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Preface

Why a Book on C++ AVX Instructions?

AVXis free parallel coding on the CPU! It’s right there waiting for you to use it
now, if only you know the right function names. AVX SIMD parallelism can also
be used in conjunction with multithreading to get a double layer of parallel power.

Please Leave a Review

I hope you enjoy the book! Please consider leaving a review on the website where
you purchased the book. Since few readers do this, each review is important to me,
and I read them all personally.

Feedback and Contacts

Feedback from readers is welcome. Please feel free to tell us what you think of the
book or other Aussie Al software. Contact by email: support@aussieai.com.

Other Books by the Author
If you want fast code, here are a number of other books on efficient C++ coding:

e Efficient Modern C++ Data Structures: Container and Algorithm
Optimizations

e C++ Low Latency: Multithreading and Hotpath Optimizations

e Safe C++: Fixing Memory Safety Issues

And some more with a particular focus on Al and fast LLLM backends in C++:

e  Generative Al Applications: Planning, Design, and Implementation
e  Generative Al in C++: Coding Transformers and I.I.Ms

And if you’re a fan of going super-parallel with GPU chips:

e CUDA C++ Optimization: Programming Faster GPU Kernels
e CUDA C++ Debugging: Safer GPU Kernels
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About Aussie Al
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special focus on Al-based writing and editing tools for fiction. Our premier
applications offer an extensive range of reports and error checks for both fiction
and non-fiction writing, from a full-length novel to a short report. Please try it out
and let us know what you think: https://www.aussieai.com

Our AI Research

The primary focus of research at Aussie Al is on optimizing LLLM inference
algorithms (i.e., “running” the model after training or fine-tuning), and our research
is toward the following aims:

e Tast on-device model inference algorithms, specifically for smartphones
and Al PCs.

e Scaling inference algorithms to large volumes of requests.

e Efficient GPU inference algorithms (hardware acceleration).

¢ Non-GPU inference optimization algorithms (i.e., software methods).

Disclosure: Minimal Al Authorship

Despite my being involved in the Al industry, there was almost no Al engine usage
in creating this book’s text or its coding examples. Some text has been analyzed and
reviewed using Aussie Al’s editing tools, but not even one paragraph was auto-
created by any generative Al engine. All of the CUDA C++ code is also human-
written, without involvement of any Al coding copilot tools. I mean, who needs
them?

However, Al was used in several ways. Al-assisted search tools, such as “Bing Chat
with GPT-4”, were very useful in brainstorming topics and researching some of the
technical issues. The main cover art image was Al-generated, followed by human
editing.

Disclaimers

Although I hope the information is useful to you, neither the content nor code in
this work is guaranteed for any particular purpose. Nothing herein is intended to
be personal, medical, financial or legal advice. You should make your own enquiries
to confirm the appropriateness to your situation of any information. Many code
examples are simplistic and have been included for explanatory or educational
benefit, and are therefore lacking in terms of correctness, quality, functionality, or
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reliability. For example, some of the examples are not good at handling the special
floating-point values such as negative zero, NaN, or Inf.

Oh, and sometimes I'm being sarcastic, or making a joke, but it’s hard to know
when, because there’s also a saying that “Truth is often said in jest!” Your Al engine
certainly won’t be able to help you sort out that conundrum.

Third-Party License Notices

Except where expressly noted, all content and code is written by David Spuler or
the contributors, with copyright and other rights owned by David Spuler and/or
Aussie Al

Additional information, acknowledgments and legal notices in relation to this book,
the C++ source code, or other Aussie Al software, can be found on the Aussie Al

Legal Notices page: https://www.aussieai.com/admin /legal-notices.
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1. AVX Intrinsics

What are AVX Intrinsics?

Hardware-assisted vectorization is a powerful optimization to processing
contiguous data structures. AVX intrinsics are SIMD parallel instructions for x86
and x64 architectures. They are actually machine opcodes supported by the x86/x64
CPU, but are wrapped in the intrinsic prototypes for easy access from a C++
program.

The main advantage of SIMD instructions is that they are CPU-supported parallel
optimizations. Hence, they do not require a GPU, and can even be used on a basic
Windows laptop. The main downside is that their level of parallelism is nowhere
near that of a high-end GPU.

There are multiple generations of AVX intrinsics based on x86/x64 CPU
instructions. Different CPUs support different features, and exactly which intrinsic
calls can be used will depend on the CPU on which your C++ is running.

The basic AVX types are:

e AVX-1— 128-bit registers = 16 bytes

e AVX-2 — 2506-bit registers = 32 bytes

e AVX-512 — 512-bit registers = 64 bytes

e AVX-10 — also 512-bit registers (with speedups)

In terms of numerical processing, you get this level of parallelism:

e AVX-1—4x32-bit float or int values
e AVX-2 — 8 x 32-bit values
e AVX-512 — 16 x 32-bit values

The AVX intrinsics use C++ type names to declare variables for their registers.
The float types used to declare the registers in AVX using C++ all have a double-
underscore prefix with ©“  m128” for 128-bit registers (4 £loats), “ m256” for
256 bit registers (8 £loats),and “  m512” for 512 bits (16 f1loats).
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Similatly, there ate also register type names for int types (_ ml128i, m2561i,
and m512i), and types for “double” registers ( ml28d, m256d,
and  m512d).

AVX intrinsic functions and their types are declared as ordinary function
prototypes in header files. The header files that you may need to include for these

intrinsics include <intrin.h>, <emmintrin.h>, and <immintrin.h>.

Useful AVX SIMD vector intrinsics for £loat types include:

e Initialize to all-zeros — mm setzero ps, mm256 setzero ps

e Setall values to a single float — mm setl ps, mm256 setl ps

e Setto4or8values— mm set ps, mm256 set ps

e lLoad from arrays to AVX registers

— mm_loadu ps, mm256 loadu ps

e Store registers back to float arrays
— mm_storeu ps, mm256_ storeu ps

e Addition— mm add ps, mm256 add ps

e Multiplication — mm mul ps (SSE), mm256 mul ps (AVX-2)

e Vector dot product — mm_dp ps, mm256_dp_ps

e TFused Multiply-Add FMA — mm_fmadd ps, mm256 fmadd ps

e Horizontal addition (pairwise) — mm_hadd ps, mm256 hadd ps

Note that the names of the intrinsic functions have meaningful suffixes. The “ ps”
suffix means “packed-single-precision” (i.c., float), whereas “ pd” suffix means
“packed-double-precision” (i.e., double).

AVX Operations

The main SIMD instructions are called “vertical” instructions, by convention. They
take one vector and a second vector (e.g., both are 128-bit), apply an operation
element-wise in parallel, and put the result into a third register. In other words, they
return the result of a “pair-wise” or “element-wise” operation on two vectors into
a third vector.

For example, vertical addition requires two input vectors and will output a third
vector with the sums. AVX-512 SIMD addition will add two 512-bit registers full
of float values on a paired element basis (e, adds 16 pairs of 32-
bit float values), yielding a third 512-bit vector with the result (16 £1loat values).
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Binary operations. The full list of binary AVX operations is very long. Supported
AVX operations include:

e Multiplication

e Addition

e Subtraction

e Division

e Maximum

e  Minimum

e Fused Multiply-Add (FMA)
e Bitwise operations

e ..and many more

Unary operations. AVX unary intrinsics apply a particular function to all elements
of an AVX register in parallel, and return the resulting register. Supported AVX
unary operations include:

e  C(Clear to zero

e Set to a constant

e (asts

e Conversions

e Popcount (POPCNT)

e Leading-zero count (LZCNT)

Mathematical Functions. Simple float-to-float mathematical functions are
effectively a type of unary operator. AVX supports a variety of functions with
vector hardware instructions, such as:

e Absolute value: abs

e Error function: erf

e Reciprocal

¢ Rounding, ceiling, floor

e Roots: sqrt (square root), cube root
e Inverted roots (e.g., invsqgrt)

e Exponential: exp, expl0

e Logarithm: 1og, 10910

e Trigonometric functions

e Hyperbolic functions

e Statistics (e.g., Cumulative Distribution Function)
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AVX Horizontal Intrinsics

Horizontal operations refer to arithmetic across the values within one vector. AVX
intrinsics exist to do “horizontal” operations across the same vector, such as adding
horizontal elements of a vector, or finding the maximum of pairs of elements within
a vector.

Horizontal SIMD instructions are typically designated with a “h” prefix (e.g.,
“horizontal add” is “hadd”). More specifically, the intrinsic for 128-bit horizontal
addis “ mm hadd ps”anditis “ mm256 hadd ps” for 256-bits.

However, do not make the mistake of assuming that these horizontal AVX
intrinsics are a “reduction” of a vector down to a single float (i.e., vector-to-scalar).
I mean, they really should do exactly that, but that would be too good to be true.
The horizontal intrinsic functions are still effectively “pairwise” operations for
AVX and AVX-2, except the pairs are within the same vector (i.e., horizontal pairs).
If you want to add all elements of a vector, or find the maximum, you will need
multiple calls to these intrinsics, each time processing pairs of numbers, halving the
number of elements you are examining at each iteration. Hence, for example,
summing all the float values in a vector with AVX or AVX-2 uses the usual
method of “shuffle-and-add” multiple times.

Thankfully, AVX-512 actually does have horizontal reductions that process all the
elements in their 512 bit registers. Hence, the 512-bit horizontal add uses a different
naming convention and uses the prefix of “reduce add” in the intrinsic name
(e.g., mm512 reduce add ps is a summation reduction). In other words, this
reduction operates in parallel on all 16 £1loat values in an AVX-512 register, and
the mm512 reduce add ps intrinsic can add up all 16 float values in one
operation. This horizontal reduction summation is useful for vectorizing functions
such as average, and could be used for vector dot products (i.e., do an AVX-512
SIMD vertical multiplication into a third vector of 16 float values, then a
horizontal reduction to sum those 16 float values), although there’s an even
better way with FMA intrinsics.

Supported AVX horizontal operations for pairwise horizontal calculations (AVX
or AVX-2) or vector-to-scalar reductions (AVX-512) include floating-point and
integer versions, with various sizes, for primitives, such as:

e Addition

e Maximum

e  Minimum

e Bitwise operations
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Combining Multithreading and SIMD CPU
Instructions

You can double up! C++ multithreading software can be interleaved with CPU
SIMD instructions as an optimized optimization. It’s totally allowed, and you can
even put it on your resume.

The idea is basically this structure:

e  Multithreading architecture — higher-level CPU parallelization.
e SIMD instructions — lower-level CPU vectorization.

You can even triple up your parallelism:

e Multithreading/multicore (CPU)
e SIMD instructions (CPU)
e GPU vectorization

Each different type of parallelization comes in at a different level. There’s even a
fourth level, because CUDA C++ GPU programming has its own SIMD
instructions to run on the GPU, based on the float4 family of types.

However, they’re not AVX, and don’t work on an x86 CPU, so we’ll leave the GPU
SIMD discussion to another day.
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2. Simple AVX Example

Basic AVX SIMD Multiply

Let us do a basic element-wise SIMD multiply using AVX (version 1) and its 128-
bit registers. This will do a paired vector multiply an array of 4 £loat numbers (i.e.,
4 x 32-bit float = 128 bits). Each float in the resulting array is a pairwise
multiplication of the elements in the two operands.

This is how SIMD instructions work, by operating on each element of the array
(i.e., “pairwise” or “element-wise”).

For example, a “vertical” multiply will take the 4 f1loat values in one input array,
and multiply each of them by the corresponding float in the other input array
with 4 float numbers, and then will return a resulting output array with
4 float values.

For testing, let us assume with want to create an AVX function that multiplies
4 float values element-wise. The test code looks like:

float arrl(4] = { 1.0f£ , 2.5f , 3.14f, 0.0f };
float arr2(4] = { 1.0f£ , 2.5f , 3.14f, 0.0f };
float resultarr([4];

// Multiply element-wise

aussie multiply vectors(arrl, arr2, resultarr, 4);

Testing the results of the multiply as an element-wise multiply of each pair in the
4 float values (using my home-grown “aussie testf” unit testing function
that compares float numbers for equality):

, 1.0f * 1.0f); // Unit tests
, 2.5f * 2.5f);

, 3.14f * 3.14f);

, 0.0f * 0.0f);

aussie_ testf (resultarr
aussie_ testf (resultarr
aussie testf (resultarr
aussie testf (resultarr

[ R Y

0
1
2
3

— — — —
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Here’s the low-level C++ code that actually does the SIMD multiply using the
“ mm mul ps” AVXintrinsic function:

#include <xmmintrin.h>
#include <intrin.h>

void aussie avx multiply 4 floats(
float v1[4],
float v2[4],
float vresult[4])

// Multiply 4x32-bit in 128-bit AVX registers

~ ml28 rl = mm loadu ps(vl); // Load floats
~ ml28 r2 = mm loadu ps(v2);
~ ml28 dst = mm mul ps(rl, r2); // AVX SIMD Mult

_mm_storeu ps(vresult, dst); // Convert to floats

Explaining this code one line at a time:
1. The header files are included: <xmmintrin.h> and <intrin.h>.

2. The basic AVX register type is “  m128” which is an AVX 128-bit
register (i.e., it is 128 bits in the basic AVX version, not AVX-2 or AVX-
512).

3. The variables “r1” and “r2” are declared as mm128 registers. The
names “r1” and “r2” are not important, and are just variable names.

4. The intrinsic function “ mm_loadu_ps” is used to convert the arrays
of 4 float values into the 128-bit register types, and the result is “loaded”
into the “r1” and “r2” 128-bit types.

5. Another 128-bit variable “dst” is declared to hold the results of the
SIMD multiply. The name “dst” can be any variable name.

6. The main AVX SIMD multiply is performed by the “ mm mul ps”

intrinsic function. The suffix “s” means “single-precision” (i.e., 32-
bit float).

This is where the rubber meets the road, and the results of the element-

wise multiplication of registers “r1” and “r2” are computed and saved
into the “dst” register.

David Spuler 26



It is analogous to the basic C++ expression:
dst = rl*r2;

7. The 128-bit result register variable “dst” is converted back to 32-
bit float values (4 of them), by “storing” the 128 bits into
the float array using the “ mm storeu ps” AVXintrinsic.

AVX-2 SIMD Multiplication

Here is the AVX-2 version of pairwise SIMD multiply with intrinsics for 256-bit
registers, which is eight 32-bit f1oat variables.

Void aussie avx2 multiply 8 floats(
float v1[8], float v2([8], float vresult[8])
{
// Multiply 8x32-bit floats in 256-bit AVX2 registers

_ m256 rl = mm256 loadu ps(vl); // Load floats
~ m256 r2 = mm256 loadu ps(v2);
_ m256 dst = mm256 mul ps(rl, r2); // Multiply (SIMD)

_mm256_storeu_ps (vresult, dst); // Convert to 8 floats

This is similar to the basic AVX 128-bit version, with some differences:

e The type for 256-bit registers is “  m256”.

e The AVX-2 loading intrinsic is “ mm256 loadu ps”.

e The AVX-2 multiplication intrinsic is “ mm256 mul ps”.
e The conversion back to float uses AVX-2 intrinsic

<«

- mm256 storeu ps’.
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AVX-512 SIMD Multiplication

Here is the basic 16 f1loat SIMD vector multiplication using 512-bits in AVX-
512.

void aussie avx512 multiply 16 floats(
float v1[1l6], float v2[1l6], float vresult[l6])
{
// Multiply 16x32-bit floats in 512-bit registers

- m512 rl = mm512 loadu ps(vl); // Load 16 floats
~ m512 r2 = mm512 loadu ps(v2);
~ m512 dst = mm512 mul ps(rl, r2); // Multiply (SIMD)

_mm512_storeu:ps(vresult, dst); // Convert to floats

Note that AVX-512 will fail with an “unhandled exception: illegal instruction” (e.g.,
in MSVS) if AVX-512 is not supported on your CPU. Hence, it’s important to
check your platform before optimizing!
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3. CPU Platform Detection

Portability Checking of AVX Versions

The power of AVX support has changed over the years, with different CPUs having
different capabilities, not only with AVX, AVX-2 and AVX-512, but also their sub-
releases. And it’s also a little unclear into the future, with reports that some of the
newer Intel chips have AVX-512 disabled.

If you write some code using AVX-512 intrinsics, and compile your C++ into an
executable with the AVX-512 flags on, and then it runs on a lower-capability CPU
without AVX-512, what happens? Do the AVX-512 intrinsics fail, or are they
simulated somehow so that they’re slower but still work?

Answer: kaboom on MSVS.

In the MSVS IDE, if you try to call these intrinsics on a CPU that doesn’t support
it, you get “unhandled exception: illegal instruction.” In other words, the C++
compiler still emits the AVX-512 instruction codes, but they aren’t valid, so it
excepts at runtime.

Hence, the calls to AVX-512 are not emulated at run-time on lower-capability
CPUs. And they aren’t checked, either. That’s up to you!

Preprocessor Macro Tests

Firstly, you cannot generally use the preprocessor to decide what version of AVX
you have (if any). This only works if:

1. There’s only one platform, and
2. You’re compiling on (or for) the same platform that will run the binary.

In other words, it’s either you and your one box doing everything, or else you’re
carefully maintaining lots of different executable binaries for each platform.
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Note that you can modify the default CPU platform target via compiler mode
settings. During compilation, you can either take whatever platform you’re on, or
you can modify the setting with compiler flags for different compile-time platform
effects:

e -mavx — GCC/Clang compiler

e -march=native — GCC/Clang compiler
e /arch:AVX — MSVC compiler

e /arch:AvX2 — MSVC compiler

In those limited circumstances, you can use the builtin preprocessor macros:

e  AVX
e  AVX2
e  AVX512F

There are also the SSE versions of these macros:

o  MMX

__ SSE__

_ SSE2__

_ SSE3__

_ SSE4 1
e  SSE4 2

There are also some macros for specific types of CPU functionality or individual
machine codes:

e  FMA — fused multiply-add.
e  BMI  — bit manipulation instructions.
e  POPCNT _ — popcount (set bits count instruction).

If you’re also supporting non-AVX platforms, your AVX code probably should
have a check like this somewhere :

#if defined( M ARM) || defined( M ARM64)
|| defined( M HYBRID X86 ARM64)
|| defined( M ARMG64EC) || arm__ || _ aarch64

#error AVX not supported on ARM platfgrm
#endif

Source: GGML Al inference backend open-source code (see Appendix for license
details).
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Runtime CPU Feature Checking

In general, for shipping a binary to customers, you can’t test #1f or #ifdef for
whether you’ve got AVX-512 in the CPU or not. You can use the preprocessor to
distinguish between different platforms where you’ll compile a separate binary (e.g.,
ARM Neon for phones or Apple M1/M2/M3 chipsets).

Preprocessing checks can help with the non-AVX platforms, but not so much on
x86 CPUs. You cannot choose between AVX, AVX-2, and AVX-512 at compile-
time, unless you really plan to ship three separate binary executables. Well, you
probably could do this if you really, really wanted to. Go ahead, prove me wrong!

The other thing you don’t really want to do is low-level testing of capabilities. You
don’t want to test a flag right in front of every AVX-512 intrinsic call. Otherwise,
you’ll lose most of the speedup benefits.

Instead, you want this test done much higher up, and then have multiple versions

of the higher-level kernel operations (e.g., vector add, vector multiply, vector dot
product, etc.)

CPUID Instruction

Given the preprocessor limitations, it is important to check your CPU platform has
the AVX support that you need. What this means is that you have to check in your
runtime code what the CPU’s capabilities are, at a very high level in your program,
usually during initialization.

Fortunately, every CPU has a builtin machine-code instruction called “CPUID”
that is very fast and provides this information. The main features of CPUID
include:

1. It’s a hardware opcode! (fast), and

2. The bit flags are very obscure, and therefore

3. Using it directly is a real pain.
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The main way to do this is via one of several possible “cpuid” intrinsic functions
at program startup. There are several versions of this non-standard C++ intrinsic:

e cpuid — the main CPU instruction.
e  cpuid() — basic CPU information (MSVC)

e  cpuidex () — extended information (MSVC)
e  get cpuid() — GCC/Clang version in <cpuid.h>
e  cpuid count () — also GCC/Clang, but more specific.

GCC also has a more user-friendly version without any bit flags needed:

e  builtin cpu supports ("NAME") — look up CPU features by
name (e.g., “SSE”).
e int may i use cpu feature (unsigned __ int64 a) —an

old version.

The GCC version is current and quite easy to use. The other one looks like a bad
AT hallucination, but it’s in some 2022 Intel documentation, so best of luck with
that.

Then you have a dynamic flag that specifies whether you have AVX-512 or not,
and you can then choose between an AVX-2 dot product or an AVX-512 dot
product, or whatever else, during execution.

Obviously, it gets a bit convoluted when you have to dynamically choose between
versions for AVX, AVX-2 and AVX-512, not to mention all the AVX sub-
capabilities and also AVX-10 coming soon!
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4. Common Bugs & Slugs

Common AVX Bugs

Nobody said that AVX was easyl There are certainly plenty of great speedups, but
there are also some new ways to crash your code:

e AVX version not supported by CPU architecture (crash!).

e Bugs in tricky AVX loop bounds and incrementers (various mistakes
possible).

e Alignment problems (usually 16-bit alignhment is needed).

e CPU overheating (AVX instructions are heavy on the poor silicon).

e DPointer arithmetic errors (AVX types are bigger than normal).

e Wrongly mixing integers and floating-point numbers (they’re the same size,
after all).

e Bytewise comparison pitfalls (e.g., memcmp, vpcmpegb, vpmovmskb,
and bzhi; bewatre padding bytes, negative-zero, Inf/NaN floating-point
values, and more).

In addition to AVX-specific bugs, there are all sorts of normal variable bugs! The
AVX register variables can simply be uninitialized, or you can divide by zero, or any
number of memory mistakes.

To catch some of these problems, you can still use the same debugging techniques
on AVX variables. Runtime checkers will catch AVX-related memory errors, so
make sure to use Valgrind or ASan.
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Common AVX Slugs

If you do AVX correctly, your program goes much faster! But you can also
accidentally slow it down, and here’s some of the ways:

e Slow memory accesses — poor cache locality of your memory lookups will
slow things, no matter what AVX instructions you use (e.g., prefer
contiguous data storage like arrays or vectors).

e Alignment slugs — incorrect alignment is sometimes auto-corrected, but
then it’s slower, even when it doesn’t crash, such as if you do unaligned

stores.

e Overuse of alignment-safe AVX primitives — this is always slower, so
avoid it where unnecessary.

e Downclocking of AVX instructions — use of AVX undermines any

overclocking you might be doing!

e Setting AVX constants inside the loop — tune your inner loops even in
AVX (a common mistake).

e Accidental redundant AVX code — e.g., wrong logic in loop indices.

e Gather instructions are often slower — poor memory access patterns.

e Auto-vectorization prevention — compilers sometimes don’t speak AVX
very well (check the assembly output).

e DPointers not declared as “restricted” — throw your poor compiler a bone.

e Too much prefetching — mm prefetch () can be a slowdown.

e Lookup tables can be a de-optimization — benchmark against raw
computation.

e Caching can be a slug — for the same reasons, benchmark caching against
recomputation.

Loop Invariant Code Hoisting

AVX statements can be misplaced like any other statements. Can you spot the slug
in this code:

void aussie vec mult scalar AVX1 sluggy (
float v[], int n, float c)
{

for (int 1 = 0; 1 < n; 1 += 4) {

_ ml28 rl _mm_loadu ps(&v[i]); // Load floats
~ ml28 rscalar = mm setl ps(c); // Vector scalars
~ ml28 dst = mm mul ps(rl, rscalar); // Mult scalar

~mm_store ps(&v[i], dst); // convert to floats

}
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The fixed code has a constant operation hoisted out of the loop. It doesn’t change
throughout the iterations:

void aussie vector mult scalar AVXI1 (float v[],int n,float c)

{

const _ ml28 rscalar = mm setl ps(c); // Hoisted!!
for (int i = 0; 1 < n; i += 4) {
- ml28 rl = mm loadu ps(&v[i]);
~ ml28 dst = mm mul ps(rl, rscalar); // Mul scalars

~mm_store ps(&v[i], dst);

Accidental Redundant Computations

This is buggy and sluggy code. Can you see the bugp It’s hidden by “code blindness”
because of what C++ programmers are used to seeing,.

void aussie vector multiply scalar AVX2 (
float v[], int n, float c)
{

const _ m256 rscalar = mm256 setl ps(c); // Vec scalars
for (int 1 = 0; i < n; i++) {
_ m256 rl = mm256 loadu ps(&v([i]); // Load floats
_ m256 dst = mm256 mul ps(rl, rscalar); // Multiply

_mm256_store ps(&v[i], dst); // convert to floats

The bug is “i++” because it should really be “i+=8" to stride through the loop.
This is the type of bug that can happen in any of the SIMD kernels.

Depending on the function, it can be a bug, or it can be an insidious slug, whereby
the same computations are done over again, losing all benefit of the AVX
vectorized instructions.
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Too Much AVX

What do you think of this AVX routine to clear a vector in parallel? Here’s the
unoptimized code:

void aussie vector clear AVX2(float v[], int n)

{

const m256 rzeros = mm256 setzero ps();
for (int i = 0; 1 < n; i += 8) {
~ m256 rl = mm256 loadu ps(&v[il]); // Load floats

_mm256_store ps(&v[i], rzeros); // store zeros

}

Umm, yeah. Do you think I like AVX maybe a little too much? How about:
std::memset (v, 0, n *sizeof (float)):;

Don’t worry. The compiler designers are certainly using something better than
looping AVX calls in the standard library implementation.

List of AVX Optimization Tricks

A lot of these ideas are covered in other parts of the book. However, here’s a
convenient list of some of the major techniques:

e Unroll loops manually (reduce loop overhead and have fewer branches).

e Use “double unrolling” of loops (unroll once to AVX, then unroll those
AVX instructions, tool)

e Parallel accumulators (with single or double unrolled loops).

e Avoid data dependencies for “out-of-order” execution (parallel
accumulators; split integer versus floating-point arithmetic, etc.)

e Fused Multiply-Add (FMA) is fast (and a pleasure to use).

e Use “alignas” to maintain alighment.

e Use “broadcast” of constants (e.g., mm256 setl ps()).

e Manual prefetching (e.g., mm prefetch).

e Masked operations (useful branchless coding trick).

e Optimizer architecture flags such as “~-march” for GCC/Clang.

e Compare memcpy vs. vpcmpegb, vpmovmskb, bzhi (use with carel).

e Use permute and shuffle primitives to reorder data.

e Store data with “streaming stores” via _mm256 stream ps ().

e Use vector sizes that are a multiple of loop unroll (or pad with zeros).
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Special issues with some AVX instructions:

e setr ps (gather) is slow

e Dbzhi

e tzcnt

e mm256 blendv ps can help branchless programming (but blends can
also be slow)

General low-level coding optimization tricks that also apply to AVX programming:

e Cache locality

e  Cache lines

e Avoid false sharing (multithreaded code)

e Prefetching

e Cache warming

e Branchless coding

e Reduce data sizes

e Pack data together

e  DPrefer contiguous data

e  Prefer Structure-of-Arrays (SoA) over Array-of-Structures (AoS)
e  Use transpose tricks in matrix multiplication (contiguous data)

e Avoid or reduce memory allocations (e.g., preallocation, memory pools)

Tools and commands to use:

e  Check the compiler’s assembly output (e.g., “gcc -S7)

e  Use optimizer settings such as “~0” and “~march” flags

e Check for memory errors with Valgrind (Memcheck) and ASan
e  Profile low-level performance with “perf” or Intel VTune

e Linux kernel optimizations (e.g., “noatime” in /etc/fstab)

Useful third-party libraries to consider for their AVX SIMD methods:

e xsimd (header-only library)

e VCL (Vector Class by Agner Fog)

e Eigen (linear algebra)

e Highway (high-performance SIMD)
e SIMDe (portable SIMD operations)

But only look at the libraries if you don’t want the fun of coding AVX yourselfl
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5. One-Dimensional
Vectorization

What is Vectorization?

