X_npuse : X_nobuse - X_point;
if (x_diff > DI STANCE)

return FALSE;
y diff =y point >y nbuse ? y_point - y_npuse : y_nobuse - y_point;
if (y_diff > DI STANCE)

return FALSE;

return x_diff * x diff + y diff * y diff <= D STANCE * DI STANCE;

}

Of course, the bestay of imprasing the eficieng of this program is toaid the need
for multiplications entirelyby changing the program speiciitions (!) so that the def-
tion of clicking "close enough" refers to clicking withinsguare around the point,
instead of a circle.

3.8 Sentinels

Sentinels refer to aalue placed at the gmning or the end of a list or array to indicate a
special condition.Sentinels are most commonly used to indicate the end of data to be
processed (e.g. the character zero at the end of character strings is a sdittinely;
the program can test for the presence of the sentinel in the input data, wiaisteigrf
mary situations than testing for the presence of more dateexample, a program using
a huffer can use an end-ofiffer marler as a sentinel instead of checkingvhmary
characters are left in theutfer each time; the program merely checks each time that the
character returned is not the sentinel.

A clever example of the use of sentinels can be found in the sequential search
algorithm applied to arraysThe simplest form of sequential search is:

int search(int a[], int key, int n)
int i;

for (i =0; i <n; i++) {
if (key == a[i])
return i; /* Found it */

}
return -1; /* Not found */
}

The test for whether the whole array has been @tk¢ke.i <n) can be eliminated by
placing a sentinel at the end of the arr@ie sentinet key value is set equal to thek
being searched for so that when the search reaches the last elemenini i torrect
key. In other words, the sentinelakes a successful searcifter the search, the
algorithm must check whether thalwe found vas the sentinel, or a real succeSstting
up the sentinel is the onlywerhead and this compareavtrably with remeing the test
inside the loop.
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int search(int a[], int key, int n)

tr
int i;
a[n] = key; /* add sentinel to end of array */
for (i = 0; key !'=a[i]; i++)
; /[* enpty | oop */
if (i ==n)
return -1; /* Not found. Found sentinel only */
return i; /* Found the key */
}

Unfortunately this use of the sentinel introduces a potential problem: the array is
modified by the search functioriThis modifcation will be dangerous if the function is
used to search a subarrafhe danger can be renwl by saving and restoring thealue
ofa[ n].

Sentinels can be applied to a number of algorithRes. example, thg can be used
for searching linkd lists or binary treesinstead of heing NULL pointers at the end of
the list (or at the leaes o the tree), these pointers point to a global no8etting this
nodes key equal to the searchely before bginning the search willvaid testing for
NULL pointers during the searctA binary tree implementation using sentinels is dis-
cussed in Section 8.13.

3.9 Reducing recursion

Recursion is an efent method of problem solution,ub often incurs unnecessary
function call werhead. Whergossible, recursion should be replaced with a non-recur
sive dgorithm, particularly if recursion can be rewed without using an licit stack
data structure.

With a little insight, may recursve dgorithms can be coded without recursidror
example, the Fibonacci number sequence (1,1,2,3,5,8,13,...)inedldfy the follaving
recursve mles:

Fo=1

F, =1

Fn = Fn—l + Fn—2

This has the obous recursie implementation:
int fibonacci(int n)

if (n<=1)
return 1;
el se
return fibonacci(n - 1) + fibonacci(n - 2);

}

However, there is no need to use recursion here, and a short loop is adedunmte-re-
cursive ommputation of the Fibonacci numbers iswhdelav:
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int fibonacci(int n)
int small, large, tenp;

small = large = 1; /* FO = F1 =1 */
while (n > 1) {
temp = small + large; /* Fn = Fn-1 + Fn-2 */
smal |l = large
| arge = tenp;
n--;

return |arge

}

There are manexamples of common algorithms that are unnecessarily coded using re-
cursion. Almostall linked list algorithms can be coded without recursion, as can the
most common binary search tree operations: search, insertion and ddietierample,

the recursie implementation of tree insertion is:

void insert(Tree *root, Tree new_node)

if (*root == NULL) /* Found bottom of tree */
*root = new_node; /* So insert here */
el se {

if (new_node->data <= (*root)->data)
insert (& *root)->left, new node);
el se
insert (& *root)->right, new_node);
}
whereas the non-recwsi vasion of tree insertion is gén below. It is smewvhat less
elggant, uses a f@& more \ariables, bt should be more &€ient.
void insert(Tree *root, Tree new_node)

Tree tenp = *root;

if (tenp == NULL) /* enmpty tree is special case */
*root = new_node
el se {
for (;;)
if (new_node->data <= tenp->data) { /* go left? */
if (tenp->left == NULL) /* leaf? */
tenp->l eft = new_node; /* insert it */
return; /* finished */
el se
tenp = tenmp->left; /* go left */

}
else { /* going right */

if (tenp->right == NULL) ({ [* leaf? */
tenmp->right = new_node; /* insert it */
return; /* finished */
el se
tenp = tenp->right; /* go right */
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3.9.1 Tail recursion elimination

An example of recursion elimination without a stack is the elimination of tail recursion.
Tail recursion occurs when the last action of the regargiocedure is to call itselfThe
simple modifcation changes this last recwesiall to become a loop back to the top of
the current imocation. For example, consider the preordenessal of a binary treeThe
simplest recurse dgorithm is:

voi d preorder(node_ptr root)

if (root !'= NULL) {
visit(root);
preorder(root->left);
preorder (root->right); /* Tail recursion here */

}

Tail recursion can be eliminated by replacing tHestatement with ahi | e loop. The
transformation reduces recursion by half (merage), as the second recussiall is
eliminated. Thigeduction in recursion is aclied with virtually no etra overhead!

voi d preorder(node_ptr root)

while (root !'= NULL) { /* while | oop replaces if */
visit(root);
preorder(root->left);
root = root->right; /* Move to right subtree */

}

Tail recursion remwea can be applied to markinds of recursie dgorithms: quicksort,
preorder and inorder wersals (lut not postorder).

3.9.2 Replacing recursion with a stack

Some recursie dgorithms cannot be easily replaced by non-revarsjuivalents. Ffor
example, in the binary tree wrersal in Section 3.9.1, we were unable to reenboth of
the recursie alls. Inthese situations recursion can be replaced with an algorithm using
a dack data structureAll recursive dgorithms can be replaced by a stack because-recur
sive dgorithms are actually using an implicit stack (the program stack of function calls).
Whether use of a stack will be mord @&nt than a recunge dgorithm depends on a
number of &ctors. Thechoice of a stackver recursion is machine-dependeir. partic-
ular, it is quite likely that the program stack is supported Hicefnt lov-level instruc-
tions and that (recurss) function calls arexecuted \ery eficiently. Howeve, recursion
requires that much information be stored on the stack (i.e. parameters, automatic local
variables, machine ggsters), whereas an algorithm making use ofxaiiat stack will
usually only need to store awfétems, making it potentiallyakter than the function call
stack. Ifthe maximum size of the required stack iswndieforehand, a stack can be
quite eficiently implemented as an array (using adidKist will usually be more costly
because of the cost of memory allocatioA)number of stack implementations are dis-
cussed in Chapter 8.
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The following shavs the preorder tx@rsal with tail recursion elimination remiag
one recursie @ll and an eplicit stack replacing the othein this case, thexplicit stack
need only store pointersThe function is an implementation of an algorithraegiin
[Standish, 1980, p75].

voi d preorder(node_ptr root)

stack_type S;

init_stack(S); /* set to enpty stack */
while (root !'= NULL || !is_enpty_stack(S)) {
if (root !'= NULL) {
visit(root); [* visit a tree node */
push(S, root->right); /* save right subtree */
root = root->left; /[* go to left subtree */
el se
root = pop(S); /* get node from stack */
}

3.9.3 Moving the base case higher

In the simple implementation of the preordewéraal given in Section 3.9.1, the recur
sive base case is oot ==NULL. If this occurs, the function call does nothin@ne

method of &oiding these unnecessary function calls is to test for the baseafasethe

recursve @ll. Thenew function becomes:

voi d preorder(node_ptr root)

while (root != NULL) {
visit(root);
if (root->left != NULL) /* Test nmoved up */
preorder (root->left);
root = root->right;

3.9.4 Collapsing recursive calls

The method of function call collapsing can be applied to reeifgictions in a limited
sense. Olously, it isn't possible to collapse a recursifunction call completely into
inline code, bt it is possible to collapse awWdevds of recursie alls into inline code,
reducing the total number of recwsiclls by a constan@attor This way, the function

does much more avk each time, and mak recursie alls less frequentlyFor example,

the preorder trgersal can be rgritten so that the current noded its two children are

handled by the function, and then recursialls are made for gnof the childrens

children:
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voi d preorder(node_ptr root)

{
if (root !'= NULL) {
visit(root);
if (root->left '= NULL) { /* do left child */
visit(root->left);
preorder(root->left->left);
preorder(root->left->right);
}
if (root->right !'= NULL) { /* do right child */
visit(root->right);
preorder(root->right->left);
preorder(root->right->right);
}
}
}

3.10 Integer arithmetic

Real arithmetic is sle compared to intger arithmetic.Hence it is &varable to replace
real arithmetic by equéalent integer arithmetic. Real arithmetic can be replaced by
integer arithmetic when only limited precision is required (e.g. 1-3 decimal plates).
do this, vork in integer units that are 10, 100 or 1000 timegéar(for 1, 2 and 3 decimal
places) so that the decimal places appear as\lez ttigits of the intgers.

To convert the intgyer into its true intger and fractional parts is quite simplgo get
at the fractional part, calculate the number modulo 10, 100 or 1000 (usifgother
ator). 1o get the true intger part, diide by 10 or 100 or 1000 — remember thatgete
division truncates the fractional part.

A good xample is: when wrking in dollars and cents, do all calculations in terms of
cents (an intger). Thenwhen printing it out, corert to dollars and cents using:

cents = val ue % 100;
dollars = value / 100;

3.11 Approximations

If precision of results is not important, it may sometimes be possible to use approxima-
tions to mathematical functiond-or example, in computer graphics, the precision of
floating point alues is often unimportant because the end result will be ageinpeel.

An approximation can be used, forample, in the matrix for 2-D rotation when the rota-
tion angle is small.The general matrix equation is:

k20  [Ckose  sing Ox10

S/ZB - B—sine coso nglg

It is easy to implement this rotation matrix in C, using #ien and cos library
functions:

X2
y2

cos(theta) * x1 + sin(theta) * yi;
- sin(theta) * x1 + cos(theta) * yl;
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For efficieng/, we should aroid computingsi n andcos twice by computing thealues
once and storing them in temporargrigbles (this is anxample of common sulxe
pression elimination) However, if the angleg, is anall enough, we can do much better
than this by using the approximations:

cosd =1
sing =6

Hence, we can completelyad the cost of the computation ®f n andcos:

x2 = x1 + theta * yl;
y2 = - theta * x1 + y1;

3.12 Avoid busy waiting for input

Humans are ery slov compared to computerdn particular a momputer can do much
work in the background,ven when handling the (slg) interactve input of a human.
Hence, one method of impriog eficieng is o perform background processing while
awating input, instead of using blocking input thatite for a leypress before doing
arything.

A common @ample of this idea is chess-playing programs that "think" during their
opponents ime. Thecomputer performs aagne tree analysis whileaiting for the
player to press agy. At some rgular intenal, perhaps before each node of theng tree
is analyzed, the program determines ifeg kas been pressed (e.g. by usingkbéi t
function in Turbo C on an IBM PC)If a key has been pressed, the chess program stores
information about its current analysis, and processes dige Wnless the &y pess
completes the userhmove, the background analysis can continue after processingthe k

Background processing can be agbéeby polling the leyboard rgularly or by the
clever use of interrupts, Uit neither method is portabl&the ANSI C standard prades
no facility for non-blocking input, mainly because os@NIX ancestry It is dfficult to
poll the leyboard for a traditional UNIX line terminal.

3.13 Reducing disk I/O

The cost of performing I/O on diskds can ma& y a large proportion of the run-time
cost of some programs:or reducing the amount of data to be read from or written to the
disk, the main methods are:

« Use smaller records.

« Cache frequently used records.
« Buffer multiple reads or writes.
« Compress data.

« Use better data structures.

A very simple method of reducing disk 1/O is to reduce the size of records being read or
written. Thiscan be achieed using may of the methods discussed in Chapter 7, such as
the use of unions, bitdlds, packing or smaller data types.
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Caching is useful if some records are being read more often than dthisra.\ery
general idea and there are mgossible implementationdt may be possible todep all
of the most frequently used records in main memarifing them to disk only at the end
of the program {een caching records in memory and writing them to disk deery
modification will still avoid the cost of multiple diskeads). If this method cannot be
used, try using seral memory locations for record 1/0, and whegrea read operation is
required, gamine these in-memory recordsst. If ary of them is the required record,
the cost of a disk read isr@ded. Cachingalways has a slight verhead, and may
increase run-time slightly if the desired records are rarely in memowevho it will
never increase the amount of disk I/O and the computationathead is likely to be
small compared to the cost of reading a record from disk.

When reading or writing multiple contiguous records, disk I/O can be speeded up by
reading in a number of records each tirfibe adantage is thatuifering multiple opera-
tions reduces the number of disk seek operatidims can be achied by manipulating
the huffering of<st di 0. h> functions using theet buf andset vbuf functions.

Another alternatie is to use other 1/O functions, such as the UNigen, r ead and
writ e functions. Havever, this method reduces portability as these functions are not
part of the ANSI standard library

When the amounts of data being read are quite weagise level of disk 1/0 can be
reduced bycompressing the data in theile. Readand write operations then Ve the
overhead of uncompressing or compressing the datahbk cost of this computation may
well be less than that of the disk 1/O (or it might also be more; be carefigiyever,
methods of compressing data argdye the scope of this book.

The use of a diérent data structure for data in diglle$ is often wrthwhile. Inpar
ticular, if the disk fle is being searched, then nyasf the search algorithms in Chapter 8
are applicable For example, binary search can be performed on a direct adleegdtie
data is sorted However, even binary search is inétient for lage disk fles, and data
structures speddally intended for disk data should be usddhe B-tree is a commonly
used data structure, and hashing is another possibiityortunately these algorithms
are highly adanced and ajn beg/ond the scope of this book.

3.14 Summary

» Precalculation, especially when combined with compile-time initialization, yieddg v
efficient code.

» For small problem sizes a specialized routine will be mofieiefit than the most
general algorithm.

» Incremental algorithmsveid doing a lage amount of wrk at one time by doing a
small amount of wrk mary times.

» Expensve tests can often bevaided by using simpler tests for common cases.
» Sentinels proide a useful coding trick to reme tests from a loop.
* Recursion is indfcient and can be reduced in marays.
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* When the full precision of floating point computations is unneceseffirgieng/ can
be impraved by using approximations or inger arithmetic.

» Computers are muclaster than humans and can do backgroumdk while accepting
human input.Unfortunately there is no portable method of doing this in C.

» Disk I/O is expensve and can be reduced by techniques such as using smaller records
or caching commonly used records.

3.15 Further reading

A good discussion of &tient methods of binary tree wesal is gven in the book by
Standish. May of the methods oeered here are alsaxamined in Jon Bentjés book,
and etra ekamples of applying the methods can be found there.

BENTLEY, Jon Louis,Writing Efficient Programs, Prentice Hall, 1982.
STANDISH, T. A., Data Structure Techniques, Addison-Wsley, 1980.

3.16 Exercises

1. Findan &ample problem where compile-time precomputation is not applicable,
but lazy evaluation or run-time precomputation are.

2. Achess program displays the chess board on a graphics sAfeameach mue it
re-displays the whole boarddow can an incremental algorithm be used to reduce
the time spent displaying the weboard? H@v much improwement can be
expected?

3. Implementani svowel function by precalculating a table of 256 bytes, similar to
that often used for thect ype. h> character testing functiondt should eauate
to true for letters that arewels.

4. Section3.5 gves a ecursve implementation of theattorial function as an
example of the special solution of special casksprove tis function to use a
loop instead of recursionubretain the difcieng/ of the special solution of simple
cases.

5. Combinetail recursion elimination and collapsing recuesialls for the preorder
traversal of Section 3.9.1 to produceassfer preorder tvarsal function.
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Code transformations

There are seral methods of directly impkang the eficiengy of a program just by
changing the source code slightlfhese methods are quite general, and apply toyman
programming languagesthe techniques aered are only some of the huge number of
general transformations that can be applied to a program teitrsightly more eficient
without changing its meaninglhe area is a researdblfl in itself. The main techniques
have been coered in this chaptebut there are atays more.

Some of the methods waed belov come from the theory of compiler optimization
(e.g. code motion, strength reduction on inductianiables, suby@ression elimination).
Hence, the compiler will often automatically perform these types of optimizations (when
the optimizer is imoked). To some etent, this maks these transformations redundant.
Even so, it is good programming practice tmid situations where these optimizations
are needed on a & scale.The compiler does not look at the program as a whole and
can miss some "olibus” optimizations.

4.1 Loop transformations

Loops are an ohous place to bgin improving the eficieng/ of a program because the
code inside the loop body is ¢k to be ®ecuted a number of timesHence, an
improvement to this code will impree dficieng by a larger factor

4.1.1 Moving code out of loops

Because loops are frequentlyeeuted, thg should be asdst as possibleThere are
several ways to mak loops smaller and hencaster The werall aim is to mee & nuch
code as possible out of the loofny expressions that are constant during a loop can be
calculated before the loop, rather than recalculating inside the \@op téne through.

For example, the computation pf*2.0 in the code:

40
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for (i=0;i<10; i++)
afi] *=pi * 2.0;

is the same in each iteration becapsedoes not changeMoving this computation out
of the loop maks the code morefedient:

scale = pi * 2.0; /* move multiplication outside loop */
for (i=0;i<10; i++)
afi] *= scale;

A common e&ample occurs with the condition ofa loop. Theconditional e&pression
in afor loop is ealuated at each iterationAny constant contained in this condition
should be eduated outside the loog-or example, consider the code fragment:

for (i = 0; i < strlen(key); i++)
hash += key[i];

The computation of the length of the string usitiden  does not changeubis calcu-
lated at each iteration of the loop (each time the loop condition is te&#itieng can
be impraed by moving the computation atrlen  outside the loop:
len = strlen(key);
for (i=0;i<len;i++)
hash += keyli];

One danger of mang code out of loops is that the transformation tamease the
execution time if the loop body isxecuted zero timesFortunately this isnt a danger in
either of the amples abee — the frst loop neer executes zero times; the second
example must computgtrlen  as the loop testven if it executes zero timesWhenever
the danger doexist, the loop can be recoded toymmet the calculation of thexpression
until after the ifrst loop test.For example, the loop:

while(condition) {
X =2*pi

could be revritten as:

I* computation not changing x */

if(condition) {
X=2*pi
do {
/* computation not changing x */
} while(condition);

4.1.2 Loop unrolling

One vay to male loops more difcient is to reduce the number of timesythe executed.
This method does not actually reduce the amountark wlone by the loop bogdyut
decreases the number @friable tests in controlling the loop (i.e. reduces loop condition
evduations). Loopgan be unrolled to grlevd. Theextreme is when the loop is totally
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replaced by in-line codeThis is the most étient the loop can get (the loopniable is
totally eliminated).For example, the loop:

for (i=0;i<5;i++)
ai]=0;

can be replaced byt assignment statements:

al0] = 0; a[1] = 0; a[2] =0; a[3]=0; a[4] = 0;
In fact, this can be changed to reuse assigakes:

a[0] = a[1] = a[2] = a[3] = a[4] = 0;

which may be more &tient in some anronments, bt might be less &tient in others.
Reusing assignedalues is discussed in Section 4.3.7.

Even if the total number of iterations is not kmoat compile-time, loop unrolling
can still be achied by repeating the code inside the loop twice (and modifying the
header of the loop)This causes the loop to bgeeuted half as mantimes, and gins
efficiengy by eliminating some branch instructions and some contaolble manipula-
tions. For example:

for (i = 0; i < MAX; i++)

ai] = 0;

becomes:

for (i=0;i < MAX;) {
afi++] = 0; /* Unrolled by a factor of 2 */
afi++] = 0;

In the example abwe, the arraya will always be accessed awema number of times,
because each iteration of ther loop accesses the arraytwice. If MAXis an odd
number the second array reference in the last iteration will access gal ileray
element. Br example, if MAXis 3, the irst iteration will access element§0] and
a[l] , the second {hal) iteration will access elemeaf2] and then attempt to access
elemental[3] . Howeve, the array contains only three elemeraf)] , a[l] and
a[2] , and thusa[3] is an illgd array reference.A solution to the problem is to
declare the arrag to hare an even sze. Oneway to ensure that the array contains at
least aneen number of elements is to declare omg@ dummy element:

int a[MAX + 1];

If MAXis odd this gtra element preents a bad array reference;MAXis even the etra
element is just asted space.

Loops can be unrolled more than twicéhe problem of odd-sized arrays is more
general, and can be eliminated by declaring the array to contain a numbedraof e
dummy elementsHowever, it becomes impractical tovercome the problem of odd sizes
by declaring arrays lger than necessanAn dternative is to use a short non-unrolled
loop to handle the odd caseBor example, the code belouses a loop that is unrolled
eight times to do most of theavk and then uses a short loop to catch up tensextra
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cases. Thenrolled loop can only set elements from zero up wb,not including, the
highest multiple of 8 (w§?), and the non-unrolled loop is used for the r@ste highest
multiple of 8 can be computed easily using bitwise arithmetic because 8vgea gd?.
If the desired unrollingédctor is not a pmer of 2, the less &tient %operator could be
used.

void clear_array(int a[], int n)
inti, max=n &~ 07; [* Highest multiple of 8 */

for (i=0;i<max;) {
/* Main loop unrolled 8 times */
afi++] = 0; afi++] = 0; afi++] = 0; a[i++] = 0;
afi++] = 0; afi++] = 0; a[i++] = 0; a[i++] = 0;
for (; i < n;i++) /* Do the odd cases */
ai]=0;

}

Note that this general form of loop unrolling idieient only ifn is large, allaving a
number of unrolled iterationslf n is too small, the werhead of setting up the loops
becomes too costly

Also note that loop unrolling caimcrease cost on some machine architecturésr
example, a machine with instruction caching might pre-load an entire tight lobpai-
not do this if the loop is unrolled to a length greater than the size of the c@che.
machines with virtual memopa long unrolled loop is slightly more kty to cause a
page &ult because of its increased code space.

4.1.3 Strength reduction on induction variables

Strength reduction refers to replacing a multiplication by an addition or by a Ktufe
generally it refers to replacing arxpensve qeration with a lessxpensve me. Thisis
discussed in more detail in Section 4.3Bhis section ramines the application of
strength reduction techniques to a particular typeadable.

An induction variable is a \ariable that changes in an arithmetic progression during a
loop. Inother words, it is increased by &&d number each iteratiohe control wari-
able of afor loop is often an inductionaviable incrementing by one each time.

If there is more than one inductioanable in a loop, éftieng/ can be gined by re-
moving all but one of them.Any constant multiple of an inductioraxiable is also an in-
duction \ariable. Theaim is to replace this multiplication with an additioimstead of
the multiplication, the inductionaviable is initialized alongside the initialization of the
original induction wariable, and then incremented each loop iteratfemr.example, both
i andx are induction griables in the loop bal

for (i=1;i<=10; i++) {

X =1i*4; [ *x = 4.8,.%
}

It is possible to rema the multiplication operation, becausés actually increasing by a
fixed anount each iteration.
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for(i=1,x=4;i<=10; i++, x +=4) { [*x=48,.%
}

For the ekample abwe, we se that this optimization mak the code almost impossible to
read. Hencethe use of strength reduction is recommended only when speedlyis v
important. Thisgmprovement is commonly performed automatically by the optimizer

4.1.4 Looping down to zero

On mary machines, testing for zero is mordieient than ay other test. This leads to a
number of minor optimizations (such as placing the most frequently used enumerated
constant ifst in its declaration), and a quite important imraent irvolving loops.

Loops that start at zero and go @rds to a particularalue are quite common in the use

of arrays. Any such loops where the order is unimportant (e.g. zeroing an, aorayput-

ing the maximum/minimum of an arragdding elements of an arragtc), can be trans-
formed to start at the topalue and loop den to zero. The only danger is if the loop
index variable is used after the loop, because it willeha dfferent \alue to that after the
original loop. For example:

for (i=0;i < N; i++) a[i] = 0;
can be reritten as:
for (| =N-1;i>=0; i--) a[l] =0;

This method can also be applied to loops that start at 1 and increase, or loops that start at
0 or -1 and decrease.

4.1.5 Nested loops

When two or more loops are nested, the innermost loop should be the one withgére
number of iterationsFor example, consider the nested loops to initialize a multidimen-
sional array:

for (i=0;i<10; i++)

for (j = 0; j < 100; j++)
alilil = 0;

This will be more dfcient than haing the inner loop iterate 10 times and the outer loop
100 times. The diference in speed is not due to a change in the number of array assign-
ments, bt due to the reduction in the number of initializations of the inadable,j ,
and increments of the outesinable (i.ei++ ).

4.1.6 Loop fusion

Another technique for speed impement isloop fusion. This refers to the mging of
similar loops so as toveid loop overhead. Thesaving gained is that the total number of
operations on the loopaviables is reducedror example, this technique can be used to
improve te following code fragment:
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for (i=1;i < MAX; i++)
afi] = 0;
for (i = 0; i < MAX; i++)
b[i] = O;
Merging both these almost identical loops is simpleeet that care must be &k to
handle boundary cases correctly:

b[0] = 0; [* Boundary case */
for (i=1; i < MAX; i++) [* Fuse two loops together */
afi] = b[i] = 0;

4.1.7 Exit loops early

The use of botibreak andcontinue are eficient, as no more of a loop igeeuted
than is necessaryror example, the indifcient method is to use a boolearigble to indi-
cate the end of the loop, as in:

done = FALSE;

while (done) {
ch = get_user_choice();

if ch=="0q")
done = TRUE;
else
I* rest of loop */
}
The eficient method is to uselmeak statement toxet the loop immediately:
while (1) { /* Infinite loop */
ch = get_user_choice();
if (ch =="q)
break; 1* Exit early! */
else
I* rest of loop */
}

Unfortunately the oseruse of jump statements suchleisak andcontinue can mak
the control flav of a program unclear

4.1.8 Correct choice of loop

Although the choice of loop is Igely a matter of style, there is an importanfedénce
between the post-testetb loop, and the pre-testddr andwhile loops. Theloop
condition of ado loop is not gauated on theifst iteration and alo loop is aWways
executed at least oncedowever, afor or while loop condition is ealuated before the
first iteration and the loop body need not kecated at all. A common form of inef-
ficieng is declaring loops that arevadlys executed theifst time, such as:

done = FALSE;
while(!done) {

}
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It is more efi cient to use thdo loop, which &oids a single ealuation of the loop condi-
tion:

done = FALSE;
do {

} while('done):

To dlow the compiler to generatefigfient code for an imfite loop, you should makit
easy for the compiler to recognize the loop amiit&, by using a common form: either
for(;;) , while(1) , or do..while(1) . A small point is that on some (dgént)
compilers, only the fornfor(;;) is recognized as an infte loop, and the other forms
generate redundant comparisons with the constant 1.

4.1.9 Pointer traversals of arrays

When stepping through an array of elements, it caadterfto use pointeaviables. The
calculation of the address of an array eleman{j] , from the array name and an
integer index can be quite sle. The inde must be multiplied by the size of an array
element and then added to the address of the. aftasy direct use of pointers renes
the need for this calculation, as the address is justaine stored in the pointeasiable
(i.e. *ptr ). For example, to mee through a one-dimensional array of sMéXsetting
all elements to zero:

for (i = 0; i < MAX; i++)

arrfi] = 0;

becomes:

for (ptr = arr; ptr < arr + MAX; ptr++)
*ptr = 0;

Note that the xpression&arr[MAX] is equvaent toarr+MAX and could also be used
in the secondor loop.

Although the addition oMAXto arr in thefor loop condition should be recognized
by the compiler as a constanipeession andweluated at compile-time, some compilers
may not do so.In this case, it may be morefiefent to use an inger \ariable to count
the number of iterations of the loop:

n = MAX;
for (ptr = arr; n I= 0; n--, ptr++)
*ptr = 0;

Pointers can also be used forveising multi-dimensional arraysThe method is the
same rgardless of the dimension of the arrayhe epressionarr+X_MAX (where
X_MAXis the number of elements in thest dimension) avays calculates the address of
the frst bytenot in the array For example, the tw-dimensional case is:

int arr[X_MAX][Y_MAX];

for (ptr = arr; ptr < arr + X_MAX; ptr++)
*ptr = 0;
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Note that because of Wwaarrays are stored, the order in which the elements are visited is
equialent to two nestedfor loops shavn belav. Note also that théor loop abae will
work for arrays of dimension greater tharot@ssuming<_MAXto be the size of therét
dimension).
for (i = 0; i < X_MAX; i++)
for (j = 0; j < Y_MAX; j++)
arrfi][j] = 0;

4.2 Control flow transformations

C and C++ hae a mumber of control statements, including loofs, statements and
switch  statements. Althouglgreater speed impvement can be achied through
improving loops, there is also room for impement in the use off and switch
statements.

4.2.1 Common case first

When testing for a number of fiifent conditions, it is best to test the most common case
first. If it is true, the other tests are nokeuted. Wherusing multipleif -else -if
statements, place the common casst.f For example, consider the binary search
function:

if (key > ali])
else if (key < ali])

else .
I* equality */

Equality is the least I&dy of all three conditions, and hence it goes |&teaterthan and
less-than are more common, soythe first.

The idea of common casest also appears in boolearpeessions using&or || .
The short-circuiting of these operators mslthem ery eficient when the common case
is first. For || , the most likely condition should be placedst (i.e. most lilely to be
true). For && the most unlikly condition should be placedsdt (i.e. most lilely to be
false).

4.2.2 Simple case first

This method is similar to common casestfand iwolves testing thaimplest condition
first. Morecomplicated (and more time-consuming) computations cawvdided if the
first test succeeds (orifs, depending on the comtg The opportunity to use this
method appears in twmain situations: thé& -if construct (nested statements), and
with the logical operator& and|| ). Thesimplest test should be thiest of a pair of
nestedf statements and should also be fingt bperand of &&or || operator In the
examples belw, the sub-gpressionx!=0 is evaluated frst because it is the simplest and
hence the leaskpensve © evaluate.
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if (x 1= 0)
if (expensive_fn(x) != 0)

if (x != 0 && expensive_fn(x) = 0)

4.2.3 switch versus else-if sequences

When performing a multiay branch based on the comparison shgle expression with
a rumber ofconstant values, there are tw possibilities: theswitch statement or a
sequence df -else -if statements. &f example, theswitch statement:

switch(c) {
case’a’:
break;
case’'b’:
break;
case 'd’:
break;
default: .
break;
}
can also be written as:
if (c =="a’)
else if (c =="b’)
else if (c =="d’)
else /* default statements */

Generally speaking, thewvitch statement will be more fe€ient. Althoughthe method
used by a compiler to implementsavitch statement will ary between implementa-
tions, it is reasonable to assume that the compiler will generate diigiergfcode.
There are a f&@ main methods by which the compiler implemensséich statement:

1. Jump table for non-sparsalwves.
2. Value-address pair table for sparstues.
3.if -else -if sequences.

If the case alues are not sparse, it can bertlwhile to construct a jump table of
addresses. df example, the code ake is perfectly compact, and thewitch  statement
will probably be implemented in a manner similar to the "pseudo-C" code:belo

jump_table[] = {

ADDRESS]1, /* address of code for 'a’ */
ADDRESS?2, [* address of code for 'b’ */
DEFAULT_ADDR /* address of default code */
ADDRESS3 /* address of code for 'd’ */

3

i=c-' aj; [* compute index into table */

if(i<0]|li>2) [* check for default case */

goto DEFAULT_ADDR,;

goto jump_tableli];
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This is quite dfcient, and will actually be morefafient if the number ofase labels is
larger Note that the jump table has onasted entry for th&e’ case, which must jump
to the code for thdefault label. Theump table becomes space iineent if the case
values are sparse (say 1, 10, 100 and 1000), because the jump table béleainveishf
entries that jump to the drflt code.Hence, for sparsealues it is more spacefieient,
but dightly less time dfcient, to use a table otlue-address pairs, and search this table
(using linear or binary search), assiman the pseudo-C code belo
pair_table[] = {
1, ADDRESS1, /*code for1*/
10, ADDRESS2, /*code for 10 */

100, ADDRESS3, /* code for 100 */
1000, ADDRESS4 /* code for 1000 */

h
[* linear search of pair_table */
i=0;
while (i< 4){
if (c == pair_table[i].value) /* found it? */
_ goto pair_table[i].address;
i++;

}
goto DEFAULT_ADDR; /* not found; goto default label */

If the set of casealues has a mixture of compact ranges and spalsesy the compiler
may implement a mix of the twmethods abee. For example, if the alues are 1, 10,
100, 1000;,a’ .’z7 and’0’ .9 ,the compiler might test thewitch value to deter
mine if itisintherang&’ .’z’ or’0’ .’9" using a jump table in each case, and then
test for the other sparsalues.

Yet another method of implementing tsevitch  statement wuld be to actually use
the machine language egalent of a sequence df -else -if statements if there are
only a fav cases. Irthe examples abee, because thewitch was based on only 3 or 4
values, it might in &ct be &ster to compare each in turblevertheless, this doesot
imply thatif -else -if statements be used when the number of cases is small (unless
your compiler is hopeless), because a good compiler will determine which method of
implementation will be better for a particular set afues. Cowerting toif -else -if
statements will preent a good compiler from optimizing tlsvitch  statement.

There is one situation where it iothwhile to usdf -else -if statements instead
of aswitch statement to implement tlemmon case first optimization. Thisoccurs
when the programmer has kvledge that the compiler does not, such as Kpeaed
distribution of frequencies of each cadeor example, if in aswitch statement there is
one normal @lue and all others arexeeptional conditions, it will usually be more
efficient to test for the normal condition usingifinstatement, and then test for the other
conditions using awitch , as below:

if (value == NORMAL) ...

else

switch(value) {

case EXCEPTIONL1:

case EXCEPTION2:
.. [*etc*
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If the normal condition occurs 99% of the time, thenitheest will succeed 99% of the
time and theswitch  will not be executed. Asingle conditional test of a@f statement
is likely to be a single machine language instruction, wherel®RMAlwas another
case walue in theswitch , any of the implementation methodsowid involve a umber
of instructions.By using anf statement followed by aswitch  statement, the cost of a
common case has been reduced,the cost of the less common cases is increasgd v
slightly.

4.3 Expressions

With C’s large \ariety of operators and data types, it iso'rprising that there are man
ways to increase the speed with which apression is waluated. Carefullycoding an
expression can increase its speed quite noticeahly this can be ery important in
programs that perform much computation.

4.3.1 Algebraic identities

The calculations in some complicatexpressions can be reduced by transforming the
expression into another egalent form. The aim when using algebraic identities is to
group the operations d@#rently, to reduce the total number of arithmetic operations.
Care must be t@n to ensure that the wieexpression has eqealent meaning. For
example, the short-circuiting of the logical operators can cauteatites. Somaseful
arithmetic identities are:

There are also some identities that can be used to wpne eficieng/ of boolean
expressions. Thdistributive laws d &&and|| can occasionally be used teoad evalu-
ating a condition twice, prided the condition does not contairyade efects:

(a&&b)||(a&&c)==a&& (b]|c)
(@llb) && (allc)==al]| (b &&c)

There are also twidentities iwolving the! operator called De Mogan’s laws when
used in mathematicalxes. Insource code notation, there:

la && b == !(a || b)
la || b == !(a && b)

These identities can be used in almost all situations gsptiesene the pressiors
semantics, gardless of whether the subj@ressions contain sidefe€ts. Usinghe iden-
tities from left to right will reduce the number lof operations by oneWhen the subse
pressions imolve relational operators, using these identities from right to left can irapro
efficieng. For example:

P(x==yl|ly<z)
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is more €fi cient when transformed to:
I(x==y) && I(y < 2)

because it can then be reduced to:
x1=y) && (y >=2)

and thel operation in the originab@ression has been rewusd.

4.3.2 Eliminating common sub-expressions

In a complicated xpression, there are often repeated syiressions. Thesare inef-
ficient as the require the computer to calculate the samlees twice or more.To save
time, calculate the subspressionifst and store it in a temporargnable. Theneplace
the sub-gpression with the temporanasiable. Br example:

x=(i*i )+ (i*i)

becomes:
temp=i*i
X =t emp +temp;
Note that:
X = (temp=i*i) +temp; /* WRONG */

may fail because of its reliance on the orderv@ation of the+ operator

Common sub-epressions do not occur only in single statemetit®ften happens
that a program computes the same thing in subsequent statefranézample, in the
code sequence:

if x>y &&x>10)
if (x >y && y > 10)

the boolean conditior>y need be calculated only once:

temp = (X >);
if (temp && X > 10)

if (temp && y > 10)

A common &ample ivolves thestrcmp library function. Consider the follaing code
sequence:

if (strcmp(sl, s2) == 0)
printf("equal™);

else if (strcmp(sl, s2) < 0)
printf("less than");

else
printf("greater than");
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The call tostrcmp is a common subx@ression that should be rewsd. Becauset
involves a function call it is unlidy that the optimizer will impnee this automatically
The more dicient code uses axteaint variable:
ret = strcmp(sl, s2);
if (ret == 0)
printf("equal");
else if (ret < 0)
printf("less than");

else
printf("greater than");

4.3.3 Good operator use

C’s perators are usually implemented in the mofitient way possible. Hence, it
makes good sense to use them where possibie increment and decrement operators
are often especially #tient, as the correspond xactly to lov-level assembly language
increment and decrement operationbhe etended assignment operators amryv
efficient — neer usex=x+2 because+=2 is more diicient (it ealuates the address of
X only once).

4.3.3.1 Replacing multiplication and division with bit shifts

The shift operators are often mordi@ént than multiplication and dsion. Oneopti-
mization is to replace multiplication oniiion by a paer of 2 with a bit shift.Unfortu-
nately this optimization is only possible for ifer multiplication and dision, because
shift operators do notavk with float  or double operands. Lefshift corresponds to
integer multiplication and right shift corresponds to geedvision (for positve rumbers
only, as dscussed belw). For example:

a*= 2,
can be replaced by:
a <<=1,

It is important to be careful when making this mmaifion. Theoperator precedence of
<< is different to that of , so that changing:

x=a+b*2;

to use the<< operatoras in:
X =a+b<<1;

is incorrect. It is accidentally equalent to:
Xx = (a+b)<<1;

The solution is to braek the &pression, and takno chances. Notalso that multiplica-
tion by 2 is equialent to shift by 1. The change abe requires a dferent intger
operand as well as the change of operator
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Division cannot be replaced by when dealing with rgative integers. Although>>
is fine for positve integers, it is not equalent to dizision for ngdive integers. Therare
two possible implementations e on neaives in ANSI C, and neither is equalent to
division: (a) Sign etension which means that thelwe of the sign bit is propated right
but remains the same; surprisingly thisngt equivalent to dvision for maly negdive
vaues (e.g. comparel7/4 and-17>>2 ). (b) Padding the leftmost bits with zero
yielding a positre integer (olviously not equialent to dvision for ngdive integers).

4.3.3.2 Replacing % with &

Bitwise-and may be morefedient than théooperatoy becauséowill implicitly perform
a dvision. Whenfinding the remainder from\dsion by a paer of 2, a bit mask can be
equialent. For example:

y = X % 16;
is equvaent to:

y = X & OxF;
The operand to apply to the bitwise-and operator is one less than the operanébto the
operator —OxF is hexadecimal for 15 (use of kadecimal constants is good style as it

emphasizes that bitwise arithmetic is being used).
Another ekample is the test whether a numbenieneor odd. Aportable test is:

#define ODD(x) ((X) % 21=0) /* Portable */

This macro will vork for positive and n@aive values, whereas a similar macro:
#define ODD(x) ()% 2==1) /* Non-portable */

is not portable and maif for negaive values ofx because it is undeled (even in
ANSI C) whether the sign of the result%on negaive gerands is posite a negdive.
Hence, thexpression5 % 2 may return either 1 or —1.

A more eficient ersion ofODDusing bitwise-and can be writterytimore care must
be talen with portability The olvious macro:

#define ODD(x) (x) &1)==1) /* Non-portable */
will fail for negaive values on machines that use the @mplement representation.

However, the eficient macro can be used if the program is only using pesitlues.
Alternatively, this eficient macro can be used in a more portable manner assollo

#if (-1 & 1) == /* will the fast macro work? */

#  define ODD(x) (x) &1)==1) [* Fast macro */
telse

#  define ODD(x) ((xX) % 21=0) /* Robust macro */
#endif

Conditional compilation will cause thefigient macro to be used on machines for which
it will not fail; otherwise the more portablersion is usedUnfortunately this can &il

for cross-compilers where the preprocessor may be using arithmetic thet ftidm the
arithmetic used by the run-time machine.
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4.3.3.3 Avoiding %

One common use of the remainder operator is the use of modulo arithmetic, such as the
wraparound array implementation of a queue abstract data type, wheatudhefva ari-

able is gclically counted from O up tdN-1, and then back to 0.The most common
method of coding this is:

X =(x+1) % N
However, the %operator is gpensve, and in this case it is not really needethe follow-
ing code sequence performs the same task mibceeefly:
if (x==N-1)
X = 0;
else
X++;

which can also be written more conciséiyt not necessarily morefefiently, as:
(x==N-1)?(x=0): (x++)
Another ekample of a cheer avoidance of%is when the operand is similar to the usual
byte or vord size. For example:
X % 256

can be more étiently coded as:
X & 255

but can be gen more eficiently coded as:

(unsigned char) x
because the cwoarsion to this type will be &tiently implemented by grabbing a byte out
of a word. Unfortunately this method is not portable to all systems, as it relies on
unsignedchar  containing 8 bits.
4.3.3.4 Replacing division with multiplication

Multiplication is often slightly &ster than dision, and in some cases aidion can be
replaced by a multiplication using the reciprocd. case in point is floating point
division by a constantFor example, the diision:

x =y /1 00.0;

can be replaced by the multiplication:
X =y *0 .01
If the divisor is a symbolic constant, it is possible to replace the symbolic constant with a

hard-coded constant (or another symbolic constaitwever, it is more cowenient to
replace the constant with axpdicit reciprocal calculationFor example:

x =y / D IVISOR;
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can be reritten as:
x =y * ( 1.0/DIVISOR);

and the compiler will (usually) calculate the reciprocal of the constant at compile-time.
However, be warned that some compilers will defer the computation to run-time and the
transformation will increasexecution time. Also note that the braeks around the
division expression are necessary; otherwise, an ANSI conforming compiler is forced to
calculate thexpression left to right in compliance with assowidyirules.

There appears little to be done to replateger division with multiplication. Multi-
plying by the reciprocal will change an igex operation to a floating point operation and
will probably increasexecution time.

4.3.3.5 Increment versus assignment

On some computers the- operator isdster than assignmerithis fact can be useful for
setting boolean flags to "trueRather than assign thalue 1 to the boolearaxiable, use
the fact that it is actually amt or char variable and increment it instead (assuming an
earlier initialization to zero).This eficieng/ improvement was often used in softwe
tools with boolean flags to indicate what command line options weréAlidtags were
initially zeroed (by declaring them as globakiables), and when a command-line option
was cetected, the appropriate flagasvincremented (i.e. set to tru@)his method had the
slight danger that if a user spéed the same option 256 times, the flagwd be incre-
mented back to zeroubthe problem is rather unéky!

On machines that kia a vey fast increment machine language instruction it can be
worthwhile to change addition of small constants to use the increment opdrator
example:

X += 2;
could be revritten as:
X++; X++;

However, this will reduce dfcieng/ on machines with no special increment instruction.

4.3.3.6 The conditional operator versus if statements

There is no reason to suppose that the conditional operator will be better than the corre-
spondingif statement. Bothwvill be implemented as €iently as possible, and might
well produce identical code-However, some compilers will handle them tifently and
it may be useful to determine which will besfer for your particular compileihere is
no general rule on which to choose.
On some compilers it may be mordi @ént to leae the conditional operat@’return
vaue unused.For example, instead of:

max=x>y?x:y,;
a dightly more eficient version may be:

X >y ? ( max=x):(max=y);
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4.3.4 Boolean flags

Because C has no boolean type, thkie from a conditional test (O or 1) can be used in
an «pression. Boolearronditions can be stored in igtr \ariables. Br example,
depending on your compilghe code belw:
if (X >y)
flag = TRUE;

else
flag = FALSE;

may be less @tient than the single assignment statement:
flag = (x >y);

However, in theif statement, the operator need not actuallyatuate to O or 1 (the
compiler will just compare andy and branch appropriately)n the second formx>y
must actually bevaluated as 0 or 1 and this restriction may well mean that the code is
not more dfcient.

