
 



Preface

This book examines the art of improving the efficiency of programs written in C and
C++. Efficiency is examined at a number of levels of program development. Thehighest
level is the design phase which involves choosing the correct data structures and
algorithms for the given problem. Thenext level is making effective use of program
statements so as to avoid obvious inefficiencies, and the final level is using programming
tricks to extract the last drop of speed from your code.

Assumed knowledg e

The reader is assumed to be reasonably fluent in C or C++.No introductory discussion
of either C or C++ is given in this book; for such an introduction the reader is referred to
a good general textbook (such as my own!). Thereare a small number of cases where
aspects of the languages are discussed because even the experienced programmer may not
be aware of the details.

Aims of the book

This book is intended to aid the professional programmer in writing code that is efficient
in terms of space and time.It isn’t a theoretical book about algorithm complexity —
although choosing a fast algorithm is important, it is far from a panacea.This book is
about practical methods of improving the efficiency in real-world situations.

The coverage of C and C++ in one work is uncommon, but efficiency is a topic where
most comments apply to both languages.C++ is a superset of C and almost all of the
efficiency improvement methods mentioned in Chapters 3, 4 and 7 relating to C are
relevant to C++. Special techniques that are available because of the C++ extensions are
discussed in Chapter 5.

Exercises are provided in most of the chapters to give the programmer a chance to
think about some interesting problems and to apply newly-gained knowledge. Mostof
the exercises are answered in the appendix.
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Organization of the book

The book aims to cover the practical aspects of efficiency, avoiding the theoretical aspects
of the asymptotic complexity of algorithms for the most part.Algorithm complexity is
covered briefly, in the discussion of searching in Chapter 8.Experience has shown that
the process of writing fast programs is done poor justice by merely addressing asymptotic
complexity. The constant factor is very important in practice, and most of the techniques
in this book aim to reduce this constant.

Chapter 1 introduces the topic of efficiency by examining the correct way to approach
improving the efficiency of a program.

Chapter 2 covers methods of measuring the amount of time and space being used by
the program. This information is very useful in finding the areas of inefficiency.
Methods of estimating time and space-efficiency are examined briefly, but, as is discussed
in the chapter, there is precious little precise information that can be given about the art of
estimation.

Chapter 3 covers some common methods of improving the data structures and
algorithms used by a program, without making really fundamental changes to them.
Most of the methods covered would apply equally well to other procedural languages,
such as Pascal. Thechapter is mainly about methods of reducing the constant factor in
the complexity of algorithms.

Chapter 4 examines some of the specific methods that can be used in C (and also C++
because C++ is a superset of C).Experience with the C language has brought with it a
heritage of tricks that can be used to improve eff i ciency.

Chapter 5 examines the methods of improvement of C++ programs that cannot be
used in C programs.C++ offers more opportunities for efficiency via inline functions
and pass-by-reference.However, the rigidity of method of defining C++ classes can lead
to inefficiency if the programmer uses naive coding practices.

Chapter 6 covers efficient use of the ANSI C standard library. Though the standard
library functions are efficient in most cases, there are some functions that are overly
general and hence inefficient.

Chapter 7 covers methods of improving space efficiency. The previous chapters have
focused mainly on time reduction, and this chapter restores the balance.Techniques both
general and specific to C are covered here.

Chapter 8 is the only chapter that examines efficiency from its highest design level —
the choice of data structures and algorithms.Various abstract data types are coded using
a variety of different data structures, and the benefits and disadvantages of each imple-
mentation are contrasted.In particular, the problem of searching for data is examined
from the point of view of the relative costs of searching, insertion and deletion in differ-
ent versions of the symbol table abstract data type.The common problem of sorting
arrays, a favorite of algorithm texts, is also examined briefly.

Chapter 9 poses a small number of programming problems and then attempts to code
them as efficiently as possible.The theory of computer game-playing is examined briefly
and then an efficient implementation of a tic-tac-toe playing program is developed. The
classic problem of determining if an integer is prime is examined and a number of
solutions are given.



Chapter 10 assumes that the reader is the implementor of a C or C++ compiler and
concerns itself with the methods that the compiler can use to improve eff i ciency. This
chapter is a favorite of mine as I have a research interest in the area of compiler design,
particularly static analysis.

Source code offer

A f loppy disk containing C and C++ source code for most of the program examples in the
book is available from the author for $20.00, including shipping and handling charges.
Simply photocopy this page, fill in your address and the type of disk required, and send it
to the following address.Please make checks and money orders payable to David Spuler.

Mail $20.00 to:
Source Code Offer
Spuler & Associates
P.O. Box 1262
Aitkenvale 4814.
AUSTRALIA

Name:

Address:

Computer: Macintosh IBM

Diskette: 3.5" 800K 1.4M

5.25" 360K 720K 1.2M

Bug reports

A book is a very large document and it would be foolish to expect that it would be wholly
correct, despite the massive amount of effort I have expended to assure its correctness.
The author is interested to hear of all forms of errors, including typos, typesetting
glitches, bugs in example programs, portability problems in programs, erroneous inform-
ation, etc. As they are discovered, the problems can hopefully be corrected for later
printings. Theauthor can be contacted by postal mail at the address given above.
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Chapter 1

Introduction

No one likes a slow program. AlthoughC and C++ programs are generally quite fast,
good programming techniques can produce major improvements in execution speed.The
main purpose of this book is to examine a large number of techniques for speeding up
programs.

With falling memory prices, the amount of space a program uses is becoming sec-
ondary to its speed.This is particularly true of the UNIX system, where there is usually
plenty of memory. Howev er, in some situations (such as programming on a personal
computer) there is the need to conserve memory. A number of techniques for conserving
memory are also examined in this book, particularly in Chapter 7.

1.1 Why is C efficient?
Before beginning our discussion of efficiency techniques, it is interesting to discuss the
origins of C and C++, and examine why these languages promote efficiency. Although it
is certainly a mistake to state that C or C++ programs willalways run faster than
programs in other languages, the C and C++ languages provide several features that make
it easy for the programmer to write efficient code.

The C language was originally developed at AT&T’ s Bell Laboratories by Dennis
Ritchie and Ken Thomson.It was intended to remove the burden of programming in
assembler from the programmer, while at the same time retaining most of assembler’s
efficiency. At times, C has been called a "typed assembly language", and there is some
truth in this description.One of the main reasons for C’s eff i ciency is that C programs
manipulate objects that are the same as those manipulated by the machine:int variables
correspond to machine words, char variables correspond to bytes, pointer variables
contain machine addresses.Another example of a language feature that promotes
efficiency is the register qualifier, which gives the programmer some control over
register allocation (although as compilers improve, they will rely less and less on the
advice of programmers).

1
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The early versions of C had no official standard, and the de facto standard was the ref-
erence manual in the first edition of Kernighan and Ritchie’s book titledThe C Program-
ming Language. For this reason, traditional C is often called K&R C.In 1983 an effort
was initiated to formally standardize the C language, and in 1989 the final ANSI standard
appeared. TheANSI standard is the definitive reference on the C language.Although
many of the changes introduced by ANSI are related to the syntax and semantics of the
language, some of the changes affect efficiency. As covered in Chapter 10, the compiler
has more freedom to perform optimizations, such as using a faster function call mecha-
nism because of changes to the rules of function prototyping.

The C language is not perfect, and there are still avenues for improvement. For
example, traditional C performed allfloat operations using double precision arithmetic
which is needlessly inefficient. Even in ANSI C where the new standard fixes the
problem by permitting the compiler to use single-precision arithmetic, there is no mathe-
matical library acceptingfloat arguments. Usersof the<math.h> library pay a per-
formance penalty in conversions fromfloat to double , and an "opportunity cost" in
that faster algorithms could be used because less precision is required.

1.2 Why is C++ efficient?
C++ was designed by Bjarne Stroustrup in the early 1980s, and is almost a complete
superset of C.One of the primary design objects of C++ was to retain the efficiency of C.
Most of the extra features of C++ do not affect run-time efficiency, but merely give the
compiler more work to do at compile-time.Since C++ builds on C, it benefits from C’s
use of data objects that are close to the machine: bytes, words and addresses.

C++ even contains some improved features that promote efficiency. The inline
qualifier can be used by programmers to request that a call to a function be replaced auto-
matically by inline code, thus removing the overhead of a function call, and introducing
new opportunities for inter-function optimizations.The C++ concept of areferencetype
permits large objects to be passed to functions by reference to improve eff i ciency, and
they are easier to use than pointers.

Only one aspect of the C++ class enhancements requires run-time support, which may
reduce efficiency — virtual functions. However, virtual functions are quite
efficient, and experienced C++ programmers find that their use is often more efficient
than the equivalent C code needed to achieve the same effect. Theefficiency aspects of
virtual functions are discussed in more detail in Chapter 5.

At the time of writing there is no official ANSI C++ standard, although the process of
standardization has begun. Thedraft version of the ANSI C++ standard is the reference
manual from Bjarne Stroustrup’s book titledThe C++ Language.

1.3 A methodology for efficiency improvement
How should the huge number of methods of improving program efficiency be applied to a
program? Aprogrammer’s time is usually far more important than the computer’s, so the
question is how to improve program efficiency with minimal extra time demands on the
programmer. Unfortunately, the most effective method of improving a program — using
better data structures and algorithms — often requires a good deal of extra programming
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effort. Of the code transformations in Chapter 4, those optimizations that improve the
program by a significant amount should be tried first, and the smaller optimizations used
only when it is important to squeeze out that last bit of extra speed.Hence, I suggest the
following steps for improving the efficiency of a program:

1. Invoke the compiler’s built-in optimizer.
2. Find a better data structure or algorithm.
3. Profile the code and optimize code at "hot spots".
4. Use the better code transformations.
5. Use less effective code transformations, if speed is crucial.

Most C and C++ compilers have an option to invoke an optimizer on the code.The opti-
mizer, although it may not always yield a major increase in speed, has one very important
advantage — the programmer need not change the code.Hence, if a small improvement
is desired, the optimizer can often provide it without much effort. Theoptimizer is dis-
cussed in Section 1.6.

The choice of a better algorithm (usually with different data structures) for a program
is not an easy method of program improvement. Simplyidentifying what would be a
better algorithm is a difficult problem! And once identified, the new algorithm must be
implemented by the programmer, costing precious man hours.However, this is the best
method to achieve an order-of-magnitude increase in the program’s performance.

The next step is to profile the code to determine which functions (or statements) are
accounting for most of the program’s time; these are the "hot spots" of the program.This
identification of costly statements is best achieved by a profiler (see Section 2.1).
However, if a profiler is not available, the programmer can usually guess where a
program will be spending its time.Identifying frequently called functions and long loops
is often adequate.Once the hot spots are identified, all efficiency measures, large and
small, should be applied to this code.Any improvement to the efficiency of a statement,
no matter how small, will improve the overall efficiency greatly if that statement is
executed often.

Once the most costly functions and loops have been optimized, other statements can
also be optimized, although the increase in speed will not be as noticeable.Some of the
better code transformations to apply are loop optimizations, using pass-by-reference for
passing structures or objects to functions, and replacing small functions with macros or
inline functions.

1.4 Make it right first?
The speed improvement techniques in this chapter can be applied either as the program-
mer is writing the code, or after the development and debugging of the program.The
second approach is often referred to as the "make it right first" rule. However, I believe
that the first method is preferable simply because optimizing your program once it is
working is a dangerous practice, and often introduces new bugs. Deferringefficiency
improvement to the final development stage can also waste programmer time in improv-
ing the basic algorithms used in a program.Using efficiency techniques during the
development of the program is a much sounder method of improving efficiency. Since
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many of the code transformation techniques sacrifice program clarity for a small increase
in speed, it is only worthwhile applying these ideas to parts of the program that clearly
need the extra speed.

1.5 Trade-offs in improving efficiency
The trade-off between program efficiency and programmer’s time has already been men-
tioned. Thereare numerous other quantities that efficiency may affect:

• Space versus time-efficiency.
• Robustness of a program.
• Readability and maintainability of a program.
• Portability of a program.

There is almost always a trade-off between time and space when making programs run
faster. Many of the algorithm improvements in Chapter 3 sacrifice space for extra speed.

Changing a program for efficiency can introduce extra bugs into a program (although
you could argue that it might remove bugs too). If a piece of code has already been
debugged, improving its efficiency may not be worth the risk to the robustness of a
program.

Many of the program transformations used for efficiency can reduce the readability of
a program. Naturally, this also makes it more difficult for a program to be maintained,
and since the major cost in a program’s dev elopment cycle is usually maintenance,
improving efficiency may not be worth it in the long run.

Perhaps surprisingly, the efficiency of a  program can usually be increased without
affecting portability. There are some efficiency techniques in this book that use machine-
specific information, but the portability problems are mentioned in these sections.

Almost all of the dangers of improving efficiency are dangers for theprogrammer.
On the other hand, theuserof a program will be well pleased by extra efficiency, and this
alone makes efficiency improvement a worthwhile exercise.

1.6 The C optimiz er
The first step to take when improving the performance of a program is to invoke the C
optimizer that is available as an option in most compilers.This optimizer can be used for
a good speed improvement that is simple to achieve and unlikely to introduce new bugs
into the program (although some optimizers have been known to have bugs themselves).
The improvement in speed is often quite noticeable, although this obviously depends on
the implementation.In addition, some optimizers provide options to choose between
optimization towards speed improvement or space reduction.

In the UNIX environment, the optimizer for thecc compiler is invoked using the−O
option:

cc -O -c file.c

The use of−O causes all executable code generated to be optimized, in terms of space
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and time.The program should run faster, and require slightly less space to run.Note that
some UNIX implementations support several levels of optimization — refer to the
manual entry for thecc compiler.

In other environments the method of invoking the optimizer will depend on what
compiler is used, although it is usually either a command-line option or a menu choice
(for compilers integrated with a text editor). Consult your compiler documentation for
information on how to use the optimizer.

1.7 Programmer efficiency
In our commercial world it is frequently the cost of our own time that is the greatest.
Using our own time efficiently is far more important than writing fast programs.
Although improving programming productivity is not the main topic of this book, a few
methods are examined briefly here.

The basic method of reducing time spent programming is to build on the work of
others. Theuse of libraries, including the wide variety of commercially available source
code libraries, and the ANSI library, is a good way to build on the work of others.
Asking other programmers, including those on the Internet, for code or ideas is also often
fruitful. A literature search can be useful, although it is time-consuming.Books and
research papers may well solve the problem at hand far more elegantly, eff i ciently and
correctlythan you could do yourself.

Building on your own work is the other main method of productivity improvement.
How often have you coded up a binary tree?Have you ever written a sorting routine off
the top of your head and then spent hours debugging it? You should perform tasks only
once. Thisdoesn’t necessarily mean writing reusable code in its most general sense, but
just having the source code available for the most common problems.Modifying code
that has already been debugged is far more time-efficient than writing it from scratch.

1.8 Reducing compile-time
Reducing compile-time is a small method of improving the programmer’s use of time.
Although the speed of compilation largely depends on the ingenuity of the implementor
of your compiler, there are a few techniques that can make your programs compile more
quickly. One obvious method is to try different compilers, if any are available to you.
For example, a UNIX environment may support bothcc andgcc , or CCandg++.

A simple way to reduce compile-time is to avoid using the optimizer. To do so,
consult your compiler documentation.Under UNIX, the optimizer is usually turned off
by default, but when using amakefile , the default method of compilation is "cc −O "
(i.e. optimizer on).This can be turned off by modifying yourmakefile to state explic-
itly how to compile your files.

Some compilers may also have options to control which libraries should be linked
with your program.The default is often to link all libraries to the program, allowing the
linker to pick out the functions that are actually used.If you are certain that you will not
need functions from a certain library (e.g. the math library), change the option to prevent
it being linked.
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Some compilers support an option calledprecompiled headers whereby the compiler
stores the state of internal tables, such as the symbol table, in a data file. Insteadof then
processing the text in the header files the compiler simply loads the data file and ignores
the header files. This saves the compile-time used in processing the declarations in
header files.

The best method of reducing compile-time during the testing-debugging phase of
program development is to break the program into a number of files and use object files
(the use of multiple files is also good programming style).In this way, only the files that
need to be recompiled into object files are processed by the compilation phase, although
all object files are usually still linked in creating the final executable. Themethod of
achieving this automatic rebuilding of object files depends on the environment. The
make utility is recommended in environments where it is supported (especially UNIX).
In other environments, the compiler may support automatic reconstruction.For example,
the integrated development environment of Turbo C++ supports "projects" and recom-
piles only those source files that have changed.

There are a few points to note when breaking a program into multiple files. Thefi rst
is that it is important to organize these files correctly, and header files should be devel-
oped with common declarations.However, such issues are not the subject of this book
and the reader should consult more general C textbooks (e.g. there is an entire chapter on
this topic in my own book:Comprehensive C). Thesecond point is that the use of object
fi les do not allow faster compilation when rebuilding from scratch, and may even be
slightly slower in this situation than keeping the whole program as a single file. Hence,
object files are most effective during the testing-debugging phase of program develop-
ment when the program is often changed slightly and recompiled.

Another method of reducing compile-time is reducing the volumes of files that the
compiler must read via#include . Remove any unnecessary#include lines from the
program (e.g. don’t include<math.h> unless you actually need to).If a header file is
included for a single declaration only, place the declaration explicitly in the file and
remove the #include line (however, be warned that this change will lead to non-
portable code, and is very bad style).It can also help to prevent multiple inclusions of
header files, not by placing the traditional#ifdef -#endif pair inside the header file,
but by surrounding the#include line, as below:

#ifndef INCLUDED_MYDEFS
#include "mydefs.h"
#endif

whereINCLUDED_MYDEFSis defined in "mydefs.h ".

1.9 Further reading
An excellent book on efficiency is Jon Bentley’s book: Writing Efficient Programs. This
book is a treasure trove of practical techniques for speeding up programs and reducing
the space usage of programs.The techniques are presented using a variant of Pascal and
are easily applied to C.In addition to covering a huge number of optimization tech-
niques, it also provides real-life anecdotes about how professional programmers
improved the efficiency of their programs, which are interesting reading in themselves.
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The book,Efficient C, by Plum and Brodie presents a number of techniques for
improving the time and space-efficiency of C programs. Many of the general techniques
used by Bentley are covered, in addition to techniques specific to C. This book is particu-
larly strong in its coverage of how to measure and estimate the time and space require-
ments of a C program, and three of its chapters deal specifically with these topics.

Many of the code transformation techniques in Chapter 4 come from the theory of
code optimization in compilers.For example, code motion and strength reduction on
induction variables are well-known code optimization techniques.The classic reference
for compiler design is by Aho, Sethi and Ullman, and this book contains a good chapter
on code optimization.

One aspect of efficiency is the choice of data structure for a problem.Knuth’s book
on data structures for sorting and searching presents much of the theory in the area of
organizing data for fast retrieval. Thebook is also interesting in that it applies a number
of efficiency techniques to the program code presented (e.g. use of sentinels; unrolling
loops). All programs are presented in a mythical form of assembly language called MIX.

Kernighan and Plauger’s book,The Elements of Programming Style, discusses numer-
ous stylistic issues of programming, including various methods of speeding up a program.
The book uses Fortran and PL/I as its programming languages, and most techniques are
easily related to C.

Of the growing number of C and C++ books, a few contain discussions of efficiency,
usually as part of a general coverage of the language.My own book,Comprehensive C,
contains a chapter on efficiency from which this book has grown. Numerousother C
books also contain sections on efficiency: David Masters’ book contains a chapter enti-
tled "Program Efficiency and Testing"; Herbert Schildt’s book has a chapter called
"Efficiency, Porting and Debugging"; Ken Pugh’s book contains numerous sections on
various aspects of efficiency. Undoubtedly, there are many other C and C++ books that
cover eff i ciency to some extent. Ofthe many C++ books, there are a number that contain
discussions of various aspects of efficiency. Bjarne Stroustrup’s classic text The C++
Languagecovers all of C++ and mentions efficiency aspects in many sections. Jonathan
Shapiro’s book A C++ Toolkit has a chapter on performance tuning and another on
memory management.James Coplein’s book on advanced C++ programming covers
efficiency in many sections. Furtherdiscussion of C++ books is given in the "Further
reading" section in Chapter 5.
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Chapter 2

Measurement and estimation

When changing a program to increase efficiency, it is important to have a means of deter-
mining whether the changes have noticeably increased the program’s eff i ciency (or even
decreased it!).Techniques for measuring program efficiency range from the stop-watch
method to the use of sophisticated profiler software tools. If no profiler is available, the
programmer can gain timing information by adding statements to the program, although
there are many pitfalls in attempting to determine the time taken by a sequence of
statements.

The measurement of the space-efficiency of a program is a far more difficult problem
because few tools exist to examine how much space a program uses.Measuring the
memory usage of the stack and heap is also difficult because of their dynamic nature.
However, clever use of C or C++ programming constructs can yield reasonable results.

2.1 Profilers for C
When improving a program’s performance, it is useful to know where the speed bottle-
necks are.There is a saying that 90% of the time is spent in 10% of the code.Hence,
any speed improvement should aim to speed up the functions that are most frequently
used. Theprogrammer can often tell where the program is spending most of its time (e.g.
where one function is called by all others), but it is useful to have a software tool to
analyze exactly where the program is spending its time.Many implementations of C
come with a software tool called aprofiler which is used to examine the performance of
the program.The most common UNIX profilers areprof , pixie andgprof .

2.1.1 The prof utility

Under UNIX the standard C profiling utility is called "prof ". This utility calculates the
percentage time taken by each function.This is valuable information when considering
which functions to make more efficient.

9



10 Chapter 2

To useprof , compile the program with the−p option tocc (strictly speaking, the
-p option is needed only at the link stage of compilation) and then execute the program.
Provided the program terminates normally or viaexit , a data file called"mon.out"
will be generated.This file contains the data to be used byprof in preparing an
execution profile for the program.To examine this profile, type the command:

prof

If your executable is not calleda.out , but say, my_prog , the command is:

prof my_prog

This command will generate a profile of your program’s execution from which the
functions that use the most time can be identified. A sample from the output generated
by prof is:

%time seconds cum % cum sec procedure (file)

42.1 4.4700 42.1 4.47 strcmp (../strcmp.s)
40.6 4.3100 82.7 8.78 CheckWord (spell1.c)

5.9 0.6300 88.6 9.41 fgets (../fgets.c)
4.3 0.4600 92.9 9.87 initialize (spell1.c)
3.0 0.3200 96.0 10.19 tolower (../conv.c)
1.5 0.1600 97.5 10.35 read (../read.s)
1.0 0.1100 98.5 10.46 malloc (../malloc.c)
0.8 0.0800 99.2 10.54 strlen (../strlen.c)
0.5 0.0500 99.7 10.59 morecore (../malloc.c)
0.1 0.0100 99.8 10.60 open (../open.s)
0.1 0.0100 99.9 10.61 sbrk (../sbrk.s)
0.1 0.0100 100.0 10.62 fstat (../fstat.s)

Note that the percentages calculated are only approximate because the profiler uses
sampling techniques during interrupts and these samples might not provide a fully accu-
rate picture.For example, if the program has a very small and fast function, this function
might be completely missed.

2.1.2 The pixie utility

The prof utility only produces estimates based on statistical sampling of the program
counter at regular intervals throughout the execution of the program.The pixie utility
can be used under UNIX to get more accurate counts on the number of times each
statement in a function is executed. Itmeasures the number of times eachbasic block is
executed. Abasic block is a sequence of code containing no branches.

The pixie utility is applied to the already generated executable file. Thereis no
need to recompile the executable with the-p option. Thecommand:

pixie a.out

will generate a new executable file, "a.out.pixie ", which when executed will
generate a data file called "a.out.Counts ". A data file of function addresses called
"a.out.Addrs " is also generated.The next step is to run the new executable:

a.out.pixie
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and then the count file can be examined using eitherprof or pixstats . Two possible
commands are:

pixstats a.out

or the use ofprof with the-pixie option:

prof -pixie a.out

Both of these commands will generate a variety of information. prof -pixie will
generate an ordering of functions based on instruction cycle counts, another based on
invocations, and a list of instruction counts for each basic block.pixstats generates a
whole wealth of useful information including summaries of opcode distributions and
register usage.For more information examine the manual entries forpixie , pixs-
tats andprof .

2.2 Timing code
For sev eral reasons it can be useful to time the execution of a program.In environments
that don’t support a profiler tool, the only way to gather information about a program is to
add timing statements to it.Even if a profiler is available, it might only indicate which
functions are consuming time, whereas timing instructions can be useful in determining
exactly which statements should be optimized.

If the full execution time for a program is all that is needed, the UNIXtime
command can be used to calculate the time required by a program.There are two
versions — a stand-alone utility in/bin , and a command built into csh . The command
to run is usually:

time a.out

A different executable name can also be used and command line arguments can be speci-
fied. Onnon-UNIX machines the total execution time can easily be measured with a
stop-watch.

Timing code can determine the relative eff i ciency of various operations and give you
valuable information about writing code for your machine (e.g. whether shifting is faster
than integer multiplication).

If a more detailed speed analysis is needed, it is possible to add C code to your
program to monitor its own performance.The basic idea is to use the standard library
functions declared in<time.h> to monitor the time before and after an action.The
most useful function is theclock function which counts the number of clock ticks since
the program began executing. Thetime function which keeps track of the real calendar
time could also be used, but it is not a true indication of processor time on a large multi-
user system such as UNIX.Theclock function is correct for single user and multi-user
systems.

The clock function returns a value of type clock_t which is declared in
<time.h> (typically as long or int ), and this integral value counts the number of
clock ticks. The value can be converted to seconds by dividing by the constant
CLOCKS_PER_SEC, also declared in<time.h> . The basic idea of timing C code is to
call the clock function before and after an operation and examine the difference
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between the number of clock ticks.For example, the code below times the execution of a
program (excluding the time used by the program’s startup and termination sequences).

#include <stdio.h>
#include <time.h> /* declare clock() and clock_t */

main()
{

clock_t before; /* Save old value of clock() */

before = clock();
... /* rest of program */
printf("Execution took %5.2f seconds\n",

(double)(clock() - before) / CLOCKS_PER_SEC);
}

Note that some implementations don’t conform to the ANSI standard and return the
number of clock ticks since the first call to theclock function. Thismeans that a single
call toclock at the end of the program would return zero.Hence, it is more portable to
measure the number of clock ticks between two calls toclock , one at the start and one
at the end.

Theclock function also has a problem withwraparound on many implementations.
Because of its high resolution, the number of clock ticks quickly overflows the maximum
value that can be stored by the typeclock_t . On one system theclock function will
wrap around after only 36 minutes.If the program being timed runs for longer than this
period, the use ofclock can be dangerous.One solution is to use thetime function
declared in<time.h> , but this usually only has resolution to the nearest second.

2.3 Instrumenting programs
Usually, the total execution time of a program is not enough information on which to base
optimization techniques.It is usually necessary to know which functions are consuming
the most time, or even to know how much time is used by particular groups of statements.
The process of adding timing instructions to a program to examine its efficiency is called
instrumenting the program.

Presented below is a small library of functions to keep track of time in code blocks
using "clocks".The clocks are referenced by a character string name, and are started and
stopped by the functionsstart_clock andstop_clock . At the end of the program
the clock_report function can be used to generate a summary of the times used by
each clock and the percentage of total run-time consumed by that clock.

#include <stdio.h>
#include <time.h> /* declare clock() and clock_t */
#include <string.h>

#include "instrument.h" /* include the interface header file */

typedef int bool;
#define TRUE 1
#define FALSE 0

/*-------------------------------------------------------------*/
/* Structure representing a clock */
/*-------------------------------------------------------------*/
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typedef struct clock_node {
clock_t ticks; /* number of clock ticks recorded */
clock_t last_time; /* time when clock last switched on */
char *name; /* name of clock */
struct clock_node *next; /* next pointer for linked list */
bool clock_on; /* flag if clock started or stopped */

} c lock_type, *clock_ptr;

clock_type *clock_head = NULL; /* head of linked list of clocks */

/*-------------------------------------------------------------*/
/* Set a c lock off recording time */
/*-------------------------------------------------------------*/

void start_clock(char *name)
{

clock_ptr p;

for (p = clock_head; p != NULL; p = p->next) {
if (strcmp(p->name, name) == 0)

break;
}
if (p == NULL) { /* not found; so create new clock */

p = malloc(sizeof(struct clock_node));
p->name = malloc(strlen(name) + 1); /* store the name */
strcpy(p->name, name);
p->ticks = 0; /* No time on clock yet */
p->next = clock_head; /* add to front of linked list */
p->clock_on = TRUE;
clock_head = p;

}
else if (p->clock_on) {

fprintf(stderr, "Error: clock ‘%s’ already on\n", name);
return; /* no need to set last_time */

}
p->clock_on = TRUE;
p->last_time = clock(); /* store the current time */

}

/*-------------------------------------------------------------*/
/* Stop a running clock; update its count of elapsed time */
/*-------------------------------------------------------------*/

void stop_clock(char *name)
{

clock_t ticks = clock(); /* record time first */
clock_ptr p;

for (p = clock_head; p != NULL; p = p->next) {
if (strcmp(p->name, name) == 0)

break;
}
if (p == NULL) { /* error; clock name not found */

fprintf(stderr, "Error: clock ‘%s’ not found\n", name);
return;

}
else if (!p->clock_on)

fprintf(stderr, "Error: clock ‘%s’ not started\n", name);
p->clock_on = FALSE;
p->ticks += ticks - p->last_time; /* record elapsed time */

}

/*-------------------------------------------------------------*/
/* Print out the profiling report based on all clocks */
/*-------------------------------------------------------------*/

void clock_report(void)
{

clock_ptr p;
clock_t total = clock(); /* total time for entire program */
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fprintf(stderr, "------- CLOCK PROFILE -------\n");
for (p = clock_head; p != NULL; p = p->next) {

if (p->clock_on)
fprintf(stderr,"Error: clock ‘%s’ not stopped\n",p->name);

fprintf(stderr, "Clock ‘%s’: %5.2f secs, %5.2f%%\n", p->name,
p->ticks / (double) CLOCKS_PER_SEC,
p->ticks / (double) total * 100.0);

}
}

The actual implementation is quite detailed.Clocks are referred to by using a character
string name, and the program actually implements an "associative array" of names and
clocks. Eachclock is stored on a linked list and starting up an unknown clock auto-
matically creates a new clock and adds it to the linked list. Considerable run-time error
checking is added to ensure that the clocks are being used correctly. Use of the library is
simple: include the following "instrument.h" header file in the program, and link
the object file from the C source code above.

/*------------------------------------------------------*/
/* INSTRUMENT.H: Header file for instrumenting library */
/*------------------------------------------------------*/

void start_clock(char *name);
void stop_clock(char *name);
void clock_report(void);

The program that makes use of the instrumenting library must be modified to include
calls tostart_clock and stop_clock . For example, the program below records
how much time is spent in a single function.

#include <stdio.h>
#include "instrument.h" /* include the interface header file */

long sum(long n)
{

long i, total = 0L;

start_clock("sum"); /* Start the clock */
for (i = 1; i <= n; i++)

total += i;
stop_clock("sum"); /* Stop the clock */
return total;

}

main()
{

long i, total = 0L;

start_clock("main"); /* Start clock for main */
for (i = 1; i <= 1000; i++)

total += sum(i); /* sum of sums */
printf("sum of sums of 1..1000 = %ld\n", total);
stop_clock("main"); /* Stop clock for main */
clock_report(); /* Print out the profile */

}

This example produces the following output:

------- CLOCK PROFILE -------
Clock ‘sum’: 0.43 secs, 89.52%
Clock ‘main’: 0.48 secs, 100.00%
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Here we see the main disadvantage of this implementation of the instrumenting library:
both the clocks have recorded some of the same time.The clock for "main " has still
been counting the time used by the "sum" function. To avoid this problem it becomes
necessary to rewrite the code to turn off the clock before a function call and turn it back
on afterwards:

start_clock("main"); /* Start clock for main */
for (i = 1; i <= 1000; i++) {

stop_clock("main"); /* Stop clock before */
total += sum(i);
start_clock("main"); /* Start clock after */

}
stop_clock("main"); /* Stop clock for main */

This produces the more useful profile output:

------- CLOCK PROFILE -------
Clock ‘sum’: 0.45 secs, 78.91%
Clock ‘main’: 0.05 secs, 8.84%

An alternative is to improve the instrumenting library so that it counts using only a single
clock at any one time. A useful profile of the entire program would then simply require
calls tostart_clock andstop_clock at the start and end of each function (taking
care to place astop_clock call before every return statement). Thisand other
extensions to the library are explored in the exercises at the end of the chapter. Of course,
all possible instrumenting libraries suffer from the same disadvantage in that the
programmer must do a lot of work to generate a profile. An automatic profiling tool
should be used if one is available.

2.4 Benchmark timing programs
Benchmark programs attempt to examine how quickly your machine executes certain
instructions. For example, how would you determine whether the integer multiplication
operationx*2 could be more efficiently replaced byx<<1 ? The obvious method is to
time a single operation, as in:

#include <stdio.h>
#include <time.h> /* declare clock and clock_t */

main()
{

int x;
clock_t before; /* Save old value of clock() */

before = clock();
x << 1; / * p erform shift operation */
printf("x<<1 took %f seconds\n",

(double)(clock() - before) / CLOCKS_PER_SEC);

before = clock();
x * 2 ; / * p erform multiplication */
printf("x*2 took %f seconds\n",

(double)(clock() - before) / CLOCKS_PER_SEC);
}
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Unfortunately, this program outputs 0.000000 for both operations.There are a number of
reasons for the failure of the simple approach above:

• Single operations take less time than a clock tick.
• %f prints only 6 decimal digits of its value.
• The operations are possibly being removed by the compiler.
• The cost of callingclock is relatively large.

The main problem is that the amount of time taken by these single operations is so short
that it is less than a single clock tick.Hence, both calls to clock return the same number
of clock ticks and the difference is zero.

Even if the operations did take more than a clock tick, printing out the number of
seconds using %f is the wrong approach because it prints out only the first 6 decimal
digits of the fraction, and will still print zero for values such as 0.0000001.This problem
can be solved by using theprintf format specification%.20f to print out 20 decimal
digits, or simply by printing the actual number of clock ticks as an integer.

Another problem is that if the compiler is clever enough to notice that thex<<1 and
x*2 statements have no effect in the program above, its built-in optimizer may remove
them. The compiler can be forced to avoid this optimization by declaringx as
volatile . The volatile qualifier tells the compiler that all accesses tox are
important, and that it should not remove any. The intended purpose ofvolatile is to
allow the declaration of addresses for memory-mapped I/O, or for variables modified by
other programs (e.g. a semaphore modified by another program running concurrently).
However, we can use it here to force all accesses tox to occur by declaringx as below:

volatile int x;

Unfortunately, the computations of the<< and * operators inx<<1 and x*2 are not
being assigned anywhere, so the computations themselves could be optimized out, even
though the actual read operations onx must occur becausex is volatile . To force the
<< and * operations to occur, it is necessary to use their result somehow, such as by
assigning it to the (volatile ) variablex :

x = x < < 1;

Unfortunately, the volatile qualifier is not supported by some older non-ANSI
compilers. Programmersusing such compilers may have to resort to compiler-dependent
tricks to prevent the optimizer from removing operations. Fortunately, non-ANSI
compilers will tend not to perform these optimizations because of their recognized
dangers.

Although all of the above improvements will enhance the previous version, a far
better method of improvement is to time a loop that performs a huge number of the oper-
ations, as follows; the code given here examines the relative speed of 10,000 shift and
multiplication operations onint operands:
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#include <stdio.h>
#include <time.h>

#define ITERATIONS 10000

main()
{

int i;
volatile int x; /* volatile to prevent optimizations */
clock_t before;

before = clock();
for (i = 0; i < ITERATIONS; i++)

x = x < < 1;
printf("%d Shifts took %5.2f seconds\n", ITERATIONS,

(double)(clock() - before) / CLOCKS_PER_SEC);

before = clock();
for (i = 0; i < ITERATIONS; i++)

x = x * 2 ;
printf("%d Multiplications took %5.2f seconds\n",ITERATIONS,

(double)(clock() - before) / CLOCKS_PER_SEC);
}

Unfortunately, the above method of measuring the speed of operations is not completely
accurate, because it also includes the loop overhead (incrementingi from 1 to 10,000)
and the cost of the assignment of the result tox . The loop overhead can be minimized by
placing many operations within the loop, as below:

#include <stdio.h>
#include <time.h> /* declare clock and clock_t */

#define ITERATIONS 10000

main()
{

int i;
volatile int x; /* volatile to prevent optimizations */
clock_t before;

before = clock();
for (i = 0; i < ITERATIONS; i++) {

x = x < < 1; x = x < < 1; x = x < < 1; x = x < < 1;
x = x < < 1; x = x < < 1; x = x < < 1; x = x < < 1;
x = x < < 1; x = x < < 1; x = x < < 1; x = x < < 1;
x = x < < 1; x = x < < 1; x = x < < 1; x = x < < 1;
x = x < < 1; x = x < < 1; x = x < < 1; x = x < < 1;

}
printf("%d Shifts took %f seconds\n", ITERATIONS * 20,

(double)(clock() - before) / CLOCKS_PER_SEC);

before = clock();
for (i = 0; i < ITERATIONS; i++) {

x = x * 2 ; x = x * 2 ; x = x * 2 ; x = x * 2 ;
x = x * 2 ; x = x * 2 ; x = x * 2 ; x = x * 2 ;
x = x * 2 ; x = x * 2 ; x = x * 2 ; x = x * 2 ;
x = x * 2 ; x = x * 2 ; x = x * 2 ; x = x * 2 ;
x = x * 2 ; x = x * 2 ; x = x * 2 ; x = x * 2 ;

}
printf("%d Multiplications took %f seconds\n",ITERATIONS*20,

(double)(clock() - before) / CLOCKS_PER_SEC);
}

Unfortunately, this assignment operation is needed to prevent the optimizer removing the
computations, as discussed above. The assignment can be removed in any "stupid"
compilers where the computation will occur regardless of whether its result is used.The



18 Chapter 2

only truly effective method of removing the cost of the assignment from the measurement
is to time another separate loop, and subtract its time from that of the other loops, as
below. This method also automatically accounts for the loop overhead cost, so the mul-
tiple operations inside each loop are not needed (and in fact would be incorrect).Our
final version of the benchmark program is also made more sophisticated to output the rel-
ative magnitude of the two operations:

#include <stdio.h>
#include <time.h> /* declare clock and clock_t */
#include <math.h> /* declare fabs() */

#define ITERATIONS 10000

main()
{

int i;
volatile int x; /* volatile to prevent optimizations */
clock_t before;
clock_t loop_cost; /* time of loop overhead and assignments */
double time1, time2;

before = clock(); /* time loop overhead */
for (i = 0; i < ITERATIONS; i++)

x = 1 ;
loop_cost = clock() - before;

before = clock();
for (i = 0; i < ITERATIONS; i++) {

x = x < < 1;
}
time1 = (double)(clock() - before - loop_cost) / CLOCKS_PER_SEC;
printf("%d Shifts took %f seconds\n", ITERATIONS, time1);

before = clock();
for (i = 0; i < ITERATIONS; i++) {

x = x * 2 ;
}
time2 = (double)(clock() - before - loop_cost) / CLOCKS_PER_SEC;
printf("%d Multiplications took %f seconds\n", ITERATIONS, time2);

/* Compare both times, and print out percentage difference */

#define ACCURACY 0.00001 /* maximum difference for equal reals */

if (fabs(time1 - time2) < ACCURACY) /* (almost) equal? */
printf("Shift and multiplications took the same time\n");

else
if (time1 < time2)

printf("Shifts faster by %5.2f percent\n",
(time2 - time1) / time2 * 100.0);

else
printf("Multiplications faster by %5.2f percent\n",

(time1 - time2) / time1 * 100.0);
}

Finally, note that on some machines the code above may indicate that shifts and multipli-
cations cost the same.This is most likely an indication that the compiler automatically
optimizes any multiplications by powers of two into left shifts. To get the true cost of a
multiplication, the expression should be:

x = x * x ;
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but on a compiler that does perform the optimization of multiplications to shifts auto-
matically, the programmer will seldom be able to make any changes that the compiler
does not, so the relative cost of shift and multiply is unimportant.

2.5 Examining assembly output
Another way of examining the relative costs of particular operations for a particular
compiler is to examine the assembly language produced by the compiler. Many
compilers have an option to produce assembly language output.For example, under
UNIX the command:

cc -S main.c

will produce the assembly language listing for the C file and store it in a new file
"main.s ". Without the-S option, the assembly output would have been passed to the
assembler to create the machine code executable.

Examining assembly language instructions produced for C operations can be very
enlightening. For example, you can determine whether the compiler uses a special incre-
ment instruction for the++ operator. Whether or not the compiler is performing various
optimizations can also be examined.

Counting the number of assembly instructions is a simple measure and gives a reason-
able indication of how eff i ciently an operation will be performed.A better method is to
determine the number ofcycles used by each instruction, but this requires a rather more
intimate knowledge of the assembly language being used.

Many useful things can be discovered by examining assembly output.For example,
does the expressionx*2 generate a multiply instruction or a shift instruction (or an addi-
tion instruction)?Does the compiler notice thatx=x+1 can be replaced byx++? Is the
%operator implemented by a sequence of instructions?Using the relational operators
(e.g.>, <) in expressions such as:

flag = x > y;

will often produce a sequence of instructions because of the need to assignflag the
value either 0 or 1.The instructions may well look like the following pseudo-assembly
language:

LOAD 10($sp) # Load x (from stack)
CMP 12($sp) # Compare with y (on stack)
BGT $1 # Branch if greater than
LOAD 0 # Result of > operation is 0
JUMP $2

$1:
LOAD 1 # Result of > operation is 1

$2:
STORE 14($sp) # Store in flag (on stack)

However, in situations such as:

if (x > y)
...
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the instructions need not be as complex, because there is no need to store the value 0 or 1
anywhere. Theassembly language could be similar to:

LOAD 10($sp) # Load x (from stack)
CMP 12($sp) # Compare with y (on stack)
BLE $1 # Branch if NOT greater than
... # Code for if statement body

$1:
... # Statements after if statement

2.6 Measuring code size and static space
In general, it is more difficult to measure how much space a program is using than to
measure how much time it is using.However, most environments provide some means of
determining the size of instructions and static data in an executable program.If nothing
else, the size of the executable file can be a reasonable guide.

Under UNIX, a useful command is thesize command, which examines an
executable program and reports the memory used by its instructions and its global or
local static variables. However, it does not (and cannot) report the stack or heap
usage because the amount of such memory used is dynamic, and hence cannot be found
by analysing the executable. Thecommand:

size a.out

produces output similar to the following:

text data bss dec hex
20480 8192 0 28672 7000

The "text" value refers to the machine code instructions for the program code.Both the
"data" and "bss" areas refer to global and localstatic variables. The"data" area refers
to variables which have been explicitly initialized; the "bss" area refers to variables with
implicit initialization which default to zero.

If the code size is needed on a per function basis, most UNIX environments support
the nm command. Thiscommand differs on different UNIX variants, but will usually
print out information including the start and end address of a function, from which the
size of a function can be trivially computed.

MS-DOS users may be able to find out about executable size by examining the output
produced by some C compilers at the link stage (although not all compilers will produce
such output).Alternatively, the MS-DOSlink command with the/map option can be
used. To use thelink command, the object files are linked using a command such as:

link /map *.obj

2.7 Measuring heap usage
The measurement of dynamic memory usage involving the stack and heap is far more dif-
ficult than measuring code size because of its dynamic nature.The amount of memory
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used will depend on the program’s execution; that is, it will depend on the program’s
inputs.

Measurement of the amount of heap space used can be achieved by adding extra code
to keep track of any calls tomalloc , calloc , realloc andfree , or any uses of the
C++ new and delete operators. Theprogrammer can either add extra code to the
program in any place that memory allocation is used, or else write a library of allocation
functions similar to those in Section 6.8.As a very simple method, the following macros
may be useful:

#define malloc(n) ((mem_used += (n)), malloc(n))
#define calloc(n,m) ((mem_used += (n) * (m)), calloc(n,m))

These macros are dangerous in that they may evaluate any side effects to their arguments
twice, but they are still useful. Note that these macros are self-referential, which are legal
in ANSI C, but may cause infinite loops with older preprocessors.

Unfortunately, it is difficult to decrementmem_used for each call tofree , because
the size of the block is not passed tofree . If i t was known how malloc encoded the
size in the block header, the free function could possibly be implemented as something
like the hacked method below:

#define free(p) \
(mem_used -= *((int*)(p) - 1), free(p)) /* CORRECT? */

However, this uses machine-dependent knowledge, is non-portable and may not work for
a particular implementation ofmalloc .

Although I can think of no useful preprocessor hack for the C++new anddelete
operators, the memory allocation requirements for a particular class can be monitored by
overloading thenew anddelete operators for that class.For example, the overloaded
operators could be implemented as:

void *Object::operator new(size_t n)
{

mem_used += n;
return ::new Object; // Call global new operator

}

void Object::operator delete(void *p)
{

mem_used -= sizeof(Object);
::delete p; // Call global delete operator

}

2.8 Measuring stack usage
Measuring the size of the program stack is very difficult. In many cases, the stack is
totally beyond the programmer’s control. However, some compilers for personal
computers provide options such as enabling run-time stack checking and setting the max-
imum stack size.Run-time checking is a useful way to determine whether or not the
worst case will run short of stack space, simply by executing the program.If stack
checking does not report an error when the program is executed with its worst case
inputs, the program is not using too much stack space.
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If the actual amount of stack space used must be known, it can be found by repeatedly
running the program on worst case inputs and progressively reducing the allowed stack
size. Thesmallest stack size for which the program does not fail is the amount of stack
space being used.

This approach is very slow, and what is really needed is a software tool that examines
all possible sequences of function calls in the C source code, determines the maximum
number of functions in scope at any one time, and then adds up the sizes of their local
variables and parameters.Although this may appear to be a theoretical impossibility, the
maximum stack depth can be found by a depth-first-search of the function call graph (in
the absence of recursion).This does not solve the Halting Problem, which would require
the resolution of whether this maximum stack depth is attained at run-time.Unfortunate-
ly, the author is not aware of such a software tool.

2.9 Estimating time and space requirements
Although estimating the efficiency of a proposed project is important in ascertaining its
feasibility, it is difficult to find anything concrete to say about arriving at these estimates.
Producing advance estimates is more of an art than a science.

Experience is probably the best source of methods for producing an accurate estimate.
Hence it is wise to seek out others who have implemented a similar project, or to perform
a literature search for relevant papers and books.Unfortunately, neither of these methods
is guaranteed to succeed and the implementor may be forced to go it alone.

The only other realistic means of estimation relies on a good understanding of the
various data structures and algorithms that will be used by the program.Making realistic
assumptions about the input can provide some means of examining the performance of a
data structure.How a data structure performs under worst case assumptions may also be
of great importance.

An alternative to these methods of plucking estimates out of the air is to code up a
prototype version of the program, which implements only the most important parts of the
project (especially those which will have the biggest impact).The efficiency of the proto-
type can then be measured by using the various techniques outlined earlier in this chapter.
Even if the prototype is too inefficient, at least the problem has been identified early in
the development cycle, when the investment in the project is relatively low.

2.10 Summary
• A profiler is an important tool for identifying "hot spots" in code.

• If no profiler is available, the programmer can "instrument" the program, but this
requires a good deal of effort.

• The clock ANSI C library function can be used to time code, but care is needed
because even the fine resolution of theclock function will be much larger than the
time for a single instruction.

• Benchmarks should time a large number of operations, with all variables declared as
volatile .
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• If the compiler has an option to produce an assembly listing, this can be examined to
see what the compiler is doing and thereby fine-tune efficiency methods.

• Executable size and static storage can be examined by using the UNIXsize andnm
commands, or thelink /map command in MS-DOS.

• Heap usage can be monitored by redefining malloc and free in C, or new and
delete in C++.

• Run-time stack overflow checking can be used to measure stack usage.

• Advance estimates of either time or space-efficiency are very difficult.

2.11 Further reading
Plum and Brodie’s book Efficient C gives good coverage of the issues of measurement
and estimation of space and time-efficiency. It contains chapters on time measurement
and space measurement, and also a discussion of time and space estimation in two other
chapters.

PLUM, Thomas, and BRODIE, Jim,Efficient C, Plum Hall Inc., 1985.

2.12 Exercises
1. Considerthe method of timing loop overhead in Section 2.4 which timed a loop

containing the statementx=1 . Why does this fail if the compiler implements this
assignment statement as a special set-to-one instruction?How can the benchmark
timing method be improved to avoid this (rare) pitfall?

2. Why does the instrumenting library callclock at the end ofstart_clock , but
at the beginning of stop_clock ? Modify the program instrumenting library in
Section 2.3 to use macros that call theclock function after calling
start_clock and before callingstop_clock . This avoids including the over-
head of calling these functions as part of the time.Hint: You may need to use
global variables.

3. Modify the "instrument.h " header file to remove calls to start_clock ,
stop_clock and clock_report (by #define ’ing them to expand to
nothing) if a particular macro name is defined, say, NO_INSTRUMENT. This
allows instrumenting code to be removed by conditional compilation.

4. [advanced] Modify the instrumenting library to avoid measuring the same time
twice on different clocks.This has the advantage that a clock at the start and end of
a function will truly indicate how much time the program spent inside the function
body. Hint: Implementing the better library will involve stopping the (single) clock
that is on (if any) in a call tostart_clock , and restarting this stopped clock
when the new clock is itself turned off.
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5. [advanced] Estimation is easier when the completed program is already available.
Why is estimation still needed in this situation?Investigate the methods of estimat-
ing the following quantities from the source code:

a) Executable size.
b) Static data size.
c) Stack usage.
d) Heap usage.
e) Run-time efficiency.
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Algor ithm improvements

Changing the underlying algorithms used by the program is often the only real way to
gain a large speed increase.In particular, the data structures used can often be modified
to give a significant speed increase.Is there a better way to do what your program does?
Is it doing too much unnecessary calculation?Although much depends on the ingenuity
of the programmer there are some common techniques for improving the performance of
algorithms and their data structures.

3.1 Augmenting data structures
Instead of recalculating data every time you need it, a faster way is to store the data in the
data structure.This saves the time of recalculation, which need be done only once.If the
data ever changes, the calculations must be redone and stored again. Hencethis method
works best where data is unchanging.

As an example of augmentation, consider astruct defined to represent a line
segment. Thestruct contains four fields, for thex andy coordinates of the start and
end points:

struct line_segment {
int x1, y1; /* Start point */
int x2, y2; /* End point */

};

If the computation of the length of the line segment, using:

len = sqrt((y2 - y1) * (y2 - y1) + (x2 - x1) * (x2 - x1));

is a common calculation, it can be beneficial to store the length of the line segment as an
extra field in thestruct:

25
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struct line_segment {
int x1, y1; /* Start point */
int x2, y2; /* End point */
double length; /* Length of line segment */

};

Whenever this length is needed during calculation it is immediately available as a field
member. Howev er, it is important to be careful that there is no consistency problem
(where thelength field is not the true length of the line segment). Themain danger is
that thelength field won’t be recalculated every time one of the other fields change.

3.2 Storing precomputed results: table lookup
This method aims to replace frequently-called costly function evaluations with table
lookup (i.e. array references).For example, when calculating the square root of integers,
it is possible to precalculate a table of square roots of integers from 1 to 100.In the main
calculations, a call to thesqrt function is replaced by a table lookup.The use of
precomputation of thesqrt function (applied to integers) is shown below:

#define NUM 100 /* Precalculate to 100 */

double sqrt_table[NUM + 1]; /* Table of values */

void precalculate(void)
{

int i;

for (i = 0; i < NUM; i++)
sqrt_table[i] = sqrt((double)i); /* Use real sqrt */

}

double square_root(int n)
{

return sqrt_table[n];
}

The precalculation uses two separate functions: one to perform the precalculation, and
another to calculate the values. Theprecalculate function must be called once by
main. Alternatively, every call to thesquare_root function could check astatic
boolean flag indicating whether the values have been precalculated yet, and call thepre-
calculate function if not. Note that this use of precalculation is only worthwhile if
some calculations are repeated (i.e. computing the same result).