Vectorization is the name given to transforming a software loop from running
sequentially on a one-dimensional array of data to performing the same
computation fully in parallel, by sending the data to a GPU or CPU SIMD
extensions. This is a powerful way to optimize the processing of contiguous data
structures such as arrays and vectors.

Vectorization uses techniques from loop optimizations to transform loops into
faster parallelizable versions, such as “unrolling” a loop into all its element-wise
actions, and loop distribution (also called “loop sectioning”), which breaks the array
into segments that are the right size to fit in parallel into your GPU or CPU SIMD
extensions. In theory, a good optimizing compiler can do vectorization
optimizations automatically for simple loops, but often you have to do it yourself.

A powerful way to do vectorization of contiguous data processing is to use the
AVX SIMD instructions for CPU-based parallelism. The AVX intrinsics are C++
built-in functions that wrap around SIMD instruction codes in the x86 instruction
set. The basic AVX intrinsics are 128-bits (4 £1loat values of size 32-bits), AVX-2
is 256 bits (8 float values), and AVX-512 is 512 bits (surprise!), which is
16 £loat numbers. The upcoming AVX-10 (announced in July 2023) is also 512
bits, but with extra capabilities.

Obviously, since the largest number of floating-point values that can be parallelized
is 16, the AVX intrinsics cannot fully vectorize a larger vector of very
many float values, such as an Al model with dimension 1024. Instead, we can
use AVX intrinsics on segments of vectors, and thereby vectorize chunks of the
right size to get a speedup.
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Vectorized Multiply Vector by Scalar

The requirement to multiply a vector by a scalar is common when using scaling
vectors. Division by a scalar is also handled by multiplying by the reciprocal (e.g.,
needed for Softmax). Multiplication by a scalar is amenable to vectorization because
the naive C++ version is very simple:

void aussie vector multiply scalar(
float v[], int n, float c)
{
// Multiply all vector elements by constant
for (int i = 0; 1 < n; i++) {
v[ii] *= c;

Loop Pointer Arithmetic. First, we can try the basic C++ optimization of pointer
arithmetic:

void aussie vector multiply scalar pointer arith(
float v[], int n, float c)
{
// Multiply all vector elements by constant
for (; n > 0; n-—-, v++) |
*y K= c;

AVX1 multiply-by-scalar: There is no special scalar multiplication opcode in
AVX or AVX-2, but we can populate a constant register (128-bit or 256-bit) with
multiple copies of the scalar (e, mm setl psor mm256 setl ps), and we
need do this only once. We can then use the SIMD multiply intrinsics in the
unrolled loop section. The AVX 128-bit vector multiplication by scalar becomes:

void aussie vector multiply scalar AVXI1 (
float v[], int n, float c)
{

const _ ml28 rscalar = mm _setl ps(c); // Vector scalars
for (int i = 0; 1 < n; i += 4) {
~ ml28 rl = mm loadu ps(&v[i]); // Load floats
~ ml28 dst = mm mul ps(rl, rscalar); // Mul scalars
_mm store ps(&v[i], dst); // convert to floats
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AVX2 multiply-by-scalar: Even faster is to use 8 parallel multiplications with
AVX-2’s 256-bit registers. The AVX-1 version is simply changed to use the
“  m256” type and the analogous AVX-2 intrinsics. The new code looks like:

void aussie vector multiply scalar AVX2(
float v[], int n, float c)
{

const _ m256 rscalar = mm256 setl ps(c); // Vec scalars
for (int 1 = 0; i < n; 1 += 8) {
_ m256 rl = mm256 loadu ps(&v[i]); // Load floats
_ m256 dst = mm256 mul ps(rl, rscalar); // Multiply

_mm256_store ps(&v[i], dst); // convert to floats

Combining AVX-2 with pointer arithmetic. Finally, we can get a small extra
benefit by adding pointer arithmetic optimizations to the AVX-2 parallelized
version. The new code is:

void aussie vector multiply scalar AVX2 pointer arith(
float v[], int n, float c)

{
// Multiply all vector elements by constant

const _ m256 rscalar = mm256 setl ps(c); // vec scalars
for (; n > 0; n -=8, v += 8) {

~ m256 rl = mm256 loadu ps(v); // Load 256-bits

_ m256 dst = mm256 mul ps(rl, rscalar); // Multiply

_mm256_store_gs(v, dst); // convert (aligned)

Benchmarking results. In theory, the AVX-2 intrinsics could parallelize the
computation by 8 times, but benchmarking showed that it only achieved a 4-times

speedup.

Vector-scalar operation benchmarks (N=1024, ITER=1000000):

Vector mult-scalar C++: 1412 ticks (1.41 seconds)

Vector mult-scalar pointer-arith: 995 ticks (0.99 seconds)

Vector mult-scalar AVX1l: 677 ticks (0.68 seconds)

Vector mult-scalar AVX2: 373 ticks (0.37 seconds)

Vector mult-scalar AVX2 + pointer arith: 340 ticks (0.34 s)
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Vectorized Add Scalar

The code to vectorize an “add-scalar” operation is almost identical to “multiply-
scalar” operations, except that “add” intrinsics are used. Here is the AVX-1 version
with “ mm_add ps™

void aussie vector add scalar AVXI1 (
float v[], int n, float c)
{

// Add scalar constant to all vector elements

const  ml28 rscalar = mm setl ps(c); // vector scalars
for (int i = 0; 1 < n; i += 4) {
~ ml28 rl = mm loadu ps(&v[i]); // Load 128-bits
~ ml28 dst = mm add ps(rl, rscalar); // Add scalars

_mm store ps(&v[i], dst); // store back to floats

And this is the analogous AVX-2 version using the “ mm256 add_ps” intrinsic:

void aussie vector add scalar AVX2 (
float v[], int n, float c)
{

// Add scalar constant to all vector elements

const _ m256 rscalar = mm256 setl ps(c); // vec scalars
for (int i = 0; 1 < n; 1 += 8) {
~ m256 rl = mm256 loadu ps(&v[i]); // Load 256-bits
_ m256 dst = mm256_add ps(rl, rscalar); // Add scal

_mm256_store_gs(&v[i], dst); // convert (Aligned)

Vectorized RELU with Max Intrinsics

The RELU activation function is an important piece of code in Al engines.
However, it’s very simple, arithmetically converting negatives to zero, leaving
positives unchanged. This is algebraically equivalent to max(x,0), which can be
implemented in AVX like a “max-scalar” operation.

To vectorize RELU applied to a whole vector of float elements, we are
effectively doing a SIMD max operation with a scalar zero (i.e,, 0.0). Hence, the
code is very similar to vectorization of add-scalar, but uses the “ mm max ps”
intrinsic.
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The AVX1 version of vectorized RELU looks like:

void aussie vector reluize AVXI1 (float v[], int n)
{
// Apply RELU to each element (sets negatives to zero)
if (n % 4 !'= 0) {
aussie assert(n % 4 == 0);
return; // fail

}

const  ml28 rzeros = mm setl ps(0.0f); // vector zeros
for (int i = 0; 1 < n; i += 4) {
~ ml28 rl = mm loadu ps(&v[i]); // Load 128-bits
_ ml28 dst = mm max ps(rl, rzeros); // MAX(rl,O0)

_mm store ps(&v[i], dst); // store back to floats

And here is the AVX2 version doing 8 float elements at a time using the
“ mm256 max ps” intrinsic:

void aussie vector reluize AVX2(float v[], int n)
{
// Apply RELU to each element (sets negatives to zero)

if (n $ 8 !'= 0) {
aussie assert(n % 8 == 0);

return; // fail

}

const _ m256 rzeros = mm256 setl ps(0.0f); // vec zeros
for (int 1 = 0; i < n; 1 += 8) {
_ m256 rl = mm256 loadu ps(&v([i]); // Load 256-bits
_ m256 dst = mm256 max ps(rl, rzeros); // MAX(RI,O0)

_mm256_store_gs(&v[i], dst); // store back to floats

Vectorization of Exponentiation

The expf function is very expensive to call, but exponentiation of entire vectors
of float values are required in several parts of Al engines, such as activation
functions and Softmax normalization. Surprisingly, in x86 there are CPU opcodes
to do exponentiation in hardware, and there are matching AVX intrinsics for SIMD
exponentiation operations on small vectors (i.e., 4 float values for AVX-1 and
8 float values for AVX-2).
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The basic C++ version to apply expf to every element of a vector, and store the
result in the original vector, looks like this:

void aussie vector expf (float v[], int n)
{
// Apply EXPF (exponential) to each element
for (int i = 0; 1 < n; i++) {
v[i] = expf(vI[i]);

Loop Pointer arithmetic. Applying the basic C++ optimization of pointer
arithmetic, the new code is:

void aussie vector expf pointer arith(float v[], int n)
{
for (; n > 0; n--, v++) {

( r
*v expf (*Vv);

AVX1 SIMD exponentiation of 4 values: There is an AVX intrinsic called
“ mm_exp ps” to exponentiate 4 float values in parallel using the 128-bit

registers. Here’s the new vector exponentiation code with loop unrolling every 4
elements and AVX1 vectorization:

void aussie vector expf AVXI (float v[], int n)
{
for (int i = 0; 1 < n; 1 += 4) {
~ ml28 rl = mm loadu ps(&v[i]); // Load 128-bits
_ ml28 dst = mm_exp ps(rl); // Exponentiate (expf)
_mm_store ps(&v[i], dst); // convert (Aligned)

AVX2 SIMD exponentiation of 8 values: The AVX2 intrinsic is

- mm256_exp ps” to exponentiate 8 elements in parallel using the 256-bit
registers. The code with loop unrolling every 8 values and AVX-2 becomes:

void aussie vector expf AVX2(float v[], int n)
{ // RApply EXPF (exponential) to each element
for (int i = 0; 1 < n; i += 8) {
_ m256 rl = mm256 loadu ps(&v[i]); // Load 256-bits
~ m256 dst = mm256 exp ps(rl); // Exponent (expf)

_mm256_store ps(&v[i], dst); // convert (Aligned)

}
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Benchmarking results. The results of optimization of exponentiation are striking]
AVX1 is massively faster, cutting out 97% of the original computation time, and
then AVX2 is faster still. It’s almost like hardware is faster than software. Who

knew?

Vector-

Vector
Vector
Vector
Vector

exp operation benchmarks (N=1024, ITER=100000) :
expf basic: 6695 ticks (6.70 seconds)

expf pointer-arith: 6395 ticks (6.39 seconds)
expf AVX1l: 260 ticks (0.26 seconds)

expf AVX2: 124 ticks (0.12 seconds)
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6. Horizontal Reductions

What is a Reduction?

A reduction is an operation that “reduces” a vector down to a single number. It’s
called “horizontal” because it operates across the vector, requiring multiple
clements from the same vector to be examined. An elementwise operation where
each vector element is handled separately, without any other elements from the
same vector, is called a “vertical” operation. Here’s a rule of thumb:

e Vertical — two vector operands (e.g., add two vectors).
e Horizontal — one vector operand (e.g., sum elements of a single vector).

Some examples of common horizontal reductions on vectors include:

e Max
e Min
e Sum

e Average
These look easy enough. But, nol

Horizontal reductions are actually harder to code than vertical operations, even
when there’s two operands for the vertical algorithm. SIMD hardware instructions
are much better suited to vertical elementwise operations across two different
vectors.

The horizontal SIMD instructions are often slowet!
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Example: AVX Vector Sum Reduction

Let us suppose we need to calculate the sum of all the elements of a vector. This is
a “reduction” that has dimensions “vectot-to-scalar.”

Here is a basic naive C++ version without any optimizations:

float aussie vector sum(float v[], int n) // Summation
{
float sum = 0.0;
for (int i = 0
sum += v[i

;1 < n; i+4+) {
1
}

return sum;

Horizontal AVX Intrinsics

AVX vector reductions have some issues in the early releases. Although AVX has
SIMD instructions to add two vectors in parallel, it struggles to do a “reduction”
operation like this. AVX and AVX-2 do have “horizontal add” (“hadd”) intrinsics,
but these only do pairwise additions within the single vector, rather than adding all
elements. AVX-512 has a “reduce add” intrinsic (“ mm512 reduce add ps”)
for horizontally adds 16 £1oat numbers, which works a lot better.

Parallel Accumulators Trick

For AVX and AVX-2, are we stuck with doing multiple calls to the pairwise “hadd”
intrinsics? No, there’s a non-obvious way to use the “vertical add” intrinsics in
parallel. We can do “in parallel” squared. It’s almost like we’re doing math inside a
computer.

The trick is to use the AVX registers as a set of 4 parallel accumulators (AVX 128
bits) or 8 parallel accumulators (AVX-2’s 256 bits). The overall algorithm becomes:

1. Initialize 4 (or 8) accumulators.
2. Scan the whole vector doing 4 parallel additions every iteration.

3. Sum the 4 accumulators (and done).
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In this way, we can defer the horizontal addition (“hadd”) until the very end, and
since it’s not in the critical loop, its performance hardly matters. Here’s the code
for AVX-1 with 128-bit registers:

float aussie vector sum AVXI1 (float v[], int n)
{
// Summation (horizontal) of a single vector
if (n $ 4 !'=0) { // Safety
aussie assert(n % 4 == 0);
return 0.0; // fail

}

~ ml28 sumdst = mm setzero ps(); // Set accums zero
for (int 1 = 0; i < n; 1 += 4) {
- ml28 rl = mm loadu ps(&v([i]); // Load 128-bits
sumdst = mm add ps(rl, sumdst); // SUM = SUM + V
}

// Add the final 4 accumulators manually

float* farr = sumdst.ml28 £32;

float sum = farr[0] + farr([l] + farr([2] + farr([3];
return sum;

The AVX-2 version is faster, because it processes 8 £1oat values at a time. This
uses the same strategy of 8 parallel accumulators and a loop unrolling factor of 8
(i.e., the loop incrementer is now “i+=8"). Here’s the C++ code:

float aussie vector sum AVX2(float v[], int n)

{

// Summation (horizontal) of a single vector
if (n $ 8 != 0) { // Safety check (no extra cases)
aussie assert(n % 8 == 0);

return 0.0; // fail

_ m256 sumdst = mm256 setzero ps(); // Set 8 accum zero
for (int i = 0; i < n; 1 += 8) {
_ m256 rl = mm256 loadu ps(&v[i]); // Ld 8x256-bit
sumdst = mm256 add ps(rl, sumdst); // SUM = SUM + V
}

// Add the final 8 accumulators manually

float* farr = sumdst.m256 £32;

float sum = farr[0] + farr[l] + farr[2] + farr[3]
+ farr[4] + farr[5] + farr[6] + farr[7];

return sum;

51 C++ AVX Optimization



I’'ve been lazy not bothering to optimize the final horizontal addition. A small extra
speedup is probably available using the “hadd” intrinsics 3 times in a row to drop
it down from 8 accumulators to a single float. If this was AVX-512, we could use
the horizontal reduction “ mm512 reduce add ps” intrinsic for summation at
the end (for adding 16 partial sums of type float).

Loop Peeling Optimization: Another inefficiency with these AVX addition
routines it that they needlessly perform an addition with zero in the first iteration.
Effectively, we need to do “loop peeling” to handle the first loop iteration
differently.

This is the slow first iteration of AVX2 vector sum:

_ m256 sumdst = mm256 setzero ps(); // Set 8 accum zero
for (int i = 0; 1 < n; 1 += 8) {
//

}

Loop peeling says to replace the initialization with zero with loading the first 8
values from the vector. The loop starts its first iteration at 1=8 instead of 1=0,
skipping what had been the first addition:

_ m256 sumdst = mm256_ loadu ps(&v[0]); // first 8 values
for (int i = 8 /*not 0!*/; i < n; i += 8) {
// ... same

}

AVX Vector Max and Min Reductions

The need to find a minimum or maximum of a vector’s elements is similar to a
summation reduction. Again, AVX1 and AVX2 don’t have proper “reduction”
intrinsics for max or min, but we can compute them in parallel by keeping a
running min or max value of 4 or 8 float values (i.e., analogous to parallel
accumulators when doing summation).

The AVX intrinsics are:

e MIN: mm min ps, mm256 min ps
e MAX: mm max ps, mm256 max ps
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Here is the AVX1 version of MAX vector reduction:

float aussie vector max AVXI1 (float v[], int n)

{

// Maximum (horizontal) of a single vector

if (n % 4 !'= 0) {
aussie assert(n % 4 == 0);

return 0.0; // fail
}

~ ml28 sumdst = mm loadu ps(&v[0]); // Initial values
for (int 1 = 4 /*not 0*/; 1 < n; i += 4) {
~ ml28 rl = mm loadu ps(&v[i]); // Load 128-bits
sumdst = mm max ps(rl, sumdst); // dst=MAX(dst,rl)

}

// Find Max of the final 4 accumulators
float* farr = sumdst.ml28 £32;

float fmax = farr([0];

if (farr([l] > fmax) fmax = farr[l];
if (farr[2] > fmax) fmax = farr[2];
if (farr([3] > fmax) fmax = farr[3];

return fmax;

And here is the analogous AVX2 version of MAX vector reduction:

float aussie vector max AVX2(float v[], int n)

{

// Maximum (horizontal) of a single vector

if (n % 8 != 0) { // Safety check (no extra cases)
aussie assert(n % == 0);

return 0.0; // fail
}

m256 sumdst = mm256 loadu ps(&v[0]); // Init 8 values
for (int i = 8/*not 0*/; i < n; i += 8) {
_ m256 rl = mm256 loadu ps(&v([i]); // Load 256-bits
sumdst = mm256 max ps(rl, sumdst); // d=MAX(d,rl)

}

// Find Max of the final 8 accumulators
float* farr = sumdst.m256 f£32;
float fmax = farr[0];

if (farr[l] > fmax) fmax = farr[l];
if (farr[2] > fmax) fmax = farr[2];
if (farr[3] > fmax) fmax = farr[3];
if (farr[4] > fmax) fmax = farr[4];
if (farr[5] > fmax) fmax = farr[5];
if (farr[6] > fmax) fmax = farr[6];
if (farr[7] > fmax) fmax = farr[7];

return fmax;
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The MIN versions are very similar. They use the “min” AVX intrinsics, and the final
steps use “<” not “>” operations. Here’s the AVX1 version of a MIN vector
reduction:

float aussie vector min AVXI (float v[], int n)
{
// Minimum (horizontal) of a single vector
if (n $ 4 !'= 0) {
aussie assert(n % 4 == 0);
return 0.0; // fail
}

~ ml28 sumdst = mm loadu ps(&v[0]); // Initial values
for (int i = 4 /*not 0*/; i < n; 1 += 4) {
- ml28 rl = mm loadu ps(&v([i]); // Load 128-bits
sumdst = mm min ps(rl, sumdst); // d = MIN(d, rl)

}

// Find Min of the final 4 accumulators
float* farr = sumdst.ml28 £32;

float fmin = farr([0];

if (farr[l] < fmin) fmin = farr[1l];
if (farr([2] < fmin) fmin = farr[2];
if (farr[3] < fmin) fmin = farr[3];

return fmin;

This is the AVX2 version of a MIN vector reduction:

float aussie vector min AVX2(float v[], int n)

{ // Minimum (horizontal) of a single vector
if (n $ 8 != 0) { // Safety check (no extra cases)
aussie assert(n % == 0);

return 0.0; // fail
}

_ m256 sumdst = mm256 loadu ps(&v[0]); // Init 8 values
for (int 1 = 8/*not 0*/; 1 < n; 1 += 8) {
_ m256 rl = mm256 loadu ps(&v[i]); // Load 256-bits
sumdst = mm256 min ps(rl, sumdst); // d = MIN(d,rl)

}

// Find Min of the final 8 accumulators
float* farr = sumdst.m256 f£32;
float fmin = farr[0];

if (farr[l] < fmin) fmin = farr[1l];
if (farr[2] < fmin) fmin = farr[2];
if (farr[3] < fmin) fmin = farr[3];
if (farr[4] < fmin) fmin = farr[4];
if (farr[5] < fmin) fmin = farr[5];
if (farr[6] < fmin) fmin = farr[6];
if (farr[7] < fmin) fmin = farr[7];

return fmin;

}
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These versions are not especially optimized. AVX-512 would allow us to further
vectorize to 16 £1loat values.

Also, the final computation of the maximum or minimum of 8 float numbers is
far from optimal. The AVX hotizontal min/max intrinsics would be used
(pairwise, multiple times). Or we can at least avoid some comparisons by doing it
pairwise sequentially.

Here’s the alternative for AVX1 minimum computation:

// Find Min of the final 4 accumulators
#define FMIN (x,y) ( (x) < (y) ? (x) : (y) )

float* farr = sumdst.ml28 f32;

float fminl = FMIN (farr[0], farr[1l]);

float fmin2 = FMIN (farr[2], farr[3]);

float fmin = FMIN(fminl, fmin2);

return fmin;

These functions can also have their main loops further improved. Other basic
optimizations would include using loop pointer arithmetic to remove the index

[T

variable “1” and also unrolling the loop body multiple times.

Vectorized Sum-of-Squares Reduction

The sum of the square of an element of a vector has various applications in our Al
Engine. Firstly, it can be used to compute the magnitude of a vector.

Secondly, the sum-of-squares is used in various normalization functions, as a part
of computing the variance from the sum-of-squares of the difference between
values and the mean. The RMS factor in RMSNorm is also the square root of the
sum-of-squares.

The method to add up the sum-of-squares for a vector reduction to a
single f1loat is very similar to a simple summation reduction. The idea for AVX1
and AVX2 is to keep 4 or 8 running sum accumulators, and then add them up at
the final step.

55 C++ AVX Optimization



Here is the AVX1 version of sum-of-squates of a vector:

float aussie vector sum squares AVX1 (float v[], int n)

{ // Summation of squares of all elements
if (n $ 4 != 0) { // Safety check (no extra cases)
aussie assert(n % 4 == 0);

return 0.0; // fail
}

~ ml28 sumdst = mm setzero ps(); // Zero accumulators
for (int 1 = 0; i < n; 1 += 4) {
~ ml28 rl = mm loadu ps(&v[i]); // Load floats
~ ml28 sgr = mm mul ps(rl, rl) // Square (V*V)
sumdst = mm add ps(sqr, sumdst

); // SUM = SUM + V*V
}

// Add the final 4 accumulators manually

float* farr = sumdst.ml28 f£32;

float sum = farr[0] + farr([l] + farr([2] + farr([3];
return sum;

And here is the AVX2 version of sum-of-squares:

float aussie vector sum squares AVX2 (float v[], int n)

{ // Summation of squares of all elements
if (n $ 8 != 0) { // Safety check (no extra cases)
aussie assert(n % == 0);

return 0.0; // fail
}

_ m256 sumdst = mm256 setzero ps(); // Zero accums

for (int 1 = 0; i < n; 1 += 8) {
_ m256 rl = mm256 loadu ps(&v([i]); // Load floats
_ m256 sgr = mm256 mul ps(rl, rl); // Square (V*V)
sumdst = mm256 add ps(sqr, sumdst); // SUM=SUM+V*V

}

// Add the final 8 accumulators manually

float* farr = sumdst.m256 £32;

float sum = farr[0] + farr[l] + farr[2] + farr[3]
+ farr([4] + farr[5] + farr([6] + farr([7]:;

return sum;

Various optimizations can be further applied to these versions. Like the summation
reduction, these loops needlessly add zero at the first iteration, and loop peeling
should be used for split out the first iteration separately. The final horizontal
addition of 4 or 8 float values should be optimized. AVX-512 should be used for
greater parallelism to 16 float numbers. Finally, basic loop optimizations of
pointer arithmetic and loop unrolling could be applied.
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Hybrid Vertical-Horizontal Operations

There are also many more complicated reductions. There are also some one-
dimensional vector operations that a “hybrid” and don’t fit neatly into the
categories of horizontal reductions or vertical elementwise operations.

Some examples include:

e Vector dot product
e Al normalization (BatchNorm)
o Al statistical normalization (Softmax)

For example, vector dot product is like a vertical elementwise multiplication
followed by a horizontal summation reduction.

Normalization functions in Al, such as BatchNorm or Softmax, are another
example, where the whole vector is processed to “normalize” every value, but doing
so requires computations both horizontally to compute the scaling factor and
vertically to scale every element.

Boolean Vector Operations

Weirdly, a lot of Boolean testing operations on vectors are also hybrid vertical-
horizontal operations. Some examples include:

e Vector equality (two vectors)

e Vector is zero (one vector)

e Vector contains a value (one vector)

e Vector has a NaN or Inf (floating-point)

All of these seem like they’re elementwise tests, where each vector element can be
examined separately.

The two-vector compatrison does pairwise compatison of each element separately,
and the single-vector operations can examine one element at a time. That would
seem to make them all meet the criteria for vertical elementwise operations, with
very fast implementations via AVX SIMD instructions.

Alas, no, it’s not that simple.
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A more accurate way to think about them is that the first phase creates a Boolean
vector (as a temporary), where each element of this interim vector has the test result
for each element.

Hence, there’s actually a second phase where the many Boolean results from
analyzing each vector element need to be “reduced” to a single Boolean value as

the final answer.

This last phase is like a horizontal reduction over a Boolean vector using a logical
“or” or “and” operator.
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7. Vector Dot Product

Vector Dot Product

An example of an operation with aspects of both vertical and horizontal arithmetic
is: vector dot product. The two arithmetic requirements are:

e Multiplication — pairwise on all elements (vertical vectorization).
e Accumulation — summing up all those values (horizontal reduction).

Conceptually, this is the case, with a vertical multiplication of pairs, followed by a
horizontal summation of these values. In practice, however, these two stages are
merged in together for a faster method.

Sequential Code

Here is the basic non-vectorized dot product computation without any
optimization attempts.

float aussie vecdot basic(float v1[],float v2[],int n)
{
// Basic FLOAT vector dot product
float sum = 0.0;
for (int i = 0; 1 < n; i++) {
sum += v1[i] * v2[i];
}

return sum;

There are several ways that we could improve this code, such as:

e Loop unrolling
e DPointer arithmetic
e Instruction-level parallelism

However, first, let’s look at making it work fast on the CPU using AVX SIMD
instructions.
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AVX 128-Bit Dot Product

The AVX instruction set has a vector dot product intrinsic that wraps an x86 dot
product hardware instruction on the CPU. There are versions of the dot product
intrinsic for AVX (128-bit), AVX-2 (256-bit) and AVX-512 (512-bit).

For basic AVX (128 bits), this is a full vector dot product of two vectors with 4 x
32-bit f1oat numbers in each vector. One oddity is that although the result is a
floating-point scalar (i.e., a single 32-bit f1oat), it’s still stored in a 128-bit register,

and must be extracted using the “ mm cvtss £32” intrinsic. The example code
looks like:

float aussie avx vecdot 4 floats(
float v1[4], float v2[4])
{
// AVX dot product: 2 vectors of 4x32-bit floats

~ ml28 rl = mm loadu ps(vl); // Load floats

~ ml28 r2 = mm loadu ps(v2);

~ ml28 dst = mm dp ps(rl, r2, Oxfl); // Dot prod
float fret = mm cvtss f32(dst); // Extract float

return fret;

AVX-2 256-Bit Dot Product

Here is my attempt at the 256-bit version of a vector dot product of 8 £loat values
using AVX-2 instructions, which seems like it should work:

float aussie avx2 vecdot 8 floats buggy(
float v1[8], float v2[8])

{
// AVX2 dot product: 2 vectors, 8x32-bit floats
_ m256 rl = mm256 loadu ps(vl); // Load floats
_ m256 r2 = mm256 loadu ps(v2);
_ m256 dst = mm256 _dp ps(rl, r2, 0xfl); // Bug!
float fret ~mm256 cvtss £32(dst);
return fret;

But it doesn’t!