Overuse of this idea may well lead to code thatiywneficient. For example:

if (x < 0)
=5
else
y = 0;
could be raritten as a single assignment statement:
y=5*(x<0)
but this is likely to be much lessfefient than theifst form because it uses thepensve
multiplication operator

4.3.5 Parallel arrays versus arrays of struct

The replacement of arrays struct  with a number of "parallel" arrays (i.e. one array
perstruct field name) can reduce the cost of accessing a dhta.vHavever, such a
change to the program will often be bad style, and wilgrerelated dataalues being
manipulated via a singlgtruct  variable. For example, the tw dternatves ae shavn

for the storage of a persamame and age:

struct node { * Array of struct */
int age;
char * name;
} s [10];
int age_array[10]; [* Two parallel arrays */

char * name_array[10];
Using the array oftruct , thename field must be accessed using:
s[i].name

which involves an internal inggal computation similar to:

s + i * s izeof(struct node) + offsetof(name)
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Using parallel arraysvaids haring to add theiéld’'s dfset. Theequiaent code wuld
be:

name_arrayl[i];

which would be calculated internally as:

name_array + i * sizeof(char*)

The main disadantage of parallel arrays is stylistic, in that separating related alatesv
malkes the code unreadablén efficieng disadwantage of parallel arrays is that aggre-
gae struct  assignments cannot be used toapwall of the dataidlds. Hence|f
structure assignment is one of the most common operations on an array of structures,
converting to parallel arrays may lead to ifiefeng.

4.3.6 Register variables

Declaring \ariables agegister is a method of impning the speed of programs
without sacrifcing clarity. By placing the verdregister  before \ariable declarations,
the compiler is advised to store tharigbles in hardare rgisters, if possible.The
compiler is free to ignore this advice if there are walable registers. Theadea is that
the programmer can indicate to the compiler whiehiables are most usedn the
absence of anregister  variables, the compiler mak its avn decisions which may or
may not be good decisions — it depends on the heuristics used.

This method may cause some speedup,ifbthe compiler is cheer it would hare
already chosen the most often usadables to store in gésters, and there will be no dif-
ference. Ndharm is done, and it can bekthwhile. Agood habit to get into is declaring
loop variables and pointers asgister immediately (rather than going back later to
change them)For example:

register int i, j;
Despite the adantages, do not declare too mamriables asegister . Declare only
those that really are used most frequentlyreggister . If too maly variables are

declared asegister , the compiler cannot kmowhich are the most frequently used.

4.3.7 Reusing assigned values

Improving eficieng/ by reusing the alue of the assignment operator is a commain b
perhaps misguided techniqué. is not likely to yield agthing kut a very minor im-
provement, if ary, and in fact it might &en increase the costA reasonably intelligent
compiler should perform most of the optimizations automatically

The assignment operator returnsadue that can be usedt returns the alue of its
right operand (i.e. thealue that vas being assignedybwith the type of the left operand.
On some machines it isorth using the returnalue of the assignment operatdfor
example, when setting twariables to the sameable, both can be set in one statement.
The two gatements:

V ALUE;
V ALUE;

i
j
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can be abbreated to:
i =j=V ALUE;

Both variables are set tdALUE The assignment operator is right-assoe@gto that the
above gatement is equéent to 'I=(j=VALUE); ", so thatj is set toVALUE and then
i is set to the result of the assignment #.ALUB. Thisidea can be generalized toyan
number of ariables, if thg are all to be set to the samalwe and aypexpression can be
used on the right-hand side.

Be warned, hwever, that on some compilers, reusing thelue of the assignment
operator may causefficiency. In particular using a common initialization statement
such as:

X =y =0;

may well be less étient than using twassignment statement3.he use of the result of
the assignment operator neskthe rpression more complicated than usual and may
require the compiler to addtea instructions.In addition, if the machine has ast set-
to-zero instruction, the reuse of the result of the assignment operates ritaless
obvious to the compiler that the statement is settiig 0, and it might not use thadter
instruction.

Nevertheless, using the assignedlue inside anf statement or loop condition is
quite a common method of impiag eficieng dlightly. It is dficient as the alue
returned from the assignment is used directly in the condition, instead/iofa be
accessed ain. For exkample:

f = f open(filename, "r");

if (f '= NULL)
/* etc */
becomes:
if ((f = fopen(filename, "r")) I= NULL)
/* etc */

Another form of this method is tova@id recalculating &lues by passing a function result
directly to another function.For example, consider the code belovhich allocates
memory for a string and then concatenatesdwngs into the location.

s3 = malloc(MAX); /* Allocate memory */
strepy(s3, sl); [* Copy first string there */
strcat(s3, s2); /* Append second string to first */

Although not used in the code afep the strcpy and strcat  standard library
functions both return a pointer to theamg modified string. Hence, the three lines al
can be combined into a single statement:

s3 = strcat(strcpy(malloc(MAX), s1), s2);

The adantage is that the calculation of the address3afieed not be duplicated.
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4.3.8 Removing tests for zero

Tests of equality with zero are redundant because the compilaysatests a conditional
expression with zeroZero is assumed to bal$e, and annon-zero walue is true.This
means that comparisons with zero as in fpFessions:

if (x 1= 0)

if (x == 0)

if (ptr I= NULL)

if (ch 1="0")

are redundant and can be replacedifioy) , if(Ix) , if(ptr) and if(ch)
However, these comparisons do represent good style and the optimizer will oftemeremo
the comparisons for you automaticallfkny improvement in speed due to this method is
likely to be ngligible.

4.3.9 Packing boolean flags into integers

If several boolean flags must be checkat once it can beasth storing them all as bits of
anint . Itis then easy to check if grare true by comparing that to zero. If theint

is non-zero, the indidual bits can bexamined using bit masksAccessing indiidual
bits becomes more time-consuming, so this method is ooithwhile if individual bits
are rarely gamined (e.g. the bits indicate rare error conditions).

4.3.10 Most used struct field first

References to tharst field of a structure can often be moré@ént than references to
other felds because there is no need to add &ebf Hencethe most usedtruct
field should be placedr$t in the declarationFor example, when declaring struct

for a linked list, it is probably most #€ient to place thaext field first, as follavs:

struct list_node {
struct list_node *next; /* Most used field first */
data_type data; /* Other fields */

4.4 Avoiding type conversions

One firly common cost inxgressions is the cost of amnting between dferent data
types, either xplicitly requested by the programmer or performed automatically by the
compiler With some care, marof these cowersions can bevaided, thus impraing the
speed of computingkpressions.

4.4.1 Correct type of constants

The use of the correct type of arithmetic constants eaid dhe cost of some type
conversions. er example, it is important to alys use gplicit float constants in an
float computations. & example, ifx andy are of typeloat |, the code:

y = x * 3 .14;
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will actually causedouble multiplication (e/en though ANSI allavs single precision
arithmetic) because 3.14 has tygpeuble , thus promoting the other gument,x, to
double and irvoking double multiplication. T get the benéf of ANSI’s dngle
precisionfloat  arithmetic, the constant must beei the sufix f to indicate that it has
typefloat . Another try ig(float)3.14 , but some da€ient compilers may generate
a run-time comersion for the type cast.

For similar reasons, it is important to use the correctisudbr long constants and
longdouble constants. Hoever, these are less of a problem because the compiler
may well promote their types "u@nds" at compile-time.

4.4.2 int only, double only

Mixing different types can makimplicit type cowersion necessary (e.g. mixingt ,
short andchar ). Thesetype cowersions tak up valuable &ecution time and can be
eliminated by using onlint variables, possibly leading to a small speed inipment.

In older non-ANSI compilers, all floating point arithmetic is carried out in double
precision. Thiscan necessitate type a@nsions fromfloat to double , even if all
variables are declared of tyglmat ! Using onlydouble variables (and ndloat
variables) can maka dight improvement. Thebrute-force vay to achige tis is:

#define float double [* All floats become doubles */

The use offloat values should also beveided when using the standard library
functions. All functions in<math.h> have double amuments andlouble return
vaues, and usindloat  will cause maw corversions. Similarly printing a float
value using printf will require a comersion to double , becauseprintf is a
variable-agument list function and the non-prototyping wemsions are applied (i.e.
float todouble ,char andshort toint ).

4.4.3 Avoiding unsigned arithmetic

The basic typeint , usually corresponds with the machim&ord size, andnt compu-
tations are often particularhast. Thisis not necessarily true afnsigned arithmetic,
where ANSIS drict requirements for proper behar on overflow and underflov may
mean that the compiler has to generate speciakslsequences of machine instructions.
However, note that most machines uses Zomplement arithmetic, and in this case
unsigned arithmetic will be no slver because the ANSI requirements are identical to
what will happen in this caseThus, the use ofinsigned integers can sl the
program davn on some machinesytwill cause no dference for most.

4.4.4 Avoiding bit-fields

Bit-fields are designed to reduce space in a structure, often at the ceisaafie-time
overhead on ay accesses to theselds. For improved eficiengy, a the cost of space
wastage, change all bitelds to signedint or unsignedint . For example, to
improve te eficieng/ of accesses to theisited  field in thestruct  below, Smply
remove the:1 qualification (and theinsigned qualifier).
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struct node {
unsigned int visited :1; [* bit-field */

It may also be beniefal to corvert the type ofvisited  to a smaller data type such as
char , rather thannt .

4.5 Compile-time initialization

C’s gyntax for initializing \ariables is not only ery cowvenient, lut also ‘ery eficient
when applied to global or locatatic  variables. er this type of ariable, initialization
takes place at compile-time rather than at run-time, and has only minimal run-time cost
(the data must be initialized som&hao there will be the cost of loading the initialized
data from thexecutable, if nothing else)Hence, an difcieng/ improvement is to change
automatic initialized ariables tostatic . This change is applicable when ariable
need not be re-initialized each time the function is entered (e.g.atfeble is neer
changed by the function)The change is mostfettive when applied to agggete \ari-
ables (arrays, structures and unions), where the initialization costs are higher

In some cases it is possible to alter the design of an algorithm te wakof
compile-time initialization.For example, this vas achieed in the use of precomputation
in Section 3.5, and also in the tic-tac-t@erge in Chapter 9.

45.1 #define versus const

The folloving discussion is relant to C, lut not to C++.const and#define are
effectively identical for symbolic constants in C++, and useaist is far better style.

The deinition of symbolic constants usingdefine is likely to be more dfcient
than the use otonst variables. const variables are not really constants, and the
compiler cannot include them in <restricted constantxpressions (i.e. @tieng is not
the only reason tovaid const variables). Wheneer both #define andconst are
allowed, #define is often more dicient because the compiler can perform "constant
folding” (i.e. compile-time ealuation of a constantxpression), whereas most compilers
will generate code to access@nst variable (although a sophisticated optimizer could
apply constant folding toonst variables). Br example, in the xpression:

MAX + 1
if MAXis #define ’'d as 30, the compiler will replace thexpressior30+1 with 31, but

if MAXis aconst variable, the compiler will (usually) generate a sequence of instruc-
tions to loadViAXand add 1 to it.

4.5.2 Constant folding

The compiler will attempt towaluate aly constant gpressions that it can, and this
process is called "constant folding'Hence, a programmer can slightly impeo
efficiengy by making it "easier" for the compiler to recognize constaptressions. &
example, ifx is a \ariable and not a constant, theeession:

2*x*3 .14
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should be replaced by:
(2*3.14) * x

because then the compiler can comp2t8.14 at compile-time, whereas thérst
expression cannot be optimized because ANSI requires that the asggadtbperators
be honored.Some compilers might perform this type of optimization forgats, lut are
unlikely to do so for floating point numbers.

It is important to ensure that the constants are placed together so thaarhiee
obviously joined, without disigarding associatity. For example, in the code belo

X:C+(v A1_1av);

the brackts surrounding the twcharacter constants are important becausedtwwv the
compiler to compute the constampeession. Braakts were not strictly necessary in the
first x;ample because the associdi of * is left-to-right, causin@*3.14 to be @alu-
ated frst, kut using bracéts is a habit that promotediefeng.

4.6 Functions

Several optimizations can be applied to impeothe performance of functiongzunction
calls hae a easonable amount offerhead, and anreduction in this werhead is quite
worthwhile.

4.6.1 Prototypes

ANSI C’s introduction of prototypes impves €ficieng/ by allowing the compiler to use
more eficient calling sequenceddence, a program that uses prototypes may aatef
than one that doedrnise them.One of the main adntages of prototyping is thelar ,
short andfloat amguments need not be promotedf ban be passed directly to the
(prototyped) function.The cost of coversion is &oided. Furthereasons wi function
prototypes aid the compiler in generatinfyaént code arexplored in Chapter 10.

4.6.2 Passing pointers to structures

All variables ®gcept array ariables are passed bwlve in C. This means that when
calling a function, a cgpof every variable is made and stored in the \&tidn record for
the function. Hence, if wholestruct s ae passed, wholstruct s must be copiedlt
is eficient to pass the address of #tauct , and use a pointer to thigruct inside
the function. This way only one pointer is copied.

The trap is that the safety of call-bglue is lost and changes made to the loasl v
able also appear in the calling function (as passingvisbyaeference, and not byalue).
However, the compiler can be used to detect situations that may changalubesimply
by qualifying the parameter declaration wattnst . For example, the function:

void visit(struct node n)

printf("%d\n", n.data);

visii(str); I* Call the function */
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can be modiéd to become:

void visit(const struct node *n) /* const pointer */
printf("%d\n", n->data); /* change . to -> */
visii(;&str); I* Call the function using extra & */

The C++ language supports reference parameters which are introduced bygatdding
parameter declarationThe use of references does not requing @drange to calls to the

function, nor ag changes of " to "->" in the function body The function in C++
would be:

void visit(const node & n) /I n is reference parameter
printf("%d\n", n.data); /I no need to use "->"
visii(str); 1 Call the function

Class objects, structures or unions should be passed by reference fiutiencefis
important. C++eference parameters are discussed further in Section 5.2.

4.6.3 Converting functions to macros

If the program has mgnlevds of nested function calls it can often be speeded up by
reducing the feel of function calls. This is particularly true of frequently called small
functions, where theverhead of function call prologue and epilogue can claim a signif
cant proportion of the functiomtime usage Efficieng/ can be improed by replacing the
function call with in-line code.This way, the averhead of the function call is eliminated.

In C++ the cowmersion of function calls to inline code can be agbikautomatically by
adding theinline  keyword to the function défition (see Section 5.3)In C, the
obvious method is to ceert the function into a macro.

There are a fe@ dangers in coverting a function to a macroThe frst is that ag side
effects in aguments to a call to the function can cause probldirthis happens with a
macro call, the results can be plagued witlgd Thesecond danger is that, if the
function changes its parameters, these changegtmants passed to the function will
be passed back to the calling function if the function becomes a nweqaver of call
by reference is achied without pointers, bt the safety of call-byalue is lost.

Although the cowersion of a function to a macro is more of an art than a process to
be mechanized, there are some common steps tavfolirst, a fev simple tectual
changes are needed:

« Delete the types ofariables in the parameter list.
» Add a backslash at the end of each line.
» Add braclets around parameters in the replacemedt te
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The backslashes are needed to enalong function into a multi-line macroThe etra
braclets around parameters peat operator precedence problems.

The best functions to ceert to macros areeary simple onesFor lamger functions,
there are some major problems to deal with:

* Thereturn statement.
e Loops andf statements.
* Local \ariables.

Thereturn statement does notork inside a macrolf thereturn  statement is left in
the macro, theeturn  will leave the encompassing function, possiblg®emain !

Corverting void functions is usually quite straightfoand. Thebraces are left
around the statements in the functidrmcal variables are left unchanged (ftare still in
a bock). If the function useeeturn in the middle of the function, the control structure
of the macro must be changed teeghe same ééct (usingf -else ).

Non-void functions present further problems because a result has to be returned.
The entire macro must be arpeession, as only arxgression can return a resuld
block cannot return a resulEor smple functions the comrsion can be quite eashut
for large functions it can be di€ult or impossible.The whole structure of the function
may hae © be modified to avercome problems with localaviables and general control
structure.

Sequences of statements can be mademession by using the comma operator (i.e.
replace each semicolon with a commalny if -else statement can be made an
expression by using the conditional operatbhere is no olious solution to the renval
of a loop orswitch statement. Aunction containing a loop should stay as a function!

The problems caused by theturn statement are Iger in nonvoid functions.
The control structure must be madd so that the &fct of an earlyeturn is achieed
and this is more difcult because of the replacementibf-else statements by the
conditional operator Furthermore, if the function contains sequences the returaled v
must be computed as the last operand of the comma opétrktiace, it is much simpler
to corvert a nonvoid function if it contains no sequences of statemehRts.example,
themax function:

int max(int a, int b)

if (a>b)
return a;
else
return b;

}
becomes:

#define max(a, b) (@) >(b)? (@) : (b))
Local variables present a morefdiult problem. A block cannot be anxpression, so the
containing braces of the function must be deletedcal variable dehitions are no

longer syntactically lgd. One partial solution is to replacesery occurrence of a local
variable with the gpression it ealuated.
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4.6.4 Parameters as local variables

Paameters to functions can be used as iy there local ariables. Becausef call-by-
value parameter passing, this does not changealwew of ap variables not local to the
function. Thismethod sees o initialization time, and on stack spack the example
belov, to zero an arraythe size is counted dm, rather than hang a local wariable
counting up.

void zero(int arrf], register int n)

while (n > 0)
arr[--n] = 0;

Array parametergan be used in this ay despite pass-by-reference if here treated
like pointers, since array parameters areveded into pointer parameters which are
passed byalue. Theabove function can safely incremeatr .

4.7 Command line arguments

The most dfcient method of xamining all command line gaments is to combine
pointer traersal with use of the sentinebleargv[argc]==NULL , as shown in the
following program to print out options.

main(int argc, char *argvf[])

for(; *argv !=NULL; argv++)
printf("Option is %s\n", *argv);

Note that incrementing the "array" paramedegv is legd in ANSI C, because array
parameters are immediately oerted to pointers.If it is necessary toxamine agu-
ments twice, such as to process options and fleraimes, it becomes necessary tesa
the original alue ofargv in a temporary ariable.

4.8 IBM PC memory models

A number of compilers for IBM PCs allothe program to be compiled usingfdient
memory models. These memory models are required by tlgremnted architecture of the
8086 fmily of processors.The choice of memory modelfafts hov the compiler
translates some statements into machine language instructions, and Heete af
efficieng. In particular pointer operations and function calls aré&eted by the choice.
Memory models can usually be set via a compiler option.

Although the models that are supportedywbetween compilers, and iact, some
models are gien different names, the most common models are:

Small Medium Compact Lge Huge

As a general rule, themall model is the most &tient, hut also the least figble,
whereas théuge model is the most flable, kut the least difcient.
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Memory models d&ct hav the compiler aganizes memory into ggnents. The
models hae dfferent oganizations for code and dat&or example, thesmall model
packs all code into a singleggeent and all data into anothegseent, whereas thHauge
model gves both code and data multipleggaents. Thememory oganization for each
memory model is shven in Table 4.1.

Table4.1. Memory organization of each memory model

Model Codesggments Datasegments  Data pointers  Code pointers

Small One One 16bits 16bits
Medium Mary One 16bits 32bits
Compact One Many 32 bits 16bits
Large Mary Mary 32 bits 32bits
Huge Maty Mary 32 bits 32bits

All dif ferent forms of data are treated in an identical mannke stack, heap and static
data all either ha& me sgment (i.e. thg are pacled together) or use marsegments
(allowing them to use separategagents). Thisoccurs because C permits addresses of
ary of these data spaces to be compared, andutdibe dificult to implement pointer
operations if diferent types of data had fiifent size addresses.

As shavn in Table 4.1, there is no fifrence between tHarge andhuge models
in terms of the ayanization of code and data intogseents, using multiple genents for
both. Thedifference between tHarge andhuge models is related to hopointers to
data are treated, and becomes apparent only when a single object becgerethdar
64K. A pointer in thelarge model is incremented by operating on itevéo 16 bits
only, and the upper 16 bits (the ggaent) are ignoredHence, the pointer will alays
operate within a single 64K gment, and anpointer arithmetic "wraps around" (e.g.
when its alue isOX0000FFFF , incrementing it by one byte will g it a new vdue of
0x00000000 , thus staying within ggment0000). Thisis not useful when trying to
iterate through the memory for an objecghkarthan a single geent (e.g. if trying to
examine all of the @ended RAM memory) Thehuge model forces the compiler to use
extra instructions to perform pointer arithmetic in a more general fétence, théwuge
model is more fleible, but less dfcient.

Table 4.1 also shes the size of pointers to data and the size of function addresses.
The general rule is that if the code/data is in orgmemt, the appropriate gment
register can be "set and ftten"”, and pointers use their 16 bétlue plus the ggnent
register to get their full addresdf the code/data is in multiple gments, the pointers
must be 32 bits to contain a 16 bigsent address and a 16 bifset. Ary access
through a data pointer or a function call to an address setsgimesergister using the
first 16 bits, and then the other 16 bits are &ebfo the sgment rgister With multiple
segments, eery pointer access or function call must set thgarsent rgister thus requix
ing an &tra machine instruction and reducindj @&ngy.

Table 4.1 can be used to guide the choice of memory mdfdle program is small,
with its executable code occyjng less than 64K, only onegeent is needed for code
and either thesmall or compact model should be chosenf the amount of total
memory used by the stack, heap and static data is less than 64K, eitherathe or
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medium model is suitablelf both code and data each require more than 64K then either
thelarge or huge model is neededThe huge model should not be used unless the
size of a single object, such as ay@aarrayis geater than 64KEven in this case, there

is a useful alternate  using the indicient huge model, and this is discussed in
Section 4.8.1.

4.8.1 The near, far, and huge qualifiers

Most modern compilers for IBM PCs support thear , far andhuge non-ANSI type
qualifiers. Thesequalifiers can be used by the programmer t@ride the current
memory model for a particular operatiomhe qualifers can be applied either to pointer
variables or to functions.

huge void *p; /* huge pointer */
near int max(int x,int y) /* near function */
}

Applying one of these quaildrs to a pointer will déct the eficieng of a dereference or
a wmparison of a pointemear pointers are rarely usethr pointers can be used to
access data that is not part of the progsagata sgment (e.g. the screen memanter
rupt ports), andhuge pointers are used for accessing an objegelathan 64K.

Applying a qualifer to a function will diect the cost of a call to that function.
Usually onlynear functions are useful for reducing the cost of a function ¢ail;
functions can occasionally be useful for accessi@g/Runctions.

In some cases, the w® D a less dicient model can bevaided by using théar
andhuge type qualifers. For example, the addition of a single objectgar than 64K
(e.g. a ery lage array) to a program necessitateventent to thehuge model, lut this
can be woided by qualifying the declaration ofyapointers accessing the object with the
huge qualifier. The program will use lessfefient instructions for operationsvislving
huge -qualified pointer ariables onlywhereas a me t thehuge model would use the
inefficient instructions for all pointer operationsor example, to add allalues of RAM
for a checksum starting at zero (where memory fiscéfely a data object lger than
64K), thehuge qualifier should be applied to the pointer:

#define MAX (640L*1024L) I* 640 K */

unsigned long checksum(void)

huge unsigned char *p; /* Huge pointer needed */
unsigned long sum = 0OL;
for (p = 0; p < MAX; p++)
sum += *p;
return sum;

}

There is a trap in using quadifs when thg are not actually needed: it can lead to inef-
ficieng. For example, using th@uge qualifier when an object is less than 64K is need-
lessly ineficient. Theeffect of the warious qualilers on programs using thenious
models is shon in Table 4.2.
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Table 4.2. Effect of qualifierson pointer accesses and function calls

Memory model  near far huge

Small Noeffect Bothslower Bothslower
Medium Functiongaster  Pointerslower Pointerslower
Compact Pointerfaster Functionslover  Functionslower
Large Bothfaster Noeffect Pointerslower
Huge Bothfaster Bothfaster Noeffect

Another possible &ftieng improvement is to declare a function msar . This is partic-
ularly worthwhile for a recurse function because most of the calls to it will occur
"nearby" (from statements in itsva body). Declaring a function asear allows the
compiler to use f®ger instructions in the function call sequence, thus imipgotime-
efficieng/ and reducing code sizeA function declared asear should also be declared
asstatic  so that only the functions in that sanie tan access itThere is little point
declaring a function that is used in mpdiles asnear , because it cannot be declared as

static , and function calls in a diérent sourceile must use the usual lesgieient call
mechanism.

4.9 Exercises

1. Examinghe claim made about nested loops in Section 4.1.5 byeting the tvo
for loops intowhile loops, and byxamining hav mary times each operation
occurs. Comparie with the code that results if the loops areersed.

2. Haw can the idea of "code motion" be used to inwertne eficieng of the follow-
ing loop?

/* Compute either maximum or minimum */
result = a[0];
for(i=1;i<n;i++){
if(maximizing)
result = afi] > result ? a[i] : result;
else
result = afi] < result ? a[i] : result;

}

3. Haw can the conditional operation in the yimus eercise be more étiently
coded?

result = afi] > result ? ali] : result;

4. Considerthe well-knavn mathematical computation of the roots of a quadratic

equation. Hw can this be diciently implemented, assuming that the roots will
never be mmplex (i.e. b? - 4ac > 0)?

~b + VB = Zac

ry,ry = 2a
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Whatminor change may mginally improve the eficieng of the followving code
fragment?

enum { ERR1, ERR2, NO_ERROR} x;

while(x '= NO_ERROR)
process(&x);

Fix the following function so that the multiplication in thieturn  statement is
replaced by more f€ient code:

int my_atoi(char *s)
int value, sign;

if (*s =="-") {
sign = -1;
S++; 1* skip over the ’-’ */

else
sign = 1;

for (value = 0; isdigit(*s); s++)
value = 10 * value + *s - '0’;

return value * sign; /* MULTIPLICATIONI!? */
}

Considethe following code fragment that sets a flag only if the flag is not already
set. Underwhat conditions is this code morefiefent than the assignment
statement alone?

if (Iflag)
flag = TRUE;

Onemethod of imprging C++ programs is to declaranables as close to their
first use as practicabl®oes this apply to Cariable declarations?

Onsome machines multiplications are hugetpensve compared to shift opera-
tions. Hav can the follaving multiplication be coded using shift instead of multi-
plication?

X *17

Somemachines hae a vey fast post-increment assembly language addressing
mode where thealue at an address is fetched and the address ingibteras then
incremented. Theres usually also a corresponding pre-decrement matibat
implications does this ka for eficieng/?

Applythe loop optimization method of "pointereasals of arrays" to a loop that
processes the samielfl of each structure in an array of structures, asvistio

for(i=0;i<n;i++)
process(arr[i].field);
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12. Whatis the most difcient method of implementing a madso power2  which
determines whether a nongave integer is a pwer of 2?

13. Thezoom routine in a graphics program needsxpaad the la-end nibble (4
bits) of a byte into 8 bits, such that each 1 bit becomesdlttits in the result, and
similar for O bits. For example, the nibble 1010 must become the byte 11001100.

The following code is currently used to acheehis:

#define nibble_extend(x)

\
(((x&B)<<4)|((x&8)<<3)| \
(x & 4)<<3) | (( x&4)<<2)]| \
((x&2)<<2)|(( x&2)<<1)| \

((x&1)<<1)[|(( x&1))

How can the diciencg of this routine be impnged?
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C++ Techniques

Because C++ is a superset of the C language, most of the methods alresdg oo
previous chapters also apply to C+However, C++'s extensions mad it possible to use
several nav techniques for diftiengy improvement. Thischapter discusses techniques
that apply to C++ ot not to C.

51 C++versus C

It is a misconception to belie that a C++ program will run more sty than its corre-
sponding C programC++ was designed to retain the run-timé@éng/ of C and almost
all of C++'s extra enhancements come at mxéra run-time costlIn particular most of the
C++ class structure does notwlalown the program at run-time,ub only costs the
compiler more at compile-timeThe compiler performs thexea type-checking, inheri-
tance and encapsulation checks as it compiles the program and no run-time code is
produced.

The one singlexeeption to this izvirtual  functions (discussed in Section 5.5)t b
even a C-+ program usingirtual functions is not necessarily sler than the corre-
sponding C programvirtual functions are &ry paverful, and may beafter than the
C code necessary for the saméeef.

5.2 Passing parameter s by reference

The C++ language pvales a ery corvenient method of achieng pass-by-reference, by
simply using& in the parameter declaratiofhis eficieng technique is similar to the
use of pointers to structures in C (see Section 4.62)inbC++ no& is needed on an
argument to the function, as is required when using pointers tovagtees-by-reference
in C.

One method of impnang eficieng is to pass objects to functions as reference
parameters. Thiavads not only the cost of cgmg the object onto the stackutbalso

71
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the cost of the (cgp constructor and destructor for the object within the function (i.e. the
parameter is a separate object when passedlbg)v

A function can be changed to use pass-by-reference parameters only if it does not
change the objectFortunately modifications to parameters can be detected simply by
qualifying the parameter declaration witionst , thus forcing the compiler to awn
about ag modifications to the object within the functiolAn example of the use of
reference parameters in theidfon of aComplex object is shan belav:

class Complex {
doubler, i;
public:
Complex & operator += (const Complex & c);

Il ¢ is passed by reference for efficiency
/l The return type is also a reference

3

Complex & Complex::operator += (const Complex & c)
r+=cu, 1l add to both data fields
i +=c.
return *this; I return reference to updated object

Passing the ayjument by reference impres dficiengy, as does making the returraiue a
reference, because theturn statement does notvioke the copy constructor Note
that a returned reference is necessary only if the user Gfaimplex class uses compli-
cated &pressions such as=y+=z . If such epressions are not requiredfiefeng can
be impraed by making the returnaluevoid .

Pointers could also be used instead of references, with a siaiiaingeficiengy, but
there is a notational disaalwtage in that anarguments wuld need to be prieled with
ang&, and ary references within the function body using the "." operatmuld/hare © be
changed to->". The speed impreement of both methods auld be similar because
pointers are used behind the scenes to implement references.

The use of references is best limited to class objects and to structures and unions.
Arrays are already passed by reference in C and C++ and hence there is no need to
change themThe use of references for scalar types ¢ate and pointers) is unéky to
give much impravement, if aly. Howeva, if pointers (used by the compiler to implement
references) were smaller than, sdguble values there might be some impement.
Another disadantage of using reference parameters for scalar types is tfieiémay
caused if a constantlue is passed as argament (i.e. not aariable). Rradoxically
passing a constantgarment to a reference parameter is not an error in Git-ingtead a
new object with this type is created automatically by the compiler and its address passed.

Note that the object to which a member function is applied is already passed by refer
ence (using the implicithis parameter). Hencethe replacement of the member
function call:

int MyClass::fn() /I member function

return x;
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with a non-member (friend) function call using axplecit reference parametees
follows, will not be more difcient (and is probably lessfiefient):

int fn(MyClass & object) /[ friend function
{

return object.x;

5.3 inline functions

The C++ language alles a programmer to inform the compiler that certain functions are
small enough for it to be morefigient to generate inline code than to generate a function
call sequence.The programmer simply declares the function by usingintiee
specifer. For example:

inline int max(int a,int b)

return (@>b)?a:b;

Theinline  specifer is a "hint" to the compilemuch like the register qualifier,
and the compiler can ignore the request for inlining a functionprinciple, a good
optimizing compiler could ignorénline  and choose for itself which functions to
inline. Hawever, few (if any) modern C++ compilers are as sophisticated as this.

All C++ functions can be spe@fl asinline , including member and non-member
functions. Hovever, the inline  specifer should not be used without restrailts a
general rulejnline  should be used only for "small" functions, where the number of
executable statements is quite smadh.this case, thewerhead of a function call will be a
significant proportion of the total cost of the function call, and inlining will probably
increase dicieng.. Note that the notion of "small" function refers to the number of
statementsy@cuted at run-time, not the actual number of statements in the source code,
although the tw measures will usually be similar

Do not use thénline  specifer for "large"” functions. Although the &ecution time
may imprave marmginally, the size of the xecutable code will increase greatly because
evay call to theinline  function will be replaced by all the statements in the fundion’
body Hence, the use of lger inline  functions is a trade-bfbetween speed of
execution and code size.

The use ofnline  on very small functions can sometimedecrease the size of the
executable. Br example, if the function simply returns alue, as in:

inline int MyClass::get_a() { return a; }

ary occurrence of the function call may well be replaced by a direct reference tarithe v
able being returnedror example, a call to the ake function, as in:

b = my_object.get_a();

might be equialent to the direct reference (in the compadnternal representation):

b = my_object.a;
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This simple reference will requirevier machine language instructions than a function
call, thus becomingater and smallefNote that there is no problem with encapsulation
violation because this change is being performed internally by the compiler and the scope
has already been cheszk

A very important point to note abouine  functions is that thenline  specifer,
by itself, is not enough to guarantee that inline code will be generakedother require-
ment is that the compiler must kmdhe function body code, where the function is called.
An inline  function prototype declaration is not enoughhe eecutable statements
inside the functiors definition (i.e the function body) must b&ailable. Otherwisehow
is the compiler to knw what inline code to>gand a function call intoThis require-
ment imposes tavrestrictions on the use ofline  functions:

1. Member functions declared adine  should include the function body inside the
same header file as the class declaratioifhis can be achied by placing the function
body of a member function inside the class declaratiton.a more readable style when
there are maninline  member functions, the class declaration can declaralthe
function prototypes, and then pide theinline  function deinitions immediately after
it, in the same headeitd. Thisrestriction ensures that whemethe class declaration is
included as a headalef, the member function body igaiable for inlining.

2. Non-membemline  functions must be digfed before thg are used within a source
file, preferably by placing thaline  functions in a headeilé. Placinginline
functions at the top of a sourdéefallows the inlining of ap function calls later in the
same sourceilé, but calls to the functions from a téfent sourceile cannot be inlined
by the compiler unless theline  function defnition is placed in a headdtd.

Some functions declared adine  will not be &panded into inline code by the
compiler smply because theare too complicated for the compiler to handle. this
case, thenline  specifer is ignored and the function is treatecelégny ather function.

The sophistication of the inline code generation depends on the implementor

Even if a compiler can inline a function, the compiler is sometimes still forced to

generate a "real" functionThere are tw reasons for this:

1. The name of aimline  function is used as a pointer-function constant.
2. A call to thanline  function from within another sourcief.

When aninline  function is called from a sourcéef, where the function body has not
been madewailable, the compiler generates a real function call (simply because it cannot
inline the function). Hence the real function muskist and be linkd like any aher
function. Fortunately the placement oinline  functions in headerilés as discussed
above will avoid this for ary function the compiler decides to inline.
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5.4 friend functions

If a class declaration has a good deal ofgbei data, it is common C++ style to declare an
interface of public member functions to accessabei data. Although the class inteate
can be quite @&itient if member functions are declaredialine , the need to call a
function to access a datalue can still mak it ineficient in some casesThe use of
friend functions andriend classes can befafient because this bypasses the class
interface. Br example, a member function to set a data member may perform some
range checking on thealue, lut if we can be sure that a particular function will not use
incorrect data, &iend  function can be used to bypass this checking.

friend  functions (or classes) should not be considered unless the function needs
very fast access to data members, and the member functions to access the data perform
other computations.Note that a member function, with its specialviebes, also
bypasses the class inite (because it is part of it), afigetnd  functions should not be
used where member functionowd be more appropriateProgramming style is the
consideration here, as therould both hae smilar efficieng.

A good example offriend  function eficieng/ occurs when an operator function
operates on tw different classes, such as when an operator multiplMatex object
by aVector object to yield a ng Vector . Assume that both classesvharember
functions to access inddual elements of th&¢ector or Matrix . Consider the declar
ation of themultiply ~ function as neither a class member ndriend function, as
in:

constint N = 10; /I Number of elements in vector/matrix

class Vector {
double data[N];
public:
double get_element(int i) const { return datali]; }
void set_element(int i, double value) { data[i] = value; }

J

class Matrix {
double data[N][N];
public:
double get_element(int i, int j) const { return datal[i][i]; }

Vector operator * (const Matrix & m, const Vector & v)

Vector temp;
/I multiply matrix by vector
for (inti=0;i<N; i++) {// for each row
double sum = 0.0; /I sum of N multiplications
for (intj=0;j<N; j++) {
sum += m.get_element(i, j) * v.get_element(j);

temp.set_element(i, sum); // store new vector element

return temp; /I return new vector

This will be ineficient because theperator*() function must go through both class
interfaces to access element&lthough it isnt necessarily an less dicient here, if
range checking of the array indie were present in the member functions to set or access
the elements, this euld cause indifcieng. Note that if theVector class eerloaded
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the[] operator instead of usingge@t_element member function, this auld male o
difference to dfcienoy — notational comenience is gined lut the operator(]
function has the same cost ay ather function.

One alternatie o consider is to mak the operator*  function a member of the
Vector class, ot this will still mean using the intexte for theMatrix class. Amore
efficient solution is to makthe operator*  function afriend  of bothMatrix and
Vector classes, thus aling it direct access to their indilual data elements,
bypassing ay range checking on array indicehe more dfcient \ersion, using a
friend function, is:

constint N = 10; /I Number of elements in vector/matrix
class Matrix;

class Vector {
double data[N];
public:
friend Vector operator * ( const Matrix & m, const Vector & v);

h
class Matrix {
double data[N][N];
public:
friend Vector operator * ( const Matrix & m, const Vector & v);

Vector operator * ( const Matrix & m, const Vector & v)

Vector temp;
/I multiply matrix by vector
for (inti=0;i<N; i++) {// for each row

double sum = 0.0; /I sum of N multiplications
for (intj=0;j<N; j++) {
sum += m.datal[i][j] * v.data[j]; /I access data directly
}
temp.data[i] = sum; /I store new vector element
return temp; /I return new vector

The disadantage of usindriend functions is that themake wse of hidden inform-
ation, and ay change to the class requires a change to theitifeh of the friend
function, whereas in their§t version of theoperator*  function the use of the
get _element member functions of botlector andMatrix meant that it wuld
need no changes, pided theget element functions were changed correctly

5.5 virtual functions — good or bad?

Are virtual functions ineficient? Thissection will attempt to answer this question.
The main reason to suspedgttual functions of inéficieng is that theg use "late
binding" of a function call to a machine addre$ée binding taks place at run-time and
thus afects the speed ofkecution. Havever, as we will see, virtual functions hae
mary advantages to countdralance this cost.
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5.5.1 How compiler s implement vir tual functions

Although diferent implementations might choose feliént methods of handling
virtual functions, thus making some of the obsgions in this section incorrect, the
method &amined in this section is pra@ent. Infact, | knav of no compilers that imple-
mentvirtual ~ functions diferently

Let us &amine the details of a call tovéatual function. Insituations where the
compiler cannot determine what type of object for whichrtal function is being
invoked, the compiler must add awerun-time instructions to test the type of object
(using a special hidden datielfl stored in ay object of a class that usesvatual
function). Inthis case, a call toartual ~ function will cause the folling steps:

1. The pointer data member in the object is accessed.
2. An inde is added to the pointeralue (to ind the pointer to the correct function).
3. A call to a pointeto-function is performed.

whereas an ordinary (nonrtual ) function call will cost only the time to call a
function directly (often similar to the cost of calling a pointer to a function), aoidsa
completely theifst two geps.

However, the etra overhead is not needed il calls to avirtual function. In
mary cases, the compiler can determine the type of the object at compile-time and can
translate theirtual function call éactly as an ordinary statically-bound function call,
with exactly the same run-time costhe only time the compiler cannot determine the
type at compile-time is whepointers or references to class objects are used.

Itis likely that mostirtual ~ function calls ven't invdve pointers or references and
will be executed as ordinary function calls.

5.5.2 Space requirements of vir tual functions

The etra space required by the usevsfual  functions is of tw types:

« A hidden pointer data member in each object.
« One table of pointers to functions per class.

No matter hav mary member functions of a class are declaregidggal , the amount
of extra space in an object will be only a single pointeldf Naturally if there are no
virtual  functions at all, thex¢ra data member is not needdshch class has a table of
pointers to functions of a size equal to the numbeviidal member functions.
Although a lage number ofvirtual functions doest’increase object size, it does
increase xecutable size because of sonxéra tables of pointers to functions.

5.5.3 Attempting to impr ove on virtual functions

Let us &amine hav the programmer might try tosaid usingvirtual functions. First,
note that the only time thatirtual functions are potentially inf€ient involves
pointers or references to objectBor example, one such situationowld be traersing a
(heterogeneous) lirk list of objects of arying types (although all must be ded from
the one base type)To handle the situation withoutirtual functions, we will still
need some ay of identifying the type of object (possibly an gra flag). Testing this
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flag will involve a lection statement (i.&. or switch ) and this would probably be
less eficient than the ery fast method used hyrtual  functions.

Hand-coding is better tharirtual functions in some case$or example, if it is
possible to determine an objectype without &tra information, the spaceastage of a
hidden pointer member can beoaled.

5.5.4 Unnecessar y use of vir tual functions

The use ofvirtual functions, when the are not needed, is slously ineficient.
virtual functions are needed only when dealing with pointers or references to objects
of unknawn type. If the program neer uses pointers or references to objects, or if it does
not have any derived dasses, no function needs tovidual and the use ofirtual

wastes spaceln addition, becauseirtual functions relate only to the use of ded
classes, declaring pfiunctions awirtual in a class that has no deail dasses is also
unnecessarily inétient.

One common situation whengrtual may appear necessafyut need not be,
occurs with redéfiing a member function in a deed dass. Thisdoes not necessarily
mean that the function must be idetl asvirtual in the base class (nor in the ded
class — thevirtual keyword is n@er needed in the deréd dass). Ofcourse, if the
program starts using pointers or references to these classes, the functions may need to be
virtual , in which case it may be better style to declare the member function as
virtual

A call to avirtual function need not alays be a "real'virtual call. For
example, passing an object by reference (either as a reference or as a pointer type) can
occur when changing functions to pass-by-reference fariexfo/ improvement. Ary
calls tovirtual functions inside that (not necessaniiytual ) function will be such
that the compiler cannot knothat an ordinary function call to the member function
would sufice. Itdoes not perform anglobal analysis to determine that aljaments to
the function are base objects, and notwddriobjects. Br example, in the follaing
code, it isnt clear that the call to theviftual ) print  function could be replaced by
an ordinary call:

void print_base_object( Base & object)

object.print();

The overhead ofvirtual ~ function calls can be remnsed whenever the programmer can

be sure that only one type of pointer/reference to an object is being laspdrticular
when&er a programmer can be sure that a pointer/reference to a base class object points
to a particular object, the quadil member function name can be us&dr example,
instead of:

p->print();
the more dfcient code is:

p->Base::print();
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An example of etra information making this change possible occurs when a program
uses a number of ddrent (homogeneous) liek lists, with each lirkd list containing

the same type of object (one with base objects, one withedasbjects). Wherimple-
menting aprint_list function to print out a link&d list, you can write it generally to
call avirtualprint_object function:

void LinkedList::print_list()

for (Base *temp = head; temp != NULL; temp = temp->next())
temp->print_object();

}

This means that each call point_object has the run-timewerhead of avirtual
function call. A more eficient alternatie is to make use of the kneledge that each list
must contain the same type of object, andehvo dfferent print_list functions
(i.e. use avirtual ~ function to do the dirty wrk of printing the objects).
void Base::print_list_hidden()
for (Base *temp = this; temp != NULL; temp = temp->next())
temp->Base::print_object();

}
void Derived::print_list_hidden()
for (Derived *temp = this; temp != NULL;
temp = (Derived*)temp->next())
temp->Derived::print_object();

}
void LinkedList::print_list()

if (head '= NULL)

head->print_list_hidden(); // call virtual function
}
With this approach, all calls farint_object can be bound at compile-time and the
only virtual call is the call tgorint_list_hidden . Hence, by using our kmg-

edge about the lirdd lists, we hae reduced the number of run-tinvetual function
calls.

5.5.5 Conclusions on vir tual functions

It appears thatirtual functions, when used properlgre no less difcient than an
equialent code, are probably mordiefent and are certainly much more eement. In
most cases, &irtual function call is translated by the compiler into an ordinary
function call, andeen when the "virtualness" of the function is used by a cadlifing a
pointer or reference to an object, thetra overhead instructions generated by the
compiler are likely to be more éfcient than apthing the programmer could substitute for
it. Of course,virtual functions can become irifient if they are used improperly
and the programmer should learn wid such situations.
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5.6 Overloading new and delete

C++ improses an Cs dynamic memory allocatioratilities by adding tw new gerators
to the languagenew and delete . This means that the (rather hadk method of
making allocation more &€ient in C (see Section 6.8) can be performed more gracefully
in C++ by werloading these operatord.his allovs the memory allocation to be easily
taken over for a particular class.

An example of the method is slva belav, where a dummy class is declared so that it
allocates memory for itself by using d@& chunks, thus cutting do the calls to the
memory allocator used by the daftnew operator (probablynalloc ):

#include <stdlib.h> /I declare malloc()
#include <stddef.h> /I declare size_t
#include <assert.h> /l declare assert()

#define NUM_OBJECTS_PER_BLOCK 20 // how many objects
/l'in each large block

class Object {

static Object *free_list; /I free list of blocks
/I one per class
union { /I anonymous union
Object *next_ptr; I linked list next ptr
int data; /I other object data

/I ... possibly more private data
public:

void *operator new(size_t n);

void operator delete(void *p);

/I ... rest of the public interface

h
Object *Object::free_list = NULL; /I initialize static member

void *Object::operator new(size_t n)

Object *memory_block; /' large block of memory
Object *ptr;
assert(n == sizeof(Object)); /I check correct object

if (free_list == NULL) {
memory_block = malloc(NUM_OBJECTS_PER_BLOCK * sizeof(Object));

/I Thread blocks onto the free list (linked list)
for (inti=1;i < NUM_OBJECTS_PER_BLOCK - 1; i++)

memory_block[i].free_list = &memory_block[i + 1];
memory_block[i].free_list = NULL;

ptr = memory_block; /I take one block
free_list = memory_block + 1; /I rest on free list
else { /I delete from front of linked list
ptr = free_list; /I take front block
free_list = free_list->next_ptr; /I update head of list
return ptr;
}
void Object::operator delete(void *p)
Object *p2 = p; /I get pointer of correct type
p2->next_ptr = free_list; /I add to front of linked list
free_list = p2; /I update head of list
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Overloading thenew anddelete operators has some restrictions and there are/ man
nitty-gritty issues in this implementation, including:

. Thesize_t parameter t@peratomew

. The assertion wolving the parameter toperatomew
. Thevoid* parameter toperatordelete

. Thestatic  data membefree_list

. The anogpmousunion holdingnext_ptr

. The use omalloc .