A common example of precalculation is boolean functions on characters (e.g.
isupper). To improve performance, it is possible to precompute an array of 256 bytes
with 0 if isupper is false, and 1 ifisupper is true. Thenisupper is evaluated by
indexing the character into the precomputed table:

#define isupper(ch) precomputed_array[ch]

This is faster, safer and more portable than the use of a boolean expression such as:

#define isupper(ch) ((ch) >= ’A’ && (ch) <= ’Z’)
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which has the danger of side effects in the macro argument, and will fail for a non-ASCII
character set.

In fact, many systems implement this function and the other functions in
<ctype.h> as a table lookup over the 256 characters (plus an extra one forEOF), with
precalculated onebit per function — that is, a bit indicatingisupper, another bit for
islower, etc.

3.3 Lazy evaluation
This method is a slight amendment to precalculation or data structure augmentation.
Instead of precalculating every result, results are calculated only as needed.To use this
method, it is necessary to indicate somehow whether a result is already in the table.
When seeking a result, it is necessary to check if the required value is already present.If
it is, table lookup is used to get the result.If not, the value must be calculated, stored in
the table and that entry marked as present.

The precomputation ofsqrt in the previous section can be modified to become lazy
evaluation by adding another array of boolean flags, indicating which of the square roots
have been computed.When calculating a square root, the function checks if it has been
computed, and calculates it if not.

#define NUM_PREC 100 /* Precalculate to 100 */

double square_root(int n)
{

static double sqrt_table[NUM_PREC+1]; /* Table of values */
static int precalc[NUM_PREC+1]; /* Array of flags */

if (!precalc[n]) { /* precalculated? */
sqrt_table[n] = sqrt((double)n); /* Use real sqrt() */
precalc[n] = TRUE; /* Mark as computed */

}
return sqrt_table[n];

}

The use of lazy evaluation is slower than complete precalculation if all of the values are
ev entually calculated (because of the overhead of checking whether calculation is
needed). However, it can make the program faster overall if not all calculations are
needed. Any unnecessary calculations are avoided.

3.4 Compile-time initialization and precomputation
The examples of the precomputation of square roots in the previous two sections are not
particularly efficient because they must still call thesqrt function a number of times.A
far more efficient alternative is to use C’s compile-time initialization of arrays to set up
the precomputedsqrt_table array. Hence, thesquare_root function becomes a
simple lookup into an array variable as follows. Note that the array is declared as
static so that the initialization occurs at compile-time.Automatic array initialization
is legal in ANSI C so it is important not to omit thestatic keyword; otherwise the
initialization will occur every time the function is entered.
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#define NUM 100 /* Precalculate to 100 */

double square_root(int n)
{

static double sqrt_table[] = {
0.000000, 1.000000, 1.414214, 1.732051, 2.000000,
2.236068, 2.449490, 2.645751, 2.828427, 3.000000,
3.162278, 3.316625, 3.464102, 3.605551, 3.741657,
3.872983, 4.000000, 4.123106, 4.242641, 4.358899,
4.472136, 4.582576, 4.690416, 4.795832, 4.898979,
5.000000, 5.099020, 5.196152, 5.291503, 5.385165,
5.477226, 5.567764, 5.656854, 5.744563, 5.830952,
5.916080, 6.000000, 6.082763, 6.164414, 6.244998,
6.324555, 6.403124, 6.480741, 6.557439, 6.633250,
6.708204, 6.782330, 6.855655, 6.928203, 7.000000,
7.071068, 7.141428, 7.211103, 7.280110, 7.348469,
7.416198, 7.483315, 7.549834, 7.615773, 7.681146,
7.745967, 7.810250, 7.874008, 7.937254, 8.000000,
8.062258, 8.124038, 8.185353, 8.246211, 8.306624,
8.366600, 8.426150, 8.485281, 8.544004, 8.602325,
8.660254, 8.717798, 8.774964, 8.831761, 8.888194,
8.944272, 9.000000, 9.055385, 9.110434, 9.165151,
9.219544, 9.273618, 9.327379, 9.380832, 9.433981,
9.486833, 9.539392, 9.591663, 9.643651, 9.695360,
9.746794, 9.797959, 9.848858, 9.899495, 9.949874
};

return sqrt_table[n];
}

The simplest way to produce the values for the precomputed array is to write another
program to produce them.Once the values are produced, this program can be discarded.
The following program was used to produce the declaration ofsqrt_table used in the
square_root function given above. The output from the following program was redi-
rected into the source code for the program above.

/*---------------------------------------------------------*/
/* Produce C declaration for square root table */
/*---------------------------------------------------------*/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define NUM 100 /* Precalculate to 100 */

int main()
{

int i;

puts("static double sqrt_table[] = {");
for(i = 0; i < NUM; i++) {

printf("%f", sqrt((double)i));
if(i + 1 < NUM)

printf(", "); /* comma after all but last */
if(i % 5 == 4 && i + 1 < NUM)

printf("\n"); /* newline every 5 lines */
}
printf("\n};\n"); /* finish off C declaration */

}
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Compile-time precomputation should always be more efficient than lazy evaluation and
run-time precomputation.However, compile-time precomputation is only applicable
when the function can be computed at compile-time.If the computation involves any
variables whose values are known only at run-time, either lazy evaluation or run-time pre-
computation may be useful.

3.5 Special solution of simple cases
When solving a problem, simple cases can often be solved by specially designed fast
functions. These"special solutions" can involve the table lookup of precalculated values
(e.g. storing the first ten factorials in an array) or just a fast algorithm for small cases (e.g.
sorting less than fiv e numbers quickly).

In general, the special solution of simple cases will give some speed increase if the
simple cases are fairly common. The advantage of simple case precalculation over full
precalculation is flexibility — it is not limited to those values that can be stored in a fixed
size table.

The use of table lookup for simple cases for thefactorial function is shown
below. The method here gives speed increase for all cases, not just the simple ones,
because the recursive definition of factorial ev entually breaks the problem down to a
simple case.

#define NUM_PRECALCULATED 5 /* How many precalculated */

int factorial(int n)
{

static precalc[NUM_PRECALCULATED+1] = {1, 1, 2, 6, 24, 120};

if (n <= NUM_PRECALCULATED)
return precalc[n];

else
return n * factorial(n - 1);

}

3.6 Incremental algorithms
It is often easier to modify what has already been done than to start from scratch.This
idea can be used to write faster algorithms. Unfortunately, changing an existing
algorithm to use incremental calculations will usually require total redesign of the
algorithm.

A simple example of an incremental algorithm is counting the number of symbols in a
symbol table.The non-incremental way to count them is to traverse the symbol table,
counting the number of entries.The incremental method is to keep a running count —
increment it when a symbol is inserted; decrement it when a symbol is deleted.The
incremental method is better if the count will be required most times.If the count is not
required, there has been some unnecessary overhead.

Another good example appears in graphics animation.When displaying a new screen
it is usually more efficient to change the existing screen than to redraw the whole screen.
The idea is to set only those pixels that need to be changed.
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In a chess-playing program using a game tree and the minimax algorithm (see
Chapter 9), the static evaluation function usually analyses the material balance (i.e. how
many pieces each side has).A simple but inefficient method of computing the material
value of a position is to add the values of each piece on the 64 squares.The efficient
incremental algorithm is to subtract the value of the piece from a running count whenever
it is captured by the opponent.

3.7 Using simple tests to avoid expensive tests
Many algorithms can be improved by pruning off the alternatives by using a fast test that
is often successful.This is only worthwhile when avoiding the complicated test is highly
probable; if avoiding it is unlikely, the extra simple test reduces efficiency because it adds
(slightly) to the run-time cost.

For example, to implement a ray tracing algorithm for graphical image rendering, it is
necessary to determine whether a ray strikes an object.Since the objects are often
complex and more often than not the ray will miss an object by a large amount of space, a
simple test can be used to quickly identify rays that are close enough to the object to
intersect with it.A good simple test is to determine if the ray intersects with thebound-
ing sphere of an object, as it is relatively efficient to determine this.If the ray does inter-
sect the sphere, the more expensive tests are applied to determine if the ray intersects with
the object. If the ray does not intersect with the sphere, the cost of the more expensive
tests has been avoided. Interestingly, the simplicity of testing the intersection of a ray
with a sphere helps explain why there are so many ray-traced images of spherical objects.

The similar idea of abounding rectangle is useful for collision detection in arcade
games. Collisiondetection usually involves testing many pairs of objects in a two-dimen-
sional setting, and the tests are complicated because of the different shapes of the objects.
The more complicated tests can be avoided by examining whether the bounding rectan-
gles of each object are intersecting.If they do intersect, then a closer examination of
whether the objects have pixels that overlap is carried out.

For yet another example of using a simple test to avoid complicated tests, consider the
problem of a graphical drawing program, where the user can select a vertex (e.g. the end
of a line segment) by clicking "close" to the vertex. In other words, the user must click
the mouse within a specified radius of the point.Hence, when the mouse is clicked, the
program must compare the mouse location with all the currently active vertices. The
obvious method is to use the distance formula for two points and apply the following test
on thex andy coordinates of the mouse and all points:

√ (xPoint − xMouse)2 + (yPoint − yMouse)2 ≤ DISTANCE

The efficiency of this test can be improved by avoiding the calculation of the square root.
Squaring both sides of the equation gives the equivalent test:

(xPoint − xMouse)
2 + (yPoint − yMouse)

2 ≤ DISTANCE2

However, the multiplications involved in computing the squares of the two sub-ex-
pressions on the left are quite expensive, although the square on the right-hand side will
be a compile-time constant.A simple test can be used to avoid the multiplications in
most cases.If the difference between either thex or they coordinates is greater than
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DISTANCE, then the points cannot be close enough.Although the cost of these tests is
quite high because the absolute value of the difference must be found, it should still cost
less than two multiplications, and will be more efficient if there are many widely spaced
points to be tested.The code using this idea is:

int check_point(int x_mouse, int y_mouse, int x_point, int y_point)
{

int x_diff, y_diff;

x_diff = x_point >= x_mouse ? x_point - x_mouse : x_mouse - x_point;
if (x_diff > DISTANCE)

return FALSE;
y_diff = y_point >= y_mouse ? y_point - y_mouse : y_mouse - y_point;
if (y_diff > DISTANCE)

return FALSE;
return x_diff * x_diff + y_diff * y_diff <= DISTANCE * DISTANCE;

}

Of course, the best way of improving the efficiency of this program is to avoid the need
for multiplications entirely, by changing the program specifications (!) so that the defini-
tion of clicking "close enough" refers to clicking within asquare around the point,
instead of a circle.

3.8 Sentinels
Sentinels refer to a value placed at the beginning or the end of a list or array to indicate a
special condition.Sentinels are most commonly used to indicate the end of data to be
processed (e.g. the character zero at the end of character strings is a sentinel).This way,
the program can test for the presence of the sentinel in the input data, which is faster in
many situations than testing for the presence of more data.For example, a program using
a buffer can use an end-of-buffer marker as a sentinel instead of checking how many
characters are left in the buffer each time; the program merely checks each time that the
character returned is not the sentinel.

A clever example of the use of sentinels can be found in the sequential search
algorithm applied to arrays.The simplest form of sequential search is:

int search(int a[], int key, int n)
{

int i;

for (i = 0; i < n; i++) {
if (key == a[i])

return i; /* Found it */
}
return -1; /* Not found */

}

The test for whether the whole array has been checked (i.e.i<n) can be eliminated by
placing a sentinel at the end of the array. The sentinel’s key value is set equal to the key
being searched for so that when the search reaches the last element, it will find the correct
key. In other words, the sentinel fakes a successful search.After the search, the
algorithm must check whether the value found was the sentinel, or a real success.Setting
up the sentinel is the only overhead and this compares favorably with removing the test
inside the loop.
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int search(int a[], int key, int n)
{

int i;

a[n] = key; /* add sentinel to end of array */
for (i = 0; key != a[i]; i++)

; /* empty loop */
if (i == n)

return -1; /* Not found. Found sentinel only */
return i; /* Found the key */

}

Unfortunately, this use of the sentinel introduces a potential problem: the array is
modified by the search function.This modification will be dangerous if the function is
used to search a subarray. The danger can be removed by saving and restoring the value
of a[n].

Sentinels can be applied to a number of algorithms.For example, they can be used
for searching linked lists or binary trees.Instead of having NULL pointers at the end of
the list (or at the leaves of the tree), these pointers point to a global node.Setting this
node’s key equal to the search key before beginning the search will avoid testing for
NULL pointers during the search.A binary tree implementation using sentinels is dis-
cussed in Section 8.13.

3.9 Reducing recursion
Recursion is an elegant method of problem solution, but often incurs unnecessary
function call overhead. Wherepossible, recursion should be replaced with a non-recur-
sive algorithm, particularly if recursion can be removed without using an explicit stack
data structure.

With a little insight, many recursive algorithms can be coded without recursion.For
example, the Fibonacci number sequence (1,1,2,3,5,8,13,...) is defined by the following
recursive rules:

F0 = 1
F1 = 1
Fn = Fn−1 + Fn−2

This has the obvious recursive implementation:

int fibonacci(int n)
{

if (n <= 1 )
return 1;

else
return fibonacci(n - 1) + fibonacci(n - 2);

}

However, there is no need to use recursion here, and a short loop is adequate.A non-re-
cursive computation of the Fibonacci numbers is shown below:
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int fibonacci(int n)
{

int small, large, temp;

small = large = 1; /* F0 = F1 = 1 */
while (n > 1) {

temp = small + large; /* Fn = Fn-1 + Fn-2 */
small = large;
large = temp;
n--;
}

return large;
}

There are many examples of common algorithms that are unnecessarily coded using re-
cursion. Almostall linked list algorithms can be coded without recursion, as can the
most common binary search tree operations: search, insertion and deletion.For example,
the recursive implementation of tree insertion is:

void insert(Tree *root, Tree new_node)
{

if (*root == NULL) /* Found bottom of tree */
*root = new_node; /* So insert here */

else {
if (new_node->data <= (*root)->data)

insert(&(*root)->left, new_node);
else

insert(&(*root)->right, new_node);
}

}

whereas the non-recursive version of tree insertion is given below. It is somewhat less
elegant, uses a few more variables, but should be more efficient.

void insert(Tree *root, Tree new_node)
{

Tree temp = *root;
if (temp == NULL) /* empty tree is special case */

*root = new_node;
else {

for (;;) {
if (new_node->data <= temp->data) { /* go left? */

if (temp->left == NULL) { /* leaf? */
temp->left = new_node; /* insert it */
return; /* finished */

}
else

temp = temp->left; /* go left */
}
else { /* going right */

if (temp->right == NULL) { /* leaf? */
temp->right = new_node; /* insert it */
return; /* finished */

}
else

temp = temp->right; /* go right */
}

}
}

}
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3.9.1 Tail recursion elimination

An example of recursion elimination without a stack is the elimination of tail recursion.
Tail recursion occurs when the last action of the recursive procedure is to call itself.The
simple modification changes this last recursive call to become a loop back to the top of
the current invocation. For example, consider the preorder traversal of a binary tree.The
simplest recursive algorithm is:

void preorder(node_ptr root)
{

if (root != NULL) {
visit(root);
preorder(root->left);
preorder(root->right); /* Tail recursion here */

}
}

Tail recursion can be eliminated by replacing theif statement with awhile loop. The
transformation reduces recursion by half (on average), as the second recursive call is
eliminated. Thisreduction in recursion is achieved with virtually no extra overhead!

void preorder(node_ptr root)
{

while (root != NULL) { /* while loop replaces if */
visit(root);
preorder(root->left);
root = root->right; /* Move to right subtree */

}
}

Tail recursion removal can be applied to many kinds of recursive algorithms: quicksort,
preorder and inorder traversals (but not postorder).

3.9.2 Replacing recursion with a stack

Some recursive algorithms cannot be easily replaced by non-recursive equivalents. For
example, in the binary tree traversal in Section 3.9.1, we were unable to remove both of
the recursive calls. In these situations recursion can be replaced with an algorithm using
a stack data structure.All recursive algorithms can be replaced by a stack because recur-
sive algorithms are actually using an implicit stack (the program stack of function calls).

Whether use of a stack will be more efficient than a recursive algorithm depends on a
number of factors. Thechoice of a stack over recursion is machine-dependent.In partic-
ular, it is quite likely that the program stack is supported by efficient low-level instruc-
tions and that (recursive) function calls are executed very efficiently. Howev er, recursion
requires that much information be stored on the stack (i.e. parameters, automatic local
variables, machine registers), whereas an algorithm making use of an explicit stack will
usually only need to store a few items, making it potentially faster than the function call
stack. If the maximum size of the required stack is known beforehand, a stack can be
quite efficiently implemented as an array (using a linked list will usually be more costly
because of the cost of memory allocation).A number of stack implementations are dis-
cussed in Chapter 8.
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The following shows the preorder traversal with tail recursion elimination removing
one recursive call and an explicit stack replacing the other. In this case, the explicit stack
need only store pointers.The function is an implementation of an algorithm given in
[Standish, 1980, p75].

void preorder(node_ptr root)
{

stack_type S;

init_stack(S); /* set to empty stack */
while (root != NULL || !is_empty_stack(S)) {

if (root != NULL) {
visit(root); /* visit a tree node */
push(S, root->right); /* save right subtree */
root = root->left; /* go to left subtree */

}
else

root = pop(S); /* get node from stack */
}

}

3.9.3 Moving the base case higher

In the simple implementation of the preorder traversal given in Section 3.9.1, the recur-
sive base case isroot==NULL. If this occurs, the function call does nothing.One
method of avoiding these unnecessary function calls is to test for the base casebefore the
recursive call. Thenew function becomes:

void preorder(node_ptr root)
{

while (root != NULL) {
visit(root);
if (root->left != NULL) /* Test moved up */

preorder(root->left);
root = root->right;

}
}

3.9.4 Collapsing recursive calls

The method of function call collapsing can be applied to recursive functions in a limited
sense. Obviously, it isn’t possible to collapse a recursive function call completely into
inline code, but it is possible to collapse a few lev els of recursive calls into inline code,
reducing the total number of recursive calls by a constant factor. This way, the function
does much more work each time, and makes recursive calls less frequently. For example,
the preorder traversal can be rewritten so that the current nodeand its two children are
handled by the function, and then recursive calls are made for any of the children’s
children:
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void preorder(node_ptr root)
{

if (root != NULL) {
visit(root);
if (root->left != NULL) { /* do left child */

visit(root->left);
preorder(root->left->left);
preorder(root->left->right);

}
if (root->right != NULL) { /* do right child */

visit(root->right);
preorder(root->right->left);
preorder(root->right->right);

}
}

}

3.10 Integer arithmetic
Real arithmetic is slow compared to integer arithmetic.Hence it is favorable to replace
real arithmetic by equivalent integer arithmetic. Real arithmetic can be replaced by
integer arithmetic when only limited precision is required (e.g. 1-3 decimal places).To
do this, work in integer units that are 10, 100 or 1000 times larger (for 1, 2 and 3 decimal
places) so that the decimal places appear as the lower digits of the integers.

To convert the integer into its true integer and fractional parts is quite simple.To get
at the fractional part, calculate the number modulo 10, 100 or 1000 (using the% oper-
ator). To get the true integer part, divide by 10 or 100 or 1000 — remember that integer
division truncates the fractional part.

A good example is: when working in dollars and cents, do all calculations in terms of
cents (an integer). Thenwhen printing it out, convert to dollars and cents using:

cents = value % 100;
dollars = value / 100;

3.11 Approximations
If precision of results is not important, it may sometimes be possible to use approxima-
tions to mathematical functions.For example, in computer graphics, the precision of
floating point values is often unimportant because the end result will be an integer pixel.
An approximation can be used, for example, in the matrix for 2-D rotation when the rota-
tion angle is small.The general matrix equation is:
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It is easy to implement this rotation matrix in C, using thesin and cos library
functions:

x2 = cos(theta) * x1 + sin(theta) * y1;
y2 = - sin(theta) * x1 + cos(theta) * y1;
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For eff i ciency, we should avoid computingsin andcos twice by computing the values
once and storing them in temporary variables (this is an example of common sub-ex-
pression elimination).However, if the angle,� , is small enough, we can do much better
than this by using the approximations:

cos� ≡ 1
sin � ≡ �

Hence, we can completely avoid the cost of the computation ofsin andcos:

x2 = x1 + theta * y1;
y2 = - theta * x1 + y1;

3.12 Avoid busy waiting for input
Humans are very slow compared to computers.In particular, a computer can do much
work in the background, even when handling the (slow) interactive input of a human.
Hence, one method of improving efficiency is to perform background processing while
aw aiting input, instead of using blocking input that waits for a keypress before doing
anything.

A common example of this idea is chess-playing programs that "think" during their
opponent’s time. Thecomputer performs a game tree analysis while waiting for the
player to press a key. At some regular interval, perhaps before each node of the game tree
is analyzed, the program determines if a key has been pressed (e.g. by using thekbhit
function in Turbo C on an IBM PC).If a key has been pressed, the chess program stores
information about its current analysis, and processes the key. Unless the key press
completes the user’s move, the background analysis can continue after processing the key.

Background processing can be achieved by polling the keyboard regularly or by the
clever use of interrupts, but neither method is portable.The ANSI C standard provides
no facility for non-blocking input, mainly because of C’s UNIX ancestry. It is difficult to
poll the keyboard for a traditional UNIX line terminal.

3.13 Reducing disk I/O
The cost of performing I/O on disk files can make up a large proportion of the run-time
cost of some programs.For reducing the amount of data to be read from or written to the
disk, the main methods are:

• Use smaller records.
• Cache frequently used records.
• Buffer multiple reads or writes.
• Compress data.
• Use better data structures.

A very simple method of reducing disk I/O is to reduce the size of records being read or
written. Thiscan be achieved using many of the methods discussed in Chapter 7, such as
the use of unions, bit-fields, packing or smaller data types.
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Caching is useful if some records are being read more often than others.It is a very
general idea and there are many possible implementations.It may be possible to keep all
of the most frequently used records in main memory, writing them to disk only at the end
of the program (even caching records in memory and writing them to disk forevery
modification will still avoid the cost of multiple diskreads). If this method cannot be
used, try using several memory locations for record I/O, and whenever a read operation is
required, examine these in-memory records first. If any of them is the required record,
the cost of a disk read is avoided. Cachingalways has a slight overhead, and may
increase run-time slightly if the desired records are rarely in memory; however, it will
never increase the amount of disk I/O and the computational overhead is likely to be
small compared to the cost of reading a record from disk.

When reading or writing multiple contiguous records, disk I/O can be speeded up by
reading in a number of records each time.The advantage is that buffering multiple opera-
tions reduces the number of disk seek operations.This can be achieved by manipulating
the buffering of<stdio.h> functions using thesetbuf andsetvbuf functions.

Another alternative is to use other I/O functions, such as the UNIXopen, read and
write functions. However, this method reduces portability as these functions are not
part of the ANSI standard library.

When the amounts of data being read are quite massive, the level of disk I/O can be
reduced bycompressing the data in the file. Readand write operations then have the
overhead of uncompressing or compressing the data, but the cost of this computation may
well be less than that of the disk I/O (or it might also be more; be careful!).However,
methods of compressing data are beyond the scope of this book.

The use of a different data structure for data in disk files is often worthwhile. Inpar-
ticular, if the disk file is being searched, then many of the search algorithms in Chapter 8
are applicable.For example, binary search can be performed on a direct access file if the
data is sorted.However, even binary search is inefficient for large disk files, and data
structures specifically intended for disk data should be used.The B-tree is a commonly
used data structure, and hashing is another possibility. Unfortunately, these algorithms
are highly advanced and again beyond the scope of this book.

3.14 Summary
• Precalculation, especially when combined with compile-time initialization, yields very

efficient code.

• For small problem sizes a specialized routine will be more efficient than the most
general algorithm.

• Incremental algorithms avoid doing a large amount of work at one time by doing a
small amount of work many times.

• Expensive tests can often be avoided by using simpler tests for common cases.

• Sentinels provide a useful coding trick to remove tests from a loop.

• Recursion is inefficient and can be reduced in many ways.
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• When the full precision of floating point computations is unnecessary, eff i ciency can
be improved by using approximations or integer arithmetic.

• Computers are much faster than humans and can do background work while accepting
human input.Unfortunately, there is no portable method of doing this in C.

• Disk I/O is expensive and can be reduced by techniques such as using smaller records
or caching commonly used records.

3.15 Further reading
A good discussion of efficient methods of binary tree traversal is given in the book by
Standish. Many of the methods covered here are also examined in Jon Bentley’s book,
and extra examples of applying the methods can be found there.

BENTLEY, Jon Louis,Writing Efficient Programs, Prentice Hall, 1982.

STANDISH, T. A., Data Structure Techniques, Addison-Wesley, 1980.

3.16 Exercises
1. Find an example problem where compile-time precomputation is not applicable,

but lazy evaluation or run-time precomputation are.

2. A chess program displays the chess board on a graphics screen.After each move it
re-displays the whole board.How can an incremental algorithm be used to reduce
the time spent displaying the new board? How much improvement can be
expected?

3. Implementanisvowel function by precalculating a table of 256 bytes, similar to
that often used for the<ctype.h> character testing functions.It should evaluate
to true for letters that are vowels.

4. Section3.5 gives a recursive implementation of the factorial function as an
example of the special solution of special cases.Improve this function to use a
loop instead of recursion, but retain the efficiency of the special solution of simple
cases.

5. Combinetail recursion elimination and collapsing recursive calls for the preorder
traversal of Section 3.9.1 to produce a faster preorder traversal function.
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Code transfor mations

There are several methods of directly improving the efficiency of a program just by
changing the source code slightly. These methods are quite general, and apply to many
programming languages.The techniques covered are only some of the huge number of
general transformations that can be applied to a program to make it slightly more efficient
without changing its meaning.The area is a research field in itself. The main techniques
have been covered in this chapter, but there are always more.

Some of the methods covered below come from the theory of compiler optimization
(e.g. code motion, strength reduction on induction variables, sub-expression elimination).
Hence, the compiler will often automatically perform these types of optimizations (when
the optimizer is invoked). To some extent, this makes these transformations redundant.
Even so, it is good programming practice to avoid situations where these optimizations
are needed on a large scale.The compiler does not look at the program as a whole and
can miss some "obvious" optimizations.

4.1 Loop transformations
Loops are an obvious place to begin improving the efficiency of a program because the
code inside the loop body is likely to be executed a number of times.Hence, any
improvement to this code will improve eff i ciency by a larger factor.

4.1.1 Moving code out of loops

Because loops are frequently executed, they should be as fast as possible.There are
several ways to make loops smaller and hence faster. The overall aim is to move as much
code as possible out of the loop.Any expressions that are constant during a loop can be
calculated before the loop, rather than recalculating inside the loop every time through.
For example, the computation ofpi*2.0 in the code:

40



Code transfor mations 41

for (i = 0; i < 10; i++)
a[i] *= pi * 2.0;

is the same in each iteration becausepi does not change.Moving this computation out
of the loop makes the code more efficient:

scale = pi * 2.0; /* move multiplication outside loop */
for (i = 0; i < 10; i++)

a[i] *= scale;

A common example occurs with the condition of afor loop. Theconditional expression
in a for loop is evaluated at each iteration.Any constant contained in this condition
should be evaluated outside the loop.For example, consider the code fragment:

for (i = 0; i < strlen(key); i++)
hash += key[i];

The computation of the length of the string usingstrlen does not change, but is calcu-
lated at each iteration of the loop (each time the loop condition is tested).Efficiency can
be improved by moving the computation ofstrlen outside the loop:

len = strlen(key);
for (i = 0; i < len; i++)

hash += key[i];

One danger of moving code out of loops is that the transformation canincrease the
execution time if the loop body is executed zero times.Fortunately, this isn’t a danger in
either of the examples above — the first loop never executes zero times; the second
example must computestrlen as the loop test even if i t executes zero times.Whenever
the danger does exist, the loop can be recoded to prevent the calculation of the expression
until after the first loop test.For example, the loop:

while(condition) {
x = 2 * p i;
... /* computation not changing x */
}

could be rewritten as:

if(condition) {
x = 2 * p i;
do {
... /* computation not changing x */
} w hile(condition);

}

4.1.2 Loop unrolling

One way to make loops more efficient is to reduce the number of times they are executed.
This method does not actually reduce the amount of work done by the loop body, but
decreases the number of variable tests in controlling the loop (i.e. reduces loop condition
evaluations). Loopscan be unrolled to any lev el. Theextreme is when the loop is totally
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replaced by in-line code.This is the most efficient the loop can get (the loop variable is
totally eliminated).For example, the loop:

for (i = 0; i < 5; i++)
a[i] = 0;

can be replaced by fiv e assignment statements:

a[0] = 0; a[1] = 0; a[2] = 0; a[3] = 0; a[4] = 0;

In fact, this can be changed to reuse assigned values:

a[0] = a[1] = a[2] = a[3] = a[4] = 0;

which may be more efficient in some environments, but might be less efficient in others.
Reusing assigned values is discussed in Section 4.3.7.

Even if the total number of iterations is not known at compile-time, loop unrolling
can still be achieved by repeating the code inside the loop twice (and modifying the
header of the loop).This causes the loop to be executed half as many times, and gains
efficiency by eliminating some branch instructions and some control variable manipula-
tions. For example:

for (i = 0; i < MAX; i++)
a[i] = 0;

becomes:

for (i = 0; i < MAX; ) {
a[i++] = 0; /* Unrolled by a factor of 2 */
a[i++] = 0;

}

In the example above, the arraya will always be accessed an even number of times,
because each iteration of thefor loop accesses the arraya twice. If MAXis an odd
number, the second array reference in the last iteration will access an illegal array
element. For example, if MAXis 3, the first iteration will access elementsa[0] and
a[1] , the second (final) iteration will access elementa[2] and then attempt to access
elementa[3] . Howev er, the array contains only three elements,a[0] , a[1] and
a[2] , and thusa[3] is an illegal array reference.A solution to the problem is to
declare the arraya to have an even size. Oneway to ensure that the array contains at
least an even number of elements is to declare one extra dummy element:

int a[MAX + 1];

If MAXis odd this extra element prevents a bad array reference; ifMAXis even the extra
element is just wasted space.

Loops can be unrolled more than twice.The problem of odd-sized arrays is more
general, and can be eliminated by declaring the array to contain a number of extra
dummy elements.However, it becomes impractical to overcome the problem of odd sizes
by declaring arrays larger than necessary. An alternative is to use a short non-unrolled
loop to handle the odd cases.For example, the code below uses a loop that is unrolled
eight times to do most of the work and then uses a short loop to catch up to seven extra
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cases. Theunrolled loop can only set elements from zero up to, but not including, the
highest multiple of 8 (why?), and the non-unrolled loop is used for the rest.The highest
multiple of 8 can be computed easily using bitwise arithmetic because 8 is a power of 2.
If the desired unrolling factor is not a power of 2, the less efficient %operator could be
used.

void clear_array(int a[], int n)
{

int i, max = n & ˜ 07; /* Highest multiple of 8 */

for (i = 0; i < max; ) {
/* Main loop unrolled 8 times */

a[i++] = 0; a[i++] = 0; a[i++] = 0; a[i++] = 0;
a[i++] = 0; a[i++] = 0; a[i++] = 0; a[i++] = 0;

}
for (; i < n; i++) /* Do the odd cases */

a[i] = 0;
}

Note that this general form of loop unrolling is efficient only if n is large, allowing a
number of unrolled iterations.If n is too small, the overhead of setting up the loops
becomes too costly.

Also note that loop unrolling canincrease cost on some machine architectures.For
example, a machine with instruction caching might pre-load an entire tight loop, but can-
not do this if the loop is unrolled to a length greater than the size of the cache.On
machines with virtual memory, a long unrolled loop is slightly more likely to cause a
page fault because of its increased code space.

4.1.3 Strength reduction on induction variables

Strength reduction refers to replacing a multiplication by an addition or by a shift.More
generally, it refers to replacing an expensive operation with a less expensive one. Thisis
discussed in more detail in Section 4.3.3.This section examines the application of
strength reduction techniques to a particular type of variable.

An induction variable is a variable that changes in an arithmetic progression during a
loop. In other words, it is increased by a fixed number each iteration.The control vari-
able of afor loop is often an induction variable incrementing by one each time.

If there is more than one induction variable in a loop, efficiency can be gained by re-
moving all but one of them.Any constant multiple of an induction variable is also an in-
duction variable. Theaim is to replace this multiplication with an addition.Instead of
the multiplication, the induction variable is initialized alongside the initialization of the
original induction variable, and then incremented each loop iteration.For example, both
i andx are induction variables in the loop below:

for (i = 1; i <= 10; i++) {
x = i * 4 ; / * x = 4 ,8,...*/
...

}

It is possible to remove the multiplication operation, becausex is actually increasing by a
fixed amount each iteration.
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for (i = 1, x = 4; i <= 10; i++, x += 4) { /* x = 4,8,...*/
...

}

For the example above, we see that this optimization makes the code almost impossible to
read. Hence,the use of strength reduction is recommended only when speed is very
important. Thisimprovement is commonly performed automatically by the optimizer.

4.1.4 Looping down to zero

On many machines, testing for zero is more efficient than any other test.This leads to a
number of minor optimizations (such as placing the most frequently used enumerated
constant first in its declaration), and a quite important improvement involving loops.
Loops that start at zero and go upwards to a particular value are quite common in the use
of arrays.Any such loops where the order is unimportant (e.g. zeroing an array, comput-
ing the maximum/minimum of an array, adding elements of an array, etc), can be trans-
formed to start at the top value and loop down to zero. The only danger is if the loop
index variable is used after the loop, because it will have a different value to that after the
original loop. For example:

for (i = 0; i < N; i++) a[i] = 0;

can be rewritten as:

for (i = N - 1; i >= 0; i--) a[i] = 0;

This method can also be applied to loops that start at 1 and increase, or loops that start at
0 or −1 and decrease.

4.1.5 Nested loops

When two or more loops are nested, the innermost loop should be the one with thelarger
number of iterations.For example, consider the nested loops to initialize a multidimen-
sional array:

for (i = 0; i < 10; i++)
for (j = 0; j < 100; j++)

a[i][j] = 0;

This will be more efficient than having the inner loop iterate 10 times and the outer loop
100 times.The difference in speed is not due to a change in the number of array assign-
ments, but due to the reduction in the number of initializations of the inner variable,j ,
and increments of the outer variable (i.e.i++ ).

4.1.6 Loop fusion

Another technique for speed improvement isloop fusion. This refers to the merging of
similar loops so as to avoid loop overhead. Thesaving gained is that the total number of
operations on the loop variables is reduced.For example, this technique can be used to
improve the following code fragment:
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for (i = 1; i < MAX; i++)
a[i] = 0;

for (i = 0; i < MAX; i++)
b[i] = 0;

Merging both these almost identical loops is simple, except that care must be taken to
handle boundary cases correctly:

b[0] = 0; /* Boundary case */
for (i = 1; i < MAX; i++) /* Fuse two loops together */

a[i] = b[i] = 0;

4.1.7 Exit loops early

The use of bothbreak andcontinue are efficient, as no more of a loop is executed
than is necessary. For example, the inefficient method is to use a boolean variable to indi-
cate the end of the loop, as in:

done = FALSE;
while (!done) {

ch = get_user_choice();
if (ch == ’q’)

done = TRUE;
else

... /* rest of loop */
}

The efficient method is to use abreak statement to exit the loop immediately:

while (1) { /* Infinite loop */
ch = get_user_choice();
if (ch == ’q’)

break; /* Exit early! */
else

... /* rest of loop */
}

Unfortunately, the overuse of jump statements such asbreak andcontinue can make
the control flow of a program unclear.

4.1.8 Correct choice of loop

Although the choice of loop is largely a matter of style, there is an important difference
between the post-testeddo loop, and the pre-testedfor and while loops. Theloop
condition of ado loop is not evaluated on the first iteration and ado loop is always
executed at least once.However, a for or while loop condition is evaluated before the
fi rst iteration and the loop body need not be executed at all. A common form of inef-
ficiency is declaring loops that are always executed the first time, such as:

done = FALSE;
while(!done) {

....
}
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It is more efficient to use thedo loop, which avoids a single evaluation of the loop condi-
tion:

done = FALSE;
do {

....
} w hile(!done);

To allow the compiler to generate efficient code for an infinite loop, you should make it
easy for the compiler to recognize the loop as infinite, by using a common form: either
for(;;) , while(1) , or do..while(1) . A small point is that on some (deficient)
compilers, only the formfor(;;) is recognized as an infinite loop, and the other forms
generate redundant comparisons with the constant 1.

4.1.9 Pointer traversals of arrays

When stepping through an array of elements, it can be faster to use pointer variables. The
calculation of the address of an array element,arr[i] , from the array name and an
integer index can be quite slow. The index must be multiplied by the size of an array
element and then added to the address of the array. The direct use of pointers removes
the need for this calculation, as the address is just the value stored in the pointer variable
(i.e. *ptr ). For example, to move through a one-dimensional array of sizeMAXsetting
all elements to zero:

for (i = 0; i < MAX; i++)
arr[i] = 0;

becomes:

for (ptr = arr; ptr < arr + MAX; ptr++)
*ptr = 0;

Note that the expression&arr[MAX] is equivalent toarr+MAX and could also be used
in the secondfor loop.

Although the addition ofMAXto arr in thefor loop condition should be recognized
by the compiler as a constant expression and evaluated at compile-time, some compilers
may not do so.In this case, it may be more efficient to use an integer variable to count
the number of iterations of the loop:

n = MAX;
for (ptr = arr; n != 0; n--, ptr++)

*ptr = 0;

Pointers can also be used for traversing multi-dimensional arrays.The method is the
same regardless of the dimension of the array. The expressionarr+X_MAX (where
X_MAXis the number of elements in the first dimension) always calculates the address of
the first bytenot in the array. For example, the two-dimensional case is:

int arr[X_MAX][Y_MAX];

for (ptr = arr; ptr < arr + X_MAX; ptr++)
*ptr = 0;
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Note that because of how arrays are stored, the order in which the elements are visited is
equivalent to two nestedfor loops shown below. Note also that thefor loop above will
work for arrays of dimension greater than two (assumingX_MAXto be the size of the first
dimension).

for (i = 0; i < X_MAX; i++)
for (j = 0; j < Y_MAX; j++)

arr[i][j] = 0;

4.2 Control flow transformations
C and C++ have a number of control statements, including loops,if statements and
switch statements. Althoughgreater speed improvement can be achieved through
improving loops, there is also room for improvement in the use ofif and switch
statements.

4.2.1 Common case first

When testing for a number of different conditions, it is best to test the most common case
fi rst. If it is true, the other tests are not executed. Whenusing multipleif -else -if
statements, place the common case first. For example, consider the binary search
function:

if (key > a[i])
...

else if (key < a[i])
...

else
... /* equality */

Equality is the least likely of all three conditions, and hence it goes last.Greater-than and
less-than are more common, so they go first.

The idea of common case first also appears in boolean expressions using&& or || .
The short-circuiting of these operators makes them very efficient when the common case
is first. For || , the most likely condition should be placed first (i.e. most likely to be
true). For &&, the most unlikely condition should be placed first (i.e. most likely to be
false).

4.2.2 Simple case first

This method is similar to common case first and involves testing thesimplest condition
fi rst. Morecomplicated (and more time-consuming) computations can be avoided if the
fi rst test succeeds (or fails, depending on the context). The opportunity to use this
method appears in two main situations: theif -if construct (nestedif statements), and
with the logical operators (&& and || ). Thesimplest test should be the first of a pair of
nestedif statements and should also be the first operand of a&& or || operator. In the
examples below, the sub-expressionx!=0 is evaluated first because it is the simplest and
hence the least expensive to evaluate.
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if (x != 0)
if (expensive_fn(x) != 0)

...

if (x != 0 && expensive_fn(x) != 0)
...

4.2.3 switch versus else-if sequences

When performing a multiway branch based on the comparison of asingle expression with
a number of constant values, there are two possibilities: theswitch statement or a
sequence ofif -else -if statements. For example, theswitch statement:

switch(c) {
case ’a’: ...

break;
case ’b’: ...

break;
case ’d’: ...

break;
default: ...

break;
}

can also be written as:

if (c == ’a’) ...
else if (c == ’b’) ...
else if (c == ’d’) ...
else ... /* default statements */

Generally speaking, theswitch statement will be more efficient. Althoughthe method
used by a compiler to implement aswitch statement will vary between implementa-
tions, it is reasonable to assume that the compiler will generate quite efficient code.
There are a few main methods by which the compiler implements aswitch statement:

1. Jump table for non-sparse values.
2. Value-address pair table for sparse values.
3. if -else -if sequences.

If the case values are not sparse, it can be worthwhile to construct a jump table of
addresses. For example, the code above is perfectly compact, and theswitch statement
will probably be implemented in a manner similar to the "pseudo-C" code below:

jump_table[] = {
ADDRESS1, /* address of code for ’a’ */
ADDRESS2, /* address of code for ’b’ */
DEFAULT_ADDR /* address of default code */
ADDRESS3 /* address of code for ’d’ */

};

i = c - ’ a’; /* compute index into table */
if (i < 0 || i > 2) /* check for default case */

goto DEFAULT_ADDR;
goto jump_table[i];
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This is quite efficient, and will actually be more efficient if the number ofcase labels is
larger. Note that the jump table has one wasted entry for the’c’ case, which must jump
to the code for thedefault label. Thejump table becomes space inefficient if the case
values are sparse (say 1, 10, 100 and 1000), because the jump table becomes filled with
entries that jump to the default code.Hence, for sparse values it is more space-efficient,
but slightly less time efficient, to use a table of value-address pairs, and search this table
(using linear or binary search), as shown in the pseudo-C code below:

pair_table[] = {
1, ADDRESS1, /* code for 1 */
10, ADDRESS2, /* code for 10 */
100, ADDRESS3, /* code for 100 */
1000, ADDRESS4 /* code for 1000 */

};

/* linear search of pair_table */
i = 0 ;
while (i < 4) {

if (c == pair_table[i].value) /* found it? */
goto pair_table[i].address;

i++;
}
goto DEFAULT_ADDR; /* not found; goto default label */

If the set of case values has a mixture of compact ranges and sparse values, the compiler
may implement a mix of the two methods above. For example, if the values are 1, 10,
100, 1000,’a’ ..’z’ and’0’ ..’9’ , the compiler might test theswitch value to deter-
mine if it is in the range’a’ ..’z’ or ’0’ ..’9’ using a jump table in each case, and then
test for the other sparse values.

Yet another method of implementing theswitch statement would be to actually use
the machine language equivalent of a sequence ofif -else -if statements if there are
only a few cases. Inthe examples above, because theswitch was based on only 3 or 4
values, it might in fact be faster to compare each in turn.Nevertheless, this doesnot
imply that if -else -if statements be used when the number of cases is small (unless
your compiler is hopeless), because a good compiler will determine which method of
implementation will be better for a particular set of values. Converting to if -else -if
statements will prevent a good compiler from optimizing theswitch statement.

There is one situation where it is worthwhile to useif -else -if statements instead
of a switch statement to implement thecommon case first optimization. Thisoccurs
when the programmer has knowledge that the compiler does not, such as the expected
distribution of frequencies of each case.For example, if in aswitch statement there is
one normal value and all others are exceptional conditions, it will usually be more
efficient to test for the normal condition using anif statement, and then test for the other
conditions using aswitch , as below:

if (value == NORMAL) ...
else
switch(value) {

case EXCEPTION1: ....
case EXCEPTION2: ....
... /* etc */

};



50 Chapter 4

If the normal condition occurs 99% of the time, then theif test will succeed 99% of the
time and theswitch will not be executed. Asingle conditional test of anif statement
is likely to be a single machine language instruction, whereas ifNORMALwas another
case value in theswitch , any of the implementation methods would involve a number
of instructions.By using anif statement followed by aswitch statement, the cost of a
common case has been reduced, but the cost of the less common cases is increased very
slightly.

4.3 Expressions
With C’s large variety of operators and data types, it isn’t surprising that there are many
ways to increase the speed with which an expression is evaluated. Carefullycoding an
expression can increase its speed quite noticeably, and this can be very important in
programs that perform much computation.

4.3.1 Algebraic identities

The calculations in some complicated expressions can be reduced by transforming the
expression into another equivalent form. The aim when using algebraic identities is to
group the operations differently, to reduce the total number of arithmetic operations.
Care must be taken to ensure that the new expression has equivalent meaning. For
example, the short-circuiting of the logical operators can cause differences. Someuseful
arithmetic identities are:

2 * x = = x + x = = x << 1
a * x + a * y = = a * ( x + y )

-x + -y == -(x + y)

There are also some identities that can be used to improve the efficiency of boolean
expressions. Thedistributive laws of &&and|| can occasionally be used to avoid evalu-
ating a condition twice, provided the condition does not contain any side effects:

(a && b) || (a && c) == a && (b || c)
(a || b) && (a || c) == a || (b && c)

There are also two identities involving the ! operator, called De Morgan’s laws when
used in mathematical texts. Insource code notation, they are:

!a && !b == !(a || b)
!a || !b == !(a && b)

These identities can be used in almost all situations as they preserve the expression’s
semantics, regardless of whether the sub-expressions contain side effects. Usingthe iden-
tities from left to right will reduce the number of! operations by one.When the sub-ex-
pressions involve relational operators, using these identities from right to left can improve
efficiency. For example:

! ( x == y | | y < z )
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is more efficient when transformed to:

!(x == y) && !(y < z)

because it can then be reduced to:

(x != y) && (y >= z)

and the! operation in the original expression has been removed.

4.3.2 Eliminating common sub-expressions

In a complicated expression, there are often repeated sub-expressions. Theseare inef-
ficient as they require the computer to calculate the same value twice or more.To sav e
time, calculate the sub-expression first and store it in a temporary variable. Thenreplace
the sub-expression with the temporary variable. For example:

x = ( i * i ) + ( i * i );

becomes:

temp = i * i;
x = t emp + temp;

Note that:

x = ( temp = i * i) + temp; /* WRONG */

may fail because of its reliance on the order of evaluation of the+ operator.
Common sub-expressions do not occur only in single statements.It often happens

that a program computes the same thing in subsequent statements.For example, in the
code sequence:

if (x > y && x > 10)
...

if (x > y && y > 10)
...

the boolean conditionx>y need be calculated only once:

temp = (x > y);
if (temp && x > 1 0)

...
if (temp && y > 1 0)

...

A common example involves thestrcmp library function. Consider the following code
sequence:

if (strcmp(s1, s2) == 0)
printf("equal");

else if (strcmp(s1, s2) < 0)
printf("less than");

else
printf("greater than");
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The call tostrcmp is a common sub-expression that should be removed. Becauseit
involves a function call it is unlikely that the optimizer will improve this automatically.
The more efficient code uses an extra int variable:

ret = strcmp(s1, s2);
if (ret == 0)

printf("equal");
else if (ret < 0)

printf("less than");
else

printf("greater than");

4.3.3 Good operator use

C’s operators are usually implemented in the most efficient way possible. Hence, it
makes good sense to use them where possible.The increment and decrement operators
are often especially efficient, as they correspond exactly to low-level assembly language
increment and decrement operations.The extended assignment operators are very
efficient — never usex=x+2 becausex+=2 is more efficient (it evaluates the address of
x only once).

4.3.3.1 Replacing multiplication and division with bit shifts

The shift operators are often more efficient than multiplication and division. Oneopti-
mization is to replace multiplication or division by a power of 2 with a bit shift.Unfortu-
nately, this optimization is only possible for integer multiplication and division, because
shift operators do not work with float or double operands. Leftshift corresponds to
integer multiplication and right shift corresponds to integer division (for positive numbers
only, as discussed below). For example:

a * = 2;

can be replaced by:

a <<= 1;

It is important to be careful when making this modification. Theoperator precedence of
<< is different to that of* , so that changing:

x = a + b * 2 ;

to use the<< operator, as in:

x = a + b < < 1;

is incorrect. It is accidentally equivalent to:

x = ( a + b) < < 1;

The solution is to bracket the expression, and take no chances. Notealso that multiplica-
tion by 2 is equivalent to shift by 1. The change above requires a different integer
operand as well as the change of operator.
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Division cannot be replaced by>> when dealing with negative integers. Although>>
is fine for positive integers, it is not equivalent to division for negative integers. Thereare
two possible implementations of>> on negatives in ANSI C, and neither is equivalent to
division: (a) Sign extension which means that the value of the sign bit is propagated right
but remains the same; surprisingly this isnot equivalent to division for many neg ative
values (e.g. compare-17/4 and -17>>2 ). (b) Padding the leftmost bits with zero
yielding a positive integer (obviously not equivalent to division for negative integers).

4.3.3.2 Replacing % with &

Bitwise-and may be more efficient than the%operator, because%will implicitly perform
a division. Whenfinding the remainder from division by a power of 2, a bit mask can be
equivalent. For example:

y = x % 16;

is equivalent to:

y = x & 0 xF;

The operand to apply to the bitwise-and operator is one less than the operand to the%
operator —0xF is hexadecimal for 15 (use of hexadecimal constants is good style as it
emphasizes that bitwise arithmetic is being used).

Another example is the test whether a number is even or odd. Aportable test is:

#define ODD(x) ((x) % 2 != 0) /* Portable */

This macro will work for positive and negative values, whereas a similar macro:

#define ODD(x) ((x) % 2 == 1) /* Non-portable */

is not portable and may fail for negative values ofx because it is undefined (even in
ANSI C) whether the sign of the result of%on negative operands is positive or neg ative.
Hence, the expression-5 % 2 may return either 1 or −1.

A more efficient version ofODDusing bitwise-and can be written, but more care must
be taken with portability. The obvious macro:

#define ODD(x) (((x) & 1) == 1) /* Non-portable */

will f ail for negative values on machines that use the 1’s complement representation.
However, the efficient macro can be used if the program is only using positive values.
Alternatively, this efficient macro can be used in a more portable manner as follows:

#if (-1 & 1) == 1 /* will the fast macro work? */
# define ODD(x) (((x) & 1) == 1) /* Fast macro */
#else
# define ODD(x) ((x) % 2 != 0) /* Robust macro */
#endif

Conditional compilation will cause the efficient macro to be used on machines for which
it will not fail; otherwise the more portable version is used.Unfortunately, this can fail
for cross-compilers where the preprocessor may be using arithmetic that differs from the
arithmetic used by the run-time machine.
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4.3.3.3 Avoiding %

One common use of the remainder operator is the use of modulo arithmetic, such as the
wraparound array implementation of a queue abstract data type, where the value of a vari-
able is cyclically counted from 0 up toN-1 , and then back to 0.The most common
method of coding this is:

x = ( x + 1 ) % N;

However, the%operator is expensive, and in this case it is not really needed.The follow-
ing code sequence performs the same task more efficiently:

if (x == N - 1)
x = 0 ;

else
x++;

which can also be written more concisely, but not necessarily more efficiently, as:

(x == N - 1) ? (x = 0) : (x++)

Another example of a clever avoidance of%is when the operand is similar to the usual
byte or word size.For example:

x % 256

can be more efficiently coded as:

x & 255

but can be even more efficiently coded as:

(unsigned char) x

because the conversion to this type will be efficiently implemented by grabbing a byte out
of a word. Unfortunately, this method is not portable to all systems, as it relies on
unsigned char containing 8 bits.

4.3.3.4 Replacing division with multiplication

Multiplication is often slightly faster than division, and in some cases a division can be
replaced by a multiplication using the reciprocal.A case in point is floating point
division by a constant.For example, the division:

x = y / 1 00.0;

can be replaced by the multiplication:

x = y * 0 .01;

If the divisor is a symbolic constant, it is possible to replace the symbolic constant with a
hard-coded constant (or another symbolic constant).However, it is more convenient to
replace the constant with an explicit reciprocal calculation.For example:

x = y / D IVISOR;
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can be rewritten as:

x = y * ( 1.0 / DIVISOR);

and the compiler will (usually) calculate the reciprocal of the constant at compile-time.
However, be warned that some compilers will defer the computation to run-time and the
transformation will increase execution time. Also note that the brackets around the
division expression are necessary; otherwise, an ANSI conforming compiler is forced to
calculate the expression left to right in compliance with associativity rules.

There appears little to be done to replaceinteger division with multiplication. Multi-
plying by the reciprocal will change an integer operation to a floating point operation and
will probably increase execution time.

4.3.3.5 Increment versus assignment

On some computers the++ operator is faster than assignment.This fact can be useful for
setting boolean flags to "true".Rather than assign the value 1 to the boolean variable, use
the fact that it is actually anint or char variable and increment it instead (assuming an
earlier initialization to zero).This efficiency improvement was often used in software
tools with boolean flags to indicate what command line options were set.All flags were
initially zeroed (by declaring them as global variables), and when a command-line option
was detected, the appropriate flag was incremented (i.e. set to true).This method had the
slight danger that if a user specified the same option 256 times, the flag would be incre-
mented back to zero, but the problem is rather unlikely!