Instead of working on 8 pairs of f1oat numbers, it does the vector dot product of
only 4 pairs of £loat values, just like the first AVX code.
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The problem wasn’t related to alignment to 256-bit blocks, because I added
“alignas (32)” to the arrays passed in. It seems that the “ mm256 dp ps”
intrinsic doesn’t actually do 256-bit dot products, but is similar to the 128-bit
“ mm dp ps” intrinsic that does only four float numbers (128 bits).

These are based on the VDPPS opcode in the x86 instruction for 32-
bit float values and there is VDPPD for 64-bit double numbers. However, it
seems that “ mm256 dp_ ps” is not using the 256-bit version.

Or maybe my code is just buggy!

Loop Unrolled Version

To use AVX to vectorize it, we need to unroll the loop first. Here’s a simple vector
dot product with its inner loop unrolled 4 times. This version assumes that nis a
multiple of 4 rather than handling odd cases:

float aussie vecdot unroll4 basic(
float v1[], float v2[], int n)
{
// Loop-unrolled Vector dot product
if (n $ 4 !'= 0) {
aussie assert(n % 4 == 0);
return 0.0; // fail
}
float sum = 0.0;

for (int 1 = 0; i < n; ) {
sum += v1[i] * v2[i]; i++;
sum += v1[i] * v2[i]; 1i++;
sum += v1[i] * v2[i]; i++;
sum += v1[i] * v2[i]; 1i++;

}

return sum;
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So, now we can change those 4 unrolled multiplications into one AVX computation
of the vector dot product of 4 £1oat numbers.

#include <intrin.h>

float aussie vecdot unroll AVXI (
float v1[], float v2[], int n)
{
// AVX-1 loop-unrolled (4 floats) vector dot product
if (n $ 4 !'= 0) {
aussie assert(n % 4 == 0);
return 0.0; // fail
}
float sum = 0.0;
for (int 1 = 0; i < n; 1 += 4) {
// BAVX1l: Vector dot product of 2 vectors

// ... process 4x32-bit floats in 128 bits

- ml28 rl = mm loadu ps(&vl[i]); // Load 128-bits

~ ml28 r2 = mm loadu ps(&v2[i]);

~ ml28 dst = mm dp ps(rl, r2, 0xfl); // Dot product

sum += _mm_chss_f32(dst);
}

return sum;

This basic AVX sequence of code to do the 4 float dot product has been analyzed
in a separate chapter. The main dot product computation is “ mm_dp ps” which
is an AVX intrinsic and multiplies 4 pairs of 32-bit f1oat numbers, and then sums
them, all in one call to an intrinsic. Note that the loop now iterates 4 at a time
through the array of float values (i.e., “i+=4") and then the AVX intrinsic does
the rest.

Here’s the benchmark analysis showing that the AVX-vectorized version is more
than twice as fast:

FLOAT Vector dot product benchmarks:
Time: Vecdot basic: 2805 ticks (2.81 seconds)
Time: Vecdot AVX1l (4 float 128-bit): 1142 ticks (1.14 s)
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Fused-Multiply-Add (FMA)

The AVX-2 FMA intrinsic takes 3 vectors, each of size 256-bits, multiplies the two
of them pair-wise, and then adds the third vector. Both the multiplication and
addition are done in element-wise SIMD style.

At first blush this sounds like doing a vector multiply and then adding a “bias”
vector, and hence doesn’t sound like a good optimization for the vector dot
product.

The SIMD pairwise multiplication is the first step of dot products, but the vector
addition seems the opposite of what we want, which is “horizontal” addition of the
products that result from the multiplications.

The default idea is doing a dot product of 8 £1oat values, and then another one,
and then adding each individual sum at the end. With that idea, the vertical addition
in FMA is not what we want, and it looks like using SIMD multiplication and an
extra horizontal addition would be better than using a single FMA intrinsic.

However, we can make like Superman II1...
Reverse it!

If you think about FMA not as a multiplication and then addition, but as “adding
multiplications” in the reverse order, then there is a eurcka moment: put the
addition first. The idea is that we can maintain a vector of running sums, and then
only do a single horizontal addition at the very end.

It’s kind of mind-bending,.
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Anyway, here’s the code:

float aussie vecdot FMA unroll AVX2 (
float v1[], float v2[], int n)

{

// AVX2 vecdot using FMA (Fused Multiply-Add) primitives

if (n % 8 !'=0) {

aussie assert(n % 8 == 0);
return 0.0; // fail

}

_ m256 sumdst = mm256_ setzero ps(); // Set accums zero

for (int 1 = 0; i < n; 1 += 8) {

// AVX2: process 8x32-bit floats in 256 bits

~ m256 rl = mm256 loadu ps(&v1[i]); // Load 256-bit
~ m256 r2 = mm256 loadu ps(&v2[i]);

// FMA of 3 vectors

sumdst = mm256 fmadd ps(rl, r2, sumdst);

}

// Add the final 8 accumulators manually

float* farr = (float*) &sumdst;

float sum = farr[0] + farr[l] + farr[2] + farr[3]
+ farr[4] + farr[5] + farr[6] + farr[7];

return sum;

How does this work?

Well, we declare “sumdst” as a vector of 8 £1loat numbers that maintains the 8
parallel accumulators, which is first initialized to all-zeros via the
“ mm256 setzero ps’” intrinsic.

In the main loop, we use “sumdst” to maintain a running sum in all 8 of those
parallel accumulators across multiple segments of the vector. One accumulator
sums the products in array indices 0,8,10,..., and the next accumulator sums the
products for indices 1,9,17,...

We use the FMA intrinsic (* mm256 fmadd ps” in AVX2) to do the SIMD
multiplication, but rather than trying to add the 8 resulting products together, we
add each product to a separate accumulator.

This works very neatly, because the AVX-2 FMA intrinsics does this all in SIMD

parallelism with the combined FMA intrinsic. Only at the very end, after the main
loop, we do a horizontal add of the 8 parallel accumulators to get the final sum.
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This idea works surprisingly well, and is gratifying since I couldn’t get the AVX-2
256-bit version with the dot product “ mm256 dp ps” intrinsic to run correctly
on 8 float values. Here’s the benchmarking, which shows that AVX-2 using FMA
on 8 float values in parallel runs much faster than the AVX1 unrolled vector dot
product using the intrinsic “ mm_dp ps” with 4 float values.

FLOAT Vector dot product benchmarks: (N=1024, Iter=1000000)
Vecdot basic: 2961 ticks (2.96 seconds)

Vecdot AVX1 unroll (4 floats, 128-bits): 1169 ticks (1.17 s)
Vecdot AVX1 FMA (4 floats, 128-bits): 1314 ticks (1.31 s)
Vecdot AVX2 FMA (8 floats, 256-bits): 783 ticks (0.78 s)

Note that we can improve on the horizontal addition at the very end. The example
code just uses basic C++ with 7 additions and 8 array index computations. Instead,
this last computation should really use some AVX “hadd” intrinsics instead (it
needs 3 calls to horizontal-pairwise add 8 £1loat values).
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8. Loop Optimizations

Sequential vs Parallel Loop Optimizations

Loop optimizations are the basic of many speedups to the processing of contiguous
array data. Loops are often sources of inefficiency and can be optimized in
numerous ways, such as:

e Cache locality — process data in a fast order for CPU caches (sequential).
e Parallelization —vectorization via CPU SIMD instructions or a GPU.

Not all loop transformations are created equal. Some of them are best for sequential
code optimizations, whereas other loop transformations are used to parallelize
loops for vectorization.

Loop transformations that are good for both sequential and parallel loop
optimization include:

e Loop unrolling — repeat the loop body to reduce loop test overhead and
parallelize the loop body.

e Loop peeling — unroll the first few iterations.

e Loop coalescing — flatten nested loops.

e Loop splitting — split out subportions of the iteration range.

e Loop collapsing — another way to flatten nested loops.

e Loop interchange — switch inner and outer loop iterators of nested loops.

e Loop reordering — change the ranges and arrangements of inner/outer
nested loops.

Some loop transformations are mainly for sequential improvements, and are not
parallelization in themselves. However, these techniques can sometimes help with
parallelization if they enable another followup loop parallelization optimization.
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Loop transformation optimizations which tend to be good for sequential code
optimizations but not parallelization include:

e Loop fusion — combine or “fuse” the bodies of two loops.

e Duff’s device — amusing but impractical coding trick for loop unrolling.

¢ Loop code motion — move or “hoist” loop-invariant calculations from
the loop body to pre-loop initialization.

e Loop perforation — randomly skip a subset of iterations; it’s really a thing.

e Loop sentinel — fake it till you make it.

e Loop iterator strength reduction — change “*” to “+” if you can.

e Loop reversal — going backwards, and yet, still making progress!

Parallelizing loop optimizations with a main goal of vectorization of the loop body
include:

e Loop fission — opposite of loop fusion; split a loop body into two loops.

e Loop tiling — process sub-parts of contiguous data in separate loops.

e Loop distribution — split two sub-parts of a loop body into two simpler
separate loops.

Loop Fusion

Loop fusion is a well-known code optimization where two separate loops are
merged into a single loop. This does not change the amount of in-loop computation
in either loop body, but reduces the loop overhead of the exit test by half. There is
also often a benefit from data locality that reduces data movement and temporary
data storage, which can also improve overall speed.

Note that loop fusion is not great at vectorization, because complicated loop bodies
are actually harder to parallelize. Most of the benefits arise in traditional sequential
code execution, which is why its theory dates back many decades. For modern
parallel execution on GPUs, loop fusion is often a poor choice, and more benefits
may arise from loop fission (the opposite of fusion) and loop vectorization.

Example: Loop Fusion: The general idea is to combine the body of two loops
into a single loop. Here is a simplistic example with the (non-fused) loops for
initializing two vectors using two sequential loops:

for (i =0
for (i 0

i < n; i++) v1[i] = 0;
i < n; i++) v2[i] = 0;

’
’
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And here is the version with loop fusion:

for (i = 0
v1[i]
v2[1]

< n; 1i++) {

| ~e

1
0;
0

’

Note that the loop fusion version incurs the same number of assignments for
initialization, but only half of the loop overhead cost (i.e., half of the “1 < n” and
“i++” operators have been optimized away). And for the sake of argument, let’s
pretend we don’t know a better way to initialize a vector in CH++
like memset or calloc or load-time static variable initialization.

Loop Perforation

The intentional introduction of randomness to code is known as a “stochastic”
algorithm. Personally, ’'m more fully familiar with the unintentional introduction
of randomness, otherwise known as a “bug,” but now when it happens you can tell
your boss that you were adding “stochastic functionality.”

Code perforation is an optimization technique that trades accuracy for speed, by
randomly (ahem, I mean, stochastically) skipping some computations.

Essentially, using loop petforation is similar to an approximation with a random
element, but in a generalized way for any iterative code. It’s kind of like how teenage
children randomly skip their homework.

Loop petforation skips iterations of a loop in a probabilistic manner. Randomly
skipping some percentage of the loop bodies doesn’t sound like a good plan, but it
has its merits. In some types of applications, such as an Al inference computation,

there’s so much going on that no-one’s going to notice a few missed beats.

Apparently it can even be useful. Well, at least it’s faster to do nothing,.
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Example: Loop Perforation: Here is an example of adding loop petrforation to a
vector dot product computation. This is an incredibly slow version, and is not
recommended, but is just to give the idea of skipping a percentage of the iterations:

float aussie vecdot perf (

{

float v1[], float v2[], int n, int pc)

// Loop perforation -- vector dot product
float sum = 0.0;
for (int i = 0; 1 < n; i++) {

if ( ( rand() % 100 ) + 1 <= pc) {

// This iteration is perforated...
continue; // Skip it...
}
sum += v1[1i] * v2[1];
}

return sum;

Loop Unrolling

Loop unrolling is a code optimization where the body of a loop is repeated in
sequential code. This speeds up the algorithm because the overhead of both the
incrementer and the loop iteration test is avoided.

In some cases, the entire loop can be unrolled, usually when the loop iterations are
finite and known at compile-time. In other cases of partially unrolling, the loop
body can be repeated multiple times, and thereby the loop test only occurs every
few iterations.

Example: C++ Loop Unrolling of Vector Dot Product. Here is the basic C++
non-unrolled vector dot product code:

float aussie vecdot basic(float v1[], float v2[], int n)

{

// Basic vector dot product

float sum = 0.0;

for (int i = 0; 1 < n; i++) {
sum += v1[1i] * v2[1];

}

return sum;
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If we know the value of #, e.g., that #=5, then we can completely unroll it:

return vl

[0] * v2([0]
+ v1[1] * v2[1]
+ v1[2] * v2[2]
+ v1[3] * v2[3]
+ v1[4] * v2[4]

’

If we don’t know the value of 7, we can still unroll multiple iterations. Here’s an
example of 4-level loop unrolling of vector dot product in C++ by assuming
that 7 is a multiple of 4:

float aussie vecdot unrolli (

{

float v1([], float v2[], int n)

// Loop-unrolled Vector dot product
if (n $ 4 !'=0) {
aussie assert(n % 4 == 0);
return 0.0; // fail
}
float sum = 0.0;

for (int i = 0; 1 < n; ) {
sum += v1[i] * v2[i]; i++;
sum += v1[i] * v2[i]; i++;
sum += v1[1i] * v2[i]; 1i++;
sum += v1[1i] * v2[1]; 1++;

}

return sum;
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And here’s a generalization of that 4-level unrolling with extra code to handle the
leftover cases if # is not a multiple of 4. Although the extra cases look messy, they
are not actually the main performance bottleneck.

float aussie vecdot unrolliéb(
float v1[], float v2[], int n)
{
// Better loop-unrolled Vector dot product
int i = 0;
float sum = 0.0;
if (n % 4 !'= 0) {
// Handle the extra cases...
switch (n % 4) {
case 1:
sum += v1[1i] * v2[1i]; 1++;
break;
case 2:
sum += v1[1i] * v2[1i]; 1i++;
sum += v1[1i] * v2[1i]; 1i++;
break;
case 3:
sum += v1[1i] * v2[1i]; 1++;
sum += v1[1i] * v2[1i]; 1i++;
sum += v1[1i] * v2[1i]; 1i++;
break;
default: aussie assert not reached(); break;
} // end switch
// Keep going with rest of the vector

for (; 1 < n; { // Unrolled 4 times...

)
sum += v1[i] * v2[i]; 1i++;
sum += v1[i] * v2[i]; 1i++;
sum += v1[1i] * v2[1i]; 1i++;
sum += v1[1i] * v2[1i]; 1i++;

}

return sum;

This code is just an example for explanation. There are various further code
optimizations that can be done for production-level efficiency.

For parallelization, the loop body should call an intrinsic function to vectorize the
method. For many applications, we could choose our data structure sizes as
multiples of the loop unrolling factor, and thereby avoid ever having any of the
“leftover” cases.
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For sequential code, we could change it to use pointer arithmetic rather than array
indices, we might try replacing the four i++ operators with i+=4, change the
integer modulo operator (%) to a bitwise-and operator test (i.e., use “n&3” not
“n%4”, which works since 4 is a power-of-two), and it also might be better to use
“+” rather than the “+=" operator.

Finally, if we carefully code the leftover cases, the main loop could be unrolled to
many more levels than just four.

Duffs Device for Loop Unrolling

There’s a neat coding trick called “Duff’s Device” for loop unrolling, which uses
a switch with case fallthrough to mimic assembler coding style. However, it’s
not great for vectorization as it’s likely to confuse the compiler, so may be mostly
of theoretical interest.

float aussie unrolld4 duff (
float v1[], float v2[], int n)
{
// Unrolled dot product with Duff’s Device
int i = 0;
float sum =
switch (n %
for (; 1 n; ) {

0.0;
4)
<
case 0: sum += vl
3
2

{

[i] * v2[i]; i++;
case sum += v1[1i] * v2[1i]; 1i++;
case sum += v1[1i] * v2[1]; 1++;
case 1l: sum += v1[i] * v2[i]; i++;

default:;
} // end for
} // end switch
return sum;

What’s happening here? My brain hurts looking at this code! The trick is that the
outside switch branches into a case that is inside the body of a for loop. This
is not normal everyday coding, because there’s a loop inside a switch, and the
loop body crosses over several case statements. Also, we see that none in
the case statements has a “break” statement and they instead rely on fallthrough
semantics. Similarly, the “default” clause is mainly just to avoid getting a spurious
compilation warning (i.e., “missing default”), and also has no “break” with only
a lonely semicolon. Note also that the case labels are written in reverse order from
top to bottom (3..2..1), except for 0 at the top.
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How does this even work? The first point is that it does. This code performs the
exactly correct number of iterations for any value of n (except n==0), and similar
versions with an unrolling factor of more than 4 will also work (i.e., if you change
“n%4” and add more case constants). The code looks like a hack, but actually uses
standardized C++ semantics of case fallthrough and switch multi-way control
flow and should work on all platforms. Branching into the middle of a loop with a
switch is valid in C++ provided it doesn’t bypass any local variable initialization
(hence, don’t put “sum” into the switch). Also, the case fallthrough semantics
(i.e., without a “break” ending each “case”) are standard for C and C++ since
inception. Finally, note that this code is buggy for n==0, because it incorrectly does
4 iterations, so it ideally needs a parameter validation assertion at the start.

Bug alert! Note that you can’t tweak the “i++” code using the standard idiom:

sum += v1[i] * v2[i++]; // Bug!
The obscure problem is that the “*” operator doesn’t guarantee left-to-right
evaluation of its operands. The code assumes evaluation order
of: v1[i], v2[i], *, i++, starting from the left. However, the C++ optimizer can
legally do this order of operations: v2[1i], i++, v1[i], *, which is not what you
intended and gets the wrong array element for vl[i]. This code might be
unreliable across platforms, or it might work in the debugger mode, but fall over
once you turn on high levels of optimization. So, there is an “order of evaluation”
pitfall if you put “++” in an operand of the “*” operator or many other binary
arithmetic operators.

Is Duff’s Device any faster? The short answer is “not really,” although it looks
very appealing (or appalling). Firstly, note that this trick is not actually very useful
for vectorization, because a switch cannot branch into the middle of a vectorized
intrinsic (i.e., if you replace the loop body with a SIMD instruction). Furthermore,
although I haven’t tested it, I doubt many optimizers will be able to auto-optimize
that complex control flow with SIMD instructions. In sequential code, this method
also isn’t much faster, as it doesn’t really have any fewer operations than a basic
unrolled loop (i.e., with extra cases handled separately before or after the main

loop).

The above example of Duff’s Device can be further sped up using pointer
arithmetic and “looping down to zero” optimizations, but so can the other unrolled
versions. However, there is a minor speed advantage in terms of “instruction
locality” because the above code is very concise.
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The main advantage of Duff’s Device is to bamboozle your colleagues. You can
use Duff’s Device with any unrolling factor, not just 4 as in the example shown
above (e.g., change to 8 by using “n%8” and adding cases for 4, 5, 6, and 7, ordered
from 7 down to 1, leaving O on top).

Actually, the unrolling factor needn’t be a power-of-two. Make it a prime number
for extra bonus points. If you want more of this kind of coding trickery, also search
up Jensen’s device and Pigeon’s device.

Loop Tiling or Blocking

When you hear about a “tiled MatMul” or a “blocked GEMM,” this is the “tiling”
or “blocking” optimization method it refers to. MatMul is matrix multiplication and
GEMM is General Matrix Multiplication (i.e., the same thing). Tiling is the
optimization that most applies to speeding up matrix or tensor multiplications.

This optimization is for two-dimensional data (e.g., matrices). When you hear
“tiles” or “blocks,” think squares or rectangles of data.

For example, if you have a 512x512 matrix, then a tiled algorithm might act on
16x16 sized chunks, one at a time. Loop tiling is an optimization of two-
dimensional or three-dimensional data such as matrices or tensors.

The one-dimensional equivalent of processing sub-parts of a one-dimensional array
is called “strip mining”, “loop sectioning” or often simply “vectorization.”

In other words, tiling means operating on small subsections of a matrix. If you hear
“tiled tensor” that could mean two-dimensional data (i.e., just a fancy name for a
mattix), or alternatively it might refer to three-dimensional data, in which case, don’t
think anything or else your head will hurt.

Loop tiling is a method of executing sub-patts of nested loops in a way that
maximizes data locality, increases cache utilization, and improves parallel execution.
This is also called “loop blocking” because it processes the data a “block” at a time,
although the term “tiling” is more widely used in research.

The two-dimensional sub-partitions of the data that are square or rectangular are
called “tiles” or “blocks”.
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The same number of arithmetic operations are performed in a tiled versus non-tiled
algorithm. However, there should be fewer loads of the data into memory with
tiling.

The downside is that tiling introduces additional loop overhead. In fact, rather than
flattening nested loops over a 2-D array (e.g., 512x512), tiling often introduces
additional levels of nesting! The two small loops that spin through the 16x16 square
shape of a single “tile” or “block” are often newly added inner loops.

So, loop tiling often adds two new layers of nested loops inside your already-nested
loops. It makes you wonder how it can even be faster!

Example: Tiled Matrix Clear: For these examples, there is a type “ymatrix”

type:

typedef float ymatrix[ROWS] [COLUMNS];

If we forget about memset, here is the simple code to clear a matrix one element
at a time in a brute-force nested loop (non-tiled):

void aussie clear matrix(ymatrix m)

{
for (int i = 0; 1 < ROWS; i++) {
for (int j = 0; j < COLUMNS; j++) {
m[i] [j] = 0.0;
}

Now we decide to add a 4x4 square tile optimization to this code. The result is an
extra two levels of nested loops.
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Here is the basic code which assumes that the row and column dimensions are exact
multiples of the tile size, so there’s no extra leftover cases to handle:

void aussie clear matrix tiled(ymatrix m)
{
const int TILEX = 4; // 4x4 tile size
const int TILEY = 4

static_assert (ROWS % TILEX == 0, "Exact X");
static assert (COLUMNS % TILEY == 0, "Exact Y");

for (int 1 = 0; 1 < ROWS; 1 += TILEX) {
for (int § = 0; j < COLUMNS; j += TILEY) {
// Do the 4x4 tile...
for (int tx=1; tx < 1+TILEX; tx++) {
for (int ty=j; ty < J+TILEY; ty++) {
m[tx] [tiley] = 0.0f;

Unrolled Tiles. One followup optimization trick with a tiled loop algorithm is to
apply loop unrolling to the two inner loops. This avoids the extra overhead of the
two extra inner loops, but retains the data locality benefits of tiling. This
optimization results in a fully “unrolled tile” computation without any extra inner
loops. In the above example, the two inner loops of a 4x4 tile would be replaced
with 16 unrolled computations in sequence. Or for a vectorized version, a fully
unrolled tile would be 4 sequential calls to vectorized intrinsics that each do 4
operations in parallel (e.g., AVX intrinsics each do 4 £1oat operations in parallel).

Example: Tiled Matrix Multiplication: Tiling techniques are widely used to
improve the efficiency of MatMul’s and thereby get better throughput of tensor
calculations from a GPU. Matrix multiplication is a good candidate for this
optimization because it has O(%"3)arithmetic  calculations, but uses
only O(n~2) data. Hence, a naive matrix multiplication algorithm that doesn’t
address cache locality will re-load the same data into memory many times, whereas
a tiled algorithm can reuse the same data more efficiently.

A tiled version of MatMul processes “tiles” or “blocks” of each matrix one at a time
(i.e., small square or rectangular sections), with the aim of keeping small parts in the
matrix in the memory cache while they are processed. The algorithm progresses
across the matrix a tile/block at a time, rather than scanning all the way down one
dimension (row or column). The same number of multiplication operations are
performed as a non-tiled MatMul, but data locality and cache freshness should
improve the overall speed.
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Loop Fission

Loop fission is an optimization that is the opposite of loop fusion. Instead of fusing
two loops into one, we take one loop and split parts of it into two loops. Loop
fission also been called other names such as “loop splitting” or “loop distribution.”

Loop fission can be more efficient for parallel execution (e.g., vectorization for
GPUs), but is often slower for sequential execution. Whereas loop fusion aims to
remove the overhead of one of the loops, loop fission tolerates an increased loop
overhead in return for simpler loop bodies that can be parallelized. The kernel
optimization of “kernel fission” is based on loop fission, and loop fission is one
technique used to achieve vectorization for GPUs.

The main reason to use loop fission is hardware acceleration via loop parallelization.
A complicated single loop can often run faster if split into two simpler loops, if
hardware acceleration can be accessed. This is true even if the two resulting loops
must run sequentially, because the iterations of each loop are parallelized, but
there’s a double benefit if the two whole loops can also run in parallel.

Example: Loop Fission in BatchNorm: A good example arises in part of the
code for batch normalization. Each element of the vector needs to have two
operations performed on it: subtract the mean (re-centering) and multiply by a
variance factor (re-scaling). The naive implementation of the second half of
BatchNorm looks like this:

float denom = sqrtf(varc + eps); // Scale factor
for (int i = 0; 1 < n; i++) {

// Normalize: re-center and scale

v[i] = (v[i] - fmean) / denom;

This is difficult to hardware accelerate because it’s unlikely that there’s a combined
“subtract-and-then-divide” operation to apply to all elements of a vector in parallel.
The first point is that maybe there’s an “add-and-then-multiply,” in which case we
can use the negative of the additive factor and the reciprocal of the scaling factor.
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However, assuming there’s not, loop fission can be used to split the single
complicated loop into two sequential loops.

float negmean = -fmean; // Use negative for addition
float denom = sqrtf(varc + eps); // std. deviation
float recip = 1.0f / denom; // reciprocal multiply
// Loop 1: Re-center using mean

aussie vector add scalar(v, n, negmean);

// Loop 2: Re-scale by factor

aussie vector multiply scalar(v, n, recip);

Each of the two loops is now easy to hardware accelerate, because they are both
very simple vector operations: “multiply-by-scalar” and “add-scalar.” Every
platform is likely to have hardware acceleration APIs for those simpler operations.
So, to summarize, we got an explosive boost to hypersonic rocket speed using
atomic operations with loop fission. Isn’t that just the bomb?

Loop Reversal

Loop reversal is the optimization of making the loops go backwards. It does the
same number of arithmetic operations, but in reverse order, so there is no change
in the total arithmetic operations.

This goal is a speedup by “looping down to zero” with a faster loop test, but it is
often a de-optimization even for sequential execution. Typical CPU processors rely
on ascending order of memory accesses for predictive cache pipelining, and reverse
array access is a worst case for that.

Loop reversal is also not a useful parallelization method in itself. Vectorization for
GPU computation doesn’t really work in reverse. However, reversing a loop can
sometimes be useful as an initial transformation on nested loops if reversing the
inner loop’s direction allows another followup loop vectorization technique.