. Restrictions on the allocation of arrays of objects.

~NOoO b~ wWN PR

The operatornew  function is supplied the size of its object as a parameter of type
size_t , which is a type name deéd in<stddef.h>  (usuallyint or unsigned

int ). Althoughthe size may seem unnecesshegause it will alays be the size of the
object, the size is needed when another class igeddrom this class.As implemented
above, the assertion in the program widif with a run-time error if this is the casH.it

is desirable to handle deed dasses correctjya all to malloc  with the correct number

of bytes could be used if the sizefdit from the size of the object.

An annging feature ofoperator delete is that its parameter type must be
void* , and cannot b®bject* |, hence the need for thetea variable,p2.
The free_list pointer is declared as static  data member because there is

only one free list for the clasglternatively, free_list could hae been a global ari-
able.

An anorymousunion is used inside the object toalay the ne&t pointer of the free
list (which is used when the memory is free), and an actual data member of the object
(which is used when the memory is in us&his method isdr neater than using type
casting to access bytes in@bject , such as:

*(Object **)&memory_block[i] = &memory_block[i+1];
Themalloc function is used to create thedarblock of bytes.Alternatively, the new

operator could be used, pided its agument vas not of typ@bject . For example, an
alternatve satement wuld be:

memory_block = new charlNUM_OBJECTS_PER_BLOCK * sizeof(Object)];

As another alternatg, the globalnew operator could be used, as in:

memory_block = ::new ObjectiNUM_OBJECTS_PER_BLOCK];
Finally, note that the allocation and deletion of arrays of objects cannot be handled by the
overloadednew anddelete operators. Statemerdsch as:

Object *p = new Object[10];
delete [10] p;

will call the defult new anddelete operators, and not thev@loaded operatorslf it
is important to hee dl allocation handled by theverloaded operators, arrays of objects
must be aoided.
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Because thewrloading of thenew anddelete operators is possible only when
they are applied to classes, it is still fildult to replace the i@-level allocation requests,
such as the allocation of bytes for the fundamental typesirit.e, char , etc.). For
example, there is no easyawto implement thehar_malloc  function in Section 6.8,
unless we decide to implement strings as a class (which is better giykeyan

Overloading thenew anddelete  operators is notwilable in early ersions of C++
(before ersion 2.0). In these early ersions, memory allocation for classes could be
controlled by gamination of and assignment to tties implicit parameter inside a
constructar This is an obsolete feature of C++ and its use is not recommended.

5.7 Specializing functions with default ar guments

Default aguments to functions are not a source offinefng in themseles, and cost no
more than using aiXfed-agument function and passing some constaxidicitly.
However, the use of defult aguments indicates the possibility of impireg eficieng by
replacing a single function with a number of specialized functidiids specialization
will often male aher optimization techniques possible, thus imprg overall efficieng
at the cost of some duplication ofeeutable code.Nor is there ay need to change &n
other code because the compiler will still raake correct choice of function to call.
However, default aguments are certainly ceenient and the slight increase irfiefeng
should be balanced aigst the loss of good programming style.

As an eample of the possibilities that caris, consider the function with daflt
aguments:

void indent(int n = 4) /Il default argument n=4

for (inti=0;i<n;i++)
cout.put(’ );
}

Rewriting this single function as one general function and one specialized function leads
to opportunities for optimization in the specialized functiémthis case, loop unrolling
can be emplged:

void indent() /I Specialized function
cout.put(’ ); /I Loop completely unrolled
cout.put(’ ’);
cout.put(’ ’);
cout.put(’ ’);
}
void indent(int n) /I General function

for (inti =0;i<n; i++)
cout.put(’ );
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5.8 Specializing inherited member functions

In an inheritance hierarghthe derved dass is a specializedexsion of the base class.
This means that member functions inherited from the base class can oftewritierre
more eficiently to male use of the form of the deved dass.

For example, consider the claddTMatrix (upper triangular matrix) which is
derived from Matrix and represents matrices where all elementsabiile diagonal are
zero. Thegeneral matrix addition function of thdatrix class is inherited by the
UTMatrix class, and it will wrk correctly Howeve, this inherited function is inef-
ficient and it is more &tient to add a e member function to th&JTMatrix class to
add two upper triangular matricesveiding all additions imolving elements belo the
diagonal. Infact, it is also more ékient to write special functions to add ordinary
matrices to upper triangular matricéBhe computation of the determinant of a triangular
matrix is also more @&tient than that for a general square matrix, so this member
function should be weritten in theUTMatrix class.

As another gample, consider a clafmaginary (imaginary numbers) desd from
another clas€omplex (complex numbers). Br all operations wolving Imaginary
objects, it is certain that the real part of the compiember is zero.Hence, it is more
efficient to revrite all inherited operations that use the real part Goaplex object,
such as: addition, multiplication, norm, etc.

The main disadantage of specializing member functions is that the code reuse
adwantage of inheritance is ga&ed; more programmer time must be spent on recoding
the specialized member function®ther disadantages are the increased probability of
error, and an increase irxecutable code size.

5.9 Initializing base and member objects

When a class declaration contains a class object as one of its members it is important to
use the correct method of initialization to retaifiodéng. Consider the declaration of a
classB containing a member object from class

class A {
private:
int val;
public:
A() {val =0;}
A(intx) {val =x; }
void operator = (inti) { val =1i; }

h
class B {
private:
A a; [/ / memberis itself an object
public:
BO){a=1;} /I INEFFICIENT

)

Declaring an object of typB will cause the defult constructor for the member object of
type A to be irvoked immediately before the dailt constructor foB. Then the=
operator for clas#\ is used to set the member objext, Hence, the constructor for B
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involves a call to & default constructor and a call to the assignment operatwe call to
A's default constructor is redundant and should\mzded.

Fortunately C++ provides a cowenient syntax for passing@rments to constructors
of member objectsThe defult constructor foB should be recoded as:

BO:a(1){} /| EFFICIENT

This initialization syntax causes the constant 1 to be passed to the constructor for the
member objecta (the constructor accepting tiret parameter is called, instead of the
default constructor).Thus instead of calling the deflt constructoand the assignment
operator forA, only theint constructor for A is called.

This initialization method is &tient wheneer calling the dedult constructor for a
member object is not appropriate, for instance, when the member object is initialized by a
call to the assignment operator within the main olgextstructor (as alve, whereB's
constructor assigned to its member of t¥e Thisform of initialization can be used for
ary type of data member (i.e. not only class objects), although it will be neither more nor
less eficient than assignment fouilt-in types. The special initialization syntax should
be used whexer it is gplicable, since it can mer be less dicient than assignment to
the data members within the construcénd will often be more éftient.

Similar eficieng/ considerations apply to constructors in dedi dasses, since the
data member(s) in the base class aet dikobject member The constructor for the base
class is akays called when a derd dass object is constructediVhen the defult
constructor for the base class is of no use to aakedass object, it is more fetient to
pass agguments directly to a non-deflt base class constructosing the special initial-
ization syntax.The same syntax applies as for data member initializatkwepé that the
type name of the base class is used instead of the name of a data.m&rmbetrived
example of this form of initialization is:

class Derived : public Base {

public:
Derived() : Base(0) { } /I Call Base(int) constructor

5.10 Avoiding temporar y objects

In the same way that temporary inger \ariables are used to compute an dete
expression, so too are temporary objects used in naattexpressions imolving class
objects. Br example, if theComplex class has dafed the+ and = operators, the
expression:

Complex c1,c2,c3;
cl=c2+c3;
is likely to create a tempora@omplex object as the result of the addition, and this

temporary object is then passed as an operand te thgerator In other words, the
expression is actuallyeluated as:

operator=( c1, operator+(c2,c3));
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and a temporary object must be used to store thexqubssion computed for the second
argument to=. Whether the operands taperator=  are passed by reference or by
value has no dééct on whether a temporary is created in this situation (although it does
affect the creation of meaobjectsinside theoperator= function).

One (rather ha@dd) method of widing this creation of temporaries is to create a
specialized function to handle it:

void AssignThree(Complex &cl1, Complex &c2, Complex & c3);

Aséi'gnThree(cl,CZ,CS); 1 cl=c2+c3;

The function should probably be a friend function tovalkifi cient access to the data
members of the three complebjects.

The problems with this solution are itery poor style (because the neatness of the
use of @erloaded operators is lost), and also its non-general chard¢tee complicated
expressions will still generate temporaries, unless more special functions are added as
friends, leading towen worse style. This "cure" is &r worse than its disease.

5.10.1 Avoiding temporaries via e xtra member functions

There are situations where the resoof temporaries does not lead to poor style.
Consider the follwing defnition of a minimalComplex class:

class complex {

private:
double re; /I real part
double im; /I imaginary part
public:
/I Constructors
complex() { re =0.0;im=0.0; }
complex(double r) { re=r;im=0.0;}

complex(double r, double i) {re =r; im =i; }
/I Copy constructor
complex(complex &c) { re = c.re; im=c.im; }

/I Overloaded assignment operator
void operator = (complex & d) { re = d.re; im = d.im; }

/I Overloaded + operator
friend complex operator + (complex &cl, complex &c2);

h
inline complex operator + (complex &cl, complex &c2)

return complex(cl.re + c2.re, cl.im + c2.im);

When this class diifition is used for the follwing code sequence:
complex c1, c2;

cl=2.0;
c2=cl+ 3.0
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the efect is identical to:

cl = complex(2.0); /I invoke 'double’ constructor for 2.0
c2 = cl + complex(3.0); /I invoke 'double’ constructor for 3.0

The C++ compiler automatically createsotvtemporary objects from thelouble
constants, and calls tli®uble constructor to do soThe ineficieng of the creation of
a temporary object and the call to the constructor carnvbieled by adding a fe more
functions to the class declaration:

void operator = (double d) {re =d; im =0.0; }

friend complex operator + (double d, complex &c2);
friend complex operator + (complex &c1, double d);

If these functions are present, then thmuble constants are passed directly to the
double parameters of these functionslo temporary object is created, and hence the
constructor is not calledNote that tvo symmetric \ersions ofoperator+ are required
because the C++ compiler cannot assume that the comvitytafi + holds for user
defined class objects.

By making the "inteice" eficient for mixingcomplex anddouble variables, the
creation of temporaries has been reducBudis can be generalized: it is better toyide
member or friend functions to cla¥sfor a specitc parameter typé, than to preide
only a constructor to createme’s fromY’s.

5.11 Declaration c lose to use

The C++ language alles variable declarations to appear almosyvemere within a
program. Althoughthe placement of ariable declarations may seem unrelated to
efficieng, it can hae me efect when objects with non-iel constructors are
declared. Br eficieng/ reasons, an object must be declared as close tositsu$e as
possible. Inparticulay the C style of declaring allaviables at the top of a function is
often ineficient. Considethe C++ code belw:

}/oid dummy(...)

complex c; /I create object

if () {
\

1 use c

}

The complex object is not used if the condition in tlife statement isdise — the
constructor and destructor for the unused object are called needlessly

Another consideration is that objects should not be declared until there is enough
information to construct them fullyFor example, g¥en a wserdefned classcomplex
the folloving code:

complex c; I/ construct ¢

c =1.0; 1 initialize ¢
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is less dicient than calling the correct constructor directly by using:

complex ¢(1.0); // construct and initialize ¢

The frst code sequenceviolves a call to the defilt constructor and theverloaded=
operator whereas the second declaration calls only ttmulfle ) constructor for the
complex class.

Unfortunately there are practical limits to thetent to which objects can be declared
near their ifst use. If the first use of an object is inside a compound statement, and this
object must also be used outside the compound statement, the scope resolution rules
prevent the declaration from being placed inside the compound stateff@ntxample,
in the code belo:

double d;
complex c;
while(....) {
cin >>d; /I get double value from user
c =d; / | s et complex number
cout << ¢c; /I print the complex number

it would be more difcient to declares inside the loop block using the direct call to a
double constructor:

complex c(d);

However, this would prevent the use o outside the scope of the brac@his limitation

is an unfortunate consequence of the programming language design choiceeto mak
braces both the method of grouping statemandisthe scoping mechanism in C++u(b

there are manmore important acantages supporting this decisiot)nfortunatelyit is

not even possible to remee te braces in the abe example, using the comma operator

as by:

while(....)
cin >> d, complex c(d); /I FAILS: compilation error

because C++ syntax pents a declaration from being an operand of the comma operator
Overcoming this limitation by using dynamically allocated objectsx@mgned in the
execises.

5.12 <iostream.h> versus <stdio.h>

The early ersion of the C++ 1/O library as called<stream.h> but this was super
seded in C++ 2.0 byiostream.h> . This section gkamines<iostream.h> | but the
same considerations apply<tstream.h>

Although the relatie dficieng/ of the <iostream.h>  and<stdio.h> libraries
depends on their respaaiimplementors (and mayxy between implementations), there
are a fev reasons toxpect<iostream.h>  to be maginally more €ficient. Although
theputchar , getchar , puts andgets<stdio.h> functions are likly to be ery
efficient, theprintf  andscanf functions are slightly indéifcient because tlyemust
parse their format stringgument. Thusthe C code:
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printf("%d", x);

requires the analysis of the stringgament %d' at run-time, beforeprintf  knows to
call an inner function to print an iger Howevae, in the C++ code:

cout << x;

the type ofx is examined at compile-time, and tke& notation is cowerted to a call to
the correct function to print out an igex The cost of parsing the format string is
avaded and the correct output function is chosen at compile-time, not run-time.

Another reason that the functions<datdio.h>  may be less étient is that fer of
them are macros (becauseidigig safe macros is ditult), whereas most of the common
methods irciostream.h>  are eficientinline  functions. Theprintf  andscanf
functions in<stdio.h>  are a case in point, since yhae variable-agument functions
and cannot be implemented étiently as macros becausarible-agument macros do
not exist.

5.13 Reference counts

Reference counts refers to a general programming techniquesfpinlg track of dynami-
cally allocated objectsThis technique is not actually part of the C++ language, as such,
but is a @mmonly used programming technique that is well supported by the C++ class
structure. Aswith ary general programming technique, reference counts could in theory
be used in C,utt it is far more dificult to do so elgently.

Reference counts impre the eficieng of objects where the cost of cgpg the
object, either by the cgpconstructor or the assignment operatsrprohibitive. This is
most often true of objects which allocate dynamic mepiarwhich case both the cgp
constructor and assignment operator must allocate meamghthe assignment operator
may hae o deallocate memotry

The adantage of reference counts is that theycopnstructor and assignment
operatoyinstead of creating a weobject, simply set a pointer to the original objethe
cost of coping an entire object, including wrmemory allocation or deallocation, is
replaced by the cost of a pointer assignment.

Reference counts appear tofsufthe disadantage that»dra space is used in each
object to store the inger count, and also thetea pointer Howeve, the total amount of
space used by the program may actually decrease if there ayeljects pointing to a
single allocated memory blockln addition, there is somexta run-time e@erhead
involved in maintaining the reference counts, and this redufiegenfy if the adantage
gained from &oiding copying comple objects is not stifcient (e.g. if the program does
not either cop or assign these objects).

As an eample of the addition of reference counts to a class, we will use a dynamic
array implementation of a staclSince it allocates memory within its constructor and
assignment operatat is a good candidate for impxing efficiengy by adding reference
counts. Admittedly stacks may seldom be assigned to each other or copied, which is
where reference countsig eficieng, but let us assume that tistack class is being
used in a lage project where this does occur frequentfigre is the code for thgtack
class before reference counts are added:
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I
/I Dynamic Array Implementation of Stack
Il

#include <iostream.h>
#include <stdlib.h>
#include <string.h>

typedef int data_type; /I Type of data is int
class Stack {
private:
data_type *arr; /I Dynamic array holding the stack
int sp; /I Stack pointer
int size; /I Maximum size of the stack
public:
Stack(int sz); /I Ordinary constructor
Stack(const Stack &s); /I Copy constructor
void operator =(const Stack &s); /I Assignment operator
“Stack() { delete arr; } /I Destructor
intis_empty() { return sp == 0; }

void push(data_type data);

data_type pop();
data_type top();

J

I
/I Ordinary constructor
Il

inline Stack::Stack(int sz)

size = sz;
sp=0;
arr = new data_type[sz];

Il
/I Copy constructor
I

inline Stack::Stack(const Stack &s)

arr = new data_typel[s.size];

Sp =S.Sp;

size = s.size;

memcpy(arr, s.arr, size * sizeof(data_type)); /I Copy data

}

I
/I Assignment operator
I

inline void Stack::operator =(const Stack &s)

delete arr; /I delete old stack memory

size = s.size;

Sp =S.Sp;

arr = new data_type[size]; /I make room for new data
memcpy(arr, s.arr, size * sizeof(data_type)); /I Copy data

}

I
/I PUSH: Push an element on the top of the stack
I

inline void Stack::push(data_type data )

if (sp >= size) { /I Already too many?
cerr << "Overflow error\n”;

89
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exit(1);

arr[sp++] = data; /I Push onto end of array

I
/I POP(): Take element from the top of the stack
Il

inline data_type Stack::pop()
if (sp==0) { /I No elements ?
cerr << "Underflow error\n“;
exit(1);

}
return (arr[--sp]); // Pop from end of array

I
Il TOP(): Return element on the top of the stack
Il

inline data_type Stack::top()

if (sp ==0) { /I No elements ?
cerr << "Underflow error\n”;
exit(1);
}
return (arr[sp - 1]); /I Return top element

Experienced C++ programmers will recognize a common class idiom in the cade abo
as discussed in James Coplgelok (see the references in Section 5.18pte that this
idiom is recommended fall C++ classes, and has no specitlationship with refer
ence counting fecept that a proper implementation of reference counting must use this
idiom with greater care)This idiom requires that a class contain the feilg methods:

1. Ordinaryconstructor(s).

2. Destructar

3. Coyy constructor

4. Owrloaded assignment operatay.(

It is important to note that both the gogonstructor and- operator allocate memory for
a rew gack, and cop the old stack into it.If either the cop constructor or= operator
were missing, thelelete operation in the destructorowld be in danger of clobbering
allocated memory (i.e. de-allocating the same location twice) in some circumstances.
This problem occurs because aling either the assignment operator or theycop
constructor to defult to memberwise cgmng (or bitwise coping in early C++ ersions)
will cause the pointer data members to simply be copidek objects thepoint to are
not copied by memberwise ogpg. Henceary use of the assignment operator on the
class, or use of the cpgonstructor (e.g. via gument passing, or returralues) will
cause tw objects to haee pointer data members pointing at the same addi®isee both
objects will hae their destructor called, the address will be de-allocated twice by the
delete operator in the destructor

The addition of reference countsS$tack objects requires a number of chang#s.
new class, which we ha alled StackData , must be created and it subsumes ynain
the operations that were originally part of ack class. Inparticular dl of the data
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members that were part of tBeack class are meed to the StackData class, and the
only data member in th8tack class is a pointer to 8tackData object. Anextra
integer dataitld is added to th8tackData class to store the reference count.

The constructors, assignment operator and destructor for Stask change
markedly, and perform most of the manipulation of the reference counts (which are
actually stored in thé&tackData objects). Theordinary constructor simply sets its
pointer to point to a me StackData object, whose reference count is set to one,
because there is only thiswlg createdStack object pointing at it.

The copy constructor is changed to increment the reference count GtdokData
object pointed to by th8tack parameter The navly createdStack object is then set
to point at this sam8tackData object.

The destructor tests whether it is the only reference t8téiekData object. Ifso,
the object is de-allocatedf not, the reference count is decremented, as therarione
lessStack object pointing at it.

The assignment operator must dmtilvings. First,jt acts in a similar manner to the
destructorand unlinks theStack object that vas on the left-hand side of theoperator
If there are no further references to BtackData object, it is de-allocatedSecond,
the object on the left-hand side is set to point to the same object as pointed to by the
Stack object on the right-hand side of theoperator This part of the procedure is the
same as for the cgonstructor

Finally, al the member functions momust access the data members throughxtma e
level of indirection, as theare naw stored in aStackData object. Inour example, this
means that all references @or , sp and size must be changed tptr->arr
ptr->sp , and ptr->size . The Stack class has been made a friend of the
StackData class to aoid the need to call inteate functions to access yate data
members.

The code for most of the reference countedsion of theStack class is gien as
follows; thepush and pop member functions ve been temporarily omitted because
they pose special problems, and yrae discussed in Section 5.13.1.

Il
/I Reference Counted Dynamic Array Implementation of Stack

#include <iostream.h>
#include <stdlib.h>
#include <string.h>

typedef int data_type; I/l Type of data is int

I
/I Hidden class that contains the allocated data
I

class StackData {

private:
data_type *arr; /I Dynamic array of stack data
int sp; /I Stack pointer
int size; /l Maximum size of the stack
int count; /I Reference count!
StackData(int sz); /I Ordinary constructor
“StackData() { delete arr; } /I Destructor

friend class Stack;
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I

I
/I Ordinary constructor for StackData
Il

inline StackData::StackData(int sz)

count = 1; /I Initially only one reference
size = sz;
sp=0;
arr = new data_type[sz];
}
I
Il
/I This is the main Stack class used by the user
I
I
class Stack {
private:
StackData *ptr; /I Pointer to reference counted object
public:
Stack(int sz); /I Ordinary constructor
Stack(const Stack &s); /I Copy constructor
void operator =(const Stack &s); /I Assignment operator
“Stack(); 1 Destructor
intis_empty() { return ptr->sp ==0; }
data_type top();
h
Il

/l Ordinary constructor

inline Stack::Stack(int sz)

ptr = new StackData(sz); /I Create new hidden object

I
/I Copy constructor
Il

inline Stack::Stack(const Stack &s)
{

S.ptr->count++; 1 Increment reference count
ptr = s.ptr; /I Make new object point there too

}

I
/I Assignment operator
Il

inline void Stack::operator =(const Stack &s)

// Unlink the "*this’ object

ptr->count--; I Decrement reference count
if(ptr->count == 0) {// Only reference?
delete ptr; /I Return allocated memory
}
ptr = s.ptr; /I Make this object point there too
ptr->count++; 1 Increment reference count
}
I

/I Destructor
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inline Stack::"Stack()
{

ptr->count--; I decrement reference count
if(ptr->count == 0) /l'if no other references
delete ptr; /I destroy hidden data
}
I
Il TOP(): Return element on the top of the stack
I

inline data_type Stack::top()

if (ptr->sp == 0) { /I No elements ?
cerr << "Underflow error\n";
exit(1);
return (ptr->arr[ptr->sp - 1)); /I Return top element

5.13.1 Member functions that ¢ hange objects

You may hae moticed the absence of thprush and pop member functions from the
reference counted implementation of a staclkergebove. They were not fogotten, It
left out on purpose becauseyfehange the Stack object, and hence ha an extra layer
of compleity in their implementationWhereas it s adequate for the_empty and
top member functions simply to add a pxebf "ptr-> " to any reference to a data
member of the stack object, doing sofash andpop can cause a programilure.

Reference counts complicate the idigbn of member functions thathange the
object. Thisproblem is a form oéliasing that arises from the use of multiple pointers to
the same addres®ecause the allocated memory block mayehawore than one pointer
to it from different objects, ganchange to that allocated memory will chargé the
objects pointing at it.

The solution is to test the number of references to the object before chanding it.
there is more than one reference, it is necessary to create @jeet copied from the
original, so as to le® the other references pointing at the unchanged objElce
member function then changes thevlyecreated object, which mohas only the one ref-
erence to it.

This may seem to be a&mry damning limitation on the use of reference counting,
because it seems thateey member function may be called upon to createvaaigect.

In fact, the only etra overhead is the test of the reference count to determine if the
number of references is greater than one, becaesdfehe member function must cpp

the object, this can only occur because theyiogpof the object has beewoided earlier

in the copy constructor or assignment operatofhe copying of the object has been
delayed until it is actually needed, and the only slight losdfiicietficy is the inteyer test.
Hopefully, this small @erhead will be gershadaved by the lage saings from &oiding
copying a reasonable proportion of objects (i.e. wpeet that not all objects will be
changed between cgipg/assignment and destruction).

The missing dénitions of push andpop for the Stack class are ne presented.
The unlinking of the object to which there being applied from grother references and
creation of a n@ object is all handled in a meprivate function, theunhook function,
which must be called at the start ofyamember function that may changeStack
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object. Makingheunhook function aninline  function means that thextea overhead
is a single intger test in most situations.
Il
/l UNHOOK: Called by member functions that CHANGE the object
I

inline void Stack::unhook()

if (ptr->count > 1) { /I Other references?
/I Yes. Create a new object

StackData *old = ptr;
ptr = new StackData(old->size);
memcpy(ptr->arr, old->arr, old->size * sizeof(data_type));
ptr->sp = old->sp;
ptr->count = 1; /I One reference to new memory
old->count--; I One less reference to old object

}

I
/I PUSH: Push an element on the top of the stack
I

inline void Stack::push(data_type data)
{

unhook();
if (ptr->sp >= ptr->size) { /I Already too many?
cerr << "Overflow error\n";
exit(1);
ptr->arr[ptr->sp++] = data; /I Push onto end of array
}
Il
Il POP(): Take element from the top of the stack
I

inline data_type Stack::pop()
{

unhook();
if (ptr->sp == 0) { /I No elements ?
cerr << "Underflow error\n";
exit(1);
return (ptr->arr[--ptr->sp]); /l Pop from end of array

}

The same aliasing problem is true oy amember function that returns either a pointer or
reference to part of the allocated memdmgcause there is nothe potential to change

the object.For example, if a reference count&dring class @erloads thd] operator

to return a reference to a single character in the string, the string contents may be changed
by using[] on the left of an assignment statement:

char & String::operator [|(int index) { ... }

String str;

str[0] ="A’; /l Changes only str ?
Exactly the same solution is needed as for member functionsxiblatitty change the
object. Henceteference counting imposes a slightrtiead on apfunctions that either

change an object or pridle the user of a class with the possibility of changing it (unless
the class designer can guarantee that the objects will not be changed by the class user).
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5.14 One-instance classes

In a one-instance class there will onlyeebe ane object defed from it. In this situation
the class can be deéd \ery eficiently by making use of compile-time initializatioAn
example is a hash table implementation of a symbol table in a conwgilere only one
symbol table will ger be used (as shen in Section 8.14) and the crucial fragment from
this code is:

class SymbolTable {

private:

Node * table[TABLE_SIZE]; /I Hash table - array of pointers
public:

SymbolTable(); 1 constructor

I
/I Constructor - initialize the hash table to empty

SymbolTable::SymbolTable()

for (inti=0; i < TABLE_SIZE; i++) /I all pointers are NULL
table[i] = NULL;

If there will only be one hash table, the constructor is needlesslycieaf. A more
efficient \ersion declares the hash table astatic = data member and the implicit
initialization to zero will set all the pointers MULL at compile-time.The eficient code
for a one-instance hash table is:

class SymbolTable { /Il ONE INSTANCE ONLY
private:
static Node *table[TABLE_SIZE]; // Compile-time initialization
public:
SymbolTable() { } /I constructor does nothing

5.15 Summary

e C++is as dfcient as C because most of tixéra work is performed by the compiler
» Lamge objects should be passed by reference.

» Small functions should bmline  functions.

« friend functions can be used to bypass the class ateréfi ciently.

e virtual  functions hae an undesered reputation for inéifciengy.

« Memory allocation can be controlled for a class Wwrloadingnew anddelete

» Functions with dedult aguments and inherited member functions eadéér afpportu-
nities for writing eficient specialized code.

» The syntax for passingguments to member objects should be used for initialization.

» Temporary objects can beaded by pass by reference, andiniefy extra member
functions.



96 Chapter 5

» Objects should be declared close to thiest use.

» <iostream.h>  should be more &tient than<stdio.h> , dthough the diference
will be minor.

* Reference counts are an adeed technique for imprimg the eficieng of classes
with high copying or assignment cost, particularly those allocating dynamic memory

5.16 Further reading

Although | am not ware of ary book covering C++ eficieng in detail, there are seral
books that contain sections of intere$tiey are all good general C++ books, and their
coverage of éiicieng is part of a more global e@rage.

In Jonathan Shapir@ook, A C++ Toolkit, the chapter on performance tuningesi
a cetailed discussion dfline  functions,register  variables and pass by reference.
There is also a chapter on memory management which discusskmding new and
delete for efficiency.

The second edition of the classic bofle C++ Programming Language by Bjarne
Stroustrup ceers C++ in its entirety and mentiondiefency in a rumber of placesThe
topics coered include (bt are not limited to)inline  functions, eerloadingnew and
delete , saving space with unions angtatic  data members, and thegister
qualifier.

James Coplies’ excellent book on adinced C++ programming techniquevates
several sections to éitieng.. On page 58 there is aewy useful discussion of reference
counting which ceers four alternatie methods, including a useful method for genting
existing classes to reference counting without changing themitiefi (and @en without
re-compilation). Memorymanagement issuesviiving the werloading of new and
delete are also gien good cwerage on page 72, and the method efritng derived
class member functions forfiefieng is covered on page 91.

COPLIEN, James OAdvanced C++ Programming Styles and Idioms, Addison-W\s-
ley, 1992.

SHAPIRO, Jonathan SA C++ Toolkit, Prentice Hall, 1991.

STROUSTRUP, Bjarne, The C++ Programming Language (2nd edn), Addison-W\és-
ley, 1991.

5.17 Exercises

1. My C++ compiler will not produce inline code for amine  function containing
a loop. Isthis a fundamental limitation of theline  keyword, or a de€iency in
the compiler?What types of functions cannot be properly inlined?

2.  Implementa String class which dynamically allocatezaetly the right number
of bytes to store its string of characteBe sure to défe the ordinary construc-
tor(s), coy constructoy destructor and assignment operator corredtint: The
copy constructor and assignment operator cannot simply tio@ pointer to the
allocated memorybut must allocate e memory for the characters and gaphe
characters into this mememory
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Modify the String  implementation of the pwous eercise to use reference
counts. Hint: The changes to the class should be similar to those for the reference
countedStack example class gen in this chapter

[adwanced] The foufunction class idiom (deflt constructqrcopy constructor
assignment operator and destructogsvmentioned in the discussion of reference
counts. ltwas indicated that a common error in C++ classas @iling to provide

this idiom for classes that allocate memory in the constructor and de-allocate it in
the destructor This causes the destructor to attempt to de-allocate the same
memory location more than oncés this fourfunction idiom needed when the
dynamic memory allocated for an object willveebe released? & example, in

the String  class from earlier >@rcises, is the idiom needed if the memory
allocated to contain the characters need not be returned to the G©é&sioRsly,
leaving thedelete operation out of the destructor will imme dficieng/ (at the

cost of space astage), bt can the cost of memory allocation in theyopnstruc-

tor and assignment operator also beided?

[adwanced] Consider the problem of declaring an object close to use discussed at
the end of Section 5.11, where the scope rulegepréhe declaration at thérdt

point of use. How can thenew operator be used tovercome this limitation?
When will this optimization be beriefal?

How can a tvo-instance class makse of compile-time initialization?

[adwanced] Section 5.10 presented a leacknethod of widing temporary objects
for evaluating the &pression:

Complex c1,c2,c3;
cl=c2+c3;
Why is it not possible to simply makthe return alue of the werloaded+ operator

a reference? Hint: Consider hw the operator+  function would hae © be
defined.
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The ANSI C standard library

The ANSI C library functions must be used properly whditieht code is required.
This applies not only to C programsjtlalso to C++ programs where the same library
functions are usedThe first general rule about the library functions is thay ieuld be
used wheneer possible, unless tlyeshow specific evidence of indfcieng. In mary cas-

es, the library functions kia been highly optimized (perhapsem written in assembly
language), and will be morefigfient than ap equivalent code you might produced=or
example, the functions irkct ype. h> are usually muchafster than an equéent
expression such as:

'a' <= ¢ && c <=7

In fact, the use of the macros<nt ype. h>is also more portable and more readable!

A second general rule for library functions is to use them for their intended purpose.
For example, printf and scanf are not meant for single character /O — use
put char andget char instead.

A third general rule is that mgrof the more complicated library functions arery
general, and hence iffiefient. Itis often better to replace them with yowrospecial-
ized code. For example, functions such asal | oc, printf, scanf, qsort and
bsear ch can often be replaced with code that sslthe spedif problem at hand.

6.1 Character functions in <ctype.h>

As mentioned aha, the <ct ype. h> functions are ery hard to beatThe list of the
charactettesting functions ircct ype. h> is given in Table 6.1, and the programmer
should attempt to use these functions whkenpossible.

98
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Table6.1. Character classfunctions

Function Character class

sal pha(c) Letter
sdigit(c) Digit
sal nun(c) Letter or digit

sl ower (c) Lower case letter

supper (c) Upper case letter

sxdigit(c) Hexadecimal digit -9, a-f , A-F)
sspace(c) Space, \f’',"\n’ ;" \r’" ["\t’ or’' \v’

sprint(c) Printable charactefk20...0x7E ASCII)
scntrl(c) Control character(..0x1F andOx7F ASCII)
spunct (c) Printable characterseept space, letter or digit
sgraph(c) Printable charactersceept space

The charactetesting functions ircct ype. h> are usually implemented as macros
that use the character as an arrayrfde a 256-byte precalculated table and apply a bit
test to this byte, as in:

#define isupper(ch) ((_hidden_array + 1) [ch] & 4)

where the + 1" is wsed so that the macro will stillosk for EOF, which usually has
vaue —1. In other words, the precalculated tatsdirst (zeroth) entry is foEOF. This
addition of 1 should he o run-time cost, since it is part of a constaxpression which
the compiler canvaluate at compile-time.

Each library function has a particular bit to test (i.e. each byte in the table has one bit
for i supper, one bit fori sl ower, ec). Thesefunctions could be implemented
slightly more €fi ciently, with a 256-byte table for each functionytlthis would be space
inefficient and remee mly a single bitwise& operation for each function call.

One area for imprement for some<ct ype. h> implementations is theol ower
andt oupper functions. Althoughmary implementations use fefient accesses into
256-byte tables, some implementations use real function dafifortunately it is df-
ficult to design macros for these functions without a (hidden) lookup table because of
problems with side é&fcts to macros.ANSI requires that these functions return the
character unchanged if it is not a lettard this malks it dificult for a macro to\aid
evduating its agument twice. For example, the défition of a macro fort ol ower
would involve the conditional operatpas in:

#define tol ower(c) (isupper(c) ? ((c) - "A +'a) : c¢)

For implementations wolving a costly function call for these functions, it can bmthw
while defning nev macros for these functions:

#defi ne TOLONER(c) (isupper(c) ? ((c) - "A
) ? ((c)

a') )
#defi ne TOUPPER(c) (islower(c )

+
o ) +1A1 C)
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If the restriction that ol ower andt oupper work correctly for \alues other than Veer
(upper) case letters is remwnl, faster macros can be used so long as tpenaent is a
letter of the correct case:

#defi ne TOLONER(C) ((c)

#defi ne TOUPPER(c) ((c) - "&
On some implementationsast \ersions oft ol ower andt oupper are preoided as
_tol ower and _toupper, and these macros can be used instead of writing ne
macros.

Unfortunately any o these methods saddé portability The tol ower and
_toupper are not part of the ANSI standard library and are hence non-pori@bie.
own TOLOVER and TOUPPER macros may also be non-portable to machines that hda
non-ASCII character sefThet ol ower andt oupper ANSI functions are portable to
most enironments, it may be indfcient in a fev cases.

6.2 String functions in <string.h>

There are some methods fofieient use of the ANSI C string functions (thefd in
<string. h>). For exkample, the test for the empty string:

if (strlen(s) == 0)
is equialent to the &r more dfcient character comparison:
if (s[0] == "'\0")

Some programmers may prefef (! *s) but this is less readable and should cost the
same on a good compileA sample of the manvariations on this theme is presented in
Table 6.2.

Table 6.2. String expressions

Expression Equivalent
strien(s) == s[0] '=0 && s[1] == 0
strlen(s) > 1 s[0] '=0 && s[1] !'=0
strlen(s) < 2 s[0] == 0 || s[1] == 0
strepy(s, ""); s[ 0] =0;

strepy(s, "a"); s[0]="a"; s[1]=0;

When comparing strings twice, once for equality and once for orderingt dalh’
st r cnp twice, as in:

if( strcnp(sl, s2) ==

printf("Strings % and % are equal", sl, s2);
else if( strcnp(sl,s2) < 0)

printf("% is before %\n", sl1,s2);
el se

printf("% is before %\n", s2,sl1);
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Instead, assign the returalue ofstrcnp to ani nt variable, and test thisaviable
twice, as belw:
int ret = strcnp(sl,s2);
if (ret == 0
printf("Strings % and % are equal", sl, s2);
elseif (ret <0)
printf("% is before %\n", sl1,s2);
el se
printf("% is before %\n", s2,s1);

The idea of "common cases" can be applied to string compariSorsgs usually dfer

at the frst characterwhich inspires us to writeat macros for testing string equality
inequality and order which compare thestf characters in each string before calling
strcnp:

#define STR_EQJ(s1,s2) (*(sl) == *(s2) && strcnp(sl, s2) ==
#define STR NEQ(s1,s2) (*(sl) != *(s2) || strcnp(sl, s2) !'=0)
#define STR LSS(s1,s2) (*(sl) < *(s2) || strcnmp(sl, s2) < 0)
#define STR GIR(s1,s2) (*(sl) > *(s2) || strcnp(sl, s2) > 0)

Another common indiftieng is passing a string constant $a r | en. The result could
have been calculated at compile-timeythis actually calculated at run-timé&his can
occur when a string is deéd by a macro, such as:

#define TITLE "C++ and C efficiency”
#define TITLE_LEN strlen(TITLE)

Although the second macro is e@nient in that it need not be changed if the title
changes, it is morefedient to count the characters and hard-code the constant:

#define TITLE "C++ and C efficiency"
#define TITLE LEN 20

Another cleer solution would be to declard@l TLE as a wariable and use the compile-
timesi zeof operator to determine the length of the string, as in:

char TITLE[] = "C++ and C efficiency";
#define TITLE_LEN (sizeof (TITLE) - 1)

where the subtraction of 1 is necessary to get the correct string length beicaasé
also counts the null character

Avoid usingst r | en in the conditional test of or loops. Fr example, the inef-
ficient way of printing out a string is:

for (i =0; i <strlen(s); i++)
putchar(s[i]);

This calls thest r | en function for eery loop iteration. The eficient method is to test
the character for zero:

for (i =0; s[i] !'=0; i++)
putchar(s[i]);



102 Chapter 6

6.3 Input/output functions in <stdio.h>

The standard I/O functions kst di 0. h> are likely to be implemented morefigiently
than you could managd-or example, it is unlilely that you could write a morefiefient
version of theget char macro. Havever, there are some methods of imprg
efficieng. C++ programmers might also consider using #hest r eam h> library
instead okst di 0. h>, as dscussed in Section 5.12.

One general method of impriog efficieng is to use the simplest functiorReplace
statements such as:

tf("\n");
printf("Hello, world\n");

with more eficient versions using simpler functions:

putchar('\n");
puts("Hello, world"); /* Note: no newline */

In fact, you mightihd that, saypri ntf ("abcd") is less dicient than four calls to
put char, becauseprintf will usually be a real function callub put char is
probably a macro.put s is not useful in this case because it will add wime, but
fputs(stdout,..) may also be wrth considering as it does not append aline.
Try exploring the relatie dficiencies ofpri nt f, put s andput char. Howeve, note
that the dominating cost will be that of actually displaying the chareatdrthe im-
provements may be mginal.

You are also unlilely to improse performance by adjusting thevk of buffering with
set buf orset vbuf. Howeve, you could tryjust to see he good the implementor of
your compiler library really as!

You may be able to impre m <stdi o. h> functions with the%d formats to
printf andscanf. Because these functions are so generay the be improed
upon if the program has no need for special format options sucieléswidth and
precision. ltcan be wrthwhile to write your wn pr i nt _numor scan_numfunctions
to avoid the werhead of gamining the format string (as done by bathi ntf and
scanf). Thisis especially true if you kwe the maximum size of the irgers to be
handled (i.e. ho mary digits) because this may mean that loops in theva&sion
algorithm can be unrolledrFor example, if you are sure that the numbers wilals be
positive and less than 1000, the folling version ofpri nt _nummay be more éfcient
thanpri nt f's % format.

void print_nun(int n) /* n =0..999 */

if (n >= 100) {
putchar( (n / 100) + '0);
n % 100;

i}f (n >= 10) {
putchar( (n/ 10) + '0");
n % 10;

}
putchar(n + '0");
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Avoid the use of | oat, char or short arguments tgpri nt f because of the non-
prototyping type coversions that are applied to suclygaments. Theonsistent use of
i nt anddoubl e will remove this slight werhead.

6.4 Mathematical functions in <math.h>

Avoid f | oat variables when using themat h. h> library. All the aguments and return
values of functions inkmat h. h> are doubl e, and f | oat vaues will cause man
corversions.

Besides noting the speiciftechniques in the me few sections, it may be warth
considering writing your wn versions of the mathematical functions if less precision
than preided by the<mat h. h> functions is required.In particular for an ANSI
prototype-supporting compilea library of mathematical functions acceptingunents
of typef | oat would be worthwhile (unfortunatelythere are no such functions pited
by the ANSI standard).

Another improement @ined by coding yourven mathematical functions is the
removal of code to test if the gument alues are within thealid domain of the function
(assuming you are certain that the program uses the functions corrébifgytunately
writing mathematical functions isiff from simple, and only avesimpler functions are
examined in this chapter

6.4.1 fabs and abs

It may be more difcient to write your wn macro ‘ersion of thé abs function (and also
the abs function in<stdl i b. h>), since man libraries will implement it as a real
function. Thereare dificulties in writing macros for these functions since ANSI requires
that a side ééct in an agument to these macros must weleated a&actly once. This
restriction can be dispensed with when writing ownanacros and mals it simple to
write fast macros.The macro equilents of abs and f abs can both hee gmilar
replacement td:

X) >=

#defi ne ABS(x) ( 07? (x) : -(
((x) >=0.0? (x) : -

#def i ne FABS(Xx)

—~

X))

(x))

It is good style to use capital letters tmid clashes with thexésting library functions.
The apparentw@ruse of brackts is necessary tor@d precedence problems, although
they do not avoid side efect problems and uses suchA®&S( i ++) must be woided.

On the other hand, the library functioals andf abs in <mat h. h> might be im-
plemented dfciently using machine-speiifknowledge of the internal representations of
integers and floating point numbers, making thexstdér than the macros afeo In fact,
the averhead of a real function call may not actually occur in some implementations as an
adwanced optimizer might generate inline code for the function call during its code gener
ation phase {&n though the function is not a macro in the heade). f This method is
known as compileintrinsics, and is discussed further in Chapter I¥bu should use the
measurement techniques in Chapter 2 to determine if the macros readlgtargtfan the
library functions.
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The f abs function in <mat h. h> may be able to handle obscuralues such as
+I nf, -1 nf andNaN (not a number).Note that thesealues are not mentioned by the
ANSI standard, and are hence non-portafilke eficient macros should be used only if
these specialalues are not important.

6.4.2 floor and ceil

For positive values, thef | oor function is often equalent to simple type casting to
i nt, which may be more ftient. Similarly thecei | function may be equélent to a
simple macro imolving type casting.Possible macros fdrl oor andcei |, on non-
negaive values onlyare:
#define FLOOR(x) ((int)(
((int)(

#define CElL(x) ?2(3 + 0.999999999))

These macros are especiallyi@ént if ani nt value is needed, and notdoubl e as
returned byfl oor andceil. Howeve, they are non-portable, as implementations
differ in haw they handle comersions fromdoubl e toi nt .

6.4.3 Integral powers: pow

The standard library contains tpew library function to compute peers: pow X, y)
computesx’. Howeve, because th@ow function must handle generatponents, it is
not as dicient as it could be in special casé&sr example,pow( x, 0. 5) will probably
be more diciently coded asqrt (x). Another special case occurs whgnis an
integer Thus calls such as:

pow(x, 3.0); /* x cubed */
are most lilkely more dficient if they call a special function to handle iger pavers (the

abore gatement might beven faster ax* x* x). A simple function to compute irger
powers is:

doubl e i ntpow(double x, int n) /* compute x" */

doubl e resul t;

for (result =1.0; n!=0; n--) /* n-1iterations */
result *= x;
return result;

}

However, it is not too dificult to write a more éftient ersion which uses feer than
n -1 multiplications. for example, the computation of can be written as:

X7 = x4* x2* xL
which can be written out as the falling code which uses only four multiplications:
X2

X4
X7

X * X;
X2 * X2;
x4 * x2 * X,
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An improved dgorithm has reduced six multiplications to foand the impreement is
even greater for lager pavers — in fct, the number of multiplications reduces from
O(n) to O(logn). Thisidea can be implemented as a general algorithm, which uses the
fact thatx" can be brokn davn into multiplications of &lues that are all of the formi,
wherei is a paver of 2. For example:

X7 = x4t x2* xt

XG - X4* XZ

X3 = x4 xt

A careful ekamination of the patternwveals that each bit that is 1 in the binary represent-
ation of the gponent,n, indicates that a correspondingamy of x should be used in the
multiplication to create therfal result. In the follaving implementationbi t mask steps
through all the binary bits aof, while the statement* =x creates a poer of x with an
exponent that is a peer of 2.

doubl e i nt pow(double x, int n) /* compute x" */

i nt bitmsk;
doubl e result = 1.0;

for(bitmask = 1; bitmask <= n; bitmask <<= 1)

if ((n & bitmask) !'= 0) [* bit set? */
result *= x; /* use X in the result */
X *= X; /* make next power */

return result;

}

Note that this function is notalid for very lage \alues ofn (i.e. close tol NT_MAX
declared in<l i m ts. h>), as it will loop infnitely if the expressionn<<1 is an
oveflow (why?).