On machines that have a very fast increment machine language instruction it can be
worthwhile to change addition of small constants to use the increment operator. For
example:

x += 2;

could be rewritten as:

x++; x++;

However, this will reduce efficiency on machines with no special increment instruction.

4.3.3.6 The conditional operator versus if statements

There is no reason to suppose that the conditional operator will be better than the corre-
spondingif statement. Bothwill be implemented as efficiently as possible, and might
well produce identical code.However, some compilers will handle them differently, and
it may be useful to determine which will be faster for your particular compiler. There is
no general rule on which to choose.

On some compilers it may be more efficient to leave the conditional operator’s return
value unused.For example, instead of:

max = x > y ? x : y;

a slightly more efficient version may be:

x > y ? ( max = x) : (max = y);
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4.3.4 Boolean flags

Because C has no boolean type, the value from a conditional test (0 or 1) can be used in
an expression. Booleanconditions can be stored in integer variables. For example,
depending on your compiler, the code below:

if (x > y)
flag = TRUE;

else
flag = FALSE;

may be less efficient than the single assignment statement:

flag = (x > y);

However, in the if statement, the> operator need not actually evaluate to 0 or 1 (the
compiler will just comparex andy and branch appropriately).In the second form,x>y
must actually be evaluated as 0 or 1 and this restriction may well mean that the code is
not more efficient.

Overuse of this idea may well lead to code that is very inefficient. For example:

if (x < 0)
y = 5 ;

else
y = 0 ;

could be rewritten as a single assignment statement:

y = 5 * ( x < 0 );

but this is likely to be much less efficient than the first form because it uses the expensive
multiplication operator.

4.3.5 Parallel arrays versus arrays of struct

The replacement of arrays ofstruct with a number of "parallel" arrays (i.e. one array
perstruct field name) can reduce the cost of accessing a data value. However, such a
change to the program will often be bad style, and will prevent related data values being
manipulated via a singlestruct variable. For example, the two alternatives are shown
for the storage of a person’s name and age:

struct node { /* Array of struct */
int age;
char * name;

} s [10];

int age_array[10]; /* Two parallel arrays */
char * name_array[10];

Using the array ofstruct , thename field must be accessed using:

s[i].name

which involves an internal integral computation similar to:

s + i * s izeof(struct node) + offsetof(name)
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Using parallel arrays avoids having to add the field’s offset. Theequivalent code would
be:

name_array[i];

which would be calculated internally as:

name_array + i * sizeof(char*)

The main disadvantage of parallel arrays is stylistic, in that separating related data values
makes the code unreadable.An efficiency disadvantage of parallel arrays is that aggre-
gate struct assignments cannot be used to swap all of the data fields. Hence,if
structure assignment is one of the most common operations on an array of structures,
converting to parallel arrays may lead to inefficiency.

4.3.6 Register variables

Declaring variables asregister is a method of improving the speed of programs
without sacrificing clarity. By placing the word register before variable declarations,
the compiler is advised to store the variables in hardware registers, if possible.The
compiler is free to ignore this advice if there are no available registers. Theidea is that
the programmer can indicate to the compiler which variables are most used.In the
absence of any register variables, the compiler makes its own decisions which may or
may not be good decisions — it depends on the heuristics used.

This method may cause some speedup, but if the compiler is clever it would have
already chosen the most often used variables to store in registers, and there will be no dif-
ference. Noharm is done, and it can be worthwhile. Agood habit to get into is declaring
loop variables and pointers asregister immediately (rather than going back later to
change them).For example:

register int i, j;

Despite the advantages, do not declare too many variables asregister . Declare only
those that really are used most frequently asregister . If too many variables are
declared asregister , the compiler cannot know which are the most frequently used.

4.3.7 Reusing assigned values

Improving efficiency by reusing the value of the assignment operator is a common but
perhaps misguided technique.It is not likely to yield anything but a very minor im-
provement, if any, and in fact it might even increase the cost.A reasonably intelligent
compiler should perform most of the optimizations automatically.

The assignment operator returns a value that can be used.It returns the value of its
right operand (i.e. the value that was being assigned) but with the type of the left operand.
On some machines it is worth using the return value of the assignment operator. For
example, when setting two variables to the same value, both can be set in one statement.
The two statements:

i = V ALUE;
j = V ALUE;
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can be abbreviated to:

i = j = V ALUE;

Both variables are set toVALUE. The assignment operator is right-associative, so that the
above statement is equivalent to "i=(j=VALUE); ", so thatj is set toVALUE, and then
i is set to the result of the assignment (i.e.VALUE). This idea can be generalized to any
number of variables, if they are all to be set to the same value and any expression can be
used on the right-hand side.

Be warned, however, that on some compilers, reusing the value of the assignment
operator may causeinefficiency. In particular, using a common initialization statement
such as:

x = y = 0 ;

may well be less efficient than using two assignment statements.The use of the result of
the assignment operator makes the expression more complicated than usual and may
require the compiler to add extra instructions.In addition, if the machine has a fast set-
to-zero instruction, the reuse of the result of the assignment operator makes it less
obvious to the compiler that the statement is settingx to 0, and it might not use the faster
instruction.

Nevertheless, using the assigned value inside anif statement or loop condition is
quite a common method of improving efficiency slightly. It is eff i cient as the value
returned from the assignment is used directly in the condition, instead of having to be
accessed again. For example:

f = f open(filename, "r");
if (f != NULL)

... /* etc */

becomes:

if ((f = fopen(filename, "r")) != NULL)
... /* etc */

Another form of this method is to avoid recalculating values by passing a function result
directly to another function.For example, consider the code below which allocates
memory for a string and then concatenates two strings into the location.

s3 = malloc(MAX); /* Allocate memory */
strcpy(s3, s1); /* Copy first string there */
strcat(s3, s2); /* Append second string to first */

Although not used in the code above, the strcpy and strcat standard library
functions both return a pointer to the newly modified string. Hence, the three lines above
can be combined into a single statement:

s3 = strcat(strcpy(malloc(MAX), s1), s2);

The advantage is that the calculation of the address ofs3 need not be duplicated.
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4.3.8 Removing tests for zero

Tests of equality with zero are redundant because the compiler always tests a conditional
expression with zero.Zero is assumed to be false, and any non-zero value is true.This
means that comparisons with zero as in the expressions:

if (x != 0)
if (x == 0)
if (ptr != NULL)
if (ch != ’\0’)

are redundant and can be replaced byif(x) , if(!x) , if(ptr) and if(ch) .
However, these comparisons do represent good style and the optimizer will often remove
the comparisons for you automatically. Any improvement in speed due to this method is
likely to be negligible.

4.3.9 Packing boolean flags into integers

If several boolean flags must be checked at once it can be worth storing them all as bits of
an int . It is then easy to check if any are true by comparing theint to zero. If the int
is non-zero, the individual bits can be examined using bit masks.Accessing individual
bits becomes more time-consuming, so this method is only worthwhile if individual bits
are rarely examined (e.g. the bits indicate rare error conditions).

4.3.10 Most used struct field first

References to the first field of a structure can often be more efficient than references to
other fields because there is no need to add an offset. Hence,the most usedstruct
field should be placed first in the declaration.For example, when declaring astruct
for a linked list, it is probably most efficient to place thenext field first, as follows:

struct list_node {
struct list_node *next; /* Most used field first */
data_type data; /* Other fields */

};

4.4 Avoiding type conversions
One fairly common cost in expressions is the cost of converting between different data
types, either explicitly requested by the programmer or performed automatically by the
compiler. With some care, many of these conversions can be avoided, thus improving the
speed of computing expressions.

4.4.1 Correct type of constants

The use of the correct type of arithmetic constants can avoid the cost of some type
conversions. For example, it is important to always use explicit float constants in any
float computations. For example, ifx andy are of typefloat , the code:

y = x * 3 .14;
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will actually causedouble multiplication (even though ANSI allows single precision
arithmetic) because 3.14 has typedouble , thus promoting the other argument,x , to
double and invoking double multiplication. To get the benefit of ANSI’s single
precisionfloat arithmetic, the constant must be given the suffix f to indicate that it has
type float . Another try is(float)3.14 , but some deficient compilers may generate
a run-time conversion for the type cast.

For similar reasons, it is important to use the correct suffix for long constants and
long double constants. However, these are less of a problem because the compiler
may well promote their types "upwards" at compile-time.

4.4.2 int only, double only

Mixing different types can make implicit type conversion necessary (e.g. mixingint ,
short andchar ). Thesetype conversions take up valuable execution time and can be
eliminated by using onlyint variables, possibly leading to a small speed improvement.

In older non-ANSI compilers, all floating point arithmetic is carried out in double
precision. Thiscan necessitate type conversions fromfloat to double , even if all
variables are declared of typefloat ! Using onlydouble variables (and nofloat
variables) can make a slight improvement. Thebrute-force way to achieve this is:

#define float double /* All floats become doubles */

The use offloat values should also be avoided when using the standard library
functions. All functions in<math.h> have double arguments anddouble return
values, and usingfloat will cause many conversions. Similarly, printing a float
value using printf will require a conversion to double , becauseprintf is a
variable-argument list function and the non-prototyping conversions are applied (i.e.
float to double , char andshort to int ).

4.4.3 Avoiding unsigned arithmetic

The basic type,int , usually corresponds with the machine’s word size, andint compu-
tations are often particularly fast. Thisis not necessarily true ofunsigned arithmetic,
where ANSI’s strict requirements for proper behavior on overflow and underflow may
mean that the compiler has to generate special slower sequences of machine instructions.
However, note that most machines use 2’s complement arithmetic, and in this case
unsigned arithmetic will be no slower because the ANSI requirements are identical to
what will happen in this case.Thus, the use ofunsigned integers can slow the
program down on some machines, but will cause no difference for most.

4.4.4 Avoiding bit-fields

Bit-f ields are designed to reduce space in a structure, often at the cost of extra run-time
overhead on any accesses to these fields. For improved eff i ciency, at the cost of space
wastage, change all bit-fields to signed int or unsigned int . For example, to
improve the efficiency of accesses to thevisited field in thestruct below, simply
remove the:1 qualification (and theunsigned qualifier).
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struct node {
unsigned int visited :1; /* bit-field */

};

It may also be beneficial to convert the type ofvisited to a smaller data type such as
char , rather thanint .

4.5 Compile-time initialization
C’s syntax for initializing variables is not only very convenient, but also very efficient
when applied to global or localstatic variables. For this type of variable, initialization
takes place at compile-time rather than at run-time, and has only minimal run-time cost
(the data must be initialized somehow, so there will be the cost of loading the initialized
data from the executable, if nothing else).Hence, an efficiency improvement is to change
automatic initialized variables tostatic . This change is applicable when a variable
need not be re-initialized each time the function is entered (e.g. the variable is never
changed by the function).The change is most effective when applied to aggregate vari-
ables (arrays, structures and unions), where the initialization costs are higher.

In some cases it is possible to alter the design of an algorithm to make use of
compile-time initialization.For example, this was achieved in the use of precomputation
in Section 3.5, and also in the tic-tac-toe game in Chapter 9.

4.5.1 #define versus const

The following discussion is relevant to C, but not to C++. const and #define are
effectively identical for symbolic constants in C++, and use ofconst is far better style.

The definition of symbolic constants using#define is likely to be more efficient
than the use ofconst variables. const variables are not really constants, and the
compiler cannot include them in C’s restricted constant expressions (i.e. efficiency is not
the only reason to avoid const variables). Whenever both #define andconst are
allowed, #define is often more efficient because the compiler can perform "constant
folding" (i.e. compile-time evaluation of a constant expression), whereas most compilers
will generate code to access aconst variable (although a sophisticated optimizer could
apply constant folding toconst variables). For example, in the expression:

MAX + 1

if MAXis #define ’d as 30 , the compiler will replace the expression30+1 with 31 , but
if MAXis a const variable, the compiler will (usually) generate a sequence of instruc-
tions to loadMAXand add 1 to it.

4.5.2 Constant folding

The compiler will attempt to evaluate any constant expressions that it can, and this
process is called "constant folding".Hence, a programmer can slightly improve
efficiency by making it "easier" for the compiler to recognize constant expressions. For
example, ifx is a variable and not a constant, the expression:

2 * x * 3 .14
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should be replaced by:

(2 * 3.14) * x

because then the compiler can compute2*3.14 at compile-time, whereas the first
expression cannot be optimized because ANSI requires that the associativity of operators
be honored.Some compilers might perform this type of optimization for integers, but are
unlikely to do so for floating point numbers.

It is important to ensure that the constants are placed together so that they can be
obviously joined, without disregarding associativity. For example, in the code below:

x = c + ( ’ A’ - ’a’ );

the brackets surrounding the two character constants are important because they allow the
compiler to compute the constant expression. Brackets were not strictly necessary in the
fi rst example because the associativity of * is left-to-right, causing2*3.14 to be evalu-
ated first, but using brackets is a habit that promotes efficiency.

4.6 Functions
Several optimizations can be applied to improve the performance of functions.Function
calls have a reasonable amount of overhead, and any reduction in this overhead is quite
worthwhile.

4.6.1 Prototypes

ANSI C’s introduction of prototypes improves eff i ciency by allowing the compiler to use
more efficient calling sequences.Hence, a program that uses prototypes may run faster
than one that doesn’t use them.One of the main advantages of prototyping is thatchar ,
short and float arguments need not be promoted, but can be passed directly to the
(prototyped) function.The cost of conversion is avoided. Furtherreasons why function
prototypes aid the compiler in generating efficient code are explored in Chapter 10.

4.6.2 Passing pointers to structures

All variables except array variables are passed by value in C. This means that when
calling a function, a copy of every variable is made and stored in the activation record for
the function. Hence, if wholestruct s are passed, wholestruct s must be copied.It
is efficient to pass the address of thestruct , and use a pointer to thisstruct inside
the function.This way only one pointer is copied.

The trap is that the safety of call-by-value is lost and changes made to the local vari-
able also appear in the calling function (as passing is now by reference, and not by value).
However, the compiler can be used to detect situations that may change the value simply
by qualifying the parameter declaration withconst . For example, the function:

void visit(struct node n)
{

printf("%d\n", n.data);
}

....
visit(str); /* Call the function */
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can be modified to become:

void visit(const struct node *n) /* const pointer */
{

printf("%d\n", n->data); /* change . to -> */
}

....
visit(&str); /* Call the function using extra & */

The C++ language supports reference parameters which are introduced by adding& to the
parameter declaration.The use of references does not require any change to calls to the
function, nor any changes of ". " to "-> " in the function body. The function in C++
would be:

void visit(const node & n) // n is reference parameter
{

printf("%d\n", n.data); // no need to use "->"
}

....
visit(str); // Call the function

Class objects, structures or unions should be passed by reference when efficiency is
important. C++reference parameters are discussed further in Section 5.2.

4.6.3 Conver ting functions to macros

If the program has many lev els of nested function calls it can often be speeded up by
reducing the level of function calls. This is particularly true of frequently called small
functions, where the overhead of function call prologue and epilogue can claim a signifi-
cant proportion of the function’s time usage.Efficiency can be improved by replacing the
function call with in-line code.This way, the overhead of the function call is eliminated.
In C++ the conversion of function calls to inline code can be achieved automatically by
adding theinline keyword to the function definition (see Section 5.3).In C, the
obvious method is to convert the function into a macro.

There are a few dangers in converting a function to a macro.The first is that any side
effects in arguments to a call to the function can cause problems.If this happens with a
macro call, the results can be plagued with bugs. Thesecond danger is that, if the
function changes its parameters, these changes to arguments passed to the function will
be passed back to the calling function if the function becomes a macro.The power of call
by reference is achieved without pointers, but the safety of call-by-value is lost.

Although the conversion of a function to a macro is more of an art than a process to
be mechanized, there are some common steps to follow. First, a few simple textual
changes are needed:

• Delete the types of variables in the parameter list.
• Add a backslash at the end of each line.
• Add brackets around parameters in the replacement text.
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The backslashes are needed to make along function into a multi-line macro.The extra
brackets around parameters prevent operator precedence problems.

The best functions to convert to macros are very simple ones.For larger functions,
there are some major problems to deal with:

• Thereturn statement.
• Loops andif statements.
• Local variables.

Thereturn statement does not work inside a macro.If the return statement is left in
the macro, thereturn will leave the encompassing function, possibly even main !

Converting void functions is usually quite straightforward. Thebraces are left
around the statements in the function.Local variables are left unchanged (they are still in
a block). If the function usesreturn in the middle of the function, the control structure
of the macro must be changed to give the same effect (usingif -else ).

Non-void functions present further problems because a result has to be returned.
The entire macro must be an expression, as only an expression can return a result.A
block cannot return a result.For simple functions the conversion can be quite easy, but
for large functions it can be difficult or impossible.The whole structure of the function
may have to be modified to overcome problems with local variables and general control
structure.

Sequences of statements can be made an expression by using the comma operator (i.e.
replace each semicolon with a comma).Any if -else statement can be made an
expression by using the conditional operator. There is no obvious solution to the removal
of a loop orswitch statement. Afunction containing a loop should stay as a function!

The problems caused by thereturn statement are larger in non-void functions.
The control structure must be modified so that the effect of an earlyreturn is achieved
and this is more difficult because of the replacement ofif -else statements by the
conditional operator. Furthermore, if the function contains sequences the returned value
must be computed as the last operand of the comma operator. Hence, it is much simpler
to convert a non-void function if it contains no sequences of statements.For example,
themax function:

int max(int a, int b)
{

if (a > b)
return a;

else
return b;

}

becomes:

#define max(a, b) ((a) > (b) ? (a) : (b))

Local variables present a more difficult problem.A block cannot be an expression, so the
containing braces of the function must be deleted.Local variable definitions are no
longer syntactically legal. Onepartial solution is to replace every occurrence of a local
variable with the expression it evaluated.
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4.6.4 Parameters as local variables

Parameters to functions can be used as if they were local variables. Becauseof call-by-
value parameter passing, this does not change the values of any variables not local to the
function. Thismethod saves on initialization time, and on stack space.In the example
below, to zero an array, the size is counted down, rather than having a local variable
counting up.

void zero(int arr[], register int n)
{

while (n > 0)
arr[--n] = 0;

}

Array parameterscan be used in this way despite pass-by-reference if they are treated
like pointers, since array parameters are converted into pointer parameters which are
passed by value. Theabove function can safely incrementarr .

4.7 Command line arguments
The most efficient method of examining all command line arguments is to combine
pointer traversal with use of the sentinel valueargv[argc]==NULL , as shown in the
following program to print out options.

main(int argc, char *argv[])
{

for(; *argv !=NULL; argv++)
printf("Option is %s\n", *argv);

}

Note that incrementing the "array" parameterargv is legal in ANSI C, because array
parameters are immediately converted to pointers.If it is necessary to examine argu-
ments twice, such as to process options and then filenames, it becomes necessary to save
the original value ofargv in a temporary variable.

4.8 IBM PC memory models
A number of compilers for IBM PCs allow the program to be compiled using different
memory models. These memory models are required by the segmented architecture of the
8086 family of processors.The choice of memory model affects how the compiler
translates some statements into machine language instructions, and hence affects
efficiency. In particular, pointer operations and function calls are affected by the choice.
Memory models can usually be set via a compiler option.

Although the models that are supported vary between compilers, and in fact, some
models are given different names, the most common models are:

Small Medium Compact Large Huge

As a general rule, thesmall model is the most efficient, but also the least flexible,
whereas thehuge model is the most flexible, but the least efficient.
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Memory models affect how the compiler organizes memory into segments. The
models have different organizations for code and data.For example, thesmall model
packs all code into a single segment and all data into another segment, whereas thehuge
model gives both code and data multiple segments. Thememory organization for each
memory model is shown in Table 4.1.

Table 4.1. Memory organization of each memory model

Model Code segments Data segments Data pointers Code pointers

Small One One 16bits 16bits
Medium Many One 16bits 32bits
Compact One Many 32 bits 16bits
Large Many Many 32 bits 32bits
Huge Many Many 32 bits 32bits

All dif ferent forms of data are treated in an identical manner. The stack, heap and static
data all either have one segment (i.e. they are packed together) or use many segments
(allowing them to use separate segments). Thisoccurs because C permits addresses of
any of these data spaces to be compared, and it would be difficult to implement pointer
operations if different types of data had different size addresses.

As shown in Table 4.1, there is no difference between thelarge andhuge models
in terms of the organization of code and data into segments, using multiple segments for
both. Thedifference between thelarge andhuge models is related to how pointers to
data are treated, and becomes apparent only when a single object becomes larger than
64K. A pointer in thelarge model is incremented by operating on its lower 16 bits
only, and the upper 16 bits (the segment) are ignored.Hence, the pointer will always
operate within a single 64K segment, and any pointer arithmetic "wraps around" (e.g.
when its value is0x0000FFFF , incrementing it by one byte will give it a new value of
0x00000000 , thus staying within segment0000 ). This is not useful when trying to
iterate through the memory for an object larger than a single segment (e.g. if trying to
examine all of the extended RAM memory).Thehuge model forces the compiler to use
extra instructions to perform pointer arithmetic in a more general form.Hence, thehuge
model is more flexible, but less efficient.

Table 4.1 also shows the size of pointers to data and the size of function addresses.
The general rule is that if the code/data is in one segment, the appropriate segment
register can be "set and forgotten", and pointers use their 16 bit value plus the segment
register to get their full address.If the code/data is in multiple segments, the pointers
must be 32 bits to contain a 16 bit segment address and a 16 bit offset. Any access
through a data pointer or a function call to an address sets the segment register using the
fi rst 16 bits, and then the other 16 bits are an offset to the segment register. With multiple
segments, every pointer access or function call must set the segment register, thus requir-
ing an extra machine instruction and reducing efficiency.

Table 4.1 can be used to guide the choice of memory model.If the program is small,
with its executable code occupying less than 64K, only one segment is needed for code
and either thesmall or compact model should be chosen.If the amount of total
memory used by the stack, heap and static data is less than 64K, either thesmall or
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medium model is suitable.If both code and data each require more than 64K then either
the large or huge model is needed.The huge model should not be used unless the
size of a single object, such as a large array, is greater than 64K.Even in this case, there
is a useful alternative to using the inefficient huge model, and this is discussed in
Section 4.8.1.

4.8.1 The near, far, and huge qualifiers

Most modern compilers for IBM PCs support thenear , far andhuge non-ANSI type
qualifiers. Thesequalifiers can be used by the programmer to override the current
memory model for a particular operation.The qualifiers can be applied either to pointer
variables or to functions.

huge void *p; /* huge pointer */
near int max(int x,int y) /* near function */
{

...
}

Applying one of these qualifiers to a pointer will affect the efficiency of a dereference or
a comparison of a pointer. near pointers are rarely used,far pointers can be used to
access data that is not part of the program’s data segment (e.g. the screen memory, inter-
rupt ports), andhuge pointers are used for accessing an object larger than 64K.

Applying a qualifier to a function will affect the cost of a call to that function.
Usually only near functions are useful for reducing the cost of a function call;far
functions can occasionally be useful for accessing ROM functions.

In some cases, the move to a less efficient model can be avoided by using thefar
andhuge type qualifiers. For example, the addition of a single object larger than 64K
(e.g. a very large array) to a program necessitates movement to thehuge model, but this
can be avoided by qualifying the declaration of any pointers accessing the object with the
huge qualifier. The program will use less efficient instructions for operations involving
huge -qualified pointer variables only, whereas a move to thehuge model would use the
inefficient instructions for all pointer operations.For example, to add all values of RAM
for a checksum starting at zero (where memory is effectively a data object larger than
64K), thehuge qualifier should be applied to the pointer:

#define MAX (640L*1024L) /* 640 K */

unsigned long checksum(void)
{

huge unsigned char *p; /* Huge pointer needed */
unsigned long sum = 0L;

for (p = 0; p < MAX; p++)
sum += *p;

return sum;
}

There is a trap in using qualifiers when they are not actually needed: it can lead to inef-
ficiency. For example, using thehuge qualifier when an object is less than 64K is need-
lessly inefficient. Theeffect of the various qualifiers on programs using the various
models is shown in Table 4.2.
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Table 4.2. Effect of qualifiers on pointer accesses and function calls

Memory model near far huge

Small Noeffect Bothslower Bothslower
Medium Functionsfaster Pointersslower Pointersslower
Compact Pointersfaster Functionsslower Functionsslower
Large Bothfaster Noeffect Pointersslower
Huge Bothfaster Bothfaster Noeffect

Another possible efficiency improvement is to declare a function asnear . This is partic-
ularly worthwhile for a recursive function because most of the calls to it will occur
"nearby" (from statements in its own body). Declaring a function asnear allows the
compiler to use fewer instructions in the function call sequence, thus improving time-
efficiency and reducing code size.A function declared asnear should also be declared
asstatic so that only the functions in that same file can access it.There is little point
declaring a function that is used in many files asnear , because it cannot be declared as
static , and function calls in a different source file must use the usual less-efficient call
mechanism.

4.9 Exercises
1. Examinethe claim made about nested loops in Section 4.1.5 by converting the two

for loops intowhile loops, and by examining how many times each operation
occurs. Compareit with the code that results if the loops are reversed.

2. How can the idea of "code motion" be used to improve the efficiency of the follow-
ing loop?

/* Compute either maximum or minimum */
result = a[0];
for(i = 1; i < n; i++) {

if(maximizing)
result = a[i] > result ? a[i] : result;

else
result = a[i] < result ? a[i] : result;

}

3. How can the conditional operation in the previous exercise be more efficiently
coded?

result = a[i] > result ? a[i] : result;

4. Considerthe well-known mathematical computation of the roots of a quadratic
equation. How can this be efficiently implemented, assuming that the roots will
never be complex (i.e. b2 − 4ac ≥ 0)?

r1 , r2 =
−b ± √ b2 − 4ac

2a
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5. Whatminor change may marginally improve the efficiency of the following code
fragment?

enum { ERR1, ERR2, NO_ERROR} x;
....

while(x != NO_ERROR)
process(&x);

6. Fix the following function so that the multiplication in thereturn statement is
replaced by more efficient code:

int my_atoi(char *s)
{

int value, sign;

if (*s == ’-’) {
sign = -1;
s++; /* skip over the ’-’ */

}
else

sign = 1;

for (value = 0; isdigit(*s); s++)
value = 10 * value + *s - ’0’;

return value * sign; /* MULTIPLICATION!? */
}

7. Considerthe following code fragment that sets a flag only if the flag is not already
set. Underwhat conditions is this code more efficient than the assignment
statement alone?

if (!flag)
flag = TRUE;

8. Onemethod of improving C++ programs is to declare variables as close to their
fi rst use as practicable.Does this apply to C variable declarations?

9. Onsome machines multiplications are hugely expensive compared to shift opera-
tions. How can the following multiplication be coded using shift instead of multi-
plication?

x * 1 7

10. Somemachines have a very fast post-increment assembly language addressing
mode where the value at an address is fetched and the address in the register is then
incremented. Thereis usually also a corresponding pre-decrement mode.What
implications does this have for efficiency?

11. Apply the loop optimization method of "pointer traversals of arrays" to a loop that
processes the same field of each structure in an array of structures, as follows:

for (i = 0; i < n; i++)
process(arr[i].field);
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12. Whatis the most efficient method of implementing a macrois_power2 which
determines whether a non-negative integer is a power of 2?

13. Thezoom routine in a graphics program needs to expand the low-end nibble (4
bits) of a byte into 8 bits, such that each 1 bit becomes two 1 bits in the result, and
similar for 0 bits. For example, the nibble 1010 must become the byte 11001100.
The following code is currently used to achieve this:

#define nibble_extend(x) \
(( (x & 8) << 4) | ( (x & 8) << 3) | \

( ( x & 4) < < 3) | ( ( x & 4) < < 2) |  \
( ( x & 2) < < 2) | ( ( x & 2) < < 1) |  \
( ( x & 1) < < 1) | ( ( x & 1)) )

How can the efficiency of this routine be improved?
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C++ Techniques

Because C++ is a superset of the C language, most of the methods already covered in
previous chapters also apply to C++.However, C++’s extensions make it possible to use
several new techniques for efficiency improvement. Thischapter discusses techniques
that apply to C++ but not to C.

5.1 C++ versus C
It is a misconception to believe that a C++ program will run more slowly than its corre-
sponding C program.C++ was designed to retain the run-time efficiency of C and almost
all of C++’s extra enhancements come at no extra run-time cost.In particular, most of the
C++ class structure does not slow down the program at run-time, but only costs the
compiler more at compile-time.The compiler performs the extra type-checking, inheri-
tance and encapsulation checks as it compiles the program and no run-time code is
produced.

The one single exception to this isvirtual functions (discussed in Section 5.5), but
ev en a C++ program usingvirtual functions is not necessarily slower than the corre-
sponding C program.virtual functions are very powerful, and may be faster than the
C code necessary for the same effect.

5.2 Passing parameter s by reference
The C++ language provides a very convenient method of achieving pass-by-reference, by
simply using& in the parameter declaration.This efficiency technique is similar to the
use of pointers to structures in C (see Section 4.6.2), but in C++ no& is needed on an
argument to the function, as is required when using pointers to achieve pass-by-reference
in C.

One method of improving efficiency is to pass objects to functions as reference
parameters. Thisavoids not only the cost of copying the object onto the stack, but also
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the cost of the (copy) constructor and destructor for the object within the function (i.e. the
parameter is a separate object when passed by value).

A function can be changed to use pass-by-reference parameters only if it does not
change the object.Fortunately, modifications to parameters can be detected simply by
qualifying the parameter declaration withconst , thus forcing the compiler to warn
about any modifications to the object within the function.An example of the use of
reference parameters in the definition of aComplex object is shown below:

class Complex {
double r, i;

public:
Complex & operator += (const Complex & c);

// c is passed by reference for efficiency
// The return type is also a reference

};

Complex & Complex::operator += (const Complex & c)
{

r + = c.r; // add to both data fields
i + = c.i;
return *this; // return reference to updated object

}

Passing the argument by reference improves eff i ciency, as does making the return value a
reference, because thereturn statement does not invoke the copy constructor. Note
that a returned reference is necessary only if the user of theComplex class uses compli-
cated expressions such asx+=y+=z . If such expressions are not required, efficiency can
be improved by making the return valuevoid .

Pointers could also be used instead of references, with a similar gain in efficiency, but
there is a notational disadvantage in that any arguments would need to be prefixed with
an&, and any references within the function body using the "." operator would have to be
changed to "-> ". The speed improvement of both methods would be similar because
pointers are used behind the scenes to implement references.

The use of references is best limited to class objects and to structures and unions.
Arrays are already passed by reference in C and C++ and hence there is no need to
change them.The use of references for scalar types (integers and pointers) is unlikely to
give much improvement, if any. Howev er, if pointers (used by the compiler to implement
references) were smaller than, say, double values there might be some improvement.
Another disadvantage of using reference parameters for scalar types is the inefficiency
caused if a constant value is passed as an argument (i.e. not a variable). Paradoxically,
passing a constant argument to a reference parameter is not an error in C++, but instead a
new object with this type is created automatically by the compiler and its address passed.

Note that the object to which a member function is applied is already passed by refer-
ence (using the implicitthis parameter). Hence,the replacement of the member
function call:

int MyClass::fn() // member function
{

return x;
}
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with a non-member (friend) function call using an explicit reference parameter, as
follows, will not be more efficient (and is probably less efficient):

int fn(MyClass & object) // friend function
{

return object.x;
}

5.3 inline functions
The C++ language allows a programmer to inform the compiler that certain functions are
small enough for it to be more efficient to generate inline code than to generate a function
call sequence.The programmer simply declares the function by using theinline
specifier. For example:

inline int max(int a,int b)
{

return (a > b) ? a : b;
}

The inline specifier is a "hint" to the compiler, much like the register qualifier,
and the compiler can ignore the request for inlining a function.In principle, a good
optimizing compiler could ignoreinline and choose for itself which functions to
inline. However, few (if any) modern C++ compilers are as sophisticated as this.

All C++ functions can be specified asinline , including member and non-member
functions. However, the inline specifier should not be used without restraint.As a
general rule,inline should be used only for "small" functions, where the number of
executable statements is quite small.In this case, the overhead of a function call will be a
significant proportion of the total cost of the function call, and inlining will probably
increase efficiency. Note that the notion of "small" function refers to the number of
statements executed at run-time, not the actual number of statements in the source code,
although the two measures will usually be similar.

Do not use theinline specifier for "large" functions.Although the execution time
may improve marginally, the size of the executable code will increase greatly because
ev ery call to theinline function will be replaced by all the statements in the function’s
body. Hence, the use of larger inline functions is a trade-off between speed of
execution and code size.

The use ofinline on very small functions can sometimesdecrease the size of the
executable. For example, if the function simply returns a value, as in:

inline int MyClass::get_a() { return a; }

any occurrence of the function call may well be replaced by a direct reference to the vari-
able being returned.For example, a call to the above function, as in:

b = my_object.get_a();

might be equivalent to the direct reference (in the compiler’s internal representation):

b = my_object.a;
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This simple reference will require fewer machine language instructions than a function
call, thus becoming faster and smaller. Note that there is no problem with encapsulation
violation because this change is being performed internally by the compiler and the scope
has already been checked.

A very important point to note aboutinline functions is that theinline specifier,
by itself, is not enough to guarantee that inline code will be generated.The other require-
ment is that the compiler must know the function body code, where the function is called.
An inline function prototype declaration is not enough.The executable statements
inside the function’s definition (i.e the function body) must be available. Otherwise,how
is the compiler to know what inline code to expand a function call into?This require-
ment imposes two restrictions on the use ofinline functions:

1. Member functions declared asinline should include the function body inside the
same header file as the class declaration.This can be achieved by placing the function
body of a member function inside the class declaration.For a more readable style when
there are many inline member functions, the class declaration can declare theinline
function prototypes, and then provide theinline function definitions immediately after
it, in the same header file. This restriction ensures that whenever the class declaration is
included as a header file, the member function body is available for inlining.

2. Non-memberinline functions must be defined before they are used within a source
fi le, preferably by placing theinline functions in a header file. Placing inline
functions at the top of a source file allows the inlining of any function calls later in the
same source file, but calls to the functions from a different source file cannot be inlined
by the compiler unless theinline function definition is placed in a header file.

Some functions declared asinline will not be expanded into inline code by the
compiler, simply because they are too complicated for the compiler to handle.In this
case, theinline specifier is ignored and the function is treated like any other function.
The sophistication of the inline code generation depends on the implementor.

Even if a compiler can inline a function, the compiler is sometimes still forced to
generate a "real" function.There are two reasons for this:

1. The name of aninline function is used as a pointer-to-function constant.
2. A call to theinline function from within another source file.

When aninline function is called from a source file, where the function body has not
been made available, the compiler generates a real function call (simply because it cannot
inline the function). Hence the real function must exist and be linked like any other
function. Fortunately, the placement ofinline functions in header files as discussed
above will avoid this for any function the compiler decides to inline.
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5.4 friend functions
If a class declaration has a good deal of private data, it is common C++ style to declare an
interface of public member functions to access private data.Although the class interface
can be quite efficient if member functions are declared asinline , the need to call a
function to access a data value can still make it inefficient in some cases.The use of
friend functions andfriend classes can be efficient because this bypasses the class
interface. For example, a member function to set a data member may perform some
range checking on the value, but if we can be sure that a particular function will not use
incorrect data, afriend function can be used to bypass this checking.

friend functions (or classes) should not be considered unless the function needs
very fast access to data members, and the member functions to access the data perform
other computations.Note that a member function, with its special privileges, also
bypasses the class interface (because it is part of it), andfriend functions should not be
used where member functions would be more appropriate.Programming style is the
consideration here, as they would both have similar efficiency.

A good example of friend function efficiency occurs when an operator function
operates on two different classes, such as when an operator multiplies aMatrix object
by a Vector object to yield a new Vector . Assume that both classes have member
functions to access individual elements of theVector or Matrix . Consider the declar-
ation of themultiply function as neither a class member nor afriend function, as
in:

const int N = 10; // Number of elements in vector/matrix

class Vector {
double data[N];

public:
double get_element(int i) const { return data[i]; }
void set_element(int i, double value) { data[i] = value; }

};

class Matrix {
double data[N][N];
public:
double get_element(int i, int j) const { return data[i][i]; }

};

Vector operator * (const Matrix & m, const Vector & v)
{

Vector temp;
// multiply matrix by vector

for (int i = 0; i < N; i++) { // for each row
double sum = 0.0; // sum of N multiplications
for (int j = 0; j < N; j++) {

sum += m.get_element(i, j) * v.get_element(j);
}
temp.set_element(i, sum); // store new vector element

}
return temp; // return new vector

}

This will be inefficient because theoperator*() function must go through both class
interfaces to access elements.Although it isn’t necessarily any less efficient here, if
range checking of the array index i were present in the member functions to set or access
the elements, this would cause inefficiency. Note that if theVector class overloaded
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the [] operator instead of using aget_element member function, this would make no
difference to efficiency — notational convenience is gained but the operator[]
function has the same cost as any other function.

One alternative to consider is to make the operator* function a member of the
Vector class, but this will still mean using the interface for theMatrix class. Amore
efficient solution is to make the operator* function afriend of bothMatrix and
Vector classes, thus allowing it direct access to their individual data elements,
bypassing any range checking on array indices.The more efficient version, using a
friend function, is:

const int N = 10; // Number of elements in vector/matrix

class Matrix;

class Vector {
double data[N];

public:
friend Vector operator * ( const Matrix & m, const Vector & v);

};

class Matrix {
double data[N][N];
public:
friend Vector operator * ( const Matrix & m, const Vector & v);

};

Vector operator * ( const Matrix & m, const Vector & v)
{

Vector temp;
// multiply matrix by vector

for (int i = 0; i < N; i++) { // for each row
double sum = 0.0; // sum of N multiplications
for (int j = 0; j < N; j++) {

sum += m.data[i][j] * v.data[j]; // access data directly
}
temp.data[i] = sum; // store new vector element

}
return temp; // return new vector

}

The disadvantage of usingfriend functions is that they make use of hidden inform-
ation, and any change to the class requires a change to the definition of the friend
function, whereas in the first version of theoperator* function the use of the
get_element member functions of bothVector and Matrix meant that it would
need no changes, provided theget_element functions were changed correctly.

5.5 vir tual functions — good or bad?
Are virtual functions inefficient? Thissection will attempt to answer this question.
The main reason to suspectvirtual functions of inefficiency is that they use "late
binding" of a function call to a machine address.The binding takes place at run-time and
thus affects the speed of execution. However, as we will see,virtual functions have
many advantages to counter-balance this cost.
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5.5.1 How compiler s implement vir tual functions

Although different implementations might choose different methods of handling
virtual functions, thus making some of the observations in this section incorrect, the
method examined in this section is prevalent. In fact, I know of no compilers that imple-
mentvirtual functions differently.

Let us examine the details of a call to avirtual function. Insituations where the
compiler cannot determine what type of object for which avirtual function is being
invoked, the compiler must add a few run-time instructions to test the type of object
(using a special hidden data field stored in any object of a class that uses avirtual
function). Inthis case, a call to avirtual function will cause the following steps:

1. The pointer data member in the object is accessed.
2. An index is added to the pointer value (to find the pointer to the correct function).
3. A call to a pointer-to-function is performed.

whereas an ordinary (non-virtual ) function call will cost only the time to call a
function directly (often similar to the cost of calling a pointer to a function), and avoids
completely the first two steps.

However, the extra overhead is not needed onall calls to avirtual function. In
many cases, the compiler can determine the type of the object at compile-time and can
translate thevirtual function call exactly as an ordinary statically-bound function call,
with exactly the same run-time cost.The only time the compiler cannot determine the
type at compile-time is whenpointers or references to class objects are used.

It is likely that mostvirtual function calls won’t inv olve pointers or references and
will be executed as ordinary function calls.

5.5.2 Space requirements of vir tual functions

The extra space required by the use ofvirtual functions is of two types:

• A hidden pointer data member in each object.
• One table of pointers to functions per class.

No matter how many member functions of a class are declared asvirtual , the amount
of extra space in an object will be only a single pointer field. Naturally, if there are no
virtual functions at all, the extra data member is not needed.Each class has a table of
pointers to functions of a size equal to the number ofvirtual member functions.
Although a large number ofvirtual functions doesn’t increase object size, it does
increase executable size because of some extra tables of pointers to functions.

5.5.3 Attempting to impr ove on vir tual functions

Let us examine how the programmer might try to avoid usingvirtual functions. First,
note that the only time thatvirtual functions are potentially inefficient involves
pointers or references to objects.For example, one such situation would be traversing a
(heterogeneous) linked list of objects of varying types (although all must be derived from
the one base type).To handle the situation withoutvirtual functions, we will still
need some way of identifying the type of object (possibly an integral flag). Testing this
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flag will involve a selection statement (i.e.if or switch ) and this would probably be
less efficient than the very fast method used byvirtual functions.

Hand-coding is better thanvirtual functions in some cases.For example, if it is
possible to determine an object’s type without extra information, the space wastage of a
hidden pointer member can be avoided.

5.5.4 Unnecessar y use of vir tual functions

The use ofvirtual functions, when they are not needed, is obviously inefficient.
virtual functions are needed only when dealing with pointers or references to objects
of unknown type. If the program never uses pointers or references to objects, or if it does
not have any derived classes, no function needs to bevirtual and the use ofvirtual
wastes space.In addition, becausevirtual functions relate only to the use of derived
classes, declaring any functions asvirtual in a class that has no derived classes is also
unnecessarily inefficient.

One common situation wherevirtual may appear necessary, but need not be,
occurs with redefining a member function in a derived class. Thisdoes not necessarily
mean that the function must be defined asvirtual in the base class (nor in the derived
class — thevirtual keyword is never needed in the derived class). Ofcourse, if the
program starts using pointers or references to these classes, the functions may need to be
virtual , in which case it may be better style to declare the member function as
virtual .

A call to a virtual function need not always be a "real"virtual call. For
example, passing an object by reference (either as a reference or as a pointer type) can
occur when changing functions to pass-by-reference for efficiency improvement. Any
calls tovirtual functions inside that (not necessarilyvirtual ) function will be such
that the compiler cannot know that an ordinary function call to the member function
would suffice. Itdoes not perform any global analysis to determine that all arguments to
the function are base objects, and not derived objects. For example, in the following
code, it isn’t clear that the call to the (virtual ) print function could be replaced by
an ordinary call:

void print_base_object( Base & object)
{

object.print();
}

The overhead ofvirtual function calls can be removed whenever the programmer can
be sure that only one type of pointer/reference to an object is being used.In particular,
whenever a programmer can be sure that a pointer/reference to a base class object points
to a particular object, the qualified member function name can be used.For example,
instead of:

p->print();

the more efficient code is:

p->Base::print();
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An example of extra information making this change possible occurs when a program
uses a number of different (homogeneous) linked lists, with each linked list containing
the same type of object (one with base objects, one with derived objects). Whenimple-
menting aprint_list function to print out a linked list, you can write it generally to
call avirtual print_object function:

void LinkedList::print_list()
{

for (Base *temp = head; temp != NULL; temp = temp->next())
temp->print_object();

}

This means that each call toprint_object has the run-time overhead of avirtual
function call. A more efficient alternative is to make use of the knowledge that each list
must contain the same type of object, and have two different print_list functions
(i.e. use avirtual function to do the dirty work of printing the objects).

void Base::print_list_hidden()
{

for (Base *temp = this; temp != NULL; temp = temp->next())
temp->Base::print_object();

}

void Derived::print_list_hidden()
{

for (Derived *temp = this; temp != NULL;
temp = (Derived*)temp->next())

temp->Derived::print_object();
}

void LinkedList::print_list()
{

if (head != NULL)
head->print_list_hidden(); // call virtual function

}

With this approach, all calls toprint_object can be bound at compile-time and the
only virtual call is the call toprint_list_hidden . Hence, by using our knowl-
edge about the linked lists, we have reduced the number of run-timevirtual function
calls.

5.5.5 Conc lusions on vir tual functions

It appears thatvirtual functions, when used properly, are no less efficient than any
equivalent code, are probably more efficient and are certainly much more convenient. In
most cases, avirtual function call is translated by the compiler into an ordinary
function call, and even when the "virtualness" of the function is used by a call involving a
pointer or reference to an object, the extra overhead instructions generated by the
compiler are likely to be more efficient than anything the programmer could substitute for
it. Of course,virtual functions can become inefficient if they are used improperly,
and the programmer should learn to avoid such situations.
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5.6 Overloading new and delete
C++ improves on C’s dynamic memory allocation facilities by adding two new operators
to the language:new and delete . This means that the (rather hacked) method of
making allocation more efficient in C (see Section 6.8) can be performed more gracefully
in C++ by overloading these operators.This allows the memory allocation to be easily
taken over for a particular class.

An example of the method is shown below, where a dummy class is declared so that it
allocates memory for itself by using large chunks, thus cutting down the calls to the
memory allocator used by the defaultnew operator (probablymalloc ):

#include <stdlib.h> // declare malloc()
#include <stddef.h> // declare size_t
#include <assert.h> // declare assert()

#define NUM_OBJECTS_PER_BLOCK 20 // how many objects
// in each large block

class Object {
static Object *free_list; // free list of blocks

// one per class
union { // anonymous union

Object *next_ptr; // linked list next ptr
int data; // other object data

};
// ... possibly more private data

public:
void *operator new(size_t n);
void operator delete(void *p);
// ... rest of the public interface

};

Object *Object::free_list = NULL; // initialize static member

void *Object::operator new(size_t n)
{

Object *memory_block; // large block of memory
Object *ptr;

assert(n == sizeof(Object)); // check correct object
if (free_list == NULL) {

memory_block = malloc(NUM_OBJECTS_PER_BLOCK * sizeof(Object));

// Thread blocks onto the free list (linked list)

for (int i = 1; i < NUM_OBJECTS_PER_BLOCK - 1; i++)
memory_block[i].free_list = &memory_block[i + 1];

memory_block[i].free_list = NULL;
ptr = memory_block; // take one block
free_list = memory_block + 1; // rest on free list

}
else { // delete from front of linked list

ptr = free_list; // take front block
free_list = free_list->next_ptr; // update head of list

}
return ptr;

}

void Object::operator delete(void *p)
{

Object *p2 = p; // get pointer of correct type

p2->next_ptr = free_list; // add to front of linked list
free_list = p2; // update head of list

}
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Overloading thenew and delete operators has some restrictions and there are many
nitty-gritty issues in this implementation, including:

1. Thesize_t parameter tooperator new .
2. The assertion involving the parameter tooperator new .
3. Thevoid* parameter tooperator delete .
4. Thestatic data memberfree_list .
5. The anonymousunion holdingnext_ptr .
6. The use ofmalloc .
7. Restrictions on the allocation of arrays of objects.

The operator new function is supplied the size of its object as a parameter of type
size_t , which is a type name defined in <stddef.h> (usually int or unsigned
int ). Althoughthe size may seem unnecessary, because it will always be the size of the
object, the size is needed when another class is derived from this class.As implemented
above, the assertion in the program will fail with a run-time error if this is the case.If it
is desirable to handle derived classes correctly, a call to malloc with the correct number
of bytes could be used if the size differs from the size of the object.

An annoying feature ofoperator delete is that its parameter type must be
void* , and cannot beObject* , hence the need for the extra variable,p2 .

The free_list pointer is declared as astatic data member because there is
only one free list for the class.Alternatively, free_list could have been a global vari-
able.

An anonymousunion is used inside the object to overlay the next pointer of the free
list (which is used when the memory is free), and an actual data member of the object
(which is used when the memory is in use).This method is far neater than using type
casting to access bytes in anObject , such as:

*(Object **)&memory_block[i] = &memory_block[i+1];

The malloc function is used to create the large block of bytes.Alternatively, the new
operator could be used, provided its argument was not of typeObject . For example, an
alternative statement would be:

memory_block = new char[NUM_OBJECTS_PER_BLOCK * sizeof(Object)];

As another alternative, the globalnew operator could be used, as in:

memory_block = ::new Object[NUM_OBJECTS_PER_BLOCK];

Finally, note that the allocation and deletion of arrays of objects cannot be handled by the
overloadednew anddelete operators. Statementssuch as:

Object *p = new Object[10];
delete [10] p;

will call the default new anddelete operators, and not the overloaded operators.If it
is important to have all allocation handled by the overloaded operators, arrays of objects
must be avoided.
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Because the overloading of thenew and delete operators is possible only when
they are applied to classes, it is still difficult to replace the low-level allocation requests,
such as the allocation of bytes for the fundamental types (i.e.int , char , etc.). For
example, there is no easy way to implement thechar_malloc function in Section 6.8,
unless we decide to implement strings as a class (which is better style anyway).

Overloading thenew anddelete operators is not available in early versions of C++
(before version 2.0). In these early versions, memory allocation for classes could be
controlled by examination of and assignment to thethis implicit parameter inside a
constructor. This is an obsolete feature of C++ and its use is not recommended.

5.7 Specializing functions with default ar guments
Default arguments to functions are not a source of inefficiency in themselves, and cost no
more than using a fixed-argument function and passing some constants explicitly.
However, the use of default arguments indicates the possibility of improving efficiency by
replacing a single function with a number of specialized functions.This specialization
will often make other optimization techniques possible, thus improving overall efficiency
at the cost of some duplication of executable code.Nor is there any need to change any
other code because the compiler will still make the correct choice of function to call.
However, default arguments are certainly convenient and the slight increase in efficiency
should be balanced against the loss of good programming style.

As an example of the possibilities that can exist, consider the function with default
arguments:

void indent(int n = 4) // default argument n=4
{

for (int i = 0; i < n; i++)
cout.put(’ ’);

}

Rewriting this single function as one general function and one specialized function leads
to opportunities for optimization in the specialized function.In this case, loop unrolling
can be employed:

void indent() // Specialized function
{

cout.put(’ ’); // Loop completely unrolled
cout.put(’ ’);
cout.put(’ ’);
cout.put(’ ’);

}

void indent(int n) // General function
{

for (int i = 0; i < n; i++)
cout.put(’ ’);

}
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5.8 Specializing inherited member functions
In an inheritance hierarchy, the derived class is a specialized version of the base class.
This means that member functions inherited from the base class can often be rewritten
more efficiently to make use of the form of the derived class.

For example, consider the classUTMatrix (upper triangular matrix) which is
derived from Matrix and represents matrices where all elements below the diagonal are
zero. Thegeneral matrix addition function of theMatrix class is inherited by the
UTMatrix class, and it will work correctly. Howev er, this inherited function is inef-
ficient and it is more efficient to add a new member function to theUTMatrix class to
add two upper triangular matrices avoiding all additions involving elements below the
diagonal. Infact, it is also more efficient to write special functions to add ordinary
matrices to upper triangular matrices.The computation of the determinant of a triangular
matrix is also more efficient than that for a general square matrix, so this member
function should be rewritten in theUTMatrix class.

As another example, consider a classImaginary (imaginary numbers) derived from
another classComplex (complex numbers). For all operations involving Imaginary
objects, it is certain that the real part of the complex number is zero.Hence, it is more
efficient to rewrite all inherited operations that use the real part of aComplex object,
such as: addition, multiplication, norm, etc.

The main disadvantage of specializing member functions is that the code reuse
advantage of inheritance is negated; more programmer time must be spent on recoding
the specialized member functions.Other disadvantages are the increased probability of
error, and an increase in executable code size.

5.9 Initializing base and member objects
When a class declaration contains a class object as one of its members it is important to
use the correct method of initialization to retain efficiency. Consider the declaration of a
classB containing a member object from classA:

class A {
private:

int val;
public:

A() { val = 0; }
A(int x) { val = x; }
void operator = (int i) { val = i; }

};

class B {
private:

A a; / / member is itself an object
public:

B() { a = 1; } // INEFFICIENT
};

Declaring an object of typeB will cause the default constructor for the member object of
type A to be invoked immediately before the default constructor forB. Then the=
operator for classA is used to set the member object,a. Hence, the constructor for B
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involves a call to A’s default constructor and a call to the assignment operator. The call to
A’ s default constructor is redundant and should be avoided.