Example: Reversed Vector Dot Product: Loop reversal can be used on vector
dot product, as below, but it probably shouldn’t be.
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Here’s the basic idea:

float aussie vecdot rev(float v1[], float v2[], int n)
{

float sum = 0.0;

for (int i = n -

sum += v1[i]

Vv

1; 1 >= 0; i--) {
* v2([i];
}

return sum;

[TER2]

Note that there are several coding pitfalls to avoid. The loop variable “i” cannot
be “unsigned” or “size t” type, because the test “1>=0" would never fail,
creating an infinite loop. Also, the reversed loop needs to start at “n-1"" and must
use “1>=0" (not “1>0”) to avoid an off-by-one error. The above code also craters
for “n<=0" and needs a safety test.

Loop Code Motion

Loop code motion is moving loop-invariant code from inside the loop body to the
pre-initialization code for the loop. Any code that has the same value should not be
performed inside the loop body. Instead, it should be pre-calculated before the
loop, and stored in a temporary variable. This is sometimes called “hoisting” the
code out of the loop.

Example: Loop Code Motion: One common example of unnecessary
recalculation of loop-invariant values is in the loop test. The code in the Boolean
test for the loop is actually part of the loop body.

An example of code that re-calculates the loop limit:

for (1 = 0; 1 < vec.num elements(); i++) {

//

The “num_elements” call is probably loop-invariant, assuming the vector doesn’t
change size during processing. Maybe the “num_elements” function is declared
“inline” and the C++ compiler will fix it anyway.
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Nevertheless, this is a candidate for loop code motion, using a temporary variable
instead:

int n = vec.num elements(); // Loop-invariant value
for (1 = 0; i < n; i++) |

//

Loop Distribution

Loop distribution is type of loop code motion that creates two loops from a single
loop that contain an “if” statement. The hoisted code is a conditional test. Some
early papers in the 1990s called it “loop unswitching.” Some papers use the term
“loop distribution” with the different meaning of splitting a loop into two loops,
which we call “loop fission.”

The goal of loop distribution is to move an “if” test out of the loop body, by
creating two loops, and ends up creating two separate loops on two pathways. This
sounds similar to loop fission, but loop distribution is a more general optimization
that doesn’t require parallelization to get a speed improvement (whereas loop
fission does). Instead, loop distribution gets a benefit in ordinary sequential
execution because it moves the i f-test computation out of the loop body to a once-
only pre-initialization test (i.c., “hoisted”). Note that only one of the two loops is
executed each time, and these two loops are never executed in parallel, so this
technique is not really a type of loop fission.

Example: Loop Distribution: Here’s a dummy example of implementing an
“add-or-subtract” function using a passed-in Boolean flag.

void aussie vector addition slow(
float v[], int n,
bool do_add, float scalar)

for (int i = 0; 1 < n; i++) {
if (do_add)
v[i] += scalar; // Add
else
v[i] -= scalar; // Subtract

The problem is that the test “1f (do_add) ” is computed for every loop iteration,
and yet “do_add” is a loop-invariant flag variable.
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The faster version is to use loop distribution to move the if-test into the loop
initialization, and then split the two pathways inside the loop to instead have two
separate loops. Here’s the faster version:

void aussie vector addition loop distribution(
float v[], int n,
bool do add, float scalar)

if (do_add) { // Add scalar
for (int i = 0; 1 < n; i++) {
v[i] += scalar; // Add

}
else { // Subtract scalar
for (int i = 0; 1 < n; i++) {
v[i] -= scalar; // Subtract

This example is still far from optimal. For starters, it should be using pointer
arithmetic rather than array indices.

Loop Reordering

Loop reordering is the general class of optimizations that involves reordering loops
or their iterations. In complex algorithms, there are many loops, and many ways of
nesting them, or running them in sequence.

Such optimizations can involve changing the ordering of two sequential loops or
two nested loops.

The reordering optimization to reverse the inner and outer nested loops is more
precisely called “loop interchange.” A single loop can also be reordered with “loop
reversal.”

Loop reordering is an optimization that doesn’t reduce the total number of
computations, because it always executes the same number of iterations as the
original version.
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However, loop reordering may have several benefits:

e Vectorization. Putting the loop in a different order may make it more
vectorizable, or may allow other loop transformations to be applied before
vectorization.

e Data locality. Reordering the loops may improve data locality and cache
access speed by doing the operations in a different order. This reduces the
cost of accessing the data into memory (or low-level caches), rather than
the cost of the arithmetc. It is therefore related to memory/dataflow
optimizations and pipelining optimizations.

e Reduced loop overhead. Both loop interchange and loop reversal can
reduce the general overhead of loop testing. Loop interchange allows the
shorter loop to be on the outside. Loop reversal allows “looping down to
zero” which reduces overhead.

Loop Iterator Strength Reduction

Loop strength reduction is the arithmetic optimization of “strength reduction”
applied to loop iteration variables. For example, strength reduction aims to replace
multiplication with addition. Consider this loop:

for

This can be optimized to change the multiplication into an incremental addition:

for (int i = 0, x = 0; 1 < n; 1i++) {

Note that the loop strength reduction optimization isn’t a good choice for loop
parallelization. Although it would be desirable to change a vectorized multiplication
to addition, this optimization has changed to an incremental algorithm. This makes
each loop iteration dependent on the prior one, with the results dependent on the
previous computation, so they cannot be done in parallel.
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Loop Coalescing

Loop coalescing is a loop optimization that involves flattening two nested loops
into one non-nested loop. Typically, loop coalescing will still operate on a 2-
dimensional array, whereas flattening both the nested loops and the array is called
“loop collapsing.”

As a dummy example, consider a matrix initialization via nested loops:

for (int i = 0; 1 < n; 1i++) {
for (int 7 = 0; j < m; J++) {
arr[i][j] = 0.0f;

}

Loop coalescing involves changing to a single loop, but still using two indices i and
j, which are calculated from the main linear index.

int maxx = n * m;

for (int x = 0; 1 < maxx; x++) {
int 1 = x / n;
int 3 = x % m;
arr[i][j] = 0.0f;

The benefit in speed from loop coalescing can arise by simplifying the loop, which
makes it easier to parallelize via hardware acceleration, and also maybe a different
data access pattern which might improve data locality and cache freshness.

This optimization is not always possible, as nested loop logic is often quite
complicated, and flattening a nested loop may actually worsen data locality in many
instances. However, the linear nature of a simple loop can make the code to send
off chunks to a GPU much easier.
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Loop Collapsing

Loop collapsing is closely related to loop coalescing, since both aim to flatten nested
loops, but loop collapsing is a special situation where the array is also flattened to
one dimension.

Consider a matrix initialization via nested loops over a 2-dimensional array:

for (int i = 0; i < n; i++) |
for (int j = 0; j < m; J++) |
arr[i][3j] = 0.0f;

}

The loop collapsed version has one big loop over a different one-dimensional array:
int maxx = n * m;
for (int x = 0; x < maxx; x++) {
arr2[x] = 0.0f;
}

This loop transformation to a single loop is obviously more amenable to
vectorization.

Loop Peeling

Loop peeling is a type of loop unrolling that involves unraveling only the first few
iterations of a long loop. This is also similar to “loop splitting” with two sections,
where the first section is over the early range, and the second range is the main
section of all remaining iterations.

Loop peeling is beneficial to the overall loop efficiency if there is code in the loop
body that is only required for one or two early iterations, which can then be
removed from the main loop body. Similarly, there can be benefit in unraveling the
last few iterations of a loop, which is a similar technique.

One common case of loop peeling is when the first iteration is different from the
rest, so peeling off a single iteration is valuable.

for (int i = 0

;1 < n; i++) |
arr[i] (1 =

=0) 2 0.0f : 1.0£%;

}
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In this case, we can peel off the first “i==0" iteration into a single unrolled
instruction, and change the main loop to start at 1. This is also a trivial special form
of “loop distribution,” where we are hoisting an “1f” conditional test out of the
loop. The new code becomes:

arr[0] = 0.0f; // Peeled
for (int 1 =1 /*not 0*/ ; 1 < n; i++) {
arr[i] = 1.0f;

This peeled version is faster in terms of both sequential or parallel execution. The
loop body has less computation and is also more amenable to vectorization.

Loop Splitting

Loop splitting refers to splitting the sequential iterations of a loop into two loops,
which each perform part of the original loop’s iterations. Loop splitting is closely
related to “loop sectioning” (“strip mining”), but often relates to more complex
arithmetic in the loop body. Note that “loop peeling” is a special case of loop
splitting where the first section is a small range of a few initial iterations, but these
few iterations are unrolled rather than looped.

Loop splitting takes a single loop and transforms it into at least two “split-out”
loops, one for the early iterations, and one for the remainder. However, loops can
also be split out into more than two loops.

In loop splitting, each split-out loop is shorter than the original loop. Unlike loop
fission, the two loops operate over different subportions of the range, executing
the same number of total iterations, rather than double iterations as in loop fission.

Example: Loop Splitting: Here’s some example code to “sqrtize” a vector, using
a cached optimization for the numbers up to 100.

void aussie vector do sqrt(float v[], int n)
{
for (int i = 0; i < n; i++) {
if (1 < 100) { // Fast cases
v[i] = aussie sqrt optimized(v[i]);
}
else { // General case
v[i] = sgrtf(v[i]);
}
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However, we can use loop splitting to split this big loop into two shorter disjoint
ranges. Instead of 0..n-1, we do 0..99, and then 100..n-1. Each loop is over a part
of the range, and has a simpler loop body. Note that this code fails with an array
bounds violation for small values of n less than 100.

void aussie vector do sqrt loop splitting(
float v[], int n)
{
for (int 1 = 0; 1 < 100; i++) { // Fast cases
vi[i] aussie sqrt optimized(v[i]);

}

for (int i = 100; i < n; 1i++) { // General cases
v[i] = sqgrtf(v[i]);

}

The loop splitting optimization is beneficial if the loop body has different sections
of code that only relate to a subset of the iterator range. Hence, the loop bodies in
the two loops can be reduced to execute less code.

Overall, there is still the same number of iterations performed in the two loops
combined, but each loop performs only a proportion of the original iterations on a
simpler loop body. This optimizes sequential execution and the simpler code in
each loop body may make vectorization of one or both subloops easier.

Furthermore, both subloops could run in parallel.

Loop Interchange

Loop interchange is an optimization of nested loops that switches the inner and
outer loops. In a typical nested loop, the outer loop body and loop test is executed
rarely, almost lazily, whereas the inner loop body is scrambling along in a frantic
mess. Loop interchange simply switches them, reversing their roles.

Why is this an optimization? Although the same number of loop iterations still
occur in total, and the newly-made inner loop body is also thrashed, various
improvements can arise from reversing the iterator variables, usually to make the
innermost loop the longest.
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Possible optimizations result from:

e TFewer outside computations. A shorter outside loop reduces the arithmetic
operations of the outer loop, whereas the inner loop’s number of
computations is unchanged in either loop structure.

e Data locality. Another possible improvement is in data locality, which can
reduce cache misses and speeds up the overall execution. Note that this
benefit is not guaranteed just by switching loops, and sometimes loop
interchange can worsen data locality; careful analysis is needed.

e Inner loop vectorization. Another important possibility is that reversing
nested loops can create opportunities to apply other loop optimizations to
the new inner loop, notably to vectorize the inner loop.

Shortest loop outside, longest innermost loop: One of the considerations of
loop interchange is the optimization of putting the shortest loop on the outside,
and making the innermost loop with the longest range of iterations. This is an
optimization for both sequential or parallel execution. For sequential execution,
there is less overhead from the outer loop, because it is shorter. For parallelization,
there is improved vectorization of the inner loop, which now has a longer range.

Consider this example:

for (int 1 = 0; 1 < 1000; 1i++) {
for (int j = 0; j < 50; j++) {
//

The current loop nesting has the longest loop (to 1000) on the outside, and the
shorter loop (to 50) as the innermost loop. Loop interchange simply makes it the
reverse nesting:

for (int J = 0; j < 50; j++) {
for (int i = 0; 1 < 1000; 1i++) {
//

Considering sequential execution, the inner loop body is executed the same number
of times, so there’s no difference. This also includes the inner loop’s conditional
test and incrementer, which are different variables in the two examples, but also
execute the same number of times (50,000 times).
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However, consider the different outer loops. The first example is 1000 iterations,
whereas the second example’s outer loop is only 50 times. Hence, the loop
reordering optimization of “shortest outer loop” and “longest innermost loop” has
saved 950 of the outer loop’s calculations (i.e., loop test and incrementer). Any extra
code that’s in the outer loop, cither before or after the inner loop, would also be
executed fewer times.

There is also an advantage for vectorization. In the first example, we could possibly
have 1000 vectorized operations of data size 50. In the interchanged loops, there
are 50 operations on vectors size 1000. Hence, there is more opportunity for much
larger vectorization gains in the second format with the longest inner loop.

Loop Sentinel

Loop sentinels are an optimization that removes the overhead of checking an array
index or pointer scanning an array or pointer chain. The technique does this by
adding a pretend extra element onto the end of the array, in a way that we can
pretend to succeed. And since we’re guaranteed to always succeed, we don’t need
to check for failure while scanning the loop.

This technique is not particularly useful for vectorization, but is quite powerful for
long sequential scanning of arrays. It also has the downside of requiring at least one
writeable array element, so it cannot run on read-only arrays.

Example: Check Vector Negatives: Here’s the basic loop sentinel version that
sets up a dummy success in v[n]:

bool aussie vector has negative sentinel (
float v[], int n)
{
v[n] = -99.0; // Dummy negative (BUG!)
int i = 0;
for ( ; /*GONE!*/; i++) {
if (v[i] < 0.0) break; // Found negative
}

if (i == n) return false; // Fake success
return true; // Found a negative (for real)

However, this is actually buggy, since “v [n]” is potentially an array overflow. A
better version can manipulate the last valid element “v [n-1]" instead of moditying
“v [n]”. Then, we have to remember to fix it before we leave town.
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And we also have to remember to check the last vector element that we temporarily
overwrote wasn’t also a real success.

bool aussie vector has negative sentinel2 (
float v[], int n)
{
float save = v[n - 1]; // Save it!
vin - 1] = -99.0; // Dummy negative at end
int i = 0;
for ( ; /*GONE!*/; i++) {
if (v[i] < 0.0) break; // Found negative
}
v[n - 1] = save; // Restore it!
if (i == n - 1) {
// At the dummy (fake success)
if (save < 0.0) return true; // Must check
return false;

}

return true; // Found a negative (for real)

Loop Strip Mining (Loop Sectioning)

Loop strip mining is a loop optimization that scans or “mines” various “strips” of
an array. It is related to “loop tiling” on arrays in two dimensions, but strip mining
only applies to processing one-dimensional arrays. Loop strip mining is also called
“loop sectioning” because it breaks an array up into sections that are operated on.

For a basic example, consider a simple array initialization:

for (int 1 = 0; i < n; i++) {
arr[i] 0.0f;

Let’s assume we can parallelize this with 16 elements at a time (e.g., 512 bits total
parallel processing, which is 16 separate 32-bit f£1oat variables). So, we want to
process “strips” of length 16. For simplicity, let us assume that n is divisible exactly
by 16, so there’s no leftover work after the main loop.

for (int i = 0; 1 < n; i += 16) {
// Initialize arr([i]...arr[i+15] in parallel
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Obviously, this is a dummy example, where memset would do better for zeroing
the array. Also, this really looks exactly like “vectorization” to me, where we are
vectorizing 512 bits at a time (16 floats), and indeed the research mentions
vectorization as one application.

But loop strip mining and vectorization are not exactly the same techniques,
because loop strip mining is a more general idea with other applications.

Loop Spreading

Loop spreading is an optimization of two non-nested sequential loops that have
different iteration ranges. Typically, this refers to where the end ranges differ
significantly. If the loop ranges only differ by an off-by-one issue, then only loop
normalization is required.

Loop spreading modifies one of the loops, so that part of this loop fully overlaps
with the other loop (i.e., ideally one loop “spreads out” further to match the other
loop’s end bounds). Hence, after loop spreading has occurred, this subloop can be
fused with the other loop, and possibly parallelized. The remaining iterations that
are not overlapping then have to be addressed in a followup partial loop (only for
one of the loops).

Loop spreading mainly enables loop fusion as a followup optimization. For using
loop fission on the two loops, it is not necessary to do loop spreading, since the
two loops are already split apart, and each loop could already potentially be
vectorized independently.

Loop Normalization

Loop normalization is not directly an optimization, but is a preliminary loop
transformation that can make further loop optimizations easier. Followup
optimizations might be to fuse the two loops with loop fusion, or to parallelize each
loop, such as with loop fission or vectorization.

The goal of loop normalization is to make the loop iteration variables act across the
same range. This applies to two sequential loops, rather than nested loops. Hence,
loop normalization is needed when two loops in sequence are starting at different
offsets (e.g., one is i=1 and another starts at 1=0), or are finished at different
endpoints (e.g., n versus n-1).
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If two loops have the same number of computations, but with different ranges,
then one loop can be changed with an offset. For example, these loops differ with
ranges 0. .n-land 1. .n:

for (int 1 = 0; 1 < n; i++) a[i] = 0;
for (int 7 1; jJ <= n; j++) bl[j] = 0;

These can be adjusted to the same ranges with a “j+1” index offset, as follows:

for (int i 0; 1 < n; 1i++) af[i] = 0;
for (int § = 0; J < n; j++) b[j+1] =

If the two loops have a different number of iterations, typically off by 1 or 2, then
“loop peeling” can be used to unroll and split off one or two iterations and shorten
the longer loop, so that both loops have the same number of iterations over the
same range. For example, in this example, one loop is 0..n-1 and another
is0..n:

for (int i = 0; 1 < n; i++) ali] = 0;
for (int j 0; j <= n; j++) b[j] = 0;

The way to normalize the loop ranges is to “peel” off the last iteration of the “j”
loop:

for (int i = 0; 1 < n; i++) ali] = 0;
for (int j = 0; j < n; J++) b[j] = 0;
bln] = 0; // Peeled

This example has peeled the longer loop to make it shorter. An alternative would
be “loop spreading” to lengthen the shorter loop, such as by adding an extra
padding element into the array.

Normalizing two loops doesn’t change the number of arithmetic computations.
However, once two loops have normalized ranges, it becomes easier to see
opportunities for further optimizations such as loop fusion or loop fission.
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Loop Skewing

Loop skewing is a somewhat mind-bending method to change nested loops to make
them more parallelizable. This technique applies when there are two nested loops,
but the inner loop is difficult to parallelize because of a dependency on the outer
loop variable. The performance advantage from loop skewing is not directly its
usage, but because skewing changes then make possible other loop optimizations,
especially loop interchange, which reorders the inner and outer loop.

The loop skewing solution is far from obvious. The range bounds of the inner loop
are changed by “skewing” them by a factor based on the outer loop variable. And
then, by some magical potion, this somehow breaks the dependence on the outer
loop, and then the inner loop can run fast on a GPU. Who knew?

As a simplistic example, consider two nested loops:

for (int i = 0; 1 < 1000; i++) {
for (int § = 0; J < 50; J++) {
arr[i1i]1([3] something;

I~

}

We can skew the inner loop by adding a skew factor based on the outer loop
variable (e.g., “i” or “i+1” or something similar). Add this skew factor to the
ranges of j, but then subtract the skew factor (“i”) from any usages of the index

[TER]

j” inside the inner loop’s body.

for (int i = 0; 1 < 1000; 1i++) {
for (int J = 1i; j < 50 + 1i; Jj++) {
arr[i][J - 1] = something;

}

Hence, j has changed from the range (0...50) to the skewed range (i...1+50), by
adding the skew factor “i” to the start and end. The use of “J” in the inner loop
body has changed from “j” to “j-1” (i.e., subtracting the skew factor “1”). The
result is a kind of skewed and “triangular” shape of i and j indices, but the actual
arithmetic calculations are unchanged.

This newly skewed code isn’t any faster, does exactly the same calculations on the
50,000 elements of array arr, and indeed is actually worse because of the extra
‘50+1” and “j-1" computations.
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However, in some cases, doing this weird skewing transformation then allows us to
follow up with a loop interchange optimization, switching the inner and outer
loops. And I’'m not even going to pretend to understand this, but there are
situations where the non-skewed inner loop cannot be vectorized or interchanged,
but after we’ve skewed the loop, then we can interchange it, and then we get via
hocus pocus a different inner loop that can then be vectorized.

Hopefully, the GPU knows what’s going on.
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9. Softmax

What is Softmax?

Softmax is a relatively simple component of the Transformer architecture for LLM
backends, use in both training and inference. Softmax is one of the simpler Al
kernels, since there are no tensors or matrix multiplications. It’s a good candidate
for SIMD optimization, but it’s a hybrid of vertical and horizontal operations.

All it does is operate on a vector of numbers and change the numbers. It is a type
of “normalization” (like BatchNorm or LayerNorm in the prior chapter) but
Softmax is used for many different reasons in a Transformer.

The purpose of Softmax is to take a set of values in a vector of calculated values,
and normalize them into probabilities in a new output vector. After Softmax, the
output vector contains a new normalized set of values which all add up to 1, and
they are intended to represent probabilities of the likelihood of each token/word
associated with each vector element.

The Softmax algorithm is basically:
e Exponentiate each vector element — elementwise vertical operation.
e Add up the exponentials — horizontal reduction operation.
e Divide every vector element by this sum — vertical again.

In fewer words, scale by the sum of the exponentials.

So, why do we need all the exponentials? The idea is that the input vector contains
“logits,” which are logarithms of probabilities, so we are exponentiating each one
to bring it out of log-domain into real-domain. Then with the division step, we are
normalizing them all so that they are probabilities that total exactly 1.
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Inputs, Outputs and Dimensions

To understand Softmax, let’s examine its inputs and outputs in more detail. Overall,
Softmax is a “vector-to-vector” algorithm. The input and output vectors have the
same dimension, which is the model size.

Softmax is not an “element-wise” vector operation. The change to each element in
the vector depends on all the elements in the vector, not only on the cutrent
element. For example, it adds up all the elements to use as a scaling factor (after
exponentiating them).

The input to Softmax is a vector of floating-point numbers containing /ogits. These
are coming out of the model’s calculation layers, and are a rough representation of
word probabilities.

However, the input vector is a bit messy. Firstly, they are in the “log-domain” rather
than real probabilities. In other words, they are the logarithm of the probabilities.
Secondly, the values in the vectors are not “normalized” so there are numbers
outside the ranges 0. . .1, including large numbers and negatives. Thirdly, the
numbers also don’t nicely add up to 1 like disjoint probabilities should.

The output of Softmax is a beautiful vector that’s perfect in every way, with harps
playing softly in the background. The log-domain has been fixed by exponentiation.
All of the numbers are scaled into 0. . .1, and they all add up to 1 in total like a
good probability distribution of disjoint events. The output vector from Softmax
fills every Statistician’s heart with joy.

Softmax and Temperature

One important use of Softmax is in the decoding step. At the end of each decoder
sequence, the Softmax function is used to normalize the logits before processing
by a decoding algorithm to choose an output token with the highest probability. As
part of this method, the Softmax function is usually changed to a “scaled Softmax”
that uses an extra parameter called the “temperature.”

What is the temperature? The purpose of the temperature parameter is as a hyper-
parameter that influences the level of randomness or unpredictability in the output.
A higher setting for temperature means that the decoder is more likely to output
the lower-probability tokens (i.e., it has a fever and says silly stuff). If the
temperature is low, the decoder is mostly going to output the highest probability
token, meaning it is much less random (like a cold-hearted robot).
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What is the value of the temperature? The temperature is a non-zero positive
floating-point number that can be between 0 and 1, or can also be greater than 1.
A temperature of zero cannot be used as it would cause divide-by-zero errors. When
the temperature equals 1.0, it doesn’t change the Softmax function at all (ie.,
continues harmlessly without scaling). Since the Softmax function is scaled by the
reciprocal of the temperature, the effect is to make randomness higher with a larger
temperature setting (so it runs “hotter” and gets more “bubbly”). If the temperature
is below 1.0, making it a fraction, the effect is to spread out the logits more, which
has the effect of reducing randomness of the output. If the temperature is greater
than 1.0, this contracts the logits towards each other, making the decoder more
likely to choose each of them (although still with some randomness), thereby
increasing output randomness.

Softmax C++ Optimizations

The Softmax function is an inefficient computation by default because it has two
scans of the vector and each scan does an expensive operation (exponentiation and
division). First, the whole vector is scanned to compute the sum of the exponential
of each value. Then the whole vector is re-scanned to divide each vector element
by this sum-of-exponentials.

Here is a naive implementation of Softmax in C++:

#include <math.h> // Declare expf ()

float aussie vector sum of exponentials(float v[], int n)
{
float sum = 0.0;
for (int 1 = 0; i < n; i++) {
float e = expf(v[i]);
aussie assert(e >= 0.0);
sum += e;
}
return sum;

}

void aussie vector softmax basic(float v[], int n)

{

float denom = aussie vector sum of exponentials (v, n);
if (denom == 0.0) {
aussie assert (denom != 0.0);

return; // fail (should not occur)

for (int i = 0; 1 < n; i++) {
v[i] = expf(v[i]) / denom;

97 C++ AVX Optimization



Reciprocal Multiplication. One simple speed improvement is to multiply by the
reciprocal instead of using floating-point division:

float recip = 1.0f / denom;
for (int i = 0; 1 < n; i++) {
v[i] = expf(v[i]) * recip; // Scale by recip mult

Common sub-expression elimination. If we look carefully, we can note
that expf is called twice onv[i] for every element, and expfis quite an
expensive mathematical function to be messing with. A faster method is to
compute expf (v[i]) once and then leave it in the vector to use again, thereby
avoiding the second expf call.

aussie vector expf(v, n); // Element-wise expf...
float denom = aussie vector sum(v, n); // Denominator
//

float recip = 1.0f / denom;

for (int i = 0; 1 < n; i++) {

v[i] *= recip; // NOTE: v[i] is already expf'd

This uses “aussie vector expf” to exponentiate each element of the vector.
A naive implementation is:

void aussie vector expf (float v[], int n)
{
// Apply EXPF (exponential) to each element
for (int i = 0; i < n; 1i++) {
v[i] = expf(v[i]);

Fused Loop Softmax. The above code has two initial loops doing exponentiation
and summation. There’s an opportunity for “loop fusion” here by merging the two
loops in “aussie vector expf” and “aussie vector sum” into one loop
that exponentiates and sums as it goes. The call becomes:

float denom=aussie vector expf and sum(v,n); // Exp sum
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This is how the fused version of “exponentiate-and-sum” looks in a simple C++
version without any optimizations:

float aussie vector expf and sum(float v[], int n)
{
// Apply EXPF (exponential) to each element
float sum = 0.0f;
for (int i = 0; 1 < n; i++) {
vii] = expf(v[i]);
sum += v[i];
}

return sum;

More fusion? The Softmax algorithm still has two loops, but we have difficulty
fusing the first part (“exponentiate and sum”) with the second part (“scale by the
sum”). The second code block awaits the sum to use as the scale factor (as a
reciprocal). Hence, it doesn’t work to “scale as we go” because then we’d have to
go back and re-scale earlier vector elements anyway. I can’t really see a good way
that we can avoid this roadblock to fusion.

Vectorized Softmax

The Softmax code has two loops that run sequentially: summing the exponentials,
and scaling by the sum’s reciprocal. Both loops are candidates for vectorization.
The only real problem is we can’t fuse the two loops into one, because the second
loop needs the result of the first loop as the scaling factor.