As a fnal caveat, note that the mathematical standard library functions mes ha
hardware support on some @& machines.On one machine | tried, theow standard
library function ran dster than the betteression ofi nt pow, particularly for lage
powers.

6.5 Avoiding gsort and bsearch

It is usually more difcient to write your wn specialized sorting and searching routines
than to use the general library functiogpsort andbsear ch. This is because both
library functions hae the relatvely high overhead of a call to the ussupplied function
for every comparison (i.e. a call to the pointerfunction agument). qsort and
bsear ch must call this comparison functionem to compare tw integers. Obiously,
it will be more eficient to write your wn special intger sorting and searching routines.
This is discussed in Chapter 8.

Another reason tovaid gsor t is itsO(n?) worst-case performance on certain sets of
data (which depend on the spécifariant of quicksort used) — foxample, when the
data is sorted in verse order
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The quicksort algorithm is not the best algorithm to use for a small number of
elements. Ihas some initial werhead, and some simpler algorithms suchudsble sort
or insertion sort may do better when the number of elements is small.

In addition, if the data is already partially sorted, it may be mdreiezit to use a
different sorting algorithm, such as insertion sort wenethe notoriously indfcient
bubble sort, because these algorithms will perform well on data that is almost Sdr&d.
various sorting algorithms are compared in Chapter 8.

6.6 Random numbers: rand

Ther and function may be more general than what you requiréaster pseudo-random
number generator might be a better altemeafithe numbers needrbe & "random" (i.e.

if the period of the sequence need not be particularly high, or if the digtrimeed not

be uniform). It can een be worthwhile to use code for a sophisticated generator with
good mathematical properties — access to the codesnbgossible to write the random
number generator out as in-line code andichthe function call verhead ofr and. A
common method of generating dar pseudo-random irgers is the linear congruential
method, which uses the folling formula for the sequence of random numbers:

Ri+1:(ARi +B) mod C

where A and B are lage prime numbers, ard is usually 2, wheren is the number of
bits in a word (themod operation dkctively prevents the random number fronvesflow-
ing the limits of ari nt). Fortunately the mod operation can be implementedi efently
as a bit mask becau€gis a paver of two. Thelinear congruential method is often used
to implement the and function. Itdoes suer problems in that theueer order bits are
non-random (e.g.and() %2 may produce the non-random sequence 0,1,0,1... on some
implementations), it the high-order bits wa reasonable properties.

Note that since manimplementations use this algorithm, programmers shoulid a
expressions such as:

val ue = rand() & 01; /* DANGERCUS */

to generate a random sequence sf@d 1's; on mag implementations the generated
vaues will be the not-so-random sequence: 0,1,0,1A .better solution is to use the
higherorder bits, as in the foleing code for a 32-bitnt machine:

value = ((unsigned int) rand() >> 16 ) & 01;

If a particular application needs only small random numbers, a sirepééon of the
linear congruential method can be used, although the genesdtied will not hee good
mathematical properties-or example, when generating randoralues to gie mandom
motion to creatures in an arcadange, a ery limited random number generator will
probably be satisttory because small random ees are adequatéd simple imple-
mentation of the linear congruential method generating numbers in the range 0..127 is:

value = (value * 41 + 1) & 127,
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The small prime &lues of 41 and 1 are adequate here because the range is smial(i.e.
small). IfC is lage, the alues ofA andB must also be lge.

The bitwise& operation can be remed by using one of G huiltin types. The use of
unsi gned char is equvaent to performing arithmetic modulo 256, and is usually
implemented difciently by grabbing theirkt byte of a wrd. Thefollowing code will
generate numbers in the range 0..255:

unsi gned char value = 0;

value = (value * 41 + 1);

A reasonably difcient method of generating a reasonably random sequenceafiQL’s
is to grab thénighest bit of this \alue:

unsi gned char val ue = 0;
val ue = (value * 41 + 1);
bit = (value & 128) >> 7;

One limitation of these &tient methods using small numbers is that the pattern will
repeat frequentlyIn general, the pattern will repeat aftérvalues, and the alue ofC
has been 128 and 256 in the @daode fragments.

There are aery mary non-portable methods of generating random numbé&here
may be an easyay to get a random number from the most random element in the system
— the human.For example, the program could@mine the mouse position (if the user is
frequently meing the mouse), or by measuring the number of clock ticks between user
keypresses. Anothdrardware-specit solution is to grab groups of bits from a particular
memory block (e.g. @M code).

6.7 Removing assertions

When considering this optimization, note that it may drebetter to lege assertions in
production code.The ungraceful termination of tlesser t macro is often preferable to
the unpredictable beh@r from the program.An alternatve worth considering is to
define your avn assert macro to ghibit more graceful belér. Nevetheless, remo
ing assertions is one method afracting the last drop of speed from your code.

The remea of assertions is an optimization that is commonlygfiiten and the
program does not run aast as it could.These should be remed by defining NDEBUG
before includingcassert . h>:

#def i ne NDEBUG
#i ncl ude <assert. h>

Other types of delgging checks should also be rema In particular any debugging
statements that produce output should be vethes unnecessary output will @aste much
processor timelf debugging code is properly placed in the program by using conditional
compilation (i.e#i f DEBUG), this is a minor change to the ohiion of a preprocessor
symbol.
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6.8 Writing your own malloc function

The standard library functions declaredkst dl i b. h> for dynamic memory allocation
are \ery general, and henceery slav. Thenal | oc andcal | oc functions must be
general to accommodatearying requests for déring size blocks and must return
addresses satisfying the most stringent alignment requiremBnits generality mads it
difficult for the allocation functions to be fiefent. Writing your owvn allocation
functions can impnee the eficieng/ of your program.Alternatively, C++ programmers
can werload thenewanddel et e operators as discussed in Section 5.6.

Themal | oc andcal | oc functions must store information in each block so that the
free andreal | oc functions knav how large the block is (this is stored in a header
block just before the address passed back to the progrEmg.all tales time, and the
allocator can rundster if the fl&ibility to reuse blocks of memory is abandonddbte
that this is a case ofagting space toain a speed increase.

A good ample of this situation is the symbol table in a compildre symbol table
must store each of its symbols, of unlmolength, in the tableBecause the maximum
number of symbols is unkam in adwance, it is best to use dynamic memoRather
than usaral | oc to allocate memory for the string storing each symbol,vafoaction
char _nal | oc is used.The source code for this function is shmobelav:

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>

#define Bl G_BLOCK_SI ZE 1024 /* Size of large menory bl ocks */
char *char_malloc(int size)
static char *address = NULL; /* Address of remaining nmenmory */
static int bytes_free; /* Bytes remmining in block */
char *tenp;

if (address == NULL || size > bytes_free) {
address = nal |l oc(BlI G BLOCK_SI ZE) ; /* Use the real malloc */
bytes_free = Bl G BLOCK_SI ZE;

tenp = address;

addr ess += si ze; /* Move to next free spot for next time */
bytes _free -= size; /* Count bytes remaining */
return tenp; /* Return address of string */

}

The char _mal | oc function runs muchaster than theral | oc function because it
performs much less computatioit. works by allocating aery lage block of memory
using the realmal | oc function, and then breaking fothunks of this block for each
string. Althoughthe call tormal | oc is slow, it is alled infrequently and this does not
greatly slev down the nev memory allocatar The main disadantage of the
char _mal | oc function is that memory for the strings cannot be reused after it is no
longer needed — that is, the strings cannot be friéedould be possible to implement a
char _f r ee function, ut for char _mal | oc to reuse the small blocks of memory for
each string it wuld be necessary to maintain a list of free blocks and their sizes, and
maintaining this free list auld defeat the purpose of writingasf allocatar
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The main dificulty with mal | oc andcal | oc is that these functions must operate
without knavledge of hav mary blocks will be requested, or of which féifent sizes will
be requestedThe programmerhoweve, will often know roughly hav mary blocks of
the \arious sizes will be required, and can use this information to write a nfiaieref
version of the allocation function for the particular program.

A good candidate for such arfiefeng/ optimization is a program that uses dynamic
memory for only one type of node, such as a binary tree implementation of a symbol
table. Theknowledge that only one size block will be required can be applied to write
faster node allocation and de-allocation functiolrsstead of usingral | oc andfr ee,
the program can use themé&unctionsnew_node andf r ee_node:

node = new_node(); /* Al'locate a node */
free_node(node); /* De-allocate a node */

The disadantage here is the need for a call to awslinitialization function called
set up_heap. Howeve, the cost of a call teet up_heap should be vershadeved by
the eficieng of new_node andf r ee_node if they are called frequently enougts-

suming the binary tree nodes are of typer‘uct node", theset up_heap call looks

like:

set up_heap(si zeof (struct node), ESTI MATED NUM NCDES) ;

The impravement @ined by this method comes from initially callimgl | oc from
set up_heap to allocate a laye block, and then using thew_node function to break
off chunks to use as node®ecause tharal | oc function is not usually called by
new_node, thenew_node function can be ery fast (indeed, it could be a macro).

The estimate of the number of nodes requireddtyup_heap is quite important; it
determines hwe big a block to allocate iset up_heap. If the estimate is too small,
new_node will occasionally need to catfal | oc to allocate another Ige block, which
is less desirable than a single initial calht®l | oc in set up_heap. If the estimate is
too lage, this vastes space and will also wl@lown the initial call toset up_heap.
Hence, the estimate should beglaenough to accommodate the mogllikequirements
of the program, it not a huge wrst-case upper bound.

The source code for the wdunctions is shen as follavs. Theonly non-trvial
details of the program are in the creation and maintenance of the freeTlist.
new_node function tales the ifst node of the front of the free list, thEr ee_node
function adds the node to the front, andgle¢ up_heap function initializes the free list
with a single loop.The free list is implemented as a letklist, with the "ngt" pointers
stored in theifst word of each nodeThis can cause alignment problems if the size of re-
guested blocks is an igalar number of bytesub there is usually no problem if the re-
guested size is the size ofar uct variable because suctaniables are alays of a size
that preents alignment problemsHowever, if alignment is a problem the free list could
be maintained as a separate list in another block of allocated memory
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/* __________________________________________________________________ */
/* EFFICIENT_MALLCC. C : fast dynamic allocation functions */
| o e o e e e e e e e e e e e e e e e e e e e e e e e e e e e eee o *

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>

static int estimte; /* estimated nunber of bl ocks */

static int block_size; /* Size of the block */

static void *free_list; /* Pointer to first free block */
2 */
/* Internal function to allocate big block, and thread the free list */
* *

static void *allocate_| arge_bl ock(int size, int nunber)

char * address, * tenp;

int i
address = mal |l oc(size * nunber); /* Allocate |arge bl ock */
/* Thread linked list of free blocks */
for (temp = address, i = 0; i < nunber - 1; i++, tenp += size)
*(vold**)tenp = tenp + size; /* Store next pointer */

*(void**)tenp = NULL; /* NULL on end of list */

return address
}
| o e e e e e e e e e e e e e e e e e e e e e e e e e e e e eee o * [
/* Initialize the heap for an estinmated nunber of nodes */
/* If more nodes are required, nore nmenory is allocated | ater */
| o e o e e e e e e e e e e e e e e e e e e e e e e e e e e e e eee o * [

voi d setup_heap(int size, int estinmated_nunber)

if (size < sizeof(void*)) { /* roomfor 'next’ pointers? */
fprintf(stderr, "Block is too small\n")
exit(1);
free_list = allocate_Il arge_bl ock(size, estimated_nunber);
estimate = estimated_nunber; /* Save for use in new_node() */
bl ock_si ze = si ze; /* Save the block size too */
}
2 */
/* Allocate new node of size requested earlier */
/* ___________________________________________________________________ */

voi d *new_node(voi d)

void *tenp;
if (free_list == NULL) /* Need another big bl ock? */
free_list = allocate_|l arge_bl ock(bl ock_size, estinate);
tenp = free_list; /* Save the bl ock address */
free_list = *(void**)tenp; /* Get ‘next’ pointer in block */
/* Update free list */

return tenp; /* Return the bl ock address */
}
/* ___________________________________________________________________ */
/* Free one of the nodes for re-use by new _node() */
/* ___________________________________________________________________ */

voi d free_node(voi d *address)

*(void**)address = free_list; /* Add node to front of free list */
free_list = address
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One minor disadantage of this implementation is that the memory allocatethby oc

is never properly de-allocated by thier ee function. To overcome the limitation, it is
necessary to maintain a list of thegeublocks that are allocated and add another function
to free all the lage blocks. This function is called wheall the nodes are no longer
needed.

6.9 Memory block functions in <string.h>

There are seral eficient "block operation” functions declared<iat ri ng. h>. These
are likely to be icient as the are often supported by assembly "blockwaoinstruc-
tions or similar The full list of memory block functions is\gn in Table 6.3.

Table 6.3. Memory block functions

Function Meaning

int nmencnp(sl, s2, n) Compareifst n bytes ofs1 ands2
void *nencpy(sl, s2, n) Copy n bytes froms2 tos1

void *nmemove(sl, s2, n) Asfornmencpy, but allov overlap
voi d *menchr(sl, c, n) Find first occurrence of ins1
void *nenset (sl1l, c, n) Set theifstn bytes ofs1 toc

The mentpy function is a highly dicient method of copng arrays. Rather than cop
each element of an artagne at a time, in a loop, threenctpy standard library function
defined in<st ri ng. h> can be used to cgphe entire array in one statement:

mencpy(b, a, sizeof(a)); /* copy array a to b */

An alternatve method of copging arrays is to mak use of the &ct that C permits

st ruct assignments. Thisiethod is not portable, ik unreadable and uses pointers
incorrectly by cowerting between tw different pointer typesHowever, it can be &ster

than nencpy because it mas use of the assignment operator rather than calling a
function. T copy an aray by this method it is necessary to declare @ demmy

st ruct type the same size as the array that is to be copieen type-casting is used to
fool the compiler into thinking it is cgng st r uct s when really it is coping arrays.

The method is illustrated belo

struct dummy_transfer { /* The new struct type */
int al MAX] ; /* This field gives the right size */

b
int al MAX], b[ MAX]; /* The array variabl es being copied */
*(struct dummy_transfer *)a = *(struct dummy_transfer *)b;

The assignment statemeirst type-casts both andb to be pointers to the mest r uct
type, and then dereferences these pointers so that the compilgedbilis sssigning
between tw st ruct s. Notethat the abee mde does not violate the constraint that a
type-cast gpression cannot be an #&uwe. Theassignment operator is applied to the
result of the* operator which alvays returns an l-alue. Thetype-cast gpression is an
operand td , which does not require an &le as its operand.



112 Chapter 6

mencpy can also be used to gogtructures dfciently on non-ANSI compilersThe
usual method of cgfing onest r uct to another is to use an assignment statement (i.e.
"b=a;"). However, some older compilers do not permit the assignment of whole
structs. Ifthis is the case, theencpy standard library function can be used instead
of copying fields one-by-one.

mencpy( &b, &a, sizeof(a)); [* copy struct ato b */

In cases where the memory locations to be copied mejap, themenmove function
must be used, asentpy gives undefned results. The nermove function will be less
efficient thannencpy, but should still be better than the altermedi such as an
initializing loop.

6.10 Summary

» Avoid using general functions when a simpler function will do the same job

» Functions such asbs andf abs are dificult for compilers to implement as safe
macros, and it may be morefiefent to dehe unsafe macros to perform these
operations.

» String comparisons can be impanl by testing the ifst character before calling
strcnp.

» The % formats forpri ntf andscanf are \ery general, and it may befiefent to
write specializegbr i nt _numandscan_numfunctions.

» Use onlydoubl e aguments when usingmat h. h>.
» gsort andbsear ch are ineficient because tlyecall a function for each comparison.

» Using in-line code to generate pseudo-random numbers castee than calling the
r and library function.

» Memory allocation can be impred by allocating lager blocks of memory
* Thenmentpy, menset andnermmove functions are difcient.

6.11 Further reading

For further information on the ANSI standard librattye deinitive reference is the ANSI
standard (refer to the Bibliograplfior details of hev to obtain a cog). An interesting

book discussing both use and implementation of the standard Jibrelyding full C

source code for all library functions, is the book by Plauger:

PLAUGER, PJ, The Sandard C Library, Prentice Hall, 1991.
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6.12 Exercises

1. Fixthe functioni nt powin Section 6.4.3 so that it ishd for all values ofn, even
as lage asl NT_MAX, for which it will currently loop inhitely. Hint: Modify the
loop so than is shifted right, instead dfi t mask being shifted left.

2.  Generalizehe functioni nt powin Section 6.4.3 so that it handlegyeéve integer
exponents.Hint: x™" = 1/x".

3. Modify the i nt pow function to emplg "special solution of simple cases" for
greater dfcieng for small alues ofn.

4. Writean eficientscan_numfunction to replace the use stanf’s % format,
under the assumption that numbers are in the range 0..999.

Whatsequence of statements can be used instestdrafat (s, "a") ?

6. Whatmodification should be made to ti&L ONER and TOUPPER functions in
Section 6.1 to ensure that the constads and’ a’' are constant foldedMint:
see Section 4.5.2.

7. Implementhe following functions as éfciently as possible:

a)strlen
b)strcpy
c)strcat

Ensure thastr cpy andstrcat behae properly and return thealue of their
first agument.

8. Thest r cpy function can be coded as a macro by lifting the requirement that it
return a alue and then coding it asvai d function. Designa macro for this
modified st r cpy function. Male are that the macro is "safe", in that sidieets
in the aguments are notveluated twice.Hint: The easiest ay to aoid side efect
problems is to ensure that the macrguanents appeaxactly once in the replace-
ment text. Thiscan be simply achved by declaring some temporanasiables.

9. Usea fast library function to impnge the eficieng/ of the following array initial-
ization loop:

for (i

= i < SIZE;, i++)
arr[i ;

0;
]
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Space-efficiency

In these days of rapidly declining memory prices, memory reduction techniques are
perhaps not as important as those for increasing spdedever, there are certainly
situations when reducing space requirementsrigrfore important than increasing the
speed of a progranilThis section discusses a nhumber of techniques for reducing memory
requirements. Unfortunatelgeducing space requirements can often reduce sfiéese
is a trade-dfbetween space-tieng/ and time-eficiengy.

Every C and C++ program uses memory foresal different purposes, and each of
these areas must be attadkseparately The memory usage of the program can be
divided into the follaving memory sections:

* Executable instructions.
« Static storage.
« Stack storage.
* Heap storage.

The eecutable instructions for a program are usually stored in one contiguous block of
memory Static storage refers to memory used by global and Isteiic  variables,
string constants and (possibly) floating point constar8tack storage refers to the
dynamic storage of nostatic  local variables. Heagtorage refers to the memory that
is dynamically allocated by thmalloc andcalloc standard library functions, or by
the C++new anddelete operators.

The memory requirements for threeutable instructions are ely independent of
the other memory areas, whereas the techniques for reducing the memaory required for the
other three areas are often similbdloweve, care must be taa that applying a technique
to reduce data space does not increase the amount of code toq timesilycreasing the
executable size.

114
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7.1 Reducing executable size

The size of thexecutable oliously depends on the size of your prograidence, the
obvious way to reduceecutable size is to reduce the number xdcatable statements
in your program.This could iwvolve deleting non-crucial functions from the program,
although this is not often possibl€ompile-time initialization of global andtatic
variables instead of assignment statements can also reduce code size.

Another possibility is that your compiler may support an option thaem#ie opti-
mizer focus on space reduction; it generaxesugable instructions that are as compact as
possible, rather than asst as possibleConsult your compiler documentation for
information about the optimizef it exists.

The size of thexecutable depends not only on the source codealso on thexdra
library functions that are lirdd by the linkr. Although it may seem that the programmer
has no control wer this, there are some techniques for reducing the amount efdlink
code. Thetechniques depend tely on haev "smart” your linler is — that is, whether
the linker links only the functions you nee&ior example, a "dumb" linkr might link the
entire 1/O library if one function is used, whereas a smaretintould link only that
function (and ay extra code it might need)If the linker is dumb, there is little to do
except &oid the library functions completely and write yowrronon-portable machine-
specifc functions. If the linker is smart, xecutable size can be reduced by replacing
large general-purpose library functions with yownospecial-purposeevsions. Br
example, theprintf  andscanf functions are gry lage because tlgehaveto handle a
multitude of format spedifations (especially real numberskExecutable size can be
reduced by writing yourwen functions to perform 1/O, usingetchar andputchar as
the basic I/O calls.For example, if you are using onB6din printf |, you can soid
usingprintf by writing your avn print_num  function:

#include <stdio.h>
#define BASE 10 /* decimal numbers */

void print_num(int num)

if (num < 0)
num = - num, putchar(’-"); /* handle negatives */
if (num < BASE)
putchar(num + '0"); [* only 1 digit number */
else {
print_num(num / BASE); * do left digits */
putchar((num % BASE) + '0); [* do rightmost digit */

}

This function can be used to perform all gee output, anghutchar andputs can be
used to output characters and stringsy(tire smaller tharprintf ). Anotherpossi-
bility is writing your avn minimal printf  function that supports only those format
specifcations that you actually use.

UNIX programmers can also use #teip  utility which strips symbol table inform-
ation from the gecutable. Havever, this is more rebeant to the amount of disk space the
executable fle uses than it is to the amount of memory it uses dusteguéion. Inary
case, UNIX programmers are rarely short of memory
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When reducing>ecutable size,\aid long macros and lge C++inline  functions;
use functions instead of macros, and reenbeinline  keyword from lage functions.
Surprisingly the use of macros and C+sline functions can actually reduce
executable code if the macro amline  function performs aery small computation
(e.g. adding tw numbers, or accessing arable in a class)The instructions generated
by the inline code may well bevier than those generated for a function celowever,
if the macro oiinline  function is \ery lage, &ery call to that function will generate a
large number of instructions angeeutable size will increase.

The choice of IBM PC memory model, as discussed in Section 4.8, carsime
effect on eecutable size.Using some of the "smaller" models can reduce the number of
instructions associated with pointer operations and function céle small and
compact models cause smaller function call sequencése small or medium
models use ery few instructions for pointer operations; tmempact and large
models use more,ub less than the number for theige model. Thenear andfar
(non-ANSI) qualifers can also reduce the code size of particular pointer stateriéets.
declaration ohear functions,near pointers andar pointers can reduce code size.

7.1.1 C++linkage problems

C++ poses some di€ult linkage problems for compilers that must usesastiag linker,
such as manC++ implementations on UNIX-based operating systefitse main areas
of difficulty areinline  functions and theirtual ~ function table.Let us &amine the
problem ofinline  functions.

C++ allawvs inline  functions, unlile adinary functions, to belefined multiple
times. Themain adwantage this dérs is that a class declaration andntsxe  function
definitions can be included as a headid® fvithout producing compilation (linkage)
errors about multiply dafed functions.

Unfortunately the inline function must appear in the object code as a real
function, een if the compiler can»>pand all its calls, because the compiler cannot
guarantee that it will alays be called in alé where the function body is visiblédence,
the compiler must emit a deftion of the function into the object codélowever, doing
so every time theinline  function is found will generate the function foregy file in
which the class declaration is included, which will lead to multiplyreef function
errors on most linkrs. Thesimplest solution is to geinline  functions the equalent
of static  function linkage to eliminate linkage errorklowever, this leads to a huge
increase in xecutable code sizeTo combat this problem, some compilers use a simple
heuristic that alles them to emit thénline  functions into only one objeciid. The
code for allinline  member functions is emitted only when tiefinition of the frst
non-inline function is found (i.e. the diftion of the non-inline function that appears
physically first in the class declaration)f there is no such non-inline function, the inef-
ficient method of emitting the function inteeey object fle must be usedHence, a
simple rule that will reducexecutable size for some C++ implementations is:

Always have at least one non-inline member function.



Space-efficiency 117

This can be achied by ensuring one of the member functions is non-inline,vendoy
creating a small dummy non-inline member functiohhe fev unused bytes of
executable code for this dummy function may well bert the eerall saving gained
from only linkinginline  functions once.

The implementation ofirtual functions has»actly the same problem in that the
virtual function table must be emitted intaaetly one fle. Compilersuse the same
heuristic tricks to do this, and one solution is the rulergébove.

Linkage should not be a problem for personal computer C++ compiler packages as
the implementor can simply impre the linker. The linker can be made smart enough so
that it meges identicalnline  functions and virtual function tables without emitting an
error messageln addition, it is reasonable to assume that this linkage problem will
gradually disappeges linkers become smart enough to geeidentical functions, or to
avad linking unuseddgtatic ) functions from an objecti€é. Unlessexecutable size is a
crucial issue for some reason, it is probably best to ignore the linkage problems in some
C++ implementations.

7.2 General techniques for reducing data size

There are mantechniques for reducing the size of program ddafthese techniques

apply to all three types of memory — static, stack and heap stohagmme cases, a
method may increase the memory storage in one area to decrease the memory usage in
anotheywhich is \alid only if the total storage requirements decrease.

7.2.1 Different data structures

The program should bex@&mined to determine if a lge space reduction can be agbie

by changing to dférent data structureskFor example, the program could use arrays
instead of linked lists or binary trees, tov@d the etra space due to pointer storage.
However, this also vastes more space if the array is not full, and iven detter to use
dynamic arrays, which do notaste ay storage, as»actly the right amount of memory

is allocated. Unfortunately using diferent data structures can sometimes reduce the
time-eficieng of programs.

7.2.2 Recalculation

This is eactly the opposite of the data structure augmentation, storing precomputed
results and lazywaluation techniques for timefe€ieng. The idea is to store as little
redundant information as possiblé/haterer can be calculated from theisting data is
recalculated each timeéNaturally, this reduces the timefefiengy of a program.

7.2.3 Unions

When using a lot of structures, space can be reducededpayng the dataiélds. This
can only be done if theelds to be wgerlayed are mutually»elusive (.e. the/ neve have
active data in them at the same timéeJhere is a special data type for this purpose: the
union . A union can be useful, forxample, when storing a tek from a compiles
lexical analyzer The union declaration bel defines a wariable that werlays two
fields, a character pointer antbag value.
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union token_node {
int token;
union {
char *identifier; /* name of identifier */
long constant_value; /* value of constant */
}un

h

The two fields of theunion never contain a alue both at the same tim#.the token is
an identifer, the pointerield points to the ideni#r string. If the token is a constant (e.g.
an intgyral constant or character constant), the leeld tontains its alue. Ifthe tolen is
some other type, neithdéeMl is used.

7.2.4 Reusing space

One vay to conser® memory is to reuse the space used bwrable. Theunion data
type is an wample of this general idea, and another is reusargabies for difierent
purposes. & example, rather than letting\s®al functions each va a bcal temporary
variable,i , they could all use the same globanable (although this is aew dangerous
practice). Asanother gample, if a program uses dv@milar arrays, gamine whether the
two arrays can share the same storage (possiblyua®a ).

7.2.5 Small data types: short, char

Instead of using arrays afit s, use arrays o$hort , char or unsignedchar
There is no problem with this method, ypided lage intger \alues are not being stored
(e.g. lager than 127 fochar , or larger than 255 founsignedchar ). Thistechnique
is also vorthwhile when applied tint fields instruct s dthough alignment restric-
tions may limit the impreement — use theizeof operator to determine if the size of
the struct  has been reducedSmaller local ariables could also be declared as a
smaller type, bt this may increase theeeutable size due to type cmnsions. Notehat
speed can be compromised by using smaller data types because of the \gpmsorsn
that often result.Similarly, usefloat instead ofdouble , where the greater precision
of results is not important.

For example, it is needlessly irfefient to store school grades, which are restricted to
0..100 as ait . The typeunsignedchar is adequate as it alis values from 0..255
and it will only require one byte, compared tetw four bytes foiint .

7.2.6 Bit-fields in structs

When storing small intgers instruct s, there is a ay to specify gactly the number of
bits required. These types are called bieltdls, and can only be used foeléls inside
struct s o union s. Whenusing bit-felds, small intgers or boolean flags are auto-
matically packd into astruct or union . This reduces storage requirements signif
cantly, but reduces speed because it is necessary to pack and unpack bits.

The type of a bitiéld can only bent or unsigned int . It cannot be sped#d
aschar , short or an enumerated typeJnless the &lues can be getive, the feld
should be declared amsigned int . If not, one of the bits will be used as a sign bit,
limiting the \alues that theidld can hold (and possibly causing errors if thegate
overflows these limits).
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To minimize storage, all the bitdlds should follev one after the otherlf not, the
compiler may not pack them all into the samerdv In the following example three
fields are paad into seen hits:

struct node {

unsigned int active:1; * boolean flag (0/1) */
unsigned int visited:1; I* boolean flag (0/1) */
unsigned int component:5; I* 0..31%

7.2.7 Parallel arrays versus arrays of struct

Because of alignment restrictions, a structure mase hausable padding bytesThe
number of padding bytes can be determined by usingizkef operatoyand subtract-
ing the sizes of each inddual field from the size of thetruct . If there are padding
bytes, replacing an array sfruct ~ with a number of "parallel" arrays renes the need
for this padding. An example of this change iswg@n in Section 4.3.5. Note that
reordering thestruct  fields may also be fefctive (see Section 7.2.9).

7.2.8 Packing

When dealing with laye arrays of small inggers, it can be morefefient to pack them
together (i.e. more than onalue per wrd), particularly when the information is binary
(true or &lse), because only one bit palue is neededOn some machines it canen
be worthwhile to pack arrays athar into arrays ofint — some machines use whole
integers for the representationalfar s.

Note that bit-elds are a form of packing prsled by the compiler and are much
easier to useHowever, hit-fields cannot avays be easily usedFor example, in the
following set implementation, bitelds are not ery useful becausefifiently accessing
256 diferent bit-felds (one per character) isry diffi cult.

Sets of characters can be padhn arrays of bitsSince each of the 256 characters in
a =t requires only 1 bit each to indicate membership in the set, a set data structure need
contain only 256 bitsFor space-€fi ciengy, these bits can be paaik into 32 bytes (each
byte contains 8 bits).

Theunsignedchar  type is used to represent a bytethe unsigned qualifier is
omitted, the routines mawif because aignedchar  value might be ngative, and
bitwise operations on getive values are not well-diefed.

Table7.1. Set operations

Function Meaning

init_set(set) Initialize as the empty set
add_member(set, ch) Add character to set
is_member(set, ch) Test if character is member of set

remove_member(set, ch) Remaoe character from set
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The basic functions needed for a set of characters anshdlable 7.1. An implemen-
tation of these set operations iswhdelav:

typedef unsigned char Set[32]; [* set is array of 32 bytes */
void init_set(Set s)

s[0] = s[1] = s[2] = s[3] =
s[4] = s[5] = s[6] = s[7] = 0; I* clear 8 bytes */

void add_member(Set s, unsigned char ch)

s[(ch & 0xf8) >> 3] |= 1 << (ch & 07); [* set bit */

void remove_member(Set s, unsigned char ch)

s[(ch & 0xf8) >> 3] &=" (1 << (ch & 07)); [* clear bit */

int is_member(Set s, unsigned char ch)

return (s[(ch & 0xf8) >> 3]
& (1 << (ch&07)))!=0; /* test bit */
}

The most complicated part of the implementation is the method by whichalihe of
ch, in the range 0..255, is cearted into an array inde0..31 and a bit maskThe array
index is found as the topmost 5 bits dli, shifted davn 3 places to ge a \alue in the
range 0..31.The lovest 3 bits oth give a alue in the range 0..7 to indicate which bit is
to be amined. Shiftinga 1 left by that maw bits gives a wnique bit mask for each of the
8 cases, with xactly one bit set.Thus al character @lue is mapped to a unique bit,
which represents its membership in the set.

7.2.9 Reordering struct fields

Because of the ard alignment on some machines, the ordeiigdfl$ in a structure can
change the size of struct . This only applies testruct s containing diferent size
fields. Ageneral rule for minimizing the space is to order fleéd$ from lagest to
smallest. Thisheuristic may not ge the best ordering —xamine the size of a \ie
different orderings using theizeof  operatorif space is crucial.This is a machine-de-
pendent optimization, and may nobvrk well on some machines.

7.2.10 Using malloc for character strings

A common space astage occurs with structures containing strinfkese are often
declared containing arrays dfar , as in:

char label[MAX]; /* Array of MAX characters */
If the strings are usually less than the maximum length, there is gasttge. Abetter

method is to allocatexactly the right number of characters for each strifnen storing
the stringmalloc is called to allocate the memory as folk
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char *label; [* Pointer to the string */
label = malloc(strlen(s) + 1); /* allocate memory */
strcpy(label, s); [* store the new label */

One disadantage of this method is thattea complications are caused by strings stored
separately to thetruct s. Caremust be takn as the labels are wqointers. This
complicates operations such awsisg and loading to/from ailé, as problems with
pointers must be resad.

The method may also actuallycrease space usage (if strings are abMAXcharac-
ters long) due to thexera memory used bynalloc for each allocated blockOne
method of &oiding this is to use thehar_malloc  function as described in Section
6.8, hut this will increase xecutable size.

7.2.11 IBM PC memory models

The choice of memory model on an IBM personal computer ¢actdlfie size of pointer
variables. Thesmall or compact memory models will store pointers to data using 16
bits, whereas other memory models will store pointers using 32 Biténters to
functions are slightly diérent; thesmall and medium models both store function
pointers using 16 bitsThe declaration ohear pointers, to code or data, by using the
near type qualifer, dso reduces pointer size to 16 bitdlemory models are discussed
fully in Section 4.8.

7.2.12 C++ static data members

One method of reducing the size of a C++ class object is to declare some of its members
asstatic . This change can be applied toyatata members that are the same for an
object. D declare astatic  data memberthe member declaration is simply pxefd
with the 'static " keyword, as belw:

class Circle {

static int x_origin, y_origin; // static data members
int x_centre, y_centre;

h

A static  data member is fctively a global ariable, lnt with the restriction that it is
enclosed in the scope of a cla3sis is \ery similar to the single-function scope restric-
tion of static  local variables inside functions.

The initialization of thesestatic ~ data members is slightly @li€ult. Thecorrect
method of initialization is to place amxmicit initialization of thestatic = members,
qualified by the class name, imaetly one ile (thus there is»actly one dehition). The
statements for this are:

Circle::x_origin = 0; [/ initialize static members
Circle::y_origin = 0;

Unfortunately the compile-time initialization bernief of static  data members are lost
in early \ersions of C++ (before C++ 2.0) because this syntax is not permittetiese
versions, the only method of initializingtatic  members is to use an assignment
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statement in a member function, and it is often useful to declare a dummy object just to
initialize these members:

class Circle {
static int x_origin, y_origin; // static data members
int x_centre, y_centre;
initialize() { x_origin = 0; y_origin = 0; }

h
main()

Circle c;

c.initialize();

I rest of program
}

In such situations, it can be mordieknt to rely upon the implicit initialization to zero
of static  data members (similar to that for globaliables). Hwever, this is of little
use if initial \alues of zero are not required.

7.3 Reducing static storage

Static storage refers to the memory for global and latafic  variables, string
constants and (possibly) floating point constarti.of the general techniques discussed
above @n reduce the size of the global atatic  variables.

The space requirements for string constants can be reduced if the compiler has an
option to mege identical string constants (which arise quite frequentiigte that this
can create problems if string constants are reatjifiithough modifying string constants
does defy the ANSI standard and should\méded.

If there is no such option, or the option does notgeatring constants across object
files (which is quite likly), meging string constants can be aclei by the programmer
although the method isif from elgant. A global \ariable can be declared to hold the
string constant and the name of thisar array is used instead of the string constant.
For example, instead of using:

#define TITLE "A very long string ... "

in a headerile, a global array ofhar can be declared to hold the strings with all C
global \ariables, the initialized digiition of the array should appear in only one C source
file, and arextern declaration of theariable should appear inyaheader ile or other
source ile that uses theariable.

extern char TITLE[]; /*in header file */
char TITLE[] = "A very long string ... "; /*in C file */

This change is unlidy to reduce the speed of the program, nor does it increase memory
requirements\en if TITLE is used only once (there may seem to bexaita & bytes to
hold a pointer &lue pointing at where the string of characters is storgadhts is not so).

If there is a lage global orstatic  variable, the amount of static storage can be
reduced by allocating it on the heap usinglloc or thenew operatoy or by making it
an automatic ariable. Thisis particularly useful if the object has a short "lifetime", in
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the sense that it is used only briefly (e.g. the array is used as temporary storage inside a
function). Ifthe \ariable is used all the time, this change dde®duce the werall space
problem, lut simply maes the problem to another area.

7.4 Reducing stack usage

Stack storage refers to memory storage used for function calls, and includes non-
static  local variables, function parameters and system information useekew tkack
of function calls.Hence, the basic methods of reducing stack storage are:

« Using faver and smaller automatic locanables.
« Using faver and smaller function parameters.
» Reducing the depth of function call nesting.

The size of parameters and localiables can be reduced using the general techniques
discussed ahe. Another method of reducing the size of parameters is to pass pointers to
struct s instead of passing whokdruct s (see Section 4.6.2)In C++ this can be
done using reference parameters, which are mogargléhan cowerting a function to

the use of pointer guments (see Section 5.2).

Local variables can be reduced by reusing loeaiables, although this can introduce
bugs if not enough care is tak. Commorexamples of reusableaviables are scratch
variables, such as temporariesfor loop inde variables. Br example, if a function
uses tw different \ariables for non-nesteidr loops, a single ariable can usually be
used for both loops.

Paameters can be reduced by using globaiables, or by packing some of them into
astruct and passing a pointer to thlEguct

Local variables and parameters stored on the stack can be reduced by declaring them
asregister . Any local variable or parameter of irgeal or pointer type is a candidate
for declaration asegister . If the compiler does actually use gister for the ari-
able, the amount of stack space has been redd®tg. thatregister ~ variables are not
helpful if the function is recurgg, because the alue of ay non-static  variables,
includingregister  variables, must be stored on the stack.

Another method of reducing locahrables is to use parameters as if/thvere local
variables. Thids safe in most cases because call-bBlyw parameter passing peats the
function aguments from being changedhis optimization is xamined in Section 4.6.4.

Reducing the depth of function call nesting (especially \mydang recursion) also
reduces stack space requiremeniihis can be achied by using preprocessor macros,
inline  functions or &plicit inline code, It all these methods will increase code size
(unless the function isevy small).

Recursion should bevaided as much as possible by using iteeatgorithms or tail
recursion elimination (see Chapter 3)f lvheneer recursion does occuthere are some
extra considerations for reducing stack usagjbe cowersion of a recurse dgorithm to
one using anxlicit stack data structure will greatly reduce stack usage, although it will
increase other memory usage because of the memory requirements of the stack (see
Section 3.9.2).
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Since, in a recurgé function call, all norstatic  variables are ssd on the
function call stack, localariables should be spdeifl asstatic  if possible. A variable
can be madstatic if the value it has before a recursifunction call is not used am
after the recurse @ll has returned (i.e. it doesmhatter if the recurse all overwrites
its value). Notethat making a ariablestatic = changes the meaning of initialization
and will usually require changing the initialization to apleit assignment statement at
the start of the functionAs an eample, the follaving print_tree function (to print a
binary tree using indentation to shds tree structure) has its locariablei declared as
static  because itsalue is not important to the recusialls:

void print_tree(node_ptr tree, int indent)

static int i; [* ---- static variable! ---- */
if (tree = NULL) {
print_tree(tree->left, indent + 4); [* left subtree */
for (i = 0; i < indent; i++) /* indent */
putchar(’ *);
printf("%d", tree->key_field); [* print key */
print_tree(tree->right, indent + 4); /* right subtree */

7.5 Reducing heap usage

The amount of heap storage used depends on the size of blocks, the number of blocks and
how quickly allocated blocks are freedhe size of blocks can be reduced by the general
techniques discussed afgofe.g. packingunion s). Thenumber of heap blocksfatts

heap usage in the wbus way (more blocks means more memory) and because of the
fixed gpace werhead of a f@ hidden bytes to store information about the block (so that
free can de-allocate it).

When small blocks are used, it can be useful to pack more than one block together to
avad this fixed orerhead of a f& bytes per block.A good method of doing this is to
redefne the C library functionmalloc andfree (see Section 6.8), or torerload the
C++new anddelete operators for the class (see Section 5.6).

All allocated memory should be returned to the heap as early as possible, using the
free function in C, and thelelete operator in C++.If memory is not freed, unused
memory (called grbage) can accumulate and reduce tiadadle memory

7.6 Alternative methods of data representation

There are manways to represent data, and alVéaarying space usagd=or example,
storing all the primes less than 1000 can be done with a list gknstea list of the diér-
ences between succegsjrimes, or a bit gctor one bit for each inger 1..1000.
Compressing data can reduce space requirements wigendarounts of data are
involved. For example, a program using a d¢@ number of graphical images maiydf
that storing them as pixmaps is impractichllowever, if only a small number of pels
are set in each image, only a list ofgixset need be store8imilarly, if the images are
line drawings, lists of start-end points for each line can be stofédre are manother
more general methods of image compressiahthese are lyend the scope of the book.
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Another data representation technique is to use a function to represent thEaodata.
example, consider the storage oWveal images generated by a fractal algorithm: the
simplest method of storing the images is to store them as pixnEajpsa much more
space-dfcient method is simply to store thalwes of ayp arguments passed to the
function creating the fractal image¥his way, the images can be recreated by calling the
function with the correct guments. Thenly space used is a small number afues
containing the guments and the instructions for the functidtowever, the recalcula-
tion of an image by this method isteemely time-in€fi cient.

7.7 Summary

» Executable size can be reduced byiding lage macros anéhline  functions and
by not using the lger library functions.

e Space can be reduced by usingion s, small data types and C4static  data
members.

» Packing can be implemented by using bitwise operations oielsf

» Stack usage can be reduced by replacing loaghbles with global ostatic  vari-
ables, and by passing objects by reference.

» Heap usage can be reduced by neditlef malloc andfree in C, or thenew and
delete operators in C++.

7.8 Further reading

A number of methods of trading time for space, such as recalculation, are discussed in
Jon Bentlg’s book. JonatharShapiro discusses the problems of linkage in C++ of
inline  functions and the virtual function table.

BENTLEY, Jon Louis,Writing Efficient Programs, Prentice Hall, 1982.
SHAPIRO, Jonathan SA C++ Toolkit, Prentice Hall, 1991.

7.9 Exercises

1. Write a more time-eficient non-recurse vesion of theprint_num  function
given in Section 7.1. Hint: Generate the digits right-to-left and store them in a
temporary array of characters, then print out the characterserseeorder The
size of the temporary array will depend on the maximainesanint can hold,
which can be found byxaminingINT_MAXin <limits.h>

2. [adwanced] Write yourwn minimalprintf  function supporting onlged %sand
%c using the<stdarg.h>  macros:va_start , va_end, va_arg . By how
much does linking this function, using the napniatf  , reduce the code size?

3. Aneducational program needs to store ih& 1000 Fibonacci number&Vhat is
the most space-etient method of storing these numbers?
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A program that tests a tg data structure generates a list of random numbers to
insert (and then later deletepfter seeding the random number generator by
calling srand , the program repeatedly calland to generate a number which is
inserted into the data structur®@ecause the program must later call a delete
function with the same sequence of numbers, each random number is also stored in
a huge array Naturally, this involves massie gace vastage. Ha can the huge

array \ariable be dispensed withHint: The sequence of numbers generated by
rand is not truly random and can be reproducedvo

Whenattempting to reduce the size of theeautable, wly is it usually foolish to
replacescanf with a specially written functionus still allow calls tosscanf or
fscanf ?

Wl moving local \ariable declarations into inner blocks reduce stack usape?
following declaration is Igd in both C and C++:

if () {
}

inti; /* declaration in inner block */

In a certain school grades arevgn from 0..100, with half marks alieed. Hence,
the folloving are lgd grades: 0, 0.5, 1, 1.5, 2.0, et@Vhat is the most space-
effi cient method of storing these grades?
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Abstract data types in C++

This chapterxamines dicieng a a much higher leel than others doThe methods of
implementing arious abstract data types aneamined from the point of we of
choosing the correct data structure to implement the abstract data type (ADTost
cases, there are aahtages as well as disahtages in a particular choice of data
structure, and this chapteramines the trade-fsf involved.

This chapter assumes that the readeraiilfar with the most common data
structures, such as stacks, arrays,dehkists, binary trees and hashinghe level of
knowledge assumed approximates theellegained in a ifst-year computer science
course.