Fortunately, C++ provides a convenient syntax for passing arguments to constructors
of member objects.The default constructor forB should be recoded as:

B() : a(1) { } // EFFICIENT

This initialization syntax causes the constant 1 to be passed to the constructor for the
member object,a (the constructor accepting theint parameter is called, instead of the
default constructor).Thus instead of calling the default constructorand the assignment
operator forA, only theint constructor for A is called.

This initialization method is efficient whenever calling the default constructor for a
member object is not appropriate, for instance, when the member object is initialized by a
call to the assignment operator within the main object’s constructor (as above, whereB’s
constructor assigned to its member of typeA). This form of initialization can be used for
any type of data member (i.e. not only class objects), although it will be neither more nor
less efficient than assignment for built-in types. The special initialization syntax should
be used wherever it is applicable, since it can never be less efficient than assignment to
the data members within the constructor, and will often be more efficient.

Similar efficiency considerations apply to constructors in derived classes, since the
data member(s) in the base class act like an object member. The constructor for the base
class is always called when a derived class object is constructed.When the default
constructor for the base class is of no use to a derived class object, it is more efficient to
pass arguments directly to a non-default base class constructor, using the special initial-
ization syntax.The same syntax applies as for data member initialization, except that the
type name of the base class is used instead of the name of a data member. A contrived
example of this form of initialization is:

class Derived : public Base {
public:

Derived() : Base(0) { } // Call Base(int) constructor
};

5.10 Avoiding temporar y objects
In the same way that temporary integer variables are used to compute an integer
expression, so too are temporary objects used in non-trivial expressions involving class
objects. For example, if theComplex class has defined the+ and = operators, the
expression:

Complex c1,c2,c3;

c1 = c2 + c3;

is likely to create a temporaryComplex object as the result of the addition, and this
temporary object is then passed as an operand to the= operator. In other words, the
expression is actually evaluated as:

operator=( c1, operator+(c2,c3));
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and a temporary object must be used to store the sub-expression computed for the second
argument to=. Whether the operands tooperator= are passed by reference or by
value has no effect on whether a temporary is created in this situation (although it does
affect the creation of new objectsinside theoperator= function).

One (rather hacked) method of avoiding this creation of temporaries is to create a
specialized function to handle it:

void AssignThree(Complex &c1, Complex &c2, Complex & c3);
...

AssignThree(c1,c2,c3); // c1 = c2 + c3;

The function should probably be a friend function to allow eff i cient access to the data
members of the three complex objects.

The problems with this solution are its very poor style (because the neatness of the
use of overloaded operators is lost), and also its non-general character. More complicated
expressions will still generate temporaries, unless more special functions are added as
friends, leading to even worse style.This "cure" is far worse than its disease.

5.10.1 Avoiding temporaries via e xtra member functions

There are situations where the removal of temporaries does not lead to poor style.
Consider the following definition of a minimalComplex class:

class complex {
private:

double re; // real part
double im; // imaginary part

public:
// Constructors

complex() { re = 0.0; im = 0.0; }
complex(double r) { re = r; im = 0.0; }
complex(double r, double i) { re = r; im = i; }

// Copy constructor
complex(complex &c) { re = c.re; im = c.im; }

// Overloaded assignment operator
void operator = (complex & d) { re = d.re; im = d.im; }

// Overloaded + operator
friend complex operator + (complex &c1, complex &c2);

};

inline complex operator + (complex &c1, complex &c2)
{
return complex(c1.re + c2.re, c1.im + c2.im);
}

When this class definition is used for the following code sequence:

complex c1, c2;

c1 = 2.0;
c2 = c1 + 3.0;
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the effect is identical to:

c1 = complex(2.0); // invoke ’double’ constructor for 2.0
c2 = c1 + complex(3.0); // invoke ’double’ constructor for 3.0

The C++ compiler automatically creates two temporary objects from thedouble
constants, and calls thedouble constructor to do so.The inefficiency of the creation of
a temporary object and the call to the constructor can be avoided by adding a few more
functions to the class declaration:

void operator = (double d) { re = d; im = 0.0; }
friend complex operator + (double d, complex &c2);
friend complex operator + (complex &c1, double d);

If these functions are present, then thedouble constants are passed directly to the
double parameters of these functions.No temporary object is created, and hence the
constructor is not called.Note that two symmetric versions ofoperator+ are required
because the C++ compiler cannot assume that the commutativity of + holds for user-
defined class objects.

By making the "interface" efficient for mixingcomplex anddouble variables, the
creation of temporaries has been reduced.This can be generalized: it is better to provide
member or friend functions to classX for a specific parameter typeY, than to provide
only a constructor to create new X’s fromY’s.

5.11 Declaration c lose to use
The C++ language allows variable declarations to appear almost anywhere within a
program. Althoughthe placement of variable declarations may seem unrelated to
efficiency, it can have some effect when objects with non-trivial constructors are
declared. For efficiency reasons, an object must be declared as close to its first use as
possible. Inparticular, the C style of declaring all variables at the top of a function is
often inefficient. Considerthe C++ code below:

void dummy(...)
{

complex c; // create object
if (... ) {

.... // use c
}

}

The complex object is not used if the condition in theif statement is false — the
constructor and destructor for the unused object are called needlessly.

Another consideration is that objects should not be declared until there is enough
information to construct them fully. For example, given a user-defined classcomplex ,
the following code:

complex c; // construct c
....

c = 1 .0; // initialize c
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is less efficient than calling the correct constructor directly by using:

complex c(1.0); // construct and initialize c

The first code sequence involves a call to the default constructor and the overloaded=
operator, whereas the second declaration calls only the (double ) constructor for the
complex class.

Unfortunately, there are practical limits to the extent to which objects can be declared
near their first use. If the first use of an object is inside a compound statement, and this
object must also be used outside the compound statement, the scope resolution rules
prevent the declaration from being placed inside the compound statement.For example,
in the code below:

double d;
complex c;

while(....) {
cin >> d; // get double value from user
c = d ; / / s et complex number

}
cout << c; // print the complex number

it would be more efficient to declarec inside the loop block using the direct call to a
double constructor:

complex c(d);

However, this would prevent the use ofc outside the scope of the braces.This limitation
is an unfortunate consequence of the programming language design choice to make
braces both the method of grouping statementsand the scoping mechanism in C++ (but
there are many more important advantages supporting this decision).Unfortunately, it is
not even possible to remove the braces in the above example, using the comma operator
as by:

while(....)
cin >> d, complex c(d); // FAILS: compilation error

because C++ syntax prevents a declaration from being an operand of the comma operator.
Overcoming this limitation by using dynamically allocated objects is examined in the
exercises.

5.12 <iostream.h> versus <stdio.h>
The early version of the C++ I/O library was called<stream.h> but this was super-
seded in C++ 2.0 by<iostream.h> . This section examines<iostream.h> , but the
same considerations apply to<stream.h> .

Although the relative eff i ciency of the <iostream.h> and<stdio.h> libraries
depends on their respective implementors (and may vary between implementations), there
are a few reasons to expect<iostream.h> to be marginally more efficient. Although
theputchar , getchar , puts andgets <stdio.h> functions are likely to be very
efficient, theprintf and scanf functions are slightly inefficient because they must
parse their format string argument. Thus,the C code:
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printf("%d", x);

requires the analysis of the string argument "%d" at run-time, beforeprintf knows to
call an inner function to print an integer. Howev er, in the C++ code:

cout << x;

the type ofx is examined at compile-time, and the<< notation is converted to a call to
the correct function to print out an integer. The cost of parsing the format string is
avoided and the correct output function is chosen at compile-time, not run-time.

Another reason that the functions in<stdio.h> may be less efficient is that few of
them are macros (because defining safe macros is difficult), whereas most of the common
methods in<iostream.h> are efficient inline functions. Theprintf andscanf
functions in<stdio.h> are a case in point, since they are variable-argument functions
andcannot be implemented efficiently as macros because variable-argument macros do
not exist.

5.13 Reference counts
Reference counts refers to a general programming technique for keeping track of dynami-
cally allocated objects.This technique is not actually part of the C++ language, as such,
but is a commonly used programming technique that is well supported by the C++ class
structure. Aswith any general programming technique, reference counts could in theory
be used in C, but it is far more difficult to do so elegantly.

Reference counts improve the efficiency of objects where the cost of copying the
object, either by the copy constructor or the assignment operator, is prohibitive. This is
most often true of objects which allocate dynamic memory, in which case both the copy
constructor and assignment operator must allocate memory, and the assignment operator
may have to deallocate memory.

The advantage of reference counts is that the copy constructor and assignment
operator, instead of creating a new object, simply set a pointer to the original object.The
cost of copying an entire object, including any memory allocation or deallocation, is
replaced by the cost of a pointer assignment.

Reference counts appear to suffer the disadvantage that extra space is used in each
object to store the integer count, and also the extra pointer. Howev er, the total amount of
space used by the program may actually decrease if there are many objects pointing to a
single allocated memory block.In addition, there is some extra run-time overhead
involved in maintaining the reference counts, and this reduces efficiency if the advantage
gained from avoiding copying complex objects is not sufficient (e.g. if the program does
not either copy or assign these objects).

As an example of the addition of reference counts to a class, we will use a dynamic
array implementation of a stack.Since it allocates memory within its constructor and
assignment operator, it is a good candidate for improving efficiency by adding reference
counts. Admittedly, stacks may seldom be assigned to each other or copied, which is
where reference counts gain efficiency, but let us assume that theStack class is being
used in a large project where this does occur frequently. Here is the code for theStack
class before reference counts are added:
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//---------------------------------------------------------
// Dynamic Array Implementation of Stack
//---------------------------------------------------------

#include <iostream.h>
#include <stdlib.h>
#include <string.h>

typedef int data_type; // Type of data is int

class Stack {
private:

data_type *arr; // Dynamic array holding the stack
int sp; // Stack pointer
int size; // Maximum size of the stack

public:
Stack(int sz); // Ordinary constructor
Stack(const Stack &s); // Copy constructor
void operator =(const Stack &s); // Assignment operator
˜Stack() { delete arr; } // Destructor
int is_empty() { return sp == 0; }
void push(data_type data);
data_type pop();
data_type top();

};

//-------------------------------------------------------------------
// Ordinary constructor
//-------------------------------------------------------------------

inline Stack::Stack(int sz)
{

size = sz;
sp = 0;
arr = new data_type[sz];

}

//-------------------------------------------------------------------
// Copy constructor
//-------------------------------------------------------------------

inline Stack::Stack(const Stack &s)
{

arr = new data_type[s.size];
sp = s.sp;
size = s.size;
memcpy(arr, s.arr, size * sizeof(data_type)); // Copy data

}

//-------------------------------------------------------------------
// Assignment operator
//-------------------------------------------------------------------

inline void Stack::operator =(const Stack &s)
{

delete arr; // delete old stack memory
size = s.size;
sp = s.sp;
arr = new data_type[size]; // make room for new data
memcpy(arr, s.arr, size * sizeof(data_type)); // Copy data

}

//-------------------------------------------------------------------
// PUSH: Push an element on the top of the stack
//-------------------------------------------------------------------

inline void Stack::push(data_type data )
{

if (sp >= size) { // Already too many?
cerr << "Overflow error\n";
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exit(1);
}
arr[sp++] = data; // Push onto end of array

}

//-------------------------------------------------------------------
// POP(): Take element from the top of the stack
//-------------------------------------------------------------------

inline data_type Stack::pop()
{

if (sp == 0) { // No elements ?
cerr << "Underflow error\n";
exit(1);

}
return (arr[--sp]); // Pop from end of array

}

//-------------------------------------------------------------------
// TOP(): Return element on the top of the stack
//-------------------------------------------------------------------

inline data_type Stack::top()
{

if (sp == 0) { // No elements ?
cerr << "Underflow error\n";
exit(1);

}
return (arr[sp - 1]); // Return top element

}

Experienced C++ programmers will recognize a common class idiom in the code above,
as discussed in James Coplien’s book (see the references in Section 5.16).Note that this
idiom is recommended forall C++ classes, and has no specific relationship with refer-
ence counting (except that a proper implementation of reference counting must use this
idiom with greater care).This idiom requires that a class contain the following methods:

1. Ordinaryconstructor(s).
2. Destructor.
3. Copy constructor.
4. Overloaded assignment operator (=).

It is important to note that both the copy constructor and= operator allocate memory for
a new stack, and copy the old stack into it.If either the copy constructor or= operator
were missing, thedelete operation in the destructor would be in danger of clobbering
allocated memory (i.e. de-allocating the same location twice) in some circumstances.
This problem occurs because allowing either the assignment operator or the copy
constructor to default to memberwise copying (or bitwise copying in early C++ versions)
will cause the pointer data members to simply be copied.The objects they point to are
not copied by memberwise copying. Henceany use of the assignment operator on the
class, or use of the copy constructor (e.g. via argument passing, or return values) will
cause two objects to have pointer data members pointing at the same address.Since both
objects will have their destructor called, the address will be de-allocated twice by the
delete operator in the destructor.

The addition of reference counts toStack objects requires a number of changes.A
new class, which we have calledStackData , must be created and it subsumes many of
the operations that were originally part of theStack class. Inparticular, all of the data
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members that were part of theStack class are moved to theStackData class, and the
only data member in theStack class is a pointer to aStackData object. Anextra
integer data field is added to theStackData class to store the reference count.

The constructors, assignment operator and destructor for classStack change
markedly, and perform most of the manipulation of the reference counts (which are
actually stored in theStackData objects). Theordinary constructor simply sets its
pointer to point to a new StackData object, whose reference count is set to one,
because there is only this newly createdStack object pointing at it.

The copy constructor is changed to increment the reference count of theStackData
object pointed to by theStack parameter. The newly createdStack object is then set
to point at this sameStackData object.

The destructor tests whether it is the only reference to theStackData object. Ifso,
the object is de-allocated.If not, the reference count is decremented, as there is now one
lessStack object pointing at it.

The assignment operator must do two things. First,it acts in a similar manner to the
destructor, and unlinks theStack object that was on the left-hand side of the= operator.
If there are no further references to theStackData object, it is de-allocated.Second,
the object on the left-hand side is set to point to the same object as pointed to by the
Stack object on the right-hand side of the= operator. This part of the procedure is the
same as for the copy constructor.

Finally, all the member functions now must access the data members through an extra
level of indirection, as they are now stored in aStackData object. Inour example, this
means that all references toarr , sp and size must be changed toptr->arr ,
ptr->sp , and ptr->size . The Stack class has been made a friend of the
StackData class to avoid the need to call interface functions to access private data
members.

The code for most of the reference counted version of theStack class is given as
follows; thepush and pop member functions have been temporarily omitted because
they pose special problems, and they are discussed in Section 5.13.1.

//---------------------------------------------------------
// Reference Counted Dynamic Array Implementation of Stack
//---------------------------------------------------------

#include <iostream.h>
#include <stdlib.h>
#include <string.h>

typedef int data_type; // Type of data is int

//---------------------------------------------------------
// Hidden class that contains the allocated data
//---------------------------------------------------------

class StackData {
private:

data_type *arr; // Dynamic array of stack data
int sp; // Stack pointer
int size; // Maximum size of the stack
int count; // Reference count!

StackData(int sz); // Ordinary constructor
˜StackData() { delete arr; } // Destructor

friend class Stack;
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};

//---------------------------------------------------------
// Ordinary constructor for StackData
//---------------------------------------------------------

inline StackData::StackData(int sz)
{

count = 1; // Initially only one reference
size = sz;
sp = 0;
arr = new data_type[sz];

}

//---------------------------------------------------------
//---------------------------------------------------------
// This is the main Stack class used by the user
//---------------------------------------------------------
//---------------------------------------------------------

class Stack {
private:

StackData *ptr; // Pointer to reference counted object
public:

Stack(int sz); // Ordinary constructor
Stack(const Stack &s); // Copy constructor
void operator =(const Stack &s); // Assignment operator
˜Stack(); // Destructor
int is_empty() { return ptr->sp == 0; }
data_type top();

};

//-------------------------------------------------------------------
// Ordinary constructor
//-------------------------------------------------------------------

inline Stack::Stack(int sz)
{

ptr = new StackData(sz); // Create new hidden object
}

//-------------------------------------------------------------------
// Copy constructor
//-------------------------------------------------------------------

inline Stack::Stack(const Stack &s)
{

s.ptr->count++; // Increment reference count
ptr = s.ptr; // Make new object point there too

}

//-------------------------------------------------------------------
// Assignment operator
//-------------------------------------------------------------------

inline void Stack::operator =(const Stack &s)
{

// Unlink the ’*this’ object
ptr->count--; // Decrement reference count
if(ptr->count == 0) { // Only reference?

delete ptr; // Return allocated memory
}
ptr = s.ptr; // Make this object point there too
ptr->count++; // Increment reference count

}

//-------------------------------------------------------------------
// Destructor
//-------------------------------------------------------------------
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inline Stack::˜Stack()
{

ptr->count--; // decrement reference count
if(ptr->count == 0) // if no other references

delete ptr; // destroy hidden data
}

//-------------------------------------------------------------------
// TOP(): Return element on the top of the stack
//-------------------------------------------------------------------

inline data_type Stack::top()
{

if (ptr->sp == 0) { // No elements ?
cerr << "Underflow error\n";
exit(1);

}
return (ptr->arr[ptr->sp - 1]); // Return top element

}

5.13.1 Member functions that c hang e objects

You may have noticed the absence of thepush and pop member functions from the
reference counted implementation of a stack given above. They were not forgotten, but
left out on purpose because they change theStack object, and hence have an extra layer
of complexity in their implementation.Whereas it was adequate for theis_empty and
top member functions simply to add a prefix of "ptr-> " to any reference to a data
member of the stack object, doing so forpush andpop can cause a program failure.

Reference counts complicate the definition of member functions thatchange the
object. Thisproblem is a form ofaliasing that arises from the use of multiple pointers to
the same address.Because the allocated memory block may have more than one pointer
to it from different objects, any change to that allocated memory will changeall the
objects pointing at it.

The solution is to test the number of references to the object before changing it.If
there is more than one reference, it is necessary to create a new object copied from the
original, so as to leave the other references pointing at the unchanged object.The
member function then changes the newly created object, which now has only the one ref-
erence to it.

This may seem to be a very damning limitation on the use of reference counting,
because it seems that every member function may be called upon to create a new object.
In fact, the only extra overhead is the test of the reference count to determine if the
number of references is greater than one, because even if the member function must copy
the object, this can only occur because the copying of the object has beenavoided earlier
in the copy constructor or assignment operator. The copying of the object has been
delayed until it is actually needed, and the only slight loss in efficiency is the integer test.
Hopefully, this small overhead will be overshadowed by the large savings from avoiding
copying a reasonable proportion of objects (i.e. we expect that not all objects will be
changed between copying/assignment and destruction).

The missing definitions of push and pop for the Stack class are now presented.
The unlinking of the object to which they are being applied from any other references and
creation of a new object is all handled in a new private function, theunhook function,
which must be called at the start of any member function that may change aStack
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object. Makingtheunhook function aninline function means that the extra overhead
is a single integer test in most situations.

//-------------------------------------------------------------------
// UNHOOK: Called by member functions that CHANGE the object
//-------------------------------------------------------------------

inline void Stack::unhook()
{

if (ptr->count > 1) { // Other references?
// Yes. Create a new object

StackData *old = ptr;
ptr = new StackData(old->size);
memcpy(ptr->arr, old->arr, old->size * sizeof(data_type));
ptr->sp = old->sp;
ptr->count = 1; // One reference to new memory
old->count--; // One less reference to old object

}
}

//-------------------------------------------------------------------
// PUSH: Push an element on the top of the stack
//-------------------------------------------------------------------

inline void Stack::push(data_type data)
{

unhook();
if (ptr->sp >= ptr->size) { // Already too many?

cerr << "Overflow error\n";
exit(1);

}
ptr->arr[ptr->sp++] = data; // Push onto end of array

}

//-------------------------------------------------------------------
// POP(): Take element from the top of the stack
//-------------------------------------------------------------------

inline data_type Stack::pop()
{

unhook();
if (ptr->sp == 0) { // No elements ?

cerr << "Underflow error\n";
exit(1);

}
return (ptr->arr[--ptr->sp]); // Pop from end of array

}

The same aliasing problem is true of any member function that returns either a pointer or
reference to part of the allocated memory, because there is now the potential to change
the object.For example, if a reference countedString class overloads the[] operator
to return a reference to a single character in the string, the string contents may be changed
by using[] on the left of an assignment statement:

char & String::operator [](int index) { ... }

String str;

str[0] = ’A’; // Changes only str ?

Exactly the same solution is needed as for member functions that explicitly change the
object. Hence,reference counting imposes a slight overhead on any functions that either
change an object or provide the user of a class with the possibility of changing it (unless
the class designer can guarantee that the objects will not be changed by the class user).
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5.14 One-instance classes
In a one-instance class there will only ever be one object defined from it. In this situation
the class can be defined very efficiently by making use of compile-time initialization.An
example is a hash table implementation of a symbol table in a compiler, where only one
symbol table will ever be used (as shown in Section 8.14) and the crucial fragment from
this code is:

class SymbolTable {
private:

Node * table[TABLE_SIZE]; // Hash table - array of pointers
public:

SymbolTable(); // constructor
};

//-----------------------------------------------------------
// Constructor - initialize the hash table to empty
//-----------------------------------------------------------

SymbolTable::SymbolTable()
{

for (int i = 0; i < TABLE_SIZE; i++) // all pointers are NULL
table[i] = NULL;

}

If there will only be one hash table, the constructor is needlessly inefficient. A more
efficient version declares the hash table as astatic data member and the implicit
initialization to zero will set all the pointers toNULLat compile-time.The efficient code
for a one-instance hash table is:

class SymbolTable { // ONE INSTANCE ONLY
private:

static Node *table[TABLE_SIZE]; // Compile-time initialization
public:

SymbolTable() { } // constructor does nothing
};

5.15 Summar y
• C++ is as efficient as C because most of the extra work is performed by the compiler.

• Large objects should be passed by reference.

• Small functions should beinline functions.

• friend functions can be used to bypass the class interface efficiently.

• virtual functions have an undeserved reputation for inefficiency.

• Memory allocation can be controlled for a class by overloadingnew anddelete .

• Functions with default arguments and inherited member functions each offer opportu-
nities for writing efficient specialized code.

• The syntax for passing arguments to member objects should be used for initialization.

• Temporary objects can be avoided by pass by reference, and defining extra member
functions.
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• Objects should be declared close to their first use.

• <iostream.h> should be more efficient than<stdio.h> , although the difference
will be minor.

• Reference counts are an advanced technique for improving the efficiency of classes
with high copying or assignment cost, particularly those allocating dynamic memory.

5.16 Fur ther reading
Although I am not aware of any book covering C++ efficiency in detail, there are several
books that contain sections of interest.They are all good general C++ books, and their
coverage of efficiency is part of a more global coverage.

In Jonathan Shapiro’s book, A C++ Toolkit, the chapter on performance tuning gives
a detailed discussion ofinline functions,register variables and pass by reference.
There is also a chapter on memory management which discusses overloading new and
delete for efficiency.

The second edition of the classic bookThe C++ Programming Language by Bjarne
Stroustrup covers C++ in its entirety and mentions efficiency in a number of places.The
topics covered include (but are not limited to):inline functions, overloadingnew and
delete , saving space with unions andstatic data members, and theregister
qualifier.

James Coplien’s excellent book on advanced C++ programming techniques devotes
several sections to efficiency. On page 58 there is a very useful discussion of reference
counting which covers four alternative methods, including a useful method for converting
existing classes to reference counting without changing their definition (and even without
re-compilation). Memorymanagement issues involving the overloading of new and
delete are also given good coverage on page 72, and the method of rewriting derived
class member functions for efficiency is covered on page 91.

COPLIEN, James O.,Advanced C++ Programming Styles and Idioms, Addison-Wes-
ley, 1992.

SHAPIRO, Jonathan S.,A C++ Toolkit, Prentice Hall, 1991.

STROUSTRUP, Bjarne,The C++ Programming Language (2nd edn), Addison-Wes-
ley, 1991.

5.17 Exercises
1. My C++ compiler will not produce inline code for aninline function containing

a loop. Isthis a fundamental limitation of theinline keyword, or a deficiency in
the compiler?What types of functions cannot be properly inlined?

2. Implementa String class which dynamically allocates exactly the right number
of bytes to store its string of characters.Be sure to define the ordinary construc-
tor(s), copy constructor, destructor and assignment operator correctly. Hint: The
copy constructor and assignment operator cannot simply copy the pointer to the
allocated memory, but must allocate new memory for the characters and copy the
characters into this new memory.
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3. Modify the String implementation of the previous exercise to use reference
counts. Hint: The changes to the class should be similar to those for the reference
countedStack example class given in this chapter.

4. [advanced] The four-function class idiom (default constructor, copy constructor,
assignment operator and destructor) was mentioned in the discussion of reference
counts. Itwas indicated that a common error in C++ classes was failing to provide
this idiom for classes that allocate memory in the constructor and de-allocate it in
the destructor. This causes the destructor to attempt to de-allocate the same
memory location more than once.Is this four-function idiom needed when the
dynamic memory allocated for an object will never be released? For example, in
the String class from earlier exercises, is the idiom needed if the memory
allocated to contain the characters need not be returned to the heap?Obviously,
leaving thedelete operation out of the destructor will improve eff i ciency (at the
cost of space wastage), but can the cost of memory allocation in the copy construc-
tor and assignment operator also be avoided?

5. [advanced] Consider the problem of declaring an object close to use discussed at
the end of Section 5.11, where the scope rules prevent the declaration at the first
point of use. How can thenew operator be used to overcome this limitation?
When will this optimization be beneficial?

6. How can a two-instance class make use of compile-time initialization?

7. [advanced] Section 5.10 presented a hacked method of avoiding temporary objects
for evaluating the expression:

Complex c1,c2,c3;

c1 = c2 + c3;

Why is it not possible to simply make the return value of the overloaded+ operator
a reference? Hint: Consider how the operator+ function would have to be
defined.
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The ANSI C standard librar y

The ANSI C library functions must be used properly when efficient code is required.
This applies not only to C programs, but also to C++ programs where the same library
functions are used.The first general rule about the library functions is that they should be
used whenever possible, unless they show specific evidence of inefficiency. In many cas-
es, the library functions have been highly optimized (perhaps even written in assembly
language), and will be more efficient than any equivalent code you might produce.For
example, the functions in<ctype.h> are usually much faster than an equivalent
expression such as:

’a’ <= c && c <= ’z’

In fact, the use of the macros in<ctype.h> is also more portable and more readable!
A second general rule for library functions is to use them for their intended purpose.

For example, printf and scanf are not meant for single character I/O — use
putchar andgetchar instead.

A third general rule is that many of the more complicated library functions are very
general, and hence inefficient. It is often better to replace them with your own special-
ized code. For example, functions such asmalloc, printf, scanf, qsort and
bsearch can often be replaced with code that solves the specific problem at hand.

6.1 Character functions in <ctype.h>
As mentioned above, the <ctype.h> functions are very hard to beat.The list of the
character-testing functions in<ctype.h> is given in Table 6.1, and the programmer
should attempt to use these functions whenever possible.

98
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Table 6.1. Character class functions

Function Character class

isalpha(c) Letter
isdigit(c) Digit
isalnum(c) Letter or digit
islower(c) Lower case letter
isupper(c) Upper case letter
isxdigit(c) Hexadecimal digit (0-9, a-f, A-F)
isspace(c) Space,’\f’, ’\n’, ’\r’, ’\t’ or ’\v’
isprint(c) Printable character (0x20...0x7E ASCII)
iscntrl(c) Control character (0...0x1F and0x7F ASCII)
ispunct(c) Printable characters except space, letter or digit
isgraph(c) Printable characters except space

The character-testing functions in<ctype.h> are usually implemented as macros
that use the character as an array index for a 256-byte precalculated table and apply a bit
test to this byte, as in:

#define isupper(ch) ((_hidden_array + 1) [ch] & 4 )

where the "+ 1" is used so that the macro will still work for EOF, which usually has
value −1. In other words, the precalculated table’s first (zeroth) entry is forEOF. This
addition of 1 should have no run-time cost, since it is part of a constant expression which
the compiler can evaluate at compile-time.

Each library function has a particular bit to test (i.e. each byte in the table has one bit
for isupper, one bit for islower, etc). Thesefunctions could be implemented
slightly more efficiently, with a 256-byte table for each function, but this would be space
inefficient and remove only a single bitwise& operation for each function call.

One area for improvement for some<ctype.h> implementations is thetolower
and toupper functions. Althoughmany implementations use efficient accesses into
256-byte tables, some implementations use real function calls.Unfortunately, it is dif-
ficult to design macros for these functions without a (hidden) lookup table because of
problems with side effects to macros.ANSI requires that these functions return the
character unchanged if it is not a letter, and this makes it difficult for a macro to avoid
evaluating its argument twice. For example, the definition of a macro fortolower
would involve the conditional operator, as in:

#define tolower(c) (isupper(c) ? ((c) - ’A’ + ’a’) : c)

For implementations involving a costly function call for these functions, it can be worth-
while defining new macros for these functions:

#define TOLOWER(c) (isupper(c) ? ((c) - ’A’ + ’a’) : c)
#define TOUPPER(c) (islower(c) ? ((c) - ’a’ + ’A’) : c)
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If the restriction thattolower andtoupper work correctly for values other than lower
(upper) case letters is removed, faster macros can be used so long as the argument is a
letter of the correct case:

#define TOLOWER(c) ((c) - ’A’ + ’a’)
#define TOUPPER(c) ((c) - ’a’ + ’A’)

On some implementations, fast versions oftolower and toupper are provided as
_tolower and _toupper, and these macros can be used instead of writing new
macros.

Unfortunately, any of these methods sacrifice portability. The _tolower and
_toupper are not part of the ANSI standard library and are hence non-portable.Our
own TOLOWER andTOUPPER macros may also be non-portable to machines that have a
non-ASCII character set.Thetolower andtoupper ANSI functions are portable to
most environments, but may be inefficient in a few cases.

6.2 String functions in <string.h>
There are some methods for efficient use of the ANSI C string functions (defined in
<string.h>). For example, the test for the empty string:

if (strlen(s) == 0)

is equivalent to the far more efficient character comparison:

if (s[0] == ’\0’)

Some programmers may preferif(!*s) but this is less readable and should cost the
same on a good compiler. A sample of the many variations on this theme is presented in
Table 6.2.

Table 6.2. String expressions

Expression Equivalent

strlen(s) == 1 s[0] != 0 && s[1] == 0
strlen(s) > 1 s[0] != 0 && s[1] != 0
strlen(s) < 2 s[0] == 0 || s[1] == 0
strcpy(s, ""); s[0]=0;
strcpy(s, "a"); s[0]=’a’; s[1]=0;

When comparing strings twice, once for equality and once for ordering, don’t call
strcmp twice, as in:

if( strcmp(s1,s2) == 0)
printf("Strings %s and %s are equal", s1, s2);

else if( strcmp(s1,s2) < 0)
printf("%s is before %s\n", s1,s2);

else
printf("%s is before %s\n", s2,s1);
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Instead, assign the return value ofstrcmp to anint variable, and test this variable
twice, as below:

int ret = strcmp(s1,s2);
if (ret == 0)

printf("Strings %s and %s are equal", s1, s2);
else if (ret < 0)

printf("%s is before %s\n", s1,s2);
else

printf("%s is before %s\n", s2,s1);

The idea of "common cases" can be applied to string comparisons.Strings usually differ
at the first character, which inspires us to write fast macros for testing string equality,
inequality and order which compare the first characters in each string before calling
strcmp:

#define STR_EQU(s1,s2) (*(s1) == *(s2) && strcmp(s1, s2) == 0)
#define STR_NEQ(s1,s2) (*(s1) != *(s2) || strcmp(s1, s2) != 0)
#define STR_LSS(s1,s2) (*(s1) < *(s2) || strcmp(s1, s2) < 0)
#define STR_GTR(s1,s2) (*(s1) > *(s2) || strcmp(s1, s2) > 0)

Another common inefficiency is passing a string constant tostrlen. The result could
have been calculated at compile-time, but is actually calculated at run-time.This can
occur when a string is defined by a macro, such as:

#define TITLE "C++ and C efficiency"
#define TITLE_LEN strlen(TITLE)

Although the second macro is convenient in that it need not be changed if the title
changes, it is more efficient to count the characters and hard-code the constant:

#define TITLE "C++ and C efficiency"
#define TITLE_LEN 20

Another clever solution would be to declareTITLE as a variable and use the compile-
timesizeof operator to determine the length of the string, as in:

char TITLE[] = "C++ and C efficiency";
#define TITLE_LEN (sizeof(TITLE) - 1)

where the subtraction of 1 is necessary to get the correct string length becausesizeof
also counts the null character.

Av oid usingstrlen in the conditional test offor loops. For example, the inef-
ficient way of printing out a string is:

for (i = 0; i < strlen(s); i++)
putchar(s[i]);

This calls thestrlen function for every loop iteration. The efficient method is to test
the character for zero:

for (i = 0; s[i] != 0; i++)
putchar(s[i]);
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6.3 Input/output functions in <stdio.h>
The standard I/O functions in<stdio.h> are likely to be implemented more efficiently
than you could manage.For example, it is unlikely that you could write a more efficient
version of the getchar macro. However, there are some methods of improving
efficiency. C++ programmers might also consider using the<iostream.h> library
instead of<stdio.h>, as discussed in Section 5.12.

One general method of improving efficiency is to use the simplest function.Replace
statements such as:

printf("\n");
printf("Hello, world\n");

with more efficient versions using simpler functions:

putchar(’\n’);
puts("Hello, world"); /* Note: no newline */

In fact, you might find that, say, printf("abcd") is less efficient than four calls to
putchar, becauseprintf will usually be a real function call but putchar is
probably a macro.puts is not useful in this case because it will add a newline, but
fputs(stdout,..) may also be worth considering as it does not append a newline.
Try exploring the relative eff i ciencies ofprintf, puts andputchar. Howev er, note
that the dominating cost will be that of actually displaying the character, and the im-
provements may be marginal.

You are also unlikely to improve performance by adjusting the level of buffering with
setbuf or setvbuf. Howev er, you could try, just to see how good the implementor of
your compiler library really was!

You may be able to improve on <stdio.h> functions with the%d formats to
printf and scanf. Because these functions are so general, they can be improved
upon if the program has no need for special format options such as field width and
precision. Itcan be worthwhile to write your own print_num or scan_num functions
to avoid the overhead of examining the format string (as done by bothprintf and
scanf). This is especially true if you know the maximum size of the integers to be
handled (i.e. how many digits) because this may mean that loops in the conversion
algorithm can be unrolled.For example, if you are sure that the numbers will always be
positive and less than 1000, the following version ofprint_num may be more efficient
thanprintf’s %d format.

void print_num(int n) /* n = 0..999 */
{

if (n >= 100) {
putchar( (n / 100) + ’0’);
n %= 100;

}
if (n >= 10) {

putchar( (n / 10) + ’0’);
n %= 10;

}
putchar(n + ’0’);

}
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Av oid the use offloat, char or short arguments toprintf because of the non-
prototyping type conversions that are applied to such arguments. Theconsistent use of
int anddouble will remove this slight overhead.

6.4 Mathematical functions in <math.h>
Av oid float variables when using the<math.h> library. All the arguments and return
values of functions in<math.h> are double, and float values will cause many
conversions.

Besides noting the specific techniques in the next few sections, it may be worth
considering writing your own versions of the mathematical functions if less precision
than provided by the<math.h> functions is required.In particular, for an ANSI
prototype-supporting compiler, a library of mathematical functions accepting arguments
of typefloat would be worthwhile (unfortunately, there are no such functions provided
by the ANSI standard).

Another improvement gained by coding your own mathematical functions is the
removal of code to test if the argument values are within the valid domain of the function
(assuming you are certain that the program uses the functions correctly).Unfortunately,
writing mathematical functions is far from simple, and only a few simpler functions are
examined in this chapter.

6.4.1 fabs and abs

It may be more efficient to write your own macro version of thefabs function (and also
the abs function in <stdlib.h>), since many libraries will implement it as a real
function. Thereare difficulties in writing macros for these functions since ANSI requires
that a side effect in an argument to these macros must be evaluated exactly once. This
restriction can be dispensed with when writing our own macros and makes it simple to
write fast macros.The macro equivalents of abs and fabs can both have similar
replacement text:

#define ABS(x) ((x) >= 0 ? (x) : -(x))
#define FABS(x) ((x) >= 0.0? (x) : -(x))

It is good style to use capital letters to avoid clashes with the existing library functions.
The apparent overuse of brackets is necessary to avoid precedence problems, although
they do not avoid side effect problems and uses such asABS(i++) must be avoided.

On the other hand, the library functionsabs andfabs in <math.h> might be im-
plemented efficiently using machine-specific knowledge of the internal representations of
integers and floating point numbers, making them faster than the macros above. In fact,
the overhead of a real function call may not actually occur in some implementations as an
advanced optimizer might generate inline code for the function call during its code gener-
ation phase (even though the function is not a macro in the header file). This method is
known as compilerintrinsics, and is discussed further in Chapter 10.You should use the
measurement techniques in Chapter 2 to determine if the macros really are faster than the
library functions.
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The fabs function in <math.h> may be able to handle obscure values such as
+Inf, -Inf andNaN (not a number).Note that these values are not mentioned by the
ANSI standard, and are hence non-portable.The efficient macros should be used only if
these special values are not important.

6.4.2 floor and ceil

For positive values, thefloor function is often equivalent to simple type casting to
int, which may be more efficient. Similarly, theceil function may be equivalent to a
simple macro involving type casting.Possible macros forfloor andceil, on non-
negative values only, are:

#define FLOOR(x) ((int)(x))
#define CEIL(x) ((int)((x) + 0.999999999))

These macros are especially efficient if anint value is needed, and not adouble as
returned byfloor and ceil. Howev er, they are non-portable, as implementations
differ in how they handle conversions fromdouble to int.

6.4.3 Integral powers: pow

The standard library contains thepow library function to compute powers:pow(x,y)
computesx y. Howev er, because thepow function must handle general exponents, it is
not as efficient as it could be in special cases.For example,pow(x,0.5) will probably
be more efficiently coded assqrt(x). Another special case occurs wheny is an
integer. Thus calls such as:

pow(x, 3.0); /* x cubed */

are most likely more efficient if they call a special function to handle integer powers (the
above statement might be even faster asx*x*x). A simple function to compute integer
powers is:

double intpow(double x, int n) /* compute xn */
{

double result;

for (result = 1.0; n != 0; n--) /* n-1 iterations */
result *= x;

return result;
}

However, it is not too difficult to write a more efficient version which uses fewer than
n − 1 multiplications. For example, the computation ofx7 can be written as:

x7 = x4 * x2 * x1

which can be written out as the following code which uses only four multiplications:

x2 = x * x;
x4 = x2 * x2;
x7 = x4 * x2 * x;
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An improved algorithm has reduced six multiplications to four, and the improvement is
ev en greater for larger powers — in fact, the number of multiplications reduces from
O(n) to O(log n). This idea can be implemented as a general algorithm, which uses the
fact thatxn can be broken down into multiplications of values that are all of the formxi,
wherei is a power of 2. For example:

x7 = x4 * x2 * x1

x6 = x4 * x2

x5 = x4 * x1

A careful examination of the pattern reveals that each bit that is 1 in the binary represent-
ation of the exponent,n, indicates that a corresponding power ofx should be used in the
multiplication to create the final result. In the following implementation,bitmask steps
through all the binary bits ofn, while the statementx*=x creates a power ofx with an
exponent that is a power of 2.

double intpow(double x, int n) /* compute xn */
{

int bitmask;
double result = 1.0;

for(bitmask = 1; bitmask <= n; bitmask <<= 1) {
if ((n & bitmask) != 0) /* bit set? */

result *= x; /* use x in the result */
x *= x; /* make next power */

}
return result;

}

Note that this function is not valid for very large values ofn (i.e. close toINT_MAX
declared in<limits.h>), as it will loop infinitely if the expressionn<<1 is an
overflow (why?).

As a final caveat, note that the mathematical standard library functions may have
hardware support on some large machines.On one machine I tried, thepow standard
library function ran faster than the better version of intpow, particularly for large
powers.

6.5 Avoiding qsort and bsearch
It is usually more efficient to write your own specialized sorting and searching routines
than to use the general library functionsqsort andbsearch. This is because both
library functions have the relatively high overhead of a call to the user-supplied function
for every comparison (i.e. a call to the pointer-to-function argument). qsort and
bsearch must call this comparison function even to compare two integers. Obviously,
it will be more efficient to write your own special integer sorting and searching routines.
This is discussed in Chapter 8.

Another reason to avoid qsort is itsO(n2) worst-case performance on certain sets of
data (which depend on the specific variant of quicksort used) — for example, when the
data is sorted in reverse order.
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The quicksort algorithm is not the best algorithm to use for a small number of
elements. Ithas some initial overhead, and some simpler algorithms such as bubble sort
or insertion sort may do better when the number of elements is small.

In addition, if the data is already partially sorted, it may be more efficient to use a
different sorting algorithm, such as insertion sort or even the notoriously inefficient
bubble sort, because these algorithms will perform well on data that is almost sorted.The
various sorting algorithms are compared in Chapter 8.

6.6 Random numbers: rand
Therand function may be more general than what you require.A faster pseudo-random
number generator might be a better alternative if the numbers needn’t be as "random" (i.e.
if the period of the sequence need not be particularly high, or if the distribution need not
be uniform). It can even be worthwhile to use code for a sophisticated generator with
good mathematical properties — access to the code makes it possible to write the random
number generator out as in-line code and avoid the function call overhead ofrand. A
common method of generating large pseudo-random integers is the linear congruential
method, which uses the following formula for the sequence of random numbers:

Ri+1 = ( A Ri + B ) mod C

where A and B are large prime numbers, andC is usually 2n, wheren is the number of
bits in a word (themod operation effectively prevents the random number from overflow-
ing the limits of anint). Fortunately, themod operation can be implemented efficiently
as a bit mask becauseC is a power of two. Thelinear congruential method is often used
to implement therand function. It does suffer problems in that the lower order bits are
non-random (e.g.rand()%2 may produce the non-random sequence 0,1,0,1... on some
implementations), but the high-order bits have reasonable properties.

Note that since many implementations use this algorithm, programmers should avoid
expressions such as:

value = rand() & 01; /* DANGEROUS */

to generate a random sequence of 0’s and 1’s; on many implementations the generated
values will be the not-so-random sequence: 0,1,0,1,....A better solution is to use the
higher-order bits, as in the following code for a 32-bitint machine:

value = ((unsigned int) rand() >> 16 ) & 01;

If a particular application needs only small random numbers, a simple version of the
linear congruential method can be used, although the generated values will not have good
mathematical properties.For example, when generating random values to give random
motion to creatures in an arcade game, a very limited random number generator will
probably be satisfactory because small random integers are adequate.A simple imple-
mentation of the linear congruential method generating numbers in the range 0..127 is:

value = (value * 41 + 1) & 127;
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The small prime values of 41 and 1 are adequate here because the range is small (i.e.C is
small). IfC is large, the values ofA andB must also be large.

The bitwise& operation can be removed by using one of C’s builtin types. The use of
unsigned char is equivalent to performing arithmetic modulo 256, and is usually
implemented efficiently by grabbing the first byte of a word. Thefollowing code will
generate numbers in the range 0..255:

unsigned char value = 0;
.....

value = (value * 41 + 1);

A reasonably efficient method of generating a reasonably random sequence of 0’s and 1’s
is to grab thehighest bit of this value:

unsigned char value = 0;
.....

value = (value * 41 + 1);
bit = (value & 128) >> 7;

One limitation of these efficient methods using small numbers is that the pattern will
repeat frequently. In general, the pattern will repeat afterC values, and the value ofC
has been 128 and 256 in the above code fragments.

There are a very many non-portable methods of generating random numbers.There
may be an easy way to get a random number from the most random element in the system
— the human.For example, the program could examine the mouse position (if the user is
frequently moving the mouse), or by measuring the number of clock ticks between user
keypresses. Anotherhardware-specific solution is to grab groups of bits from a particular
memory block (e.g. ROM code).

6.7 Removing assertions
When considering this optimization, note that it may be far better to leave assertions in
production code.The ungraceful termination of theassert macro is often preferable to
the unpredictable behavior from the program.An alternative worth considering is to
define your own assert macro to exhibit more graceful behavior. Nev ertheless, remov-
ing assertions is one method of extracting the last drop of speed from your code.

The removal of assertions is an optimization that is commonly forgotten and the
program does not run as fast as it could.These should be removed by defining NDEBUG
before including<assert.h>:

#define NDEBUG
#include <assert.h>

Other types of debugging checks should also be removed. In particular, any debugging
statements that produce output should be removed as unnecessary output will waste much
processor time.If debugging code is properly placed in the program by using conditional
compilation (i.e.#if DEBUG), this is a minor change to the definition of a preprocessor
symbol.
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6.8 Writing your own malloc function
The standard library functions declared in<stdlib.h> for dynamic memory allocation
are very general, and hence, very slow. The malloc andcalloc functions must be
general to accommodate varying requests for differing size blocks and must return
addresses satisfying the most stringent alignment requirements.This generality makes it
difficult for the allocation functions to be efficient. Writing your own allocation
functions can improve the efficiency of your program.Alternatively, C++ programmers
can overload thenew anddelete operators as discussed in Section 5.6.

Themalloc andcalloc functions must store information in each block so that the
free andrealloc functions know how large the block is (this is stored in a header
block just before the address passed back to the program).This all takes time, and the
allocator can run faster if the flexibility to reuse blocks of memory is abandoned.Note
that this is a case of wasting space to gain a speed increase.

A good example of this situation is the symbol table in a compiler. The symbol table
must store each of its symbols, of unknown length, in the table.Because the maximum
number of symbols is unknown in advance, it is best to use dynamic memory. Rather
than usemalloc to allocate memory for the string storing each symbol, a new function
char_malloc is used.The source code for this function is shown below:

/*------------------------------------------------------------------*/
/* CHAR_MALLOC.C: Customized dynamic memory allocator for STRINGS */
/*------------------------------------------------------------------*/

#include <stdio.h>
#include <stdlib.h>

#define BIG_BLOCK_SIZE 1024 /* Size of large memory blocks */

char *char_malloc(int size)
{

static char *address = NULL; /* Address of remaining memory */
static int bytes_free; /* Bytes remaining in block */
char *temp;

if (address == NULL || size > bytes_free) {
address = malloc(BIG_BLOCK_SIZE); /* Use the real malloc */
bytes_free = BIG_BLOCK_SIZE;

}
temp = address;
address += size; /* Move to next free spot for next time */
bytes_free -= size; /* Count bytes remaining */
return temp; /* Return address of string */

}

The char_malloc function runs much faster than themalloc function because it
performs much less computation.It works by allocating a very large block of memory,
using the realmalloc function, and then breaking off chunks of this block for each
string. Althoughthe call tomalloc is slow, it is called infrequently and this does not
greatly slow down the new memory allocator. The main disadvantage of the
char_malloc function is that memory for the strings cannot be reused after it is no
longer needed — that is, the strings cannot be freed.It would be possible to implement a
char_free function, but for char_malloc to reuse the small blocks of memory for
each string it would be necessary to maintain a list of free blocks and their sizes, and
maintaining this free list would defeat the purpose of writing a fast allocator.
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The main difficulty with malloc andcalloc is that these functions must operate
without knowledge of how many blocks will be requested, or of which different sizes will
be requested.The programmer, howev er, will often know roughly how many blocks of
the various sizes will be required, and can use this information to write a more efficient
version of the allocation function for the particular program.

A good candidate for such an efficiency optimization is a program that uses dynamic
memory for only one type of node, such as a binary tree implementation of a symbol
table. Theknowledge that only one size block will be required can be applied to write
faster node allocation and de-allocation functions.Instead of usingmalloc andfree,
the program can use the new functions,new_node andfree_node:

node = new_node(); /* Allocate a node */
free_node(node); /* De-allocate a node */

The disadvantage here is the need for a call to a slow initialization function called
setup_heap. Howev er, the cost of a call tosetup_heap should be overshadowed by
the efficiency of new_node andfree_node if they are called frequently enough.As-
suming the binary tree nodes are of type "struct node", thesetup_heap call looks
like:

setup_heap(sizeof(struct node), ESTIMATED_NUM_NODES);

The improvement gained by this method comes from initially callingmalloc from
setup_heap to allocate a large block, and then using thenew_node function to break
off chunks to use as nodes.Because themalloc function is not usually called by
new_node, thenew_node function can be very fast (indeed, it could be a macro).

The estimate of the number of nodes required bysetup_heap is quite important; it
determines how big a block to allocate insetup_heap. If the estimate is too small,
new_node will occasionally need to callmalloc to allocate another large block, which
is less desirable than a single initial call tomalloc in setup_heap. If the estimate is
too large, this wastes space and will also slow down the initial call tosetup_heap.
Hence, the estimate should be large enough to accommodate the most likely requirements
of the program, but not a huge worst-case upper bound.

The source code for the new functions is shown as follows. Theonly non-trivial
details of the program are in the creation and maintenance of the free list.The
new_node function takes the first node off the front of the free list, thefree_node
function adds the node to the front, and thesetup_heap function initializes the free list
with a single loop.The free list is implemented as a linked list, with the "next" pointers
stored in the first word of each node.This can cause alignment problems if the size of re-
quested blocks is an irregular number of bytes, but there is usually no problem if the re-
quested size is the size of astruct variable because such variables are always of a size
that prevents alignment problems.However, if alignment is a problem the free list could
be maintained as a separate list in another block of allocated memory.
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/*------------------------------------------------------------------*/
/* EFFICIENT_MALLOC.C : fast dynamic allocation functions */
/*------------------------------------------------------------------*/

#include <stdio.h>
#include <stdlib.h>

static int estimate; /* estimated number of blocks */
static int block_size; /* Size of the block */
static void *free_list; /* Pointer to first free block */

/*-------------------------------------------------------------------*/
/* Internal function to allocate big block, and thread the free list */
/*-------------------------------------------------------------------*/

static void *allocate_large_block(int size, int number)
{

char * address, * temp;
int i;

address = malloc(size * number); /* Allocate large block */

/* Thread linked list of free blocks */

for (temp = address, i = 0; i < number - 1; i++, temp += size)
*(void**)temp = temp + size; /* Store next pointer */

*(void**)temp = NULL; /* NULL on end of list */
return address;

}

/*------------------------------------------------------------------*/
/* Initialize the heap for an estimated number of nodes */
/* If more nodes are required, more memory is allocated later */
/*------------------------------------------------------------------*/

void setup_heap(int size, int estimated_number)
{

if (size < sizeof(void*)) { /* room for ’next’ pointers? */
fprintf(stderr, "Block is too small\n");
exit(1);

}
free_list = allocate_large_block(size, estimated_number);
estimate = estimated_number; /* Save for use in new_node() */
block_size = size; /* Save the block size too */

}

/*-------------------------------------------------------------------*/
/* Allocate new node of size requested earlier */
/*-------------------------------------------------------------------*/

void *new_node(void)
{

void *temp;

if (free_list == NULL) /* Need another big block? */
free_list = allocate_large_block(block_size, estimate);

temp = free_list; /* Save the block address */
free_list = *(void**)temp; /* Get ‘next’ pointer in block */

/* Update free list */
return temp; /* Return the block address */

}

/*-------------------------------------------------------------------*/
/* Free one of the nodes for re-use by new_node() */
/*-------------------------------------------------------------------*/

void free_node(void *address)
{

*(void**)address = free_list; /* Add node to front of free list */
free_list = address;

}
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One minor disadvantage of this implementation is that the memory allocated bymalloc
is never properly de-allocated by thefree function. To overcome the limitation, it is
necessary to maintain a list of the large blocks that are allocated and add another function
to free all the large blocks. This function is called whenall the nodes are no longer
needed.

6.9 Memory block functions in <string.h>
There are several efficient "block operation" functions declared in<string.h>. These
are likely to be efficient as they are often supported by assembly "block move" instruc-
tions or similar. The full list of memory block functions is given in Table 6.3.