Second things first. The second loop is easy to vectorize because it’s just
multiplying a vector by a scalar. The second loop does not have any exponentiation,
because the first loop has stored the exponentiated values in the vector, so there is
only a scaling multiplication by the reciprocal.

for (int i = 0; i < n; 1i++) {
v[i] *= recip; // NOTE: v[i] 1is already expf'd

Vectorizing exponentials. The first loop has exponentiation and also summing
of the results. That sounds like it’s going to be expensive, but the “exp” and
“expf” functions have had hardware support for years. The x86 processor
architecture has opcodes to do various common math functions including
exponentials, and these can be accessed via the AVX C++ intrinsic functions.
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Vectorized Softmax with AVX

The AVX intrinsics use x86 SIMD instructions to operate on
multiple float values or integers at once (e.g., 4 float values for AVX-1,
8 float values for AVX-2,16 float values for AVX-512). Surprisingly, there are
AVX SIMD exponential function intrinsics, to apply “exp£f” to multiple elements
of a vector in parallel.

Example: Softmax with AVX exponential and summation. We can vectorize
both these loops separately using AVX intrinsics. Vectorized versions of expf and

summation were examined in the hardware acceleration chapter. The version for
AVX1 becomes:

void aussie vector softmax exponentiate and sum AVXI1 (
float v[], int n)
{
aussie assert(n % 4 == 0);
aussie vector expf AVX1(v, n); // AVXl-accel expf
float denom = aussie vector sum AVX1l(v, n); // AVX1l sum
if (denom == 0.0) {
aussie assert (denom != 0.0);
return; // fail (should not occur)
}
float recip = 1.0f / denom;
for (int i = 0; i < n; i++) {
v[i] *= recip; // NOTE: v[i] is already expf'd

Actually, that’s only vectorized two out of three loops. Here’s the code with the
third loop, multiply-by-scalar, also done with AVX, as was also shown in the
vectorization chapter. This code is the AVX2 version:

void aussie vector softmax fused exp sum mult AVX2 (
float v[], int n)
{
// Softmax with EXP and SUM and MULT in AVX2
aussie assert(n % 8 == 0);
// Element-wise expf...
float denom = aussie vector fused expf sum AVX2 (v, n);
if (denom == 0.0) {
aussie assert (denom != 0.0);
return; // fail (should not occur)
}
float recip = 1.0f / denom;
aussie vector multiply scalar AVX2 (v, n, recip);
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Vectorized & Fused Loop Softmax

What about vectorization applied to these fused loops. Can we do better than using
the two vectorized loops in sequence? Can we merge the exponentiation and
summation into a single unrolled loop and vectorize that using AVX intrinsics? I'm
just teasing you. Of course, we can!

Here is “kernel fusion” of the vector expf and vector summation into a fused-
expf-summation kernel. I coded this for both AVX1 and AVX2, with both very
similar in structure. Here is the code for AVX2:

float aussie vector fused expf sum AVX2(float v[], int n)

{

// Fused EXPF and SUMMATION of a single vector

if (n % 8 != 0) { // Safety check (no extra cases)
aussie assert(n % 8 == 0);
return 0.0; // fail

}

_ m256 sumdst = mm256 setzero ps(); // Set accums zero

for (int 1 = 0; i < n; 1 += 8) {
_ m256 rl = mm256 loadu ps(&v[i]); // Load 256-bits
_ m256 expdst = mm256 exp ps(rl); // Exponentiate
sumdst = mm256 add ps (expdst, sumdst); // SUM=SUM+V
}
// Add the final 8 accumulators manually
float* farr = sumdst.m256 f£32;
float sum = farr[0] + farr[l] + farr[2] + farr[3]
+ farr([4] + farr[5] + farr([6] + farr([7];
return sum;

And here is the AVX2 code that uses that fused expf-summation routine as one
loop, and has a multiply-by-scalar afterwards.

void aussie vector softmax fused exp sum mult AVX2 (

{

float v[], int n)

// Softmax with EXP and SUM and MULT in AVX2
aussie assert(n % 8 == 0);
// Element-wise expf...
float denom = aussie vector fused expf sum AVX2 (v, n);
if (denom == 0.0) {
aussie assert (denom != 0.0);
return; // fail (should not occur)
}
float recip = 1.0f / denom;
aussie vector multiply scalar AVX2 (v, n, recip);
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Softmax Benchmarking Results

Here’s the result from my benchmarking 100,000 calls to the various Softmax
versions for a vector with 1024 elements, for all these algorithms, including both
sequential and AVX parallel versions.

Softmax benchmarks (N=1024, ITER=100000)

Softmax basic: 13186 ticks (13.19 seconds)

Softmax reciprocal: 12986 ticks (12.99 seconds)

Softmax expf-first: 6977 ticks (6.98 seconds)

Softmax expf-sum-fused: 6682 ticks (6.68 seconds)

Softmax expf with AVX1l: 1095 ticks (1.09 seconds)

Softmax expf/sum AVX1l: 910 ticks (0.91 seconds)

Softmax fused expf/sum AVX1l: 1095 ticks (1.09 seconds)
Softmax fused expf/sum/mult AVX1: 831 ticks (0.83 seconds)
Softmax expf with AVX2: 538 ticks (0.54 seconds)

Softmax expf/sum AVX2: 306 ticks (0.31 seconds)

Softmax fused expf/sum AVX2: 252 ticks (0.25 seconds)
Softmax fused expf/sum/mult AVX2: 176 ticks (0.18 seconds)

Interestingly, fusing the expf and summation kernels was actually worse for
AVX1, but it was faster for AVX2. Otherwise, our speedups were as we would
expect, with the triple-AVX optimizations of expf, summation, and multiply-by-
scalar (reciprocal) getting the best results by far. The triple-vectorized AVX2
version is 73 times faster than the naive C++ sequential version, using about 1.4%
of its CPU time cost. And we haven’t even tried AVX-512 optimization yet!

Softmax Overflow and Underflow

Note that a simplified version of Softmax has been used in the code examples in
this chapter for simplicity of explanation. Not only is this computation still very
slow (even if we precompute all those calls to expf), it’s also prone to overflow
and underflow. The real computation of Softmax needs to be further optimized
algebraically and scaled to avoid these problems.

This scaled computation can then be optimized using many of the same methods
as for the naive Softmax version, as above. Further optimizations may include the
use of calls to hardware acceleration APIs, pre-computed lookup tables as
approximations for the expf function, and converting the loops to pointer
arithmetic.

David Spuler 102



Softmax Optimization Research

The Softmax function is a significant cost in Transformer inference because it is
part of the attention mechanism, whereas it was less of a bottleneck in earlier neural
network architectures. A vanilla Softmax implementation is very expensive because
it involves computing the exponentials of all of the elements of the logits vector.
Various attempts have been made to optimize and approximate Softmax
calculations, including:

e Softmax code optimizations (sequential)

e Vectorized Softmax (parallelization)

e Softmax approximations

e Integer-only Softmax

e Pruned Softmax (removal)

e Fused Softmax (kernel fusion)

e Softmax replacements (use different functions)

Related Research Areas: Note that there are several other areas of theory that are
relevant to Softmax optimizations and approximation. The denominator of the
Softmax formula is a “sum of exponentials” and this type of calculation also appears
in Logarithmic Number System (LNS) addition. Also, the sum of exponentials
calculation, appears in “log-sum-exp networks,” which are somewhat related to
“tropical algebra.” The area of “max-plus networks” may also be relevant to
Softmax approximation research.
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10. Advanced AVX Techniques

AVX Memory Alignment Issues

Some of the AVX examples gloss over the issue of managing “alignment” for
memory addresses on byte boundaries with the “alignas” specifier. Some of the
AVX SIMD intrinsic calls require that addresses are 16-byte aligned (i.e., this is
effectively 128-bit alignment), which is not guaranteed by the C++ compiler.
However, we’ve tolerated non-aligned addresses by using the “ mm storeu ps”
intrinsic, which works with either aligned or non-aligned addresses.

Note that alighment restriction requirements of AVX are somewhat in flux. Not all
AVXintrinsics require alighment, and they are “relaxed” in many cases. There have
also been some bugs in compiler toleration of non-aligned addresses in C++
intrinsics. Where required, the alignment needs are:

e AVX-1— 16-byte alignment (128-bit).
e AVX-2 — 32-byte alignment (256-bit).
e  AVX-512 — 64-byte alignment (512-bit).

Since we can sort out alignment at compile-time using the C++ “alignas”
specifier and “aligned” type attributes, there is no performance penalty (except
in terms of space) for ensuring greater compatibility across CPU platforms and
compiler versions by preferring aligned addresses.

You can create your own macros to easily test pointer addresses for alignment by
checking their remainder with the % operator. These examples use bitwise-and to

replace the slow remainder operator:

#define aussie is aligned 16 (ptr) \

((((unsigned long) (ptr)) &1l5ul) == 0)
#define aussie is aligned 32 (ptr) \
((((unsigned long) (ptr)) &31ul) == 0)

Although our code to multiply 4 £1oat values tolerates non-alignment, it’s a minor
slug. The “ mm_storeu ps” AVX intrinsic is slower if the addresses are not
aligned, so we should fix the alignment for performance reasons.
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There’s also another “store” intrinsic to convert from 128-bits to 4 floats called
“ mm_store ps” (without the “u”) that runs faster, but does not tolerate non-
aligned float arrays. Actually, “ mm_storeu ps” is supposed to be equally as
fastas “ mm store ps” if the address is correctly aligned, so we can still use that
intrinsic if we prefer safety, but we need to change the variables to be aligned on
16-byte boundaries for a speedup.

To ensure alignment in C++, there is an “alignas” specifier for variable
declarations. We can use “alignas (16)” to force C++ to create the variables
with 16-byte alighment of the address where they are stored. For example, our unit
test harness code could have ensured 16-byte alignhment of all memory addresses
via:

// Test with 16-byte alignment
alignas(l16) float arrl([4] = { 1.0f , 2.5f , 3.14f, 0.0f };
alignas(l6) float arr2(4] = { 1.0f , 2.5f , 3.14f, 0.0f };
alignas (16) float resultarr[4];

There ate various non-standard alternatives to “alignas” in the wvatious
compilers. For example, MSVS has “  declspec (align (16))” with two prefix
underscores, and GCC supports “decltype (align (16))”.

The AVX code for an alignment-requiring version is not much different, with
minor changes to the names of the C++ intrinsics:

void aussie avx multiply 4 floats aligned(
float v1[4], float v2[4], float vresult[4])

{
// Use 128-bit AVX registers multiply 4x32-bit floats...

- ml28 rl = mm loadu ps(vl); // Load floats 128-bits
~ ml28 r2 = mm loadu ps(v2);
~ ml28 dst = mm mul ps(rl, r2); // Multiply

_mm_store_ps (vresult, dst); // Aligned convert to floats

Ideally we’d like to ensure that the function is only called with aligned addresses at
compile-time. The first attempt is to declare “vresult” above as
“alignas (16)” for type checking of alignhment issues, but it fails for function
parameters. Fortunately, there’s another way using type attributes:

__attribute ((aligned(16)))
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Another method is to define our own assertion that uses bitwise tests on the address
instead:

#define is_aligned 16 (ptr) \
((((unsigned long int) (ptr)) & 15) == 0)

This tests the address is a number that is a multiple of 16 using bitwise-and with 15,
but this is at runtime and costs extra cycles.

Permute and Shuffle

There are two classes of AVX instructions known as “permute” and “shuffle”
operations. They’re both very similar in that they reorder data in the AVX registers.
There are various ways that this can be used to optimize the many different types
of algorithms. Generally speaking, the permute options came later, and are better:

e Shuffle — AVX-1/SSE.
e Permute — AVX-2 and AVX-512.

Some example intrinsic functions:

e mm shuffle epi32 — shuffle (AVX-1)
e vpermilps — permute (AVX-2)

Was it a marketing name change? The permute and shuffle commands look very
similar, except more bits in the later commands. I’'m not 100% sure.

Blend Ternary Operations

The AVX “blend” operations are like a C++ ternary operator on steroids.
Generally, they test a mask vector, and then choose from either of their two
operands, depending on the value of a bit in the mask vector. You can see how it’s
a lot like doing:

z = bit ? x : y;

Except, you know, in parallel.
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For example, there’s the AVX blend functions, such as:

_ m256 ret = mm256 blendv ps(x, y, mask);

One of the main ways to go fast with blend is to combine it with one of the many
“cmp” comparison operations. This allows a vector comparison to create a mask,
where each element is either 0 or OxFF (all 1s). The main AVX comparison
functions are:

_mm256_cmp_ps(x, y, cond)
~mm256_cmp_pd(x, y, cond)

The condition or “predicate” operand can be a builtin constant, such as:

e CMP EQ 0Q— equality
e CMP LT 0Q— less-than

There are many other operands with different sizes or operations. The operations
include: EQ (equality), LE (less-equal), LT (less-than), NEQ (not-equal), NLT (not-
less-than), NLE (not-less-equal), NGT (not-greater-than), NGE (not-greater-
equal), ORD (ordered), UNORD (unordered). There’s also the “nop” conditions
of FALSE for always false, and TRUE for always true.

This idea of using comparisons with blend operations has a lot of similarities to the
CPU non-SIMD equivalent of ternary operators, the CMOV assembly statement.
The blend instructions are branchless logic, just like CMOV for a single operation.

Vectorization of Lookup Tables

The use of lookup-tables was once a powerful speed optimization, but I’'m not sure
they’re being used much any more. Memory is slow, and CPUs are fast. Before you
assume a LUT is better, you really should benchmark it against just plain old
computation, or even re-computation!

Anyway, if you’re using a LUT to trade space for speed, you can double down by
adding vectorization. The AVX SIMD instruction sets include a variety of “gather”
intrinsics that perform parallel array lookups from a vector of integer indices, using
a base address.
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The basic algorithm we’re going to use for AVX SIMD optimizations of a LUT
precalculation of some mathematical function is as follows:

e  Offline: Precalculate a big LUT for 24 bits with 2724 elements using non-
AVX basic C++ methods.

e Input: vector of 4 float values (AVX-1) or 8 float values (AVX-2).

e Use a cast to treat these f1oat arrays as arrays of integers.

e Load these “int” arrays into an AVX register.

e AVX shift right by 8 with the AVX-2 “ mm srli epi32” intrinsic,
which shifts right and adds zero bits, so that they are now 24-bit numbers
in 32 bits, with a zero sign bit (hence, all indices are positive integers).

e AVX “gather” with base on the LUT array, and scale of 4 (i.e., f1loat byte
size).

e Store the AVX register results back into an array of £loat values.

e Output: vector of 4/8 £loat values with the LUT-calculated function.

Note that we can use a smaller (or bigger) LUT than 24 bits simply by modifying
the bitshift counts.

LUTSs with AVX Shuffle. Another way to implement a LUT in AVX is to use
“shuffle” operations on another register. This only works for small lookup tables,
that have few enough elements to fit inside AVX registers. In other words, this can
be fast, but only for 16 or 32 elements in the LUT for AVX-2, or more if you use
AVX-512. This optimization is unlikely to be relevant to computing the massive
16-bit or 24-bit LUT's that we need for Al mathematical functions.

AVX SIMD Pointer Dereferences. A corollary to the AVX LUT “gather”
functionality is they can possibly be used to vectorize arrays of pointers, where the
pointers are directly aimed at the data without any intervening lookup-table. For
example, suppose we have an array of pointers to float (i.e., rather than an array
with integer indices), and we want to access these addresses to generate the
corresponding array of float. This is analogous to using a lookup table, but with a
base address of zero. Hence, we could potentially use AVX “gather” intrinsics with
a zero base address, and the integer offsets equal to the address (i.e., the pointers
converted to integer). The x86 platform has 64-bit pointers, so 64-bit integer index
offsets are required in the “gather” intrinsic. For example, the AVX2
“ mm256 i64gather epi32”and “ mm256 i64gather ps” intrinsics seem
to be along these lines with 64-bit indices. I haven’t actually tested this approach to
check if it works.
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Auto-Vectorization and Restricted Pointers

Modern C++ compilers attempt to automatically vectorize simple loops. Basic loop
structures can be unrolled by optimizers, either partially or fully, and then sent to
hardware acceleration automatically.

One of the most important hints to the compiler is a “restrict” designation on
pointer variables. Ironically, the benefit of restrict is to limit what you can code,
but also to allow unrestricted use of the pointers by the optimizer.

The purpose of the restrict attribute is a type specifier to tell the C++ compiler
that a given pointer or array variable is not an “alias” for any other pointer. There
are various loop transformations and vectorization optimizations that cannot be
performed if the compiler has to be conservative and assume that aliasing could
occut.

One of the main uses of restrict is on pointer or array function parameters,
because arrays are pointers in this context. For example, if we have two function
parameters (e.g., vector addition), declaring both parameters as restrict tells the
compiler that the two pointers will never point to the other vector.

Note that this use of the word “aliasing” refers to two pointers referring to the same
object or array (i.e., the pointers are aliases of each other). There is another
unrelated but similar use of the term in C++ “aliases” for declarations, which means
one function or type with two alias names.

The “restrict” keyword is merely a hint to the optimizer, and recalcitrant C++
compilers are free to ignore the advice. In fact, “restrict” isn’t even valid C++,
because it’s part of C, but not yet in the C++ standard. Nevertheless, various
compilers support it or similar extensions like restrict | so it can be used
in C++ programs.

Restricted pointers don’t always need to be marked as such. In some usages, the
use of “const” can allow the compiler to infer non-aliasing of parameters, but it
probably doesn’t hurt to declare it with “restrict” as well. Note also that the
C++ compiler is free to assume non-aliasing of pointers of different types, because
it is undefined behavior if they are aliases.

This is known as the “strict aliasing rule” and this assumption can be disabled in
g p
GCC via the option “~fno-strict-aliasing”.
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The C++ compiler doesn’t really check if you are lying (to yourself). If you tell the
compiler that pointers are restricted, and then pass in two aliased pointers, the
behavior of your program is “undefined” and there aren’t likely to be any
compilation errors or runtime warnings. So, don’t do that.

The correct declaration of a “restrict” pointer is:
int * restrict ptr; // Correct
This is actually incorrect:

int restrict * ptr; // Wrong
restrict int * ptr; // Also wrong

The syntax for array parameters has the keyword inside the square brackets:

void myfunc(int arr[restrict]);

Read-only functions. Note that read-only functions don’t really need to use
the restrict keyword. For example, the calculation of a vector dot product for
two arrays doesn’t really have an aliasing problem, since neither of the vectors are
changed.

Restricted references. The “restrict” type specifier can be used on references,
as well as pointers and arrays. This is helpful for some of the issues with aliasing
between references in pass-by-reference function parameters. But this usage
of restrict for references isn’t very important for auto-vectorization
optimizations.

Restricted “this” pointer. GCC also supports specifying that the class object
“this” pointer is unaliased by marking the function body with the
“ restrict ” keyword. This is placed after the closing right parenthesis for
the function parameters (i.e., similar to a const member function declaration). The
declaration looks like:

void MyClass::myfunc(int x) _ restrict ;

Overall, it’s unclear how much all these restricted pointer specifiers help the
compiler to optimize, but it certainly won’t harm the performance!
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Part II: Low-Level Code
Optimizations
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11. Compile-Time
Optimizations

C++ Compile-time Techniques

Compile-time processing is the optimal way to run a program. All the work is done
by the compiler and none by your program. There are literally zero instructions
executed on the CPU at runtime, whether it’s doing training or inference. It will be
blindingly fast for your users.

If only all code could be like that!

The reality is that programmers are still needed and that code still needs to run
(sigh!). But to make it faster, there are lots of ways to have more computation done
by the compiler, long before it ever goes near a user.

The C++ programming language has numerous features that help perform work at
compile-time. These include ways to explicitly control what goes to the compiler,
ot to give more information to the compiler so that its optimizer can do good work
on your behalf. Some of the various C++ language features to consider include:

e Conditional compilation — #1if/#1ifdef statements
e inline functions

e Templates — these expand at compile-time

e Symbolic constants — const or #define

e Function-like macros — #define with parameters

e Constant hints — constexpr, if constexpr, etc.
o Global and static variable initializations

e static data members — fixed data in C++ classes
e Type traits — compile-time type testing

e Restricted pointers — ignore aliasing risks

But when we’re doing Al there’s another compile-time data structure to consider:
the whole LLM model itself.
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C++ Optimizers

Every C++ compiler has optimization built into the code generation phase.
Typically, there are ways to specify that a higher degree of code optimization should
be performed. Methods to control the settings include:

¢ Command-line arguments (e.g., “~01” or “/01”)
¢ Configuration settings (e.g., Project Settings in the MSVS IDE)
e #pragma preprocessor directives

Take note of the meaning of the optimizer settings. For example, on MSVS the
setting “/01” optimizes for memory, not speed! Also, don’t be like me and assume
that the defaults are going to be what you want. Looking at the MSVS IDE
optimizer settings in my AUSSIE project file, I found:

e “Optimization” was “disabled” by default.

e “Enable Intrinsic Functions” was “No” by default. Why not?

e “Favor Size or Speed” was “neither” by default. Come on, why is there no
“both” option?

e “Inline Function Expansion” was “default” at least.

When to enable the optimizer? Should you run the optimizer at every build? At
what level?

Note that your policy should 7o be to turn up the optimization to maximum level
just before you ship your code to users, because your code can change in a very bad
way. Don’t assume that turning the optimizer mode up to supetr-crunch is always
an easy win, as optimization can trigger latent glitches in your code by reorganizing
memory or reordering instructions.

What does the optimizer do? In order to optimize code, it’s important to know
what sorts of optimizations your compiler is doing automatically. Compilers have
been doing optimizations for literally 50 years, and the state-of-the-art is quite
amazing, with an extensive body of research theory.
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Some of the main automated compiler optimizations include:

Constant folding/propagation
Constant expression evaluation
Common subexpression elimination
Redundant assignment removal
Strength reduction

Algebraic optimizations

Register allocation

Loop optimizations (e.g., unrolling)
Auto-vectorization

If you make simple changes to your code with some of the obvious things above,
it’s not going to give you a speedup. The compiler has already done it for you.

However, there’s a limit to what compilers can do. They certainly can’t make
architectural changes, and there’s also many mid-level algorithmic changes that
cannot be automated.

Function calls inside expressions are a good example of code changes that might
need to be manually optimized. When the compiler sees a function call used in
arithmetic, it isn’t always able to know what that function is going to do, and has to
be conservative by avoiding possibly incorrect optimizations.

Floating-Point Optimizer Options

Some C++ compilers have optimizations that you can use to speed up your
Floating-Point Unit (FPU). Some of the options for GCC include:

“-~ffast-math” option — This option is a broad enabler of multiple
floating-point speedups, such as -~fno-math-errnoand -ffinite-
math-only. It also disables negative zero.

“~fno-math-errno” option — This allows the standard library math
functions such as sqrt to run faster and also be more amenable to
parallelization, simply by allowing them to never set the global “errno”
variable. The use of errno was once a great way to track error codes, but
it’s also a blocker for thread-safety and parallelization. And let’s be frank:
you weren’t ever checking errno anyway, so turn it off!
“~ffinite-math-only” — This mode allows GCC math library
functions to skip any checks for Inf or NaN, which can make them
marginally faster.
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Microsoft Visual Studio C++ also has its own set of FPU options:

e “Floating-Point Model” settings in a Project’s Property Pages under
“C++” for “Code Generation” has options “/fp:precise”,
“/fp:strict”, or“/fp:fast”

e “Enable Floating-Point Exceptions” can be turned off if you like.

People Helping Parsers

The humble C++ compiler needs your attention. Hat in hand, the compiler is sitting
there saying “I am but a poor, helpless lexer, without even a single neural network.
Please help me.” Hence, please consider donating your time to help a poor
struggling compiler in your neighborhood.

There is a long history of the C++ compiler needing “hints” about optimization
from the programmer. The early C++ language in the 1990s had a “register”
specifier that hinted to the compiler that a variable was going to be highly used, and
the compiler should optimize it by putting the variable in a CPU register. The
“register” keyword has since been deprecated in C++17, which indicates that
compiler register allocation algorithms no longer benefit from human help.

Some of the other longstanding C++ keywords that can be used for efficiency-
related purposes include:

e inline
° const
e static

And with the evolving C++ standards, there’s a whole new set of directives that are
hints to the compiler about how to optimize:

® constexpr

e constinit

e consteval

e reinterpret cast

e restricted pointers (“restrict”)

e [[likely]] and [[unlikely]] path attributes

The constexpr and related directives help the compiler do “constant folding”
and “constant propagation” to compute as much as possible at compile-time,
thereby avoiding any runtime cost for lots of code.
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In fact, the idea is extended to its logical asymptote, whetreby you can declare an
entire function as “constexpr” and then expect the poor compiler to interpret
the whole mess at compile-time. Pity the overworked compiler designers.

The “restrict” pointer declarations help the compiler with advanced
optimizations like loop unrolling and vectorization by telling the compiler to ignore
potential “aliasing” of pointers, allowing much more powerful code
transformations on loops. The restricted pointer optimizations have been
formalized in C++23, but non-standard versions have long existed. The possible
benefit is that restricted pointer specifications might help the compiler do auto-
vectorization of loops into parallel hardware-assisted code.

How much do these help? It’s rather unclear, and the compiler is free to simply
ignore these hints. Compilers already did a lot of constant propagation
optimizations before the “constexpr” directives came along, so presumably
compiler designers have upped their game even further now.

Inline Functions

Placing the keyword “inline” before any function declarations makes that
function instantly disappear in a puff of smoke. Well, sort of. It gives your C++
compiler the hint to optimize the code by putting the function’s body there instead
of the function call. This is faster, but means there are many copies of the function’s
statements, so it increases code size.

Which functions should you inline? General wisdom is to do so for these special
types of C++ functions:

e Short functions (esp. single-statement functions)
e  Getters and setters in a class
e Frequently called functions at the bottom of the call hierarchy.

The inline specifier is just a hint. Your compiler is free to completely ignore you.
In fact, this choice will probably disappear in a few years, as compilers become
better than humans at choosing which functions to inline.

If you want to force the compiler to inline, use preprocessor macros. However,
there’s a whole minefield of problems in function-like macros. For example, you
need to add parentheses around the whole expression and also around each
parameter’s appearance in the replacement text. Hence, inline functions are
much safer than macros.
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The value of inline functions is not only from avoiding function call overhead.
The merging of the statements into the caller’s code also allows many other
optimizations to be applied there as follow-up transformations. Constants can be
propagated further through the inlined statements, which is similar to constexpr,
but the range of optimizations is much larger with inline.

GCC has some additional C++ language features related to inlining. There is the
“always_inline” function attribute which says to always inline this function,
and the “flatten” attribute which says to inline every call to other functions
inside this function. There is also the “gnu_inline” attribute that prevents
creation of a non-inlined function body.

inline function limitations

The inline specifier is wonderful when it works. A very important point to note
about inline functions is that the inline specifier, by itself, is not enough to
guarantee that inline code will be generated. The other requirement is that the
compiler must know the function body code, where the function is called.

Hence, an inline keyword in a function prototype declaration is not enough. The
executable statements inside the function’s definition (i.e., the function body) must
be available to the C++ compiler. Otherwise, how is the compiler to know what
inline code to expand a function call into? I guess in theory the C++ compiler could
maintain a huge database of all the functions in your source code, or scan through
all the CPP files to find it, and that would be amazing, but we’re not there yet. In
practice, the compiler will only inline functions where it has seen the function body
within the current C++ source file or an included header file. This requirement
imposes two restrictions on the use of inline functions:

1. Member functions declared as inline should include the function
body inside the same header file as the class declaration. This can be
achieved by placing the function body of a member function inside the
class declaration.

For a more readable style when there are many inline member
functions, the class declaration can declare the function prototypes, and
then provide the inline function definitions immediately after it, in the
same header file. This restriction ensures that whenever the class
declaration is included as a header file, the member function body is
available for inlining.
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2. Non-member inline functions must be defined before they are used
within a source file, preferably by placing the inline functions in a header
file. Placing inline functions at the top of a source file allows the inlining
of any function calls later in the same soutce file, but calls to the functions
from a different source file cannot be inlined by the compiler unless
the inline function definition is placed in a header file.