The C language does not spiefly support the concept of abstract data types, b
the C++ language pvades classes as a direct means of implementing abstract data types.
For example, the C++ notion of constructors and destructorsesmékwery simple to
initialize a nev object. Thecompile-time varnings about access violations are also
useful in guaranteeing that an abstract data type cannot beeaddujf functions other
than its evn member functionsBecause of the simplicity of coding abstract data types in
C++, almost all thexamples in this chapter are coded in C++.

8.1 What is an abstract data type?

The concept of an abstract data type is related to modular code and becomes increasingly
important in lager programming projectsThe aim is to separate the manipulations on a
data structure from the code that uses the data structoreb this, it is necessary to
ensure that the data structure is accessed only by special routines and not by direct
reference to the underlying representation of the data structure.

It is important to distinguish between abstract data type and adata structure. An
abstract data type is an abstract entity that is implemented in practice by using a data
structure. ltis the aggrgate of the data structure and the functions operating on the data
structure.

127
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8.2 The stack ADT

The classicxample of an abstract data type is the stddhke eseryday concept of a stack
is that things are put on the top, and reedofrom the top. The stack abstract data type
supports the same operatioriBhe most common stack operations arenshan Table
8.1.

Table 8.1. Stack operations

Operation Meaning

push Put an element onto the top of the stack
pop Remae an dement from the top of the stack
is_empty Testif the stack is empty

To implement the stack as a proper abstract data type, these operations should be the only
way the data structure implementing the stack is acted upbase functions create and
modify the data structureThe program using the stack abstract data type should use the
stack as if it is &lack box that pravides the required functionality — i.e. elements pushed
onto the stack can be later poppé&tkactly hav this black box is implemented should be
unimportant. Thisapproach is calledhformation hiding or encapsulation because the
details are hidden in a small part of the prograie program using the stack should not
rely upon which data structure the abstract data type is implementedReitexample,

it should not use the kmdedge that the stack is implemented by a structure containing an
array and an inger stack pointerUsing this knavledge to check if the stack is empty
with:

if (stack.sp == 0) /* 1If enpty stack */

is incorrect practice because at some stage the implementation of the stack abstract data
type may change to use some other data structure, such asdligtkThe test should
be made with a call to the appropriate abstract data type operation:

if (is_enpty(stack)) /* If enpty stack - C style */
if (stack.is_enpty()) /* If enpty stack - C++ style */

The program should mer access the data structure directly any gperation is required
that is not currently supported by thesting abstract operations, amebstract data type
operation should be added.

To the nwice programmerthe use of abstract data types may seem totally pointless.
Defining an atra function or macroi s_enpty, may seem wasteful and indifcient.
Why shouldnt the program tad advantage of he the stack is implemented®/hy call a
function just to test an inger?

The adantages are qualities such as increased readability and greater modularity
Modularity refers to the lack of dependence between parts of the protfrarprogram
is modulayit is easier to debg. Oncethe abstract data type routines areudgfed, there
should be no need to test their correctness, no matter what progmamrehased in.
With less modular code, a small change to atereal routine could ruin the data
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structure. Vith proper use of an abstract data type, the consistéitbe data structure is
ensured once the abstract routinegehaeen debgged.

The objection that thies_enpt y function is ineficient can beercome by using an
i nl i ne function in C++, or a preprocessor mactro in C.

In fact, the declaration of abstract data types can wesfoy because it is simple to
modify the abstract data type to use d&edént, more difcient data structurelf the stack
pointer \ariable, sp, were aleed to be accessed dire¢tthanging the data structure im-
plementing the stackauld involve a ®arch through all the souraées for such useslf
thei s_enpty function is used, only its deftion need be changed, andyatode that
uses a gack remains unchanged.

8.3 Array implementation of the stac k ADT

A simple and dicient implementation of a stack uses an array of elements and ger inte
(called thestack pointer) which is an inde into the current top of the stack (in the imple-
mentation belw it is actually one past the top of the stackjhe stack gres up and
down in the arrayfrom the zeroth element up to the entry indicated by the stack pointer
(actually one less than the stack poinssrthe stack pointer usually points to thexne
free space).When the stack pointer is zero, this indicates an empty sfHo&. array
implementation is limited in that its size igdd. Thestack can hold no more than some
maximum number of elements, \@ag the potential for stackverflow.

The stack has been implemented in C++ simply because the declaration of abstract
data types is more transparent in C++ than imle C++ code for thearious routines is
shavn belav:

#i ncl ude <stdlib. h>
#i ncl ude <i ostream h>

const int SIZE = 100; /1 How nmany el enents in stack
typedef int data_type; /] Type of data is int
class Stack {
private:
data_type arr[ Sl ZE]; /1 Array holding the stack
int sp; /1 Stack pointer
publi c:
Stack() { sp =0; } /] constructor
int is_enmpty() { return sp == 0; }
voi d push(data_type data)
data_type pop();

inline void Stack::push(data_type data )
{
if (sp == SIZE) { /1 Aready too nmany?
cerr << "Overflow error\n";
exit(1l);

arr[sp++] = data; /1 Push onto end of array
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}
TR
I POP() Take el ement fromthe top of the stack
e
inline data_type Stack:: pop()
if (sp ==0) { /1 No el enents ?
cerr << "Underflow error\n";
exit(1);
return (arr[--sp]); /1 Pop fromend of array

8.4 Linked list implementation of the stac k ADT

The main disadantage of the array implementation of the stack ADT is that stack
overflow can occur Stacks implemented as liell lists can not stdr from overflow
(except in the rare case of the system running out of heap memory), and may also be
more space-étient, as only the actual amount of space needed is allocated (this more
than balances thexea space needed for theext " pointers). Havever, the disadan-
tage is that theare less time-difcient than array implementations because thestirist
nodes require calls to the memory allocator

Linked list implementations of a stack usually use a singledirist. Insertions and
deletions push andpop) are performed at the head of the ligtor eachpush, a rew
element is allocated memoryor eachpop, an dement is returned to the heaphe
C++ code for an implementation of a stack igegibelow:

#i ncl ude <i ostream h>
#i ncl ude <stdlib. h>

typedef int data_type; /'l Type of data is int

class Stack;

struct Node { /1 Node on the linked |ist
Node *next;

data_type data;
Node(data_type d) { next = NULL; data = d; }

b
class Stack {
private:
Node *st ack; /] Head of linked list of nodes
public:
Stack() { stack = NULL; } /1 constructor
int is_enpty() { return stack == NULL; }
voi d push(data_type data);
) dat a_t ype pop();
N e R
/1 PUSH:. Push an el enent onto the top of the stack
e

voi d Stack::push(data_type data)
{
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Node *new _node = new Node(data);
/1 Add to Front of list

if (stack == NULL) /1 if enmpty list
stack = new_node;
el se { /1 Insert at front of I|ist

new_node- >next = st ack;
stack = new_node;

}
}
e R TP
I POP() take element fromthe top of the stack
e e
data_type Stack:: pop()
{
data_type tenp; /'l Tenp storage of fn return val ue
Node *tenp_ptr;
[/ Get fromFront of |inked |ist
if (stack == NULL) { /1 if enpty stack
cerr << "Internal error: POP fromenpty stack \n";
exit(1);
el se { /1 Get fromfront, then delete first el enent
temp = stack->dat a;
tenp_ptr = stack->next;
del ete stack; /1 delete the used node
stack = tenp_ptr; I/ store new head of |ist
return tenp;
}

8.5 Hybrid implementation of the stac k ADT

The array implementation of a stack is morfecednt than the lingd list implementation,
but has the limitation that stackverflow can occur A better method that is bothfieient
and general is to use lybrid implementation, and combine both approachdsthe
number of elements on the stack is smally tae stored in an array; if there are too
mary, a rode is allocated and thewelement is stored on a liekl list. Hence, theifst n
elements of the stack are stored in the array apexras are placed in a liek list. The
code for the yibrid implementation is:

[ ] e = e e e e il

#i ncl ude <i ostream h>
#i ncl ude <stdlib. h>

const int SIZE = 100; /1 How nmany el enents in array

typedef int data_type; /'l Type of data is int

class Stack;

struct Node { /1 Node on the linked Iist
Node *next;

data_type data;
Node(data_type d) { next = NULL; data = d; }
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class Stack {

private:

data_type arr[ Sl ZE]; /1 Array holding the stack

int sp; /1 Stack pointer

Node *st ack; // Head of linked |list of nodes
public:

Stack() { sp = 0; stack = NULL; } /1 constructor

int is_enpty() { return sp == 0;
voi d push(data_type data);
dat a_type pop();

voi d Stack::push(data_type data)
{

if (sp == SIZE) { /1 Array is full; use list
Node *new _node = new Node(data);

/1 Add to Front of Iist

if (stack == NULL) /1 if enmpty list
stack = new_node;
el se { /1 Insert at front of I|ist
new_node- >next = stack; // add new node to front
stack = new_node; /1 update head of I|ist
}
el se { // Array not full; add to array
arr[sp++] = data;
}
TR P TP
/1 POP() take elenent fromthe top of the stack
e
data_type Stack:: pop()
{

data_type tenp; /] Tenp storage of fn return val ue
Node *tenp_ptr;

if (stack !'= NULL) { /1 Pop fromlinked |ist

/'l Take fromfront,

/1 then delete first el ement
tenmp = stack->dat a;

tenmp_ptr = stack->next;

del ete stack; /] del ete unused node
stack = tenp_ptr; /'l update head of I|ist
return tenp;
el se { /1 Not using linked list; get fromarray
if (sp ==0) { [/ if array enpty
cerr << "Internal error: POP fromenpty stack \n";
exit(1);

return arr[--sp];
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8.6 Searching — the symbol tab le ADT

The symbol table is an abstract data type that supports searching, insertion, and deletion.
In its abstract form, the symbol table consists of a number of records, each record
containing a number ofdlds. Onespecial feld, called thekey field or thesymbol, distin-
guishes the recordslhe otherields in a record are the data associated with efye For
example, when implementing a dictionary obmis, the ky field is the verd and the
other felds are the wrd’s meaning and pronunciation.

These records must be stored in some data strudtater sections will @amine the
implementation of a symbol table as an gredinked list, a binary tree and a hash table.
As the symbol table is an abstract data type, it is necessaryite deé operations
allowed on a symbol tableThe most common operations areegiin Table 8.2.

Table 8.2. Symboal table operations

Operation Meaning

search Search the symbol table for ayk

i nsert Add a nev key  the symbol table
renove Delete a ky from the symbol table

vi sit Examine all leys, not necessarily in order

print_sorted Printall keys in sorted order

Unfortunately "delete" is a C++é&yword, otherwise U use it as the name of the member
function performing deletion.

Thevi si t operation refers to groperation on all thedys that does not require that
the data be sorted — forkample, printing the unsorted data, or counting the number of
stored leys. Thevi sit operation is distinguished from printing the data in a sorted
fashion because some data structures supgoctestt non-ordered visiting,ub are inef-
ficient when sorted data is required.

An important decision to be made when implementing a symbol table is whether
duplicates in the list of records are to be alled. Duplicatesare records where thek
fields are equal,ub the dataiélds are not necessarily equdf.duplicates are allwed,
some routines must be mddil accordingly For example, the delete function may need
to delete more than one record if it is to remal duplicates. If duplicates are not per
mitted, what action is to be tak when the insert function tries to insertey khat is
already stored in the symbol tabl&®r example, the program could either silently ignore
duplicates by preenting the insertion, or terminate with an error message.

8.7 Alternative data structures

Later sectionsxamine the implementation of the symbol table using arraysdifikts,
binary trees and hashing, all of whichvbaarious adantages and disadntages. The
choice depends upon which operations are most important.

Search is likly to be &stest using hashingorted arrays ge guaranteeddst search;
binary trees gie good average search performance; lield lists and unsorted arrays are
not as dfcient.
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Insertions in sorted arrays and sorteddithkists are slo; insertions into binary trees
are not quite as shg insertions into unsorted liekl lists and unsorted arrays aerw
fast; insertions into a (chained) hash table are gage f

Deletions are similar to insertions in terms of costeet for unsorted arrays and un-
sorted linked lists which hee dow deletions. Notdhat deletion will alvays cost at least
the same as search, because deletisolvies a search operation timd the ley keing
deleted.

Sequential processing is an important consideratibor example, some data
structures dcilitate the printing of a sorted list of entries in the symbol talléhe
entries need not be processed in a sorted ,dhdearraylinked list and binary tree imple-
mentations are eqealent; hashing is slightly lessfafient because of the w@sal of
empty locations in the hash tablH.entries must be processed in sorted order (e.g. to
print a sorted list of entries), some implementations requirexplicié sort operation.
Unsorted arrays and lists, and hashing all require a sort oper&ioary trees, and
sorted arrays and lists allleathe data already sorted, and require no sort operation.

The complaity measures for theavious operations are sho in Table 8.3. For
those notdmiliar with this type of compiéty measure, the general ordering fromstest
to slovest is:

0O(1) <O(log n) < O(n) < O(nlogn) < O(n?)

Some of the measures for the operationsahld 8.3 are rough; forxample, theO(1)
compl«ity of hashing operations is slightly misleadingn average, hashing ges dose
to constant performance if:

a) The hash functiongs a easonable distriliion, yielding fev collisions; and
b) The number of elements is not sigeahtly lager than the hash table size.

Similarly, the O(log n) performance of binary trees is avesage fgure. Underdegener
ate conditions binary trees may shine sameéd(n) performance of sorted lists.

The Print-Sorted column displays the cost of printing a sorted list of entriglsis
cost irvolves the cost of printing, plus a sort operation, if requi®akting is assumed to
costO(nlogn), as this is achiable by a number of diérent sorting algorithmsData
structures where the data is already sorte fige best possible compiéy for printing,
Oo(n).

Table 8.3. Complexity of symbol table operations
Data structure Search Insert Delete \isit Print-sorted

Sorted array O(logn)  O(n) o(n) O(n) O(n)
Unsorted array O(n) o) o(n) O(n) O(nlogn)
Sorted list O(n) o(n) o(n) O(n) O(n)
Unsorted list O(n) 0(2) O(n) O(n) O(nlogn)

Binary tree O(logn) O(logn) O(logn) 0O(n) O(n)
Hashing o) o) 0O(1) O(n) O(nlogn)
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The choice of data structure for implementing the symbol table ADT should be based on
the cost of performing the operations mosglikto occur For example, if faist search is
imperative, but sorted output is rarely needed, the hash table is idé@kever, care
should be taén when choosing a complicated algorithihese measurements are
asymptotic and when the number of elements is small, wedaead of implementing a
more complicated algorithm may be prohiati If the number of elements igrny small,
perhaps an unsorted array will be moditcédnt, as there is no memory allocation and no
hash function to computeArrays are ery good if you knw in advance hav mary
elements are to be stored in the symbol tabighis case, the generality of dynamic data
structures is not an adntage. Hwever, if it is unknovn hav mary elements are to be
stored, array implementations may be too limited.

8.8 Unsor ted array version of the symbol tab le

Arrays are best used for data that doedmange frequently (i.e. with feinsertions and
deletions). Ifthe data is changing greatly dsnamic structure such as a lewklist or a
binary tree is generally betteArrays are most appropriate when the amount of data is
known at compile-time, so that the program can resére right amount of memaryif

the size is unknen, enough space can be resehfor the lagest possible size, or a
dynamic array can be allocated ivgl | oc, or the new operator once the required size

is known.

When searching an array that is nowvals completely full, an ingger \ariable is
necessary todep count of ho mary elements are actually stored in the arrd&his
prevents searching the unused entries of the arAdgo necessary for insertion is another
integer \alue indicating where the xiefree location in the array isCorveniently, this
index can be combined with the count becauserthdements in the array are stored in
the location9®. . n- 1, so that the ngt free location in. Thus the symbol table imple-
mentation uses an array and angetealue.

An important choice concerning array implementations is whether the data should be
sorted or unsortedThis section gamines unsorted arrays and Section &amenes
sorted arrays, which fafr faster searchub slaver insertion. Unsorted arrays @dr slav
search bt very fast insertion.

The C++ class declaration for the unsorted array implementationvis)dhedav. It
consists of an array of records,\egy room for the addition of associated dadds, and
an intgyer counter The deinitions for the member functions appear in subsequent sec-
tions.

#i ncl ude <i ostream h>
#i ncl ude <stdlib. h>

const int MAX_ELEMENTS = 100; // Maximum el enments in synbol table
typedef int key_type;

struct key_record {
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key_type key_ field; /1 key field
/1 .... other data fields here
b
cl ass Synbol Tabl e {
private:
key_record a[ MAX_ELEMENTS]; // array
int n; /1 nunber in array
public:
Synmbol Table() { n = 0; } /'l constructor
int search(key_type key);
voi d renpve(key_type key);
voi d insert(key_type key);
b

8.8.1 Searching an unsor ted array

The only way to search for an item in an unsorted array is to go throtagh element
systematicallyone after the otherThe simplest ay is to start at the zeroth element, and
go through all the restThe C++ code for sequential search igegibelow. It assumes
that the array is an array sf r uct s with ani nt key field. Thesearch function returns
the index of the element if found, or -1 if not foundhe following version uses the
"looping davn to zero" optimization (see Section 4.1.4)t Hoes not use a sentinel (see
Section 3.8):

i nt Synbol Tabl e: : search(key_type key)
{

register int i;

for (i =n - 1; i >=0; i--) { [// For all array elenents
if (a[i].key_field == key)
return i; /! Found, return |ocation
}
return -1; /1 Not found, return error

8.8.2 Insertion in an unsor ted array

Insertions into unsorted arrays aeryeficient. Themethod is to add the wekey 1 the
end of the array and then increment thegateto point to the me free location. The
simple C++ code for this is:

voi d Synbol Tabl e: :insert (key_type key)
{

if (n == MAX_ELEMENTS) {
cerr << "\n Table Overflow \n\n"
exit(1l);

a[n].key_field = key; /] Store the new el enent
n++; /1 I'ncrement the counter
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8.8.3 Deletion in an unsor ted array

As with deletion operations for all data structures, deletions in unsorted arrays @& brok
into two phases — search and deleféhe search for an element must use sequential
search as albe. If the element is found, it can be deleted.

The deletion phase can be implementedy\eficiently by mwing the highest record
down to fill the newly created hole (i.e. cgpthe highest recordver the one that is to be
deleted). Thignethod cannot be applied to sorted arrays, as it ruins the orddtirg.
C++ code for this is:

voi d Synbol Tabl e: : renmove(key_t ype key)
{

register int i;

i = search(key); /] sequential search
if (i ==-1)
cerr << "Key not found\n";
exit(1l);
el se { Found it so delete it

/1
a[i] =a[n - 1]; [// Copy the last record
n--; /1 Decrenent count of keys

}
}

If there is the possibility of duplicates in the arrinen these duplicates must be found
and deleted alsoTo do 90, the search operation must be continued from the current
location until no more are found.

8.9 Sorted array version of the symbol tab le

Sorted arrays ha the adantage wer unsorted arrays of muclagter search,up have the
disadantage of shver insertions. The ordering of &ys in the array permits &tient
sorted output and mak possible the use of a highlyfieient search algorithm called
binary search.The C++ class declaration for the sorted arrassion is identical to that
for the unsortedersion in Section 8.8; only the member functions change.

8.9.1 Searching sor ted arrays: binar y search

When an array is kwen to be sorted, a much mordieient searching algorithm, called
binary search, can be usedBinary search is so commonly used that there is a standard
library function to perform binary search, callbdear ch. Howeve, the bsear ch
function is ineficient, not because it uses a poor algorithuh Because it must call a
(usersupplied) comparison function fovesy key comparison. Thigneans that it must
call a function just to compare dwntegers when searching an array of gees. or this
reason it is more #tient to write your wn binary search function than to use
bsear ch.

The binary search algorithm relies on theykkeing sorted and cannot be applied to
an unsorted arraylt works byhalving the intenal to search at each iteratiomitially it
considers the entire arrayrhe algorithm repeatedlynids the ky in the middle of the
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current search inteaV which is compared to the searobyk If the leys ae equal the
search is successfulf the search &y is geater than the middleel the search éy is
certainly not in theifst half of the interal (because theels ae sorted), and the we
interval becomes the top half of the old intalcv Similarly, if the search éy is less than
the middle key then only the bottom half need be consider&dis halving process is re-
peated until thedy is found, or there are no moreys in the intenal.

A simple implementation of binary search is@i below. It assumes that the array is
an array okt r uct s with ani nt key field. Itreturns the intger index of the element if
found; or -1 if not found.

i nt Synbol Tabl e: : search(key_type key)
{
register int low, high, nmid, tenp;
| ow = 0;
high =n - 1;

whlle(low<_ hi gh) {
= (low + high) / 2;
terrp = a[md].key_ fleld /1 Common sub- expression
if (key > tenp)
low = md +
else if (key < terrp)
hi gh md -
el se
return md, /1 Found it!

return -1; /1 Not found, return error

}

An important €ficieng point is that equality is the least dily of the three conditions to
be true during loop.Hence, the ab@ wde is more dfcient than testing for equality
first, as whener the> operation succeeds, the second testaéglad.

8.9.2 Insertionin asor ted array

Insertions into sorted arrays are lesscednt than for unsorted array©ne simple bt
ineffi cient method for inserting into a sorted array is to add theetement at the end, as
if the array were unsorted, then sort the array with one of the methods discussed in
Section 8.16 (simple if you alreadyveaa ®rt function written).

A more eficient method is toifid where the element should go, then #auhe rest
upwards by one.The C++ code for this method is:

voi d Synbol Tabl e: :i nsert (key_type new_key)
int pos, tenp;

if (n == MAX ELEMENTS) {
cerr << "\'n Table Overflow \n\n"
exit(1);
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for (pos = 0; pos < n &% new key > a[pos].key field; pos++)
; /1 enpty | oop

for (temp = n; tenp > pos; tenp--) [// Shuffle others up
a[tenp] = a[tenmp - 1];

a[ pos] . key_field = new key; // Store new elenment in place

n++; /1 Increment counter

}

This implementation is lessfigfient than it could beThe two loops can be mged into
one, by searching from the top of the array andfshgithe elements den as the search
progresses. Th&++ code for this is:

voi d Synbol Tabl e: : i nsert (key_type new_key)

if (n == MAX_ELEMENTS) ({
cerr << "\n Table Overflow \n\n";
exit(1);

for (int pos = n; pos > 0 & new_key <= a[pos].key_field; pos--)
a[ pos] = a[pos - 1]; /1 Shuffle others up

a[ pos] . key_field = new key; // Store new elenment in place
n++; /1 lncrenment counter

8.9.3 Deletion in a sor ted array

The frst part of a deletion is a search for the elemedrted arrays can use binary
search toihd the element &tiently. If the element is not found, it cannot be deleted and
some other action must @klace (e.g. some error message).

Once found, the element is rewed by shuffling all the elements alve it down by
one. TheC++ code for this method is:

voi d Synbol Tabl e: : renmove(key_t ype key)
{

register int i, delete_location
del ete_l ocation = search(key); // binary search
if (delete_location == -1) {

cerr << "Key not found\n";

exit(1l);
for (i = delete_location; i <n - 1; i++)

a[i] = a[i + 1]; /1 Shift down one el ement
n--; /| Decrement counter

}

If there is the possibility of duplicates in the arrthese duplicates are just the subse-
guent entries in the arrayrhey can be deleted by modifying the delete function to delete
more than one item at once.
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8.10 Unsor ted linked list ver sion of the symbol tab le

The main issue in the implementation using didlists is the choice between a sorted or
unsorted list. A sorted list allavs faster search and is useful for printing out an ordered
listing of the data in the symbol tablélowever, an unsorted list alls faster insertion
because the insertion function can insert th& dement at the front of the list, rather
than fnding the correct ordered position in the ligthe class declaration for the imple-
mentation of the symbol table as an unsortedelinkst is gien as follows; the ddhi-
tions of the member functions aregi in following sections.

#i ncl ude <i ostream h>
#i ncl ude <stdlib. h>

typedef int key_type; // Hide details of data type

cl ass Node { /1 Node on the linked |ist
private:
Node *next; /] pointer to next node in the Iist
key_type key_field
public:
Node(key_type k) { next = NULL; key_field = k
friend class Synbol Tabl e; /1 allow easy access to nodes

cl ass Synbol Tabl e {

private:

Node *head; /1 Pointer to head of linked Iist
public:

Synbol Tabl e() { head = NULL; } /1 constructor

Node *search(key_type key);
void insert(key_type key);
voi d renpve(key_type key);

}s

8.10.1 Searching an unsor ted list: sequential sear ch

The only way to search for an item in an unsorted didKist is to go throughvery
element systematicalljrom the start of the list to the end@he followving C++ function
for sequential search returns a pointer to the element if foumNjLdr if not found.

Node* Synbol Tabl e: : search(key_type key)
for (Node *ptr = head; ptr !'= NULL; ptr = ptr->next) {

if (ptr->key_field == key
return ptr; /1 Found it
}
return NULL; /1 Not found
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8.10.2 Insertion in an unsor ted linked list

It is very eficient to insert into an unsorted ledk list because the wenode can be
simply added to the front of the lisT.here is no need tanid the correct location to place
the key in the correct orderThe C++ code for the member function is:

/
/1 Insert an iteminto an unsorted linked list; insert at front
/

voi d Synbol Tabl e: :i nsert (key_type key)

Node *new_node = new Node(key); // allocate new node
new_node- >next = head;
head = new_node; /'l new head of |inked I|ist

}

This implementation of the insertion function assumes that duplicates either will not
occur or if they do occur, they are acceptablelf duplicates must be pvented, the entire
linked list must be searched before inserting the nede, and the insertion process
becomes morexpensve. Hence the main adwtage of unsorted lists is lost, and it
becomes wrthwhile to use a sorted liek list.

8.10.3 Deletion in an unsor ted linked list

Deleting an element from an unsorted &dHKist involves a sequential search tod the
element and then adjustment of pointers to rarbe node from the listThe deleted
node is then returned to the hedhe C++ code for this is:

voi d Synbol Tabl e: : renmove(key_t ype key)
{

Node* ptr = head;
Node* before = NULL; /1 Trailing pointer to previous node

/1 Odinary sequential search

for (; ptr !'= NULL; before = ptr, ptr = ptr->next) {
if (ptr->key_field == key)
br eak; /1 Found it
}
if (ptr !'= NULL) { /1 FOUND | T?
if (before == NULL) { /1 Delete at FRONT
head = head->next; // new head of |inked |ist
delete ptr; /1 delete old head of I|ist
el se { // Delete at MDDLE or END
bef ore->next = ptr->next;
delete ptr;

}

Further deletion of duplicate elements will be fr@ént as the sequential search must
continue from the current noded~or sorted linked lists, the duplicates ould appear
immediately after the node being deleted.
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8.10.4 Sorting a linked list: inser tion sor t

It is possible to sort a list using a special routine (as discussed in this seatiah)sb
more common and morefigfient to simply kep the list sorted duringrery insertion.
Using an insertion algorithm that maintains order can be thought of as an incremental sort
algorithm!

Few of the fang/ sorting algorithms désed for sorting arrays apply to lieé lists,
because it difcult to calculate the address of arbitrary elemelttés possible to cop
the list into an arrgysort the array and then neitd the list, lut this method requires the
use of &tra memory and the costly creation of nodes forva liviked list.

A good method for sorting lists imsertion sort (see also Section 8.16.2)his
method maks it possible to modify th@ext pointers in the xdsting list without
requiring etra storage.Although insertion sort is not the mostieient method for sort-
ing arrays, it is difcient on linled lists because insertion into a kaklist does not require
shufling all the other elements along.

The source code for a member function that sorts an unsorted liskis as follws;
part of the algorithm uses insertion intoserted linked list, and the reader should
compare this code with thatvgh in Section 8.11.2 which»plains insertion in a sorted
linked list.

voi d Synbol Tabl e: : sort ()

if (head == NULL) /1 empty list is already sorted
return;

Node *sorted = head; /1 sorted sub-list has one node
Node *unsorted = head->next; // unsorted sub-list has other nodes
sorted->next = NULL;
while (unsorted !'= NULL) { /1 while nmore nodes to insert

Node *tenp = unsorted,;

unsorted = unsorted->next; // nove to next non-inserted node

/1 modified sequential search of sorted Iist
Node *prev = NULL, *ptr = sorted;
for (; ptr !'= NULL && tenp->key_field > ptr->key_field;

prev = ptr, ptr = ptr->next) ; /] enpty |oop
if (prev == NULL) { /1 Insert at FRONT
tenp- >next = sorted;
sorted = tenp; /1 New head of sorted sub-1list
}
el se { /1 Insert at MDDLE or END
tenp->next = ptr;
prev->next = tenp;
} :
head = sorted; /1 new head of Iist
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8.11 Sorted linked list ver sion of the symbol tab le

The main adantage of a sorted liekl list is a slightly dster search algorithm and the
ease of producing ordered outputf this incurs a morexgensve insertion routine.A
sorted linked list is more appropriate than an unsortedelihkist if sorted output is
required, or if duplicates must be peated by the insertion routine (in which case, the
main adantage of unsorted lists is losffhe main body of the C++ class declaration is
the same as thatwgh for the unsorted lirdd list implementation in Section 8.1Q@nly
the member functions change, and these are discussed in turn.

8.11.1 Searching a sor ted list: modified sequential sear ch

Binary search, as used on sorted arrays, cannot be used on sogddisitskbecause the
position of the middle element cannot be calculated eadibyveve, ssarch can still be
made more éifcient than ordinary sequential search by searching only up urgy & la

list node isgreater than the searchéy (.e. searching until ady that is too lage is seen;
the ordering of the list implies that all theyk following in the list will also be too lge).
This method increasesfigieng/ over ordinary sequential search only when the element
is not found (i.e. only on unsuccessful search).

Node* Synbol Tabl e: : search(key_t ype key)
{
regi ster Node *p;
for (p = head; p != NULL && key > p->key_field; p = p->next)
; /* enmpty loop */

if (p == NULL || p->key_field != key)

return NULL; /1 Not found, return NULL ptr
el se

return p; /1 Found, return pointer to it

8.11.2 Insertion in a sor ted linked list

Whereas insertion into an unsorted &dlist merely adds the wenode onto the front of

the list, insertion in a sorted lield list requires a search phase to locate the correct
position for the n& node. Insertiorat the front of the list becomes a special case of a
more general insertion routind.he following insertion routine wrks by searching the
linked list using a similar algorithm to the one in thevimes section.A trailing pointer

bef or e, is maintained throughout the liekl list traversal, so that the node before the
final position of the ne node can be accessed (to setiéxt pointer pointing at the
new node). TheC++ code for a simple insert function is:

voi d Synbol Tabl e: :i nsert (key_type key)
{
Node* ptr = head;
Node* before = NULL; // Trailing pointer to previous node
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/'l Search using nodified sequential search

for (; ptr !'= NULL && ptr->key_field < key;
before = ptr, ptr = ptr->next) ; /1l Enpty | oop

if (ptr !'= NULL && ptr->key_field == key) { // duplicate?
/1

return; silently ignore it.
}
e T
/1 Found its place. Nowinsert it in |ist
/1l Insert it between "before" and "ptr"
R R R
Node *new node = new Node(key); // allocate new node
if (before == NULL) { /1 Insert at FRONT (also enpty list)
new_node- >next = head; // ’'head’ and ’'ptr’ are the same node
head = new_node; /1 new head of |inked |ist
}
el se { /1 Insert at MDDLE or END (al so single elenment |ist)
new_node- >next = ptr;
bef or e- >next = new_node;
}

}

Naturally the eficieng of this routine can be impved if duplicates are not important, in
which case the test for them can be reedo In addition, the assignment to the
"bef or e" variable inside the loop can be rerad by making a slight change to the
algorithm. Thefollowing insert function should be slightly mordiefient, assuming that
the compiler does a reasonable job of eliminating fiter * >next " common sub-e
pression.

/
/1l Insert an iteminto a sorted linked list - nore efficient
/1 Assunes no duplicates; avoids using 'before’

/

voi d Synbol Tabl e: :i nsert (key_type key)
{

Node *new_node = new Node(key); /1 allocate new node

if (head == NULL || key <= head->key_field) { // insert at front
new_node- >next = head;
head = new_node; /'l new head of |inked I|ist
return;

}

/'l Search using nodified sequential search

for (Node *ptr = head; ; ptr = ptr->next) {

if (ptr->next == NULL) { /1 lnsertion at end
ptr->next = new_node;
return; /1 new_node->next is NULL already
}
if (ptr->next->key field >= key) { // Found place?
new_node- >next = ptr->next; // Insert in middle
ptr->next = new_node;
return;
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8.11.3 Deletion in a sor ted linked list

Deleting an element from a sorted kklist is almost identical to that for unsorted lists.
The only diference is that the slighthaster modied sequential search can be used to
find the key © be deleted, ot even this is a minor change as the impement is only for
unsuccessful search and it seems reasonable to assume thatethad bekdeleted will
nearly alvays be found.The C++ code for the deletion routine is:

voi d Synbol Tabl e: : renmove(key_t ype key)
{

Node* ptr = head;
Node* before = NULL; /1 Trailing pointer to previous node

/1 Modified sequential search
for (; ptr !'= NULL && ptr->key_field < key;
before = ptr, ptr = ptr->next)
; /1 Enpty | oop
if (ptr !'= NULL & ptr->key_field == key) { /1 FOUND | T?

if (before == NULL) { /1 Delete at FRONT
head = head->next; // new head of linked |ist

delete ptr;

}

el se { I/l Delete at MDDLE or END
bef ore->next = ptr->next;
delete ptr;

}
}

The deletion of duplicate elements, if required, is quite simple becaugegghear
immediately after theirst node found.

8.12 Binary tree version of the symbol tab le

Binary trees are a well-kmon data structure in computer sciendehey aim to provide

fast search without the limitation of xéd size that inhibits the use of a sorted array and
binary searchBinary search treesfef fast logrithmic search time in theserage case,
although thg may occasionally dgenerate to the linear performance of a sortedetink
list. Insertionsand deletions can also be performed iratithmic time, proided the tree
does not become too unbalancéd.addition, the data in the tree is sorted, aegslkan

be printed out in sorted order with reasonabliciency.

As with all implementations of a symbol table, there arous vays to handle dupli-
cates. Inthis implementation, duplicate entries in the binary tree will be silently
prevented (i.e. thg will not be inserted).Deletions must also cope with attempting to
delete an item that is not in the tree, and in this implementation, no action wifldak.

Since the binary tree is an inherently recwgshta structure, manof the operations
on trees can be codeckry elgantly by using recursion.However, such recursie
algorithms are indiftient and a non-recuv&@ dgorithm should be used wheee
possible. Inparticulay dl of the search, insertion and deletion routines can be
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implemented without recursionOnly a fav operations do require recursion, such as
printing out the ordered list o&lys.

All of the binary tree search, insertion and deletion routines will assume theifgjlo
C++ class declaration:

#i ncl ude <i ostream h> /1 declare NULL
typedef int key_type; /1 Hide details of data type
cl ass Node { /1 Node on the tree
private:
key_type key_field
Node *left, *right; /] pointers to subtrees
publi c:
Node(key_type k) { left = right = NULL; key_field = k; }
friend class Synbol Tabl e; /1 allow easy access to nodes

cl ass Synbol Tabl e {

private:

Node * root; // Pointer to root of tree
publi c:

Synbol Tabl e() { root = NULL; } /] constructor

Node* search(key_type key);

voi d insert(key_type key);

voi d renove(key_type key);
b

8.12.1 Searching a binar y tree

Searching a binary tree is a reasonably simple algoriffime. search continues\n the
tree, testing thedy in each node to determine if there equal (found thedy), or which
of the two subtrees should be searchethe C++ implementation of anfigient iteratve
algorithm is as follos:

Node* Synbol Tabl e: : search(key_type key)
{
Node *tenp;

for (temp = root; tenmp !'= NULL; ) {
if (tenp->key_field < key)

tenp = tenp->right; /1 Search right subtree
else if (temp->key_field > key)
temp = tenp->left; /'l Search left subtree
el se
return tenp; // Equal. Found it.
}
return NULL; /1 NOT FOUND

}

It is important that theirst i f statemens condition uses th& operatoy and not==, as
equality is the least Iy condition (all lnit one of the nodes along the search path will
not be the one searched foy using the< test frst, almost half of the node visits along
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the search path wilhaid the second testf the first test ivolved==, then all node visits
would cost tvo key momparisons.

8.12.2 Insertion in a binar y tree

The following routine inserts an element into a binary tri€unctions correctly for an
empty tree, changing thee of ther oot pointer to point to the mdy created node.
For a mon-empty tree, it adds thewaode to the "bottom" of the tree, replacinglalL
pointer A new node is alvays inserted at &lULL pointer When a duplicate is encoun-
tered, thei nsert function does not complete the insertion operatidhis way, the

i nsert function silently preents duplicates.A naive C++ implementation of binary
tree insertion is:

voi d Synbol Tabl e::insert (key_type key)
{
Node* new _node = new Node(key);
if (root == NULL) { /] if tree is enpty
root = new_node; /1 new node becones the new tree
return;
Node *ptr = root; /] Start at root of tree
Node *parent = NULL; /1 Pointer to parent node
while (ptr !'= NULL) { /1 Loop until get to |eaf
if (key > ptr->key_field) {
parent = ptr
ptr = ptr->right; /1 Go down right subtree
else if (key < ptr->key_field) {
parent = ptr
ptr = ptr->left; // Go down |eft subtree
el se
return; /] Duplicate; return wi thout inserting
}
if (key < parent->key_field)
parent->l eft = new_node; /1 Node is left of its parent
el se
parent->right = new_node; // Node is right of its parent
}

The eficieng of this version can be impxed markedly. First, if it is assumed that there
will be no duplicates (or that theare not important), the twcomparisons of thedy
inside the loop can be reduced to oS®cond, the use of thpdr ent " variable can be
totally avoided, as can tharfal test to determine whether to set the pasdaft or right
pointer The impraed insertion function is:

voi d Synbol Tabl e: :insert (key_type key)
{
Node* new _node = new Node(key);
if (root == NULL) { /] if tree is enpty
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root = new_node; I/ return new node as the new tree
return;
Node *ptr = root; /] Start at root of tree
while (1) { /1 Loop until inserted key
if (key < ptr->key field) {
if (ptr->left == NULL) { // found place to insert?
ptr->left = new_node; /1 insert to the left
return;
el se
ptr = ptr->left; /1 Go down |eft subtree
el se { /1 larger or equal (but duplicates assumed absent)
if (ptr->right == NULL) { /1 found place to insert?
ptr->right = new_node; /1l insert to the right
return;
el se
ptr = ptr->right; /1 Go down right subtree

8.12.3 Deletion in a binar y tree

The deletion algorithm operates inaygarts — fnd and delete.The element musirt

be found, and then it must be deletdthe find part of the algorithm must deal with aw

cases — found and not found (successful and unsuccessful sdathk)element is not

found, some appropriate action must beetafor no action, as in this implementation).
When search is successful, the element is then deleted from th®é&letion from a

binary tree is quite complicated because of théemint special cases that must be

handled, as folls:

Case 1. Deleting a leaf node.
Case 2. Deleting a node with one child.
Case 3. Deleting a node withawhildren.

Deleting the root node is also a special case because this is the only tiraki¢hef the
r oot pointer changesNote that deleting the root node maydlve any o the first three
situations, leading to more special cases.

The frst two cases are quite simpleA leaf can be deleted by setting the pointer
above it to NULL. A node with one child can be deleted by setting the pointereabto
point to its only child.

The third case is morevialved. Anode with tvo children is deleted byidding the
rightmost element in the left subtree, and substituting it for the node to be ddlatsd.
rightmost node must also be deleted from the left subtutét is alvays one of the tw
simpler cases (leaf, or one child only)here is no reason that the leftmost node in the
right subtree could not be used instead of the rightmost node in the left subtree.

Deletion has mandifferent cases to cater foThe recursie dgorithm would be
slightly simpler but is ineficient. Theiterative dgorithm is more complicated because it
must remember whether the last iteration went left or rightthis is handled by a com-
parison of th&key with thepar ent pointer at the end of the deletion function.
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voi d Synbol Tabl e: : renove(key_type key)

{
Node *ptr; // points to the current node
Node *parent; /] points to the parent node

for (parent = NULL, ptr = root; ptr != NULL;) {
if (key < ptr->key field ) {
parent = ptr;
ptr = ptr->left; /'l search left subtree

}
else if (key > ptr->key_field ) {
parent = ptr;

ptr = ptr->right; /1 search right subtree
el se /1 Found it. Now DELETE it
br eak;
}
if (ptr == NULL)
return; /1 Not found. No deletion occurs.
Node *subtree; /1 Root of the subtree after deletion

I/l Used to |later set pointer in parent

if (ptr->left == NULL & ptr->right == NULL) { /] Case 1
delete ptr; /1 No children - delete a LEAF
subtree = NULL; /] Subtree becones enpty

}

else if (ptr->left == NULL) { // One child only: Case 2a
subtree = ptr->right; /1 Right child is new subtree root
delete ptr; /| Dispose del eted node

}

else if (ptr->right == NULL) { // One child only: Case 2b (reverse)
subtree = ptr->left; /1 Left child is new subtree root
delete ptr; /1 Dispose del eted node

}

el se {

/1

/1 Two children - Case 3 - the difficult case!
/1 Find rightnost node of left subtree
/1

Node *prev, *tenp;

for (prev = NULL, tenp = ptr->left; tenp->right != NULL;
prev = tenp, tenp = tenp->right)
; /1 enpty | oop

if (prev == NULL) { // did not go right at all
temp->right = ptr->right; // right subtree of del eted node
/] Left subtree stays the sane

delete ptr;
subtree = tenp; [l *** Case 3a ***

el se { /1 went down right at |east once
prev->right = tenp->left; // delete tenp from subtree
tenp->left = ptr->left; /1 replace "ptr" with tenp
temp->right = ptr->right;
del ete ptr; [l *** Case 3b ***

subtree = tenp;
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R R T T
/1 Have now reconstructed the subtrees after deletion
/1 Now need to set pointers in parent node
N LR LR T T
if (parent == NULL) /] del eted root node?
root = subtree; /'l subtree becones whole tree
el se
if (key < parent->key_field)
parent->l eft = subtree; /1 Node was |left of its parent
el se

parent->right = subtree; /1 Node to right of its parent
}

If there is the possibility of duplicates in the tree, then these duplicates must be found and
deleted also.In a binary tree duplicates appear in the left or the right subtree of the
element just found — it depends omhihei nsert function handles equality

The eficieng of the deletion function alve can be maginally improved by avoiding
the need for thegar ent " variable and also thet ev" variable, in a manner similar to
that used for the insertion functioklowever, repetitions maé& the code too long, and the
improvement is left as anxercise to the reader

There is also aery minor ineficieng: the frst three tests on the number of children
could be maged into tvo, by making deletion at a leaf part of thestf of the other tw
cases. Hwever, in the interests of clarity this optimization has not been used.

8.13 Binary tree version with sentinel pointer s

The eficiengy improvement technique of sentinels discussed withanek to arrays in
Section 3.8 can be applied to lew lists and binary treesinstead of usingNULL
pointers to signify the end of the list or the edge of the tree, pointers to a sentinel node are
used. Theadwantage is that comparisons witULL can be waoided in the search
function (and also the deletion function becausevilues a search of the tree).

The C++ class declaration of a binary treeegiin the preious sections can be quite
simply modifed to use sentinelsThe sentinel node is declared astati ¢ data
member of the&Synbol Tabl e class. Thisnvolves some measure afffiting with C++
syntax and encapsulation rules, because thec@ssesNode and Synbol Tabl e are
mutually dependentBoth classes are declared as friends of each other vo adéess to
the private data membersThe details are as folis:

#define NIL (& Synbol Tabl e: : senti nel _node) /1 Sentinel pointer
typedef int key_type

cl ass Node; I/ forward decl aration of Node class
cl ass Synbol Tabl e {
private:
static Node sentinel _node; /1 Static --> one node
Node * root
public:
Synbol Table() { root = NIL; } /1 constructor

Node* search(key_type key);
void insert(key_type key);
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voi d renpve(key_type key);

friend class Node; /1 allow Node access to sentinel _node
cl ass Node { // Node on the tree
private:
key_type key_ field
Node *left, *right; /] pointers to subtrees
public:
Node(key_type k) { left =right = NIL; key_field = k; }
friend class Synbol Tabl e; /1 allow easy access to nodes

The main changes to the member functions are changing most udeslofo NI L, a
userdefined preprocessor macro pointing to a sentinel ndde single gception is that
the return wlue of the search function for unsuccessful search must stajlds
because the user of the class should not be concerned with the address of the sentinel
node.

The main adantage of sentinels occurs in the search funcfidre algorithm used by
the search function is changed to initially set the sentinel sddg’ equal to the search
key. With this method there is no need to test the pointer With (comparison with
NULL would be erroneous) because the equality condition wilkyd cause the loop to
end. Afterthe loop the pointer is tested to see if it isakéf success due tinfling the
sentinel node, or if thedy has been found in the tre@he eficieng should improe
because a pointer comparison arerg iteration of the loop has been eliminated and
replaced with onedy asignment before the loop and one pointer test after the Towog.
search function becomes:

#i ncl ude <stdio. h> /1 declare NULL
Node* Synbol Tabl e: : search(key_t ype key)
{

Node *tenp = root;

sentinel _node. key_field = key;

for (;;) { /1 Test with NULL is not needed!!
if (tenp->key_field < key)
temp = tenp->right; /'l Search right subtree
else if (temp->key_field > key)
tenp = temp->left; /1 Search left subtree
el se {
if (temp == NIL) /1 Found it or sentinel
| return NULL; /1 Found sentinels; search fails
el se
return tenp; /1 Found it

}

The insertion and deletion routines can be easily implemented, and are lefxasme e
for the reader The insertion routine merely needs ldlILL uses changed tdl L. This
simple change to the deletion routine will allét to work correctly or else, its search

phase can be made moré@ént by modifying the loop in a manner similar to the search
function abee.
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8.14 Hashing version of the symbol tab le

Hashing is an éfcient method of searching for data, especially if gdanumber of
search operations are requirethe method prades fst aerage search and insertion
times, is usuallydster than arrays or lield lists (sorted or unsorted), and is often more
efficient than binary trees.