Table 6.3. Memory block functions

Function Meaning

int memcmp(s1, s2, n) Compare first n bytes ofs1 ands2
void *memcpy(s1, s2, n) Copy n bytes froms2 to s1
void *memmove(s1, s2, n) As formemcpy, but allow overlap
void *memchr(s1, c, n) Find first occurrence ofc in s1
void *memset(s1, c, n) Set the first n bytes ofs1 to c

Thememcpy function is a highly efficient method of copying arrays.Rather than copy
each element of an array, one at a time, in a loop, thememcpy standard library function
defined in<string.h> can be used to copy the entire array in one statement:

memcpy(b, a, sizeof(a)); /* copy array a to b */

An alternative method of copying arrays is to make use of the fact that C permits
struct assignments. Thismethod is not portable, is very unreadable and uses pointers
incorrectly by converting between two different pointer types.However, it can be faster
than memcpy because it makes use of the assignment operator rather than calling a
function. To copy an array by this method it is necessary to declare a new dummy
struct type the same size as the array that is to be copied.Then type-casting is used to
fool the compiler into thinking it is copying structs when really it is copying arrays.
The method is illustrated below:

struct dummy_transfer { /* The new struct type */
int a[MAX]; /* This field gives the right size */

};
int a[MAX], b[MAX]; /* The array variables being copied */

*(struct dummy_transfer *)a = *(struct dummy_transfer *)b;

The assignment statement first type-casts botha andb to be pointers to the new struct
type, and then dereferences these pointers so that the compiler believes it is assigning
between two structs. Notethat the above code does not violate the constraint that a
type-cast expression cannot be an l-value. Theassignment operator is applied to the
result of the* operator, which always returns an l-value. Thetype-cast expression is an
operand to*, which does not require an l-value as its operand.
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memcpy can also be used to copy structures efficiently on non-ANSI compilers.The
usual method of copying onestruct to another is to use an assignment statement (i.e.
"b=a;"). However, some older compilers do not permit the assignment of whole
structs. If this is the case, thememcpy standard library function can be used instead
of copying fields one-by-one.

memcpy(&b, &a, sizeof(a)); /* copy struct a to b */

In cases where the memory locations to be copied may overlap, thememmove function
must be used, asmemcpy gives undefined results.Thememmove function will be less
efficient thanmemcpy, but should still be better than the alternatives, such as an
initializing loop.

6.10 Summary
• Avoid using general functions when a simpler function will do the same job.

• Functions such asabs and fabs are difficult for compilers to implement as safe
macros, and it may be more efficient to define unsafe macros to perform these
operations.

• String comparisons can be improved by testing the first character before calling
strcmp.

• The%d formats forprintf andscanf are very general, and it may be efficient to
write specializedprint_num andscan_num functions.

• Use onlydouble arguments when using<math.h>.

• qsort andbsearch are inefficient because they call a function for each comparison.

• Using in-line code to generate pseudo-random numbers can be faster than calling the
rand library function.

• Memory allocation can be improved by allocating larger blocks of memory.

• Thememcpy, memset andmemmove functions are efficient.

6.11 Further reading
For further information on the ANSI standard library, the definitive reference is the ANSI
standard (refer to the Bibliography for details of how to obtain a copy). An interesting
book discussing both use and implementation of the standard library, including full C
source code for all library functions, is the book by Plauger:

PLAUGER, P. J., The Standard C Library, Prentice Hall, 1991.
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6.12 Exercises
1. Fix the functionintpow in Section 6.4.3 so that it is valid for all values ofn, even

as large asINT_MAX, for which it will currently loop infinitely. Hint: Modify the
loop so thatn is shifted right, instead ofbitmask being shifted left.

2. Generalizethe functionintpow in Section 6.4.3 so that it handles negative integer
exponents.Hint: x−n ≡ 1/xn.

3. Modify the intpow function to employ "special solution of simple cases" for
greater efficiency for small values ofn.

4. Write an efficientscan_num function to replace the use ofscanf’s %d format,
under the assumption that numbers are in the range 0..999.

5. Whatsequence of statements can be used instead ofstrcat(s,"a")?

6. Whatmodification should be made to theTOLOWER andTOUPPER functions in
Section 6.1 to ensure that the constants’A’ and’a’ are constant folded?Hint:
see Section 4.5.2.

7. Implementthe following functions as efficiently as possible:

a)strlen
b) strcpy
c) strcat

Ensure thatstrcpy andstrcat behave properly and return the value of their
fi rst argument.

8. Thestrcpy function can be coded as a macro by lifting the requirement that it
return a value and then coding it as avoid function. Designa macro for this
modifiedstrcpy function. Make sure that the macro is "safe", in that side effects
in the arguments are not evaluated twice.Hint: The easiest way to avoid side effect
problems is to ensure that the macro arguments appearexactly once in the replace-
ment text. Thiscan be simply achieved by declaring some temporary variables.

9. Usea fast library function to improve the efficiency of the following array initial-
ization loop:

for (i = 0; i < SIZE; i++)
arr[i] = 0;
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Space-efficiency

In these days of rapidly declining memory prices, memory reduction techniques are
perhaps not as important as those for increasing speed.However, there are certainly
situations when reducing space requirements is far more important than increasing the
speed of a program.This section discusses a number of techniques for reducing memory
requirements. Unfortunately, reducing space requirements can often reduce speed.There
is a trade-off between space-efficiency and time-efficiency.

Every C and C++ program uses memory for several different purposes, and each of
these areas must be attacked separately. The memory usage of the program can be
divided into the following memory sections:

• Executable instructions.
• Static storage.
• Stack storage.
• Heap storage.

The executable instructions for a program are usually stored in one contiguous block of
memory. Static storage refers to memory used by global and localstatic variables,
string constants and (possibly) floating point constants.Stack storage refers to the
dynamic storage of non-static local variables. Heapstorage refers to the memory that
is dynamically allocated by themalloc andcalloc standard library functions, or by
the C++new anddelete operators.

The memory requirements for the executable instructions are largely independent of
the other memory areas, whereas the techniques for reducing the memory required for the
other three areas are often similar. Howev er, care must be taken that applying a technique
to reduce data space does not increase the amount of code too greatly, thus increasing the
executable size.

114
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7.1 Reducing ex ecutable size
The size of the executable obviously depends on the size of your program.Hence, the
obvious way to reduce executable size is to reduce the number of executable statements
in your program.This could involve deleting non-crucial functions from the program,
although this is not often possible.Compile-time initialization of global andstatic
variables instead of assignment statements can also reduce code size.

Another possibility is that your compiler may support an option that makes the opti-
mizer focus on space reduction; it generates executable instructions that are as compact as
possible, rather than as fast as possible.Consult your compiler documentation for
information about the optimizer, if i t exists.

The size of the executable depends not only on the source code, but also on the extra
library functions that are linked by the linker. Although it may seem that the programmer
has no control over this, there are some techniques for reducing the amount of linked
code. Thetechniques depend largely on how "smart" your linker is — that is, whether
the linker links only the functions you need.For example, a "dumb" linker might link the
entire I/O library if one function is used, whereas a smart linker would link only that
function (and any extra code it might need).If the linker is dumb, there is little to do
except avoid the library functions completely and write your own non-portable machine-
specific functions. If the linker is smart, executable size can be reduced by replacing
large general-purpose library functions with your own special-purpose versions. For
example, theprintf andscanf functions are very large because they hav eto handle a
multitude of format specifications (especially real numbers).Executable size can be
reduced by writing your own functions to perform I/O, usinggetchar andputchar as
the basic I/O calls.For example, if you are using only%d in printf , you can avoid
usingprintf by writing your own print_num function:

#include <stdio.h>

#define BASE 10 /* decimal numbers */

void print_num(int num)
{

if (num < 0)
num = - num, putchar(’-’); /* handle negatives */

if (num < BASE)
putchar(num + ’0’); /* only 1 digit number */

else {
print_num(num / BASE); /* do left digits */
putchar((num % BASE) + ’0’); /* do rightmost digit */

}
}

This function can be used to perform all integer output, andputchar andputs can be
used to output characters and strings (they are smaller thanprintf ). Anotherpossi-
bility is writing your own minimal printf function that supports only those format
specifications that you actually use.

UNIX programmers can also use thestrip utility which strips symbol table inform-
ation from the executable. However, this is more relevant to the amount of disk space the
executable file uses than it is to the amount of memory it uses during execution. Inany
case, UNIX programmers are rarely short of memory.
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When reducing executable size, avoid long macros and large C++inline functions;
use functions instead of macros, and remove the inline keyword from large functions.
Surprisingly, the use of macros and C++inline functions can actually reduce
executable code if the macro orinline function performs a very small computation
(e.g. adding two numbers, or accessing a variable in a class).The instructions generated
by the inline code may well be fewer than those generated for a function call.However,
if the macro orinline function is very large, every call to that function will generate a
large number of instructions and executable size will increase.

The choice of IBM PC memory model, as discussed in Section 4.8, can have some
effect on executable size.Using some of the "smaller" models can reduce the number of
instructions associated with pointer operations and function calls.The small and
compact models cause smaller function call sequences.The small or medium
models use very few instructions for pointer operations; thecompact and large
models use more, but less than the number for thehuge model. Thenear and far
(non-ANSI) qualifiers can also reduce the code size of particular pointer statements.The
declaration ofnear functions,near pointers andfar pointers can reduce code size.

7.1.1 C++ linkage problems

C++ poses some difficult linkage problems for compilers that must use an existing linker,
such as many C++ implementations on UNIX-based operating systems.The main areas
of difficulty areinline functions and thevirtual function table.Let us examine the
problem ofinline functions.

C++ allows inline functions, unlike ordinary functions, to bedefined multiple
times. Themain advantage this offers is that a class declaration and itsinline function
definitions can be included as a header file without producing compilation (linkage)
errors about multiply defined functions.

Unfortunately, the inline function must appear in the object code as a real
function, even if the compiler can expand all its calls, because the compiler cannot
guarantee that it will always be called in a file where the function body is visible.Hence,
the compiler must emit a definition of the function into the object code.However, doing
so every time theinline function is found will generate the function for every file in
which the class declaration is included, which will lead to multiply-defined function
errors on most linkers. Thesimplest solution is to give inline functions the equivalent
of static function linkage to eliminate linkage errors.However, this leads to a huge
increase in executable code size.To combat this problem, some compilers use a simple
heuristic that allows them to emit theinline functions into only one object file. The
code for allinline member functions is emitted only when thedefinition of the first
non-inline function is found (i.e. the definition of the non-inline function that appears
physically first in the class declaration).If there is no such non-inline function, the inef-
ficient method of emitting the function into every object file must be used.Hence, a
simple rule that will reduce executable size for some C++ implementations is:

Always have at least one non-inline member function.
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This can be achieved by ensuring one of the member functions is non-inline, or even by
creating a small dummy non-inline member function.The few unused bytes of
executable code for this dummy function may well be worth the overall saving gained
from only linking inline functions once.

The implementation ofvirtual functions has exactly the same problem in that the
virtual function table must be emitted into exactly one file. Compilersuse the same
heuristic tricks to do this, and one solution is the rule given above.

Linkage should not be a problem for personal computer C++ compiler packages as
the implementor can simply improve the linker. The linker can be made smart enough so
that it merges identicalinline functions and virtual function tables without emitting an
error message.In addition, it is reasonable to assume that this linkage problem will
gradually disappear, as linkers become smart enough to merge identical functions, or to
avoid linking unused (static ) functions from an object file. Unlessexecutable size is a
crucial issue for some reason, it is probably best to ignore the linkage problems in some
C++ implementations.

7.2 General techniques for reducing data size
There are many techniques for reducing the size of program data.These techniques
apply to all three types of memory — static, stack and heap storage.In some cases, a
method may increase the memory storage in one area to decrease the memory usage in
another, which is valid only if the total storage requirements decrease.

7.2.1 Different data structures

The program should be examined to determine if a large space reduction can be achieved
by changing to different data structures.For example, the program could use arrays
instead of linked lists or binary trees, to avoid the extra space due to pointer storage.
However, this also wastes more space if the array is not full, and it is even better to use
dynamic arrays, which do not waste any storage, as exactly the right amount of memory
is allocated. Unfortunately, using different data structures can sometimes reduce the
time-efficiency of programs.

7.2.2 Recalculation

This is exactly the opposite of the data structure augmentation, storing precomputed
results and lazy evaluation techniques for time-efficiency. The idea is to store as little
redundant information as possible.Whatever can be calculated from the existing data is
recalculated each time.Naturally, this reduces the time-efficiency of a program.

7.2.3 Unions

When using a lot of structures, space can be reduced by overlaying the data fields. This
can only be done if the fields to be overlayed are mutually exclusive (i.e. they nev er hav e
active data in them at the same time).There is a special data type for this purpose: the
union . A union can be useful, for example, when storing a token from a compiler’s
lexical analyzer. The union declaration below defines a variable that overlays two
fields, a character pointer and along value.
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union token_node {
int token;
union {

char *identifier; /* name of identifier */
long constant_value; /* value of constant */

} u n;
};

The two fields of theunion never contain a value both at the same time.If the token is
an identifier, the pointer field points to the identifier string. If the token is a constant (e.g.
an integral constant or character constant), the long field contains its value. Ifthe token is
some other type, neither field is used.

7.2.4 Reusing space

One way to conserve memory is to reuse the space used by a variable. Theunion data
type is an example of this general idea, and another is reusing variables for different
purposes. For example, rather than letting several functions each have a local temporary
variable, i , they could all use the same global variable (although this is a very dangerous
practice). Asanother example, if a program uses two similar arrays, examine whether the
two arrays can share the same storage (possibly as aunion ).

7.2.5 Small data types: short, char

Instead of using arrays ofint s, use arrays ofshort , char or unsigned char .
There is no problem with this method, provided large integer values are not being stored
(e.g. larger than 127 forchar , or larger than 255 forunsigned char ). Thistechnique
is also worthwhile when applied toint fields instruct s although alignment restric-
tions may limit the improvement — use thesizeof operator to determine if the size of
the struct has been reduced.Smaller local variables could also be declared as a
smaller type, but this may increase the executable size due to type conversions. Notethat
speed can be compromised by using smaller data types because of the type conversions
that often result.Similarly, use float instead ofdouble , where the greater precision
of results is not important.

For example, it is needlessly inefficient to store school grades, which are restricted to
0..100 as anint . The typeunsigned char is adequate as it allows values from 0..255
and it will only require one byte, compared to two or four bytes forint .

7.2.6 Bit-fields in structs

When storing small integers instruct s, there is a way to specify exactly the number of
bits required. These types are called bit-fields, and can only be used for fields inside
struct s or union s. Whenusing bit-fields, small integers or boolean flags are auto-
matically packed into astruct or union . This reduces storage requirements signifi-
cantly, but reduces speed because it is necessary to pack and unpack bits.

The type of a bit-field can only beint or unsigned int . It cannot be specified
as char , short or an enumerated type.Unless the values can be negative, the field
should be declared asunsigned int . If not, one of the bits will be used as a sign bit,
limiting the values that the field can hold (and possibly causing errors if the integer
overflows these limits).
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To minimize storage, all the bit-fields should follow one after the other. If not, the
compiler may not pack them all into the same word. In the following example three
fields are packed into seven bits:

struct node {
unsigned int active:1; /* boolean flag (0/1) */
unsigned int visited:1; /* boolean flag (0/1) */
unsigned int component:5; /* 0..31 */

};

7.2.7 Parallel arrays versus arrays of struct

Because of alignment restrictions, a structure may have unusable padding bytes.The
number of padding bytes can be determined by using thesizeof operator, and subtract-
ing the sizes of each individual field from the size of thestruct . If there are padding
bytes, replacing an array ofstruct with a number of "parallel" arrays removes the need
for this padding. An example of this change is given in Section 4.3.5. Note that
reordering thestruct fields may also be effective (see Section 7.2.9).

7.2.8 Packing

When dealing with large arrays of small integers, it can be more efficient to pack them
together (i.e. more than one value per word), particularly when the information is binary
(true or false), because only one bit per value is needed.On some machines it can even
be worthwhile to pack arrays ofchar into arrays ofint — some machines use whole
integers for the representation ofchar s.

Note that bit-fields are a form of packing provided by the compiler and are much
easier to use.However, bit-f ields cannot always be easily used.For example, in the
following set implementation, bit-fields are not very useful because efficiently accessing
256 different bit-fields (one per character) is very difficult.

Sets of characters can be packed in arrays of bits.Since each of the 256 characters in
a set requires only 1 bit each to indicate membership in the set, a set data structure need
contain only 256 bits.For space-efficiency, these bits can be packed into 32 bytes (each
byte contains 8 bits).

Theunsigned char type is used to represent a byte.If the unsigned qualifier is
omitted, the routines may fail because asigned char value might be negative, and
bitwise operations on negative values are not well-defined.

Table 7.1. Set operations

Function Meaning

init_set(set) Initialize as the empty set
add_member(set, ch) Add character to set
is_member(set, ch) Test if character is member of set
remove_member(set, ch) Remove character from set
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The basic functions needed for a set of characters are shown in Table 7.1.An implemen-
tation of these set operations is shown below:

typedef unsigned char Set[32]; /* set is array of 32 bytes */

void init_set(Set s)
{

s[0] = s[1] = s[2] = s[3] =
s[4] = s[5] = s[6] = s[7] = 0; /* clear 8 bytes */

}

void add_member(Set s, unsigned char ch)
{

s[(ch & 0xf8) >> 3] |= 1 << (ch & 07); /* set bit */
}

void remove_member(Set s, unsigned char ch)
{

s[(ch & 0xf8) >> 3] &= ˜ (1 << (ch & 07)); /* clear bit */
}

int is_member(Set s, unsigned char ch)
{

return (s[(ch & 0xf8) >> 3]
& ( 1 << ( ch & 07))) != 0; /* test bit */

}

The most complicated part of the implementation is the method by which the value of
ch , in the range 0..255, is converted into an array index 0..31 and a bit mask.The array
index is found as the topmost 5 bits ofch , shifted down 3 places to give a value in the
range 0..31.The lowest 3 bits ofch give a value in the range 0..7 to indicate which bit is
to be examined. Shiftinga 1 left by that many bits gives a unique bit mask for each of the
8 cases, with exactly one bit set.Thus any character value is mapped to a unique bit,
which represents its membership in the set.

7.2.9 Reordering struct fields

Because of the word alignment on some machines, the order of fields in a structure can
change the size of astruct . This only applies tostruct s containing different size
fields. A general rule for minimizing the space is to order the fields from largest to
smallest. Thisheuristic may not give the best ordering — examine the size of a few
different orderings using thesizeof operator, if space is crucial.This is a machine-de-
pendent optimization, and may not work well on some machines.

7.2.10 Using malloc for character strings

A common space wastage occurs with structures containing strings.These are often
declared containing arrays ofchar , as in:

char label[MAX]; /* Array of MAX characters */

If the strings are usually less than the maximum length, there is great wastage. Abetter
method is to allocate exactly the right number of characters for each string.When storing
the string,malloc is called to allocate the memory as follows:
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char *label; /* Pointer to the string */

label = malloc(strlen(s) + 1); /* allocate memory */
strcpy(label, s); /* store the new label */

One disadvantage of this method is that extra complications are caused by strings stored
separately to thestruct s. Caremust be taken as the labels are now pointers. This
complicates operations such as saving and loading to/from a file, as problems with
pointers must be resolved.

The method may also actuallyincrease space usage (if strings are aboutMAXcharac-
ters long) due to the extra memory used bymalloc for each allocated block.One
method of avoiding this is to use thechar_malloc function as described in Section
6.8, but this will increase executable size.

7.2.11 IBM PC memory models

The choice of memory model on an IBM personal computer can affect the size of pointer
variables. Thesmall or compact memory models will store pointers to data using 16
bits, whereas other memory models will store pointers using 32 bits.Pointers to
functions are slightly different: thesmall and medium models both store function
pointers using 16 bits.The declaration ofnear pointers, to code or data, by using the
near type qualifier, also reduces pointer size to 16 bits.Memory models are discussed
fully in Section 4.8.

7.2.12 C++ static data members

One method of reducing the size of a C++ class object is to declare some of its members
asstatic . This change can be applied to any data members that are the same for any
object. To declare astatic data member, the member declaration is simply prefixed
with the "static " keyword, as below:

class Circle {
static int x_origin, y_origin; // static data members
int x_centre, y_centre;

};

A static data member is effectively a global variable, but with the restriction that it is
enclosed in the scope of a class.This is very similar to the single-function scope restric-
tion of static local variables inside functions.

The initialization of thesestatic data members is slightly difficult. Thecorrect
method of initialization is to place an explicit initialization of thestatic members,
qualified by the class name, in exactly one file (thus there is exactly one definition). The
statements for this are:

Circle::x_origin = 0; // initialize static members
Circle::y_origin = 0;

Unfortunately, the compile-time initialization benefits of static data members are lost
in early versions of C++ (before C++ 2.0) because this syntax is not permitted.In these
versions, the only method of initializingstatic members is to use an assignment
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statement in a member function, and it is often useful to declare a dummy object just to
initialize these members:

class Circle {
static int x_origin, y_origin; // static data members
int x_centre, y_centre;
initialize() { x_origin = 0; y_origin = 0; }

};

main()
{

Circle c;

c.initialize();
.... // rest of program

}

In such situations, it can be more efficient to rely upon the implicit initialization to zero
of static data members (similar to that for global variables). However, this is of little
use if initial values of zero are not required.

7.3 Reducing static storage
Static storage refers to the memory for global and localstatic variables, string
constants and (possibly) floating point constants.All of the general techniques discussed
above can reduce the size of the global andstatic variables.

The space requirements for string constants can be reduced if the compiler has an
option to merge identical string constants (which arise quite frequently).Note that this
can create problems if string constants are modified, although modifying string constants
does defy the ANSI standard and should be avoided.

If there is no such option, or the option does not merge string constants across object
fi les (which is quite likely), merging string constants can be achieved by the programmer,
although the method is far from elegant. A global variable can be declared to hold the
string constant and the name of thischar array is used instead of the string constant.
For example, instead of using:

#define TITLE "A very long string ... "

in a header file, a global array ofchar can be declared to hold the string.As with all C
global variables, the initialized definition of the array should appear in only one C source
fi le, and anextern declaration of the variable should appear in any header file or other
source file that uses the variable.

extern char TITLE[]; /* in header file */

char TITLE[] = "A very long string ... "; /* in C file */

This change is unlikely to reduce the speed of the program, nor does it increase memory
requirements even if TITLE is used only once (there may seem to be an extra 4 bytes to
hold a pointer value pointing at where the string of characters is stored, but this is not so).

If there is a large global orstatic variable, the amount of static storage can be
reduced by allocating it on the heap usingmalloc or thenew operator, or by making it
an automatic variable. Thisis particularly useful if the object has a short "lifetime", in
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the sense that it is used only briefly (e.g. the array is used as temporary storage inside a
function). If the variable is used all the time, this change doesn’t reduce the overall space
problem, but simply moves the problem to another area.

7.4 Reducing stack usage
Stack storage refers to memory storage used for function calls, and includes non-
static local variables, function parameters and system information used to keep track
of function calls.Hence, the basic methods of reducing stack storage are:

• Using fewer and smaller automatic local variables.
• Using fewer and smaller function parameters.
• Reducing the depth of function call nesting.

The size of parameters and local variables can be reduced using the general techniques
discussed above. Another method of reducing the size of parameters is to pass pointers to
struct s instead of passing wholestruct s (see Section 4.6.2).In C++ this can be
done using reference parameters, which are more elegant than converting a function to
the use of pointer arguments (see Section 5.2).

Local variables can be reduced by reusing local variables, although this can introduce
bugs if not enough care is taken. Commonexamples of reusable variables are scratch
variables, such as temporaries orfor loop index variables. For example, if a function
uses two different variables for non-nestedfor loops, a single variable can usually be
used for both loops.

Parameters can be reduced by using global variables, or by packing some of them into
astruct and passing a pointer to thisstruct .

Local variables and parameters stored on the stack can be reduced by declaring them
asregister . Any local variable or parameter of integral or pointer type is a candidate
for declaration asregister . If the compiler does actually use a register for the vari-
able, the amount of stack space has been reduced.Note thatregister variables are not
helpful if the function is recursive, because the value of any non-static variables,
includingregister variables, must be stored on the stack.

Another method of reducing local variables is to use parameters as if they were local
variables. Thisis safe in most cases because call-by-value parameter passing prevents the
function arguments from being changed.This optimization is examined in Section 4.6.4.

Reducing the depth of function call nesting (especially by avoiding recursion) also
reduces stack space requirements.This can be achieved by using preprocessor macros,
inline functions or explicit inline code, but all these methods will increase code size
(unless the function is very small).

Recursion should be avoided as much as possible by using iterative algorithms or tail
recursion elimination (see Chapter 3), but whenever recursion does occur, there are some
extra considerations for reducing stack usage.The conversion of a recursive algorithm to
one using an explicit stack data structure will greatly reduce stack usage, although it will
increase other memory usage because of the memory requirements of the stack (see
Section 3.9.2).
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Since, in a recursive function call, all non-static variables are saved on the
function call stack, local variables should be specified asstatic if possible. A variable
can be madestatic if the value it has before a recursive function call is not used again
after the recursive call has returned (i.e. it doesn’t matter if the recursive call overwrites
its value). Notethat making a variablestatic changes the meaning of initialization
and will usually require changing the initialization to an explicit assignment statement at
the start of the function.As an example, the following print_tree function (to print a
binary tree using indentation to show its tree structure) has its local variablei declared as
static because its value is not important to the recursive calls:

void print_tree(node_ptr tree, int indent)
{

static int i; /* ---- static variable! ---- */

if (tree != NULL) {
print_tree(tree->left, indent + 4); /* left subtree */
for (i = 0; i < indent; i++) /* indent */

putchar(’ ’);
printf("%d", tree->key_field); /* print key */
print_tree(tree->right, indent + 4); /* right subtree */

}
}

7.5 Reducing heap usage
The amount of heap storage used depends on the size of blocks, the number of blocks and
how quickly allocated blocks are freed.The size of blocks can be reduced by the general
techniques discussed above (e.g. packing,union s). Thenumber of heap blocks affects
heap usage in the obvious way (more blocks means more memory) and because of the
fixed space overhead of a few hidden bytes to store information about the block (so that
free can de-allocate it).

When small blocks are used, it can be useful to pack more than one block together to
avoid this fixed overhead of a few bytes per block.A good method of doing this is to
redefine the C library functionsmalloc andfree (see Section 6.8), or to overload the
C++ new anddelete operators for the class (see Section 5.6).

All allocated memory should be returned to the heap as early as possible, using the
free function in C, and thedelete operator in C++.If memory is not freed, unused
memory (called garbage) can accumulate and reduce the available memory.

7.6 Alternative methods of data representation
There are many ways to represent data, and all have varying space usage.For example,
storing all the primes less than 1000 can be done with a list of integers, a list of the differ-
ences between successive primes, or a bit vector, one bit for each integer 1..1000.

Compressing data can reduce space requirements when large amounts of data are
involved. For example, a program using a large number of graphical images may find
that storing them as pixmaps is impractical.However, if only a small number of pixels
are set in each image, only a list of pixels set need be stored.Similarly, if the images are
line drawings, lists of start-end points for each line can be stored.There are many other
more general methods of image compression, but these are beyond the scope of the book.
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Another data representation technique is to use a function to represent the data.For
example, consider the storage of several images generated by a fractal algorithm: the
simplest method of storing the images is to store them as pixmaps.But a much more
space-efficient method is simply to store the values of any arguments passed to the
function creating the fractal images.This way, the images can be recreated by calling the
function with the correct arguments. Theonly space used is a small number of values
containing the arguments and the instructions for the function.However, the recalcula-
tion of an image by this method is extremely time-inefficient.

7.7 Summary
• Executable size can be reduced by avoiding large macros andinline functions and

by not using the larger library functions.

• Space can be reduced by usingunion s, small data types and C++static data
members.

• Packing can be implemented by using bitwise operations or bit-fields.

• Stack usage can be reduced by replacing local variables with global orstatic vari-
ables, and by passing objects by reference.

• Heap usage can be reduced by redefining malloc and free in C, or thenew and
delete operators in C++.

7.8 Further reading
A number of methods of trading time for space, such as recalculation, are discussed in
Jon Bentley’s book. JonathanShapiro discusses the problems of linkage in C++ of
inline functions and the virtual function table.

BENTLEY, Jon Louis,Writing Efficient Programs, Prentice Hall, 1982.

SHAPIRO, Jonathan S.,A C++ Toolkit, Prentice Hall, 1991.

7.9 Exercises
1. Write a more time-efficient non-recursive version of theprint_num function

given in Section 7.1. Hint: Generate the digits right-to-left and store them in a
temporary array of characters, then print out the characters in reverse order. The
size of the temporary array will depend on the maximum value anint can hold,
which can be found by examiningINT_MAX in <limits.h> .

2. [advanced] Write your own minimalprintf function supporting only%d, %sand
%c using the<stdarg.h> macros:va_start , va_end , va_arg . By how
much does linking this function, using the nameprintf , reduce the code size?

3. An educational program needs to store the first 1000 Fibonacci numbers.What is
the most space-efficient method of storing these numbers?
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4. A program that tests a large data structure generates a list of random numbers to
insert (and then later delete).After seeding the random number generator by
calling srand , the program repeatedly callsrand to generate a number which is
inserted into the data structure.Because the program must later call a delete
function with the same sequence of numbers, each random number is also stored in
a huge array. Naturally, this involves massive space wastage. How can the huge
array variable be dispensed with?Hint: The sequence of numbers generated by
rand is not truly random and can be reproduced (how?).

5. Whenattempting to reduce the size of the executable, why is it usually foolish to
replacescanf with a specially written function but still allow calls tosscanf or
fscanf ?

6. Will moving local variable declarations into inner blocks reduce stack usage?The
following declaration is legal in both C and C++:

if (...) {
int i; /* declaration in inner block */

}

7. In a certain school grades are given from 0..100, with half marks allowed. Hence,
the following are legal grades: 0, 0.5, 1, 1.5, 2.0, etc.What is the most space-
efficient method of storing these grades?
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Abstract data types in C++

This chapter examines efficiency at a much higher level than others do.The methods of
implementing various abstract data types are examined from the point of view of
choosing the correct data structure to implement the abstract data type (ADT).In most
cases, there are advantages as well as disadvantages in a particular choice of data
structure, and this chapter examines the trade-offs involved.

This chapter assumes that the reader is familiar with the most common data
structures, such as stacks, arrays, linked lists, binary trees and hashing.The level of
knowledge assumed approximates the level gained in a first-year computer science
course.

The C language does not specifically support the concept of abstract data types, but
the C++ language provides classes as a direct means of implementing abstract data types.
For example, the C++ notion of constructors and destructors makes it very simple to
initialize a new object. Thecompile-time warnings about access violations are also
useful in guaranteeing that an abstract data type cannot be modified by functions other
than its own member functions.Because of the simplicity of coding abstract data types in
C++, almost all the examples in this chapter are coded in C++.

8.1 What is an abstract data type?
The concept of an abstract data type is related to modular code and becomes increasingly
important in larger programming projects.The aim is to separate the manipulations on a
data structure from the code that uses the data structure.To do this, it is necessary to
ensure that the data structure is accessed only by special routines and not by direct
reference to the underlying representation of the data structure.

It is important to distinguish between anabstract data type and adata structure. An
abstract data type is an abstract entity that is implemented in practice by using a data
structure. Itis the aggregate of the data structure and the functions operating on the data
structure.

127
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8.2 The stac k ADT
The classic example of an abstract data type is the stack.The everyday concept of a stack
is that things are put on the top, and removed from the top.The stack abstract data type
supports the same operations.The most common stack operations are shown in Table
8.1.

Table 8.1. Stack operations

Operation Meaning

push Put an element onto the top of the stack
pop Remove an element from the top of the stack
is_empty Test if the stack is empty

To implement the stack as a proper abstract data type, these operations should be the only
way the data structure implementing the stack is acted upon.These functions create and
modify the data structure.The program using the stack abstract data type should use the
stack as if it is ablack box that provides the required functionality — i.e. elements pushed
onto the stack can be later popped.Exactly how this black box is implemented should be
unimportant. Thisapproach is calledinformation hiding or encapsulation because the
details are hidden in a small part of the program.The program using the stack should not
rely upon which data structure the abstract data type is implemented with.For example,
it should not use the knowledge that the stack is implemented by a structure containing an
array and an integer stack pointer. Using this knowledge to check if the stack is empty
with:

if (stack.sp == 0) /* If empty stack */

is incorrect practice because at some stage the implementation of the stack abstract data
type may change to use some other data structure, such as a linked list. The test should
be made with a call to the appropriate abstract data type operation:

if (is_empty(stack)) /* If empty stack - C style */
if (stack.is_empty()) /* If empty stack - C++ style */

The program should never access the data structure directly. If any operation is required
that is not currently supported by the existing abstract operations, a new abstract data type
operation should be added.

To the novice programmer, the use of abstract data types may seem totally pointless.
Defining an extra function or macro,is_empty, may seem wasteful and inefficient.
Why shouldn’t the program take advantage of how the stack is implemented?Why call a
function just to test an integer?

The advantages are qualities such as increased readability and greater modularity.
Modularity refers to the lack of dependence between parts of the program.If a program
is modular, it is easier to debug. Oncethe abstract data type routines are debugged, there
should be no need to test their correctness, no matter what program they are used in.
With less modular code, a small change to an external routine could ruin the data
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structure. With proper use of an abstract data type, the consistency of the data structure is
ensured once the abstract routines have been debugged.

The objection that theis_empty function is inefficient can be overcome by using an
inline function in C++, or a preprocessor macro in C.

In fact, the declaration of abstract data types can aid efficiency because it is simple to
modify the abstract data type to use a different, more efficient data structure.If the stack
pointer variable, sp, were allowed to be accessed directly, changing the data structure im-
plementing the stack would involve a search through all the source files for such uses.If
theis_empty function is used, only its definition need be changed, and any code that
uses a stack remains unchanged.

8.3 Arra y implementation of the stac k ADT
A simple and efficient implementation of a stack uses an array of elements and an integer
(called thestack pointer) which is an index into the current top of the stack (in the imple-
mentation below it is actually one past the top of the stack).The stack grows up and
down in the array, from the zeroth element up to the entry indicated by the stack pointer
(actually one less than the stack pointer, as the stack pointer usually points to the next
free space).When the stack pointer is zero, this indicates an empty stack.The array
implementation is limited in that its size is fixed. Thestack can hold no more than some
maximum number of elements, leaving the potential for stack overflow.

The stack has been implemented in C++ simply because the declaration of abstract
data types is more transparent in C++ than in C.The C++ code for the various routines is
shown below:

//-------------------------------------------------------------------
// Array Implementation of Stack
//-------------------------------------------------------------------

#include <stdlib.h>
#include <iostream.h>

const int SIZE = 100; // How many elements in stack
typedef int data_type; // Type of data is int

class Stack {
private:

data_type arr[SIZE]; // Array holding the stack
int sp; // Stack pointer

public:
Stack() { sp = 0; } // constructor
int is_empty() { return sp == 0; }
void push(data_type data);
data_type pop();

};

//-------------------------------------------------------------------
// PUSH: Push an element on the top of the stack
//-------------------------------------------------------------------

inline void Stack::push(data_type data )
{

if (sp == SIZE) { // Already too many?
cerr << "Overflow error\n";
exit(1);

}
arr[sp++] = data; // Push onto end of array
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}

//-------------------------------------------------------------------
// POP(): Take element from the top of the stack
//-------------------------------------------------------------------

inline data_type Stack::pop()
{

if (sp == 0) { // No elements ?
cerr << "Underflow error\n";
exit(1);

}
return (arr[--sp]); // Pop from end of array

}

8.4 Linked list implementation of the stac k ADT
The main disadvantage of the array implementation of the stack ADT is that stack
overflow can occur. Stacks implemented as linked lists can not suffer from overflow
(except in the rare case of the system running out of heap memory), and may also be
more space-efficient, as only the actual amount of space needed is allocated (this more
than balances the extra space needed for the "next" pointers). However, the disadvan-
tage is that they are less time-efficient than array implementations because the linked list
nodes require calls to the memory allocator.

Linked list implementations of a stack usually use a singly linked list. Insertions and
deletions (push andpop) are performed at the head of the list.For eachpush, a new
element is allocated memory. For eachpop, an element is returned to the heap.The
C++ code for an implementation of a stack is given below:

//-------------------------------------------------------------------
// Linked List Implementation of Stack
//-------------------------------------------------------------------

#include <iostream.h>
#include <stdlib.h>

typedef int data_type; // Type of data is int

class Stack;

struct Node { // Node on the linked list
Node *next;
data_type data;
Node(data_type d) { next = NULL; data = d; }

};

class Stack {
private:

Node *stack; // Head of linked list of nodes
public:

Stack() { stack = NULL; } // constructor
int is_empty() { return stack == NULL; }
void push(data_type data);
data_type pop();

};

//-------------------------------------------------------------------
// PUSH: Push an element onto the top of the stack
//-------------------------------------------------------------------

void Stack::push(data_type data)
{
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Node *new_node = new Node(data);

// Add to Front of list

if (stack == NULL) // if empty list
stack = new_node;

else { // Insert at front of list
new_node->next = stack;
stack = new_node;

}
}

//-------------------------------------------------------------------
// POP(): take element from the top of the stack
//-------------------------------------------------------------------

data_type Stack::pop()
{

data_type temp; // Temp storage of fn return value
Node *temp_ptr;

// Get from Front of linked list

if (stack == NULL) { // if empty stack
cerr << "Internal error: POP from empty stack \n";
exit(1);

}
else { // Get from front, then delete first element

temp = stack->data;
temp_ptr = stack->next;
delete stack; // delete the used node
stack = temp_ptr; // store new head of list

}
return temp;

}

8.5 Hybrid implementation of the stac k ADT
The array implementation of a stack is more efficient than the linked list implementation,
but has the limitation that stack overflow can occur. A better method that is both efficient
and general is to use ahybrid implementation, and combine both approaches.If the
number of elements on the stack is small, they are stored in an array; if there are too
many, a node is allocated and the new element is stored on a linked list. Hence, the first n
elements of the stack are stored in the array and any extras are placed in a linked list. The
code for the hybrid implementation is:

//-------------------------------------------------------------------
// Hybrid Implementation of Stack
//-------------------------------------------------------------------

#include <iostream.h>
#include <stdlib.h>

const int SIZE = 100; // How many elements in array

typedef int data_type; // Type of data is int

class Stack;

struct Node { // Node on the linked list
Node *next;
data_type data;
Node(data_type d) { next = NULL; data = d; }

};



132 Chapter 8

class Stack {
private:

data_type arr[SIZE]; // Array holding the stack
int sp; // Stack pointer
Node *stack; // Head of linked list of nodes

public:
Stack() { sp = 0; stack = NULL; } // constructor
int is_empty() { return sp == 0; }
void push(data_type data);
data_type pop();

};

//-------------------------------------------------------------------
// PUSH: Push an element onto the top of the stack
//-------------------------------------------------------------------

void Stack::push(data_type data)
{

if (sp == SIZE) { // Array is full; use list
Node *new_node = new Node(data);

// Add to Front of list

if (stack == NULL) // if empty list
stack = new_node;

else { // Insert at front of list
new_node->next = stack; // add new node to front
stack = new_node; // update head of list

}
}
else { // Array not full; add to array

arr[sp++] = data;
}

}

//-------------------------------------------------------------------
// POP(): take element from the top of the stack
//-------------------------------------------------------------------

data_type Stack::pop()
{

data_type temp; // Temp storage of fn return value
Node *temp_ptr;

if (stack != NULL) { // Pop from linked list
// Take from front,
// then delete first element

temp = stack->data;
temp_ptr = stack->next;
delete stack; // delete unused node
stack = temp_ptr; // update head of list
return temp;

}
else { // Not using linked list; get from array

if (sp == 0) { // if array empty
cerr << "Internal error: POP from empty stack \n";
exit(1);

}
return arr[--sp];

}
}
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8.6 Search ing — the symbol tab le ADT
The symbol table is an abstract data type that supports searching, insertion, and deletion.
In its abstract form, the symbol table consists of a number of records, each record
containing a number of fields. Onespecial field, called thekey field or thesymbol, distin-
guishes the records.The other fields in a record are the data associated with the key. For
example, when implementing a dictionary of words, the key field is the word and the
other fields are the word’s meaning and pronunciation.

These records must be stored in some data structure.Later sections will examine the
implementation of a symbol table as an array, a linked list, a binary tree and a hash table.
As the symbol table is an abstract data type, it is necessary to define the operations
allowed on a symbol table.The most common operations are given in Table 8.2.

Table 8.2. Symbol table operations

Operation Meaning

search Search the symbol table for a key
insert Add a new key to the symbol table
remove Delete a key from the symbol table
visit Examine all keys, not necessarily in order
print_sorted Print all keys in sorted order

Unfortunately, "delete" is a C++ keyword, otherwise I’d use it as the name of the member
function performing deletion.

Thevisit operation refers to any operation on all the keys that does not require that
the data be sorted — for example, printing the unsorted data, or counting the number of
stored keys. Thevisit operation is distinguished from printing the data in a sorted
fashion because some data structures support efficient non-ordered visiting, but are inef-
ficient when sorted data is required.

An important decision to be made when implementing a symbol table is whether
duplicates in the list of records are to be allowed. Duplicatesare records where the key
fields are equal, but the data fields are not necessarily equal.If duplicates are allowed,
some routines must be modified accordingly. For example, the delete function may need
to delete more than one record if it is to remove all duplicates. If duplicates are not per-
mitted, what action is to be taken when the insert function tries to insert a key that is
already stored in the symbol table?For example, the program could either silently ignore
duplicates by preventing the insertion, or terminate with an error message.

8.7 Alternative data structures
Later sections examine the implementation of the symbol table using arrays, linked lists,
binary trees and hashing, all of which have various advantages and disadvantages. The
choice depends upon which operations are most important.

Search is likely to be fastest using hashing.Sorted arrays give guaranteed fast search;
binary trees give good average search performance; linked lists and unsorted arrays are
not as efficient.
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Insertions in sorted arrays and sorted linked lists are slow; insertions into binary trees
are not quite as slow; insertions into unsorted linked lists and unsorted arrays are very
fast; insertions into a (chained) hash table are quite fast.

Deletions are similar to insertions in terms of cost, except for unsorted arrays and un-
sorted linked lists which have slow deletions. Notethat deletion will always cost at least
the same as search, because deletion involves a search operation to find the key being
deleted.

Sequential processing is an important consideration.For example, some data
structures facilitate the printing of a sorted list of entries in the symbol table.If the
entries need not be processed in a sorted order, the array, linked list and binary tree imple-
mentations are equivalent; hashing is slightly less efficient because of the traversal of
empty locations in the hash table.If entries must be processed in sorted order (e.g. to
print a sorted list of entries), some implementations require an explicit sort operation.
Unsorted arrays and lists, and hashing all require a sort operation.Binary trees, and
sorted arrays and lists all have the data already sorted, and require no sort operation.

The complexity measures for the various operations are shown in Table 8.3. For
those not familiar with this type of complexity measure, the general ordering from fastest
to slowest is:

O(1) < O(log n) < O(n) < O(n log n) < O(n2)

Some of the measures for the operations in Table 8.3 are rough; for example, theO(1)
complexity of hashing operations is slightly misleading.On average, hashing gives close
to constant performance if:

a) The hash function gives a reasonable distribution, yielding few collisions; and
b) The number of elements is not significantly larger than the hash table size.

Similarly, theO(log n) performance of binary trees is an average figure. Underdegener-
ate conditions binary trees may show the sameO(n) performance of sorted lists.

The Print-Sorted column displays the cost of printing a sorted list of entries.This
cost involves the cost of printing, plus a sort operation, if required.Sorting is assumed to
costO(n log n), as this is achievable by a number of different sorting algorithms.Data
structures where the data is already sorted have the best possible complexity for printing,
O(n).

Table 8.3. Complexity of symbol table operations

Data structure Search Insert Delete Visit Print-sorted

Sorted array O(log n) O(n) O(n) O(n) O(n)
Unsorted array O(n) O(1) O(n) O(n) O(n log n)
Sorted list O(n) O(n) O(n) O(n) O(n)
Unsorted list O(n) O(1) O(n) O(n) O(n log n)
Binary tree O(log n) O(log n) O(log n) O(n) O(n)
Hashing O(1) O(1) O(1) O(n) O(n log n)
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The choice of data structure for implementing the symbol table ADT should be based on
the cost of performing the operations most likely to occur. For example, if fast search is
imperative, but sorted output is rarely needed, the hash table is ideal.However, care
should be taken when choosing a complicated algorithm.These measurements are
asymptotic and when the number of elements is small, the overhead of implementing a
more complicated algorithm may be prohibitive. If the number of elements is very small,
perhaps an unsorted array will be most efficient, as there is no memory allocation and no
hash function to compute.Arrays are very good if you know in advance how many
elements are to be stored in the symbol table.In this case, the generality of dynamic data
structures is not an advantage. However, if i t is unknown how many elements are to be
stored, array implementations may be too limited.

8.8 Unsor ted arra y version of the symbol tab le
Arrays are best used for data that doesn’t change frequently (i.e. with few insertions and
deletions). Ifthe data is changing greatly, a dynamic structure such as a linked list or a
binary tree is generally better. Arrays are most appropriate when the amount of data is
known at compile-time, so that the program can reserve the right amount of memory. If
the size is unknown, enough space can be reserved for the largest possible size, or a
dynamic array can be allocated bymalloc, or thenew operator, once the required size
is known.

When searching an array that is not always completely full, an integer variable is
necessary to keep count of how many elements are actually stored in the array. This
prevents searching the unused entries of the array. Also necessary for insertion is another
integer value indicating where the next free location in the array is.Conveniently, this
index can be combined with the count because then elements in the array are stored in
the locations0..n-1, so that the next free location isn. Thus the symbol table imple-
mentation uses an array and an integer value.

An important choice concerning array implementations is whether the data should be
sorted or unsorted.This section examines unsorted arrays and Section 8.9 examines
sorted arrays, which offer faster search but slower insertion.Unsorted arrays offer slow
search but very fast insertion.

The C++ class declaration for the unsorted array implementation is shown below. It
consists of an array of records, leaving room for the addition of associated data fields, and
an integer counter. The definitions for the member functions appear in subsequent sec-
tions.

//------------------------------------------------------------
// Unsorted Array implementation of the Symbol Table
//------------------------------------------------------------

#include <iostream.h>
#include <stdlib.h>

//------------------------------------------------------------

const int MAX_ELEMENTS = 100; // Maximum elements in symbol table

typedef int key_type;

struct key_record {
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key_type key_field; // key field
// .... other data fields here

};

class SymbolTable {
private:

key_record a[MAX_ELEMENTS]; // array
int n; // number in array

public:
SymbolTable() { n = 0; } // constructor
int search(key_type key);
void remove(key_type key);
void insert(key_type key);

};

8.8.1 Search ing an unsor ted arra y

The only way to search for an item in an unsorted array is to go through every element
systematically, one after the other. The simplest way is to start at the zeroth element, and
go through all the rest.The C++ code for sequential search is given below. It assumes
that the array is an array ofstructs with anint key field. Thesearch function returns
the index of the element if found, or −1 if not found.The following version uses the
"looping down to zero" optimization (see Section 4.1.4), but does not use a sentinel (see
Section 3.8):

//------------------------------------------------------------
// Search unsorted array - sequential search
//------------------------------------------------------------

int SymbolTable::search(key_type key)
{

register int i;

for (i = n - 1; i >= 0; i--) { // For all array elements
if (a[i].key_field == key)

return i; // Found, return location
}
return -1; // Not found, return error

}

8.8.2 Inser tion in an unsor ted arra y

Insertions into unsorted arrays are very efficient. Themethod is to add the new key to the
end of the array and then increment the integer to point to the new free location.The
simple C++ code for this is:

//------------------------------------------------------------
// Insert key in unsorted array
//------------------------------------------------------------

void SymbolTable::insert(key_type key)
{

if (n == MAX_ELEMENTS) {
cerr << "\n Table Overflow \n\n";
exit(1);

}
a[n].key_field = key; // Store the new element
n++; // Increment the counter

}



Abstract data types in C++ 137

8.8.3 Deletion in an unsor ted arra y

As with deletion operations for all data structures, deletions in unsorted arrays are broken
into two phases — search and delete.The search for an element must use sequential
search as above. If the element is found, it can be deleted.

The deletion phase can be implemented very efficiently by moving the highest record
down to fill the newly created hole (i.e. copy the highest record over the one that is to be
deleted). Thismethod cannot be applied to sorted arrays, as it ruins the ordering.The
C++ code for this is:

//------------------------------------------------------------
// Remove key from unsorted array
//------------------------------------------------------------

void SymbolTable::remove(key_type key)
{

register int i;

i = search(key); // sequential search
if (i == -1) {

cerr << "Key not found\n";
exit(1);

}
else { // Found it so delete it

a[i] = a[n - 1]; // Copy the last record
n--; // Decrement count of keys

}
}

If there is the possibility of duplicates in the array, then these duplicates must be found
and deleted also.To do so, the search operation must be continued from the current
location until no more are found.

8.9 Sor ted arra y version of the symbol tab le
Sorted arrays have the advantage over unsorted arrays of much faster search, but have the
disadvantage of slower insertions.The ordering of keys in the array permits efficient
sorted output and makes possible the use of a highly efficient search algorithm called
binary search.The C++ class declaration for the sorted array version is identical to that
for the unsorted version in Section 8.8; only the member functions change.

8.9.1 Search ing sor ted arra ys: binar y search

When an array is known to be sorted, a much more efficient searching algorithm, called
binary search, can be used.Binary search is so commonly used that there is a standard
library function to perform binary search, calledbsearch. Howev er, the bsearch
function is inefficient, not because it uses a poor algorithm but because it must call a
(user-supplied) comparison function for every key comparison. Thismeans that it must
call a function just to compare two integers when searching an array of integers. For this
reason it is more efficient to write your own binary search function than to use
bsearch.

The binary search algorithm relies on the keys being sorted and cannot be applied to
an unsorted array. It works byhalving the interval to search at each iteration.Initially it
considers the entire array. The algorithm repeatedly finds the key in the middle of the
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current search interval which is compared to the search key. If the keys are equal the
search is successful.If the search key is greater than the middle key, the search key is
certainly not in the first half of the interval (because the keys are sorted), and the new
interval becomes the top half of the old interval. Similarly, if the search key is less than
the middle key then only the bottom half need be considered.This halving process is re-
peated until the key is found, or there are no more keys in the interval.

A simple implementation of binary search is given below. It assumes that the array is
an array ofstructs with anint key field. It returns the integer index of the element if
found; or −1 if not found.

//----------------------------------------------------------
// Search sorted array - binary search
//----------------------------------------------------------

int SymbolTable::search(key_type key)
{

register int low, high, mid, temp;

low = 0;
high = n - 1;

while (low <= high) {
mid = (low + high) / 2;
temp = a[mid].key_field; // Common sub-expression
if (key > temp)

low = mid + 1;
else if (key < temp)

high = mid - 1;
else

return mid; // Found it!
}
return -1; // Not found, return error

}

An important efficiency point is that equality is the least likely of the three conditions to
be true during loop.Hence, the above code is more efficient than testing for equality
fi rst, as whenever the> operation succeeds, the second test is avoided.

8.9.2 Inser tion in a sor ted arra y

Insertions into sorted arrays are less efficient than for unsorted arrays.One simple but
inefficient method for inserting into a sorted array is to add the new element at the end, as
if the array were unsorted, then sort the array with one of the methods discussed in
Section 8.16 (simple if you already have a sort function written).

A more efficient method is to find where the element should go, then shuffle the rest
upwards by one.The C++ code for this method is:

//--------------------------------------------------
// Insert key in sorted array
//--------------------------------------------------

void SymbolTable::insert(key_type new_key)
{

int pos, temp;

if (n == MAX_ELEMENTS) {
cerr << "\n Table Overflow \n\n";
exit(1);

}
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for (pos = 0; pos < n && new_key > a[pos].key_field; pos++)
; // empty loop

for (temp = n; temp > pos; temp--) // Shuffle others up
a[temp] = a[temp - 1];

a[pos].key_field = new_key; // Store new element in place
n++; // Increment counter

}

This implementation is less efficient than it could be.The two loops can be merged into
one, by searching from the top of the array and shuffling the elements down as the search
progresses. TheC++ code for this is:

//--------------------------------------------------
// Insert key in sorted array
//--------------------------------------------------

void SymbolTable::insert(key_type new_key)
{

if (n == MAX_ELEMENTS) {
cerr << "\n Table Overflow \n\n";
exit(1);

}

for (int pos = n; pos > 0 && new_key <= a[pos].key_field; pos--)
a[pos] = a[pos - 1]; // Shuffle others up

a[pos].key_field = new_key; // Store new element in place
n++; // Increment counter

}

8.9.3 Deletion in a sor ted arra y

The first part of a deletion is a search for the element.Sorted arrays can use binary
search to find the element efficiently. If the element is not found, it cannot be deleted and
some other action must take place (e.g. some error message).