Non-inlined functions

Some functions declared as inline will not be expanded into inline code by the
compiler, simply because they are too complicated for the compiler to handle. In
this case, the inline specifier is ignored and the function is treated like any other
function. The sophistication of the inline code generation depends on the compiler
implementor.

Even if a compiler could theoretically inline a function, the compiler is sometimes
still forced to generate a “real” function. There are various possible reasons for this:

1. The name of an inline function is used as a pointer-to-function
constant.

2. A call to the inline function from within another source file.
3. virtual member functions.

When an inline function is called from a source file, where the function body
has not been made available, the compiler generates a real function call (simply
because it cannot inline the function). Hence, the real function must exist and be
linked like any other function. Fortunately, the placement of inline functions in
header files as discussed above will avoid this for any function the compiler decides
to inline.

Inline Variables

Since C++17 you can define a variable as “inline”. What does this do?

Basically, it’s not really much of a speedup, but makes it easier to manage global
constants, global variables, or static data members in C++ classes.
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You can declare these variables as “inline” in a header file, with an initializer:
inline int g x = 37

Then you can with wild abandon include that header file all over the place without
any problems whatsoever. The C++ linker is required to:

e Merge all of them into one variable at link-time.
e  Guarantee that it’s initialized as specified.
e Have the same address for that variable everywhere.

I find this addition to C++ somewhat humorous because it fixes up a huge mess
that’s existed since old K&R C code, and I've battled against it many times trying
to get my program linked. I’'m not going to irritate myself by repeating all the quirks,
but it was always messy whether you had a global variable that was extern or non-
extern, initialized or non-initialized, in a header file or a non-header file. So, if
you ask me, the way that “extern” variable declarations “worked” was always
broken, and now it’s fixed in C++17. Hooray! (A bit late for me.)

Overall, allowing “inline” for variables is helpful to efficiency because you can
be guaranteed about constants, static members, or global variables at compile-
time. And it’s always nice to get your program to link.

Constant Specifiers

The “const” keyword means that something is constant, and cannot be modified.
It is helpful for efficiency, but its role is also to help detect programming errors,
where code accidentally attempts to modify a constant variable or object. There are
multiple places where “const” can be used.

e Symbolic constants

e const variables

e const objects

e const function parameters (i.e., “const&” idiom)
e const member functions (read-only)

But don’t get me started on “const correctness.” I've seen too many dawns
fighting with compilers about const. Anyway, let’s move on, and assume e
love const.
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Basic const symbols. Symbolic constants can be declared as a representation of a
numeric value or other type data (instead of using #define symbols):

const float pi = 3.14;

Set-once variables with const. Variables can be made constant via “const”,
which is effectively the same as a symbolic constant, except that the initializer need
not be a compile-time constant. It is a “set-only-once” variable. The C++ compiler
ensures that const variables cannot be modified, once they are initialized.

const int scale factor = get config("scale");
const int primes(] = { 2, 3, 5, 7, 11, 13, 17 };

Function parameters and const. The const specifier can ensure that function
parameters are not modified, especially for arrays passed by reference. const on a
scalar parameter type such as int is not as useful, only ensuring that the code inside
the function doesn’t modify the parameter (which isn’t really a problem anyway).
However, the idiom of “consté&” to specify a const reference as a function
parameter allows constant pass-by-reference of object parameters, which is
extremely important for C++ efficiency.

Instantiate-only objects with const. Class objects can be declared
as const variables. When the variable is a const object, it can be instantiated via
a constructor, but cannot be modified thereafter.

const Complex cfactor(3.14, 1.0);

Member functions declared const. Class member functions can be declared by
adding the keyword “const” immediately after the function parameter list:

int MyVector::count () const;

The C++ compiler blocks a const member function from modifying data
members, although it can still change “static” data members. For const object
variables, the C++ compiler ensures that any calls to non-const member
functions are disallowed.

Non-member functions. Note that a non-member function cannot be const.
The actions of a friend function or other non-class function are controlled by
using const on the parameters, rather than the whole function itself.
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Beyond const. Newer C++ features have generalized and improved some of the
uses of const. The “constexpr” specifier is much more powerful in terms of
allowing compile-time optimizations, as are its derivatives “constinit” and
“consteval.” The newer use of “inline” on a variable (yes, a variable, not a
function, supported since C++17), can be helpful for safely sharing constants
across multiple files.

Constant Expressions Specifier

The constexpr keyword is an optimization hint for the compiler that’s more
powerful than “const.” Whereas const only guarantees that something won’t
change, constexpr is a guarantee by the human that something can be evaluated
at compile-time.

The compiler should use the constexpr hint to try to propagate constant values
throughout the evaluation of expressions and function calls, producing an overall
speedup. However, if the compiler doesn’t have the capability to do the level of
compile-time optimization required, or if the human has told the machine a bald-
faced lie, there’s no penalty and the code just runs like it never had
a constexpr specifier.

There’s not a whole lot of difference between const and constexpr if you use
it only for named constants:

const float PI = 3.14f;
constexpr float PI = 3.14f; // Same same

constexpr functions

The real power is when you use constexpr for functions.

const float SQRTPI = sqrtf(3.14f); // Works?
constexpr float SQRTPI = sqrtf(3.14f); // Works?

Oh, dear! I just tested this code snippet, and the const version works, whereas
the constexpr version fails to compile, which is the opposite of what I was
expecting. According to an informed source that was trained on Internet
scrapings, sqrtf is not going to be declared as a “constexpr” function until
C++26. Alas, by then all C++ programmers will have been replaced by robots, so
feel free to skip this section.
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The apparently futuristic idea is that sqrt £ should have a “constexpr” keyword
in its declaration, because the function return value can be computed at compile-
time if you pass it a constant argument. In other words, the compiler can evaluate
“sqrtf (3.14f)” at compile-time. Hence, the whole function should be declared
“constexpr” in the standard library header file. The const version is also
probably not evaluating the sqrtf function at compile-time, but just calling it
dynamically whenever the const variable is first initialized (this non-compile-time
initialization is allowed for const variables, provided you don’t later attempt to
change its value).

Anyway, you can already declare your own function with the “constexpr”
specifier.

constexpr int twice (int x)

{

return x + X;

constexpr functions vs inline functions

A lot of the same value in terms of optimization can be had by making a function
just inline rather than constexpr. Note that you can use both, but
officially constexpr for functions implies inline on the function as well.

Is constexpr any better than just inline? If you pass a constant argument to a
small inline function, then the expansion of the function body will trigger many
constant propagation optimizations, effectively evaluating most of it at compile-
time, which is almost the same as constexpr.

constexpr is supposed to be more formal in guaranteeing that the result of a
function is a compile-time constant, and the compiler is honor-bound to do
“compile-time function evaluation” to get the constant return value. Also,
a constexpr function is more officially usable as a compile-time constant, so that
you can use an expression with a constexpr function’s return value in various
places where C++ needs a constant (e.g., an array size declaration,
some template situations, etc.).

An inline function is also supposed to be optimized at run-time for non-constant
arguments, and constexpr functions are implicitly inline functions. The code
generation requirements of dynamic inlining are often more advanced that constant
expression evaluation.
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Also, the limitations on how a constexpr function can be structured are a lot
easier to code than the unrestricted nature of an inline function body. However,
as a practical matter, the compile-time evaluation of expressions and the code
generation for inlined expressions have a lot of overlap, so I expect C++ compilers
will mostly try to do both on every type of function.

The inline keyword also serves a weird secondary purpose, by guaranteeing that
there’s only one copy of the function. This means we can include header files with
the full definition of that inline function anywhere we like, without getting a
compiler error at link-time about multiple definitions. But this isn’t a performance
optimization, and the linker feature of inline is almost the opposite of what we
want in making a function inline, because we don’t want a real function to be
called at all.

if constexpr statements

There is an alternative usage of constexpr in terms of “if” statement conditions
(since C++17):

if constexpr (cond)

This new syntax tags the condition as being amenable to computation at compile-
time. Hence, the compiler should optimize the if statement to a constant value,
and it can then determine at compile-time which branch should be executed. So,
there is a double speedup from:

(a) the condition computation is removed at run-time, and
(b) code size reduction from unexecuted “dead code” being removed.

In fact, this determines at compile-time which code block will be parsed, so there
are cases where you can avoid a compile-time error in templates by wrapping it
inside an “if constexpr” check. This can be useful in compile-time situations
such as template expansion, where you can prevent some expressions from being
compiled, and also code bloat can be reduced.
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constinit variables

The constinit specifier is a hybrid between consteval and static variables.
The constinit specifier declares a variable that is static, with lifetime scope,
that is initialized at compile-time.

A variable declared as constinit must be initialized, and cannot be modified (like
“const”). However, the initializer needn’t be a “constant expression” although it
must be able to be calculated at compile-time.

Huh? That makes no sense. Sure, it does in the wotld of C++ standards. A
“constant expression” with only constant arithmetic is a subset of the total overall
set of expressions that can be calculated at compile-time.

The best example is a call to a function that has one path where it’s constant, and
another path where it’s not. The definition of “somefunc” has two paths:

int somefunc ()

{
if (something) return 27;
else return some random number () ;

The “somefunc” function cannot be declared “const” or “constexpr” because
itisn’t always a constant on all paths.

However, if we’re using “somefunc’ at program startup initialization, we can try:
bl b
constinit int s myconst = somefunc();

Here, if we know that it will use the constant path for some reason, the initialization
of “s_myconst” will go through the fixed path to get the compile-time constant
value of 27, we can tell the compiler that by declaring the variable as constinit.

Anyway, now that you’ve been forced to learn all that, just forget about it. You’l
rarely if ever be needing constinit.
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consteval functions

Use consteval for functions that are always constant. A consteval function is
strictly declared so that every invocation of the function st return a compile-time
constant.

The consteval keyword is a subset of constexpr functions (and also
implies inline on a function). Although a constexpr function is constant if its
arguments are constant, it can also return a dynamic return value for non-constant
arguments.

When would you use consteval versus constexpr functions? I mean, when
you ask your boss to make you a cup of coffee, do you like to ask politely or do you
issue commands? Supposedly constexpr is optional for the C++ compiler,
whereas consteval is mandating compile-time evaluation.

Personally, I can’t see much difference in general usage, since the compiler will
probably optimize a constexpr function at compile-time if it’s capable enough.
Hence, for  regular  functions I don’t see much  benefit
to consteval over constexpr. There are some complicated places in C++
where it helps to guarantee a compile-time constant, such as reflexive types and
other tricks in compile-time template usage.

Templates

C++ templates can be used for compile-time optimizations, rather than merely as
a programming convenience for algorithm generality and interface improvement.
By specializing templated code for a particular type or constant parameter, the effect
is that the resulting code is more specific, giving the compiler an opportunity for
better optimizations.

For example, if we have vector and matrix classes, then rather than having our code
dynamically check whether our precision is 32-bit £1loat, or 8-bit integers, or some
other low-level type, we can use templated versions of the vector and matrix classes.
This generates different functions for each type of data. At the cost of some extra
code space, we’ve given the compiler the chance to do a much better job of
optimizing the code for the specific low-level data types.
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Going beyond just using template code to write the same algorithm for different
types, there are various ways to optimize code that is templated to do more at
compile-time:

e Template class and function specializations

e Constant template parameters

e Compile-time conditional tests on types (e.g., sizeof, type traits, etc.)
e if constexpr syntax

e  Variadic templates

e Template Metaprogramming (TMP) techniques

e SFINAE techniques

Constants can be used to instantiate template code in a way that helps the
compiler to optimize by evaluating constant expressions. Template parameters
don’t need to be types, but can also be constant variables or numbers, such as the
size of an array. Using a template in this way is as efficient as hard-coding the array
size, which helps the compiler to know exactly what it can optimize, such as if the
array size is used in any computations.

If you think you can do better than the compiler’s optimizer, remember that you
can also override the generic template code. For example, you can instantiate your
own specific version of a template class for a particular type. Similarly, you can
provide a generic function declaration that instantiates a templated function with
your explicit version.

An alternative to specializing a version of a template class or function is to use
compile-time tests inside the generic template code. For example, you can use
conditional tests involving compile-time operations:

e sizeof

e typeid

e std::is_same v

e if constexpr conditional test syntax
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Next level templating

C++ templates are a very powerful programming mechanism. In fact, you can
define entire projects as templates inside header files. To get the most out of
template optimizations at compile-time, consider these methods:

e Type traits

e  Variadic templates

e SFINAE

e Template Meta-Programming (TMP)

Type traits are a generic feature of C++ (since C++11) that you can use to
interrogate the type of a variable. They are declared in the <type traits> header
file and there are numerous ways that you can test the type of a variable. The above
example std::is_same vis one example. As another example, there
is std::is_signedand std::is_unsigned to test whether it’s a signed or
unsigned type. There’s also std::is _pointerand std::is_array and
various others.

Combining type traits with “if constexpr” gives a powerful way to ensure
templated code gets evaluated at compile-time, and to specialize blocks of code for
particular types.

Variadic templates are another way to level up your code and have been
supported since C++11. These are variable-argument templates via the use of the
ellipsis “. . .” operator in a template declaration. This allows templates to accept
a variable number of parameters for instantiation.

SFINAE. Another optimization for advanced templating is to rely on SFINAE
semantics. This refers to “Substitution Failure Is Not An Error” and means
that template instantiation that fails should not itself trigger a compilation error
that prevents execution. More specifically, if the compiler tries and fails to
instantiate a template, but there’s another way to run it, such as a different
overloaded function available, then the code should execute via the non-templated
method.

Relying on this capability in C++ not only avoids having compilation errors that
block some advanced template usages, but can also be used to ensure compile-time
calculations. However, although there are some good uses cases in making
templates faster, SFINAE is an obscure programming technique that isn’t widely
used in everyday C++ programming.
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Template Meta-Programming. Further optimization of templated code at
compile-time is possible via the technique called “Template Meta-Programming”
(TMP). Note that this refers to an unusual usage of templates in C++, where the
idea goes beyond just using templates of code for different types (i.e., normal
templating of classes). TMP is an advanced coding method that uses (misuses,
perhaps) instantiation semantics of templates as a way of generating compile-time
code, even for some conditional branches.

However, this is an obscure method that is rarely needed, because most of the
effects can be achieved via preprocessor macros, function inlining, and using
“constexpr” in modern C++.

References

1. Bjorn Andrist, Viktor Sehr (2020), C++ High Performance: Master the art
of optimizing the functioning of your C++ code, 2nd Edition, Packt Publishing,
Dec 2020, https://www.amazon.com/dp /1839216549,

Code: https://github.com/PacktPublishing/Cpp-High-Performance-
Second-Edition (Chapter 8 is on compile-time optimizations.)

2. Gnu.org (2023), GCC Command Options, GNU Compiler
Collection, https://gcc.gnu.org/onlinedocs/gec/Invoking-GCC.html

3. Paul Bilokon, Burak Gunduz, 8 Sep 2023, C++ Design Patterns for Low-
latency Applications Inciuding High-frequency
Trading, https:/ /arxiv.org/abs/2309.04259,

Code: https://github.com/Oburak/imperial hft

4. Sarah Butcher & Alex McMurray, 2 January 2025, The C++ techniques yon

need for §6004k hedge fund

jobs, https:/ /www.efinancialcareers.com/news/low-latency-c

131 C++ AVX Optimization


https://www.amazon.com/dp/1839216549
https://github.com/PacktPublishing/Cpp-High-Performance-Second-Edition
https://github.com/PacktPublishing/Cpp-High-Performance-Second-Edition
https://gcc.gnu.org/onlinedocs/gcc/Invoking-GCC.html
https://arxiv.org/abs/2309.04259
https://github.com/0burak/imperial_hft
https://www.efinancialcareers.com/news/low-latency-c

David Spuler 132



12. Zero Runtime Cost
Operations

You want free CPU cycles? You got it! There are plenty of “freebies” in C++!

We’ve already talked about compile-time operations in C++, but here’s a summary
of some of the “hints” you can give to the compiler for a free gain, usually via
helping the optimizer to do fancier optimizations:

inline

template

const

constexpr (also consteval and constinit)
noexcept

static_assert

Restricted pointers (e.g., restrict)
likely/unlikelyor builtin expect (expressions)
[[likely]] and [[unlikely]] path attributes

I’'ve missed a bunch of them, so you should re-read those chapters. Those are well-
known optimizations via programmer hints.

Here are some other ones that are useful. If you see these keywords, these are free
or compile-time operations:

auto types (type deduction)
decltype

final

override

explicit

[ [nodiscard]] (function attribute)
= delete

But there’s always more.
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Here are some advanced C++ language features that you might think cost real CPU
juice, but are free for various language design reasons:

e Type traits — compile-time type operators (not RTTT).

e Concepts (C++20) — compile-time guarantees.

e Static reflection (C++26) — fixing RTTT inefficiencies.

e Profiles — safety with compile-time validation.

e Curious Recurring Template Pattern (CRTP) — useful for devirtualization.
e Structured bindings — grouped assignments are compile-time processed.

Type traits are a form of Compile-Time Type Information (CTTI) and work at
compile-time. Some examples are operations like:

std::is_trivial or std::is_same

However, note that you have to be careful not to move across into the darker side
of RTTI, which is dynamic cast and typeid.

Free Type Cast Operations

There are various arithmetic operations that can look real, but actually disappear in
a puff of compiler smoke. The first item on the list is type casts, which have many
freebies:

e reinterpret cast

e static cast

e const cast

e std::move (move semantics)

e std::forward (perfect forwarding)

Note that std: :move is effectively a compile-time type cast, which turns an 1-
value into an r-value (I'm simplifying the idea here). However, there are also
overloaded versions of std: :move with two or more arguments that really do
move bytes at runtime (effectively doing memcpy), so be aware of the distinction
between free uses of std: :move for move semantics versus real byte movers.
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Arithmetic type casts between similarly represented numbers can often be
optimized away. For example, these are usually free, or at least very fast:

e Downsizing integer type casts (e.g., int to char).
e Upsizing integer type casts (e.g., char to int)
e Floating-point type conversions (e.g., float to double)

Differently sized integer types seem like they would cost real instructions to convert
between them. If a char is one byte and an int is four bytes, you’d think there’s
an operation that adds or removes three bytes. However, the compiler has many
tricks up its sleeves here, such as:

e Copy propagation
e Register allocation
e Peephole optimizations

This is often true of the conversions between any of the many and varied integer
types, from a 1-byte char to a 16-byte long long. In the cases where the
compiler cannot find a way to do it freely, the operation is very inexpensive anyway.

But note that not all type casts are free. In particular, converting between integers
and floating-point types is expensive, in both directions, because the way these two
types of values are represented is very different. Be careful with explicit type casts,
but also any expressions that mix integer and floating-point types may have implicit
type casts.

Optimized Away

Here’s a somewhat random list of stuff that should get optimized away by the
compiler. We can be reasonably sure these are free:

e Constant expressions (via the general idea of “constant folding” and
newer constexpr features)

e Small getter member functions (via inlining)

e Null-effect expressions (useful for compiling-out assertions)

e Unnecessary temporary variables (removed by copy propagation, peephole
optimizations, and register allocation)

e  Wrongly typed constants (e.g., using 1 or 1TUor 1.0 or 1.0f should be
implicitly type-converted at compile-time).

e Double negation (using “! ! (x)” is a common trick).
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e Algebraic simplifications (e.g., plus zero, subtract zero, times one, and
many more).

e Explicit zero conditional tests (e.g., 1f (x != 0) orif (ptr !=
nullptr) equates to if (x) or if (ptr) atruntime).

e First data member in an object or structure (it’s offset is zero, so there’s a
“plus zero” in the address calculation that is optimized away).

e Assertions and #1f DEBUG (if compiled-out for production).

The compiler optimization of “dead code elimination” will make these control flow
features free:

e while (1) —using for (;;) isn’t faster!
e if(true) orif(l) orif (0) or whatever
e do..while (0) — a common macro trick.

e Short-circuited constants in | | or && operators
e Tested constants in the ?: ternary operator

You can always check the assembly code with “gcc -S” or the MSVS assembly
debug window.

Standard Container Operations

A lot of the standard containers have many optimized specializations for builtin
types. Hence, if you’re using std: :vector<int>, you can expect operations
like push_back ate inlined and very fast. All of the contiguous containers have a
simple structure, and the non-contiguous linked containers would maintain
incremental variables, making begin () and end () calls very fast. Similarly, most
of the containers maintain an incrementer counter of objects inside, so all calls
to std: :size are as fast as a getter accessing an integer data member (inlined, of
course).

There are some relatively simple standard C++ data types where operations can
often be inlined or optimized away by the compiler:

e std::pair

e std::tuple

e std::optional

e std::expected

e std::variant (modern C++ unions)

David Spuler 136



Finally, note that some calls to containers can lead to memory allocations, which is
a slowdown. And various containers when used on your own non-scalar objects
can trigger many calls to constructors or assignment operators, which is slow
regardless of whether it calls copy or move versions.

I mean, moving is better than copying, but an optimizer can only do so much.

The Opposite of Free

There are also features of C++ that look like they should be free, but are actually
costly. Perhaps we should call them “costlies”?

Elegance and the beauty of short code sequences is not the same thing as fast. Here
are some examples of beautiful things that can be slow:

e Calls to virtual functions

e RTTI (e, dynamic cast and typeid)

e Lambdas, functors and other function objects

e std::function

e Comparators (except maybe standard ones like std: : less)
e TFold expressions

e Exception handling

The issue with lambdas and function objects is not clear-cut. If you use a lambda
with a simple capture and an immediate assignment to a functor variable, which is
then called, the optimizer probably can handle this and inline the function call.
However, if you declare your own complex lambda as a comparator that is sent to
a function (e.g., to std: :sort), all of the calls to that lambda are probably not
inlined, leading to a performance bottleneck.

Also, if you use a builtin comparator like std::greater and pass it
to std: :sort or other library functions, it’s likely that the operation has a pre-
coded template specialization for that comparator, meaning it won’t really be using
it as a function call.

However, you might want to benchmark this or look at the standard library source
to confirm there is such a specialization!
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And here are some more slugs that are less obvious, because the code is concise
and looks like it should be fast:

e  Operator overloading (looks like a single instruction, but it’s a function call,
even if it’s inlined).

e Initializer lists (can call lots of copy constructors).

e DPointer-to-function types (cannot be inlined).

e Implicit type conversions (especially via overloaded type cast operators).

e Temporary object creation (accidental)

e Type casts between int and float (explicit or implicit)

e Container resize () calls

Modern C++ is becoming such a complex language with conflicting goals of
elegance and performance, so it’s hard to know which things are freebies or costlies.
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13. Bitwise Operations

AVX C++ Bitwise Operators

Here’s a refresher on the standard C++ bitwise operators:
x & y— binary bitwise-AND

| y — binary bitwise-OR

b

~ y — binary bitwise-XOR

b

x << y — binary left bitshift
x >> y — binary right bitshift
~x — unary bitwise-complement (bitwise-NOT)
There are equivalents of these operations in AVX coding, such as:
Bitwise-AND — mm256 and s256 ()
Bitwise-OR — mm256 or s256 ()
Bitwise-XOR — mm256 xor s256 ()
Bitwise-NOT — there’s no equivalent AVX function!

Note that AVX-1, AVX-2 and AVX-512 have different names for these primitives.
But the operations atre the same, just on more bits. There are also different intrinsic
function names for these AVX operations on various differently sized integers,
signed versus unsigned integers, or floating-point operations. Instead of bitwise-
NOT, AVX has “NAND” or often called “andnot”. Intrinsics such
as _mm256_andnot_s256 () implement the bitwise double-operation:

a=>b & ~ c;
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Bitwise-NOT Emulation

As mentioned above, there’s no AVX equivalent of the bitwise-not or one’s
complement ~ standard C++ operator. Instead, this is usually emulated with two
instructions, based on the identity:

~x == x "~ OxFFFFFFFF

A register with all 1s can be created from integer -1, such as:

// XOR with all 1s
a = mm256_ xor s256(b, mm256 setl epi32(-1));

Alternatively, it can be done using a couple of AVX tricks with two instructions,
because the “set” AVX instructions can be expensive. One way is to use the
“cmpeq” (compare-equal) AVX instruction, because the AVX version of “true” is
actually OxFFFFFFFF (i.e., OxFF in every byte). Hence we can set up a dummy
“0==0"” AVX comparison that’s always true.

_ m2561 z = mm256 setzero si256(); // Zeros
_ _m256i ones = mm256 cmpeq epi8(z, z); // All 1ls
a = mm256 xor s256(b, ones); // XOR with 1s

Notes on Bitwise Coding

Binary literals. A reminder that C++ also supports binary literal constants with a
“0b” prefix, similar to the hexadecimal “0x” pretix. For example, to represent the
constant 10 (ten), your C++ code can use:

const int ten = 10; // decimal
const int ten = OxA; // hexadecimal
const int ten = 012; // octal

const int ten = 0b1010; // binary
Bitwise badness: A few pitfalls in C++ bitwise operators should be mentioned:

e Integer-only: the C++ bitwise operators do not work on floating-point
data types.

e Quict overflow: if you do anything to overflow an integer type, nobody’s
going to tell you. For example, shifting the sign bit too far left with
“1<<32” instead of “1<<31” will simply lose it. You might get a compiler
warning, though.
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e Two is not better than one. The & operator is bitwise, but && is logical.
Similatly, | and | |. It’s the reverse for < and << or > and >>. Choose the
wrong one and you might get a compiler warning, if the stars are aligned
and the wind is blowing easterly.

e Operator precedence is tricky and not what you’d expect (it’s arguably
broken, but rather too late to fix), so use lots of parentheses in bitwise
expressions, and don’t ignore C++ compilation warnings.

e Bitwise operators are not always well-defined on negative values (e.g.,
bitwise right shift is officially “undefined behavior” on a negative), so it’s
best to use “unsigned” types as operands to bitwise operators. Note also
that it’s often useful to add the suffix letter “u” to integer constants
(e.g., 10u, OxAu or 0b1010u), when dealing with bitwise operations. This
makes the constant of type “unsigned” and avoids various bitwise
operator problems with signed numbers.

Bitwise operation algebraic properties: The interaction with zero is an
important difference between the main operations:

e Bitwise-AND with zero equals zero: a & 0 == 0
e Bitwise-OR with zero equals the other value: a | 0 == a

The following inequalities for bitwise operators on non-negative integers can also
be useful to know:

e Bitwise-AND only clears bits and is <= each operand: a & b <= a
e Bitwise-OR only sets bits and is >= each operand: a | b >= a

e Bitwise-AND equals the larger value only for equal numbers.

e Bitwise-OR equals the larger value only for subset bit patterns.

Addition versus bitwise operations: The relationship between the bitwise
operators and the integer “+” operator can be useful to understand:

e Bitwise-AND is <= the sum of its operands: a & b <= a + b
e Bitwise-AND equals addition only if both numbers are zero.

e Bitwise-OR is >= the sum of its operands: a | b >= a + b

e Bitwise-OR equals addition only for disjoint bit sets or zeros.