The basic idea behind hashing is to use a simple function to computeggr fnben
the ley (e.g. by adding up all the letters of a symbdrhis integger then becomes an
index into an array of entrieddeally, each diferent symbol will map to a unique inde
so that there will neer be two symbols stored at the same pladéthis is true, inform-
ation in the table can be accessedywquickly by calculating the inger index and re-
trieving the array element at that location.

Unfortunately unique mapping is not usually possiblmstead, the functions must
deal with the problem of already \iag an entry at the locationThis is called a
collision. Collisions can be resaodd by eitherifiding a nev index, or storing both &ys
at the same indeby chaining a list at the locationThe recommended method for C and
C++ programs is the use of a hash table holding an array of pointers, and chaining for
collision resolution.

The major disadantage of hashing is that the data is not sori&dy operation
requiring sorted data must sort the entrieplieitly (e.g. printing out). However,
elements can be visited sequentially inoa-ordered sequence although the method is a
little inefficient because all entries in the hash table musixamieed to determine if
there is a &y gored there.Hashing is not a good data structure for processingdi® k
sequentially

8.14.1 The hash tab le

The hash table is the data structure in which all the data is stored for hdstuag.be
an array ofst r uct s, hut this wastes space unless the hash table édylito be ery full.
A hash table is often implemented in C and C++ as an array of poitnettsis way, an
empty location has &ULL pointer and a full location has a pointer tostr uct
containing the information (or a pointer to a list of sath uct s).

It is common for the size of the hash table to be a prime nurbbeause hash
functions of the fornm{key) mod TableSze give a letter distrilution whenTableSze is a
prime number The reason for this wolves \ery adwanced theory and is yend the
scope of this book.

The hash table can be initialized by setting all its entridédftd_. It is most eficient
to declare it as a globahxiable or ast at i ¢ local variable, which maés the compiler
automatically initialize the array to zero before the program stértmitialization is
needed agn, the array must be initializedmicitly, and this can be performed by the
efficientnenset library function (although there is a portability problem wignset
on ary machines where theULL pointer is not all-bytes zero).
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8.14.2 The hash function

The hash function maps theyk an integer index. Any method can be used to produce
an intger from the ky. For example, ag of the bitwise operators can be usedxttart
various bits from the &y, and ary of the arithmetic operators can be used (e.g. to add
various characters of theel¢ together).

The choice of a hash function isdaty a matter of preferencé good hash function
should &oid collisions on diferent entries as much as possibiBecause thealues to be
stored in the hash table are usually notvkmén adwance, a good general hash function is
difficult to choose One that is simple to calculatdiefently is probably best.

A simple hash function on strings is to add the characters up, amdhtaknodulus
with the hash table sizélhe modulus gies a umber betwee®. . n- 1, wheren is the
size of the hash tabld=or a good distrilution (i.e. fav collisions) it is recommended that
the size of the hash table be a prime number

It is important to declare theaxiable as annsi gned i nt. This preents overflow
from causing problems with the moduldg pperator An overflow could male the \ari-
able become mgtive, resulting in undehed behaior from the % operator Note that
unsi gned is necessary only for theork variable being used to compute the sum, and
not in the function return type.

i nt hash(char *key)
{

unsi gned int sum

for (sum= 0; *key !'='\0"; sum += *key++); // enpty | oop
return sum % Sl ZE;

}

How well this hash function performs depends on thgsko be gored in the hash table.
Any anagrams will cause collisions (e.g. "steal" and "stalétdwever, this function is
simple to calculate and will perform well in most situations.

8.14.3 Collision resolution — ¢ haining

A collision occurs when tw different leys map to the same hash table locati@ecause
of this possibility when inserting a meelement into the hash table the location mirst f
be examined to determine whether it already holds an eleniéitt.does, this collision
must beresolved.

There are sexal methods of resolving the problem of collisiof®@me simple colli-
sion resolution schemesovk by searching for another empty location in the hash table.
One method, calletinear probing, works by meing along the table looking for awwe
empty location. Another method is to try ain with a second hash function (though its
collisions must also be dealt withHowever, the recommended method for C and C++
programs ichaining. The C and C++ languagesveagood dynamic memory allocation
features and hashing may as well make of them.In this method, a linéd list of all
elements that hash to the same location harigmolfi hash table entrgnd the hash table
contains pointers to lirdd lists. The linked lists contain all thedys that collided at that
hash table location.
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Another adantage of chaining is that insertion &ry eficient, particularly if there is
no possibility of duplicatesTo ald the element, simply insert thewnelement at the
front of the unsorted lirdd list (i.e. the chain).

Searching requires a w&sal of the (unsorted) lidd list at the hash locatiorhe
efficiengy of searching depends on the length of thisdidkist, which in turn depends on
how evenly distributed the hashalues are.If the distritution is &en, the lists are ligly
to be short.The cost of searching is certainly nonse than other methods.

Deletion is eficient when using chaining because, umlidther collision resolution
schemes, deletion from the hash table causes no congigreitems. Theelement is
simply remaed from the linled list. Other collision resolution methods &rf problems
when an element is to be deleted from the hash tdltie.problem is that a location then
becomes emptynd a search for agly that collided with the deleted element wilid an
empty location.How is the search function to kmothat a collision occurred earlier and
the other element is in another place in the tafle®lve this problem, it must be poss-
ible to mark a location as "deleted from" and the hashing algorithms become more
complicated.

Chaining does waste some space becauseXxt " pointers are required in the lie#
list, but this seems a small price to pay for itswamience.

8.14.4 Implementing the symbol tab le: hashed ¢ haining

An implementation of the symbol table ADT using hashing with chaining is presented as
follows. Thekeys are character strings, and only tlegskare inserted into the table — a
more realistic symbol table structurewd contain other data associated with eamh k
The symbol table operations are quite simply implementgharch is a matter of
calculating the hashalue and then searching the (unsorted)dihkst for the ky. Dele-
tion involves calculating the haslale, and aifd-and-delete operation on the associated
linked list. Insertion ivolves calculating the haskalae and then inserting at the front of
the linked list. Thei nsert function also performs a check for duplicatesitst £alling
the sear ch function. Thisis slightly ineficient because the hashlwe is calculated
twice. Moreefficient, hut slightly more complicated, auld be to search the lieH list
within thei nsert function.

#i ncl ude <i ostream h> /1 declare NULL

#i ncl ude <string. h> // declare strcpy, strcnp, etc
/1
/1

#define TABLE_SI ZE 211
#define STR_ LEN 30

Hash Tabl e Size: a prine nunber
Maxi mum | ength of string

cl ass Node { /1 Node on the chained lists
private:
char synmbol [ STR_LEN + 1]; // synbol being stored
Node *next; // pointer to next node in |ist
public:

Node() { next = NULL
friend class Synbol Tabl e; /1 allow easy access to nodes



Abstract data types in C++ 155

cl ass Synbol Tabl e {

private:

Node * tabl e[ TABLE_SI ZE] ; /1 Hash table - array of pointers
public:

Synbol Tabl e() ; /'l constructor

Node* search(char * symbol);
Node* insert(char * synbol);
voi d renove(char * synbol);

b
e e
/'l Constructor - initialize the hash table to enpty
R LR T
Synbol Tabl e: : Synbol Tabl e()
{

for (int i =0; i < TABLE_SIZE; i++) /1 all pointers are NULL

table[i] = NULL;

}
R e
[l HASH. Cenerate an integer hash value for a synbol
I e e T

i nt hash(char *synbol)
{

unsi gned int sum = O;

while (*synbol !'="\0")
sum += *synbol ++;
return sum % TABLE_SI ZE;

}
e
// SEARCH. Find a synbol in the synbol table; return pointer to it
R e
Node* Synbol Tabl e: : search(char *synbol)
{

int posn = hash(synbol); /1 Find hash val ue

Node *tenp;

/1 Search linked list for the symbol
for (tenp = table[posn]; tenp != NULL; tenp = tenp->next) {
if (strcnp(synbol, tenp->synbol) == 0)
return tenp; /1 found it

}
return NULL; /1 not found

Node* Synbol Tabl e: :insert(char *synbol)
{

Node * tenp = search(synbol);
if (tenp !'= NULL) {

return tenp; // duplicate found; return pointer to it
}
el se { /1 No duplicate found. Insert it
int pos = hash(synbol); /1 get hash val ue
tenp = tabl e[ pos]; /1 get front of Iist

t abl e[ pos] = new Node;
strcpy(tabl e[ pos] - >synbol, synbol); // store synbol
t abl e[ pos] - >next = tenp; /1 1ink up the node

return tenp; // return pointer to newy created node
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voi d Symbol Tabl e: : renmove(char *synbol )
{
int pos;
pos = hash(synbol);
Node *tenp = tabl e[pos], *prev = NULL;
for (; tenp !'= NULL; prev = tenp, tenp = tenp->next) {
if (strcnp(synbol, tenp->synbol) == 0)
br eak; /1 Found it; exit for |oop
}
if (tenp == NULL) { /1 Not found
return; /1l lgnore it
el se { /1 Found
if (prev == NULL) I/l Delete at front of |ist
tabl e[ pos] = tenp->next;
el se /] Delete at mddle/end of Iist
prev->next = tenp->next;
del ete tenp; /1 Return del eted node to heap
}

8.15 Searching static data — perf ect hashing

In some cases theles of the &ys o be gored in the symbol table are kmo before-
hand and do not change (i.e. no insertions or deletids}h data is usually referred to
asstatic data. r example, the Igical analyzer of a C compiler must tegey sequence
of letters it inds in a sourceilé to determine if it is adyword or an ordinary idenfr.
This involves a search of a table containing all thee@nords. Anotherexample is a
spell checkr where the most commorowds are knan and are often stored in a table in
memory (a form of handling the common caséiciently).

Special algorithms can be used iny aituation where the search data is wmo
Surprisingly dthough there has been much research initnling optimal binary search
trees for static data, there not usually the best solutioifhe most dfcient solution is
to use hashing with a speciallyvéoped hash function, designed to yamt collisions.

This is called gerfect hash function and can only be deloped for unchanging datdf a

perfect hash function can be found, the symbol table can be searched with one computa-
tion of the hash function and oneykacomparison to determine if thekis actually there.

By comparison, en the optimal binary search tree will requireses@l comparisons on
avaage.

The most difi cult aspect of using this method is the search for a perfect hash function
for a particular set of datal here are a f@ common methods of doing so:

* Inspired guessark.
« Brute-force computation.

In some cases, the programmer camknout a function that has no collisions by guessing
at a function.For example, if the programmer notices that adyk havea dfferent frst
letter then it is easy to compute a perfect hash function as a mapping from the 26 letters
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to a diferent unique intger, the hash alue. Humansare \ery resourceful and this
method of "guessing" the functiorovks surprisingly well.

The brute-force approachwvinlves trying to generate the hash function using a
computer which tries a number of hash functions of a particular pattern, applies the hash
function to each é&y, and reports when a function that produces no collisions is found.

As an eample of the arious approaches, let us attempt twettgp a perfect hash
function for the set of 32 ANSI Cekwords:

aut o br eak case char
const continue default do
doubl e el se enum extern
fl oat for goto i f

i nt | ong register return
short si gned si zeof static
struct switch t ypedef uni on
unsigned void volatile while

Using my avn version of "inspired guesssk”, involving a couple of hours of poring
over ASCII tables, | managed to come up with a reasonable perfect hash furidtion.
basic approach | tookas to break up theawds into groups of about/é keys by using a
test of the string length, and also by making single character comparisons omehe lar
groups of lkys with the same lengthOnce the group as small enough | lo&k for
letters in the &ys that were unique, often thiedt or second letteend then gamined the
ASCII binary \alues of these lettersThis way, the hash functionxtracts certain bits
from each letterand generates a small ig; which is then mapped into an "intetV of
values for that particular groupThe function, which produces hashlues in the range
0..36, is as follws:

int ny_hash(char *s)
{

switch (strlen(s)) {

case 2: /* Only "if" and "do" */
return (s[0] & 01) + 2; [* 2..3 */
case 3
return (s[0] & 01) + 8; /* 8..9 */
case 4
if (s[1l] =="0") /* goto, long, void */
return (s[0] & 03) + 26; /* 26..29 */
el se /* auto, case, char, else, enum */
return ((s[1] & 14) >> 1) + 30;
case 5: /* break, const, float, short, union, while */
/* 1st letter is unique */
return (s[0] & 07) + (s[0] =="'c') + 10; /* 10..16 */
case 6:
if (s[0] =="s") /* signed, sizeof,static,struct,swtch */
return(s[5] & 03) + ((s[5] & 8) >> 3)
+ ((s[5] & 16) >> 2) + 18; [* 18..22 */
else [/* 1st letter not 's’ - double, return, extern */
return (s[0] & 03) + 23; [* 22..24 *]
case 7: /* "typedef", "default" */
return (s[0] & 16) !'=0
case 8: /* continue, register, unsigned,volatile */

/* 1st letter is unique */
return ((s[O] &04) >> 1) + (s[0] & 01) + 4; [* 4..7 */
def aul t Can't be a C keyword */
return 0; /* Pi ck any nunber */
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The second approach is to reake computer perform a brute-force search for a perfect
hash function.The following program ta&s a set of&ys from a fle and deelops a hash
function of the folleving form:

%_:ci * key[i]gmod N

by trying maly combinations of the constan® and N. If any of these hash functions
produces no collisions, a perfect hash function has been folmel source code belo
implements this concept:

/ K o o o o e o e e e e e e e e e e e e e e e e e e e e */
/* PERFECT HASH FUNCTI ON BRUTE- FORCE SEARCH */
/ K o o o o o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e */

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#i ncl ude <string. h>
#i ncl ude <ctype. h>

/* _________________________________________________________________ */

#define bool int
#define TRUE 1
#defi ne FALSE 0

/* _________________________________________________________________ */

#define MAX 1000 /* Maxi mum nunber of words */

#define LEN 10 /* Maxi mum | ength of a word */

/* _________________________________________________________________ */

char words[ MAX] [ LEN] ; /* words being hashed */

int C[LEN; /* coefficients of hash function */

/* _________________________________________________________________ */

#def i ne MAX_MJLTI PLI ER 1 /* Let G range 0..NMAX_MULTIPLI ER */
/* 1 means 0..1 --> use addition */

#defi ne MAX_MODULUS 1000

int MODULUS;

int MODULUS_START_MULTI PLI ER = 5;
i nt MODULUS_TOP;

/* _________________________________________________________________ */
/* Apply the hash function to a key */
/* _________________________________________________________________ */

i nt conpute_hash(char *s)

int i;
unsi gned i nt hash;
hash = 0;

for (i =0; i < LEN i++) {
hash += s[i]*C[i];

}
return hash 9% MODULUS ;

}

/* _________________________________________________________________ */
/* Try all the conbinations of coefficients */
/* This function finds the perfect hash function! */
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void find_best(int n)

int num

bool done;

bool fl ags[ MAX_MODULUS] ; /* has a key hashed here yet? */
bool collision;

int val;

int i;

do {
for (i =0; i <LEN i++) (i] = 0;
do {
0] +- . .
for (i =0; i < LEN i++) {
if (i] <= MAX_MULTIPLIER) break;
i1 = o

o, di] =0 .
if (i +1<LEN { i + 1]++ }

/* Update CJi]’'s for next attenpt */
++;

}

for (i =0; i < MODULUS; i++) {
flags[i] = FALSE; /* clear flags for this try */

col lision = FALSE;
for (num= 0; num < n; numt+) {
val = conpute_hash(words[nuni);
if (flags[val]) {
col l'ision = TRUE;
br eak;

}
flags[val] = TRUE;

if (!collision) { /* report success */

printf("NO COLLISION: ");

for (i =0; i < LEN, i++)

printf("%d ", Ci]);

printf(", MODULUS = %l ", MODULUS);

if (MODULUS == n) printf(" PERFECT!!!");

printf("\n");

br eak; /* exit do | oop. Do next MODULUS */
}

done = TRUE; /* Finish only when all multipliers */
/* are up to MAX_MULTI PLI ER */

for (i =0; i < LEN i++) {
if (di] < MAX_MULLTIPLIER) {
done = FALSE;
br eak;

} V\hi}| e(!done);

if (done)
printf("FA LED Wth MODULUS %\ n", MODULUS);
MODULUS- -; /* Try the next nodul us val ue */
} whil e(MODULUS >= n);
/* _________________________________________________________________ */
/* Load the words froma text file */
| o o e e e e e e e e e e e e e e e e e e e e e e e e *

void load_file(char *f, int n)
FI LE *fp;
int i, J;
char s[200];
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fp = fopen(f, "r");
if (fp == NULL) {

perror(f);
exit(1);
for (i =0; i <n; i++) {
again

if (fgets(s, 199, fp) == NULL) {
fprintf(stderr, "%: \n", f);
perror(“fgets fromfile");
exit(1);

if (s[strlen(s) - 1] =='\n") /* renove fgets's newine */
s[strlen(s) - 1] = 0;

for (j =0; j < LEN, j++)
words[i][j] = O; /* clear to NULLs*/

strncpy(words[i], s, LEN);

words[I]J[LEN-1] = 0; /* add term nating null, just in case */

for (j =05 j <i; j++) {
if (strncnp(words[i], words[j], LEN) == 0) {
printf("Duplicate \"%\" found\n", s);

goto again;
1 : :
printf("Word 98d: %\n", i, words[i]);

}
}
2 */
[* Start of program execution */
/* _________________________________________________________________ */
int main()

int n;

char file[100];

printf("Enter filenane: ");

scanf ("%", file);

printf("File: %\n", file);

printf("How many words? ");

scanf ("%l", &n);

load_file(file, n); /* Load in the keys */

MODULUS = n * MODULUS_START_MULTI PLI ER; /* start high */

find_best(n); /* Find the hash function! */

exit(0);
}

As shavn in the source code alm the program is set tand all hash functions where
the coeficient is either 0 or 1These functions are a useful special case, as no multiplica-
tions are actually needed (all the characters with a ficieeft are simply added)/Vhen

the program is run as shio on the ANSI C &ywords, the best hash function it produces
has modulus 134 and the falling coeficients:

NOCOLISIToNh 2 0 2 1 1 1 0 0 O O, MODULUS = 134
This information can be coded up into a simple perfect hash fundtiofartunately the

menset andstrncpy calls are necessary to ensure that charactgantehe end of
the string are considered zero, as is assumed by the hash function generator
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/ K o L o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e m e e m e = */

/*
/*

i nt conputer_hash(char *s)

char s2[10];
nenset (s2, 0, 6); /* zero the first 6 letters */
strncpy(s2, s, 6); /* copy up to 6 letters */

, return (s[0] + s[2] + s[3] + s[4] + s[5]) % 134:

If the records to be stored with thess&kae quite lage, the space astage of 134 hash
table entries may be too ¢g. Asimple method of wercoming this is to add an array of
134 small intgers (i.e. using thehar type), where each entry in this array sets each C
keyword to a unique alue in the range 0..310n the other hand, this may be a de-
optimization as a sparse hash table can be méiceat than a minimal perfect hash
function. Ifthe table is lage, it becomes lifdy that an unsuccessful search will map to a
location containing aNULL pointer entry and this &oids the need for the ely
comparison.

As a fnal note about perfect hashing, all of the hash functions in this section (both
human and computgrenerated) are speicifto the ASCII character sefThey are not
portable to the EBCDIC set or other character sets, although it is possible to run the
generator program in thesevennments toihd an alternatie hash function.

8.16 Sorting arra ys

Sorting arrays is a common procedure and there are zillions fefedif methods.In
addition to writing your wn sorting function, you can use theort standard library
function, lut as this albays calls a function just to compareawdements, it is &r more
efficient to code up younm sorting algorithm.

The methods of sorting arrays presented in this chapterwolebsort, insertion sort,
selection sort and quicksorQuicksort is the most #€ient (in general) and the others
are presented for completeness, and because there are special cases for whieh the
well-suited.

The implementations of the sorting algorithmsegi here are for sorting arrays of
integers. "B modify the programs to sort arrays ofyagpe, the only necessary madd-
tions are to the lines comparingadwements.

8.16.1 Bubble sort

Bubble sort is aery simple method for sortingibhasO(n?) average performance and is
therefore also one of the most ifiefent. Itis only really useful for sorting a small
number of elements, where it will perform reasonably well due to the simplicity of its
algorithm.

Bubble sort wrks by making multiple passegep the arraylooking at adjacent pairs
of elements and sapping them if the are out of order Passes wer the array continue
until no further s\aps are made.
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voi d bubbl e_sort(data_type a[], int n)
{
int i, j;
int swaps; /* TRUE if did a swap in a pass */
data_type tenp; /* Tenporary el ement for use in swapping */
for (i =1; i <n; i++) { /* Note: not i=0 */
swaps = FALSE;
for (j =n - 1; j >=1i; j--) { [/* Last element downto i */
if (a[j 1] > a[j] ) { /* conpare two el ements */
tenp = a[j - 1]; /* Do a swap */
al ] 1] = a[jl;
a[j] = tenp;
swaps = TRUE; /* Set the swap flag */
) }
if (!swaps) return; /* Exit if no swaps done */

}

Using theswaps variable impraves the eficieng/ of bubble sort. The algorithm wuld
still function correctly een if all references to thisariable were remead, but it would

be less dicient as it wuld continue to mak further passesven dter the array s
already sortedTheswaps variable allavs the algorithm to terminate early when sorting
a partially-sorted arrgyrather than terminating only whanpasses wer the n elements
have keen made.

8.16.2 Insertion sor t

Insertion sort is another simpleutbnot particularly dfcient sorting algorithm.This
algorithm works by graving a sorted part of the array by repeatedly insertingva ne
element into this sorted subarrajt every iteration the number of sorted elements
increases by oneThis algorithm is indfcient if the elements are greatly out of order
because the insertion of an array element requires that all other elements be shifted
upwards by one location.The folloving implementation maintains the locations

0. .1 -1 as the sorted subarray:

void insertion_sort(data_type a[], int n)
int i, j, k;
data_type tenp;
for (i =1; i <n; i++) { /* Note: i=1 */
for (j =0; j <i & a[j] <= a[i]; j++) /* Where in 0..i? */
; /* enmpty loop */
if (j '=1) { /* 1If not already in place */
tenp = ali]; /* Insert in place */
for (k =i; k >j; k--) /* by shuffling others up */
~a[k] = a[k - 1];
alj] = tenp;

Despite thedct that this algorithm i©(n?) in the average case, it haseewy good perfor
mance if the array is almost sorted.
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8.16.3 Selection sort

Selection sort also mak multiple passewer the array Each pass increases the portion

of the array that is sorted and subsequent passes ignore the sortethpalngth of

each passwer the array gradually reduces as the unsorted part of the array reduces.
During each pass the minimum element is fouAd.the end of a pass this minimum
element is put in its correct place and the pass is reduced so that it no longer includes that
newly sorted elementin the folloving function the ariablei indicates the part of the

array to be scanned for the minimum elementi(i+él. up ton- 1):

voi d sel ection_sort(data_type a[], int n)
int i, j;
int mn_index; /* Index of mninmm elenment */

data_type min_elenent; /* Value of mninmmelenment */

for (i =0; i <n - 1; i++) {
m n_i ndex = i; /* First is minimmso far */
mn_elenent = ali];
for (j =i +1; j <n; j++) { /* Find minimumi+1..n-1 */
if (a[j] <mn_elenent ) { /* conpare two elenents */
m n_i ndex = j; /* New mi ni mum found */
mn_elenent = afj];
}
a[mn_index] = a[i]; /* Swap ith element with the */
al[i] = mn_elenment; /* mnimumof a[i] ..a[n-1] */
}

8.16.4 Quicksort

Quicksort vorks by breaking den the sorting problem into smaller sorting problerhs.
sort an arraya sngle element called thavot element, is chosen. Thiglement is used to
partition the array into tavsubarrays. Irone partition, all elements are less than or equal
to the pvot element; in the other partition theare all greater than the vuit element.
These smaller partitioned subarrays are then sorted.

This method of partitioning reduces sorting agéararray to sorting tw smaller
arrays. Thesimplest quicksort algorithm usesdwecursie alls to sort the te new
partitions. Thisworks correctly bt is not as indifcient as it can be.

/* _______________________________________________________________ */
/* QUI CKSORT al gorithmfor sorting arrays */
2 */
voi d quick_sort(data_type arr[], int n, int bottom int top)
{
register int i, mddle;
data_type tenp; /* used by swap macro */
data_type pivot_val ue;
#define swap(x, y) temp = arr[x], arr[x] = arr[y], arr[y] = tenp
if (top > bottom ({ /* If more than 1 element to sort */

/* Partition into subarrays: bottom.mddle-1, mddle+l..top */

pi vot _value = arr[bottoni; /* arr[bottom is pivot */
m ddl e = bottom
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for (i = bottom+ 1; i <=top; i++) {
if (arr[i] < pivot_value) {
m ddl e++;

swap(i, mddle);

swap(bottom mddle); /* Move pivot to mddle */
/* Now sort the two partitions recursively */

quick_sort(arr, n, bottom mddle - 1); /* do bottom */
qui ck_sort(arr, n, mddle + 1, top); /* do top */

}

The folloving more comple implementation of quicksort eliminates one of these
recursve alls. Thetechnique used to reme it is called elimination of tail recursion.
Instead of haing a recursie all as the last statement of a function, a branch back up to
the top of the current viocation of the function is usedlhe branch tads the form of a
whi | e loop in the follaving improved function.

A further improement in the follaving function is that themallest subarray is sorted
recursvely. This reduces théotal number of recurse alls still further Sorting a
smaller array will haee fewer recursie alls at the net levels.

/* _________________________________________________________________ */
/* QUI CKSORT2: Quicksort with Tail Recursion Elimn nated */
| o e e e e e e e e e e e e e e e e e e e e e e e e e e *

voi d quick_sort(data_type arr[], int n, int bottom int top)
{

register int i, mddle;
data_type tenp; /* used by swap macro */
data_type pi vot _val ue;
while (top > bottom { /* Finished if zero/one el enent */
pi vot _value = arr[bottoni; /* arr[bottom is pivot */
m ddl e = bottom
for (i = bottom+ 1; i <= top; 1++) {
if (arr[i] < pivot_value) {
m ddl e++;
swap(i, mddle);
} . . ,
swap(bottom middle); /* Move pivot to mddle */
2 */
/* Partitioned the array - now sort the two partitions */

/* Elimnate tail recursion - do only one partition recursively */
/* Do snallest partition recursively - reduces recursion further */

if (mddle - bottom< top - middle) {
qui ck_sort(arr, n, bottom middle - 1); /* do bottom*/
bottom = middle + 1; /* do top */

el se {
quick_sort(arr, n, mddle + 1, top); /* do top */
top = middle - 1; /* do bottom */
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One major aspect of quicksort not addressed properly by the preceding function is the

method of choosing the vmt element for the partitioning phas&.he simple choice of

the leftmost element can causerst-case belwior on already sorted array#\ better

way to choose the piot element is by gamining seeral different elements in the array

Commonly themedian of the top, middle and bottom elements is chosen as\tbe pi
Another method of improng the eficieng/ of the quicksort algorithm is to sav

small cases by using a special algorititdhen the number of elements to be sorted in a

subarray drops balosome level (e.g. less than 5 elements), it is better to use a simpler

special-purpose sort algorithm instead of using more reeuaills. Useeither special-

purpose inline code for sorting this small number of elements with an optimal nhumber of

comparisons, or call one of the simpler sorting algorithms: insertion sort, selection sort.

Hence, a better quicksort implementatioowd test hav mary elements are to be sorted

and use the special routine if the number is small enough.

8.16.5 Choosing a sorting algorithm

Generally speaking, the quicksort algorithm is the best general-purpose sorting algorithm.
However, sometimes other algorithms may be better when:

« the number of elements to be sorted is small; or
« the array is "almost" sorted (feclements out of place).

If the number of elements is small, thera overhead in the quite complicated implemen-
tations of quicksort may be prohibi#gi A simple algorithm, such as insertion sort, may
be preferable.

When an array is almost sorted, the quicksort algorithm iaipie worst-cased(n?)
behaior. In this case, a simpler algorithm may be preferable.

8.17 Summary

» Abstract data types are not only good programming practite)$o aid the process of
performance tuning, because it is simplect@nge the underlying data structure
without afecting the code thatsesthe abstract data type.

» Stacks are most &€iently implemented as arraysjtithis method is limited to axied
size. Ahybrid stack and lin&d list implementation isabt and general.

» Arrays are most useful for searching for a small number of elements.

» Sorted arrays ha vey fast search and ordered printout routines, Unsorted arrays
have faster insertion and deletion.

* The main diferences between sorted and unsortedelinksts is that unsorted lists
have vay fast insertion, bt sorted lists ally easy sorted printout.

» The ordering of &y tests using the&, > and== operators are important forfiefieng
in both the binary search algorithm on arrays, and binary tree search.

» Binary tree search, insertion and deletion can all be performé&jlagn) time on
avaage, and can all be implemented witfi@ént non-recurse dgorithms.
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» Hashing is a good method of achieg fast searchut does not all effi cient sequen-
tial processing, sorted or unsorted.

 If the leys keing searched for arexéd, a perfect hash function can be taiftade and
a \ery fast hashing search routine implemented.

8.18 Further reading

The eficieng of data structures is a huge area of research in computer science, and this
chapter has touched on only a little of that thedriie folloving are some of the best
references in this area:

GONNET, G. H., and BAEZA-YATES, R., Handbook of Algorithms and Data
Sructures (2nd edn), Addison-Wésley, 1991.

HOROWITZ, E., and SAHNI, S.Fundamentals of Data Structures (3rd edn), Fitman
Publishing, 1990.

KNUTH, Donald E., The Art of Computer Programming (Mol. 3): Sorting and
Searching, Addison-Wésley, 1973.

STANDISH, T. A., Data Structure Techniques, Addison-Wsley, 1980.

8.19 Exercises

1. Improre o the insertion routine for sorted arrays by using a process similar to
binary search tarid where to insert theey.

2. Improre m the deletion routines for the sorted and unsorteadrist implemen-
tations of the symbol table by rewing the assignment to th&&f or e" variable
inside the main loop.

3. Improve the deletion routine of the binary tree implementation to ventte need
for the 'par ent " pointer and thepr ev" pointer.

4.  Examinethe use of sentinels (see Section 8.13) for the sorteedilit implemen-
tation of the symbol tableSentinels should aWe the remeal of pointer tests with
NULL from the loops in the search, insertion and deletion routines.

5. Implementa quicksort routine for sorting an unsorted kklist. The sort should
be performed "in place", without mimg ary nodes or creating menodes, ot only
by changing therfext " pointers.

6. Whenthe cost of ky mmparison is &ry high compared to the cost of fallmg a
next pointer in a linled list, the dfcieng of searching a sorted limd list can be
improved by usingjump search. The idea is to jump forard a fev nodes, say 10
nodes, at each iteration before performingeg éomparison. Ifthe lkey is before
the "look-ahead" node, a sequential search of the 10 nodes is necessary; if it is after
the node, jump search continues further along thellsplement the jump search
algorithm. Hav can its eficieng/ be improved if sentinels are also used?
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11.
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13.

14.

15.

16.
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How useful is a doubly-linkd list for implementing the symbol table as a (sorted)
linked list? What are the implications forfefieng/?

Implementhe insertion and deletion routines for the sentieesion of the binary
tree in Section 8.13Although changing all occurrencesMifiLL to NI L should be
adequate, try to impve the search phase in the deletion routine by takingradv
tage of the sentinel node (i.e. eliminate a comparison Mithinside the loop by
setting the Ry in the sentinel node).

Implementa pri nt _sort ed routine for a binary tree asfigiiently as possible.
Hint: The lkeys should be printed by using anorder traversal, and the inorder
traversal can be impred with the same methods of impanent used for
preorder traersal in Sections 3.9.1 to 3.9.4.

Completehe symbol table implementation with hashing by writing rtieerove
function for the hash table.

Thehash table implementation in this chapter uses an unsorted liisk to chain
collisions. lItis possible to use some other data structure for these collisions, such
as a sorted lirdd lists, binary tree, orven another hash tableExamine the
efficiengy of these alternates. Isan unsorted lingd list the best choice?

Implementhe symbol table using hashing with the linear probing method of colli-
sion resolution.How do you modify the search function to selthe consistenc
problems created by deletion?

Examinethe addition of a&count member function to return the number @afyk
currently stored in the symbol tabl&Vhich data structures mekhis easiest?
How can an incremental algorithm be used targethecount function?

Anotherefficieng/ technique callecpairing computation is relevant where tvo
guantities can be calculated togethastér than by computing them both sep-
arately How can this idea be used tdfiefently implement insertion in a symbol
table for a compilemwhich must &amine the symbol table to determine if a symbol
is present, and insert it if notdint: The ineficient solution is to call theear ch
function and then call thenser t function if the search is unsuccessful.

Hov can you apply the technique ohching commonly used alues to symbol
table implementation?nder what circumstances will it impre dfi cieng/?

Imprave the quicksort implementation by making a better choice \ait @ement
and by using a specialized sorting method, such as insertion sort, when the number
of elements in the subarray is "small enough".
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Example applications

Several programs for aariety of tasks are presented in this chapter and the methods of
effi ciengy improvement in this chapter are applied to these prograrhg. programs were
chosen for &rious reasons, although yhal satisfy the basic requirement of not being
too small or too lage. Thetic-tac-toe gme-playing program a&s chosen simply because

it is an interesting little program that | had already written (although | hagtimized

it). Checkingif an integer is prime is a neat mathematical problem that is okemimed

when considering &tient design of algorithms.

9.1 Aninvincible tic-tac-toe player

When | bgan writing this eficieng/ book | looked around for a program of myvo that

| could try to optimize, and came across a program tcenrekcomputer play inncible
tic-tac-toe. |had written the program after learning about compuaenegplaying in an
Artificial Intelligence courseThe theory of computeragne-playing is quite adwced
and, as you probably knp computers are already threatening the human mastery of
complicated gmes such as chedset us &amine hav computers play gmes.

9.2 Game trees and the minimax algorithm

Computers are not "smartThey play two-player gmes using a brute-force method of
examining &ery possible mee, and then gery possible opponerst’reply, and then gery
move tey could then mag, etc. In complicated gmes such as chess, the computer can
analyze only a f@ moves deep (usually feeer than 10), because the huge number of
possible maes makes the number ofariations immenseHowever, in the game of tic-
tac-toe the computer carxamine eery variation, all the vay to the ihal position,
because the number of wes is dways small (less than 9)n fact, the number ofaria-
tions will be less than ®98*7*6*5*4*3*2*1 =362, 880because at the initial
position there are 9 possible wes and the number of mas for each mee dter that

will decrease by 1.However, this is not a ery accurate upper bound because not all
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games last 9 mees, and the number ofaviations is more lik 250,000 (it is left as an
execise to the reader tinfl out exactly hav mary).

The \ariations arising from a position are usually represented as a apltiee
where each node represents a position, and each line (branch) represerds ahisds
called thegame tree, and it is the basis of all computeame-playing algorithmsAn
example of the gme tree arising from a tic-tac-toe position close to the end afna @5
shavn in Figure 9.1. The game tree for a position earlier in thange would hae a
greater number of nodes (iact, close to 250,000)

Figure9.1. Gametreefor atic-tac-toe position. X to move

X|0O|X
OO0
X
6 7 9
X|O|X X|0O|X X|0O|X
0|0 X OO0 OO0
X X | X X | X
X |0 X X |0 X X |0 X X |0 X X |0 X X |0 X
0|0 X 0|0 X O|0|O OO0 O|0|O OO0
O X X |0 X | X X|X|O X | X O|X|X
9 7 Loss 6 Loss 6
X |0 X X |0 X X |0 X X |0 X
o|o|x o|o|x olo|x olo|x.
O|X | X X[X|O X|X|O O|X|X
Win Draw Draw Win

Note that, for simplicitymoves on the board are numbered as folto

11213
cefomafem
4]15]6
cefomafem
718109

The computer chooses its wgowsing aminimax algorithm. Atpositions where theagne

is over (either a win, loss or dwg, the fnal position is gien a \alue by using what is
called thestatic evaluation function, as hown in Table 9.1. The end of the @me need
not be alvays at the same Vel in the tree; an early win or loss can occur before the 9
maoves ae up.

The actual alues of the staticvaluation function are not important@ept that a loss
must be weighted less than awlnahich is then less than a widf this is so, we can see
that the computer auld like o maximize its score and the opponenbuld like to
minimize the score.Thus at the top &l of the game tree, the computer is trying to
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Table9.1. Static evaluation function

Value Gameresult

1 Win
0 Draw
-1 Loss(opponent wins)

maximize, but at the net level of the game tree it is the opponentiove and the aim of
the opponent will be toinimize the score.

This is the basis of theinimax algorithm, which starts at the bottom of the tree,
evduating fnal positions with the staticvaluation function. Then, for each internal
node, the alues of its child nodes are either maximized or minimized (depending on
whose mee it is & this node), and the internal node isagi this value. Bypropagtion
all the way up to the root, thealue of the root node is foundhis value is the result that
the game will have if both players choose their best moves. For example, in Figure 9.1
the result of the gme with best play auld be a dr& because thealue of the root node
is zero (drav).

The mare chosen by the minimax algorithm for the current position will be one of the
moves that lead to a child node of maximunalwe. Hencethe mae chosen by the
minimax algorithm for the position in Figure 9.1 is 6, because this is the omy et
does not lead to a los§o a gerson, this is olously the only mwee kecause it blocks a
row of three for O, bt the computer must use brute-force search ofaaiations to ihd
this out.

In a real implementation of minimax, the program does ot bhe game tree as a
tree data structurelnstead it follevs the tree structuramplicitly by using a recurse
algorithm. Ineffect, this is a postorder trersal of the gme tree.The essence of the
recursve implementation of the minimax algorithm isvgi below in pseudo-code:

minimax(position):
if game won or dravn then
return static_evaluation(position)
else
generate all igd moves
generate all the mepositions for these mas
applyminimax to all the n& positions (Recurse all!)
if maximizing level then
return maximum \alue and its associated weo
else
return minimum \alue and its associated w&o
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9.3 A simple implementation using minimax

The minimax algorithm is thus the basis of a compusmeplaying program.The
proper implementation of theage also needs the falling routines:

« Initialize the board.

« Display the board.

* Generate all mees from a position.
« Static evaluation function.

* Make a nove m the board.

The following program is the source code for the origirabkion of the tic-tac-toe player
which was implemented without grparticular concern for &tieng. The program uses
the minimax algorithm it the implementation is slightly complicated by thetfthat it
that it doesrt'just return a single nve, but returns the entire "bestasiation.

I* */

/¥ Tic-Tac-Toe game playing program */

I* by  David Spuler, February 1991 */

I* */

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <ctype.h>
#include <time.h>

I* */

#define DEMO 1

/* 1 i f want computer v. computer */
/* 0 if want human v. computer */

/*

typedef int bool;
#define FALSE 0
#define TRUE 1

*/
/* A boolean-like type */

/*

#define NOUGHT 0
#define CROSS 1
#define EMPTY 2

#define DRAWN
#define UNFINISHED

#define NOUGHT_CHAR

#define CROSS_CHAR
#define EMPTY_CHAR

#define VERT_CHAR
#define HORIZ_CHAR

#define CORNER_CHAR

#define INFINITY

*/
[* Player items */

/ * e mpty square */

3 | * Game is drawn */
4 / * Game is not yet finished */
Characters for text screen board */

o’ *
Characters to create board lines */

T *

100 /* INFINITY > max value of static_eval */
/* -INFINITY < min value of static_eval */

/*

typedef struct {
int current_move;
int player;
int squares[3][3];

*

/* Number of the move, 1..9 */
/* Player to move, noughts or crosses */
/* The 3x3 board */
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Yboard_type;

typedef struct {
int number; /* Number of moves in the list */
int moves|[9]; /* List of possible moves */

/* at most 9 moves (9 squares) */
tmove_list_type;

/* Type returned by MINIMAX analysis function */

typedef struct {
int value;
int path[9]; [* List of possible moves */
/* at most 9 moves (9 squares) */
} minimax_type;
I* */
void setup_board(board_type *b)
{
inti, j;
b->player = CROSS; /* Crosses to move */
for (i = 0; i < 3; i++)/* Clear all squares */
for j =0;j<3;j++) {
b->squares][i][j] = EMPTY;
b->current_move = 1; /* First move */
}
I* */
/* Makes the move on the board - p uts the letter down
* - Assumes that the move is legal ---
I* */
void make_move(board_type *b, int m)
intx,y;
int temp;
temp = m-1;/* convert to 0..8 */
X = t emp % 3;/* Get X coordinate */
y = t emp/3;/* Get Y coordinate */
assert(b->squares[x][y] == EMPTY);
b->squares[x][y] = b->player; /* Put the new letter down */

b->player = b->player == NOUGHT?CROSS:NOUGHT; /* Change player */
b->current_move++; I* Count the moves made */

}

I* */

I* Check if the move is legal (returns true if so)
I* */

bool is_legal_move(board_type b, int m)
intx,y;
(m-1) % 3;

y =(m-1)/3;
return b.squares[x][y] == EMPTY; /* Legal if square is empty */

X

I* *

move_list_type generate_moves(board_type *b)

move_list_type move_list;
int m;
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I* */
/* Brute force generation: try all squares for legality */
I* */

move_list.number = 0; /* No moves in list yet */

for (m=1; m<=9; m++) {
if (is_legal_move(*b, m))
/ * L egal move, so add to list */
move_list. moves[move_list.number] = m
move_list.number++;

return move_list;

}

I* */

/* Work  outwho is the winner (X, O, Drawn, or Unfinished ) */
/* Looks  for rows, columns and the 2 diagonals. */
* If no winners, drawn if board is full, else Unfinished */
/* *

int winner(board_type b)
{

inti, j;

bool match, match1, match2;
int temp, temp1, temp2;

int x1, y1, x2, y2;

K e */
for (i=0;i<3;i++) /* Check all columns */
A
temp = b.squaresJi][0];
if (temp == EMPTY) /* square empty? */
continue; I* Can't be a column */
match = TRUE;
for j=1;j<3;j++) {
if (temp I=h. squares[|][j])
match = FALSE
}
if (match)
return temp;
} % *
for (j=0;j<3;j++) /* Check all rows */
{ [ Fommmmmeeees
temp =b. squares[O][|]
if (temp == EMPTY) [* square empty? */
continue; I* Can't be a row */
match = TRUE;
for (i=1;i<3;i++) {
if (temp != b.squaresl[i][j])
match = FALSE;
}
if (match)
return temp;
}
K e *
/* Check both diagonals */
Y
x1=y1l=0;
X2=0;y2=2;

templ = b.squares[x1][y1];
temp?2 = b.squares[x2][y2];
matchl = templ = EMPTY; /* Can’'t match if empty */
match2 = temp2 = EMPTY;
for (=0;j<3;j++){
if (temp1 != b.squares[x1][y1])
matchl = FALSE;
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if (temp2 != b.squares[x2][y2])
match2 = FALSE;

X1++] yl++ /* Move along one diagonal */
X2++; y2--; /* Move along other diagonal */
}
if (matchl)
return templ;
if (match?2)
return temp2;
I* *
/* No winner yet. Drawn if board full, */
I* otherwise Unfinished *
I* *

if (b.current_move > 9)
return DRAWN;

else
return UNFINISHED;
}
I* *
/* STATIC_EVAL: Static evaluation function used by Minimax */
/*  Value of position. (1: win,-1:Loss,0:Draw) */
I* *

int static_eval(board_type b, int player)

intt;
t = winner(b);
if (t == player)
return 1; * You win */
else if (t == DRAWN)
return O; /* Drawn game */
else
return -1; /* Opponent wins */
}
I* *
/* MINIMAX: Do a minimax tree analysis of position */
I* Return value of position and move list of best path. */
I* The first move on this path is the BEST move. */
I* *

minimax_type minimax(board_type b, int depth, int player)

inti;

minimax_type temp; /* Hold return value of this function */
move_list_type move_list;

bool max; /* True if maximizing level */

int best; /* Best value found so far */

max = ((depth & 01) == 0); /* Maximize if level even */
for (i=0;i<9;i++)

temp.pathli] = 0; /* Clear the path to empty initially */
if (winner(b) != UNFINISHED) /* Stop going deeper when game over */

temp.value = static_eval(b, player);
return temp;

if (max) /* Initialize for minimizing/maximizing */
best = (-INFINITY);

else
best = INFINITY;

move_list = generate_moves(&b); [* Generate list of moves */

for (i = 0; i < move_list.number; i++)/* For all moves */
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board_type temp_board;
minimax_type temp2;

temp_board = b;
make_move(&temp_board, move_list. movesi]);
temp2 = minimax(temp_board, depth+1, player); /* Recursion! */

if (( max && temp2.value > best) [* Maximizing */
|| ('max && temp2.value < best)) /* Minimizing */
intk;
best = temp2.value; /* New best score */

temp.path[depth] = move_list. moves][i]; /* add move to path */

for (k = depth + 1; k < 9; k++) /* get other moves */

temp.path[k] = temp2.path[K];

temp.value = best;
return temp;

}
I* *

void computer_move(board_type *b)

minimax_type temp;

temp = minimax(*b, 0, b->player); /* Computer uses minimax */
make_move(b, temp.path[0]); /* Make the chosen move */

}
I* *

void player_move(board_type *b)

int move;
bool error;

#if DEMO
computer_move(b);
#else
do {
error = FALSE;
printf("\n\nWhat is your move (1-9)? );
scanf("%d", &move);
if (move < 1 || move > 9 || Icheck_legal_move(*b, move)) {
printf("\nlllegal move. Try again.\n");

error = TRUE;
else { /* Legal move, so make the move */
make_move(b, move);
}
Ywhile(error); I* Until legal move */
#endif
}
I* *

void print_board(board_type b)

#define MARGIN 5 /* Number of spaces board is inwards */
inti, j, k;
if (winner(b) '= UNFINISHED)
printf("Final Position\n\n");

else
printf("Before move %d\n\n", b.current_move);

for (j=0;j<3;j++) {
for (k = 1; k <= MARGIN; k++)/* Space inwards */

175
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putchar(’ );
for (i = 0; i < 3; i++)/* Draw the board */

if (b.squaresl[i][j] == EMPTY)
putchar(EMPTY_CHAR);
else
if (b.squares]i][j] == NOUGHT)
putchar(NOUGHT_CHAR);
else
putchar(CROSS_CHAR);

if i+1<3)
putchar(VERT_CHAR);

}
if(+1<3){
printf("\n");
for (k = 1; k <= MARGIN; k++)/* Space inwards */
putchar(’ ’);
* Do horizontal line */
for (k =0; k < 3; k++) {
putchar(HORIZ_CHAR);
if (k+1<3)
putchar(CORNER_CHAR);
}

b
printf("\n");

printf("\n");
}
I* */

void announce_winner(board_type b)
int temp;

printf("\n\n");
temp = winner(b);
if (temp == NOUGHT)
printf("Noughts is the winner. \n\n");
else
if (temp == CROSS)
printf("Crosses is the winner.\n\n");
else
printf("The game goes to Jack (drawn)\n");

I* *

main()

board_type b;
int computer_colour = CROSS;

printf("Welcome to Tic-Tac-Toe on a 3x3 board.\n\n");
setup_board(&b); I* Initialize the board */
print_board(b);

do {
if (b.player == computer_colour)
computer_move(&b);
else
player_move(&b);
print_board(b);
}while(winner(b) == UNFINISHED );/* Until game over */
announce_winner(b);
exit(0);
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9.4 Improving the efficiency of the program

To improve te eficieng of this program it is necessary toveaome measure of the
time it talkes. For this program, it &s a simple matter of using demo mode and measur
ing the aecution time with theclock library function. Note that in the follaing
discussion, the timings were takfrom a pwerful mainframe computer

First, | set out to impne the program without using wnspecial algorithm im-
provement (i.e. without using alpha-beta pruning; see Section 9.5), and withalihgrof
The frst version took 56 seconds to ruhremoved the pass-by-alue of the lage board
structures by using pointers; this reducrecation time by about 9% to 51 seconds.

| unrolled completely all of thei¥ed-length loops in therint_board , gener-
ate_moves and winner functions (this imolved ravriting the winner function).
This reduced>ecution time by 33% to 34 seconds.

| corverted the program to use a one-dimensional array of 9 squares, insteadeof a tw
dimensional array of 3x3 squares, reducirgcation time by 35% to 22 second$his
removed not only array calculationsub also the need for thfand/ operators in the
make_move function.