Once found, the element is removed by shuffling all the elements above it down by
one. TheC++ code for this method is:

//--------------------------------------------------
// Remove key from sorted array
//--------------------------------------------------

void SymbolTable::remove(key_type key)
{

register int i, delete_location;

delete_location = search(key); // binary search
if (delete_location == -1) {

cerr << "Key not found\n";
exit(1);

}

for (i = delete_location; i < n - 1; i++)
a[i] = a[i + 1]; // Shift down one element

n--; // Decrement counter
}

If there is the possibility of duplicates in the array, these duplicates are just the subse-
quent entries in the array. They can be deleted by modifying the delete function to delete
more than one item at once.
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8.10 Unsor ted linked list ver sion of the symbol tab le
The main issue in the implementation using linked lists is the choice between a sorted or
unsorted list.A sorted list allows faster search and is useful for printing out an ordered
listing of the data in the symbol table.However, an unsorted list allows faster insertion
because the insertion function can insert the new element at the front of the list, rather
than finding the correct ordered position in the list.The class declaration for the imple-
mentation of the symbol table as an unsorted linked list is given as follows; the defini-
tions of the member functions are given in following sections.

//-----------------------------------------------------------
// Unsorted Linked List Implementation of Symbol Table
//-----------------------------------------------------------

#include <iostream.h>
#include <stdlib.h>

typedef int key_type; // Hide details of data type

class Node { // Node on the linked list
private:

Node *next; // pointer to next node in the list
key_type key_field;

public:
Node(key_type k) { next = NULL; key_field = k; }

friend class SymbolTable; // allow easy access to nodes
};

class SymbolTable {
private:

Node *head; // Pointer to head of linked list
public:

SymbolTable() { head = NULL; } // constructor
Node *search(key_type key);
void insert(key_type key);
void remove(key_type key);

};

8.10.1 Search ing an unsor ted list: sequential sear ch

The only way to search for an item in an unsorted linked list is to go through every
element systematically, from the start of the list to the end.The following C++ function
for sequential search returns a pointer to the element if found, orNULL if not found.

//------------------------------------------------------------------
// Search an unsorted linked list - sequential search
//------------------------------------------------------------------

Node* SymbolTable::search(key_type key)
{

for (Node *ptr = head; ptr != NULL; ptr = ptr->next) {
if (ptr->key_field == key)

return ptr; // Found it
}
return NULL; // Not found

}
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8.10.2 Inser tion in an unsor ted linked list

It is very efficient to insert into an unsorted linked list because the new node can be
simply added to the front of the list.There is no need to find the correct location to place
the key in the correct order. The C++ code for the member function is:

//------------------------------------------------------------------
// Insert an item into an unsorted linked list; insert at front
//------------------------------------------------------------------

void SymbolTable::insert(key_type key)
{

Node *new_node = new Node(key); // allocate new node
new_node->next = head;
head = new_node; // new head of linked list

}

This implementation of the insertion function assumes that duplicates either will not
occur or, if they do occur, they are acceptable.If duplicates must be prevented, the entire
linked list must be searched before inserting the new node, and the insertion process
becomes more expensive. Hence the main advantage of unsorted lists is lost, and it
becomes worthwhile to use a sorted linked list.

8.10.3 Deletion in an unsor ted linked list

Deleting an element from an unsorted linked list involves a sequential search to find the
element and then adjustment of pointers to remove the node from the list.The deleted
node is then returned to the heap.The C++ code for this is:

//------------------------------------------------------------------
// Remove element from unsorted linked list; ignore if not found
//------------------------------------------------------------------

void SymbolTable::remove(key_type key)
{

Node* ptr = head;
Node* before = NULL; // Trailing pointer to previous node

// Ordinary sequential search

for (; ptr != NULL; before = ptr, ptr = ptr->next) {
if (ptr->key_field == key)

break; // Found it
}

if (ptr != NULL) { // FOUND IT?
if (before == NULL) { // Delete at FRONT

head = head->next; // new head of linked list
delete ptr; // delete old head of list

}
else { // Delete at MIDDLE or END

before->next = ptr->next;
delete ptr;

}
}

}

Further deletion of duplicate elements will be inefficient as the sequential search must
continue from the current node.For sorted linked lists, the duplicates would appear
immediately after the node being deleted.
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8.10.4 Sor ting a linked list: inser tion sor t

It is possible to sort a list using a special routine (as discussed in this section), but it is
more common and more efficient to simply keep the list sorted during every insertion.
Using an insertion algorithm that maintains order can be thought of as an incremental sort
algorithm!

Few of the fancy sorting algorithms devised for sorting arrays apply to linked lists,
because it difficult to calculate the address of arbitrary elements.It is possible to copy
the list into an array, sort the array and then rebuild the list, but this method requires the
use of extra memory and the costly creation of nodes for a new linked list.

A good method for sorting lists isinsertion sort (see also Section 8.16.2).This
method makes it possible to modify thenext pointers in the existing list without
requiring extra storage.Although insertion sort is not the most efficient method for sort-
ing arrays, it is efficient on linked lists because insertion into a linked list does not require
shuffling all the other elements along.

The source code for a member function that sorts an unsorted linked list is as follows;
part of the algorithm uses insertion into asorted linked list, and the reader should
compare this code with that given in Section 8.11.2 which explains insertion in a sorted
linked list.

//-----------------------------------------------------------------
// SORT: Sort an unsorted linked list (in place - don’t move nodes)
//-----------------------------------------------------------------

void SymbolTable::sort()
{

if (head == NULL) // empty list is already sorted
return;

Node *sorted = head; // sorted sub-list has one node
Node *unsorted = head->next; // unsorted sub-list has other nodes
sorted->next = NULL;
while (unsorted != NULL) { // while more nodes to insert

Node *temp = unsorted;
unsorted = unsorted->next; // move to next non-inserted node

// modified sequential search of sorted list
Node *prev = NULL, *ptr = sorted;
for (; ptr != NULL && temp->key_field > ptr->key_field;

prev = ptr, ptr = ptr->next) ; // empty loop

if (prev == NULL) { // Insert at FRONT
temp->next = sorted;
sorted = temp; // New head of sorted sub-list

}
else { // Insert at MIDDLE or END

temp->next = ptr;
prev->next = temp;

}
}
head = sorted; // new head of list

}
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8.11 Sor ted linked list ver sion of the symbol tab le
The main advantage of a sorted linked list is a slightly faster search algorithm and the
ease of producing ordered output, but this incurs a more expensive insertion routine.A
sorted linked list is more appropriate than an unsorted linked list if sorted output is
required, or if duplicates must be prevented by the insertion routine (in which case, the
main advantage of unsorted lists is lost).The main body of the C++ class declaration is
the same as that given for the unsorted linked list implementation in Section 8.10.Only
the member functions change, and these are discussed in turn.

8.11.1 Search ing a sor ted list: modified sequential sear ch

Binary search, as used on sorted arrays, cannot be used on sorted linked lists because the
position of the middle element cannot be calculated easily. Howev er, search can still be
made more efficient than ordinary sequential search by searching only up until a key in a
list node isgreater than the search key (i.e. searching until a key that is too large is seen;
the ordering of the list implies that all the keys following in the list will also be too large).
This method increases efficiency over ordinary sequential search only when the element
is not found (i.e. only on unsuccessful search).

//------------------------------------------------------------------
// Search a sorted linked list - modified sequential sort
//------------------------------------------------------------------

Node* SymbolTable::search(key_type key)
{

register Node *p;

for (p = head; p != NULL && key > p->key_field; p = p->next)
; /* empty loop */

if (p == NULL || p->key_field != key)
return NULL; // Not found, return NULL ptr

else
return p; // Found, return pointer to it

}

8.11.2 Inser tion in a sor ted linked list

Whereas insertion into an unsorted linked list merely adds the new node onto the front of
the list, insertion in a sorted linked list requires a search phase to locate the correct
position for the new node. Insertionat the front of the list becomes a special case of a
more general insertion routine.The following insertion routine works by searching the
linked list using a similar algorithm to the one in the previous section.A trailing pointer,
before, is maintained throughout the linked list traversal, so that the node before the
final position of the new node can be accessed (to set itsnext pointer pointing at the
new node). TheC++ code for a simple insert function is:

//------------------------------------------------------------------
// Insert an item into a sorted linked list
//------------------------------------------------------------------

void SymbolTable::insert(key_type key)
{

Node* ptr = head;
Node* before = NULL; // Trailing pointer to previous node
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// Search using modified sequential search

for (; ptr != NULL && ptr->key_field < key;
before = ptr, ptr = ptr->next) ; // Empty loop

if (ptr != NULL && ptr->key_field == key) { // duplicate?
return; // silently ignore it.

}
//---------------------------------------------
// Found its place. Now insert it in list
// Insert it between "before" and "ptr"
//---------------------------------------------

Node *new_node = new Node(key); // allocate new node

if (before == NULL) { // Insert at FRONT (also empty list)
new_node->next = head; // ’head’ and ’ptr’ are the same node
head = new_node; // new head of linked list

}
else { // Insert at MIDDLE or END (also single element list)

new_node->next = ptr;
before->next = new_node;

}
}

Naturally, the efficiency of this routine can be improved if duplicates are not important, in
which case the test for them can be removed. In addition, the assignment to the
"before" variable inside the loop can be removed by making a slight change to the
algorithm. Thefollowing insert function should be slightly more efficient, assuming that
the compiler does a reasonable job of eliminating the "ptr->next" common sub-ex-
pression.

//------------------------------------------------------------------
// Insert an item into a sorted linked list - more efficient
// Assumes no duplicates; avoids using ’before’
//------------------------------------------------------------------

void SymbolTable::insert(key_type key)
{

Node *new_node = new Node(key); // allocate new node

if (head == NULL || key <= head->key_field) { // insert at front
new_node->next = head;
head = new_node; // new head of linked list
return;

}
// Search using modified sequential search

for (Node *ptr = head; ; ptr = ptr->next) {
if (ptr->next == NULL) { // Insertion at end

ptr->next = new_node;
return; // new_node->next is NULL already

}
if (ptr->next->key_field >= key) { // Found place?

new_node->next = ptr->next; // Insert in middle
ptr->next = new_node;
return;

}
}

}
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8.11.3 Deletion in a sor ted linked list

Deleting an element from a sorted linked list is almost identical to that for unsorted lists.
The only difference is that the slightly faster modified sequential search can be used to
find the key to be deleted, but even this is a minor change as the improvement is only for
unsuccessful search and it seems reasonable to assume that that a key to be deleted will
nearly always be found.The C++ code for the deletion routine is:

//------------------------------------------------------------------
// Remove element from sorted linked list; ignore if not found
//------------------------------------------------------------------

void SymbolTable::remove(key_type key)
{

Node* ptr = head;
Node* before = NULL; // Trailing pointer to previous node

// Modified sequential search

for (; ptr != NULL && ptr->key_field < key;
before = ptr, ptr = ptr->next)

; // Empty loop

if (ptr != NULL && ptr->key_field == key) { // FOUND IT?

if (before == NULL) { // Delete at FRONT
head = head->next; // new head of linked list
delete ptr;

}
else { // Delete at MIDDLE or END

before->next = ptr->next;
delete ptr;

}
}

}

The deletion of duplicate elements, if required, is quite simple because they appear
immediately after the first node found.

8.12 Binar y t ree ver sion of the symbol tab le
Binary trees are a well-known data structure in computer science.They aim to provide
fast search without the limitation of a fixed size that inhibits the use of a sorted array and
binary search.Binary search trees offer fast logarithmic search time in the average case,
although they may occasionally degenerate to the linear performance of a sorted linked
list. Insertionsand deletions can also be performed in logarithmic time, provided the tree
does not become too unbalanced.In addition, the data in the tree is sorted, and keys can
be printed out in sorted order with reasonable efficiency.

As with all implementations of a symbol table, there are various ways to handle dupli-
cates. In this implementation, duplicate entries in the binary tree will be silently
prevented (i.e. they will not be inserted).Deletions must also cope with attempting to
delete an item that is not in the tree, and in this implementation, no action will take place.

Since the binary tree is an inherently recursive data structure, many of the operations
on trees can be coded very elegantly by using recursion.However, such recursive
algorithms are inefficient and a non-recursive algorithm should be used wherever
possible. In particular, all of the search, insertion and deletion routines can be
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implemented without recursion.Only a few operations do require recursion, such as
printing out the ordered list of keys.

All of the binary tree search, insertion and deletion routines will assume the following
C++ class declaration:

//-----------------------------------------------------------
// Binary Search Tree Implementation of the Symbol Table ADT
//-----------------------------------------------------------

#include <iostream.h> // declare NULL

typedef int key_type; // Hide details of data type

class Node { // Node on the tree
private:

key_type key_field;
Node *left, *right; // pointers to subtrees

public:
Node(key_type k) { left = right = NULL; key_field = k; }

friend class SymbolTable; // allow easy access to nodes
};

class SymbolTable {
private:

Node * root; // Pointer to root of tree
public:

SymbolTable() { root = NULL; } // constructor
Node* search(key_type key);
void insert(key_type key);
void remove(key_type key);

};

8.12.1 Search ing a binar y t ree

Searching a binary tree is a reasonably simple algorithm.The search continues down the
tree, testing the key in each node to determine if they are equal (found the key), or which
of the two subtrees should be searched.The C++ implementation of an efficient iterative
algorithm is as follows:

//------------------------------------------------------------------
// Search the binary tree for a specified key; return pointer to it
//------------------------------------------------------------------

Node* SymbolTable::search(key_type key)
{

Node *temp;

for (temp = root; temp != NULL; ) {
if (temp->key_field < key)

temp = temp->right; // Search right subtree
else if (temp->key_field > key)

temp = temp->left; // Search left subtree
else

return temp; // Equal. Found it.
}
return NULL; // NOT FOUND

}

It is important that the first if statement’s condition uses the< operator, and not==, as
equality is the least likely condition (all but one of the nodes along the search path will
not be the one searched for).By using the< test first, almost half of the node visits along
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the search path will avoid the second test.If the first test involved==, then all node visits
would cost two key comparisons.

8.12.2 Inser tion in a binar y t ree

The following routine inserts an element into a binary tree.It functions correctly for an
empty tree, changing the value of theroot pointer to point to the newly created node.
For a non-empty tree, it adds the new node to the "bottom" of the tree, replacing aNULL
pointer. A new node is always inserted at aNULL pointer. When a duplicate is encoun-
tered, theinsert function does not complete the insertion operation.This way, the
insert function silently prevents duplicates.A naive C++ implementation of binary
tree insertion is:

//------------------------------------------------------------------
// Insert a key into a binary search tree; prevent duplicates
//------------------------------------------------------------------

void SymbolTable::insert(key_type key)
{

Node* new_node = new Node(key);
if (root == NULL) { // if tree is empty

root = new_node; // new node becomes the new tree
return;

}

Node *ptr = root; // Start at root of tree
Node *parent = NULL; // Pointer to parent node

while (ptr != NULL) { // Loop until get to leaf
if (key > ptr->key_field) {

parent = ptr;
ptr = ptr->right; // Go down right subtree

}
else if (key < ptr->key_field) {

parent = ptr;
ptr = ptr->left; // Go down left subtree

}
else

return; // Duplicate; return without inserting
}

if (key < parent->key_field)
parent->left = new_node; // Node is left of its parent

else
parent->right = new_node; // Node is right of its parent

}

The efficiency of this version can be improved markedly. First, if it is assumed that there
will be no duplicates (or that they are not important), the two comparisons of the key
inside the loop can be reduced to one.Second, the use of the "parent" variable can be
totally avoided, as can the final test to determine whether to set the parent’s left or right
pointer. The improved insertion function is:

//------------------------------------------------------------------
// Insert a key into a binary search tree (assume no duplicates)
//------------------------------------------------------------------

void SymbolTable::insert(key_type key)
{

Node* new_node = new Node(key);
if (root == NULL) { // if tree is empty
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root = new_node; // return new node as the new tree
return;

}

Node *ptr = root; // Start at root of tree

while (1) { // Loop until inserted key
if (key < ptr->key_field) {

if (ptr->left == NULL) { // found place to insert?
ptr->left = new_node; // insert to the left
return;

}
else

ptr = ptr->left; // Go down left subtree
}
else { // larger or equal (but duplicates assumed absent)

if (ptr->right == NULL) { // found place to insert?
ptr->right = new_node; // insert to the right
return;

}
else

ptr = ptr->right; // Go down right subtree
}

}
}

8.12.3 Deletion in a binar y t ree

The deletion algorithm operates in two parts — find and delete.The element must first
be found, and then it must be deleted.The find part of the algorithm must deal with two
cases — found and not found (successful and unsuccessful search).If the element is not
found, some appropriate action must be taken (or no action, as in this implementation).

When search is successful, the element is then deleted from the tree.Deletion from a
binary tree is quite complicated because of the different special cases that must be
handled, as follows:

Case 1. Deleting a leaf node.
Case 2. Deleting a node with one child.
Case 3. Deleting a node with two children.

Deleting the root node is also a special case because this is the only time the value of the
root pointer changes.Note that deleting the root node may involve any of the first three
situations, leading to more special cases.

The first two cases are quite simple.A leaf can be deleted by setting the pointer
above it to NULL. A node with one child can be deleted by setting the pointer above it to
point to its only child.

The third case is more involved. A node with two children is deleted by finding the
rightmost element in the left subtree, and substituting it for the node to be deleted.This
rightmost node must also be deleted from the left subtree, but it is always one of the two
simpler cases (leaf, or one child only).There is no reason that the leftmost node in the
right subtree could not be used instead of the rightmost node in the left subtree.

Deletion has many different cases to cater for. The recursive algorithm would be
slightly simpler, but is inefficient. Theiterative algorithm is more complicated because it
must remember whether the last iteration went left or right, but this is handled by a com-
parison of thekey with theparent pointer at the end of the deletion function.
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//------------------------------------------------------------------
// Remove a key from a binary tree; no action if key not found
//------------------------------------------------------------------

void SymbolTable::remove(key_type key)
{

Node *ptr; // points to the current node
Node *parent; // points to the parent node

for (parent = NULL, ptr = root; ptr != NULL;) {
if (key < ptr->key_field ) {

parent = ptr;
ptr = ptr->left; // search left subtree

}
else if (key > ptr->key_field ) {

parent = ptr;
ptr = ptr->right; // search right subtree

}
else // Found it. Now DELETE it

break;
}
if (ptr == NULL)

return; // Not found. No deletion occurs.

Node *subtree; // Root of the subtree after deletion
// Used to later set pointer in parent

if (ptr->left == NULL && ptr->right == NULL) { // Case 1
delete ptr; // No children - delete a LEAF
subtree = NULL; // Subtree becomes empty

}
else if (ptr->left == NULL) { // One child only: Case 2a

subtree = ptr->right; // Right child is new subtree root
delete ptr; // Dispose deleted node

}
else if (ptr->right == NULL) { // One child only: Case 2b (reverse)

subtree = ptr->left; // Left child is new subtree root
delete ptr; // Dispose deleted node

}
//-------------------------------------------

else { // Two children - Case 3 - the difficult case!
// Find rightmost node of left subtree
//-------------------------------------------

Node *prev, *temp;
for (prev = NULL, temp = ptr->left; temp->right != NULL;

prev = temp, temp = temp->right)
; // empty loop

//--------------------------------------------
// Replace node to be deleted with this node
//--------------------------------------------

if (prev == NULL) { // did not go right at all
temp->right = ptr->right; // right subtree of deleted node

// Left subtree stays the same
delete ptr;
subtree = temp; // *** Case 3a ***

}
else { // went down right at least once

prev->right = temp->left; // delete temp from subtree
temp->left = ptr->left; // replace "ptr" with temp
temp->right = ptr->right;
delete ptr; // *** Case 3b ***
subtree = temp;

}
}
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//---------------------------------------------------
// Have now reconstructed the subtrees after deletion
// Now need to set pointers in parent node
//---------------------------------------------------

if (parent == NULL) // deleted root node?
root = subtree; // subtree becomes whole tree

else
if (key < parent->key_field)

parent->left = subtree; // Node was left of its parent
else

parent->right = subtree; // Node to right of its parent
}

If there is the possibility of duplicates in the tree, then these duplicates must be found and
deleted also.In a binary tree duplicates appear in the left or the right subtree of the
element just found — it depends on how theinsert function handles equality.

The efficiency of the deletion function above can be marginally improved by avoiding
the need for the "parent" variable and also the "prev" variable, in a manner similar to
that used for the insertion function.However, repetitions make the code too long, and the
improvement is left as an exercise to the reader.

There is also a very minor inefficiency: the first three tests on the number of children
could be merged into two, by making deletion at a leaf part of the first of the other two
cases. However, in the interests of clarity this optimization has not been used.

8.13 Binar y t ree ver sion with sentinel pointer s
The efficiency improvement technique of sentinels discussed with regard to arrays in
Section 3.8 can be applied to linked lists and binary trees.Instead of usingNULL
pointers to signify the end of the list or the edge of the tree, pointers to a sentinel node are
used. Theadvantage is that comparisons withNULL can be avoided in the search
function (and also the deletion function because it involves a search of the tree).

The C++ class declaration of a binary tree given in the previous sections can be quite
simply modified to use sentinels.The sentinel node is declared as astatic data
member of theSymbolTable class. Thisinvolves some measure of fighting with C++
syntax and encapsulation rules, because the two classesNode andSymbolTable are
mutually dependent.Both classes are declared as friends of each other to allow access to
the private data members.The details are as follows:

//-----------------------------------------------------------
// Binary Search Tree Implementation with SENTINELS
//-----------------------------------------------------------

#define NIL (& SymbolTable::sentinel_node) // Sentinel pointer

typedef int key_type;

class Node; // forward declaration of Node class

class SymbolTable {
private:

static Node sentinel_node; // Static --> one node
Node * root;

public:
SymbolTable() { root = NIL; } // constructor
Node* search(key_type key);
void insert(key_type key);
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void remove(key_type key);
friend class Node; // allow Node access to sentinel_node

};

class Node { // Node on the tree
private:

key_type key_field;
Node *left, *right; // pointers to subtrees

public:
Node(key_type k) { left = right = NIL; key_field = k; }

friend class SymbolTable; // allow easy access to nodes
};

The main changes to the member functions are changing most uses ofNULL to NIL, a
user-defined preprocessor macro pointing to a sentinel node.The single exception is that
the return value of the search function for unsuccessful search must stay asNULL,
because the user of the class should not be concerned with the address of the sentinel
node.

The main advantage of sentinels occurs in the search function.The algorithm used by
the search function is changed to initially set the sentinel node’s key equal to the search
key. With this method there is no need to test the pointer withNIL (comparison with
NULL would be erroneous) because the equality condition will always cause the loop to
end. Afterthe loop the pointer is tested to see if it is a "fake" success due to finding the
sentinel node, or if the key has been found in the tree.The efficiency should improve
because a pointer comparison on every iteration of the loop has been eliminated and
replaced with one key assignment before the loop and one pointer test after the loop.The
search function becomes:

//------------------------------------------------------------------
// Search the binary tree for a specified key; return pointer to it
//------------------------------------------------------------------

#include <stdio.h> // declare NULL

Node* SymbolTable::search(key_type key)
{

Node *temp = root;

sentinel_node.key_field = key;
for (;;) { // Test with NULL is not needed!!

if (temp->key_field < key)
temp = temp->right; // Search right subtree

else if (temp->key_field > key)
temp = temp->left; // Search left subtree

else {
if (temp == NIL) // Found it or sentinel.

return NULL; // Found sentinels; search fails
else

return temp; // Found it.
}

}
}

The insertion and deletion routines can be easily implemented, and are left as an exercise
for the reader. The insertion routine merely needs allNULL uses changed toNIL. This
simple change to the deletion routine will allow it to work correctly, or else, its search
phase can be made more efficient by modifying the loop in a manner similar to the search
function above.
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8.14 Hashing version of the symbol tab le
Hashing is an efficient method of searching for data, especially if a large number of
search operations are required.The method provides fast average search and insertion
times, is usually faster than arrays or linked lists (sorted or unsorted), and is often more
efficient than binary trees.

The basic idea behind hashing is to use a simple function to compute an integer from
the key (e.g. by adding up all the letters of a symbol).This integer then becomes an
index into an array of entries.Ideally, each different symbol will map to a unique index,
so that there will never be two symbols stored at the same place.If this is true, inform-
ation in the table can be accessed very quickly by calculating the integer index and re-
trieving the array element at that location.

Unfortunately, unique mapping is not usually possible.Instead, the functions must
deal with the problem of already having an entry at the location.This is called a
collision. Collisions can be resolved by either finding a new index, or storing both keys
at the same index by chaining a list at the location.The recommended method for C and
C++ programs is the use of a hash table holding an array of pointers, and chaining for
collision resolution.

The major disadvantage of hashing is that the data is not sorted.Any operation
requiring sorted data must sort the entries explicitly (e.g. printing out). However,
elements can be visited sequentially in anon-ordered sequence although the method is a
little inefficient because all entries in the hash table must be examined to determine if
there is a key stored there.Hashing is not a good data structure for processing the keys
sequentially.

8.14.1 The hash tab le

The hash table is the data structure in which all the data is stored for hashing.It can be
an array ofstructs, but this wastes space unless the hash table is likely to be very full.
A hash table is often implemented in C and C++ as an array of pointers.In this way, an
empty location has aNULL pointer and a full location has a pointer to astruct
containing the information (or a pointer to a list of suchstructs).

It is common for the size of the hash table to be a prime number, because hash
functions of the form(key) mod TableSize give a better distribution whenTableSize is a
prime number. The reason for this involves very advanced theory and is beyond the
scope of this book.

The hash table can be initialized by setting all its entries toNULL. It is most efficient
to declare it as a global variable or astatic local variable, which makes the compiler
automatically initialize the array to zero before the program starts.If initialization is
needed again, the array must be initialized explicitly, and this can be performed by the
efficientmemset library function (although there is a portability problem withmemset
on any machines where theNULL pointer is not all-bytes zero).
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8.14.2 The hash function

The hash function maps the key to an integer index. Any method can be used to produce
an integer from the key. For example, any of the bitwise operators can be used to extract
various bits from the key, and any of the arithmetic operators can be used (e.g. to add
various characters of the key together).

The choice of a hash function is largely a matter of preference.A good hash function
should avoid collisions on different entries as much as possible.Because the values to be
stored in the hash table are usually not known in advance, a good general hash function is
difficult to choose.One that is simple to calculate efficiently is probably best.

A simple hash function on strings is to add the characters up, and take the modulus
with the hash table size.The modulus gives a number between0..n-1, wheren is the
size of the hash table.For a good distribution (i.e. few collisions) it is recommended that
the size of the hash table be a prime number.

It is important to declare the variable as anunsigned int. This prevents overflow
from causing problems with the modulus (%) operator. An overflow could make the vari-
able become negative, resulting in undefined behavior from the% operator. Note that
unsigned is necessary only for the work variable being used to compute the sum, and
not in the function return type.

int hash(char *key)
{

unsigned int sum;

for (sum = 0; *key != ’\0’; sum += *key++); // empty loop
return sum % SIZE;

}

How well this hash function performs depends on the keys to be stored in the hash table.
Any anagrams will cause collisions (e.g. "steal" and "stale").However, this function is
simple to calculate and will perform well in most situations.

8.14.3 Collision resolution — c haining

A collision occurs when two different keys map to the same hash table location.Because
of this possibility, when inserting a new element into the hash table the location must first
be examined to determine whether it already holds an element.If it does, this collision
must beresolved.

There are several methods of resolving the problem of collisions.Some simple colli-
sion resolution schemes work by searching for another empty location in the hash table.
One method, calledlinear probing, works by moving along the table looking for a new
empty location.Another method is to try again with a second hash function (though its
collisions must also be dealt with).However, the recommended method for C and C++
programs ischaining. The C and C++ languages have good dynamic memory allocation
features and hashing may as well make use of them.In this method, a linked list of all
elements that hash to the same location hangs off each hash table entry, and the hash table
contains pointers to linked lists. The linked lists contain all the keys that collided at that
hash table location.
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Another advantage of chaining is that insertion is very efficient, particularly if there is
no possibility of duplicates.To add the element, simply insert the new element at the
front of the unsorted linked list (i.e. the chain).

Searching requires a traversal of the (unsorted) linked list at the hash location.The
efficiency of searching depends on the length of this linked list, which in turn depends on
how evenly distributed the hash values are.If the distribution is even, the lists are likely
to be short.The cost of searching is certainly no worse than other methods.

Deletion is efficient when using chaining because, unlike other collision resolution
schemes, deletion from the hash table causes no consistency problems. Theelement is
simply removed from the linked list. Other collision resolution methods suffer problems
when an element is to be deleted from the hash table.The problem is that a location then
becomes empty, and a search for a key that collided with the deleted element will find an
empty location.How is the search function to know that a collision occurred earlier and
the other element is in another place in the table?To solve this problem, it must be poss-
ible to mark a location as "deleted from" and the hashing algorithms become more
complicated.

Chaining does waste some space because "next" pointers are required in the linked
list, but this seems a small price to pay for its convenience.

8.14.4 Implementing the symbol tab le: hashed c haining

An implementation of the symbol table ADT using hashing with chaining is presented as
follows. Thekeys are character strings, and only the keys are inserted into the table — a
more realistic symbol table structure would contain other data associated with each key.

The symbol table operations are quite simply implemented.Search is a matter of
calculating the hash value and then searching the (unsorted) linked list for the key. Dele-
tion involves calculating the hash value, and a find-and-delete operation on the associated
linked list. Insertion involves calculating the hash value and then inserting at the front of
the linked list. Theinsert function also performs a check for duplicates by first calling
the search function. Thisis slightly inefficient because the hash value is calculated
twice. Moreefficient, but slightly more complicated, would be to search the linked list
within theinsert function.

//-----------------------------------------------------------
// Hash Table Implementation of the Symbol Table ADT
//-----------------------------------------------------------

#include <iostream.h> // declare NULL
#include <string.h> // declare strcpy, strcmp, etc

#define TABLE_SIZE 211 // Hash Table Size: a prime number
#define STR_LEN 30 // Maximum length of string

class Node { // Node on the chained lists
private:

char symbol[STR_LEN + 1]; // symbol being stored
Node *next; // pointer to next node in list

public:
Node() { next = NULL; }

friend class SymbolTable; // allow easy access to nodes
};



Abstract data types in C++ 155

class SymbolTable {
private:

Node * table[TABLE_SIZE]; // Hash table - array of pointers
public:

SymbolTable(); // constructor
Node* search(char * symbol);
Node* insert(char * symbol);
void remove(char * symbol);

};

//------------------------------------------------------------------
// Constructor - initialize the hash table to empty
//------------------------------------------------------------------

SymbolTable::SymbolTable()
{

for (int i = 0; i < TABLE_SIZE; i++) // all pointers are NULL
table[i] = NULL;

}

//-----------------------------------------------------------------
// HASH: Generate an integer hash value for a symbol
//-----------------------------------------------------------------

int hash(char *symbol)
{

unsigned int sum = 0;

while (*symbol != ’\0’)
sum += *symbol++;

return sum % TABLE_SIZE;
}

//------------------------------------------------------------------
// SEARCH: Find a symbol in the symbol table; return pointer to it
//------------------------------------------------------------------

Node* SymbolTable::search(char *symbol)
{

int posn = hash(symbol); // Find hash value
Node *temp;

// Search linked list for the symbol

for (temp = table[posn]; temp != NULL; temp = temp->next) {
if (strcmp(symbol, temp->symbol) == 0)

return temp; // found it
}
return NULL; // not found

}

//--------------------------------------------------------------------
// INSERT: Enter a symbol in the hash table and return a pointer to it
//--------------------------------------------------------------------

Node* SymbolTable::insert(char *symbol)
{

Node * temp = search(symbol);
if (temp != NULL) {

return temp; // duplicate found; return pointer to it
}
else { // No duplicate found. Insert it

int pos = hash(symbol); // get hash value
temp = table[pos]; // get front of list
table[pos] = new Node;
strcpy(table[pos]->symbol, symbol); // store symbol
table[pos]->next = temp; // link up the node

}
return temp; // return pointer to newly created node

}
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//------------------------------------------------------------
// DELETE: delete a symbol from the symbol table
//------------------------------------------------------------

void SymbolTable::remove(char *symbol)
{

int pos;

pos = hash(symbol);
Node *temp = table[pos], *prev = NULL;
for (; temp != NULL; prev = temp, temp = temp->next) {

if (strcmp(symbol, temp->symbol) == 0)
break; // Found it; exit for loop

}

if (temp == NULL) { // Not found
return; // Ignore it

}
else { // Found

if (prev == NULL) // Delete at front of list
table[pos] = temp->next;

else // Delete at middle/end of list
prev->next = temp->next;

delete temp; // Return deleted node to heap
}

}

8.15 Search ing static data — perf ect hashing
In some cases the values of the keys to be stored in the symbol table are known before-
hand and do not change (i.e. no insertions or deletions).Such data is usually referred to
asstatic data. For example, the lexical analyzer of a C compiler must test every sequence
of letters it finds in a source file to determine if it is a keyword or an ordinary identifier.
This involves a search of a table containing all the C keywords. Anotherexample is a
spell checker where the most common words are known and are often stored in a table in
memory (a form of handling the common cases efficiently).

Special algorithms can be used in any situation where the search data is known.
Surprisingly, although there has been much research into building optimal binary search
trees for static data, they are not usually the best solution.The most efficient solution is
to use hashing with a specially developed hash function, designed to prevent collisions.
This is called aperfect hash function and can only be developed for unchanging data.If a
perfect hash function can be found, the symbol table can be searched with one computa-
tion of the hash function and one key comparison to determine if the key is actually there.
By comparison, even the optimal binary search tree will require several comparisons on
av erage.

The most difficult aspect of using this method is the search for a perfect hash function
for a particular set of data.There are a few common methods of doing so:

• Inspired guesswork.
• Brute-force computation.

In some cases, the programmer can work out a function that has no collisions by guessing
at a function.For example, if the programmer notices that all keys hav ea different first
letter then it is easy to compute a perfect hash function as a mapping from the 26 letters
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to a different unique integer, the hash value. Humansare very resourceful and this
method of "guessing" the function works surprisingly well.

The brute-force approach involves trying to generate the hash function using a
computer which tries a number of hash functions of a particular pattern, applies the hash
function to each key, and reports when a function that produces no collisions is found.

As an example of the various approaches, let us attempt to develop a perfect hash
function for the set of 32 ANSI C keywords:

auto break case char
const continue default do
double else enum extern
float for goto if
int long register return
short signed sizeof static
struct switch typedef union
unsigned void volatile while

Using my own version of "inspired guesswork", involving a couple of hours of poring
over ASCII tables, I managed to come up with a reasonable perfect hash function.The
basic approach I took was to break up the words into groups of about fiv e keys by using a
test of the string length, and also by making single character comparisons on the larger
groups of keys with the same length.Once the group was small enough I looked for
letters in the keys that were unique, often the first or second letter, and then examined the
ASCII binary values of these letters.This way, the hash function extracts certain bits
from each letter, and generates a small integer, which is then mapped into an "interval" of
values for that particular group.The function, which produces hash values in the range
0..36, is as follows:

int my_hash(char *s)
{

switch (strlen(s)) {
case 2: /* Only "if" and "do" */

return (s[0] & 01) + 2; /* 2..3 */
case 3:

return (s[0] & 01) + 8; /* 8..9 */
case 4:

if (s[1] == ’o’) /* goto, long, void */
return (s[0] & 03) + 26; /* 26..29 */

else /* auto, case, char, else, enum */
return ((s[1] & 14) >> 1) + 30;

case 5: /* break, const, float, short, union, while */
/* 1st letter is unique */

return (s[0] & 07) + (s[0] == ’c’) + 10; /* 10..16 */
case 6:

if (s[0] == ’s’) /* signed,sizeof,static,struct,switch */
return (s[5] & 03) + ((s[5] & 8) >> 3)

+ ((s[5] & 16) >> 2) + 18; /* 18..22 */
else /* 1st letter not ’s’ - double, return, extern */

return (s[0] & 03) + 23; /* 22..24 */
case 7: /* "typedef", "default" */

return (s[0] & 16) != 0;
case 8: /* continue, register, unsigned,volatile */

/* 1st letter is unique */
return ((s[0] & 04) >> 1) + (s[0] & 01) + 4; /* 4..7 */

default: /* Can’t be a C keyword */
return 0; /* Pick any number */

}
}
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The second approach is to make the computer perform a brute-force search for a perfect
hash function.The following program takes a set of keys from a file and develops a hash
function of the following form:


 i
ΣCi * key[i]


mod N

by trying many combinations of the constantsCi and N . If any of these hash functions
produces no collisions, a perfect hash function has been found.The source code below
implements this concept:

/*-----------------------------------------------------------------*/
/* PERFECT HASH FUNCTION BRUTE-FORCE SEARCH */
/*-----------------------------------------------------------------*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>

/*-----------------------------------------------------------------*/

#define bool int
#define TRUE 1
#define FALSE 0

/*-----------------------------------------------------------------*/

#define MAX 1000 /* Maximum number of words */
#define LEN 10 /* Maximum length of a word */

/*-----------------------------------------------------------------*/

char words[MAX][LEN]; /* words being hashed */
int C[LEN]; /* coefficients of hash function */

/*-----------------------------------------------------------------*/

#define MAX_MULTIPLIER 1 /* Let Ci range 0..MAX_MULTIPLIER */
/* 1 means 0..1 --> use addition */

#define MAX_MODULUS 1000

int MODULUS;
int MODULUS_START_MULTIPLIER = 5;
int MODULUS_TOP;

/*-----------------------------------------------------------------*/
/* Apply the hash function to a key */
/*-----------------------------------------------------------------*/

int compute_hash(char *s)
{

int i;
unsigned int hash;

hash = 0;
for (i = 0; i < LEN; i++) {

hash += s[i]*C[i];
}
return hash % MODULUS ;

}

/*-----------------------------------------------------------------*/
/* Try all the combinations of coefficients */
/* This function finds the perfect hash function! */
/*-----------------------------------------------------------------*/
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void find_best(int n)
{

int num;
bool done;
bool flags[MAX_MODULUS]; /* has a key hashed here yet? */
bool collision;
int val;
int i;

do {
for (i = 0; i < LEN; i++) C[i] = 0;
do {

/* Update C[i]’s for next attempt */
C[0]++;
for (i = 0; i < LEN; i++) {

if (C[i] <= MAX_MULTIPLIER) break;
C[i] = 0;

if (i + 1 < LEN) { C[i + 1]++; }
}

for (i = 0; i < MODULUS; i++) {
flags[i] = FALSE; /* clear flags for this try */

}

collision = FALSE;
for (num = 0; num < n; num++) {

val = compute_hash(words[num]);
if (flags[val]) {

collision = TRUE;
break;

}
flags[val] = TRUE;

}

if (!collision) { /* report success */
printf("NO COLLISION: ");
for (i = 0; i < LEN; i++)

printf("%2d ", C[i]);
printf(", MODULUS = %d ", MODULUS);
if (MODULUS == n) printf(" PERFECT!!!");
printf("\n");
break; /* exit do loop. Do next MODULUS */

}

done = TRUE; /* Finish only when all multipliers */
/* are up to MAX_MULTIPLIER */

for (i = 0; i < LEN; i++) {
if (C[i] < MAX_MULTIPLIER) {

done = FALSE;
break;

}
}

} while(!done);
if (done)

printf("FAILED With MODULUS %d\n", MODULUS);
MODULUS--; /* Try the next modulus value */

} while(MODULUS >= n);
}

/*-----------------------------------------------------------------*/
/* Load the words from a text file */
/*-----------------------------------------------------------------*/

void load_file(char *f, int n)
{

FILE *fp;
int i, j;
char s[200];
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fp = fopen(f, "r");
if (fp == NULL) {

perror(f);
exit(1);

}
for (i = 0; i < n; i++) {

again:
if (fgets(s, 199, fp) == NULL) {

fprintf(stderr, "%s: \n", f);
perror("fgets from file");
exit(1);

}
if (s[strlen(s) - 1] == ’\n’) /* remove fgets’s newline */

s[strlen(s) - 1] = 0;

for (j = 0; j < LEN; j++)
words[i][j] = 0; /* clear to NULLs*/

strncpy(words[i], s, LEN);
words[i][LEN-1] = 0; /* add terminating null, just in case */

for (j = 0; j < i; j++) {
if (strncmp(words[i], words[j], LEN) == 0) {

printf("Duplicate \"%s\" found\n", s);
goto again;

}
}
printf("Word %3d: %s\n", i, words[i]);

}
}

/*-----------------------------------------------------------------*/
/* Start of program execution */
/*-----------------------------------------------------------------*/

int main()
{

int n;
char file[100];

printf("Enter filename: ");
scanf("%s", file);
printf("File: %s\n", file);
printf("How many words? ");
scanf("%d", &n);
load_file(file, n); /* Load in the keys */

MODULUS = n * MODULUS_START_MULTIPLIER; /* start high */
find_best(n); /* Find the hash function! */
exit(0);

}

As shown in the source code above, the program is set to find all hash functions where
the coefficient is either 0 or 1.These functions are a useful special case, as no multiplica-
tions are actually needed (all the characters with a 1 coefficient are simply added).When
the program is run as shown on the ANSI C keywords, the best hash function it produces
has modulus 134 and the following coefficients:

NO COLLISION: 1 0 1 1 1 1 0 0 0 0 , MODULUS = 134

This information can be coded up into a simple perfect hash function.Unfortunately, the
memset andstrncpy calls are necessary to ensure that characters beyond the end of
the string are considered zero, as is assumed by the hash function generator.
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/*----------------------------------------------------------*/
/* Computer-generated addition hash function for C keywords */
/*----------------------------------------------------------*/

int computer_hash(char *s)
{

char s2[10];

memset(s2, 0, 6); /* zero the first 6 letters */
strncpy(s2, s, 6); /* copy up to 6 letters */
return (s[0] + s[2] + s[3] + s[4] + s[5]) % 134;

}

If the records to be stored with these keys are quite large, the space wastage of 134 hash
table entries may be too large. Asimple method of overcoming this is to add an array of
134 small integers (i.e. using thechar type), where each entry in this array sets each C
keyword to a unique value in the range 0..31.On the other hand, this may be a de-
optimization as a sparse hash table can be more efficient than a minimal perfect hash
function. If the table is large, it becomes likely that an unsuccessful search will map to a
location containing aNULL pointer entry, and this avoids the need for the key
comparison.

As a final note about perfect hashing, all of the hash functions in this section (both
human and computer-generated) are specific to the ASCII character set.They are not
portable to the EBCDIC set or other character sets, although it is possible to run the
generator program in these environments to find an alternative hash function.

8.16 Sor ting arra ys
Sorting arrays is a common procedure and there are zillions of different methods.In
addition to writing your own sorting function, you can use theqsort standard library
function, but as this always calls a function just to compare two elements, it is far more
efficient to code up your own sorting algorithm.

The methods of sorting arrays presented in this chapter are: bubble sort, insertion sort,
selection sort and quicksort.Quicksort is the most efficient (in general) and the others
are presented for completeness, and because there are special cases for which they are
well-suited.

The implementations of the sorting algorithms given here are for sorting arrays of
integers. To modify the programs to sort arrays of any type, the only necessary modifica-
tions are to the lines comparing two elements.

8.16.1 Bubb le sor t

Bubble sort is a very simple method for sorting but hasO(n2) average performance and is
therefore also one of the most inefficient. It is only really useful for sorting a small
number of elements, where it will perform reasonably well due to the simplicity of its
algorithm.

Bubble sort works by making multiple passes over the array, looking at adjacent pairs
of elements and swapping them if they are out of order. Passes over the array continue
until no further swaps are made.
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void bubble_sort(data_type a[], int n)
{

int i, j;
int swaps; /* TRUE if did a swap in a pass */
data_type temp; /* Temporary element for use in swapping */

for (i = 1; i < n; i++) { /* Note: not i=0 */
swaps = FALSE;
for (j = n - 1; j >= i; j--) { /* Last element downto i */

if (a[j - 1] > a[j] ) { /* compare two elements */
temp = a[j - 1]; /* Do a swap */
a[j - 1] = a[j];
a[j] = temp;
swaps = TRUE; /* Set the swap flag */

}
}
if (!swaps) return; /* Exit if no swaps done */

}
}

Using theswaps variable improves the efficiency of bubble sort.The algorithm would
still function correctly even if all references to this variable were removed, but it would
be less efficient as it would continue to make further passes even after the array was
already sorted.Theswaps variable allows the algorithm to terminate early when sorting
a partially-sorted array, rather than terminating only whenn passes over the n elements
have been made.

8.16.2 Inser tion sor t

Insertion sort is another simple, but not particularly efficient sorting algorithm.This
algorithm works by growing a sorted part of the array by repeatedly inserting a new
element into this sorted subarray. At every iteration the number of sorted elements
increases by one.This algorithm is inefficient if the elements are greatly out of order,
because the insertion of an array element requires that all other elements be shifted
upwards by one location.The following implementation maintains the locations
0..i-1 as the sorted subarray:

void insertion_sort(data_type a[], int n)
{

int i, j, k;
data_type temp;

for (i = 1; i < n; i++) { /* Note: i=1 */
for (j = 0; j < i && a[j] <= a[i]; j++) /* Where in 0..i? */

; /* empty loop */

if (j != i) { /* If not already in place */
temp = a[i]; /* Insert in place */
for (k = i; k > j; k--) /* by shuffling others up */

a[k] = a[k - 1];
a[j] = temp;

}
}

}

Despite the fact that this algorithm isO(n2) in the average case, it has very good perfor-
mance if the array is almost sorted.
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8.16.3 Selection sor t

Selection sort also makes multiple passes over the array. Each pass increases the portion
of the array that is sorted and subsequent passes ignore the sorted part.The length of
each pass over the array gradually reduces as the unsorted part of the array reduces.
During each pass the minimum element is found.At the end of a pass this minimum
element is put in its correct place and the pass is reduced so that it no longer includes that
newly sorted element.In the following function the variablei indicates the part of the
array to be scanned for the minimum element (i.e.i+1 up ton-1):

void selection_sort(data_type a[], int n)
{

int i, j;
int min_index; /* Index of minimum element */
data_type min_element; /* Value of minimum element */

for (i = 0; i < n - 1; i++) {
min_index = i; /* First is minimum so far */
min_element = a[i];

for (j = i + 1; j < n; j++) { /* Find minimum i+1..n-1 */
if (a[j] < min_element ) { /* compare two elements */

min_index = j; /* New minimum found */
min_element = a[j];

}
}
a[min_index] = a[i]; /* Swap ith element with the */
a[i] = min_element; /* minimum of a[i] ..a[n-1] */

}
}

8.16.4 Quic ksor t

Quicksort works by breaking down the sorting problem into smaller sorting problems.To
sort an array, a single element called thepivot element, is chosen. Thiselement is used to
partition the array into two subarrays. Inone partition, all elements are less than or equal
to the pivot element; in the other partition they are all greater than the pivot element.
These smaller partitioned subarrays are then sorted.

This method of partitioning reduces sorting a large array to sorting two smaller
arrays. Thesimplest quicksort algorithm uses two recursive calls to sort the two new
partitions. Thisworks correctly but is not as inefficient as it can be.

/*---------------------------------------------------------------*/
/* QUICKSORT algorithm for sorting arrays */
/*---------------------------------------------------------------*/

void quick_sort(data_type arr[], int n, int bottom, int top)
{

register int i, middle;
data_type temp; /* used by swap macro */
data_type pivot_value;

#define swap(x, y) temp = arr[x], arr[x] = arr[y], arr[y] = temp

if (top > bottom) { /* If more than 1 element to sort */

/* Partition into subarrays: bottom..middle-1, middle+1..top */

pivot_value = arr[bottom]; /* arr[bottom] is pivot */
middle = bottom;
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for (i = bottom + 1; i <= top; i++) {
if (arr[i] < pivot_value) {

middle++;
swap(i, middle);

}
}
swap(bottom, middle); /* Move pivot to middle */

/* Now sort the two partitions recursively */

quick_sort(arr, n, bottom, middle - 1); /* do bottom */
quick_sort(arr, n, middle + 1, top); /* do top */

}
}

The following more complex implementation of quicksort eliminates one of these
recursive calls. Thetechnique used to remove it is called elimination of tail recursion.
Instead of having a recursive call as the last statement of a function, a branch back up to
the top of the current invocation of the function is used.The branch takes the form of a
while loop in the following improved function.

A further improvement in the following function is that thesmallest subarray is sorted
recursively. This reduces thetotal number of recursive calls still further. Sorting a
smaller array will have fewer recursive calls at the next levels.

/*-----------------------------------------------------------------*/
/* QUICKSORT2: Quicksort with Tail Recursion Eliminated */
/*-----------------------------------------------------------------*/

void quick_sort(data_type arr[], int n, int bottom, int top)
{

register int i, middle;
data_type temp; /* used by swap macro */
data_type pivot_value;

while (top > bottom) { /* Finished if zero/one element */
pivot_value = arr[bottom]; /* arr[bottom] is pivot */
middle = bottom;
for (i = bottom + 1; i <= top; i++) {

if (arr[i] < pivot_value) {
middle++;
swap(i, middle);

}
}
swap(bottom, middle); /* Move pivot to middle */

/*---------------------------------------------------------------*/
/* Partitioned the array - now sort the two partitions */
/* Eliminate tail recursion - do only one partition recursively */
/* Do smallest partition recursively - reduces recursion further */
/*---------------------------------------------------------------*/

if (middle - bottom < top - middle) {
quick_sort(arr, n, bottom, middle - 1); /* do bottom */
bottom = middle + 1; /* do top */

}
else {

quick_sort(arr, n, middle + 1, top); /* do top */
top = middle - 1; /* do bottom */

}
}

}
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One major aspect of quicksort not addressed properly by the preceding function is the
method of choosing the pivot element for the partitioning phase.The simple choice of
the leftmost element can cause worst-case behavior on already sorted arrays.A better
way to choose the pivot element is by examining several different elements in the array.
Commonly, themedian of the top, middle and bottom elements is chosen as the pivot.

Another method of improving the efficiency of the quicksort algorithm is to solve
small cases by using a special algorithm.When the number of elements to be sorted in a
subarray drops below some level (e.g. less than 5 elements), it is better to use a simpler
special-purpose sort algorithm instead of using more recursive calls. Useeither special-
purpose inline code for sorting this small number of elements with an optimal number of
comparisons, or call one of the simpler sorting algorithms: insertion sort, selection sort.
Hence, a better quicksort implementation would test how many elements are to be sorted
and use the special routine if the number is small enough.

8.16.5 Choosing a sor ting algorithm

Generally speaking, the quicksort algorithm is the best general-purpose sorting algorithm.
However, sometimes other algorithms may be better when:

• the number of elements to be sorted is small; or
• the array is "almost" sorted (few elements out of place).

If the number of elements is small, the extra overhead in the quite complicated implemen-
tations of quicksort may be prohibitive. A simple algorithm, such as insertion sort, may
be preferable.

When an array is almost sorted, the quicksort algorithm may exhibit worst-caseO(n2)
behavior. In this case, a simpler algorithm may be preferable.

8.17 Summar y
• Abstract data types are not only good programming practice, but also aid the process of

performance tuning, because it is simple tochange the underlying data structure
without affecting the code thatuses the abstract data type.

• Stacks are most efficiently implemented as arrays, but this method is limited to a fixed
size. Ahybrid stack and linked list implementation is fast and general.

• Arrays are most useful for searching for a small number of elements.

• Sorted arrays have very fast search and ordered printout routines, but unsorted arrays
have faster insertion and deletion.

• The main differences between sorted and unsorted linked lists is that unsorted lists
have very fast insertion, but sorted lists allow easy sorted printout.

• The ordering of key tests using the<, > and== operators are important for efficiency
in both the binary search algorithm on arrays, and binary tree search.

• Binary tree search, insertion and deletion can all be performed inO(log n) time on
av erage, and can all be implemented with efficient non-recursive algorithms.
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• Hashing is a good method of achieving fast search but does not allow eff i cient sequen-
tial processing, sorted or unsorted.

• If the keys being searched for are fixed, a perfect hash function can be tailor-made and
a very fast hashing search routine implemented.