Note that these relationships are for positive integer values. Bitwise operators need
positivity in their daily lives, whereas addition is fine with lots of negativity.
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Bit Flag Basics

The main use of C++ bitwise operators is to use bit flags in integer variables, which
is very efficient in both storage space and execution time. A vanilla “int” can stotre
32 bit flags, and a “long” can store 64 bits. The basic bit operations in C++ use
these bitwise operators:

e  Check a bit — bitwise-AND (&)

e Seta bit — bitwise-OR ()

e Toggle a bit — bitwise-XOR (%)

e Clear a bit — bitwise-AND with complement (& with ~)

Here are some example macros for examining the bits in a 32-bit integer, which
should be of “unsigned int” type:

// Bit Flags in Integers

#define AUSSIE ONE BIT SET(x, b)  \
(( ((unsigned) (x)) & ((unsigned) (b))) != 0 )
#define AUSSIE ANY BITS SET(x, b) \
(( ((unsigned) (x)) & ((unsigned) (b))) != 0 )
#define AUSSIE ALL BITS SET(x, b) \
((((unsigned) (x)) & ((unsigned) (b))) == ((unsigned) (b)))
#define AUSSIE NO BITS SET(x, b) \
(( ((unsigned) (x)) & ((unsigned) (b))) == )

The corresponding macros to set and clear these bit flags are:

#define AUSSIE SET BITS(x, b) \
(( ((unsigned) (x)) | ((unsigned)
#define AUSSIE CLEAR BITS(x, b) \
(( ((unsigned) (x)) & (~((unsigned) (b)))))
#define AUSSIE TOGGLE BITS (x, Db) \
(( ((unsigned) (x)) ~ ((unsigned) (b))))

(b))))

Yikes! What a mess! But all those parentheses are necessary to avoid precedence
issues with preprocessor macros.

Bit Sets

You can consider a 32-bit integer to be a “bit set” of 32 distinct bit flags, where all
1s represent a bit flag that is in the set. A bit set is an inherently parallel architecture,
even in ordinary sequential C++ code. The basic idea is that a 32-bit unsigned int
stores 32 bit flags.
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Certain actions on the integer as a whole effectively process 32 bits in parallel. For
example, it is fast to check if any bits are set by testing if the whole integer is zero.

In regards to bit sets stored in an integer, the basic set operations can be
implemented very efficiently with C++ bitwise operators:

e Bitwise-AND (&) — intersection

e Bitwise-OR (|) — union

e Bitwise-complement (~) — set complement (negated set)

e Bitwise-and-complement (“A&~B”’) — set difference (set minus)

In addition, there are a number of fast operations that can be useful for bit sets:

e Integer zero — null set of bits.
e Integer negative-one — full set of all 1s.
e Bitwise “popcount” — set cardinality or number of elements.

Example code with these ideas for 32-bit sets implemented as unsigned integers:

u!=0 // Test if any bit is set

u3 = u2 & ul; // Intersection of sets (Bitwise-AND)
u3 = u2 | ul; // Union of sets (Bitwise-OR)

u3 = u2 ~ ul; // Toggle bits in sets (Bitwise-XOR)
u3 ~ul; // Set complement or inverse

The total number of bits set out of 32 can be computed fast as a “popcount”
operation using intrinsic functions, such as “_popcnt” in Microsoft Visual Studio
and “  builtin popcount” for GCC (there are also versions for 64-bit longs).
In x86 architectures, popcount is a single CPU instruction (POPCNT) implemented
in hardware, and is therefore very fast.

There’s no SIMD popcount instruction in AVX-1 or AVX2. However, in AVX-
512 there is a parallel operation with the mm512 popcnt epi64 () intrinsic.

Note that these C++ macros assume type “unsigned int” in 32 bits, and
therefore 32 distinct flags in a single integer variable. For more, the “unsigned
long” type can be used (64-bit), and there is also the “long long” type (128-bit).

The above macros would need to be changed to use type casts to “unsigned
long” rather than just “unsigned” for a 64-bit version. For even more bits, a
data structure called a “bit vector” can be implemented as an array of unsigned
integers, which generalizes the bit set idea.

143 C++ AVX Optimization



Bitwise Intrinsic Functions

Intrinsic functions, or “builtin” functions, are special C++ functions that are
specific to the compiler environment. For example, Microsoft Visual Studio and
GCC have different builtins. Intrinsics are usually implemented in very efficient
ways, often directly mapping to CPU instructions, so they can be very powerful
optimizations.

Some of the useful builtin functions for integer bitwise arithmetic are listed below.
Most of these functions are for “int” or “unsigned int” (32-bit), but have
other versions for long 64-bit or unsigned long 128-bit types. There isn’t
usually a version for “short” 16-bit integers.

Count Leading Zeros (CLZ): Various functions count the leading zeros, or
similatly, the offset of the first set bit. This is scanning the bits from left-to-right
and finding the most significant bit. One application of the CLZ intrinsic is a fast
way to compute a truncated log2 of an integer, or similarly, computing the highest
power-of-two in a number.

e VPLZCNTDor mm512 lzcnt epi32 (AVX-512): SIMD leading zeros
for 32-bit lanes.

e VPLZCNTQor mm512 lzcnt epi6d (AVX-512): SIMD count leading
zeros for 64-bit lanes.

e BitScanReverse (Microsoft intrinsic <intrin.h>): Finds the most-
significant bit in a 32-bit integer. There’s also _BitScanReverse64.

e clz: Count leading zeros (various versions); also sometimes called “nlz”
for “number leading zeros”.

e  lzcnt: Leading zeros count in Microsoft Windows intrinsics,
use <intrin.h> for Microsoft Visual Studio C++.
e  builtin clz (count leading zeros): GCC function to count the

number of leading prefix zeros in an unsigned integer.
e CountLeadingZeros: Microsoft <intrin.h> ARM intrinsics.

For all you silicon addicts, here’s the CPU instructions are underpin these intrinsics:

e BSR: Bit Scan Reverse x86 assembler instruction.
e LZCNT: x806 instruction for leading-zero count, similar to BSR.
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Count Trailing Zeros (CTZ): Contrasting to the leading zero functions, these
functions find the zeros on the right-hand-side of an integer. This is the least-
significant bit.

_BitScanForward (Microsoft intrinsic <intrin.h>): Finds the least-
significant bit set. Long int version is BitScanForward64.
__builtin ctz (count trailing zeros): GCC function counts zero bits
on the right (least-significant bits).

ffs/f£fsl: Find first set (least-significant bit).

__builtin ffs (find first set): GCC function: find first set bit from the
least significant bits (from the right bits).

_tzent_u32or tzent u64: MSVC versions of trailing zeros.
VPTZCNTD or mm512 tzecnt epi32 (AVX-512): SIMD trailing zeros
in 32-bit integers.

VPTZCNTQ or mm512 tzcnt epi64d (AVX-512): SIMD 64-bit
version.

The related x86 CPU hardware instructions ate:

BSF: Bit Scan Forward x86 assembler instruction.
TZCNT: x806 instruction for trailing-zero count, similar to BSF.

If you’d rather code it yourself, there’s Brian Kernighan’s bit trick for LSB: bitwise-
and of n and n-1 (ie, in C++ n& (n-1) finds the lowest set bit). But using the
intrinsics should be faster.

Popcount (Set Bits Count): The count of 1s in a number is known as the
“popcount” (which is short for population count) and there are various intrinsics:

__builtin popcount: (GCC) count the 1s in an unsigned integer.
BitOperations.PopCount: Microsoft intrinsic for bitwise popcount.
__popent: AMD x86 popcount intrinsic using POPCNT x86 instruction
(Microsoft platform)

~mm512 popcnt epi64 (): AVX-512 SIMD intrinsic for popcount.
_mm_popcnt u32: Intel x86 popcount intrinsic using POPCNT x86
instruction (Microsoft platform); use <intrin.h> on MSVS C++.
__builtin parity: GCC function tracking bitwise binary parity
(whether the number of 1s is odd or even).

The x86 CPU hardware instruction is POPCNT, which computes the popcount
faster than a hummingbird’s wings.
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Example: Integer Popcount

The “popcount” is short for “population count” of a binary number, and is the
number of binary 1s in an integer number. This has applications such as quickly
counting the number of elements in a bit set or bit vector.

Bitwise arithmetic can be used to check for a '1' value in each bit of an integer.
Usually an unsigned type is used (as below), but bit twiddling of signed integers is
also possible. This is the slow version in C++ that simply loops through each bit,
checking if it is set:

int aussie popcount basic(unsigned int x)
{

// Count number of 1s

const int bitcount = 8 * sizeof (x);
int ct = 0;
for (int 1 = 0; 1 < bitcount; i++) {

if (AUSSIE ONE BIT SET(x, 1lu << i)) ct++;
}

return ct;

Kernighan Popcount Algorithm: A faster version is to use a bit trick found by
Brian Kernighan, author of The C Programming Langnage. For all values of n, the
previous number n-1 has one less bit set. So, if you do bitwise-AND of n and n-
1, it removes the rightmost bit that is 1 (i.e., least significant bit). Hence, you can
use this to optimize popcount by only looping as many times as there are 1s in the
number (rather than always doing 32 iterations). Here’s the new C++ code:

int aussie popcount kernighan algorithm(unsigned int x)
{
// Count number of 1ls with Kernighan bit trick
int ct = 0;

while (x !'= 0) {
X =XxXx & (x — 1); // Remove rightmost 1 bit
ct++;

}

return ct;

Intrinsic Popcount Functions: The Kernighan method is faster, but far from
optimal. To do it super-fast, we have to look at existing builtin function primitives.
For example, Microsoft intrinsics include “  popcnt” or “ mm popcnt u32”
(in header file <intrin.h>).

David Spuler 146



The GCC library has a “  builtin popcount” function, which count the
number of 1s in an unsigned integer. On x86 CPUs, the underlying intrinsics should
be using the x86 assembler instruction named POPCNT. Here is some example C++
code that works for Microsoft Visual Studio:

int aussie popcount intrinsics2 (unsigned int x)

{

return _ popcnt(x); // Microsoft intrinsics

}

Obviously, a faster version is to declare this one-line function as “inline” in a
header file, or to convert to a C++ preprocessor macro, such as:

#define AUSSIE POPCOUNT (x) (__popcnt ((unsigned) (x)))

Example: Bitwise Log2 on Integers

Calculating the base-two logarithm of integers can be quite useful. There are various
algorithms that use logarithms in AL

Let’s calculate the integer logarithm of an integer. This means we aren’t doing the
proper fractional logarithm of a number, but we are truncating it down to the
nearest integer. For example, 1og2 (7) will be truncated to 2, rather than 2.807.
Note that we’re assuming the input is unsigned numbers, since logarithms with
negatives are undefined. Also, we have to decide how to handle zero,
because 10g2 (0) is undefined (or negative infinity if you prefer).

A simple way to implement a truncated integer 1og2 function is to use floating-
point functions and type casts back to int:

int aussie log2 integer slow(unsigned int u)

{
// Slow float-to-int version
return (int)log2f (u);

This works, but it’s inefficient to use floating-point arithmetic on integers. Surely
there’s a faster way?

After some thoughts about binary bits, we notice that 1og2 of an integer is just the
index position of the highest bit in a number. The 10g2 of 1 is 0, because the '1'is
in position 0. The 10g2 of 2 (binary 10) is 1 because the leftmost 1 is in position
1. The 1og2 of 4 (binary 100) is 2, where the 1 is in index 2.
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The number 7 is binary 111, so 1og2 is the position of the leftmost 1, which is
position 2. So, 1og2 (7) is the same as 10g2 (4), but 1og2 (8) is 3.

There are numerous builtin bitwise functions that can find the leftmost set bit. With
sudden insight, we note that we can use “CLZ” (count leading zeros) to compute
how many prefix zeros there are before the leftmost 1 bit (i.e., counts the zeros up
to the most-significant bit from the left). We can then compute the bit index
position from the right in a 32-bit integer as “32-CL2z”. It’s on the right track, and
a bit of testing shows that the formula to use is “32-CLz-1".

Here’s some example code that uses this CLZ method to compute 1og2 of an
integer. This works on Microsoft Visual Studio using the <intrin.h> header file
to declare intrinsics.

int aussie log2 integer clz intrinsic(unsigned int u)
{
// LOG2 using CLZ
int clz = _ lzcnt(u); // Count leading zeros
const int bits = 8 * sizeof (u);
return bits - clz - 1;

And here’s the macro version for those who don’t trust compilers to inline propetly:

#define AUSSIE_LOGZ_LZCNT(u) \
((8 * sizeof (unsigned)) - (_ lzcnt((unsigned) (u))) - 1)

And this is actually not optimal. We really should help the C++ optimizer by
reordering this to move the “~1” subtraction operation next to the other constant,
noting that “sizeof” is a compile-time constant expression in C++. Putting them
together would make sure that the compiler correctly merges these operations using
constant folding. On x86 implementations, the CLZ builtin functions are
presumably using the x86 LZCNT or BSR assembler instructions, which are both
similar and fast.

Bug alert! Note that you can’t use “££s” (find first set bit) for this Log2 method,
because it gives you the offset of the least-significant set bit (i.e., the rightmost bit
rather than the leftmost bit). The other x86 instructions of TZCNT (Trailing Zeros
Count) and BSF (Bit Scan Forward) are also incotrect.
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Example: Highest Integer Power-of-Two

Another simple trick related to the 10g2 calculation is to truncate a number to its
largest power-of-2. This is equivalent to the value of its leftmost bit in binary
representation.

For example, 8 (binary 1000) stays as 8, because it’s 2”3, but 7 (binary 111)
reduces down to 4 (binary 100), which is272. As with the truncated
integer 10g2 calculation, this method focuses on computing the leftmost 1 bit,
which is known as the Most-Significant Bit (MSB).

Whereas the 1og2 calculation found the index position of that MSB, this power-
of-two calculation requires the value of the MSB. In other words, we need to find
the bit that is the MSB, and then keep only that bit. A simple way to do this is to
compute the 1og2 of the integer efficiently, and then left-shift a 1 by that many
places (using unsigned type). The basic idea is:

int bitoffset = log2 integer fast(i);
int highestpowerof2 = 1lu << bitoffset;

Note that this doesn’t handle cases like zero, so it still needs a bit of extra code
polishing work.

Integer Overflow and Underflow

Integer arithmetic overflow and underflow have traditionally been ignored in C++
programs, mostly by assuming that operations won’t exceed the range of 32-bit
integers. Most platforms don’t fail on integer overflow, and quietly continue,
without even triggering a signal like SIGFPE (floating-point error).

The absence of runtime warnings can potentially leave insidious bugs in your code,
and is also an undefended attack vector for security. Also, perhaps ignoring
overflow isn’t the best strategy.

Integers have a fixed range of numbers that they can represent. For example, a
signed 16-bit integer represents the relatively small range of -32, 768 to +32, 767,
and an unsigned 16-bit number can be from 0 to 65, 535. A 32-bit signed integer
has a much bigger range from about negative 2 billion (-2,147,483,648) to
about positive 2 billion (+2,147,483,647). For an unsigned 32-bit integer,
there’s no negatives, and the range is from zero up to about 4 billion
(+4,294,967,295).
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Feel free to memorize those numbers, as you’ll be needing them at least once a
decade. The ranges for 64-bit integers are massive numbers around 2”64, which is
approximately decimal 10°19.

If integer arithmetic on a data type falls outside the range supported by that integer
type, then an overflow or underflow occurs. There are symbolic constants for the
minimum and maximum numbers for many types declared in
the <limits.h> standard header file.

e int — INT MAXand INT MIN
e unsigned int — UINT MAXand UINT MIN

The effect of integer overflow or underflow is platform-specific, but on most
platforms, it is usually: #othing! 1t’s a silent insidious bug in many cases. For a signed
integer, overflow quietly wraps around from positive to negative, and underflow
does the reverse.

Here’s an example of overflow of an int type:

int x = INT MAX;
assert(x >= 0);
++x; // Overflow!
assert(x < 0);

And this is underflow of int:

int x = INT_MIN;
assert(x < 0);

--x; // Underflow!
assert(x > 0);

Floating-point types can represent much larger magnitude numbers than integers.
Hence, another way for an integer to overflow is in a conversion from floating-
point numbers.

float f = (float)INT MAX * (float)INT MAX; // Fine!
int x = (float)f; // Overflow!

For an unsigned integer, the results are a little different, since negatives are not
possible. Instead, overflow wraps around from a large number to zero, and
underflow (going below zero) wraps around to the largest unsigned number.
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Preventing Integer Arithmetic Overflow. There’s not really a good way to detect
arithmetic overflow or underflow before it happens. Post-testing is easier.

For example, GCC and Clang have some intrinsics, such as
“ builtin add overflow” for addition, which use post-testing of the x86
CPU overflow or carry flags for detecting integer overflow, and return a Boolean
flag which you can use. The GCC documentation say it uses “conditional jump on
overflow after addition” and “conditional jump on carry” for unsigned overflow.
Here’s an example:

if (__builtin add overflow(x, y, &z)) {
/ Overflow!

The mainstream prevention strategy is simply to choose a big integer type (at least
32-bit) and then hope that no outliers occur in your input data. Most programmers
let the overflow occur and then check. Or rather, just between you and me, most
programmers simply don’t even check at all!

Technically, integer overflow is “undefined behavior” on C++, and it’s certainly
non-portable, so you really should check. But most platforms handle it the same
way, by quietly wrapping the integers around in two’s complement form.

Increment overflow. For incrementing integers, you can do a pre-test like:

if (INT MAX == x) {
// Overflow!
}

else {
x++; // Safe increment

}

Addition overflow. And here’s a version to pre-test addition of two positive
integers for overflow:

if (x > INT MAX -y ) { // x + y > INT MAX
// Overflow!

}

else {
x += vy; // Add safely

}
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Multiplication overflow. The test for multiplication overflow is even worse
because it uses division:

if (x > INT MAX / y ) { // x * y > INT_MAX
// Overflow!

}

else {
x *=vy; // Multiply safely

}

Head in the sand approach. Unfortunately, pre-testing for overflow is massively
inefficient, as shown above. Do you really want to do this for every addition or
increment? Even post-testing for overflow isn’t much better. Overall, there’s good
reason why most C++ programmers just skip it, and hope for the best.

Overflow management. The alternative to ignoring the problem is to consider
various different risk mitigation strategies for integer overflow:

e Larger data types (e.g., Long) for a larger range.

e Use floating-point types instead.

e Use unsigned type for non-negative variables (e.g., sizes, counts).

e Use size_ t for the unsigned variable type (it’s standardized).

e Enable compiler runtime checks (when debugging/testing)

e Range checking input numbers (e.g., model weights).

e DPost-testing the sign of arithmetic results.

e GCC and Clang intrinsic functions with overflow testing,

e The <stdckdint.h> header file in C23 (that’s the C standard, not
C++23).

e Safe integer class wrappers.

Runtime overflow detection. Some C++ compilers provide limited support for
runtime error checking of arithmetic. The x86 CPU has builtin overflow detection,
with a quietly-set overflow flag and a carry flag, which some C++ compiler-writers
have made use of.

GCC has an “~ftrapv” option which elevates overflow errors (presumably by
using post-checking). GCC has defined a number of C++ intrinsic functions which
you can use to perform overflow-safe integer arithmetic, such as:

e  Dbuiltin add overflow — addition
e  builtin mul overflow — multiplication
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Microsoft Visual Studio C++ provides the “/RTC” option, which stands for “Run-
Time Checks”, or there’s “Basic Runtime Checks” in the MSVS IDE Project
Settings. However, these MSVS features don’t check much for arithmetic overflow,
with a focus on stack frame checking and uninitialized variables. The closest is
“/RTCc” to detect data type truncations at runtime.

There’s also a runtime debugging tool that focuses on integer overflow and other
oddities. It’s named “Undefined Behavior Sanitizer” or UBSAN for short. It works
like Valgrind, by adding runtime instrumentation code.

Safe integer classes. Currently there’s no standard safe integer types in C++, but
adding them was unsuccessfully proposed in 2016. If you like a busy CPU, and what
programmer doesn’t, you can replace all int variables with “safe integer” class
objects, with many examples of such classes available on the Internet. They’re
probably not as bad as I've implied, since C++ inlining should make the critical
path quite short.

Missing Bitwise Operators: NAND, NOR,
XNOR

Note that there’s no simple operator for NOR, NAND or XNOR in standard C++.
However, as discussed earlier, there is an AVX SIMD version for NAND with the
“andnot” instructions.

You might need these extra operators, since neural networks uses these uncommon
bitwise operations more than normal C++ coding. For example, XNOR is needed
as the vector dot product operator for binarized bit vectors, such as in binary
quantization and also XNOR neural networks.

These missing operators can be easily simulated using two C++ bitwise operations,
with a binary bitwise operation and the “~” bitwise two’s complement unary
operator afterwards.

NAND (x,y) = ~(X & y)
NOR (x,y) = ~(x | y)
XNOR(x,y) = ~(x " y)

So, you can just code this as fast C++ macros, right?

#define NAND(x,y) ~(x & y) // Bug alert!
#define NOR(x,y) ~(x | V)
#define XNOR(x,y) ~(x ~ vy)
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No, this is broken in about half a dozen ways.

To write macros correctly, you need to ensure there’s parentheses around the whole
expression, and also around each parameter name, to avoid getting bitten by C++
macro expansion operator precedence problems. And these macros also don’t work
correctly if you pass in a non-unsigned integer.

Here’s some example C++ macros that work for 32-bits:

#define AUSSIE BITWISE NAND (x,y)
(~(((unsigned) (x)) & ((unsigned

\
) (

#define AUSSIE BITWISE NOR(x,y) \
)
\
)

))))

(~(((unsigned) (x)) | ((unsigned
#define AUSSIE BITWISE XNOR (x,y)

A

y
(v))))
(~(((unsigned) (x)) ((unsigned) (y))))

You could also declare these macros as “inline” functions if you prefer. Note
that these macros have a lot of parentheses to avoid various insidious precedence
errors, and they also are limited to 32-bit operations. For 64-bit, you’d need to create

alternative “unsigned long” versions.

These NAND/NOR/XNOR macros are convenient, but not very efficient since
they perform two arithmetic operations. Single-operation versions are available in
assembler if you really need them, accessible via C++ builtin intrinsic functions
such as:

e  kxnor — x80 intrinsic for XINOR bitwise operation.

e KXNORW/KXNORB/KXNORQ/KXNORD — x86 assembler bitwise XNOR
operations.

e VPTESTNMB/VPTESTNMW/VPTESTNMD/VPTESTNMQ — x86 assembler
bitwise NAND operations.

Note for the sake of completeness that there are more weird bitwise operators that
do different things on a pair of bits. There are four input combinations and
therefore 16 possible binary operator functions. There are three C++ bitwise
operators (AND/OR/XOR), plus the three extra ones coded above
(NAND/NOR/XNOR), two trivial always-zero and always-one operations, two
copy-operand functions, and six other ones that are equivalent to variations with
negated operands (e.g., “x&~y” is one).

I’m not sure why you needed to know that.
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Bitwise AI Applications

Bitwise operations are a well-known coding trick that has been applied to neural
network optimization. Bitwise-shifts can be equivalent to multiplication and
division, but faster. Other bitwise operators can also be used in various ways in
inference algorithms. Some common uses of bitwise operators in Al include:

e Arithmetic computation speedups: Bit tricks are used in optimizations
of multiplication operations with bitshifts, and also faster approximate
arithmetic methods.

e Sign bit manipulation: Various optimizations are possible by direct
bitwise operations on the sign bit of integers or floating-point numbers.
For example, the RELU activation function tests for negatives, which are
changed to zero, but positive values are unchanged. This can be
implemented efficiently as a sign bit test.

e floating-point bit operations: The bits of the numeric representations in
IEEE 754 floating-point numbers, or the Google bfloat16 type, include
a sign bit, an exponent, and a mantissa. Normal bitwise arithmetic
operators cannot be applied to floating-point numbers, because the C++
bitwise and bitshift operators only work on integer types. However,
floating-point numbers are really just integers underneath, so there are
various tricky ways that bitwise operators can be used on the underlying
IEEE standard bit representations that are used by floating-point numbers.
This is discussed in the next chapter on floating-point optimizations.

e Look-up Tables: Algorithms that use table lookups for speed
improvement typically involve bitwise shifts in computing the table offset.

e Data structures: Some data structures used in optimization of neural
networks that involve bits include hashing and Bloom filters.

Bits of AI Research: Some of the advanced areas where bitwise optimizations
have been used in neural network research include:

e Power-of-two quantization (bitshift quantization): quantize weights
to the nearest power-of-two, bitwise shifts can replace multiplication.

e Bitserial Operations: Bitserial operations are bitwise operations on all the
bits of an integer or bit vector. For example, the “popcount” operation
counts how many 1s are set in the bits of an unsigned integer. The bitserial
operations can be useful in neural network inference for computing the
vector dot products in binary quantization or 2-bit quantization.

¢ Advanced number system division: See dyadic numbers and dyadic
quantization for an obscure number system involving power-of-two
division, which can be implemented as bitwise right-shifting.
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Low-bit integer quantization: When quantized to only a few bits,
inference can use bitwise arithmetic and bitserial operations to replace
multiply-accumulate. The main examples are binary quantization and
ternary quantization, both of which avoid multiplications in favor of
bitwise operations (or addition) and sign bit handling.

Shift-add networks: Multiply-and-add (or “multiply-accumulate™) can be
replaced with bitshift-and-add.

Bit arithmetic neural networks. These are neural networks where the
neurons operate as bitwise operations. See Weightless Neural Networks.
XNOR Networks: XNOR neural networks are similar to binarized
networks. Their internal operations rely on the bitwise XNOR operation.
The idea is that XNOR is actually an implementation of the multiplication
operation on binary values. There’s no builtin C++ operator for binary
XNOR. However, there is always hardware XNOR support, such as a 64-
bit XNOR instruction in the x86 CPU instruction set.

References on Bitwise Operations

If I’'ve whetted your appetite for bit fiddling magic, there’s plenty more:

1.

2.

Sean Eron Anderson (2005), Bit Twiddling Hacks, Stanford

University, https://graphics.stanford.edu/~seander/bithacks.html

Ian Brayoni (2020), https://github.com/ianbravoni/bithacks (Python
code inspired by Sean Eron Anderson’s Bit Twiddling Hacks.)

Henry S Warren (2012), Hacker’s Delight, 2nd Edition, Addison-Wesley
Professional, https://www.amazon.com/Hackers-Delight-2nd-Henry-
Warren/dp/0321842685 Code: https://github.com/hcs0/Hackers-
Delight

Antonio Gulli (2014), .4 Collection of Bit Programming Interview Questions solved
in C++ Kindle Edition, https:/ /www.amazon.com.au/Collection-
Programming-Interview-Questions-solved-ebook/dp/BOOKIIDPUG
Jorg Arndt (2010), Matters Computational: 1deas, Algorithms, Source

Code, https://dl.acm.org/doi/10.5555/1941953, https://www.jjji.de/fxt/f
xtpage.html#fxtbook,

Code: https://www.jjj.de/bitwizardry/bitwizardrypage.html
Sigrid/Jasper Neuman (2023), Programming

pages, http://programming.sirrida.de/

Harold (2023), Bits, Math and Performance, Sep

2023, http://bitmath.blogspot.com

Stephan Brumme (2023), The bit twiddler, https:/ /bits.stephan-
brumme.com/

Gurmeet Manku (2008), Fast Bit Counting, 5 Aug

2008, https://gurmeet.net/puzzles/fast-bit-counting-routines
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14. Floating-Point
Computations

What are Floating-Point Numbers?

Floating-point numbers are typically stored in 32 bits for single-precision C++
“float” types, and it’s actually a 32-bit integer behind the scenes. The main
floating-point types that you already know from C++ programming are:

e Single-precision floating-point — 32-bit float (FP32)
e Double-precision floating-point — 64-bit double (FP64)

The smaller 16-bit floating-point numbers that are never used in everyday C++
coding, but are important for Al include:

e Half-precision IEEE type — 16-bit “short float” (FP10)
e Half-precision Bfloat16 type — 16-bit “Brain float” (BF16)

If only there was really a “short float” typein C++. The BF16 type is the non-
IEEE 16-bit float version from Google Brain. Note that there is new standardized
support for these 16-bit types in C++23.