Corverting all the smaller functions to macros reduceetcation time by 13% to 19
seconds.

Rewriting the call tostatic_eval as inline code, allwing the remual of the
duplicated calls to theinner function, reducedxecution time by 10% to 17 seconds.

Remwing from the program all the unnecessary references tgdtie variable
reduced eecution time by 35% to 11 seconds.

| added a "common case" test to thimner function whereby if the me rumber
was less than 6, it muld immediately return a result saying that taeng vas uninished.
However, this decreased fefieng dlightly, indicating that the early mies ae not really
a mmmon case (because the number of positisammed increasesgonentially with
the number of mees) and the xdra test costs time rather thaaimgng it.

As a fnal improrement, | meed the base case in tineinimax function up one ledl
by testing if the gme vas fnished before recungly calling minimax for the net
level. This improved dficiengy by approximately half a second, an impement of
about 5%, making the program require about 11 secohdsimmary of these optimiza-
tions is gven in Table 9.2

Table 9.2. Improvementsto thetic-tac-toe program

Technique Improvement  Execution time
Pass pointers to structures 9% 51seconds
Unrolled fixed length loops 33% 34seconds
Corversion to one-dimensional array 35% 22seconds
Replace functions with macros 13% 19seconds
Remaoved duplicate call tovinner 10% 17seconds

Remored unnecessary code 35% 11seconds
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| had run out of ideas for minor optimizationghe run-time had been impmd from 56
seconds to just 11 seconds, a ma&sgnprovement. Havever, readability had sdéred
and the original program ag nev beyond recognition; in particularthe minimax
function was much more complicatedn making all these impr@ments | had also
introduced a number ofulgs at arious stages, and these hadetakome time to rerme
(thankfully, it was easy to detect them by noting when theersequence of the demo
game changed)The net step vas to try a dierent algorithm: alpha-beta pruning.

9.5 Alpha-beta pruning

Alpha-beta pruning is a method ofcéding the auation of entire subtrees of thamge
tree. Ittakes adantage of thedct that the minimax algorithm doesgénerate the entire
tree before waluating internal nodes (ira€t, minimax performs a postorderveesal of
the came tree).By maintaining two extra cut-of values, traditionally calledlpha and
beta, the impraved dgorithm can soid evaluating may subtrees. Theerm "pruning”
comes from thedct that branches are pruned from theng tree.

The impraved dpha-beta algorithm impr@s on minimax in that it does not abys
malke a lecursie all to evaluate all mees from a gven position. Oncea aut-off occurs,
no more mues from the position arevaluated. Theprocedure is similar at minimizing
and maximizing leels. Ata minimizing level, the beta alue is continually updated so as
to be the current maximurmalue of a mee found at this positionAt the same time, a
test for an alpha cut-bifs performed. Théeta alue is propagted devn to the ngt level
of the tree, which will be a maximizingvd, and the alue is used for a beta cuttofThe
alpha walue is continually updated at a minimizingde and tracks the minimumalue
found so &r at the current position.

The occurrence of a cutfpfeither alpha or beta, indicates that the current position
will never arise with best play because there is a betteiation aailable at a higher
level node in the tree An alpha cut-dfindicates that at the current position the opponent
has a good me, but you can aoid this variation by choosing a better neearlier in the
move fquence. Similarlya keta cut-of indicates that you ka a gpod mave, but the op-
ponent canaid the \ariation in fivar of a better one.

| took the original 56-second program and changedntimémax function to use
alpha-beta pruninglt took about 2 seconds to ruhe use of a diérent algorithm
should hae keen theifst attempt at difcieng/ improvement, not the lastHowever, the
smaller impreements were not asted, because modifying the 11-second program to use
alpha-beta pruning reducegrleeution time further to 0.46 second$he alpha-beta prun-
ing function is shan belawv:

;* MINIMAX: Do an alpha-beta pruning minimax/analysis of game tree */

I* Returns value of position and the BEST move */
I* */

minimax_type minimax(board_type b,int d,int player,int alpha,int beta)

inti;

minimax_type temp; /* Use to hold return value of this function */
move_list_type move_list;
bool max; [* True if maximizing level */

int best; /* Best value found so far */
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max = ((d & 01) == 0); /* Maximize if level even */
if (winner(b) '= UNFINISHED) /* Stop going deeper when game over */
{

temp.value = static_eval(b, player);
return temp;

if (max) /* Initialize for minimizing/maximizing */
best = (-INFINITY);

else
best = INFINITY;

move_list = generate_moves(&b); [* Generate list of moves */

for (i = 0; i < move_list.number; i++)/* For all moves */

board_type temp_board;
minimax_type temp2;

temp_board = b;
make_move(&temp_board, move_list. movesi]);
temp2 = minimax(temp_board, d + 1, player, alpha, beta);

if (max) { [* Maximizing */
if (temp2.value > best) {
temp.best_move = move_list.moves]i]; /* store move */
best = temp2.value; /* New best score */
alpha = temp2.value; /* New alpha bound */
if (best >= beta) { * Check for beta cut-off */

temp.value = best;
return temp;

}
}
else { /* Minimizing */
if (temp2.value < best) {
temp.best_move = move_list.moves]i]; /* store move */
best = temp2.value; /* New best score */
beta = temp2.value; /* New beta bound */
if (best <= alpha) { /* Check for alpha cut-off */
temp.value = best;
return temp;
}
}

}

temp.value = best;
return temp;

}

The initial values ofalpha andbeta are important, being getive and positie infinity.
The irst call to theminimax function is:

temp = minimax(*b, 0, b->player, -INFINITY, INFINITY);

There is one ery important detail in the implementation of alpha-beta dist-dhe
operators>= and<= in the check for cut-& are crucial for difcieng.. The program will
still perform correctly with the> and< operators, bt mary cut-off opportunities will be
lost, particularly in the tic-tac-toeagne because, with only three possitdtues from the
static @aluation function, equality isafirly common.
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9.6 Total precalculation

Although there seems to be novlus method of impnang the eficiengy still further, it

is possible to precalculate the bestesofor every possible position, store thesevesin

an array and thereby replace the call to th@nimax function with a supeefficient

table lookup. To do 0 we would need tw programs — one to generate the array of
moves, and one to play theame using this arrayTo generate the mas, we apply the
program already written to all possible board positicBice we hee 3 =19683 board
positions and our program requires at most 0.46 seconds, the data generating program
should run in less than 9000 seconds (about 3 hobr$act, it runs muchaster than this
because 0.46 seconds is required only when starting with the empty board.

For simplicity, we work by encoding each position as a number in the range by.3
regarding the position as a base-3 number with digits X, O and the empty square.
functions todecode an inteyer to a position anehcode a position as an intger are shon
in the following source codeThe basic algorithm to generate the precalculated array of
best meoes is dso shavn (with the code to perform the position analysis omitted for the
sale d brevity).

I* */

;: Create precalculated array of best move*s/ */

#define TABLE_SIZE 19683 /* 379 different positions */

2: ENCODE: Convert board position I;o an integer */

int encode(const board_type *b)
inti, code = 0;

for (i=0;i<8;i++)
code = code * 3 + b->squares][i];
return code;

I* */
/* DECODE: Convert integer to a board position */
I* */

void decode(board_type *b, int code)
inti;
b->current_move = 1;
b->player = COMPUTER_PIECE;
for (i=8;i>=0;i-){
b->squares]i] = code % 3; [* extract ternary digit */
code /= 3;
if (b->squaresJi] '= EMPTY) /* count how many moves made */
b->current_move++;

}
I* *

main()

board_type b;
int code;
char filename[100];
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char c;
minimax_type ret;
FILE *fp;

printf("Enter name of resulting file: ");
scanf("%s", filename);
fp = fopen(filename, "r*); [* Check doesn't already exist */
if (fp != NULL) {
printf("That file already exists!'\n");
printf("Do you want to overwrite it? (y/n): );
scanf(" %c", &c);
if (tolower(c) !="y’) {
fclose(fp);
exit(1);

%close(fp);

fp = fopen(filename, "w"); /* Create/truncate file */
if (fp == NULL) {

perror(filename);

exit(1);

I* */
/* Now produce the C declaration for initialized array */
I* */

fprintf(fp, "char board_table [%d] = {\n", TABLE_SIZE);
fflush(fp);
for (code = 0; code < TABLE_SIZE; code++) { /* for 379 positions */
decode(&b, code);
if (b.current_move <= 9)
ret = minimax(&b, 0, COMPUTER_PIECE);

else
ret.best_move = 0; /* dummy move; board is filled up! */
fprintf(fp, "%d", ret.best_move);

if (code + 1 < TABLE_SIZE) { /* comma after all but last */
fprintf(fp, ", ");
if (code % 20 == 19) /* new line every 20 digits */
fprintf(fp, "\n");

}
fprintf(fp, "\n}\n"); [* finish the array declaration */
fclose(fp);
exit(0);
}

The tic-tac-toe program can be made much smaller byviemary functions related to
the minimax algorithm, and weiting the computer_move function as follevs.
Naturally the fnal game-playing ersion still uses manother functions, such as
setup_board andprint_board , but these are omitted for the gadf clarity.

I* */

/* Tic-tac-toe player using total precomputation */
I* */

#include "table.c" /* Include computer-generated file */

void computer_move(board_type *b)
int code;
code = encode(b);

assert(1 <= board_table[code] && board_table[code] <= 9);
make_move(b, board_table[code]);
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This wersion of the tic-tac-toe player &k only 0.03 seconds to play an entieeng
against itself.

9.7 Testing for prime numbers

Testing if an intger is a prime number is a well-kmo problem in number thearyAn
integer is prime if it is diisible only by 1 and itselfFor example, 5 is prime because it is
divisible only by 1 and 5,ui 9 is not prime because it is/iible by 3.

Our first attempt at testing if an irger is prime is to test whether it can beidid by
the numbers 21.—1, where the test for wdsibility is to compare the result of the
remainder operatpf4y with zero. n is divisible byi if and only if n%i is zero. The
function is:

bool primel(long n)

long i;
for (i=2;i<n;i++) { [*Try 2.n-1 %/
if(Nn%i==0) /* Does i divide n evenly? */
return FALSE; /* Yes, so not prime */
}
return TRUE; /* None divide, so must be prime */

}

To examine its run-time éfciengy, calling the function for the numbers from 1 to 10,000
was timed. Thisalgorithm took 12.59 seconds.

The best optimization to apply to this technique is to choose a better algoAthm.
little thought will shev that there is no need to test fovidors up ton— 1. Onlydivisors
up tovn need be testedlf a number has a dsor greater thaign, then it also has a
divisor less tharyn, and the smaller disor will be found by our algorithm.The
improved dgorithm can be coded up as:

bool prime2(long n)

long i;
long max;
max = (long) sqrt( (double) n);
for (i = 2; i <= max; i++) { [* Try 2..sqrt(n) */
if (Nn%i==0) /* i divides n evenly? */
return FALSE; /* Yes, so not prime */

}
return TRUE;

Care has been tak not to computeqrt in the condition of thdor loop, since this
would callsgrt for every iteration.

The impraved dgorithm tales only 0.34 seconds to test the primes from 1 to 10,000,
compared to 12.59 seconds for thretfversion. Thisncredible speedup occurs because
the frst algorithm performs approximatelg? remainder tests, whereas the second
algorithm performs only approximateh#/n tests (note that remainder tests on composite
numbers are much ver for both algorithms because aigor can be found quickly).
Even so, the speedup seems incredible until the the timings are performed is &k
into consideration — the numbers from 1 to 10,000 are te®gdusing some simple
mathematics to estimate wiomuch speedup should bepected, the cost of testing
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1..10,000 for the tevdgorithms can be approximated by the formulae:

10,000
> i2 = 333,383,335,000
i=1
10,000
> Vi = 4,000,500,012
i=1
where the alues hae been calculated by a small computer progradence, our estimate
of the speedupattor is around 333/2 83, and we estimate that the second algorithm
should tak aound 1259/83= 0. 15seconds, which isaf better than the actual result.
The fact that the algorithm does not do as well as the estimate can be tracedatt the f
that the summation formulae do notdakto account that the algorithms do noteak
long to detect a non-prime igfer as thg do for a prime.
The algorithm can be impved 4ill further by noting that the program shouldvae
test for dvisibility with an even number lager than 2 since numbers which areigible
by laige e/en numbers will hae dready been ideniiéd as non-prime by thadt that the
are dvisible by 2. Hence, the algorithm can be maeif to skip @er even numbers:

bool prime3(long n)

long i;
long max;

if (n <=2)
return TRUE;

if (n% 2==0) /* divide by 2 as special case */
return FALSE;

max = (long) sqrt( (double) n);
for (i=3;i<=max;i+=2){ /* 3..sqrt(n) odds only */
if (n % i ==0)
return FALSE;

}
return TRUE;
}

This improrement reduced thexecution time from 0.34 to 0.20 secondBhe remainder
operatiomn%?2was then replaced by a bitwise-and operation, reducing the time further by
10% to 0.18 secondslhe fact that this small change impenl the speed by such adgr
percentage shigs that the diisibility test succeeds frequently (iadt, half the time).

The idea of woiding dividing by esen numbers can be generalized teoiding
dividing by ary multiples of numbers already testedhis is dificult to do for all
numbers, bt it was possible to reme the remainder tests for all multiples of 3 by using
the impraved function:
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bool prime4(long n)

long i;
long max;
int count3;
if (n <=3)
return TRUE;
if (n & 1) ==0) /* Divide by 2 as special case */

return FALSE;

if (n % 3 ==0) /* Divide by 3 as special case too */
return FALSE;

max = (long) sqrt( (double) n);

count3 = 3; /* 3rd decrement sets to zero */
[* as i's first value is 5 */
for (i=5;i<=max;i+=2){ /* 3..sqrt(n), odds only */
count3--;
if (count3 == 0) {
count3 = 3; /* multiple of 3 */
) continue; I* skip it */
if (n % i ==0)

return FALSE;

}
return TRUE;
}

This small impregement to the algorithm impved the eficieng/ from 0.18 seconds to
0.16 seconds.

9.8 Precomputing arrays of primes

Interestingly a first attempt at precalculatiomifed to impree dficieng, and actually
increased run-time.The following function took 0.17 seconds, and ctf, when the
number of primes in the precalculated arragswincreased, #fiengy went davn.
Corversion of the array references to use a pointaretsal of the array (see Section
4.1.9) impreoed the situation slightlybut it was still less difcient than earlier algorithms.
Presumablythe problem is thextra processing performed each loop iteration.
bool prime5(long n)
long i, max;
int J;
static long primes[] ={ 2, 3, 5, 7, 11, 13, 17, 19, 23,29 };
#define NUM_PRECALC (s izeof(primes) / sizeof(long))
for (j = 0; j < NUM_PRECALC; j++) {

if (n <= primesj]) [* Must be prime; <= catches 1 */
return TRUE; [* == would require 1 in array */
if (n % primes[j] == 0)
return FALSE; /* Divides, so not prime */
}
max = (long) sqrt( (double) n);
i = p rimes[NUM_PRECALC - 1] + 2; /* Start at next odd */
for (; i <=max; i+=2){ [* up to sqrt(n), odds only */
if (n% i==0)

return FALSE;
}
return TRUE;
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Finally, a oolean array indicating whether an gee in the range 0..1000as prime or
not was used (this as calculated by another progranurprisingly this had no notice-
able improwement wer the best algorithms, taking 0.16 secondigwever, when all the
numbers up to 10,000 were precalculated, thecwgion time vas reduced to 0.03

seconds.
bool prime6(long n)

long i;
long max;
int J;

static bool is_prime[] = {
#include "primes.h" /* Include precalculated array */

#define NUM_PRECALC ( s izeof(is_prime) / sizeof(bool))

if (n < NUM_PRECALC)
return is_prime[n]; /* Look up result in table */

else
return prime5(n); [* Call a general prime routine */

9.9 How the prime functions were timed

The scdblding used to time theavious functions is quite interesting in itse@lever use
of an array of pointers to functions meant that adding another functior@lt@te was
just a matter of adding its name to the initialization of the array of pointers to functions.

main()
long n;
long i;
int alg;
clock_t start;
static bool (*fns[])(long) = { /* pointers to functions */
primel, prime2, prime3, prime4, prime5, prime6
#define MAX 10000 /*  How many primes to test */
#define NUM_ALG \
(sizeof(fns) / sizeof(fns[0])) /* number of algorithms */
static double times[NUM_ALG]; /* array of run-times */
static bool arrfflNUM_ALG][MAX + 1]; /* flags indicating primes */
/* _________________________ *
/* Time all the algorithms */
L e
for (alg = 0; alg < NUM_ALG; alg++) { /* for all algorithms */

start = clock();

for (i = 2; i <= MAX; i++)
arr[alg][|] = fns[alg](l) [* test if i is prime */

times[alg] = (clock() - start) / (double) CLOCKS_PER_SEC;
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I* *
/* Perform debugging check to ensure all return same values */
/* *

for (i = 2; i <= MAX; i++) {
bool value = arr[0][i];
for (alg = 0; alg < NUM_ALG,; alg++) { /* for all algorithms */
if (arr[alg][i] != value) {

printf("Fails i = %Id, prime%d = %d, primel = %d\n",
I, alg + 1, arr[alg][i], value);
exit(1);

}

/* */
/* REPORT the times of execution */

I* */

for (alg = 0; alg < NUM_ALG,; alg++) { [* for all algorithms */
printf("Version %d took %5.4f seconds\n", alg + 1, times[alg]);
exit(0);

9.10 Further reading

My artificial intelligence t&tbook was by Elaine Rich, and the minimax and alpha-beta
algorithms are adapted from there (although she uses a slightly rficienéfmethod
where testing if the l&l is minimizing or maximizing is @oided by ngating the alue at
each led). An excellent book on writing @mes such as tic-tac-toe, chess, caeglgo,
poker, and maly others, isComputer Gamesmanship by David Levy.

LEVY, David, Computer Gamesmanship, Century Publishing, 1983.
RICH, Elaine Artificial Intelligence, McGraw-Hill, 1983.

9.11 Exercises

1. Male the tic-tac-toe player a more uddendly game by adding features such as
interactve choice of demo mode, takack mae, hint, etc.

2. Modify the minimax and alpha-bet&ngions of the tic-tac-toe player to determine
howv mary nodes aresluated by the staticveluation function. By what percent-
age does alpha-beta pruning reduce the number?

3. Modify the tic-tac-toe program to play tic-tac-toe on an NxN board.

Modify the precalculated tic-tac-toe player so that it can play either playter
present, it does not correctly precalculatevesdor alternating players,ub aways
assumes X is to play from the current position.

5. Modify the prime5 function in 9.8 to remee the loop @erhead by completely
unrolling the frst loop.
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ldeas for compiler optimization

Whereas pndous chapters hva examined the issue of fefieng/ from the point of vies

of the programmethis chapter looks at #e€ieng/ from the point of vier of the compiler
implementor The design of optimizing compilers is still an area of current research, and
there are mantechniques that could beawed. Havever, rather than discuss the nyan
issues of code optimization, this chapter focuses upon optimizations that esatrele

the C and C++ languagen particular the efect of the ANSI C standard on compiler
optimization is gien special emphasis.

The fundamental principle of optimization is to replace a computation with a more
efficient method that computes the same resililie ANSI C standard speie$ the
results of computations as if on an "abstract machinelt, the methodsused by the
compiler are not spe@fd. Thecompilers gptimizer is free to choose amethod that
produces the correct resulthis is commonly called the "as if" rule, since the program
must run as if it werexecuting on the abstract machine.

One important consideration for optimizers is whethey tre alloved to remuae
code that may produce some form ateption, such as HULL pointer dereference or
arithmetic werflow (which might cause program termination, or some other sidetef
Fortunately such efects are classed as "unitheid behsior" in the ANSI C standard and
the compiler is free to treat them inyaway. Ignoring such xceptions is one possible
behaior, and hence the compiler'gptimizer may remee sich statements (pviaed the
statements cause no other useful sikects, of course).

10.1 Well-known optimization techniques

The fundamental design of an optimizer for a C or C++ compilergsliathe same as an
optimizer for ay other procedural programming languageor an introductory discus-
sion of compiler optimization, the reader is referred good compiler tetbook, such
as Aho, Sethi and Ullman (1986} his section gamines well-knavn optimizations when
applied to C and C++.

187
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Naturally, dl operations and statements should be implemented with the most
efficient instructions.Some of the more ditult areas are thewitch statement (see
Section 4.2.3 for a brief discussion), and the conditional operata conditional oper
ator should produce code identical to the statement whexer its result is not used,;
hence it is wrthwhile to determine if the result is used when deciding on the code
sequence to use.

10.1.1 Code motion and common sub-expression elimination

Large-scale code transformations such as code motion and commaxpsedsmsn elim-

ination sufer from problems because of33/stem leel ancestry and are oftenaided

by compiler implementors (and rightly so'These transformations can cause problems
when a location has special properties, such as a memory-mapped 1/O port, and a useful
reference may be "optimized out" because it appears redundant to the coifipiter

fact, along with bigs in optimizers, helpsxplain the well-knan phenomenon of a
program that wrks without optimization, Ut fails if the optimizer is used.The

volatile keyword is a partial solution to the problemytht is limited in that it must

be added toxésting code.For further discussion, refer to Section 10.8.

An interesting possibility for improng these optimizations is to use kiedge
about the standard library functionsn particular the knavledge that some library
functions neer produce a side #fct can be used to generalize the sqiressions to
which code motion and common sukpeession can be eliminatedhe library functions
which dont produce side écts include, for xample,strlen , strcmp and all of the
<ctype.h> functions. Considethe folloving code fragment:

for(i=0; i < strlen(s); i++)
hash += siJ;

if(strcmp(sl,s2) == 0)
printf("equal");

else if(strcmp(sl,s2) < 0)
printf("less than");

else
printf("greater than");

In theory a ampiler could optimize the folleing code using kneledge ofstrlen  and
strcmp . Thestrlen  call can be meed before the loop and the secomstikcmp call,
which is a common subxpression, can be remad by storing and reusing the result
from the frst call. I'll be very impressed when | see a compiler that can do this!

10.1.2 Constant folding

The well-knavn technique of "constant folding" can be applied in C and C++ to both
integral and floating point constants, and also to objects declarsshas (see Section
10.9). Althoughthe ANSI C standard speigi§ that a compiler must honor the presence
of braclets, @en for commutatie-associatie gerators, this as mainly introduced to
solve problems programmers had whenytheere trying to reduce the size of relati
error in floating point computations-Hence, although braeks should be honored for
floating point &pressions, a compiler can often rearrangegnalexpressions. Irfact, if
done properlythe "worst" that rearranging an igel expression can do is to cause an
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overflow condition. Thisis no problem on the mgr2's complement implementations
where intger overflow has no dict and cannot be detected; nor is it a problem for other
compilers since wrflow is "undefned behsior" and the comments made in the intro-
duction to this chapter apply

Constant folding can bexeended to include the "propatipn” of a constant assigned

to a \ariable, proided that the ariable is notvolatile . For example, the constant
assigned td in the code fragment:
i 0;

J (-

can be propaged to its n&t use, so that is also assigned the constantNote that this
optimization will cause problems in traditional C if ariable has special properties (i.e.
if it would bevolatile in ANSI C), lut it is unlikely that anint  variable is intended

to be special.A pointer \ariable is more likly to point to a special location, and it is
perhaps too dangerous for the compiler to prafmgonstants assigned via a pointer
dereference.

10.1.3 Algebraic identities

There are mansmall optimizations that can be applied at thgression leel. An
integer multiplication irolving a constant pger of two can be changed into a bit shift.
However, integer division by a pwer of two cannot be changed to use right shift because
neither of the possible implementations of right shift, sigeresion and leftiling with
zero bits, is equilent to dvision for n@aive values. Onlyinteger dvision of
unsigned types can be safely changed to right sHfimilarly, a remainder imolving a
power of two can be changed to use bitwise-and on implementations where the résult of
on ngaive \values is identical to that of bitwise-and (anddasigned operations).

The compiler could also check for common cases such as assigning zeevitdbie v
if a fast set-to-zero assembly instruction Vgilable. If this optimization is used, the
compiler should also aich for zero assigned through a nowidtiassignment, such as:

X =y =0;

It is also worth finding expressions that add 1 to alwe using ordinary for a number of
reasons:

« ++ is not\alid in situations where the operand is not aali:g;
* hovice programmers may fget to user+;
 #define constants may lva the \alue 1.

On some machines, adding small constants (e.g. 2) may be rociendf implemented
as a sequence of increment operations, and these special cases should be optimized.
There are mansimple algebraic identities that can be used to ivgrdfi ciengy. It
is usually safer to apply these optimizations only togetexpressions, lt floating point
expressions may also be considered if it is clear that the result will not be ch&uared.

identities are as foll@s:



190 Chapter 10

* T~ % % 4
ok o
i 1

I 1
I n
oX ' XX

Although it is unlilely that the programmer will kmongly place suchxpressions in the
code, thg can arise if symbolic constantsueavalues such as 1 or 0O, or if complicated
constant epressions\eluate to thesealues.

Another \ery common form of identity wrolves the! operator Expressions of the

form:
(x ==1y)

are quite common, as $hean arise when thie operator is applied to a macnepansion.
Obviously, the more dfcient expression ix!=y . This form of &pression is easy for the
compiler to detect, and the compiler can also generate more of this form ofémpra
by using the identities:

However, these identities are only really useful if theandy sub-epressions contain
relational operators, thus alling the! operations to be remed. If neitherx nory
contain relational operators, it is moré @ent to use the identities invexse (from right
to left) to remoe me of the!l operations. Brtunately these algebraic identites preserv
all the same semanticsjen those ivolving short circuiting and side fetcts.

A very sophisticated optimizer might notice some lessonis algebraic identities.
For example, in the xpression:

Xx*(y!'=0)

the multiplication operator is \abys applied to either O or 1, so the optimizer could
generate code for this statement as if it had thevagui form which totally aoids
multiplication:

y!'=07?x:0
Another \ery adwanced optimization, although perhaps it will only rarely be used, is illus-
trated by the code sequence:

#define ABS(x) ((x>=0?2X):-(x)

y = ABS(y)
which expands out to become:

y=((y>=02y):-u)

Although it isnt obvious immediatelythis has a redundant assignment in the second part,
effectively assigningy=y. The compiler should optimize ymedundant assignments of
this form and do safterthe code is generated for the conditional operator
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A similar form of optimization, where the compiler must recognize the samexsub-e
pression on both left and right sides of theoperator is that statements such as the
following can usually be implemented as a single machine instruction:

X
X

- X;
NX;

10.1.4 Evaluating boolean expressions

It is interesting to note that the common code optimization technique of "short circuiting
a logical expression is absolutely necessary in C and C++, as it is part of thitigkefof

the && and|| operators. Haever, there are still some impvements possible in the
evduation of booleanx@ressions, depending on what comi® logical or relational oper
ator is used in.The restriction that operators such<aand&& must return either 0 or 1
limits efficiengy, but in some cases this ismmportant, such as when the results of these
operators are thepeandto either&&or|| (which permit ag non-zero alue for true),

or the conditionalxpression for aff statement or loop conditiorzor example, the @
pression:

X!l=y && ...

might well be optimized to use subtraction:
X-y && ..

although when the result of the operator must be stored, then the code must return
either 0 or 1, as in:

z =(x!=y) f*  difficult to optimize */

A boolean &pression, either as an operan&®or || , or as a ©nditional epression for
anif statement or loop, can V& quite eficient generated codeAs an &ample, the
statement:

if (x<y)
can be implemented using instructionglik

cmp X, Yy ; compare x and y
bls somewhere ;b ranch if less than

However, if this test were used in the assignment statement:
zZ=X<Yy,;

the assembly instructions are lesxifiée because of the need to actualpleate< as
either O or 1:

cmp X, Yy ; compare x and y

bls true ; b ranch if less than

store z, 0 ;z=0

imp after ;S kip the next statement
true: store z, 1 oz =1

after: ....
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10.2 Prototypes and argument widening

The addition of prototypes to C by the ANSI standanegithe implementor more
freedom in dfcient implementation of function callsSThe main areas of impvement
are the woidance of wideningchar , short andfloat types, and the flability to
pass parameters ingisters. Thes@ptimizations apply also to C++, where fortunately
they cause no problems since non-prototyped function calls are naedllo

In traditional C, no functions are prototyped, and implicguanent promotion of
smaller types occurs in function callshar andshort types are promoted tot , and
float is promoted tadouble . These cowersions cost both time and space, and can
often be goided in ANSI C. When an ANSI compiler sees a call to a function that is
governed by a prototype, the compiler is free to dispense with these promotions, and can
instead pass theguments as their actual typedf course, this rule for prototypes must
be consistently folleved for both function calls and function oéfions (i.e. if aguments
to a prototyped call are not widened, the functionnitedns should knev to expect the
arguments as éng non-widened size).

Unfortunately this nav policy does mak function calls slightly more brittle, because
if the programmer accidentally calls this function inl@here no prototype is declared,
the de&ult agument promotions will occurA larger agument than xpected by the
function deinition will be passed on the stack, and a run-tiaikife is the most ligly
result. AlthoughANSI does gie the compiler this freedom by requiring that such a
function is alvays called with a prototype in scope, this is little consolation to the
programmer whose program &iling. Thisis a trade-dfbetween speed and nadtness.

10.3 Prototypes and the function call mechanism

The traditional method of passinggaments to a function in C has been to push them all
onto the program stacklhis was simple to implement and pided support for ariable-
amgument functions (e.grintf |, scanf ). Infact, since without prototyping there is no
way to tell if a function call is to a ariable-agument function or aifed-agument
function, the function call mechanism had to support both, and puslgjamants onto
the stack was the simplest method of ackiig this.

The introduction of prototyping ales the use of diérent function call mechanisms,
such as passing@rments in rgisters, in certain situationsThe ANSI standard intro-
duces oneery important constraint on programs:

All calls to variable-agument functions must bevgoned by a ptotype

In other words, calls to ariable-agument functions can no longer be non-prototyped.
One of the main &cts this has on programs is thaty gmograms using library
functions in theprintf  or scanf families must include<stdio.h>  (which should
declare prototypes for thesariable-agument functions).In addition, the declaration of
userdefined non-prototyped ariable-agument functions (e.g. those using the old
<varargs.h>  header ife) is not allaved in ANSI C, nor is a call to aaviable-agu-
ment function allwed to be non-prototypedyen if defined by using the ANSI header
<stdarg.h> (i.e. the call must be gerned by a prototype containing the ellipsis).
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This nav rule has important consequences for the compiler implemeNtor-proto-
typed function calls can be assumed to be call&emfagument functions, and hence
non-prototyped calls can use a function call mechanism other than pugiunteats on-
to the stack, such as passinguaments in rgisters (after the gument alue promotions
of char andshort toint , andfloat to double ). Callsto functions declared by
fixed algument prototypes can also be passed by using this same mechbmfact, the
mechanisms forixed-agument prototyped and non-prototyped calls must be identical;
otherwise, there will be a run-timailure if a call is made to a prototyped functioniwief
tion, where that function call is not actuallyvgmed by a prototype (this situation must
be supported by an ANSI compiler).

Any method of passing guments could be used, pided that function calls as well
as function denitions rely on it. For example, a reasonable rule, based on the assump-
tion that structures arftbat /double arguments ca’be daced in rgisters, vould be
to pass theirfst n scalar aguments in rgisters, for someixed n that depends on the
number of gailable hardvare r@isters in the machinelThus, a function défition would
expect its frst n scalar aguments in rgisters, and gnnon-scalar ajuments or xdra
scalar aguments on the stack.

Variable-agument functions must be implemented slightlyfedéntly because tlye
have  support a ariable number of guments. Whem function is called with a proto-
type in scope that contains the ellipsis, such as:

void printf(char *format, ...);

ary mechanism can be used, yiged it supports both the use of the declargdiments

(i.e. format ) within the function dehition, and the etraction of ay remaining agu-

ments via theva_start , va_arg and va_end macros in<stdarg.h> . For
example, the same mechanism as feed-agument prototyped calls could be used for
the declared guments, and the remaininggaments (after the dafilt non-prototyping
promotions ofthar , short andfloat ) could be pushed onto the stack as in tradition-

al C. The stack is just one possible implementation (albeit the most common) and the
implementor can chooseyamethod preided the macros isstdarg.h>  are modifed

to correctly receie the aguments.

Unfortunately relying on the assumption that alinable-agument functions will be
called via a prototype can cause old coded find preides no safety net for the
programmer who accidentally omits a prototyfde compiler could partially sodvthis
problem by producing arnings about all non-prototyped calls, especially thosmvimg
calls to \ariable-agument standard library functions such @ntf and scanf .
Another alternatie is to limit the situations in which theater agument passing mecha-
nism is used, and this iswaliscussed.

A slightly safer lut less pwerful optimization is to relax the assumption that non-
prototyped calls are whys to ixed-agument functions and to use the traditional stack
method forall non-prototyped callsHence, a function call or daftion can be opti-
mized only if it can be guaranteed that all calls to a function will verged by a proto-
type; according to p247 of Harbison and Steebook, C: A Refeence Manualthese
situations are when a function is called with a prototype in scope (oedefs a proto-
typed function) and:



194 Chapter 10

« a least one gument is othar , short , or float type;or
* the prototype uses the ellipsis évk".. " (variable-agument function).

Hence, a call to a prototyped function witletear , short , or float amument can be
handled in a dierent manner than required for non-prototyped function calls (which
would be handled in the traditional stack-based methbattfortunately any such rule

will still lead to run-time errors if the programmer accidentallgés to declare a proto-
type for this type of function; the situation is the same as fpmaent widening as dis-
cussed in the pvéous section.

This safer rule also loses the opportunity for optimizing non-prototyped calls and
even prototyped calls which do not ushar , short or float amguments (i.e. using
onlyint ,long , double , pointers and structures)he reason for this restriction is that
an ANSI compiler must still support calls to a prototyped function that daestchar |,
short orfloat parameters,v@n if no prototype is in scope at the time of the call.
Hence, ap difference in the handling of this function when it is prototyped or non-proto-
typed will cause run-timeaflure and thus violates ANSIThis support for programs that
mix prototyping and non-prototyping for the same function limits the optimization of
prototyped calls if we do not choose to also optimize non-prototyped calls.

One practical alternat for the implementor is to pvade a user option to force all
prototyped function calls to use asfer calling mechanismThis imposes on the
programmer thedrden of alvays using prototypes correctly (compilatiomammings about
non-prototyped calls become almost a necessity in suchvaorenent). D reduce the
risk of failures due to accidental non-prototyping, this option could also ensure that the
same calling mechanism is used for non-prototyped functions so that programs will not
fail unless a wriable-agument function is called without a prototype, or unless a proto-
typed function with ahar , short orfloat amument is called without a prototype.

In summarythe ANSI standard ges the implementor ne freedom of choicevar
the function call mechanisnilhe implementor can choose between the traditional (safe)
method of pushing guments onto the stack, or use a mofieieht method which may
fail if the programmer does not correctly fol)ANSI guidelines — in particulaa vari-
able-agument function must be called via a prototype, and prototyped and non-proto-
typed calls can be mixl only when no gument type ighar , short orfloat . Un-
fortunately any method that relies onaviable-agument function calls walays being
prototyped may breakkisting code.Perhaps the best practical choice is to/jp® a user
option to set the iesl of optimization, based on dérent choices of gument widening
(as discussed in the preus section) and gument passing through harae reisters.
Some of the possibleves, roughly ordered from &kt and unsafe" to "skoand safest"
are as follovs:

1. Use rgisters for non-prototyped ankéd-agument prototyped guments; widen
only non-prototyped guments.

2. Use rgisters for non-prototyped anckéd-agument prototyped guments; widen
all aguments.

3. Use rgisters for ixed-agument prototyped functionsvidving char , short or
float parameters; widen only non-prototypedwanents.

4. Treat all prototyped calls as traditional non-prototyped calls; widengaitraants.
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The diference betweenvels 1 and 2 is that, although both widlif if a variable-agu-
ment function is called or dekd without a prototype, an accidentally non-prototyped
call to a prototyped function with@har , short orfloat parameter will not cause a
run-time ilure in level 2.

Level 3 optimization will not cause a program tilfdue to a non-prototyped call to a
variable-agument function, bt a program will &il due to a non-prototyped call to a
prototyped function with ahar , short orfloat parameter Note that since there are
no failures due to prototyped calls, there is noaad&ge in widening smallguments in
prototyped calls.

The lavest level of optimization is to treat prototyped function calls andrdgbns as
if they are non-prototyped; atthar , short orfloat parameters in prototypes are still
widened in both the function deition and function call (een in the presence of the
prototype). Thiswill prevent ary failures, &cept those that euld hare accurred in non-
ANSI C aryway, but the prototypes prade no eficieng/ advantage.

The function call mechanism in C++ iarfeasier to changeSince all function calls
are prototyped and aviable-agument functions must use the elipsis, no run-time
problems can arise in passing@ments in rgisters. HenceC++ males it far easier for
the compiler to generate optimized code.

10.4 Single precision float arithmetic

The ANSI C standard permits arithmetic operationsliring float to be performed by
using single-precision arithmetic, whereas in traditional Cflat values were
corverted todouble before applying double precision arithmetithis nev rule allovs
the compiler implementor to choose the modiceit method of computing results
involving float . If single-precision arithmetic isakter the compiler may use it.
However, the compiler may also choose to wkmible or even longdouble arith-
metic if it is actually &ster (e.g. if double-precision arithmetic has hamvsupport).

There are a fe situations in C where double precision arithmetic is actually required
by ANSI, kut does not necessarily producdetié€nt results to single-precision arithmetic.
Consider the follwing statements:

float f1,f2,f3;

f1 =2 * 10.0:
f1 = f2 * sqrt(f3);

Because the constat®.0 is adouble constant, andgrt is adouble function, both

of these statements will cauk®e to be promoted fronfloat  to double and double-
precision arithmetic is useddowever, snce the result is immediately being truncated to
float , the use of double-precision arithmetic is of dubious medihe optimization
which a compiler implementor might consider is to use single-precision arithmetic in
these special situations (where the result of a double-precision computation is
immediately cowmerted tofloat ). The constant10.0 could be treated as ftoat
constant, and the call teqrt could een be replaced by a call to a single-precision
(hidden) library function, saygqrtf , which returns afloat value and (possibly)
accepts dloat amgument.
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Unfortunately this optimization is not strictly ANSI-conforming unless the results are
identical to those that euld occur if double-precision arithmetic were us&dr mary
implementations the results will &f marledly if thefloat values are close to the
maximum or minimum representablelwes, and for anfloat  values the results may
differ in the last decimal place of the result émyvsmall diference). Orsuch machines
the optimization may makthe program produce slightly téfent behsaior, and should
probably be a corgurable option allwing the user to choose betweenaskmd accurate
versus &st and inaccurate.

10.5 Widening of char and short in expressions

Traditional C required that whever a char or short value appeared in an arithmetic
expression, it wuld undego promotion toint . The ANSI C standard relag this
requirement and permits operationsalwing only char or short values to &oid the
corversion when the narveer representation range of the result has recef For
example, ifcl andc2 are both of typehar , the expression:

cl+c2

would normally promote botltl and c2 to int . Howeve, if this expression is
immediately cowmerted back tachar , such as by type casting, assignment or prototyped
argument passing, the promotions are unnecesdamn if the addition did produce a
value not representable bghar (e.g. greater than 255 dhar is unsigned by
default), the comersion of the result back thar is actually an instance oferflow and

the loss of the higher order bits does not violate ANSI constraint. The optimization

is possible because the result will be identicgbndiess of whether the operandsttare
promoted or left unchanged.

10.6 Macros for standard library functions

A common method for imprang the eficieng of the library functions is declaring them

as macros in the standard library headesf Infact, a number of functions he tradi-

tionally been macros, including most functions<atype.h> and a fev others, such as
putchar andgetchar . ANSI permits all library functions to be macros,\pded that

the macros are "safe", and that there is a "real" function that can be accessed by applying
#undef to the macro name.

A safe macro must not causeyaprecedence errors (requiring bratk around the
entire replacementxeand aroundery occurrence of a macro parameter in the replace-
ment text) and must alsovaluate ay side efects in its ayumentsexactly once(which
usually means that each macro parameter must apypa&ettyeonce in the replacement
text). Thissecond requirement\ely limits the functions that can be implemented as
macros. Br example, the okious macro déition for abs :

#define abs(x) ((x) >=07 (x) : (X))
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is not safe, as a sidefeft tox will be evaluated twice. A clever attempt to @ercome
this problem using a "hidden" globanable such as:

#define abs(x) ( _temp = (x), _temp>=07?_temp:-_temp)

solves the problem of sidefetts, lut introduces some obscure errofor example, it
can il for the &pression:

abs(i) + abs(j)

because of the (obscure) order edfleation ambiguities.In addition, a signal occurring
after the assignment tdemp where the signal handler calls thies function will cause
errors when the handler returns because #theevof temp has been changedience,
there seems to be nawto declare a safe macro &is .

Some of the "small" library functions that are good candidates for mapem&on
arefloor , ceil , putchar , getchar and most of the functions inctype.h>
Functions for which it appears fildult (impossible?)to declare a safe macro include
abs andfabs .