8.18 Fur ther reading
The efficiency of data structures is a huge area of research in computer science, and this
chapter has touched on only a little of that theory. The following are some of the best
references in this area:

GONNET, G. H., and BAEZA-YATES, R., Handbook of Algorithms and Data
Structures (2nd edn), Addison-Wesley, 1991.

HOROWITZ, E., and SAHNI, S.,Fundamentals of Data Structures (3rd edn), Pitman
Publishing, 1990.

KNUTH, Donald E., The Art of Computer Programming (Vol. 3): Sorting and
Searching, Addison-Wesley, 1973.

STANDISH, T. A., Data Structure Techniques, Addison-Wesley, 1980.

8.19 Exercises
1. Improve on the insertion routine for sorted arrays by using a process similar to

binary search to find where to insert the key.

2. Improve on the deletion routines for the sorted and unsorted linked list implemen-
tations of the symbol table by removing the assignment to the "before" variable
inside the main loop.

3. Improve the deletion routine of the binary tree implementation to remove the need
for the "parent" pointer and the "prev" pointer.

4. Examinethe use of sentinels (see Section 8.13) for the sorted linked list implemen-
tation of the symbol table.Sentinels should allow the removal of pointer tests with
NULL from the loops in the search, insertion and deletion routines.

5. Implementa quicksort routine for sorting an unsorted linked list. The sort should
be performed "in place", without moving any nodes or creating new nodes, but only
by changing the "next" pointers.

6. Whenthe cost of key comparison is very high compared to the cost of following a
next pointer in a linked list, the efficiency of searching a sorted linked list can be
improved by using jump search. The idea is to jump forward a few nodes, say 10
nodes, at each iteration before performing a key comparison. Ifthe key is before
the "look-ahead" node, a sequential search of the 10 nodes is necessary; if it is after
the node, jump search continues further along the list.Implement the jump search
algorithm. How can its efficiency be improved if sentinels are also used?
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7. How useful is a doubly-linked list for implementing the symbol table as a (sorted)
linked list? What are the implications for efficiency?

8. Implementthe insertion and deletion routines for the sentinel version of the binary
tree in Section 8.13.Although changing all occurrences ofNULL to NIL should be
adequate, try to improve the search phase in the deletion routine by taking advan-
tage of the sentinel node (i.e. eliminate a comparison withNIL inside the loop by
setting the key in the sentinel node).

9. Implementa print_sorted routine for a binary tree as efficiently as possible.
Hint: The keys should be printed by using aninorder traversal, and the inorder
traversal can be improved with the same methods of improvement used for
preorder traversal in Sections 3.9.1 to 3.9.4.

10. Completethe symbol table implementation with hashing by writing theremove
function for the hash table.

11. Thehash table implementation in this chapter uses an unsorted linked list to chain
collisions. It is possible to use some other data structure for these collisions, such
as a sorted linked lists, binary tree, or even another hash table.Examine the
efficiency of these alternatives. Isan unsorted linked list the best choice?

12. Implementthe symbol table using hashing with the linear probing method of colli-
sion resolution.How do you modify the search function to solve the consistency
problems created by deletion?

13. Examinethe addition of acount member function to return the number of keys
currently stored in the symbol table.Which data structures make this easiest?
How can an incremental algorithm be used to define thecount function?

14. Anotherefficiency technique calledpairing computation is relevant where two
quantities can be calculated together faster than by computing them both sep-
arately. How can this idea be used to efficiently implement insertion in a symbol
table for a compiler, which must examine the symbol table to determine if a symbol
is present, and insert it if not?Hint: The inefficient solution is to call thesearch
function and then call theinsert function if the search is unsuccessful.

15. How can you apply the technique ofcaching commonly used values to symbol
table implementation?Under what circumstances will it improve eff i ciency?

16. Improve the quicksort implementation by making a better choice of pivot element
and by using a specialized sorting method, such as insertion sort, when the number
of elements in the subarray is "small enough".
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Example applications

Several programs for a variety of tasks are presented in this chapter and the methods of
efficiency improvement in this chapter are applied to these programs.The programs were
chosen for various reasons, although they all satisfy the basic requirement of not being
too small or too large. Thetic-tac-toe game-playing program was chosen simply because
it is an interesting little program that I had already written (although I hadn’t optimized
it). Checkingif an integer is prime is a neat mathematical problem that is often examined
when considering efficient design of algorithms.

9.1 An invincible tic-tac-toe player
When I began writing this efficiency book I looked around for a program of my own that
I could try to optimize, and came across a program to make the computer play invincible
tic-tac-toe. Ihad written the program after learning about computer game-playing in an
Artif icial Intelligence course.The theory of computer game-playing is quite advanced
and, as you probably know, computers are already threatening the human mastery of
complicated games such as chess.Let us examine how computers play games.

9.2 Game trees and the minimax algorithm
Computers are not "smart".They play two-player games using a brute-force method of
examining every possible move, and then every possible opponent’s reply, and then every
move they could then make, etc. In complicated games such as chess, the computer can
analyze only a few moves deep (usually fewer than 10), because the huge number of
possible moves makes the number of variations immense.However, in the game of tic-
tac-toe the computer can examine every variation, all the way to the final position,
because the number of moves is always small (less than 9).In fact, the number of varia-
tions will be less than 9* 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1 = 362, 880because at the initial
position there are 9 possible moves and the number of moves for each move after that
will decrease by 1.However, this is not a very accurate upper bound because not all
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games last 9 moves, and the number of variations is more like 250,000 (it is left as an
exercise to the reader to find out exactly how many).

The variations arising from a position are usually represented as a multiway tree
where each node represents a position, and each line (branch) represents a move. This is
called thegame tree, and it is the basis of all computer game-playing algorithms.An
example of the game tree arising from a tic-tac-toe position close to the end of a game is
shown in Figure 9.1.The game tree for a position earlier in the game would have a
greater number of nodes (in fact, close to 250,000)

Figure 9.1. Game tree for a tic-tac-toe position. X to move
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Note that, for simplicity, moves on the board are numbered as follows:

1 | 2 | 3
--+---+--
4 | 5 | 6
--+---+--
7 | 8 | 9

The computer chooses its move using aminimax algorithm. Atpositions where the game
is over (either a win, loss or draw), the final position is given a value by using what is
called thestatic evaluation function, as shown in Table 9.1. The end of the game need
not be always at the same level in the tree; an early win or loss can occur before the 9
moves are up.

The actual values of the static evaluation function are not important, except that a loss
must be weighted less than a draw which is then less than a win.If this is so, we can see
that the computer would like to maximize its score and the opponent would like to
minimize the score.Thus at the top level of the game tree, the computer is trying to
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Table 9.1. Static evaluation function

Value Game result

1 Win
0 Draw

−1 Loss(opponent wins)

maximize, but at the next level of the game tree it is the opponent’s move, and the aim of
the opponent will be tominimize the score.

This is the basis of theminimax algorithm, which starts at the bottom of the tree,
evaluating final positions with the static evaluation function. Then, for each internal
node, the values of its child nodes are either maximized or minimized (depending on
whose move it is at this node), and the internal node is given this value. Bypropagation
all the way up to the root, the value of the root node is found.This value is the result that
the game will have if both players choose their best moves. For example, in Figure 9.1
the result of the game with best play would be a draw because the value of the root node
is zero (draw).

The move chosen by the minimax algorithm for the current position will be one of the
moves that lead to a child node of maximum value. Hence,the move chosen by the
minimax algorithm for the position in Figure 9.1 is 6, because this is the only move that
does not lead to a loss.To a person, this is obviously the only move because it blocks a
row of three for O, but the computer must use brute-force search of all variations to find
this out.

In a real implementation of minimax, the program does not build the game tree as a
tree data structure.Instead it follows the tree structureimplicitly by using a recursive
algorithm. Ineffect, this is a postorder traversal of the game tree.The essence of the
recursive implementation of the minimax algorithm is given below in pseudo-code:

minimax(position):
if game won or drawn then

return static_evaluation(position)
else

generate all legal moves
generate all the new positions for these moves
applyminimax to all the new positions (Recursive call!)
if maximizing level then

return maximum value and its associated move
else

return minimum value and its associated move
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9.3 A simple implementation using minimax
The minimax algorithm is thus the basis of a computer game-playing program.The
proper implementation of the game also needs the following routines:

• Initialize the board.
• Display the board.
• Generate all moves from a position.
• Static evaluation function.
• Make a move on the board.

The following program is the source code for the original version of the tic-tac-toe player,
which was implemented without any particular concern for efficiency. The program uses
the minimax algorithm but the implementation is slightly complicated by the fact that it
that it doesn’t just return a single move, but returns the entire "best" variation.

/*----------------------------------------------------------------*/
/* Tic-Tac-Toe game playing program */
/* by David Spuler, February 1991 */
/*----------------------------------------------------------------*/

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <ctype.h>
#include <time.h>

/*----------------------------------------------------------------*/

#define DEMO 1 / * 1 i f w ant computer v. computer */
/* 0 if want human v. computer */

/*----------------------------------------------------------------*/

typedef int bool; /* A boolean-like type */
#define FALSE 0
#define TRUE 1

/*----------------------------------------------------------------*/

#define NOUGHT 0 /* Player items */
#define CROSS 1
#define EMPTY 2 / * e mpty square */

#define DRAWN 3 / * Game is drawn */
#define UNFINISHED 4 / * Game is not yet finished */

#define NOUGHT_CHAR ’O’ /* Characters for text screen board */
#define CROSS_CHAR ’X’
#define EMPTY_CHAR ’ ’

#define VERT_CHAR ’|’ /* Characters to create board lines */
#define HORIZ_CHAR ’-’
#define CORNER_CHAR ’+’

#define INFINITY 100 /* INFINITY > max value of static_eval */
/* -INFINITY < min value of static_eval */

/*----------------------------------------------------------------*/

typedef struct {
int current_move; /* Number of the move, 1..9 */
int player; /* Player to move, noughts or crosses */
int squares[3][3]; /* The 3x3 board */
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}board_type;

typedef struct {
int number; /* Number of moves in the list */
int moves[9]; /* List of possible moves */

/* at most 9 moves (9 squares) */
}move_list_type;

/* Type returned by MINIMAX analysis function */
typedef struct {

int value;
int path[9]; /* List of possible moves */

/* at most 9 moves (9 squares) */
} minimax_type;
/*----------------------------------------------------------------*/

void setup_board(board_type *b)
{

int i, j;

b->player = CROSS; /* Crosses to move */

for (i = 0; i < 3; i++)/* Clear all squares */
for (j = 0; j < 3; j++) {

b->squares[i][j] = EMPTY;
}

b->current_move = 1; /* First move */
}

/*----------------------------------------------------------------*/
/* Makes the move on the board - p uts the letter down */
/* -- Assumes that the move is legal --- */
/*----------------------------------------------------------------*/

void make_move(board_type *b, int m)
{

int x, y;
int temp;

temp = m-1;/* convert to 0..8 */
x = t emp % 3;/* Get X coordinate */
y = t emp / 3;/* Get Y coordinate */

assert(b->squares[x][y] == EMPTY);
b->squares[x][y] = b->player; /* Put the new letter down */

b->player = b->player == NOUGHT?CROSS:NOUGHT; /* Change player */
b->current_move++; /* Count the moves made */

}

/*----------------------------------------------------------------*/
/* Check if the move is legal (returns true if so) */
/*----------------------------------------------------------------*/

bool is_legal_move(board_type b, int m)
{

int x, y;

x = ( m-1) % 3;
y = ( m-1) / 3;
return b.squares[x][y] == EMPTY; /* Legal if square is empty */

}

/*----------------------------------------------------------------*/

move_list_type generate_moves(board_type *b)
{

move_list_type move_list;
int m;
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/*-------------------------------------------------------*/
/* Brute force generation: try all squares for legality */
/*-------------------------------------------------------*/

move_list.number = 0; /* No moves in list yet */
for (m = 1; m <= 9; m++) {

if (is_legal_move(*b, m))
{ / * L egal move, so add to list */

move_list.moves[move_list.number] = m;
move_list.number++;

}
}
return move_list;

}

/*------------------------------------------------------------*/
/* Work out who is the winner (X, O, Drawn, or Unfinished ) */
/* Looks for rows, columns and the 2 diagonals. */
/* If no winners, drawn if board is full, else Unfinished */
/*------------------------------------------------------------*/

int winner(board_type b)
{

int i, j;
bool match, match1, match2;
int temp, temp1, temp2;
int x1, y1, x2, y2;

/*-------------------*/
for (i = 0; i < 3; i++) /* Check all columns */
{ / *-------------------*/

temp = b.squares[i][0];
if (temp == EMPTY) /* square empty? */

continue; /* Can’t be a column */
match = TRUE;
for (j = 1; j < 3; j++) {

if (temp != b.squares[i][j])
match = FALSE;

}
if (match)

return temp;
}

/*----------------*/
for (j = 0; j < 3; j++) /* Check all rows */
{ / *----------------*/

temp = b.squares[0][j];
if (temp == EMPTY) /* square empty? */

continue; /* Can’t be a row */
match = TRUE;
for (i = 1; i < 3; i++) {

if (temp != b.squares[i][j])
match = FALSE;

}
if (match)

return temp;
}

/*----------------------*/
/* Check both diagonals */
/*----------------------*/

x1 = y1 = 0;
x2 = 0; y2 = 2;
temp1 = b.squares[x1][y1];
temp2 = b.squares[x2][y2];
match1 = temp1 != EMPTY; /* Can’t match if empty */
match2 = temp2 != EMPTY;
for (j = 0; j < 3; j++) {

if (temp1 != b.squares[x1][y1])
match1 = FALSE;
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if (temp2 != b.squares[x2][y2])
match2 = FALSE;

x1++; y1++; /* Move along one diagonal */
x2++; y2--; /* Move along other diagonal */

}
if (match1)

return temp1;
if (match2)

return temp2;
/*--------------------------------------*/
/* No winner yet. Drawn if board full, */
/* otherwise Unfinished */
/*--------------------------------------*/

if (b.current_move > 9)
return DRAWN;

else
return UNFINISHED;

}

/*----------------------------------------------------------*/
/* STATIC_EVAL: Static evaluation function used by Minimax */
/* Value of position. ( 1 : w in, -1 : Loss, 0 : Draw ) */
/*----------------------------------------------------------*/

int static_eval(board_type b, int player)
{

int t;

t = w inner(b);
if (t == player)

return 1; /* You win */
else if (t == DRAWN)

return 0; /* Drawn game */
else

return -1; /* Opponent wins */
}

/*----------------------------------------------------------*/
/* MINIMAX: Do a minimax tree analysis of position */
/* Return value of position and move list of best path. */
/* The first move on this path is the BEST move. */
/*----------------------------------------------------------*/

minimax_type minimax(board_type b, int depth, int player)
{

int i;
minimax_type temp; /* Hold return value of this function */
move_list_type move_list;
bool max; /* True if maximizing level */
int best; /* Best value found so far */

max = ((depth & 01) == 0); /* Maximize if level even */
for (i = 0; i < 9; i++)

temp.path[i] = 0; /* Clear the path to empty initially */

if (winner(b) != UNFINISHED) /* Stop going deeper when game over */
{

temp.value = static_eval(b, player);
return temp;

}

if (max) /* Initialize for minimizing/maximizing */
best = (-INFINITY);

else
best = INFINITY;

move_list = generate_moves(&b); /* Generate list of moves */

for (i = 0; i < move_list.number; i++)/* For all moves */
{
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board_type temp_board;
minimax_type temp2;

temp_board = b;
make_move(&temp_board, move_list.moves[i]);
temp2 = minimax(temp_board, depth+1, player); /* Recursion! */

if (( max && temp2.value > best) /* Maximizing */
|| (!max && temp2.value < best)) /* Minimizing */

{
int k;
best = temp2.value; /* New best score */
temp.path[depth] = move_list.moves[i]; /* add move to path */
for (k = depth + 1; k < 9; k++) /* get other moves */

temp.path[k] = temp2.path[k];
}

}
temp.value = best;
return temp;

}

/*----------------------------------------------------------*/

void computer_move(board_type *b)
{

minimax_type temp;

temp = minimax(*b, 0, b->player); /* Computer uses minimax */
make_move(b, temp.path[0]); /* Make the chosen move */

}

/*----------------------------------------------------------*/

void player_move(board_type *b)
{

int move;
bool error;

#if DEMO
computer_move(b);

#else
do {

error = FALSE;
printf("\n\nWhat is your move (1-9)? ");
scanf("%d", &move);
if (move < 1 || move > 9 || !check_legal_move(*b, move)) {

printf("\nIllegal move. Try again.\n");
error = TRUE;

}
else { /* Legal move, so make the move */

make_move(b, move);
}

}while(error); /* Until legal move */
#endif
}

/*----------------------------------------------------------*/

void print_board(board_type b)
{
#define MARGIN 5 /* Number of spaces board is inwards */

int i, j, k;

if (winner(b) != UNFINISHED)
printf("Final Position\n\n");

else
printf("Before move %d\n\n", b.current_move);

for (j = 0; j < 3; j++) {
for (k = 1; k <= MARGIN; k++)/* Space inwards */
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putchar(’ ’);

for (i = 0; i < 3; i++)/* Draw the board */
{

if (b.squares[i][j] == EMPTY)
putchar(EMPTY_CHAR);

else
if (b.squares[i][j] == NOUGHT)

putchar(NOUGHT_CHAR);
else

putchar(CROSS_CHAR);

if (i + 1 < 3)
putchar(VERT_CHAR);

}
if (j + 1 < 3) {

printf("\n");
for (k = 1; k <= MARGIN; k++)/* Space inwards */

putchar(’ ’);
/* Do horizontal line */

for (k = 0; k < 3; k++) {
putchar(HORIZ_CHAR);
if (k + 1 < 3)

putchar(CORNER_CHAR);
}

}
printf("\n");

}
printf("\n");

}

/*----------------------------------------------------------*/

void announce_winner(board_type b)
{

int temp;

printf("\n\n");
temp = winner(b);
if (temp == NOUGHT)

printf("Noughts is the winner. \n\n");
else
if (temp == CROSS)

printf("Crosses is the winner.\n\n");
else

printf("The game goes to Jack (drawn)\n");
}

/*----------------------------------------------------------*/

main()
{

board_type b;
int computer_colour = CROSS;

printf("Welcome to Tic-Tac-Toe on a 3x3 board.\n\n");
setup_board(&b); /* Initialize the board */
print_board(b);

do {
if (b.player == computer_colour)

computer_move(&b);
else

player_move(&b);
print_board(b);

}while(winner(b) == UNFINISHED );/* Until game over */
announce_winner(b);
exit(0);

}
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9.4 Improving the efficiency of the program
To improve the efficiency of this program it is necessary to have some measure of the
time it takes. For this program, it was a simple matter of using demo mode and measur-
ing the execution time with theclock library function. Note that in the following
discussion, the timings were taken from a powerful mainframe computer.

First, I set out to improve the program without using any special algorithm im-
provement (i.e. without using alpha-beta pruning; see Section 9.5), and without profiling.
The first version took 56 seconds to run.I removed the pass-by-value of the large board
structures by using pointers; this reduced execution time by about 9% to 51 seconds.

I unrolled completely all of the fixed-length loops in theprint_board , gener-
ate_moves and winner functions (this involved rewriting the winner function).
This reduced execution time by 33% to 34 seconds.

I converted the program to use a one-dimensional array of 9 squares, instead of a two-
dimensional array of 3x3 squares, reducing execution time by 35% to 22 seconds.This
removed not only array calculations but also the need for the%and / operators in the
make_move function.

Converting all the smaller functions to macros reduced execution time by 13% to 19
seconds.

Rewriting the call tostatic_eval as inline code, allowing the removal of the
duplicated calls to thewinner function, reduced execution time by 10% to 17 seconds.

Removing from the program all the unnecessary references to thepath variable
reduced execution time by 35% to 11 seconds.

I added a "common case" test to thewinner function whereby if the move number
was less than 6, it would immediately return a result saying that the game was unfinished.
However, this decreased efficiency slightly, indicating that the early moves are not really
a common case (because the number of positions examined increases exponentially with
the number of moves) and the extra test costs time rather than gaining it.

As a final improvement, I moved the base case in theminimax function up one level
by testing if the game was finished before recursively calling minimax for the next
level. This improved eff i ciency by approximately half a second, an improvement of
about 5%, making the program require about 11 seconds.A summary of these optimiza-
tions is given in Table 9.2

Table 9.2. Improvements to the tic-tac-toe program

Technique Improvement Execution time

Pass pointers to structures 9% 51seconds
Unrolled fixed length loops 33% 34seconds
Conversion to one-dimensional array 35% 22seconds
Replace functions with macros 13% 19seconds
Removed duplicate call towinner 10% 17seconds
Removed unnecessary code 35% 11seconds
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I had run out of ideas for minor optimizations.The run-time had been improved from 56
seconds to just 11 seconds, a massive improvement. However, readability had suffered
and the original program was now beyond recognition; in particular, the minimax
function was much more complicated.In making all these improvements I had also
introduced a number of bugs at various stages, and these had taken some time to remove
(thankfully, it was easy to detect them by noting when the move sequence of the demo
game changed).The next step was to try a different algorithm: alpha-beta pruning.

9.5 Alpha-beta pruning
Alpha-beta pruning is a method of avoiding the evaluation of entire subtrees of the game
tree. Ittakes advantage of the fact that the minimax algorithm doesn’t generate the entire
tree before evaluating internal nodes (in fact, minimax performs a postorder traversal of
the game tree).By maintaining two extra cut-off values, traditionally calledalpha and
beta, the improved algorithm can avoid evaluating many subtrees. Theterm "pruning"
comes from the fact that branches are pruned from the game tree.

The improved alpha-beta algorithm improves on minimax in that it does not always
make a recursive call to evaluate all moves from a given position. Oncea cut-off occurs,
no more moves from the position are evaluated. Theprocedure is similar at minimizing
and maximizing levels. At a minimizing level, the beta value is continually updated so as
to be the current maximum value of a move found at this position.At the same time, a
test for an alpha cut-off is performed. Thebeta value is propagated down to the next level
of the tree, which will be a maximizing level, and the value is used for a beta cut-off. The
alpha value is continually updated at a minimizing level, and tracks the minimum value
found so far at the current position.

The occurrence of a cut-off, either alpha or beta, indicates that the current position
will never arise with best play because there is a better variation available at a higher
level node in the tree.An alpha cut-off indicates that at the current position the opponent
has a good move, but you can avoid this variation by choosing a better move earlier in the
move sequence. Similarly, a beta cut-off indicates that you have a good move, but the op-
ponent can avoid the variation in favor of a better one.

I took the original 56-second program and changed theminimax function to use
alpha-beta pruning.It took about 2 seconds to run.The use of a different algorithm
should have been the first attempt at efficiency improvement, not the last.However, the
smaller improvements were not wasted, because modifying the 11-second program to use
alpha-beta pruning reduced execution time further to 0.46 seconds.The alpha-beta prun-
ing function is shown below:

/*------------------------------------------------------------------*/
/* MINIMAX: Do an alpha-beta pruning minimax analysis of game tree */
/* Returns value of position and the BEST move */
/*------------------------------------------------------------------*/

minimax_type minimax(board_type b,int d,int player,int alpha,int beta)
{

int i;
minimax_type temp; /* Use to hold return value of this function */
move_list_type move_list;
bool max; /* True if maximizing level */
int best; /* Best value found so far */
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max = ((d & 01) == 0); /* Maximize if level even */

if (winner(b) != UNFINISHED) /* Stop going deeper when game over */
{

temp.value = static_eval(b, player);
return temp;

}

if (max) /* Initialize for minimizing/maximizing */
best = (-INFINITY);

else
best = INFINITY;

move_list = generate_moves(&b); /* Generate list of moves */

for (i = 0; i < move_list.number; i++)/* For all moves */
{

board_type temp_board;
minimax_type temp2;

temp_board = b;
make_move(&temp_board, move_list.moves[i]);
temp2 = minimax(temp_board, d + 1, player, alpha, beta);

if (max) { /* Maximizing */
if (temp2.value > best) {

temp.best_move = move_list.moves[i]; /* store move */
best = temp2.value; /* New best score */
alpha = temp2.value; /* New alpha bound */

if (best >= beta) { /* Check for beta cut-off */
temp.value = best;
return temp;

}
}

}
else { /* Minimizing */

if (temp2.value < best) {
temp.best_move = move_list.moves[i]; /* store move */
best = temp2.value; /* New best score */
beta = temp2.value; /* New beta bound */

if (best <= alpha) { /* Check for alpha cut-off */
temp.value = best;
return temp;

}
}

}
}
temp.value = best;
return temp;

}

The initial values ofalpha andbeta are important, being negative and positive infinity.
The first call to theminimax function is:

temp = minimax(*b, 0, b->player, -INFINITY, INFINITY);

There is one very important detail in the implementation of alpha-beta cut-offs: the
operators>= and<= in the check for cut-offs are crucial for efficiency. The program will
still perform correctly with the> and< operators, but many cut-off opportunities will be
lost, particularly in the tic-tac-toe game because, with only three possible values from the
static evaluation function, equality is fairly common.
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9.6 Total precalculation
Although there seems to be no obvious method of improving the efficiency still further, it
is possible to precalculate the best moves for every possible position, store these moves in
an array, and thereby replace the call to theminimax function with a super-efficient
table lookup. To do so we would need two programs — one to generate the array of
moves, and one to play the game using this array. To generate the moves, we apply the
program already written to all possible board positions.Since we have 39 = 19683 board
positions and our program requires at most 0.46 seconds, the data generating program
should run in less than 9000 seconds (about 3 hours).In fact, it runs much faster than this
because 0.46 seconds is required only when starting with the empty board.

For simplicity, we work by encoding each position as a number in the range 0..39, by
regarding the position as a base-3 number with digits X, O and the empty square.The
functions todecode an integer to a position andencode a position as an integer are shown
in the following source code.The basic algorithm to generate the precalculated array of
best moves is also shown (with the code to perform the position analysis omitted for the
sake of brevity).

/*-------------------------------------------------------------*/
/* Create precalculated array of best moves */
/*-------------------------------------------------------------*/

#define TABLE_SIZE 19683 /* 3ˆ9 different positions */

/*----------------------------------------------*/
/* ENCODE: Convert board position to an integer */
/*----------------------------------------------*/

int encode(const board_type *b)
{

int i, code = 0;

for (i = 0; i < 8; i++)
code = code * 3 + b->squares[i];

return code;
}

/*---------------------------------------------*/
/* DECODE: Convert integer to a board position */
/*---------------------------------------------*/

void decode(board_type *b, int code)
{

int i;

b->current_move = 1;
b->player = COMPUTER_PIECE;
for (i = 8; i >= 0; i--) {

b->squares[i] = code % 3; /* extract ternary digit */
code /= 3;
if (b->squares[i] != EMPTY) /* count how many moves made */

b->current_move++;
}

}

/*-----------------------------------------------------------*/

main()
{

board_type b;
int code;
char filename[100];
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char c;
minimax_type ret;
FILE *fp;

printf("Enter name of resulting file: ");
scanf("%s", filename);
fp = fopen(filename, "r"); /* Check doesn’t already exist */
if (fp != NULL) {

printf("That file already exists!!\n");
printf("Do you want to overwrite it? (y/n): ");
scanf(" %c", &c);
if (tolower(c) != ’y’) {

fclose(fp);
exit(1);

}
fclose(fp);

}
fp = fopen(filename, "w"); /* Create/truncate file */
if (fp == NULL) {

perror(filename);
exit(1);

}
/*-----------------------------------------------------*/
/* Now produce the C declaration for initialized array */
/*-----------------------------------------------------*/

fprintf(fp, "char board_table [%d] = {\n", TABLE_SIZE);
fflush(fp);
for (code = 0; code < TABLE_SIZE; code++) { /* for 3ˆ9 positions */

decode(&b, code);
if (b.current_move <= 9) {

ret = minimax(&b, 0, COMPUTER_PIECE);
}
else

ret.best_move = 0; /* dummy move; board is filled up! */
fprintf(fp, "%d", ret.best_move);

if (code + 1 < TABLE_SIZE) { /* comma after all but last */
fprintf(fp, ", ");
if (code % 20 == 19) /* new line every 20 digits */

fprintf(fp, "\n");
}

}
fprintf(fp, "\n};\n"); /* finish the array declaration */
fclose(fp);
exit(0);

}

The tic-tac-toe program can be made much smaller by removing any functions related to
the minimax algorithm, and rewriting the computer_move function as follows.
Naturally, the final game-playing version still uses many other functions, such as
setup_board andprint_board , but these are omitted for the sake of clarity.

/*-----------------------------------------------------------------*/
/* Tic-tac-toe player using total precomputation */
/*-----------------------------------------------------------------*/

#include "table.c" /* Include computer-generated file */

void computer_move(board_type *b)
{

int code;

code = encode(b);
assert(1 <= board_table[code] && board_table[code] <= 9);
make_move(b, board_table[code]);

}
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This version of the tic-tac-toe player takes only 0.03 seconds to play an entire game
against itself.

9.7 Testing for prime numbers
Testing if an integer is a prime number is a well-known problem in number theory. An
integer is prime if it is divisible only by 1 and itself.For example, 5 is prime because it is
divisible only by 1 and 5, but 9 is not prime because it is divisible by 3.

Our first attempt at testing if an integer is prime is to test whether it can be divided by
the numbers 2..n − 1, where the test for divisibility is to compare the result of the
remainder operator, %, with zero. n is divisible by i if and only if n%i is zero. The
function is:

bool prime1(long n)
{

long i;

for (i = 2; i < n; i++) { /* Try 2..n-1 */
if (n % i == 0) /* Does i divide n evenly? */

return FALSE; /* Yes, so not prime */
}
return TRUE; /* None divide, so must be prime */

}

To examine its run-time efficiency, calling the function for the numbers from 1 to 10,000
was timed. Thisalgorithm took 12.59 seconds.

The best optimization to apply to this technique is to choose a better algorithm.A
little thought will show that there is no need to test for divisors up ton − 1. Onlydivisors
up to √ n need be tested.If a number has a divisor greater than√ n, then it also has a
divisor less than√ n, and the smaller divisor will be found by our algorithm.The
improved algorithm can be coded up as:

bool prime2(long n)
{

long i;
long max;

max = (long) sqrt( (double) n);
for (i = 2; i <= max; i++) { /* Try 2..sqrt(n) */

if (n % i == 0) /* i divides n evenly? */
return FALSE; /* Yes, so not prime */

}
return TRUE;

}

Care has been taken not to computesqrt in the condition of thefor loop, since this
would callsqrt for every iteration.

The improved algorithm takes only 0.34 seconds to test the primes from 1 to 10,000,
compared to 12.59 seconds for the first version. Thisincredible speedup occurs because
the first algorithm performs approximatelyn2 remainder tests, whereas the second
algorithm performs only approximatelyn √ n tests (note that remainder tests on composite
numbers are much fewer for both algorithms because a divisor can be found quickly).
Even so, the speedup seems incredible until the way the timings are performed is taken
into consideration — the numbers from 1 to 10,000 are tested.By using some simple
mathematics to estimate how much speedup should be expected, the cost of testing
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1..10,000 for the two algorithms can be approximated by the formulae:

10,000

i=1
Σ i2 ≡ 333, 383, 335, 000

10,000

i=1
Σ i√ i ≡ 4, 000, 500, 012

where the values have been calculated by a small computer program.Hence, our estimate
of the speedup factor is around 333/4≡ 83, and we estimate that the second algorithm
should take around 12.59/83≡ 0. 15 seconds, which is far better than the actual result.
The fact that the algorithm does not do as well as the estimate can be traced to the fact
that the summation formulae do not take into account that the algorithms do not take as
long to detect a non-prime integer as they do for a prime.

The algorithm can be improved still further by noting that the program should never
test for divisibility with an even number larger than 2 since numbers which are divisible
by large even numbers will have already been identified as non-prime by the fact that they
are divisible by 2. Hence, the algorithm can be modified to skip over even numbers:

bool prime3(long n)
{

long i;
long max;

if (n <= 2)
return TRUE;

if (n % 2 == 0) /* divide by 2 as special case */
return FALSE;

max = (long) sqrt( (double) n);
for (i = 3; i <= max; i += 2) { /* 3..sqrt(n) odds only */

if (n % i == 0)
return FALSE;

}
return TRUE;

}

This improvement reduced the execution time from 0.34 to 0.20 seconds.The remainder
operationn%2was then replaced by a bitwise-and operation, reducing the time further by
10% to 0.18 seconds.The fact that this small change improved the speed by such a large
percentage shows that the divisibility test succeeds frequently (in fact, half the time).

The idea of avoiding dividing by even numbers can be generalized to avoiding
dividing by any multiples of numbers already tested.This is difficult to do for all
numbers, but it was possible to remove the remainder tests for all multiples of 3 by using
the improved function:
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bool prime4(long n)
{

long i;
long max;
int count3;

if (n <= 3)
return TRUE;

if ((n & 1) == 0) /* Divide by 2 as special case */
return FALSE;

if (n % 3 == 0) /* Divide by 3 as special case too */
return FALSE;

max = (long) sqrt( (double) n);
count3 = 3; /* 3rd decrement sets to zero */

/* as i’s first value is 5 */
for (i = 5; i <= max; i += 2) { /* 3..sqrt(n), odds only */

count3--;
if (count3 == 0) {

count3 = 3; /* multiple of 3 */
continue; /* skip it */

}
if (n % i == 0)

return FALSE;
}
return TRUE;

}

This small improvement to the algorithm improved the efficiency from 0.18 seconds to
0.16 seconds.

9.8 Precomputing arrays of primes
Interestingly, a first attempt at precalculation failed to improve eff i ciency, and actually
increased run-time.The following function took 0.17 seconds, and in fact, when the
number of primes in the precalculated array was increased, efficiency went down.
Conversion of the array references to use a pointer traversal of the array (see Section
4.1.9) improved the situation slightly, but it was still less efficient than earlier algorithms.
Presumably, the problem is the extra processing performed each loop iteration.

bool prime5(long n)
{

long i, max;
int j;
static long primes[] = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 };

#define NUM_PRECALC ( s izeof(primes) / sizeof(long))

for (j = 0; j < NUM_PRECALC; j++) {
if (n <= primes[j]) /* Must be prime; <= catches 1 */

return TRUE; /* == would require 1 in array */
if (n % primes[j] == 0)

return FALSE; /* Divides, so not prime */
}
max = (long) sqrt( (double) n);
i = p rimes[NUM_PRECALC - 1] + 2; /* Start at next odd */
for (; i <= max; i += 2) { /* up to sqrt(n), odds only */

if (n % i == 0)
return FALSE;

}
return TRUE;

}
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Finally, a boolean array indicating whether an integer in the range 0..1000 was prime or
not was used (this was calculated by another program).Surprisingly, this had no notice-
able improvement over the best algorithms, taking 0.16 seconds.However, when all the
numbers up to 10,000 were precalculated, the execution time was reduced to 0.03
seconds.

bool prime6(long n)
{

long i;
long max;
int j;

static bool is_prime[] = {
#include "primes.h" /* Include precalculated array */

};

#define NUM_PRECALC ( s izeof(is_prime) / sizeof(bool))

if (n < NUM_PRECALC)
return is_prime[n]; /* Look up result in table */

else
return prime5(n); /* Call a general prime routine */

}

9.9 How the prime functions were timed
The scaffolding used to time the various functions is quite interesting in itself.Clever use
of an array of pointers to functions meant that adding another function to evaluate was
just a matter of adding its name to the initialization of the array of pointers to functions.

main()
{

long n;
long i;
int alg;
clock_t start;

static bool (*fns[])(long) = { /* pointers to functions */
prime1, prime2, prime3, prime4, prime5, prime6

};

#define MAX 10000 /* How many primes to test */

#define NUM_ALG \
(sizeof(fns) / sizeof(fns[0])) /* number of algorithms */

static double times[NUM_ALG]; /* array of run-times */
static bool arr[NUM_ALG][MAX + 1]; /* flags indicating primes */

/*-------------------------*/
/* Time all the algorithms */
/*-------------------------*/

for (alg = 0; alg < NUM_ALG; alg++) { /* for all algorithms */
start = clock();

for (i = 2; i <= MAX; i++)
arr[alg][i] = fns[alg](i); /* test if i is prime */

times[alg] = (clock() - start) / (double) CLOCKS_PER_SEC;
}
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/*----------------------------------------------------------*/
/* Perform debugging check to ensure all return same values */
/*----------------------------------------------------------*/

for (i = 2; i <= MAX; i++) {
bool value = arr[0][i];
for (alg = 0; alg < NUM_ALG; alg++) { /* for all algorithms */

if (arr[alg][i] != value) {
printf("Fails i = %ld, prime%d = %d, prime1 = %d\n",
i, alg + 1, arr[alg][i], value);
exit(1);

}
}

}

/*-------------------------------*/
/* REPORT the times of execution */
/*-------------------------------*/

for (alg = 0; alg < NUM_ALG; alg++) { /* for all algorithms */
printf("Version %d took %5.4f seconds\n", alg + 1, times[alg]);

}
exit(0);

}

9.10 Further reading
My artificial intelligence textbook was by Elaine Rich, and the minimax and alpha-beta
algorithms are adapted from there (although she uses a slightly more efficient method
where testing if the level is minimizing or maximizing is avoided by negating the value at
each level). An excellent book on writing games such as tic-tac-toe, chess, checkers, go,
poker, and many others, isComputer Gamesmanship by David Levy.

LEVY, David, Computer Gamesmanship, Century Publishing, 1983.

RICH, Elaine,Artificial Intelligence, McGraw-Hill, 1983.

9.11 Exercises
1. Make the tic-tac-toe player a more user-friendly game by adding features such as

interactive choice of demo mode, take back move, hint, etc.

2. Modify the minimax and alpha-beta versions of the tic-tac-toe player to determine
how many nodes are evaluated by the static evaluation function. By what percent-
age does alpha-beta pruning reduce the number?

3. Modify the tic-tac-toe program to play tic-tac-toe on an NxN board.

4. Modify the precalculated tic-tac-toe player so that it can play either player. At
present, it does not correctly precalculate moves for alternating players, but always
assumes X is to play from the current position.

5. Modify the prime5 function in 9.8 to remove the loop overhead by completely
unrolling the first loop.
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Ideas for compiler optimization

Whereas previous chapters have examined the issue of efficiency from the point of view
of the programmer, this chapter looks at efficiency from the point of view of the compiler
implementor. The design of optimizing compilers is still an area of current research, and
there are many techniques that could be covered. However, rather than discuss the many
issues of code optimization, this chapter focuses upon optimizations that are relevant to
the C and C++ languages.In particular, the effect of the ANSI C standard on compiler
optimization is given special emphasis.

The fundamental principle of optimization is to replace a computation with a more
efficient method that computes the same result.The ANSI C standard specifies the
results of computations as if on an "abstract machine", but the methodsused by the
compiler are not specified. Thecompiler’s optimizer is free to choose any method that
produces the correct result.This is commonly called the "as if" rule, since the program
must run as if it were executing on the abstract machine.

One important consideration for optimizers is whether they are allowed to remove
code that may produce some form of exception, such as aNULL pointer dereference or
arithmetic overflow (which might cause program termination, or some other side effect).
Fortunately, such effects are classed as "undefined behavior" in the ANSI C standard and
the compiler is free to treat them in any way. Ignoring such exceptions is one possible
behavior, and hence the compiler’s optimizer may remove such statements (provided the
statements cause no other useful side effects, of course).

10.1 Well-known optimization techniques
The fundamental design of an optimizer for a C or C++ compiler is largely the same as an
optimizer for any other procedural programming language.For an introductory discus-
sion of compiler optimization, the reader is referred to any good compiler textbook, such
as Aho, Sethi and Ullman (1986).This section examines well-known optimizations when
applied to C and C++.
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Naturally, all operations and statements should be implemented with the most
efficient instructions.Some of the more difficult areas are theswitch statement (see
Section 4.2.3 for a brief discussion), and the conditional operator. The conditional oper-
ator should produce code identical to theif statement wherever its result is not used;
hence it is worthwhile to determine if the result is used when deciding on the code
sequence to use.

10.1.1 Code motion and common sub-expression elimination

Large-scale code transformations such as code motion and common sub-expression elim-
ination suffer from problems because of C’s system level ancestry, and are often avoided
by compiler implementors (and rightly so!).These transformations can cause problems
when a location has special properties, such as a memory-mapped I/O port, and a useful
reference may be "optimized out" because it appears redundant to the compiler. This
fact, along with bugs in optimizers, helps explain the well-known phenomenon of a
program that works without optimization, but fails if the optimizer is used.The
volatile keyword is a partial solution to the problem, but it is limited in that it must
be added to existing code.For further discussion, refer to Section 10.8.

An interesting possibility for improving these optimizations is to use knowledge
about the standard library functions.In particular, the knowledge that some library
functions never produce a side effect can be used to generalize the sub-expressions to
which code motion and common sub-expression can be eliminated.The library functions
which don’t produce side effects include, for example,strlen , strcmp and all of the
<ctype.h> functions. Considerthe following code fragment:

for(i=0; i < strlen(s); i++)
hash += s[i];

if(strcmp(s1,s2) == 0)
printf("equal");

else if(strcmp(s1,s2) < 0)
printf("less than");

else
printf("greater than");

In theory, a compiler could optimize the following code using knowledge ofstrlen and
strcmp . Thestrlen call can be moved before the loop and the secondstrcmp call,
which is a common sub-expression, can be removed by storing and reusing the result
from the first call. I’ ll be very impressed when I see a compiler that can do this!

10.1.2 Constant folding

The well-known technique of "constant folding" can be applied in C and C++ to both
integral and floating point constants, and also to objects declared asconst (see Section
10.9). Althoughthe ANSI C standard specifies that a compiler must honor the presence
of brackets, even for commutative-associative operators, this was mainly introduced to
solve problems programmers had when they were trying to reduce the size of relative
error in floating point computations.Hence, although brackets should be honored for
floating point expressions, a compiler can often rearrange integral expressions. Infact, if
done properly, the "worst" that rearranging an integral expression can do is to cause an
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overflow condition. Thisis no problem on the many 2’s complement implementations
where integer overflow has no effect and cannot be detected; nor is it a problem for other
compilers since overflow is "undefined behavior" and the comments made in the intro-
duction to this chapter apply.

Constant folding can be extended to include the "propagation" of a constant assigned
to a variable, provided that the variable is notvolatile . For example, the constant
assigned toi in the code fragment:

i = 0 ;
j = i ;

can be propagated to its next use, so thatj is also assigned the constant 0.Note that this
optimization will cause problems in traditional C if a variable has special properties (i.e.
if it would bevolatile in ANSI C), but it is unlikely that anint variable is intended
to be special.A pointer variable is more likely to point to a special location, and it is
perhaps too dangerous for the compiler to propagate constants assigned via a pointer
dereference.

10.1.3 Algebraic identities

There are many small optimizations that can be applied at the expression level. An
integer multiplication involving a constant power of two can be changed into a bit shift.
However, integer division by a power of two cannot be changed to use right shift because
neither of the possible implementations of right shift, sign extension and left-filling with
zero bits, is equivalent to division for negative values. Only integer division of
unsigned types can be safely changed to right shift.Similarly, a remainder involving a
power of two can be changed to use bitwise-and on implementations where the result of%
on negative values is identical to that of bitwise-and (and forunsigned operations).

The compiler could also check for common cases such as assigning zero to a variable
if a fast set-to-zero assembly instruction is available. If this optimization is used, the
compiler should also watch for zero assigned through a non-trivial assignment, such as:

x = y = 0 ;

It is also worth finding expressions that add 1 to a value using ordinary+ for a number of
reasons:

• ++ is not valid in situations where the operand is not an l-value;
• novice programmers may forget to use++;
• #define constants may have the value 1.

On some machines, adding small constants (e.g. 2) may be more efficiently implemented
as a sequence of increment operations, and these special cases should be optimized.

There are many simple algebraic identities that can be used to improve eff i ciency. It
is usually safer to apply these optimizations only to integer expressions, but floating point
expressions may also be considered if it is clear that the result will not be changed.Some
identities are as follows:



190 Chapter 10

x + 0  = = x
x * 1  = = x
x * - 1 == - x
x / 1  = = x
x * 0  = = 0

Although it is unlikely that the programmer will knowingly place such expressions in the
code, they can arise if symbolic constants have values such as 1 or 0, or if complicated
constant expressions evaluate to these values.

Another very common form of identity involves the! operator. Expressions of the
form:

! ( x == y)

are quite common, as they can arise when the! operator is applied to a macro expansion.
Obviously, the more efficient expression isx!=y . This form of expression is easy for the
compiler to detect, and the compiler can also generate more of this form of improvement
by using the identities:

! ( x && y) = = ! x | | ! y
! ( x | | y ) = = ! x && ! y

However, these identities are only really useful if thex and y sub-expressions contain
relational operators, thus allowing the ! operations to be removed. If neitherx nor y
contain relational operators, it is more efficient to use the identities in reverse (from right
to left) to remove one of the! operations. Fortunately, these algebraic identites preserve
all the same semantics, even those involving short circuiting and side effects.

A very sophisticated optimizer might notice some less obvious algebraic identities.
For example, in the expression:

x * ( y ! = 0)

the multiplication operator is always applied to either 0 or 1, so the optimizer could
generate code for this statement as if it had the equivalent form which totally avoids
multiplication:

y ! = 0 ? x : 0

Another very advanced optimization, although perhaps it will only rarely be used, is illus-
trated by the code sequence:

#define ABS(x) ( ( x) >= 0 ? (x) : -(x))

y = ABS(y)

which expands out to become:

y = ( ( y) >= 0 ? (y) : -(y))

Although it isn’t obvious immediately, this has a redundant assignment in the second part,
effectively assigning:y=y . The compiler should optimize any redundant assignments of
this form and do soafter the code is generated for the conditional operator.
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A similar form of optimization, where the compiler must recognize the same sub-ex-
pression on both left and right sides of the= operator, is that statements such as the
following can usually be implemented as a single machine instruction:

x = - x;
x = ˜ x;

10.1.4 Evaluating boolean expressions

It is interesting to note that the common code optimization technique of "short circuiting"
a logical expression is absolutely necessary in C and C++, as it is part of the definition of
the && and || operators. However, there are still some improvements possible in the
evaluation of boolean expressions, depending on what context a logical or relational oper-
ator is used in.The restriction that operators such as< and&& must return either 0 or 1
limits efficiency, but in some cases this isn’t important, such as when the results of these
operators are theoperand to either&& or || (which permit any non-zero value for true),
or the conditional expression for anif statement or loop condition.For example, the ex-
pression:

x ! = y && . ..

might well be optimized to use subtraction:

x - y & & . ..

although when the result of the!= operator must be stored, then the code must return
either 0 or 1, as in:

z = ( x ! = y); /* difficult to optimize */

A boolean expression, either as an operand to&&or || , or as a conditional expression for
an if statement or loop, can have quite efficient generated code.As an example, the
statement:

if (x < y)

can be implemented using instructions like:

cmp x, y ; compare x and y
bls somewhere ; b ranch if less than

However, if this test were used in the assignment statement:

z = x < y ;

the assembly instructions are less flexible because of the need to actually evaluate< as
either 0 or 1:

cmp x, y ; compare x and y
bls true ; b ranch if less than
store z, 0 ; z = 0
jmp after ; s kip the next statement

true: store z, 1 ; z = 1
after: ....
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10.2 Prototypes and argument widening
The addition of prototypes to C by the ANSI standard gives the implementor more
freedom in efficient implementation of function calls.The main areas of improvement
are the avoidance of wideningchar , short and float types, and the flexibility to
pass parameters in registers. Theseoptimizations apply also to C++, where fortunately
they cause no problems since non-prototyped function calls are not allowed.

In traditional C, no functions are prototyped, and implicit argument promotion of
smaller types occurs in function calls.char andshort types are promoted toint , and
float is promoted todouble . These conversions cost both time and space, and can
often be avoided in ANSI C. When an ANSI compiler sees a call to a function that is
governed by a prototype, the compiler is free to dispense with these promotions, and can
instead pass the arguments as their actual types.Of course, this rule for prototypes must
be consistently followed for both function calls and function definitions (i.e. if arguments
to a prototyped call are not widened, the function definitions should know to expect the
arguments as having non-widened size).

Unfortunately, this new policy does make function calls slightly more brittle, because
if the programmer accidentally calls this function in a file where no prototype is declared,
the default argument promotions will occur. A larger argument than expected by the
function definition will be passed on the stack, and a run-time failure is the most likely
result. AlthoughANSI does give the compiler this freedom by requiring that such a
function is always called with a prototype in scope, this is little consolation to the
programmer whose program is failing. Thisis a trade-off between speed and robustness.

10.3 Prototypes and the function call mechanism
The traditional method of passing arguments to a function in C has been to push them all
onto the program stack.This was simple to implement and provided support for variable-
argument functions (e.g.printf , scanf ). In fact, since without prototyping there is no
way to tell if a function call is to a variable-argument function or a fixed-argument
function, the function call mechanism had to support both, and pushing arguments onto
the stack was the simplest method of achieving this.

The introduction of prototyping allows the use of different function call mechanisms,
such as passing arguments in registers, in certain situations.The ANSI standard intro-
duces one very important constraint on programs:

All calls to variable-argument functions must be governed by a prototype.

In other words, calls to variable-argument functions can no longer be non-prototyped.
One of the main effects this has on programs is that any programs using library

functions in theprintf or scanf families must include<stdio.h> (which should
declare prototypes for these variable-argument functions).In addition, the declaration of
user-defined non-prototyped variable-argument functions (e.g. those using the old
<varargs.h> header file) is not allowed in ANSI C, nor is a call to a variable-argu-
ment function allowed to be non-prototyped, even if defined by using the ANSI header
<stdarg.h> (i.e. the call must be governed by a prototype containing the ellipsis).
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This new rule has important consequences for the compiler implementor. Non-proto-
typed function calls can be assumed to be calls to fixed-argument functions, and hence
non-prototyped calls can use a function call mechanism other than pushing arguments on-
to the stack, such as passing arguments in registers (after the argument value promotions
of char andshort to int , and float to double ). Calls to functions declared by
fixed argument prototypes can also be passed by using this same mechanism.In fact, the
mechanisms for fixed-argument prototyped and non-prototyped calls must be identical;
otherwise, there will be a run-time failure if a call is made to a prototyped function defini-
tion, where that function call is not actually governed by a prototype (this situation must
be supported by an ANSI compiler).

Any method of passing arguments could be used, provided that function calls as well
as function definitions rely on it. For example, a reasonable rule, based on the assump-
tion that structures andfloat /double arguments can’t be placed in registers, would be
to pass the first n scalar arguments in registers, for some fixed n that depends on the
number of available hardware registers in the machine.Thus, a function definition would
expect its first n scalar arguments in registers, and any non-scalar arguments or extra
scalar arguments on the stack.

Variable-argument functions must be implemented slightly differently because they
have to support a variable number of arguments. Whena function is called with a proto-
type in scope that contains the ellipsis, such as:

void printf(char *format, ...);

any mechanism can be used, provided it supports both the use of the declared arguments
(i.e. format ) within the function definition, and the extraction of any remaining argu-
ments via theva_start , va_arg and va_end macros in <stdarg.h> . For
example, the same mechanism as for fixed-argument prototyped calls could be used for
the declared arguments, and the remaining arguments (after the default non-prototyping
promotions ofchar , short andfloat ) could be pushed onto the stack as in tradition-
al C. The stack is just one possible implementation (albeit the most common) and the
implementor can choose any method provided the macros in<stdarg.h> are modified
to correctly receive the arguments.

Unfortunately, relying on the assumption that all variable-argument functions will be
called via a prototype can cause old code to fail, and provides no safety net for the
programmer who accidentally omits a prototype.The compiler could partially solve this
problem by producing warnings about all non-prototyped calls, especially those involving
calls to variable-argument standard library functions such asprintf and scanf .
Another alternative is to limit the situations in which the faster argument passing mecha-
nism is used, and this is now discussed.

A slightly safer but less powerful optimization is to relax the assumption that non-
prototyped calls are always to fixed-argument functions and to use the traditional stack
method forall non-prototyped calls.Hence, a function call or definition can be opti-
mized only if it can be guaranteed that all calls to a function will be governed by a proto-
type; according to p247 of Harbison and Steele’s book, C: A Reference Manual, these
situations are when a function is called with a prototype in scope (or defined as a proto-
typed function) and:
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• at least one argument is ofchar , short , or float type;or
• the prototype uses the ellipsis token "... " (variable-argument function).