10.7 Intrinsic standard library functions

The ANSI C standard clearly dieés the names of functions that are part of the library
and their names are resedvin the sense that the programmer should nahelefav
functions using these names (doing so results in "umatebehgior"). This means that
an optimizer has a great deal ofwaw in its handling of ANSI C library functions.
Because the names of the library functions are redethie optimizer carxamine &ery
call to a library function and optimize it by usingilb-in knowledge about the beniar
of the library function.Note that these techniques can also be applied to functions in a
non-standard C library or a C++ library pided that the implementation resesvtheir
names in the sameay

While the declaration of library functions as macros featf’e and simple to imple-
ment, a better method is to inline the functions in a manner that is totally transparent to
the programmerTo achieve tis, the library functions to which this technique is applied
are deined asintrinsic functions The front-end of the compiler treats these functions as
ary other function call, bt the back-end of the compiler recognizes them as intrinsic and
knows the correct inline code to generalfthis method has a number of adtages wer
macros:

* Ensures type-safety: macros lose all type checking information.

» Avoids scrambled error messages: semantic analysis of the program uses the
original text, instead of a macrocpanded ersion.

« All library functions can be inlined.

* More paverful "smart" optimizations can be used.

However, this method is more time-consuming to implement than the simple addition of a
macro to a system headdef Theoptimizer must detect all calls to intrinsic functions
and then produce an optimize@rsion of that function call.Built-in knowledge is
required about each library function being optimized.
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The olvious optimization that can be applied to calls tg dorary functions consid-
ered "small" enough is to inline the function callhis requires some representation
(possibly assembly language) of the inline code to be generated for each library function
being inlined. Some of the man good candidates areabs, fabs , dl of the
<ctype.h>  functions, floor , ceil , feof , ferror , clearerr , putchar |,
getchar |, etc.

Many of these functions could also be macrag, the use of intrinsic functions has
the adwantages discussed afgpif the implementor has enough time to add these opti-
mizations to the compilerFurthermore, some of these functions ard aift to imple-
ment as safe macros; and macros are restricted to use features of the C language, whereas
intrinsic functions can wrk directly at assemblyvel.

10.7.1 Constant folding and intrinsic functions

Inlining function calls is not the limit to the optimizationgitable using this method.
The well-knavn optimization ofconstant foldingcan be generalized in the sense that if
the optimizer notices that guments to a function call are constants, then it may be
possible to replace the function call with a constaftr example, the function call
log(1.0)  could be replaced by.0 at compile-time.

Functions to which this optimization can be applied are those where the rafugn v
is determined only by the @uments and which produce no other sideat$. Thisclass
of functions includesabs, labs , div , Idiv , dl functions in<ctype.h> , and all
functions inkmath.h> that do not hae pinter aguments.

Perhaps the simplest method of implementing this optimizationdalkahe library
function within the optimizer and replace the function call with the result returned
(although this maydil for cross-compilers).

Care is required to handle tkamath.h> functions correctly so that their error
handling characteristics are presh\(i.e. settinggerrno ). Onemethod of handling this
problem is to check the ranges of the (constagtiraents in the function call and inline
the call only if the ayjuments are within sateftory bounds.Another alternatie is to
detect whether the function callowld seterrno and if so, generate anxtea machine
instruction that setsrrno .

Library functions that tak 4ring aguments, such asof , atoi , atol , and mary
functions in<string.h> | can also bewluated at compile-time if their gnment is a
string constant ANSI specifes that string constants should not be niedjfand that an
program that does so has "uridefl behgior". Hencethe optimizer can assume that the
characters in a string constant asedl, and replace function calls with their resutbr
example,strlen("abc") can be replaced by 3.
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10.7.2 Built-in knowledge about intrinsic functions

Even this replacement of constant result library function calls with a constiaiet does
not shav the full paver of optimization based on the compile-time analysis giiraents
of calls to library functionsHeuristic knevledge about the betiar of library functions
can be hilt into the optimizer to allw it to handle special case®ny eficiently. This

can be done more generally than requiring glliarents to be constant.

For example, one area of optimization is the analysis of calls tqptimf  and
scanf families of functions when the format string is a string constaren(& other
arguments are not constantlhe analysis of the format string required within these
library functions could be performed at compile-tinkexr example, in the function call:

printf("%d", i);
the format string wuld be analyzed and itould be disceered that only a call to an

internal routine is necessary to print out angete Thus the assembly code outpudwid
be of the same form as generated by:

_print_int(i);
Note that if the ggument,i , were actually an ingger constant, the result could bere
more eficiently coded as direct calls putchar ; one for each output digit.

Another good area for applying optimizations is in unrolling the loops inside the
<string.h>  functions such astrcpy . For example, thestrcpy call:

strepy(s, "abc");

could be more éfciently coded as:

s[0] ="a’;
s[1] ="b’;
s[2] ="c’;
s[3] =0;

Another opportunity for optimizing calls to generalized functions occurscamiing
malloc calls where the gument is a constant (e.g. from gieeof operator). Rather
than calling the generahalloc function, it is possible to use a call to a function that is
specially designed to handle allocation requests of that size.

Yet another @ample occurs the secondgyament to thepow function is a constant
that is an intger, as in:

y = pow(x, 2.0);

A more eficient specialized function for handling igex pavers could be called, oin
fact, the abwe @ll to pow could be replaced by*x .

In summarythe well-defned meaning of the library functions alls the optimizer to
produce &r more dicient code sequences for special cases by usiittgiro knowledge
about the behéor of these functionsAll of the library functions supported by a particu-
lar ervironment are candidates for the optimizations, whether e ANSI standard
library functions or not.The scope of the optimizations is limited only by the need to
mimic exactly a call to these functions.
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10.8 The volatile qualifier

C is traditionally a lav-level systems programming language, and systems programmers
often use special locations in their programs (e.g. memory mapped /O, shared memory
variables, etc). The introduction of thevolatile qualifier by the ANSI C standard
provides the programmer with a method of specifying that a location is special and
accesses of it should not be "optimizedh'. For example, the location of a memory-
mapped I/O port can be declared using a pointeolatile

volatile unsigned char *port = 0x0100; [* 1/O port at 0100 */
*port = 1; /* send byte 1 */
*port = 2; /* send byte 2 */

Without thevolatile qualifier the compiler does not kiwathat the location pointed to

by port is special, and could, in thepmemove the frst assignment statement as its
value is apparently werwritten by the second assignmerit.the optimizer does this, it

will introduce a strangeug into the programFor this reason alone, optimizers for tradi-
tional C were restricted in the transformations that could be safely appledxample,
transformations such as dead code elimination and code motion out of loops could
introduce lngs.

In ANSI C, the programmer can use tratile qualifier to inform the compiler
that a \ariable or location is specialThe optimizer is allwed to treat ay non-
volatile qualified location as if it has no special properti&hus the optimizer in an
ANSI C compiler hasdr more latitude in the choice of optimizations that can be
performed. Unfortunatelythis nev freedom can lead to problems because the onus of
the use ofvolatile is on the programmerThere is a high risk of breakingisting
pre-ANSI code, and also of fpetting to usevolatile in newv code. Thereare a fev
choices for the implementarrdered from the most rigko the most conseative:

« Assume that all programs will uselatile correctly

« Produce a arning wheneer a dangerous transformation is used.

 Apply dangerous transformations only in restricted situations.

« Don't apply ary of the dangerous transformations (i.e. as done in traditional C).

To leare the optimizer as it as for traditional C is obously the safest approachytht
loses may opportunities for optimizationA better approach auld be to apply transfer
mations wheneer a location is unlilely to be specialFor example, it is unlilely that an
automatic local ariable is special, it more lilkely that a pointer dereference could be
accessing a special location such as a memory @dbal \ariables might be safe, or
they might be shared memory with other proces3athich locations are safe depends on
the ewironment (e.g. a single-user computer needniry about shared memory).

Another option is to warn at compile-time about transformations that might be
dangerous. & example, the elimination of a "dead" assignment statement could be
warned about, as it indicates either a minog lin the program or the need to qualify a
variable withvolatile . The warnings might be produced for all dangerous transfor
mations, or else produced only for those transformatiombving locations that may not
be safe (as discussed in thewiwas paragraph).
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10.9 The const qualifier

Theconst qualifier prosides some room for optimization in both C and C++, although
less than one awld hope. It can be assumed thatcanst variable will never change
throughout the program’execution, and this prades the opportunity forxéra constant
folding. For example, gven theconst declaration and assignment statement:

constintx =1;
y = X;

the compiler can replace thein the assignment statement with the constar@yiusing
hacled code @onst object can be modéd at run-time by a programytsuch a modi-
fication is meing into the territory of "undéfed behwior"; hence the compiler can
replace apconst objects with constants and still conform to the ANSI standard.

Similarly, there is nothing stopping the compiler from optimizing accessesntst
aggrgae objects, such as arrays or structursr example, an access to an array
element osstruct  field could be replaced by a constant as Yadlo

constintarr[2]={0,1};
const struct { intf1,f2;}s={0,1};

X
X

arr[0]; [* arr[0] can be replaced by 0 */
s .f1; I* s.f1 can be replaced by 0 */

However, accesses through pointers tocanst type (or equiaently, const array
parameters) are a tifent story For example, consider the declarationmfo point to a
"constint "™

inti;

const int *p = &i;
ANSI does not guarantee that an access via a point@mn&t ensures that the object
pointed to will not changeFor example, althouglp is declared as a pointer ¢tonst |,
pointing ati , the alue ofi can be lgdly changed by direct assignmentito In this
situation, theconst qualifier merely means that thalue pointed to cannot be changed

via this pointer Also note that this declaration pf does not mean that will have
constant alue; the declaration to ensure this is:

int * const p = &i;

This declaration wuld allov al uses ofp to be changed t&i at compile-time, as with
ary otherconst variable.

Unfortunately this form of optimization is not as useful in C as it is in C++ simply
becauseonst is not used as frequentlifhe ANSI standard for C disalls (somahat
arbitrarily) the use ofonst variables in constantxressions (e.g. sizes in array declar
ations andcase constants). Hence; programmers tend to us&define  more than
const because it is more fléble. However, the optimization will increase speed if
const is used to declare scalar constants, or agtgreariables, and the frequagnof
such instances will increase as more C programmers beagane @ the adantages of
usingconst (and as more compilers actually start to implement this optimization!).



202 Chapter 10

10.10 The register qualifier

Theregister  qualifier is used by programmers to indicate to the compiler thatia v
able is lilely to be healy used, and that the programmer wishes thaiable to be
placed in a hardare r@gister for eficieng. Howeve, theregister  qualifier is merely
a "hint" to the compiler and does not force it to use gister for that ariable. er
example, if the programmer declares too snaariables agegister , the compiler
obviously cannot place all of them ingisters.

Programmers are often poor at guessing whitables are hedy used, whereas the
compiler can analyze the number of uses ofadable inside a functionThus the
compiler is better placed to choose whicmiables to store in gésters, and it is reason-
able for an adanced optimizing compiler to simply ignore abister  requests made
by the programmerSophisticated algorithms can be used to choose whadiables to
place in rgisters and, indct, a well-knan problem in code generation is the allocation
of registers for alues of ariables and subxpressions. Therare rare situations where
the compiler will mak the wrong choice, such as when the programmer has better
information about the probability of certain branches beixerged at run-time.The
compiler implementor might consider piding an option to force the honoring of
register  requests, Wt if the rgister scheduling algorithm is well designed, such situa-
tions are so rare that theould be ignored.

10.11 Register allocation and small objects

An interesting feature of C++ optimization is thatyttshould be able to handle small
objects, where the object contains only one ar walar data memberdn particular it
should be possible to include these objects in tister allocation algorithm.

This optimization is particularly necessary in C++ because it is quite common to
define an object that contains either a pointer to an object (e.g. in reference counting, or
for "smart" pointers), or only a single igr (e.g. declaring youmm Integer  class).
Whereas in C these objectowd probably be implemented as basic types (i.e. using
typedef names), the C++ clasadility effectively makes themstruct s, and it is
unlikely that the C++ optimizer will be able to treat them as simpler objdtts is
particularly true if the C++ translator produces C output code, since a class will be imple-
mented as atruct , and the C compiler is unlédy to place atruct  in a ragister

If C++ programmers are to use small objects withoutgaadiation in performance,
the compiler must be aler enough to recognize when an object is small enough to be
treated as a scalar typ®Vithout this optimization, the C style of declaring such objects
as type aliases, rather than C++ classes, will be mibcieet.

This section seems to contradict the claim made in Chapter 5 that a C++ program
won'’t run more slaly than the equialent C program.This is still true in the sense that a
C program can be cemerted to C++ with no performance gladation. Hwever, this
section can be seen as a limitation of using the object-oriented programming paradigm
with C++, because coerting small scalar types into objects may reduce performance (at
least until the current generation of C++ compilers catches up).
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10.12 The C++inline qualifier

By adding the inline qualir to a function defition, C++ programmers can indicate to
the compiler that thewish a particular function to be replaced by inline code wiserée

is called. Hence, C++ compilers should support the inlining of reasonably complicated
functions, in order to ge the programmer the requirediefent impraement.

However, theinline  qualifier is only a "hint" to the compileend the compiler is
free to ignore it completely and decide for itself which function calls to inlineould
be \alid for a C++ compiler to inline no function calls at alif this would be a ery poor
quality compiler It is more realistic for a compiler to inline simple functionat befuse
to inline overly complicated functions (possibly emitting amuing to inform the pro-
grammer). Br example, the compiler may refuse to inline functions that are tge lar
where the control fl is too complicated.

One interesting point to note is that a C++ compiler coulititeately choose to
generate inline code for nankne  function calls (preiding that the function body has
already been difed earlier in theile). The facility for inlining functions is already
present and it muld be simple to apply inlining to whaee functions the compiler
considers simple enough.

For any inline  function (or noninline  function that the compiler decides to
inline), there are occasions where there must be a "real" funatilabde at link-time,
such as:

« the compiler decides not to inline calls to this function;
« the function is called when its function body has not beeriqursly defned; or
« the address of the function is used as a petotéunction constant.

Note that the last tavreasons merely require the function body to beelihkand the
compiler can still inline anordinary calls to these functions.

10.13 virtual function calls in C++

As discussed in Chapter 5, the only time that a call to a virtual function need generate
different code from an ordinary function call is when the function is called through a
pointer or efeence Any calls involving an object can be statically bound to the correct
function, as illustrated behn

ObjectPtr->virtual_print(); 1 must be virtual call
Object.virtual_print(); 1 can be statically bound

Unfortunately dl calls via pointers and references must generate theesldynamic
binding call sequencelt would seem that calls via a pointer or reference teraved
class (with no other classes aed from it) could also be statically boundHowever,
C++'s ability to handle multipleife programs may pvent this optimization, because it is
impossible to tell whenxamining a singleile whether a class will v a rew dass de-
rived from it in a sepaate fle. The optimization is therefore possible inyaaompiler
ervironments where the compiler has accesalltof the sourceiles at once, such as an
integrated deelopment emironment.
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10.14 Implementing enum’s as a small type

Although traditional C treateenum types as if thewereint , the range of &lues which
an enum type can hold is restricted to thalwes of its declared enumerated constants.
For example, in the declaration:

typedef enum { FALSE = 0, TRUE = 1} bool;

thebool type can Igitimately hold only O or 1.The compiler can use this restriction to
implementbool as a small data type such ekar . This saes gace and often
increases speed because smaller data types are ficisnd§ manipulated.

The ANSI C standard alles compilers to implement enumerated types as agraite
type diferent fromint , and although it does not state sgpkcitly, nothing in the
standard prohibits the declaration offelient enumerated types asfeliént sizes.Thus,
thebool type abee could be implemented aschar , and a separate enumerated type
with larger \alues could be implemented astert orint .

The problem with this optimization is thatigting code may rely on asnum type
having the same size as ant . For example, ag use of the address of an enumerated
type, such as in a call szanf , will cause problems if the enumerated type is not stored
as anint . Thus, this optimization is not ideal inveronments which must support tradi-
tional C code.

10.15 Space reduction by merging string literals

A common space optimization performed by C compilers is to store identical string
literals at the same addresEhis is \alid as ANSI prohibits the modifation of a string
literal. However, traditional C did not hae this restriction and the e programs that
modify string literals maydil if the compiler does mge string literals.

A generalization of meging identical string literals is to ng string literals where
one string is theufix of another For example, consider the twliterals belav:

"the cat"
ncat"

The second literal can be replaced by a pointer t@ ihehe middle of theifst literal.
Another \ery common xample is that the empty string literdl is the sufix of any
other string literal.

10.15.1 Miscellaneous optimizations

There are seral other methods by which thefiefeng of a program can be increased
mauginally. The start-up time used to process command-ligaraents can bevaided if
main is declared without guments and if no other method is used to access them.
example, some etfronments dehe a global ariable_ _argv , and the start-up sequence
can be woided only if this wariable is not used (detectable at link tim&jmilarly, any
startup processing of @inonment \ariables can be omittedgetenv is not used, and if
no global wariable is used (e.g. maJNIX-based ewmironments dehe theenviron
variable).
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One neat wy of imprwing run-time eficieng at the cost of space is to ignore all
struct  bit-field requests and uget instead. Thisavdds the cost of packing and un-
packing bit-felds wheneer they are accessed.

10.16 Summary

» Ccompilers hae traditionally avoided lage-scale transformations such as code motion
and common subxpression elimination as thecould "optimize aay" useful
references.

* ANSI C prototypes permit the compiler to useaatér function call mechanism, at
some risk to xisting code.C++ compilers can alays use &ster mechanisms.

 ANSI C permitsfloat  arithmetic to be performed in single-precision arithmetic,
whereas traditional C required double-precision arithmetic.

» Macros are a simple method of rermg the function call werhead of some library
functions, luit some functions are di€ult to implement as "safe" macros.

* Intrinsic functions are a morewperful method of optimizing calls to library functions.
Knowledge about the library functions can be used because the function names are
resened.

* The volatile qualifier only partially soles the problem of "optimizingwaay"
useful code.

» References toonst variables can be optimized, as by constant folding access via
aconst pointer cannot.

* The compiler may choose to ignoregister and inline keywords if the
implementor beliees the compiler can makbetter choices.

» Meming identical string literals is a common andiaént space optimization.
Merging sufixesof string literals is a possibletension.

10.17 Further reading

Code optimization is a huge area of compiler design, agdnannot &miliar with it
should consult a good compilextbook, such as the one by Aho, Sethi and Ullman list-
ed here.Thomas Pluns book contains a good chapter on the implications of the ANSI C
standard for implementors of optimizing C compiles.good discussion of mixing
prototyping and non-prototyping in C isvgn by Harbison and Steele, and their book
book also contains useful material on mahthe complicated issues in both traditional
and ANSI C.

AHO, Alfred V., SETHI, Rai, and ULLMAN, Jefrey D., Compiles — Rinciples,
Techniques and dols Addison-\W\ésley, 1986.

HARBISON, Samuel Pand STEELE, Guy L. JiIC: A Refeence Manual (3t edn),
Prentice Hall, 1991.

PLUM, ThomasNotes on the C ft Standad, Plum Hall Inc., 1987.
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10.18 Exercises

1.

10.

11.

Designan eficient safe macro for thelower andtoupper library functions.
Note that thg must return the character unchanged if it is not a letter

[adwanced] Gien the folloving defnition and call of theabs macro, ind an order
of evaluation allaved by the ANSI C standard where incorrect results will occur:

#define abs(x) (_temp = (x),_temp >=0? _temp : -_temp)
abs(i) + abs())

[adwanced] Consider the folldng attempt to wercome the déiencies of theabs
macro in the pndous eercise. Doest have problems due to order ofr@uation?
I* Pseudo code: push(x), top() >= 0 ? pop() : -pop() */

/* _sis a global variable; the stack pointer */
#define abs(x) (((*++_s)=(x)) >=0 ? *(_s--): -(*(_s--)))

Thereare a lage number of standard library functions that retwalues which are
commonly ignored, includingorintf  , scanf , strcat , strcpy . What possi-
bility does the idea of intrinsic functions pide for optimization in this situation?

The strcmp function is quite general in that it alls tests for equality and
ordering on stringsHow can (most) calls tetrcmp be optimized by detecting
whether the program is usisycmp for an equality or ordering test?

[adwanced] The inherentfefieng limitation ofgsort andbsearch is that thg
must call the usesupplied function for each comparisoiCan the optimizer
improve alls togsort andbsearch so that the werhead of calls to the compar
ison function is woided?

Whatare the dangers of assuming references wiangt pointer alvays access
the same &ue? Whertan this optimization safely be used?

Whenwould the assumption that an automatic locatiable won't have special
properties (i.e.volatile -like smantics) be welid? In other words, when
would common suby@ression elimination rolving automatic local ariables lose
an important reference?

[adwanced] What opportunities for optimization are yided by C++const
member functions?This language featureas added so thabnst objects could
have methods applied to them without violating theiphst -ness". Hint: const
member functions are not alled to modify the object to which there applied.

Canthe compiler optimize the space useddnum variables by storingenum
fields of structures as biefds? r example, this wuld mean that aariable of
typebool (see Section 10.14)amld be stored as 1 bit inside a structure.

Builda list of impediments to &tieng that are imposed by the ANSI C standard.
What reasons justify the limitations oriefeng/?
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Answers to selected exercises

Chapter 2. Measurement and estimation

1.

It fails because the measured loogerbead will be laver than the alue for the
main loop, since the main logpéssignment operation will be sler. The assign-
ment statement could be changedxtex, which will be a proper assignment (it
isn't a redundant statement singds vol ati | e).

Theplacement of the call tol ock at the end ot art _cl ock and the bgin-
ning of st op_cl ock aims to reduce theverhead time included in the clock
measurements. Thmacros aim to reduce this further byJieg out the function
call overhead in the timesA global variable of typecl ock _t is needed to store
the alue of thecl ock function call.

clock_t ticks; /* global variable for stop_clock */
#define stop_clock(s) ((ticks = clock()), stop_clock(s))

and thest op_cl ock function must use this globabsiable instead of calling
cl ock. A global pointer ariable is needed fat art _cl ock, and it must be
set to the address of where to store the clock tickssfi-e>l ast _ti ne).

clock_t *glob_ptr; /* global pointer for start_clock */
#define start_clock(s) (start_clock(s), (*glob_ptr=clock())

Certainly estimation is &r less important once the program has been completed.
However, estimation is still needed because it may bédalift to measure some of
the quantities.In addition, the dynamic quantities will depend on the program
inputs and it may not be possible toyid® worst-case inputs to a program.
Executable size can be estimated by ynawthods, ranging from a simple line-
count of the program to a tek-by-tolen analysis using estimates ofwhtarge
each instruction will be.Plum and Brodie book Efficient C contains a good
discussion of this issue.

207
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Static data size includes the memory from glotaiables, static localari-
ables, string constants and possibly floating point const®8yaising knevledge
about the sizes ofavious types, it is a simple matter of counting the number of
such \ariables and adding their sizeShe memory used by string constants and
floating point constants can be estimatedibglihg all of them, bt the possibility
that identical constants may be et should also be tak into consideration.

Stack and heap usage aerydifficult to estimate because yh@epend on the
run-time eecution path. In the absence of recursion, a reasonable estimate of the
worst case stack usage can be foundibgirig the vorst function call sequence.
This is by no means tial and a softare tool to do so is sorely needed.

Estimating run-time difciengy from source code is well-nigh impossible.
Perhaps the cost of each function can be roughly estimated by using a simple met-
ric based on the number of loops and the nesting depth of these loops.

Chapter 3. Algorithm improvements

2. Re-displayonly those squares on the chess board that Hwnged in the me.
The number of squares is usually 2, and at most 4 (castling), so the method
compares well with re-displaying 64 squares.

Chapter 4. Code transformations

2. Thetest of maxi m zi ng is constant throughout the loop, and hence the test
should be meed 0 that is comes before the looffhe simplest method of doing
so is to repeat the loop code, as falo

/* Compute either maxi mum or m ni num */

result = a[0];
i f(maximzing) {
for(i = 1; i < n; i++4)
result = a[i] > result ? a[i] : result;
el se {
for(i = 1; i < n; i++4)
result = a[i] <result ? a[i] : result;
}

3. Byexamining the d&ct of this statement, you will see that it has the samevimeha
as:

if (a[i] > result)
result = a[i];
el se
result = result; /* REDUNDANT */

Hence the more &€ient code is simply:

if (a[i] > result) result = ali];
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Sincethe computations of the twoots are ery similar the idea of common sub-
expression elimination can be empénl. Thesub-epressionb? — 4ac should be
calculated only once, arsfjr t should be called only oncét is doubtful whether
eliminating the subx@ressions-b or 2a will make any dfference. Thenultipli-
cation 2 can be woided usinga + a (it might also be wrthwhile to do this for
4ac, by precomputatiorac and adding the result 4 timesecause the computa-
tion involves doubl e arithmetic the constants in thexpeession should be
expressed as 4.0, and not 4, woid possible cowersion costs (although most
compilers will do this automatically)The resulting dfcient code is:

rl =(-b +tenpl) / (a + a);

templ = sqrt( b * b - 4.0* a* c);
r2 =(-b - tenpl) / (a + a);

Reordetheenumdeclaration to placBlO_ERROR first, gving it the \alue of zero,
because comparison with zero is often slightly mdieiefit.

Thecrucial point to note is that the multiplication isvays either by 1 or -1, so a
boolean flag can be used to decide whialug to multiply byas follows:

#define TRUE 1
#define FALSE O

int my_atoi(char *s)
{

int value, sign;

if (*s =="-")

sign = TRUE;

S++; /* skip over the '-' */
el se

sign = FALSE;

for (value = 0; isdigit(*s); s++)

value = 10 * value + *s - '0’;
if (sign)

return -val ue;
el se

return val ue;

}

Thismethod will seldom beafter than a plain assignment.the flag is not set,
there has been thetea comparison asverhead. Ifthe flag is set, the assignment
is avoided, hut the diference in cost between a comparison and agéntassign-
ment will most lilely be slight. The optimization is alid only if:

1. comparison isaister than assignment; and
2. the assignment iz@ided often enough to justify thetea comparison.

Yes, to a limited xent. InC any automatic local ariableswith explicit initializa-
tions will involve run-time instructions.Hence, the initialization should talgace
where the ariable is irst used, in case this initializedlue is nger actually used



210

10.

11.
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(causing indfciengy). Variable declarations can be wed to inner blocks in some
cases; the alterngé is to remove the initialization from the declaration, and use an
explicit assignment statement to set ttegiable immediately before itsrgt use.
For example, in the code:

int fn()
{
int i; /* Not initialized */
int n;
scanf ("%", &n);
if (n>=0) {
i = 1; /* Initialize inrediately before use */
/* .. use i here */
}
}

Any multiplication can be written as a mixture of shift and addition operations.
The &pressiorx* 17 can be reritten as:

(x << 4) +x

but on mary implementations the cost of a shift and an addition will be greater than
the cost of multiplication.

Thepointer expression idiomé& pt r ++ and* - - pt r will be very eficient because
the compiler can translate these directly to the special addressing modes.

We will assume that theidld has typeFl ELD_TYPE and thest r uct has type
"struct node". An obvious method is to use a pointer to a structure asieilo

struct node * ptr;
for (ptr = &arr[0]; ptr < &arr[n]; ptr++)
process(ptr->field);

Another solution that will probably be mordiefent is to use a pointer to thieltl
and increment it by the size of a structure each iteraflidnis avoids the addition
of the ofset off i el d implicit in the - > operation. Pointetype casts are needed
to get the correct incremergt(r ++ would fail).

FI ELD TYPE *ptr;
for (ptr = &rr[0].field; ptr < &arr[n].field;
ptr=(FI ELD_TYPE*) ((char*) ptr+si zeof (struct node)))
process(*ptr);

Note that using gt r =( FI ELD_TYPE*) ((struct node*)ptr+1)" as the
increment condition could be dangerous on machines with alignment restrictions.
Perhaps the mostfifient version is to @oid the pointer comparison each loop by
decrementingn (assuming its alue is not needed afteands):

for (ptr = &rr[0].field; --n >= 0;

ptr=(FI ELD_TYPE*) ((char*) ptr+si zeof (struct node)))
process(*ptr);
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12. Thesimplest method is to use a neat mathematical identibjving bitwise arith-
metic: forx>0, x&( x- 1) evduates the rightmost set bit in Thus if this equals
X (andx is not zero) them must contain only a single binary bit and be aeoof
2. Themacro is:

#define is_power2(x) ( x !'=0 && x == (X & (x-1)))

13. Ifyou went in for minor changes to the bitwise arithmetic then you should go back
and read Chapter 3Since there are only 16 distinct nibbles, the moftieht
method is to use a small lookup table:

int nibble table[16] = { 0, 3, 12, 15, 48, 51, 60, 63,
192, 195, 204, 207, 240, 243, 252, 255 };

#defi ne ni bbl e_ext end( x) ni bbl e_t abl e[ x]

Chapter 5. C++ Techniques

1. Notinlining functions with loops is a compiler limitation because theoretically
there is no dffculty in doing so, although inlining functions with loops is by no
means an easy task in practicBhe main theoretical limitation of nl i ne
functions is that recung functions cannot be inlined fully because thisuld
cause an imfite loop in the compilerMore generallyfunctions that form a link in
a mutually recursie function call sequence cannot be inlined fully (e.go tw
functions that both call each other).

4. Yes, the idiom is usually necessabgcause omitting the cgpconstructor or
assignment operator can lead toaan asi ng problem. (Itmakes no diference
whether the defult operations are bitwise ogpg, as in early &rsions, or mem-
berwise coping as in C++ 2.0 and abg because membavise copying will still
perform bitwise coping of pointer members.JJwo objects will hae inters to
the same allocated memongny change to one objestdlocated data will change
both objects.Hence, the idiom can beaded only if:

1. the contents of allocated memory are not medlifxcept in the ordinary
constructors; or

2. neither coping nor assignment of the objectseeoccurs (i.e. the cop
constructor and assignment operator akemnelled).

To answer the second part, the gamnstructor and assignment operator must still
allocate n&v memory for an objectven if the destructor does not de-allocate the
memory True, the problem of de-allocating memory twice is gons,there is
still the aliasing problem as discussedaho

5. Theidea is to use a dynamically allocated object, as its lifetime is nvetrggd by
braces. Thémproved code becomes:
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doubl e d;
Chj ect *ptr;
while (....) {
cin >> d;
ptr = new Object(d); // construction at first use
}
cout << *ptr; /1 Use the object
delete ptr; /1 de-allocate the object

The optimization is benigfal only when the cost of the assignment operator for an
incredibly complicated object is higher than the combined cost of allocation by
new, de-allocation bydel et e, and a fev pointer operations.

Insteadbf declaring the data member(s)sasat i ¢, use two global objects of the
class type. The zero-agument (dedult) constructor must be either absent or
performs no actionsimplicit initialization of global objects to all-bytes zero will
efficiently set the dataalues to zero.Unfortunately this is not walid if the data
members must contairales other than zero BIJLL.

Yes, returning a referenceould avoid the need for a temporary in thepeession.
However, there is no ay to return a reference from the operat@eturning a ref-
erence to an automatic locarable will cause a run-timaifure because the stack
space storing the localakiable may be \@rwritten after the function returns.
Returning a reference to a global or logtht i ¢ variable will lead to errors when
the + operator is used twice in the samxpmession, because both calls to the oper
ator function will be attempting to store their result in the same pRe&urning a
reference to a dynamically allocated object on the heap witk whut creates
gabage (unused and unaccessible dynamic memory) and will probablyws slo
than using a temporary objectyavay. Returning a reference to one of the
Conpl ex parameters of the operator will nobkk because either (#)ey are not
passed by reference in which caseytae equvalent to automatic localariables;

or (b)they are passed by reference in which case storing the result therevewill o
write one of the operand§’he commont'et urn *t hi s; " idiom for returning
references from anverloaded= or += operator wrks only because therdt
operand is being changed by the function, and is identical to the result of the
function.

Chapter 6. The ANSI C standard library

3.

Thesimplest method is to usesai t ch statement such as:

switch (n) {
case 0: return 1.0;

case 1 return x;

case return x * Xx;

case return x * x * Xx;

case X2 = X * X; return x2 * x2;
*oX; return x2 * x2 * x;

2
3
4.
case 5. x2 = x
etc
ul t

def a /* Ceneral algorithmhere */
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char *tenp = s;

for (; *tenp !'="'\0"; tenp++); [/* enpty loop */
*s++ = 'a’;
*s++ = '\ 0,

Thereshould be braaks around these bacharacter constantslo do o requires
changing a- to a- operator:

#define TOLONER(c) (i supper(c
(i

. , ) ? - (A - Tal)) toc)
#defi ne TOUPPER(c) sl ower(c) ? ))

9
c) - ("a - 'A c)

Thetrick is to declarest r cpy as haing most of its code inside awélock, and
declaring local ariables at the start of this blockhe macro is:

#define strcpy(sl, s2) \
char * tenmpl = (sl1), *tenmp2 = (s2); \
while ((*tenpl ++ = *tenmp2++) !'="\0") \
; /* enpty | oop */ \
}

Another fne point is that this macro will cause a syntax error due to the semicolon
following a right brace when the macro is used as a single statement body before an
el se keyword, as in:

if (...)
strcpy(a, b); /* syntax error: if(..) {...} ; else */
el se

The solution is to use a pair db. . whi | e(0) wrappers around the blocKk.he
improved macro is:

#define strcpy(sl, s2) \
do { char * templ = sl, *tenp2 = s2; \
while ((*tenpl ++ = *tenp2++) !'='\0") \

; /* empty | oop */ \
} while (0) /* no senicolon here */

Thenmenset library function preides \ery fast byte coping. Hencethe eficient
method is:

menset (arr, 0, SIZE * sizeof(int));

Unfortunately this method is non-portable tow@monments where intgal zero
does not hee dl bytes zero.

Chapter 7. Space-efficiency

3.

Theuse of the wrd "store" in the questionag deliberately misleadingrhe most
space-dfcient way to "store" these numbers is to use a function to represent them
(i.e. use a function to calculate a Fibonacci number each time it is requiitesl).
only storage cost is the cost of the machine language instructiatarally, run-

time eficieng is sadly lacking if you use this method.
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Beforethe deletion phase, simply seed the random number generatomath the
same seedalue and useand to regenerate the same sequence of nhumbers.

Sincethese functions are so similéris reasonable to assume thatytiell all use

mostly the samexecutable code (possibly all calling an internal functioHgnce,

avading scanf but still using sscanf or f scanf will probably not reduce
executable size greatly

Possibly A good compiler will notice the shorter lifetimes of these loeaiables
and reuse the space on the stack after the enclosing blockikhed &ecution.
However, an even better compiler wuld automatically xeamine the usages of a
variable to determine its lifetime and performyaaptimization rgardless of
whether the ariable is mwed to its inner block.

Sincethere are only 201 distincalues thg can be stored in the small data type
unsi gned char which can representailues from 0..255To corvert this \alue

to the floating point alue of the grade is a simple matter of multiplication by 0.5.
This is time-ineficient, hut storage space will be s, especially if there are
mary grades to be stored.

Chapter 8. Abstract data types in C++

6.

Jumpsearch is a trickalgorithm to implement.The C++ code for one implemen-
tation, where the search jumps ahdadiodes is as folles:

Node* Synbol Tabl e: : search(key_type key)
{

regi ster Node *p = head, *save;

if (p == NULL) /] empty list?
return NULL;
do {
save = p; /] Save current position
/1 Junp ahead 5 nodes
if(p !'= NULL) p = p->next;
if(p !'= NULL) p = p->next;
if(p !'= NULL) p = p->next;
if(p != NULL) p = p->next;
if(p !'= NULL) p = p->next;
} while (p !'= NULL && key > p->key_field);
if (p!= NULL && key == p->key_field) // key at |ookahead?
return p;

/'l sequential search of 0..5 nodes
for (; save != p; save = save->next) {
if (key == save->key_field)
return save;

}
return NULL; /1 not found
}

If sentinel pointers are being used, there is a simple trickdid ¢he need for the
five tests p! =NULL". By setting the sentinel nodehext pointer to point at
itself, these test can be omitted without causing an access violaticghe end of
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the linked list the assignmenps=p- >next will be redundant, as tlgeset p to be
the same alue, lut this is a small price to pay for rewiog five tests from the
main loop.

The obvious disadantage is the spaceastage due to arxtea pointer in each
node. Themprovements to be gined are that the insertion and deletion routines
elggantly avoid the need for agr ev" pointer, reducing the cost of loop8Both in-
sertion and deletion are also slightly lesficednt due to setting theplev”
pointer but this is only one assignment statemefite search routine is urfietted

by the change.

Theinsertion routine is simply a matter of changidLL to NI L. The deletion
routine can be impred to make use of the sentinels during the search phase of
deletion, as follws:

voi d Synbol Tabl e: : renmove(key_t ype key)
{

Node *ptr; /] points to the current node
Node *parent; /] points to the parent node
sentinel _node. key_field = key; /'l Set the sentinel node

for (parent = NIL, ptr =root;;) { // test with NIL omitted
if (key < ptr->key_field ) {
parent = ptr;
ptr = ptr->left; Il search left subtree

else if (key > ptr->key_field ) {
parent = ptr;
ptr = ptr->right; /'l search right subtree

el se /1 Found it or sentinel
br eak;

}

if (ptr == NIL) // Was it the sentinel?
return; /1 Not found. No deletion occurs.
11
/1

Node *subtree; Root of the subtree after deletion

Used to later set pointer in parent
if (ptr->left == NIL & ptr->right == NIL) { /] Case 1

delete ptr; /1 No children - delete a LEAF
subtree = N L; /] Subtree becones enpty

}

else if (ptr->left == NL) { /1 1 child: Case 2a
subtree = ptr->right; /1 Right child is new subtree
delete ptr; /1 Dispose del eted node

}

else if (ptr->right == NIL) { // 1 child: Case 2b (reverse)
subtree = ptr->left; /1 Left child is new subtree
delete ptr; /'l Dispose del eted node

Y

/1

el se { /1 Two children - Case 3 - the difficult case!
/1 Find rightnost node of left subtree

/1
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Node *prev, *tenp;

for (prev = NIL, tenp = ptr->left; tenp->right != NL;
prev = tenp, tenp = tenp->right)

; /] enpty |oop

if (prev == NIL) { /1 did not go right at al
tenp->right = ptr->right; // right subtree of dead node
I/ Left subtree stays sane

delete ptr
subtree = tenp; /] *** Case 3a ***
el se { /1 went down right at |east once
prev->right = tenp->left; // delete tenp fromsubtree
temp->left = ptr->left; /1l replace "ptr" with tenp
tenp->right = ptr->right;
delete ptr; /1l *** Case 3b ***
subtree = tenp
}
}
e
/1l Have now reconstructed the subtrees after deletion
/1 Now need to set pointers in parent node
e T
if (parent == NIL) /1 del eted root node?
root = subtree; /] subtree becones whole tree
el se
if (key < parent->key_ field)
parent->l eft = subtree; /1 Node was left of its parent
el se

parent->right = subtree; /1 Node to right of its parent
}

Whenusing linear probing, hash table locations musteha gecial \alue indi-
cating "deleted from".The deletion routine marks a location as su€he search
routine must treat these special locations as if thaeavey esent. Thesearch
cannot terminate there because a dele¢gdnkay have had more kys gaced after

it by linear probing collision resolution, and thiswd cause the search function to
fail to find some kys in the table.

Thearray representations makecount function most dfcient, as the aready
maintain a count of the number of elemerithe linked list \versions must imple-
ment a traersal of the list nodes such as:

i nt Synbol Tabl e: : count ()
{

int sum= 0

for (Node *p = head; p!=NULL; p = p->next)
Sumt+;

return sum

}

Binary trees must implement a treevetsal counting the number of nodeshe
hash table with chaining muskamine each hash table location and count the
nodes on each non-empty chained list.

A simple incremental algorithm can be easily added to all thesgons. An
extra integer feld, n, is dored as a data member of cl&srbol Tabl e. This is
set to zero in the constructimcremented in the insert function and decremented in
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the remeoe function. Thisis a small amount ofwverhead each time,ub it speeds
up thecount function incredibly and the cost of the increments/decrements will
likely be much less than thete diffi culty of traversing a list, tree or hash table.

14. Theidea of combining te operations can be applied by designing a specialized
sear ch_i nsert routine that performs a search of the data structure, at the same
time keeping track of enough information to insert the symbol if it is not found.
For example, asear ch_i nsert routine for a sorted lirdd list would need to
keep a prev" pointer as it searches along the kdklist. This idea of pairing
computation gins eficiengy since in most data structures the insertion routine
performs similar processing to the search routine.

15. Cachingcan be applied bydeping track of a small number of the recently
accessed symbol records, possibly inxd@naearray data memheBefore searching
the main data structure, the small array is searched for the sythitod symbol
has been cached, the search of the congdéa structure has beewoaed. This
idea works well if there idocality in the references to symbols in the table, so that
it is reasonably likly that the record will be cache&or example, in a compiles’
symbol table the same symbol is usually accesseg timaas (i.e. wheneer a vari-
able name appears in the code).

Chapter 10. Ideas for compiler optimization

1. Usea precalculated table of 256 bytes for each function.

ANSI C has sequence points at the end of tret dperand to the comma operator
and the order ofwvaluation of operands te is not defned. Hencea legtimate
order is:

( _tenp >= 0 ? _tenp : - _temp )
( _tenp >= 0 ? _tenp : - _tenp )

T™P2 :
resul t

_tenp

3. No, it suffers from the problem thatxpressions such asbs(i)-abs(j) are
affected by order ofw@luation. Inparticular the operands of the conditional oper
ator can be interlead and one walid order would be to "push” both andj and
then hae the irst macro "pop’| (the wrong alue). Notethat this macro seems to
solve the problem of signal handlers calliags.

4.  Situationsvhere return &lues are ignored can be detected eaaily the compiler
implementor has seral options. The simplest optimization euld be to call a dif-
ferent \ersion of the function, declared asvai d function, which will be
mauginally more €ficient. Anotheroption would be better inlining of the function
by using a diierent sequence of assembly instructions.

5. Themost common use aft r cnp is to immediately test its returrale with zero,
either eplicitly via a comparison with the constant 0, or implicitly as takie of a
conditional epression or as an operand to a logical oper&&r|(] ,!). A simple
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analysis of thexgression can determine what form of test it is usihgcnp for,
and this information can be used to chooseagtef ersion ofstrcnp. For
example, the epressionst r cnp( ) ==0 could be replaced by a call to a (hidden)
string equality function which will be mginally faster because it need nobmy
about returning a posit a negdive \alue if the strings are not equdDf course,
this optimization cannot be applied where the retatnevofst r cnp is used more
fully, such as being assigned toaiable.

Yes, in some casedVherever the function passed tgsort or bsearch is a
pointerto-function constant (i.e. a function name) the compiler may be able to
examine the body of the comparison function (if it ¥silable) and produce an in-
line version. Aspecial ersion of thegsort or bsear ch function could then be
generated and called instead of the general function.

Thedanger is that the object pointed to may be nedlibetween tw accesses by
either an assignment via another (aliased) pqidierct modifcation to the object
pointed to (e.g. if the pointer points to a locafiable of the function, or a global
variable), or modifcation inside a function call (using yamethod). Notethat

there is no cause toowy if the pointer points at aolatile object because, if it
does, it should be quakd byvol ati | e. Detecting situations via source code
analysis where this optimization can be used safely is probably a research problem.
One suficient, lut not necessargondition for the safety of the optimization is that
there should be no assignments, increments or function calls betweenothe tw
pointer accesses.

The local variable could be changed via a symbolic wgler In addition, a
function which contains aet j np call may hae the \alues of the localariables
in an indeterminate condition wher angj np call is executed. Havever, this is
not a problem as ANSI requires thaydacal \ariables whosealues are desirable
after al ongj np call must be declared asl ati |l e.

const member functions &ér very few opportunities for optimization.The
knowledge that a function call will not change the object can be used in rare cases,
such as to eliminate the common suipression in the code be&lo

X = object. data;

obj ect.const_fn(); I
y = object. data; I

all the const nmenber function
= x woul d be equi val ent

Cc
y
Unfortunately the fact that a member functioné®nst is not, in itself, enough to
guarantee that the function will not cause a sifexefand this limits the optimiza-
tions that can be appliedzor example, the common subgeression elimination of
two consecutie alls to the sameonst member function cannot be applied
without a detailed analysis of the function body (e.g. it may contain an important
output statement).

In addition, it may een be possible for aconst member function tahange
its object through coding hacks, or via an aliased poifiteis is surely an alse of
C++, lut there is as yet no ANSI C++ standard to state that such uses are
"undeifned". Hencethe optimization of the common sukpeession gien above
may be dangerous for arfgoorly written programs.
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Thiswill fail for ary program that tads the address of ttrenumfield of the
structure by using the address-of operai®) ¢r the ANSI standard macro
of f set of in<st ddef. h>.

Someof the man efficieng/ problems in ANSI C are:

e Thestrcat andstrcpy library functions return alues that are rarely
used. Theg should bevoi d functions as this auld allov them to be
declared as macros, anduld reduce the complity of their defition as
functions.

e There are no equalents of the<mat h. h> library functions forf | oat
aguments.

< Arguments to &riable-agument functions are promoteditat or doubl e.

It would be more difcient to modify the calling mechanism and the macros

in <st dar g. h>to handlechar , short andf| oat aguments.
* Objects accessed viaonst -qualified pointers cannot be assumed to be

unchanging, and this reduces the compiler optimizations that can be applied.

e Macros for standard library functions must be "safe" (no sidectef
problems), which mads it dificult to defne macros for man library
functions.

e const variables cannot be usedeeywhere#defi ne constants can be
(although mayimplementations alle this as anxension).

The main reasons for these limitations are historitake ANSI standard set out to
break as little xsting code as possible, and hence, ynarinor ineficiencies
remain in the language deition.
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