Hence, a call to a prototyped function with achar , short , or float argument can be
handled in a different manner than required for non-prototyped function calls (which
would be handled in the traditional stack-based method).Unfortunately, any such rule
will still lead to run-time errors if the programmer accidentally forgets to declare a proto-
type for this type of function; the situation is the same as for argument widening as dis-
cussed in the previous section.

This safer rule also loses the opportunity for optimizing non-prototyped calls and
ev en prototyped calls which do not usechar , short or float arguments (i.e. using
only int , long , double , pointers and structures).The reason for this restriction is that
an ANSI compiler must still support calls to a prototyped function that doesn’t usechar ,
short or float parameters, even if no prototype is in scope at the time of the call.
Hence, any difference in the handling of this function when it is prototyped or non-proto-
typed will cause run-time failure and thus violates ANSI.This support for programs that
mix prototyping and non-prototyping for the same function limits the optimization of
prototyped calls if we do not choose to also optimize non-prototyped calls.

One practical alternative for the implementor is to provide a user option to force all
prototyped function calls to use a faster calling mechanism.This imposes on the
programmer the burden of always using prototypes correctly (compilation warnings about
non-prototyped calls become almost a necessity in such an environment). To reduce the
risk of failures due to accidental non-prototyping, this option could also ensure that the
same calling mechanism is used for non-prototyped functions so that programs will not
fail unless a variable-argument function is called without a prototype, or unless a proto-
typed function with achar , short or float argument is called without a prototype.

In summary, the ANSI standard gives the implementor new freedom of choice over
the function call mechanism.The implementor can choose between the traditional (safe)
method of pushing arguments onto the stack, or use a more efficient method which may
fail if the programmer does not correctly follow ANSI guidelines — in particular, a vari-
able-argument function must be called via a prototype, and prototyped and non-proto-
typed calls can be mixed only when no argument type ischar , short or float . Un-
fortunately, any method that relies on variable-argument function calls always being
prototyped may break existing code.Perhaps the best practical choice is to provide a user
option to set the level of optimization, based on different choices of argument widening
(as discussed in the previous section) and argument passing through hardware registers.
Some of the possible levels, roughly ordered from "fast and unsafe" to "slow and safest"
are as follows:

1. Use registers for non-prototyped and fixed-argument prototyped arguments; widen
only non-prototyped arguments.

2. Use registers for non-prototyped and fixed-argument prototyped arguments; widen
all arguments.

3. Use registers for fixed-argument prototyped functions involving char , short or
float parameters; widen only non-prototyped arguments.

4. Treat all prototyped calls as traditional non-prototyped calls; widen all arguments.
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The difference between levels 1 and 2 is that, although both will fail if a variable-argu-
ment function is called or defined without a prototype, an accidentally non-prototyped
call to a prototyped function with achar , short or float parameter will not cause a
run-time failure in level 2.

Level 3 optimization will not cause a program to fail due to a non-prototyped call to a
variable-argument function, but a program will fail due to a non-prototyped call to a
prototyped function with achar , short or float parameter. Note that since there are
no failures due to prototyped calls, there is no advantage in widening small arguments in
prototyped calls.

The lowest level of optimization is to treat prototyped function calls and definitions as
if they are non-prototyped; allchar , short or float parameters in prototypes are still
widened in both the function definition and function call (even in the presence of the
prototype). Thiswill prevent any failures, except those that would have occurred in non-
ANSI C anyway, but the prototypes provide no efficiency advantage.

The function call mechanism in C++ is far easier to change.Since all function calls
are prototyped and variable-argument functions must use the elipsis, no run-time
problems can arise in passing arguments in registers. Hence,C++ makes it far easier for
the compiler to generate optimized code.

10.4 Single precision float arithmetic
The ANSI C standard permits arithmetic operations involving float to be performed by
using single-precision arithmetic, whereas in traditional C allfloat values were
converted todouble before applying double precision arithmetic.This new rule allows
the compiler implementor to choose the most efficient method of computing results
involving float . If single-precision arithmetic is faster, the compiler may use it.
However, the compiler may also choose to usedouble or even long double arith-
metic if it is actually faster (e.g. if double-precision arithmetic has hardware support).

There are a few situations in C where double precision arithmetic is actually required
by ANSI, but does not necessarily produce different results to single-precision arithmetic.
Consider the following statements:

float f1,f2,f3;
....

f1 = f2 * 10.0;
f1 = f2 * sqrt(f3);

Because the constant10.0 is adouble constant, andsqrt is adouble function, both
of these statements will causef2 to be promoted fromfloat to double and double-
precision arithmetic is used.However, since the result is immediately being truncated to
float , the use of double-precision arithmetic is of dubious merit.One optimization
which a compiler implementor might consider is to use single-precision arithmetic in
these special situations (where the result of a double-precision computation is
immediately converted to float ). The constant10.0 could be treated as afloat
constant, and the call tosqrt could even be replaced by a call to a single-precision
(hidden) library function, saysqrtf , which returns afloat value and (possibly)
accepts afloat argument.
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Unfortunately, this optimization is not strictly ANSI-conforming unless the results are
identical to those that would occur if double-precision arithmetic were used.For many
implementations the results will differ markedly if the float values are close to the
maximum or minimum representable values, and for any float values the results may
differ in the last decimal place of the result (a very small difference). Onsuch machines
the optimization may make the program produce slightly different behavior, and should
probably be a configurable option allowing the user to choose between slow and accurate
versus fast and inaccurate.

10.5 Widening of char and short in expressions
Traditional C required that whenever a char or short value appeared in an arithmetic
expression, it would undergo promotion toint . The ANSI C standard relaxes this
requirement and permits operations involving only char or short values to avoid the
conversion when the narrower representation range of the result has no effect. For
example, ifc1 andc2 are both of typechar , the expression:

c1 + c2

would normally promote bothc1 and c2 to int . Howev er, if this expression is
immediately converted back tochar , such as by type casting, assignment or prototyped
argument passing, the promotions are unnecessary. Even if the addition did produce a
value not representable bychar (e.g. greater than 255 ifchar is unsigned by
default), the conversion of the result back tochar is actually an instance of overflow and
the loss of the higher order bits does not violate any ANSI constraint.The optimization
is possible because the result will be identical regardless of whether the operands to+ are
promoted or left unchanged.

10.6 Macros for standard librar y functions
A common method for improving the efficiency of the library functions is declaring them
as macros in the standard library header files. In fact, a number of functions have tradi-
tionally been macros, including most functions in<ctype.h> and a few others, such as
putchar andgetchar . ANSI permits all library functions to be macros, provided that
the macros are "safe", and that there is a "real" function that can be accessed by applying
#undef to the macro name.

A safe macro must not cause any precedence errors (requiring brackets around the
entire replacement text and around every occurrence of a macro parameter in the replace-
ment text) and must also evaluate any side effects in its argumentsexactly once(which
usually means that each macro parameter must appear exactly once in the replacement
text). This second requirement severely limits the functions that can be implemented as
macros. For example, the obvious macro definition for abs :

#define abs(x) ((x) >= 0 ? (x) : -(x))
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is not safe, as a side effect to x will be evaluated twice. A clever attempt to overcome
this problem using a "hidden" global variable such as:

#define abs(x) ( _temp = (x), _temp >= 0 ? _temp : - _temp )

solves the problem of side effects, but introduces some obscure errors.For example, it
can fail for the expression:

abs(i) + abs(j)

because of the (obscure) order of evaluation ambiguities.In addition, a signal occurring
after the assignment to_temp where the signal handler calls theabs function will cause
errors when the handler returns because the value of_temp has been changed.Hence,
there seems to be no way to declare a safe macro forabs .

Some of the "small" library functions that are good candidates for macro expansion
are floor , ceil , putchar , getchar and most of the functions in<ctype.h> .
Functions for which it appears difficult (impossible?)to declare a safe macro include
abs andfabs .

10.7 Intrinsic standard librar y functions
The ANSI C standard clearly defines the names of functions that are part of the library,
and their names are reserved in the sense that the programmer should not define new
functions using these names (doing so results in "undefined behavior"). This means that
an optimizer has a great deal of power in its handling of ANSI C library functions.
Because the names of the library functions are reserved, the optimizer can examine every
call to a library function and optimize it by using built-in knowledge about the behavior
of the library function.Note that these techniques can also be applied to functions in a
non-standard C library or a C++ library provided that the implementation reserves their
names in the same way.

While the declaration of library functions as macros is effective and simple to imple-
ment, a better method is to inline the functions in a manner that is totally transparent to
the programmer. To achieve this, the library functions to which this technique is applied
are defined asintrinsic functions. The front-end of the compiler treats these functions as
any other function call, but the back-end of the compiler recognizes them as intrinsic and
knows the correct inline code to generate.This method has a number of advantages over
macros:

• Ensures type-safety: macros lose all type checking information.
• Avoids scrambled error messages: semantic analysis of the program uses the

original text, instead of a macro expanded version.
• All library functions can be inlined.
• More powerful "smart" optimizations can be used.

However, this method is more time-consuming to implement than the simple addition of a
macro to a system header file. Theoptimizer must detect all calls to intrinsic functions
and then produce an optimized version of that function call.Built-in knowledge is
required about each library function being optimized.
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The obvious optimization that can be applied to calls to any library functions consid-
ered "small" enough is to inline the function call.This requires some representation
(possibly assembly language) of the inline code to be generated for each library function
being inlined. Some of the many good candidates are:abs , fabs , all of the
<ctype.h> functions, floor , ceil , feof , ferror , clearerr , putchar ,
getchar , etc.

Many of these functions could also be macros, but the use of intrinsic functions has
the advantages discussed above, if the implementor has enough time to add these opti-
mizations to the compiler. Furthermore, some of these functions are difficult to imple-
ment as safe macros; and macros are restricted to use features of the C language, whereas
intrinsic functions can work directly at assembly level.

10.7.1 Constant folding and intrinsic functions

Inlining function calls is not the limit to the optimizations available using this method.
The well-known optimization ofconstant foldingcan be generalized in the sense that if
the optimizer notices that arguments to a function call are constants, then it may be
possible to replace the function call with a constant.For example, the function call
log(1.0) could be replaced by0.0 at compile-time.

Functions to which this optimization can be applied are those where the return value
is determined only by the arguments and which produce no other side effects. Thisclass
of functions includes:abs , labs , div , ldiv , all functions in <ctype.h> , and all
functions in<math.h> that do not have pointer arguments.

Perhaps the simplest method of implementing this optimization is tocall the library
function within the optimizer and replace the function call with the result returned
(although this may fail for cross-compilers).

Care is required to handle the<math.h> functions correctly so that their error-
handling characteristics are preserved (i.e. settingerrno ). Onemethod of handling this
problem is to check the ranges of the (constant) arguments in the function call and inline
the call only if the arguments are within satisfactory bounds.Another alternative is to
detect whether the function call would seterrno and if so, generate an extra machine
instruction that setserrno .

Library functions that take string arguments, such asatof , atoi , atol , and many
functions in<string.h> , can also be evaluated at compile-time if their argument is a
string constant.ANSI specifies that string constants should not be modified, and that any
program that does so has "undefined behavior". Hence,the optimizer can assume that the
characters in a string constant are fixed, and replace function calls with their result.For
example,strlen("abc") can be replaced by 3.
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10.7.2 Built-in knowledg e about intrinsic functions

Even this replacement of constant result library function calls with a constant value does
not show the full power of optimization based on the compile-time analysis of arguments
of calls to library functions.Heuristic knowledge about the behavior of library functions
can be built into the optimizer to allow it to handle special cases very efficiently. This
can be done more generally than requiring all arguments to be constant.

For example, one area of optimization is the analysis of calls to theprintf and
scanf families of functions when the format string is a string constant (even if other
arguments are not constant).The analysis of the format string required within these
library functions could be performed at compile-time.For example, in the function call:

printf("%d", i);

the format string would be analyzed and it would be discovered that only a call to an
internal routine is necessary to print out an integer. Thus the assembly code output would
be of the same form as generated by:

_print_int(i);

Note that if the argument,i , were actually an integer constant, the result could be even
more efficiently coded as direct calls toputchar ; one for each output digit.

Another good area for applying optimizations is in unrolling the loops inside the
<string.h> functions such asstrcpy . For example, thestrcpy call:

strcpy(s, "abc");

could be more efficiently coded as:

s[0] = ’a’;
s[1] = ’b’;
s[2] = ’c’;
s[3] = 0;

Another opportunity for optimizing calls to generalized functions occurs in examining
malloc calls where the argument is a constant (e.g. from thesizeof operator). Rather
than calling the generalmalloc function, it is possible to use a call to a function that is
specially designed to handle allocation requests of that size.

Yet another example occurs the second argument to thepow function is a constant
that is an integer, as in:

y = p ow(x, 2.0);

A more efficient specialized function for handling integer powers could be called, or, in
fact, the above call to pow could be replaced byx*x .

In summary, the well-defined meaning of the library functions allows the optimizer to
produce far more efficient code sequences for special cases by using built-in knowledge
about the behavior of these functions.All of the library functions supported by a particu-
lar environment are candidates for the optimizations, whether they are ANSI standard
library functions or not.The scope of the optimizations is limited only by the need to
mimic exactly a call to these functions.



200 Chapter 10

10.8 The volatile qualifier
C is traditionally a low-level systems programming language, and systems programmers
often use special locations in their programs (e.g. memory mapped I/O, shared memory
variables, etc).The introduction of thevolatile qualifier by the ANSI C standard
provides the programmer with a method of specifying that a location is special and
accesses of it should not be "optimized away". For example, the location of a memory-
mapped I/O port can be declared using a pointer tovolatile :

volatile unsigned char *port = 0x0100; /* I/O port at 0100 */

*port = 1; /* send byte 1 */
*port = 2; /* send byte 2 */

Without thevolatile qualifier the compiler does not know that the location pointed to
by port is special, and could, in theory, remove the first assignment statement as its
value is apparently overwritten by the second assignment.If the optimizer does this, it
will introduce a strange bug into the program.For this reason alone, optimizers for tradi-
tional C were restricted in the transformations that could be safely applied.For example,
transformations such as dead code elimination and code motion out of loops could
introduce bugs.

In ANSI C, the programmer can use thevolatile qualifier to inform the compiler
that a variable or location is special.The optimizer is allowed to treat any non-
volatile qualified location as if it has no special properties.Thus the optimizer in an
ANSI C compiler has far more latitude in the choice of optimizations that can be
performed. Unfortunately, this new freedom can lead to problems because the onus of
the use ofvolatile is on the programmer. There is a high risk of breaking existing
pre-ANSI code, and also of forgetting to usevolatile in new code. Thereare a few
choices for the implementor, ordered from the most risky to the most conservative:

• Assume that all programs will usevolatile correctly.
• Produce a warning whenever a dangerous transformation is used.
• Apply dangerous transformations only in restricted situations.
• Don’t apply any of the dangerous transformations (i.e. as done in traditional C).

To leave the optimizer as it was for traditional C is obviously the safest approach, but it
loses many opportunities for optimization.A better approach would be to apply transfor-
mations whenever a location is unlikely to be special.For example, it is unlikely that an
automatic local variable is special, but more likely that a pointer dereference could be
accessing a special location such as a memory port.Global variables might be safe, or
they might be shared memory with other processes.Which locations are safe depends on
the environment (e.g. a single-user computer needn’t worry about shared memory).

Another option is to warn at compile-time about transformations that might be
dangerous. For example, the elimination of a "dead" assignment statement could be
warned about, as it indicates either a minor bug in the program or the need to qualify a
variable with volatile . The warnings might be produced for all dangerous transfor-
mations, or else produced only for those transformations involving locations that may not
be safe (as discussed in the previous paragraph).



Ideas for compiler optimization 201

10.9 The const qualifier
The const qualifier provides some room for optimization in both C and C++, although
less than one would hope. It can be assumed that aconst variable will never change
throughout the program’s execution, and this provides the opportunity for extra constant
folding. For example, given theconst declaration and assignment statement:

const int x = 1;

y = x ;

the compiler can replace thex in the assignment statement with the constant 1.By using
hacked code aconst object can be modified at run-time by a program, but such a modi-
fication is moving into the territory of "undefined behavior"; hence the compiler can
replace any const objects with constants and still conform to the ANSI standard.

Similarly, there is nothing stopping the compiler from optimizing accesses toconst
aggregate objects, such as arrays or structures.For example, an access to an array
element orstruct field could be replaced by a constant as follows:

const int arr[2] = { 0 , 1 };
const struct { int f1, f2; } s = { 0 , 1 };

x = a rr[0]; /* arr[0] can be replaced by 0 */
x = s .f1; /* s.f1 can be replaced by 0 */

However, accesses through pointers to aconst type (or equivalently, const array
parameters) are a different story. For example, consider the declaration ofp to point to a
"const int ":

int i;
const int *p = &i;

ANSI does not guarantee that an access via a pointer toconst ensures that the object
pointed to will not change.For example, althoughp is declared as a pointer toconst ,
pointing ati , the value of i can be legally changed by direct assignment toi . In this
situation, theconst qualifier merely means that the value pointed to cannot be changed
via this pointer. Also note that this declaration ofp does not mean thatp will have
constant value; the declaration to ensure this is:

int * const p = &i;

This declaration would allow all uses ofp to be changed to&i at compile-time, as with
any otherconst variable.

Unfortunately, this form of optimization is not as useful in C as it is in C++ simply
becauseconst is not used as frequently. The ANSI standard for C disallows (somewhat
arbitrarily) the use ofconst variables in constant expressions (e.g. sizes in array declar-
ations andcase constants). Hence,C programmers tend to use#define more than
const because it is more flexible. However, the optimization will increase speed if
const is used to declare scalar constants, or aggregate variables, and the frequency of
such instances will increase as more C programmers become aware of the advantages of
usingconst (and as more compilers actually start to implement this optimization!).
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10.10 The register qualifier
The register qualifier is used by programmers to indicate to the compiler that a vari-
able is likely to be heavily used, and that the programmer wishes that variable to be
placed in a hardware register for efficiency. Howev er, the register qualifier is merely
a "hint" to the compiler and does not force it to use a register for that variable. For
example, if the programmer declares too many variables asregister , the compiler
obviously cannot place all of them in registers.

Programmers are often poor at guessing which variables are heavily used, whereas the
compiler can analyze the number of uses of a variable inside a function.Thus the
compiler is better placed to choose which variables to store in registers, and it is reason-
able for an advanced optimizing compiler to simply ignore allregister requests made
by the programmer. Sophisticated algorithms can be used to choose which variables to
place in registers and, in fact, a well-known problem in code generation is the allocation
of registers for values of variables and sub-expressions. Thereare rare situations where
the compiler will make the wrong choice, such as when the programmer has better
information about the probability of certain branches being executed at run-time.The
compiler implementor might consider providing an option to force the honoring of
register requests, but if the register scheduling algorithm is well designed, such situa-
tions are so rare that they could be ignored.

10.11 Register allocation and small objects
An interesting feature of C++ optimization is that they should be able to handle small
objects, where the object contains only one or two scalar data members.In particular, it
should be possible to include these objects in the register allocation algorithm.

This optimization is particularly necessary in C++ because it is quite common to
define an object that contains either a pointer to an object (e.g. in reference counting, or
for "smart" pointers), or only a single integer (e.g. declaring your own Integer class).
Whereas in C these objects would probably be implemented as basic types (i.e. using
typedef names), the C++ class facility effectively makes themstruct s, and it is
unlikely that the C++ optimizer will be able to treat them as simpler objects.This is
particularly true if the C++ translator produces C output code, since a class will be imple-
mented as astruct , and the C compiler is unlikely to place astruct in a register.

If C++ programmers are to use small objects without a degradation in performance,
the compiler must be clever enough to recognize when an object is small enough to be
treated as a scalar type.Without this optimization, the C style of declaring such objects
as type aliases, rather than C++ classes, will be more efficient.

This section seems to contradict the claim made in Chapter 5 that a C++ program
won’t run more slowly than the equivalent C program.This is still true in the sense that a
C program can be converted to C++ with no performance degradation. However, this
section can be seen as a limitation of using the object-oriented programming paradigm
with C++, because converting small scalar types into objects may reduce performance (at
least until the current generation of C++ compilers catches up).
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10.12 The C++ inline qualifier
By adding the inline qualifier to a function definition, C++ programmers can indicate to
the compiler that they wish a particular function to be replaced by inline code wherever it
is called. Hence, C++ compilers should support the inlining of reasonably complicated
functions, in order to give the programmer the required efficient improvement.

However, the inline qualifier is only a "hint" to the compiler, and the compiler is
free to ignore it completely and decide for itself which function calls to inline.It would
be valid for a C++ compiler to inline no function calls at all, but this would be a very poor
quality compiler. It is more realistic for a compiler to inline simple functions, but refuse
to inline overly complicated functions (possibly emitting a warning to inform the pro-
grammer). For example, the compiler may refuse to inline functions that are too large or
where the control flow is too complicated.

One interesting point to note is that a C++ compiler could legitimately choose to
generate inline code for non-inline function calls (providing that the function body has
already been defined earlier in the file). The facility for inlining functions is already
present and it would be simple to apply inlining to whatever functions the compiler
considers simple enough.

For any inline function (or non-inline function that the compiler decides to
inline), there are occasions where there must be a "real" function available at link-time,
such as:

• the compiler decides not to inline calls to this function;
• the function is called when its function body has not been previously defined; or
• the address of the function is used as a pointer-to-function constant.

Note that the last two reasons merely require the function body to be linked, and the
compiler can still inline any ordinary calls to these functions.

10.13 virtual function calls in C++
As discussed in Chapter 5, the only time that a call to a virtual function need generate
different code from an ordinary function call is when the function is called through a
pointer or reference. Any calls involving an object can be statically bound to the correct
function, as illustrated below:

ObjectPtr->virtual_print(); // must be virtual call
Object.virtual_print(); // can be statically bound

Unfortunately, all calls via pointers and references must generate the slower dynamic
binding call sequence.It would seem that calls via a pointer or reference to aderived
class (with no other classes derived from it) could also be statically bound.However,
C++’s ability to handle multiple file programs may prevent this optimization, because it is
impossible to tell when examining a single file whether a class will have a new class de-
rived from it in a separate file. The optimization is therefore possible in any compiler
environments where the compiler has access toall of the source files at once, such as an
integrated development environment.



204 Chapter 10

10.14 Implementing enum’s as a small type
Although traditional C treatedenum types as if they wereint , the range of values which
an enum type can hold is restricted to the values of its declared enumerated constants.
For example, in the declaration:

typedef enum { FALSE = 0, TRUE = 1} bool;

thebool type can legitimately hold only 0 or 1.The compiler can use this restriction to
implement bool as a small data type such aschar . This saves space and often
increases speed because smaller data types are more efficiently manipulated.

The ANSI C standard allows compilers to implement enumerated types as an integral
type different from int , and although it does not state so explicitly, nothing in the
standard prohibits the declaration of different enumerated types as different sizes.Thus,
the bool type above could be implemented as achar , and a separate enumerated type
with larger values could be implemented as ashort or int .

The problem with this optimization is that existing code may rely on anenum type
having the same size as anint . For example, any use of the address of an enumerated
type, such as in a call toscanf , will cause problems if the enumerated type is not stored
as anint . Thus, this optimization is not ideal in environments which must support tradi-
tional C code.

10.15 Space reduction by merging string literals
A common space optimization performed by C compilers is to store identical string
literals at the same address.This is valid as ANSI prohibits the modification of a string
literal. However, traditional C did not have this restriction and the few programs that
modify string literals may fail if the compiler does merge string literals.

A generalization of merging identical string literals is to merge string literals where
one string is thesuffix of another. For example, consider the two literals below:

"the cat"
"cat"

The second literal can be replaced by a pointer to thec in the middle of the first literal.
Another very common example is that the empty string literal"" is the suffix of any
other string literal.

10.15.1 Miscellaneous optimizations

There are several other methods by which the efficiency of a program can be increased
marginally. The start-up time used to process command-line arguments can be avoided if
main is declared without arguments and if no other method is used to access them.For
example, some environments define a global variable_ _argv , and the start-up sequence
can be avoided only if this variable is not used (detectable at link time).Similarly, any
startup processing of environment variables can be omitted ifgetenv is not used, and if
no global variable is used (e.g. many UNIX-based environments define theenviron
variable).
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One neat way of improving run-time efficiency at the cost of space is to ignore all
struct bit-field requests and useint instead. Thisavoids the cost of packing and un-
packing bit-fields whenever they are accessed.

10.16 Summary
• C compilers have traditionally avoided large-scale transformations such as code motion

and common sub-expression elimination as they could "optimize away" useful
references.

• ANSI C prototypes permit the compiler to use a faster function call mechanism, at
some risk to existing code.C++ compilers can always use faster mechanisms.

• ANSI C permitsfloat arithmetic to be performed in single-precision arithmetic,
whereas traditional C required double-precision arithmetic.

• Macros are a simple method of removing the function call overhead of some library
functions, but some functions are difficult to implement as "safe" macros.

• Intrinsic functions are a more powerful method of optimizing calls to library functions.
Knowledge about the library functions can be used because the function names are
reserved.

• The volatile qualifier only partially solves the problem of "optimizing away"
useful code.

• References toconst variables can be optimized, as by constant folding, but access via
aconst pointer cannot.

• The compiler may choose to ignoreregister and inline keywords if the
implementor believes the compiler can make better choices.

• Merging identical string literals is a common and efficient space optimization.
Mergingsuffixesof string literals is a possible extension.

10.17 Further reading
Code optimization is a huge area of compiler design, and anyone not familiar with it
should consult a good compiler textbook, such as the one by Aho, Sethi and Ullman list-
ed here.Thomas Plum’s book contains a good chapter on the implications of the ANSI C
standard for implementors of optimizing C compilers.A good discussion of mixing
prototyping and non-prototyping in C is given by Harbison and Steele, and their book
book also contains useful material on many of the complicated issues in both traditional
and ANSI C.

AHO, Alfred V., SETHI, Ravi, and ULLMAN, Jeffrey D., Compilers — Principles,
Techniques and Tools, Addison-Wesley, 1986.

HARBISON, Samuel P., and STEELE, Guy L. Jr., C: A Reference Manual (3rd edn),
Prentice Hall, 1991.

PLUM, Thomas,Notes on the C Draft Standard, Plum Hall Inc., 1987.
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10.18 Exercises
1. Designan efficient safe macro for thetolower and toupper library functions.

Note that they must return the character unchanged if it is not a letter.

2. [advanced] Given the following definition and call of theabs macro, find an order
of evaluation allowed by the ANSI C standard where incorrect results will occur:

#define abs(x) (_temp = (x),_temp >= 0 ? _temp : -_temp)
...

abs(i) + abs(j)

3. [advanced] Consider the following attempt to overcome the deficiencies of theabs
macro in the previous exercise. Doesit have problems due to order of evaluation?

/* Pseudo code: push(x), top() >= 0 ? pop() : -pop() */
/* _s is a global variable; the stack pointer */
#define abs(x) (((*++_s)=(x)) >= 0 ? *(_s--): -(*(_s--)))

4. Thereare a large number of standard library functions that return values which are
commonly ignored, including:printf , scanf , strcat , strcpy . What possi-
bility does the idea of intrinsic functions provide for optimization in this situation?

5. The strcmp function is quite general in that it allows tests for equality and
ordering on strings.How can (most) calls tostrcmp be optimized by detecting
whether the program is usingstrcmp for an equality or ordering test?

6. [advanced] The inherent efficiency limitation ofqsort andbsearch is that they
must call the user-supplied function for each comparison.Can the optimizer
improve calls toqsort andbsearch so that the overhead of calls to the compar-
ison function is avoided?

7. Whatare the dangers of assuming references via aconst pointer always access
the same value? Whencan this optimization safely be used?

8. Whenwould the assumption that an automatic local variable won’t hav especial
properties (i.e.volatile -like semantics) be invalid? In other words, when
would common sub-expression elimination involving automatic local variables lose
an important reference?

9. [advanced] What opportunities for optimization are provided by C++const
member functions?This language feature was added so thatconst objects could
have methods applied to them without violating their "const -ness". Hint: const
member functions are not allowed to modify the object to which they are applied.

10. Canthe compiler optimize the space used byenum variables by storingenum
fields of structures as bit-fields? For example, this would mean that a variable of
typebool (see Section 10.14) would be stored as 1 bit inside a structure.

11. Builda list of impediments to efficiency that are imposed by the ANSI C standard.
What reasons justify the limitations on efficiency?
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Answers to selected exercises

Chapter 2. Measurement and estimation

1. It fails because the measured loop overhead will be lower than the value for the
main loop, since the main loop’s assignment operation will be slower. The assign-
ment statement could be changed tox=x, which will be a proper assignment (it
isn’t a redundant statement sincex is volatile).

2. Theplacement of the call toclock at the end ofstart_clock and the begin-
ning of stop_clock aims to reduce the overhead time included in the clock
measurements. Themacros aim to reduce this further by leaving out the function
call overhead in the times.A global variable of typeclock_t is needed to store
the value of theclock function call.

clock_t ticks; /* global variable for stop_clock */
#define stop_clock(s) ((ticks = clock()), stop_clock(s))

and thestop_clock function must use this global variable instead of calling
clock. A global pointer variable is needed forstart_clock, and it must be
set to the address of where to store the clock ticks (i.e.&p->last_time).

clock_t *glob_ptr; /* global pointer for start_clock */
#define start_clock(s) (start_clock(s),(*glob_ptr=clock())

5. Certainly, estimation is far less important once the program has been completed.
However, estimation is still needed because it may be difficult to measure some of
the quantities.In addition, the dynamic quantities will depend on the program
inputs and it may not be possible to provide worst-case inputs to a program.
Executable size can be estimated by many methods, ranging from a simple line-
count of the program to a token-by-token analysis using estimates of how large
each instruction will be.Plum and Brodie’s book Efficient C contains a good
discussion of this issue.

207
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Static data size includes the memory from global variables, static local vari-
ables, string constants and possibly floating point constants.By using knowledge
about the sizes of various types, it is a simple matter of counting the number of
such variables and adding their sizes.The memory used by string constants and
floating point constants can be estimated by finding all of them, but the possibility
that identical constants may be merged should also be taken into consideration.

Stack and heap usage are very difficult to estimate because they depend on the
run-time execution path. In the absence of recursion, a reasonable estimate of the
worst case stack usage can be found by finding the worst function call sequence.
This is by no means trivial and a software tool to do so is sorely needed.

Estimating run-time efficiency from source code is well-nigh impossible.
Perhaps the cost of each function can be roughly estimated by using a simple met-
ric based on the number of loops and the nesting depth of these loops.

Chapter 3. Algorithm improvements

2. Re-displayonly those squares on the chess board that have changed in the move.
The number of squares is usually 2, and at most 4 (castling), so the method
compares well with re-displaying 64 squares.

Chapter 4. Code transformations

2. The test of maximizing is constant throughout the loop, and hence the test
should be moved so that is comes before the loop.The simplest method of doing
so is to repeat the loop code, as follows:

/* Compute either maximum or minimum */
result = a[0];
if(maximizing) {

for(i = 1; i < n; i++)
result = a[i] > result ? a[i] : result;

}
else {

for(i = 1; i < n; i++)
result = a[i] < result ? a[i] : result;

}

3. By examining the effect of this statement, you will see that it has the same behavior
as:

if (a[i] > result)
result = a[i];

else
result = result; /* REDUNDANT */

Hence the more efficient code is simply:

if (a[i] > result) result = a[i];
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4. Sincethe computations of the two roots are very similar, the idea of common sub-
expression elimination can be employed. Thesub-expressionb2 − 4ac should be
calculated only once, andsqrt should be called only once.It is doubtful whether
eliminating the sub-expressions−b or 2a will make any difference. Themultipli-
cation 2a can be avoided usinga + a (it might also be worthwhile to do this for
4ac, by precomputationac and adding the result 4 times).Because the computa-
tion involves double arithmetic the constants in the expression should be
expressed as 4.0, and not 4, to avoid possible conversion costs (although most
compilers will do this automatically).The resulting efficient code is:

temp1 = sqrt( b * b - 4.0 * a * c);
r1 = (-b + temp1) / (a + a);
r2 = (-b - temp1) / (a + a);

5. Reordertheenum declaration to placeNO_ERROR fi rst, giving it the value of zero,
because comparison with zero is often slightly more efficient.

6. Thecrucial point to note is that the multiplication is always either by 1 or −1, so a
boolean flag can be used to decide which value to multiply by, as follows:

#define TRUE 1
#define FALSE 0

int my_atoi(char *s)
{

int value, sign;

if (*s == ’-’) {
sign = TRUE;
s++; /* skip over the ’-’ */

}
else

sign = FALSE;

for (value = 0; isdigit(*s); s++)
value = 10 * value + *s - ’0’;

if (sign)
return -value;

else
return value;

}

7. Thismethod will seldom be faster than a plain assignment.If the flag is not set,
there has been the extra comparison as overhead. Ifthe flag is set, the assignment
is avoided, but the difference in cost between a comparison and an integer assign-
ment will most likely be slight.The optimization is valid only if:

1. comparison is faster than assignment; and
2. the assignment is avoided often enough to justify the extra comparison.

8. Yes, to a limited extent. InC any automatic local variableswith explicit initializa-
tions will involve run-time instructions.Hence, the initialization should take place
where the variable is first used, in case this initialized value is never actually used
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(causing inefficiency). Variable declarations can be moved to inner blocks in some
cases; the alternative is to remove the initialization from the declaration, and use an
explicit assignment statement to set the variable immediately before its first use.
For example, in the code:

int fn()
{

int i; /* Not initialized */
int n;

scanf("%d", &n);
if (n >= 0) {

i = 1; /* Initialize immediately before use */
/* .. use i here */

}
}

9. Any multiplication can be written as a mixture of shift and addition operations.
The expressionx*17 can be rewritten as:

(x << 4) + x

but on many implementations the cost of a shift and an addition will be greater than
the cost of multiplication.

10. Thepointer expression idioms*ptr++ and*--ptr will be very efficient because
the compiler can translate these directly to the special addressing modes.

11. We will assume that the field has typeFIELD_TYPE and thestruct has type
"struct node". An obvious method is to use a pointer to a structure as follows:

struct node * ptr;
for (ptr = &arr[0]; ptr < &arr[n]; ptr++)

process(ptr->field);

Another solution that will probably be more efficient is to use a pointer to the field
and increment it by the size of a structure each iteration.This avoids the addition
of the offset offield implicit in the-> operation. Pointertype casts are needed
to get the correct increment (ptr++ would fail).

FIELD_TYPE *ptr;
for (ptr = &arr[0].field; ptr < &arr[n].field;

ptr=(FIELD_TYPE*)((char*)ptr+sizeof(struct node)))
process(*ptr);

Note that using "ptr=(FIELD_TYPE*)((struct node*)ptr+1)" as the
increment condition could be dangerous on machines with alignment restrictions.
Perhaps the most efficient version is to avoid the pointer comparison each loop by
decrementingn (assuming its value is not needed afterwards):

for (ptr = &arr[0].field; --n >= 0;
ptr=(FIELD_TYPE*)((char*)ptr+sizeof(struct node)))

process(*ptr);
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12. Thesimplest method is to use a neat mathematical identity involving bitwise arith-
metic: forx>0, x&(x-1) evaluates the rightmost set bit inx. Thus if this equals
x (andx is not zero) thenx must contain only a single binary bit and be a power of
2. Themacro is:

#define is_power2(x) ( x != 0 && x == (x & (x-1)))

13. If you went in for minor changes to the bitwise arithmetic then you should go back
and read Chapter 3.Since there are only 16 distinct nibbles, the most efficient
method is to use a small lookup table:

int nibble_table[16] = { 0, 3, 12, 15, 48, 51, 60, 63,
192, 195, 204, 207, 240, 243, 252, 255 };

#define nibble_extend(x) nibble_table[x]

Chapter 5. C++ Techniques

1. Not inlining functions with loops is a compiler limitation because theoretically
there is no difficulty in doing so, although inlining functions with loops is by no
means an easy task in practice!The main theoretical limitation ofinline
functions is that recursive functions cannot be inlined fully because this would
cause an infinite loop in the compiler. More generally, functions that form a link in
a mutually recursive function call sequence cannot be inlined fully (e.g. two
functions that both call each other).

4. Yes, the idiom is usually necessary, because omitting the copy constructor or
assignment operator can lead to analiasing problem. (Itmakes no difference
whether the default operations are bitwise copying, as in early versions, or mem-
berwise copying as in C++ 2.0 and above, because member-wise copying will still
perform bitwise copying of pointer members.)Tw o objects will have pointers to
the same allocated memory. Any change to one object’s allocated data will change
both objects.Hence, the idiom can be avoided only if:

1. the contents of allocated memory are not modified except in the ordinary
constructors; or

2. neither copying nor assignment of the objects ever occurs (i.e. the copy
constructor and assignment operator are never called).

To answer the second part, the copy constructor and assignment operator must still
allocate new memory for an object even if the destructor does not de-allocate the
memory. True, the problem of de-allocating memory twice is gone, but there is
still the aliasing problem as discussed above.

5. Theidea is to use a dynamically allocated object, as its lifetime is not governed by
braces. Theimproved code becomes:
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double d;
Object *ptr;

while (....) {
cin >> d;
ptr = new Object(d); // construction at first use

}
cout << *ptr; // Use the object
delete ptr; // de-allocate the object

The optimization is beneficial only when the cost of the assignment operator for an
incredibly complicated object is higher than the combined cost of allocation by
new, de-allocation bydelete, and a few pointer operations.

6. Insteadof declaring the data member(s) asstatic, use two global objects of the
class type. The zero-argument (default) constructor must be either absent or
performs no actions.Implicit initialization of global objects to all-bytes zero will
efficiently set the data values to zero.Unfortunately, this is not valid if the data
members must contain values other than zero orNULL.

7. Yes, returning a reference would avoid the need for a temporary in the expression.
However, there is no way to return a reference from the operator. Returning a ref-
erence to an automatic local variable will cause a run-time failure because the stack
space storing the local variable may be overwritten after the function returns.
Returning a reference to a global or localstatic variable will lead to errors when
the+ operator is used twice in the same expression, because both calls to the oper-
ator function will be attempting to store their result in the same place.Returning a
reference to a dynamically allocated object on the heap will work, but creates
garbage (unused and unaccessible dynamic memory) and will probably be slower
than using a temporary object anyway. Returning a reference to one of the
Complex parameters of the operator will not work because either (a)they are not
passed by reference in which case they are equivalent to automatic local variables;
or (b) they are passed by reference in which case storing the result there will over-
write one of the operands.The common "return *this;" idiom for returning
references from an overloaded= or += operator works only because the first
operand is being changed by the function, and is identical to the result of the
function.

Chapter 6. The ANSI C standard librar y

3. Thesimplest method is to use aswitch statement such as:

switch (n) {
case 0: return 1.0;
case 1: return x;
case 2: return x * x;
case 3: return x * x * x;
case 4: x2 = x * x; return x2 * x2;
case 5: x2 = x * x; return x2 * x2 * x;
... etc
default: ... /* General algorithm here */

}
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5. char *temp = s;

for (; *temp != ’\0’; temp++); /* empty loop */
*s++ = ’a’;
*s++ = ’\0’;

6. Thereshould be brackets around these two character constants.To do so requires
changing a+ to a- operator:

#define TOLOWER(c) (isupper(c) ? ((c) - (’A’ - ’a’)) : c)
#define TOUPPER(c) (islower(c) ? ((c) - (’a’ - ’A’)) : c)

8. Thetrick is to declarestrcpy as having most of its code inside a new block, and
declaring local variables at the start of this block.The macro is:

#define strcpy(s1,s2) \
{ char * temp1 = (s1), *temp2 = (s2); \

while ((*temp1 ++ = *temp2++) != ’\0’) \
; /* empty loop */ \

}

Another fine point is that this macro will cause a syntax error due to the semicolon
following a right brace when the macro is used as a single statement body before an
else keyword, as in:

if (...)
strcpy(a, b); /* syntax error: if(..) {...} ; else */

else
...

The solution is to use a pair ofdo..while(0) wrappers around the block.The
improved macro is:

#define strcpy(s1,s2) \
do { char * temp1 = s1, *temp2 = s2; \

while ((*temp1 ++ = *temp2++) != ’\0’) \
; /* empty loop */ \

} while (0) /* no semicolon here */

9. Thememset library function provides very fast byte copying. Hencethe efficient
method is:

memset(arr, 0, SIZE * sizeof(int));

Unfortunately, this method is non-portable to environments where integral zero
does not have all bytes zero.

Chapter 7. Space-efficiency

3. Theuse of the word "store" in the question was deliberately misleading.The most
space-efficient way to "store" these numbers is to use a function to represent them
(i.e. use a function to calculate a Fibonacci number each time it is required).The
only storage cost is the cost of the machine language instructions.Naturally, run-
time efficiency is sadly lacking if you use this method.
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4. Beforethe deletion phase, simply seed the random number generator again with the
same seed value and userand to regenerate the same sequence of numbers.

5. Sincethese functions are so similar, it is reasonable to assume that they will all use
mostly the same executable code (possibly all calling an internal function).Hence,
avoiding scanf but still using sscanf or fscanf will probably not reduce
executable size greatly.

6. Possibly. A good compiler will notice the shorter lifetimes of these local variables
and reuse the space on the stack after the enclosing block has finished execution.
However, an even better compiler would automatically examine the usages of a
variable to determine its lifetime and perform any optimization regardless of
whether the variable is moved to its inner block.

7. Sincethere are only 201 distinct values they can be stored in the small data type
unsigned char which can represent values from 0..255.To convert this value
to the floating point value of the grade is a simple matter of multiplication by 0.5.
This is time-inefficient, but storage space will be saved, especially if there are
many grades to be stored.

Chapter 8. Abstract data types in C++

6. Jumpsearch is a tricky algorithm to implement.The C++ code for one implemen-
tation, where the search jumps ahead fiv e nodes is as follows:

//--------------------------------------------------------------
// Search a sorted linked list - JUMP SEARCH
//--------------------------------------------------------------

Node* SymbolTable::search(key_type key)
{

register Node *p = head, *save;

if (p == NULL) // empty list?
return NULL;

do {
save = p; // Save current position

// Jump ahead 5 nodes
if(p != NULL) p = p->next;
if(p != NULL) p = p->next;
if(p != NULL) p = p->next;
if(p != NULL) p = p->next;
if(p != NULL) p = p->next;

} while (p != NULL && key > p->key_field);

if (p != NULL && key == p->key_field) // key at lookahead?
return p;

// sequential search of 0..5 nodes
for (; save != p; save = save->next) {

if (key == save->key_field)
return save;

}
return NULL; // not found

}

If sentinel pointers are being used, there is a simple trick to avoid the need for the
five tests "p!=NULL". By setting the sentinel node’s next pointer to point at
itself, these test can be omitted without causing an access violation.At the end of
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the linked list the assignmentsp=p->next will be redundant, as they set p to be
the same value, but this is a small price to pay for removing fiv e tests from the
main loop.

7. The obvious disadvantage is the space wastage due to an extra pointer in each
node. Theimprovements to be gained are that the insertion and deletion routines
elegantly avoid the need for a "prev" pointer, reducing the cost of loops.Both in-
sertion and deletion are also slightly less efficient due to setting the "prev"
pointer, but this is only one assignment statement.The search routine is unaffected
by the change.

8. Theinsertion routine is simply a matter of changingNULL to NIL. The deletion
routine can be improved to make use of the sentinels during the search phase of
deletion, as follows:

//--------------------------------------------------------------
// Remove a key from a binary tree with SENTINELS;
//--------------------------------------------------------------

void SymbolTable::remove(key_type key)
{

Node *ptr; // points to the current node
Node *parent; // points to the parent node

sentinel_node.key_field = key; // Set the sentinel node
for (parent = NIL, ptr = root;;) { // test with NIL omitted

if (key < ptr->key_field ) {
parent = ptr;
ptr = ptr->left; // search left subtree

}
else if (key > ptr->key_field ) {

parent = ptr;
ptr = ptr->right; // search right subtree

}
else // Found it or sentinel

break;
}

if (ptr == NIL) // Was it the sentinel?
return; // Not found. No deletion occurs.

Node *subtree; // Root of the subtree after deletion
// Used to later set pointer in parent

if (ptr->left == NIL && ptr->right == NIL) { // Case 1
delete ptr; // No children - delete a LEAF
subtree = NIL; // Subtree becomes empty

}
else if (ptr->left == NIL) { // 1 child: Case 2a

subtree = ptr->right; // Right child is new subtree
delete ptr; // Dispose deleted node

}
else if (ptr->right == NIL) { // 1 child: Case 2b (reverse)

subtree = ptr->left; // Left child is new subtree
delete ptr; // Dispose deleted node

}
//-------------------------------------------

else { // Two children - Case 3 - the difficult case!
// Find rightmost node of left subtree
//-------------------------------------------
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Node *prev, *temp;
for (prev = NIL, temp = ptr->left; temp->right != NIL;

prev = temp, temp = temp->right)
; // empty loop

//--------------------------------------------
// Replace node to be deleted with this node
//--------------------------------------------

if (prev == NIL) { // did not go right at all
temp->right = ptr->right; // right subtree of dead node

// Left subtree stays same
delete ptr;
subtree = temp; // *** Case 3a ***

}
else { // went down right at least once

prev->right = temp->left; // delete temp from subtree
temp->left = ptr->left; // replace "ptr" with temp
temp->right = ptr->right;
delete ptr; // *** Case 3b ***
subtree = temp;

}
}

//---------------------------------------------------
// Have now reconstructed the subtrees after deletion
// Now need to set pointers in parent node
//---------------------------------------------------

if (parent == NIL) // deleted root node?
root = subtree; // subtree becomes whole tree

else
if (key < parent->key_field)

parent->left = subtree; // Node was left of its parent
else

parent->right = subtree; // Node to right of its parent
}

12. Whenusing linear probing, hash table locations must have a special value indi-
cating "deleted from".The deletion routine marks a location as such.The search
routine must treat these special locations as if there was a key present. Thesearch
cannot terminate there because a deleted key may have had more keys placed after
it by linear probing collision resolution, and this would cause the search function to
fail to find some keys in the table.

13. Thearray representations make thecount function most efficient, as they already
maintain a count of the number of elements.The linked list versions must imple-
ment a traversal of the list nodes such as:

int SymbolTable::count()
{

int sum = 0;
for (Node *p = head; p!=NULL; p = p->next)

sum++;
return sum;

}

Binary trees must implement a tree traversal counting the number of nodes.The
hash table with chaining must examine each hash table location and count the
nodes on each non-empty chained list.

A simple incremental algorithm can be easily added to all these versions. An
extra integer field, n, is stored as a data member of classSymbolTable. This is
set to zero in the constructor, incremented in the insert function and decremented in
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the remove function. Thisis a small amount of overhead each time, but it speeds
up thecount function incredibly, and the cost of the increments/decrements will
likely be much less than the extra difficulty of traversing a list, tree or hash table.

14. Theidea of combining two operations can be applied by designing a specialized
search_insert routine that performs a search of the data structure, at the same
time keeping track of enough information to insert the symbol if it is not found.
For example, asearch_insert routine for a sorted linked list would need to
keep a "prev" pointer as it searches along the linked list. This idea of pairing
computation gains efficiency since in most data structures the insertion routine
performs similar processing to the search routine.

15. Cachingcan be applied by keeping track of a small number of the recently
accessed symbol records, possibly in an extra array data member. Before searching
the main data structure, the small array is searched for the symbol.If the symbol
has been cached, the search of the complex data structure has been avoided. This
idea works well if there islocality in the references to symbols in the table, so that
it is reasonably likely that the record will be cached.For example, in a compiler’s
symbol table the same symbol is usually accessed many times (i.e. wherever a vari-
able name appears in the code).

Chapter 10. Ideas for compiler optimization

1. Usea precalculated table of 256 bytes for each function.

2. ANSI C has sequence points at the end of the first operand to the comma operator,
and the order of evaluation of operands to+ is not defined. Hencea legitimate
order is:

_temp = i;
_temp = j;
TMP1 = ( _temp >= 0 ? _temp : - _temp );
TMP2 = ( _temp >= 0 ? _temp : - _temp );
result = TMP1 + TMP2;
_temp

3. No, it suffers from the problem that expressions such asabs(i)-abs(j) are
affected by order of evaluation. Inparticular, the operands of the conditional oper-
ator can be interleaved and one valid order would be to "push" bothi andj and
then have the first macro "pop"j (the wrong value). Notethat this macro seems to
solve the problem of signal handlers callingabs.

4. Situationswhere return values are ignored can be detected easily, and the compiler
implementor has several options.The simplest optimization would be to call a dif-
ferent version of the function, declared as avoid function, which will be
marginally more efficient. Anotheroption would be better inlining of the function
by using a different sequence of assembly instructions.

5. Themost common use ofstrcmp is to immediately test its return value with zero,
either explicitly via a comparison with the constant 0, or implicitly as the value of a
conditional expression or as an operand to a logical operator (&&, ||, !). A simple
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analysis of the expression can determine what form of test it is usingstrcmp for,
and this information can be used to choose a faster version ofstrcmp. For
example, the expressionstrcmp()==0 could be replaced by a call to a (hidden)
string equality function which will be marginally faster because it need not worry
about returning a positive or neg ative value if the strings are not equal.Of course,
this optimization cannot be applied where the return value ofstrcmp is used more
fully, such as being assigned to a variable.

6. Yes, in some cases.Wherever the function passed toqsort or bsearch is a
pointer-to-function constant (i.e. a function name) the compiler may be able to
examine the body of the comparison function (if it is available) and produce an in-
line version. Aspecial version of theqsort or bsearch function could then be
generated and called instead of the general function.

7. Thedanger is that the object pointed to may be modified between two accesses by
either an assignment via another (aliased) pointer, direct modification to the object
pointed to (e.g. if the pointer points to a local variable of the function, or a global
variable), or modification inside a function call (using any method). Notethat
there is no cause to worry if the pointer points at a volatile object because, if it
does, it should be qualified byvolatile. Detecting situations via source code
analysis where this optimization can be used safely is probably a research problem.
One sufficient, but not necessary, condition for the safety of the optimization is that
there should be no assignments, increments or function calls between the two
pointer accesses.

8. The local variable could be changed via a symbolic debugger. In addition, a
function which contains asetjmp call may have the values of the local variables
in an indeterminate condition when alongjmp call is executed. However, this is
not a problem as ANSI requires that any local variables whose values are desirable
after alongjmp call must be declared asvolatile.

9. const member functions offer very few opportunities for optimization.The
knowledge that a function call will not change the object can be used in rare cases,
such as to eliminate the common sub-expression in the code below:

x = object.data;
object.const_fn(); // call the const member function
y = object.data; // y = x would be equivalent

Unfortunately, the fact that a member function isconst is not, in itself, enough to
guarantee that the function will not cause a side effect, and this limits the optimiza-
tions that can be applied.For example, the common sub-expression elimination of
two consecutive calls to the sameconst member function cannot be applied
without a detailed analysis of the function body (e.g. it may contain an important
output statement).

In addition, it may even be possible for aconst member function tochange
its object through coding hacks, or via an aliased pointer. This is surely an abuse of
C++, but there is as yet no ANSI C++ standard to state that such uses are
"undefined". Hence,the optimization of the common sub-expression given above
may be dangerous for a few poorly written programs.
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10. This will f ail for any program that takes the address of theenum field of the
structure by using the address-of operator (&) or the ANSI standard macro
offsetof in <stddef.h>.

11. Someof the many eff i ciency problems in ANSI C are:

• The strcat and strcpy library functions return values that are rarely
used. They should bevoid functions as this would allow them to be
declared as macros, and would reduce the complexity of their definition as
functions.

• There are no equivalents of the<math.h> library functions forfloat
arguments.

• Arguments to variable-argument functions are promoted toint or double.
It would be more efficient to modify the calling mechanism and the macros
in <stdarg.h> to handlechar, short andfloat arguments.

• Objects accessed viaconst-qualified pointers cannot be assumed to be
unchanging, and this reduces the compiler optimizations that can be applied.

• Macros for standard library functions must be "safe" (no side effect
problems), which makes it difficult to define macros for many library
functions.

• const variables cannot be used everywhere#define constants can be
(although many implementations allow this as an extension).

The main reasons for these limitations are historical.The ANSI standard set out to
break as little existing code as possible, and hence, many minor inefficiencies
remain in the language definition.
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