Which type of floating-point number should you use? That’s when things get tricky,
because there are many wrinkles in the choice between 32-bit and 16-bit floating-
point. It’s not always clear which floating-point size is the best to use. FP32 is the
most common size used in basic Transformer inference, but FP16 is a good choice
for quantization of models, because they are compressed to half the size and retain
good accuracy. And BF16 has been very effective in terms of GPU-accelerated
algorithms.

Some hardware accelerators support different formats and sizes for their parallel
operations. And there are various software problems with portably coding 16-bit
floating-point data types in C++, along with variable hardware support for 16-bit
operations across platforms.
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Less importantly, there are also some other floating-point sizes, both bigger and
smaller:

e Quarter-precision type — 8-bit floating-point (FP8)
e Quadruple-precision type — 128-bit “quad” floating-point (FP128)

FP8 is mainly seen in research papers, and hasn’t really caught on for quantization
(8-bit integers are typically used instead). The bigger sizes FP64 and FP128 aren’t
really needed to make your model work accurately, so their significant extra cost in
speed and size isn’t worthwhile for only a small perplexity gain in most use cases.

Bit Representations of Floating-Point
Numbers

Standardized bit patterns are used to represent floating-point numbers in a kind of
scientific notation. There are three types of bits:

e Sign bit
e Exponent bits
e  Mantissa bits

Firstly, there’s one bit for the sign, indicating whether the whole number is positive
or negative. Then the remaining bits are split up between the “exponent” (i.e., the
“power”), and the “mantissa” (also called the “digits” or the “significand” or the
“fraction”). In a standard 32-bit “f1loat” type used in Al, there is:

e 1 sign bit
e 8 exponent bits
e 23 mantissa bits

How does that even make a number? Well, it’s like scientific notation, if you are
familiar with that. The exponent is the power and the mantissa is the digits.

Let’s pretend computers use decimal digits. If it were in base 10 storage, the decimal
number 1234 would be stored as:

e “0” for the sign bit — because non-negative.
e “3”in the exponent — the power is 1073=1000.
e  “1234” as the mantissa — the digits make the fraction “1.234”.
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This would represent +1.234x10°3 (which hopefully equals 1234). That’s how
it would work for a decimal version.

But, as you know, silicon beasts are not decimal. A floating-point number is actually
stored in binary, in a kind of base-two “binary scientific notation” numbering
scheme. So, conceptually, 1234 would be stored as a power-of-two exponent that
represents the largest power-of-two, which would be 1024, because 2°10=1024,
so the exponent has to store power “10” (ten), which is 1010 in binary. And
the 1234 would be converted to whatever the heck 1234/1024 is when you
represent that in binary 0’s and 1's, and remove the decimal point (which is
implicitly “floating,” you see?).

It’s more complicated than this, of course. That’s what standards are for! The
exponent bits are actually stored with an “offset” number (also called a “bias”),
which differs by the size of the exponent bits. And there also some special bit
patterns for particular numbers, such as zero or “NaN” (not-a-number).

Clear as mud? Don’t you wish someone could go back in time and invent a base-
10 computer?

Standardized Bit Representations

There’s nothing magical about the choices of how many exponent versus mantissa

bits. In the eatly days, there were many variations, but then they were mostly
standardized by the IEEE 754 standard.

32-bit Floating-Point Numbers: The most common type of floating-point is 32-
bits, such as the C++ “f£loat” type. Other than the sign bit, there are usually 31
bits to split between the two other types, and the standard method is:

e Standard FP32 (IEEE754). Usually a “float” in C++, or “single
precision” number. Standard 32-bit floating-point is represented in binary
as: 1 sign bit, 8 exponent bits, and 23 mantissa bits (plus an implied prefix
'1" mantissa bit that isn’t actually stored, so it’s really 24 bits of mantissa
values). The exponent is stored with offset 127.

16-bit floating-point Numbers: With the “half” float types, there are 16 bits.
There are a few common representations of floating-point numbers in different
numbers of bits.
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The main ones are:

e Half-precision (FP16). This is the standard 16-bit floating-point number,
also sometimes called “float16”. Annoyingly, there no standard “short
float” or other widely used predefined type in C++, although the C++23
standard adds one, so this may be changing soon. The most common
IEEE754-standardized version of FP16 type uses 1 sign bit, 5 exponent
bits, and 10 stored mantissa bits (plus implicit mantissa bit makes 11 bits).
The exponent is stored with offset 15.

e Bfloatlé6 (brain float 16 or BF16): This is a different 16-bit floating-point
numeric format, originally proposed by the Google Brain division,
specifically for use in Al applications. Bfloat1l6 has 1 sign bit, 8
exponent bits and offset 127 (like FP32), and 8 mantissa bits (7 stored, 1
implicit). It is like FP32 but with the two lowermost bytes just thrown away,
so conversion between bfloatl6 and FP32 is simpler than converting
from FP32 to FP16.

8-bit Floating-Point (FP8). The use of FP8 mainly appears in quantization
research papers, but its usage is increasing within industry. There is usually 1 sign
bit, 4 exponent bits, and 3 mantissa bits (which makes 4 bits with an implied extra
mantissa bit). The other type of FP8 is 1 sign bit, 5 exponent bits, and 2 stored
mantissa bits (3 bits total). Interestingly, the NVIDIA H100 GPU supports both of
these FP8 formats.

FP16 Problems in C++

I already mentioned how there’s not a standard half-precision type in C++,
although that is fixable in the future, once compilers have implemented the C++23
standard. Here are some of the attempts at a 16-bit type:

e  fpl6 — only supported by ARM architecture.

e  Floatl6 — not portably supported.

e short float — doesn’t seem to exist (I'm just wishful-thinking).
e std::floatl6 t — defined in the C++23 standard.

e std::bfloatl6 t — defined in the C++23 standard.

So, as of writing, if you want to code a 16-bit float in a portable way with C++,
there’s an ugly hack: short int.

A less fixable obstacle is that converting between FP32 and FP16 is not easy
because their exponent bit sizes are different. So, it’s fiddly to code, and not very
efficient.
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The alternative idea is to use “bfloat16” (BF16), which is the upper-most two

bytes of FP32. Converting is just a bitshift 16 places or playing with bytes, so it’s
faster than FP16.

However, BF16 isn’t high precision. With 8 mantissa bits (7 stored, 1 implicit), that’s
only about 3 decimal digits, because 8/3.3=3,and 3.3 is 10og2 (10), in case you
were wondering. But it’s not much worse than FP16, which is only about 4 decimal
digits using 11 binary mantissa bits.

Representing Zero

The sign bit, exponent, and mantissa can represent a lot of numbers, but not zero.
We cannot just set all the mantissa bits to zero, because that’s not zero, which is
rather strange.

There’s an implicit extra “1” bit so all the mantissa bits clear isn’t 0.0000,
it’s1.0000. It always starts with a “1” and there’s literally no way to
represent 0.0000.

Also, the exponent can represent —127 to +128, but setting the exponent to 0 also
isn’t zero, because 270 is 1. And 27-127 is very small and does get us very close
to zero, but it’s also not zero. With sudden horrifying insight, we realize:

There’s no way to represent zero!

The solution is that the IEEE 754 standard designers decided to treat all bits zero
as being really zero. All bits zero in the exponent is 0, but then subtracting
the 127 offset, means that it is =127 (the smallest number). So, if we clear all the
exponent and mantissa bits to zeros, the number should be 1.0x2"-127, but we
can all pretend it’s actually zero. Then we can do some pretend coding, ahem, I
mean microcoding, so that all our Floating-Point Units (FPUs) pretend it’s zero, too.

Negative zero. Weirdly, there are two zeros: normal zero and negative zero. The
IEEE 754 standard allows two different bit patterns to mean zero, depending on
the sign bit. If we clear all the exponent and mantissa to zero, then the sign bit zero
means zero, but the sign bit set to “1” means “negative zero”.

I'm not really sure what negative zero even means! But sometimes when you work
with floats, a 0. 000 number will get printed with a “~” in front of it. Maybe it’s
negative zero, or maybe it’s a tiny negative number with hidden digits at the 15th
decimal place.
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Fortunately, most of the arithmetic operations treat negative zero the same as zero.
The C++ compiler handles it automatically. Adding negative zero does nothing,
and multiplying by negative zero is also zero. But one of the gotcha’s if you’re being
tricky with the bits of a 32-bit floating-point number, by pretending it’s a 32-bit
integer: testing for zero isn’t one integer comparison, it’s twol

Representing Special Numbers

We’ve already discussed how zero is handled specially, and has a wonderful
dichotomy. The full list of special floating-point numbers is:

e Zero

e  Negative zero

e +Inf (positive infinity)

e -Inf (negative infinity)

e NaN (Not a Number)

¢ Denormalized numbers (subnormal numbers)

Whereas zero is represented by the exponent being all Os, the special
numbers Inf and NaN are represented by the exponent with all 1s. So, this means
that the huge number 2°+128 is not actually represented, but reserved for these
special values. And honestly, that’s fine, because if 2°+128 isn’t infinity, then I
don’t know what it is.

Infinity: Inf is represented by all 1s in the exponent, but all Os in the mantissa.
And if the sign bit is 1, then it’s ~Inf (negative infinity).

Not-a-Number: NaN also has all 1s for the exponent, but any other pattern of the
mantissa bits means NaN. This means that there are many versions of NaN, for all
variations of the mantissa bits, except when all mantissa bits are 0 (which
means Inf). Also, if the sign bit is set, then the same patterns are also NaN (a kind
of “negative NaN”, but that distinction is rarely used).

Denormalized numbers: Apparently, the designers of the floating-point
standards think there’s a “huge” difference between 2°-127 and zero. So, they
decided to “smooth” it out a little by using some special numbers called
“denormalized numbers” (also called “subnormal numbers™).

The standard does this by getting rid of the “implicit” mantissa bit. For one special
exponent value, all Os, the standard changes the meaning to consider the implicit
hidden mantissa bit to be a leading 0, rather than a leading 1.
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Hence, the mantissa can represent fractions less than 1.0, such as 0.1101 rather
than only 1.1101 (in binary). The special exponent with all Os therefore never
represents —127, but represents the special value zero (or negative zero) if all the
mantissa bits are 0Os, or a tiny denormalized number if any of the mantissa bits are
set. And even though the exponent with all Os should represent -127, we pretend
that it is -126, one less, for the denormalized numbers, for “smoothness” reasons
that I leave as an exercise to the reader, mainly because I don’t understand it. Note
that denormalized numbers can also be tiny negatives if the sign bit is set.

Denormalized numbers are all very, very tiny, being less than 2°-126, so this
feature of floating-point standardization is more useful for high-precision scientific
calculations at NASA or SpaceX, rather than for most applications. In fact, here’s
the news about denormalized numbers in most coding:

We don’t use denormalized numbers.

In fact, we hate them, because they make our FPU run slow. So, really, the slowness
of our floating-point code is the fault of the FPU hardware engineers, as we’ve long
suspected. Fortunately, there’s a way to turn denormalized numbers off and run
faster, which is discussed below.

To summarize and/ ot to further confuse things, the exponent has two special cases:
all Os and all 1s. If the exponent bits are all Os, the number is either zero (or negative
zero) or a denormalized number (a tiny positive or negative). If the exponent bits
are all 1s, then the number is Inf or NaN (or negative Inf/NaN).

Testing for Special Values: The C++ standard has a number of fast routines to
test a floating-point number. Some of the useful ones in <cmath> include:

e std::isinf ()
e std::isnan()
e std::isnormal ()
e std::isfinite()

For more general analysis of floats, std: : fpclassify () in <cmath> returns a
code that matches special enum values:

FP _INFINITE, FP_NAN, FP NORMAL, FP_ SUBNORMAL, FP_ ZERO

Unfortunately, it’s hard to distinguish positive and negative infinity, or to detect
negative zero using these functions.
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You’ll need to add a call to the “std::signbit” function (since C++11
for float arguments or C++23 for double), which returns true if a floating-
point number has the sign bit on. There also a “std: :copysign” function to
copy the sign from one float to another, which can be used for sign bit
manipulations. Alternatively, define your own bitwise macro tricks for these
inspections.

Underflow and Overflow

Underflow is when a tiny floating-point number becomes so small that we can only
represent it as zero. This can be a very tiny positive or negative number. Note that
a negative number with a huge magnitude (near negative infinity) isn’t underflow;
that’s actually negative overflow. Underflow refers to tiny fractions.

Generally, underflow isn’t a problem for most code, because a number that low
isn’t going to affect the results. Similarly, I don’t think we need to worry much about
subnormal/denormalized tiny numbers either. If a probability is 27127 (or 2"~
126 for denormalized), well, it might as well be zero anyway.

If we’re using Bf loat16 for 16-bit processing, it still has 8 bit exponents, so the
lowest value is almost the same number (about 2~-127). If we’ve quantized the
network to FP16 (also 16-bit but with a 5-bit exponent), then the lowest probability
we can represent is 2~ =31, which is also a tiny probability.

Generally speaking, applications don’t tend to worry about underflow in floating-
point. If a floating-point calculation underflows, it should just go harmlessly to zero.
More concerning would be integer underflow, which is a different issue of large
negatives wrapping around to positives. Floating-point underflow is better behaved.

Overtlow is when a number gets so large that it cannot be represented in floating-
point. Note that there are two types of overflow: positive overflow and negative
overflow.

The exponent is the problem for overflow. When the number is larger than the
highest exponent power, then it’s either a very large positive or a very large-
magnitude negative number.

For an 8-bit exponent, that means 2°+127 (because +128 is reserved for the
special Inf/NaN numbers). For a 5-bit exponent in FP16, this means 2"+31,
which is, coincidentally, also a good salary to request at your performance review.
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Overflow can be a problem, but usually only in the low-bit processing code where
arithmetic computations can sometimes go too high. When overflow occurs, it
could become a special floating-point number (NaN or Inf), or an integer number
might toggle over to negative (e.g., if integer-only-arithmetic quantized).

FTZ and DAZ CPU Modes

In many CPUs, the need to handle overflow, underflow and denormalized values
is a cause of inefficiency. The CPU can do floating-point computations faster if it
can ignore those situations. This would be in violation of the IEEE 754 standard,
but sometimes you have to sacrifice greatness for speed.

There are two commonly used modifications to CPUs that speed up floating-point
arithmetic, by ignoring underflow and tiny numbers:

Flush-To-Zeto (FTZ). This mode means that when the results are
“subnormal” they are “flushed” to zero instead of calculating the correct
“denormalized” result. Since these denormalized numbers are tiny, this
isn’t a concern in most code.

Denormalized-Are-Zero (DAZ). This is similar to FTZ, but allows
treating inputs that are some type of denormalized floating-point as a zero
input.

Both these modes, FTZ and DAZ, are only relevant to very tiny numbers, well
below the resolution that most applications need to worry about, so you can totally
enable them, provided we can figure out how to do so. CPUs with support for the
FTZ and DAZ modes include x86 CPUs and ARM Cortex cores, and likely other
processors. Google TPU doesn’t support FIZ/DAZ because it operates
on bfloatlé6 floating-point numbers.

Enabling FTZ and DAZ. Finding details on how to enable FTZ and DAZ is quite
hard! For command-line options, it seems to be “-ftz” on Linux/Mac or
“/Qftz” on Windows. To control these modes dynamically in C++ code, you need
to modity the MXCSR x86-64 CPU control register at runtime to set (ot clear) the
bits corresponding to FT'Z and DAZ. Some of the primitives available to do so via
GCC intrinsics include:

e  builtin ia32 ldmxcsr
e  builtin ia32 stmxcsr
e mm getcsr
e mm setcsr
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In MSVS, there are preprocessor macros for FIZ in <xmmintrin.h> and for
DAZ in <pmmintrin.h> header files. These control the FTZ and DAZ bits in
the MXCSR, which is a CPU register with flags to control the CPU and the FPU.
The C++ snippet to enable these modes looks like:

#include <xmmintrin.h>
#include <pmmintrin.h>

void aussie float enable FTZ DAZ (bool ftz, bool daz)

{
if (ftz) { // FTZ mode
_MM_SET FLUSH_ZERO MODE ( MM _FLUSH_ZERO ON) ;

}

else {
MM SET FLUSH ZERO MODE ( MM FLUSH ZERO OFF);

}

if (daz) { // DAZ mode
MM _SET DENORMALS ZERO MODE ( MM DENORMALS ZERO ON) ;

}

else {
MM SET DENORMALS ZERO MODE ( MM DENORMALS ZERO OFF) ;

}

These intrinsics for FTZ and DAZ are dynamic C++ calls. You can also disable
these modes in C++, or switch back-and-forth between them dynamically. The

MXCSR values are per-thread, so these modes must be set at the start of every new
thread.

Negative Zero

Floating-point representations have two zeros: positive zero (the usual “0. 0£” one)
and negative zero (“~0.0£”). Note that there’s no negative zero in integers, but
only in floating-point types, because integers use two’s complement in C++.

Usually, you don’t have to worry about negative zero float values, because all of the
floating-point operations treat zero and negative zero as equal. Negative zero is not
less than positive zero, but is equal instead. For example, the “=="" and
operators should correctly handle both zeros as the same, and testing “£f==0.0£"
will succeed for zero and negative zero.

) _»

Normal C++ operations on float types will automatically handle negative zero
for you, such as “<” will treat the two zeros are equal, not less-than. This happens
at the cost of some inefficiency.
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Detecting Negative Zero. Testing for negative zero is not easy. Unfortunately,
you cannot use the std: : fpclassify function because it returns FP_ZERO for
both positive and negative zero. Here are some fast macros for 32-bit floats that
look at the bits by pretending it’s an unsigned 32-bit integet:

#define AUSSIE FLOAT TO UINT (f) (* (unsigned int¥*)&f)

#define AUSSIE FLOAT IS POSITIVE ZERO(f) \
(((AUSSIE FLOAT TO UINT(f) )) == 0) // All Os

#define AUSSIE FLOAT IS NEGATIVE ZERO(f) \
(((AUSSIE FLOAT TO UINT(f) )) == (lu<<31l)) // Sign bit

Note that these macros only work for £1oat variables, not constants, because the
address-of “&” operator gets a compilation error for floating-point constants
(e.g, 0.0f or -0.0f). Also, these only work for 32-bit float types, and
comparable macros are needed for 64-bit double or 128-bit long double types.

Pitfall: Bitwise tricks on negative zero. There are some pitfalls with negative
zero if you are trying to subvert the normal floating-point number representations
and do bitwise operations on them (as I just did abovel).

For example, if you’re doing bitwise tests on a £1loat, you may still need to test for
two values of zero, such as using one or both of the above zero testing macros.

For magnitude comparisons of f£loat types via their underlying bits, there’s also a
problem. Whereas positive zero is all-bits-zero and will equal integer zero or
unsigned integer zero, negative zero has the uppermost bit set (the sign bit), so it
will be a negative integer or a very large unsigned number. Hence, negative zero will
sort as less than positive zero if using signed integer tests, or will sort as massively
greater than many numbers if using unsigned integers for testing.

The problem with negative zero also means that doing any bitwise comparisons will
fail. You cannot just compare the underlying integers for equality against each other,
nor can you use byte-wise testing.

For example, using memcmp for equality testing a £loat vector will occasionally
fail for f1oat values where positive zero compares against negative zero, leading
to insidious bugs.

Optimization by Suppressing Negative Zero. Since negative zero introduces an
inefficiency into basic £1loat operations (e.g., == or ! = with 0. 0), can we block it
for a speedup? Are there any settings that fix the CPU or the compiler to ignore
negative zeror
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The FTZ and DAZ modes are mainly for subnormal numbers, not negative zero.
I'm not aware of any hardware CPU modes specifically for disallowing skipping
negative zeros, and I wonder whether they would actually be a de-optimization
anyway, by forcing the FPU to explicitly check for negative zeros. Apparently, FTZ
might help avoid negative zero in computations, but I’'m not sure it’s 100% of cases.
There is a GCC flag “~ffast-math” which disables the production of negative
zero in software.

Negative Zero. Can we speed up the floating-point computations of our code by
blocking all floating-point negative zeros? Then the FPU or GPU can assume
there’s only one type of zero, and run faster. We could either run in a negative-zero-
disabled mode, or use our own bitwise test for floating point zero as all-bits-zero
(i.e., using the unsigned integer trick).

What about zero values at runtime? Can we guarantee that it never contains a
negative zero, and thereby speed up analysis?

Getting to the Bits in C++

The basic 32-bit floating-point number in C++ is a float with a size of 4 bytes.
How can you manipulate the bits in a floating-point value, using the 32-
bit float type? You cannot use any of the C++ bitwise operators on floating-
point numbers, as they only work for integers.

The trick is to convert it to an unsigned integer (32-bit) with the same bits, and then
use the integer bitwise operations. The obvious way to convert
a float to unsigned is casting:

float £ = 3.14f;
unsigned int u = (unsigned)f; // Fail!

Nope. That doesn’t get to the bits, because it does a proper conversion between
floating-point numbers and integers, which is usually what you want when you

aren’t thinking about bits (i.e., all normal people).

To get to the bits in C++, we have to trick the compiler into thinking that it’s
already got an unsigned integer with pointer type casts:

unsigned int u = * (unsigned int*) (&f); // Tricky!
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That’s a bit old-school for type casting. Here’s using reinterpret cast:
unsigned int u = *reinterpret cast<unsigned int*>(&f);

Once we have the bits, then we can twiddle the bits of our unsigned integer to our
heart’s content. When we’re finished, we can do the same trick in reverse to re-
create a floating-point number:

f
£

* (float *) (&u); // Floating again...
*reinterpret cast<float*> (&u); // Trendy version

And here’s a timely reminder that it’s important to use an “unsigned” type in
C++ for the bit faking code, because the “>>” right-shift operator has undefined
behavior on negatives.

Other Methods: Type casts aren’t the only way in C++. There’s also a trick
involving “union” structures, and you can also directly copy the bits to a differently
typed variable using “memcpy” or “bcopy”.

It seems to me that this type cast trick should be the fastest way, because a good
compiler should convert the address-of, reinterpret cast and indirection
sequence into a simple variable copy, especially with the “reinterpret cast”
hint. However, I haven’t actually benchmarked the speed of the different methods.

Pitfalls and Portability

Bitwise manipulation of float data is not the most portable code in the world. Let’s
examine some of the possible pitfalls in using these techniques.

Bitwise zero testing: If you’ve gone to the trouble to access the bits of a floating-

gy g g
point number, you might as well use them. Obviously, testing for “0.0” is a
common requirement, so let’s make it faster:

#define FLOAT IS ZERO(f) \
((*reinterpret cast<unsigned int*>(&f)) == Ou) // Bug!

Oops! We forgot about negative zero. There are two zeros in floating-point,
depending on the sign bit, and it’s hard to test it efficiently with bitwise operations
(e.g., mask the sign bit or shift left first).

Strict anti-aliasing rule. An important point about all this is that most of it is
platform-dependent, and officially “undefined behavior”. Some of it is standardized
by IEEE 754, but many variations are possible.
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Another issue is that there’s a “strict anti-aliasing rule” that specifies that many of
these tricks are officially non-standard methods. Accessing a floating-point number
as if it’s an unsigned number is a technical violation of this rule. The
“reinterpret cast” method is probably less likely to run afoul of this
problem, but it’s still not guaranteed.

Anyway, the union trick and the use of memcpy don’t really strike me as being
particularly more portable, although memcpy might be less likely to be optimized
wrongly by a compiler making wrong assumptions. Some additional risk mitigations
are warranted, such as adding a lot of unit tests of even the most basic arithmetic
operations. However, you’re still not officially covered against an over-zealous
optimizer that might rely on there being no aliases allowed.

Byte sizes. Another much simpler portability issue is checking the byte sizes of
data types, which can vary across platforms. Most of this bit-fiddling stuff relies on
particular 16-bit and 32-bit layouts. It doesn’t hurt to add some self-tests to your
code so you don’t get bitten on a different platform, or even by a different set of
compiler options:

aussie assert(sizeof (int) == 4);

aussie assert (sizeof (short int) == 2);
aussie assert (sizeof (float) == 4);

aussie assert (sizeof (unsigned int) == 4);

Also note that for this to work well, both types must be the same size. So, this
would be a useful code portability check if it worked:

#if sizeof (float) != sizeof (unsigned int) // Fails!
#error Big blue bug
#endif

This macro preprocessor trick doesn’t work because sizeof isn’t allowed in a
preprocessor expression, because the preprocessing phase precedes the syntax
analysis. A better version uses a “static assert” statement, which does
compile-time checking in a more powerful way.

static assert(sizeof (float) == sizeof (unsigned), "Bug!");
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Floating-Point Builtin Functions

The alternative to directly accessing the bits as an unsigned integer is to use the
existing C++ functions. There are various existing functions for bitwise
manipulation of floating-point numbers, in two categories: standard C++ library
functions and compiler-specific intrinsics.

C++ has standard functions for the manipulation of floating-point numbers, and
their bitwise representations.

e std::signbit — Portably test the sign bit of a floating-point number.
e std::copysign— Portably copies the sign bit from one float,
merging it with the value of another (i.e., another’s exponent and mantissa).

There are also various compiler-specific “intrinsics” or “builtins” to manipulate
floating-point numbers. For Microsoft Visual Studio C++, these are
in <intrin.h> and there are also versions for GCC and other compilers.

e frexp — Get the mantissa and exponent.

e ldexp — Bitshifting by an integer shift-count.

e scalbn — Also integer bitshift on a float.

e logb — Extracts the exponent.

e ilogb — Extracts the exponent to integer.

e modf — Splits into whole and fractional parts.

e fma — Fused multiply add on float (Microsoft intrinsic)

e remainder — Get fractional part of floating-point (Microsoft intrinsic)
e  fcvt — Low-level convert float to string (Microsoft intrinsic)

For many of the listed functions, there are additional versions for different floating-
point data types, such as float, double and long double. For example,
“frexp” will splita double type into its significand (fractional part) and exponent
integer, but there’s also “frexpf” for 32-bit float types, and “frexpl” for long
double types.

Floating-Point Bit Tricks for Al

Once you’ve got the bits into an unsigned integer, what can you do?

Assuming you’re willing to throw the standards documents to the curb, you can do
quite a lot. The bits can be directly manipulated in non-obvious ways to speed up
some types of floating-point arithmetic with bitwise arithmetic on the bits.
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Examples of floating-point bit manipulations used to optimize neural networks
include:

e Sign bit flipping: this can be used for fast non-multiplication binarized
networks with floating-point computations.

e Exponent bit manipulations: bitshifting float values in logarithmic
quantization can be implemented as integer addition on the exponent bits
of a float.

e Add-as-integer networks: This method simply adds the underlying bit
representations together as integers, to create a type of multiplication-free
neural network. Weirdly, this simple trick implements an approximate
multiplication algorithm known as Mitchell’s algorithm.

e Fast 1log2 computation on float types using the exponent bits directly.

The first step is to extract the bit patterns. Let’s assume it’s a standard 32-bit float
type with 1 sign bit, 8 exponent bits, and 23 stored mantissa bits. You can get the
different bits:

int signbit = (u >> 31);
int exponent = ( (u >> 23) & 255 ); // Fail!
int mantissa = (u & ((1 << 23) - 1));

Nice try, but that’s only 2 out of 3. The exponent is wrong here! The bits are correct,
but it’s not the right number. We have to subtract the “offset” (or “bias”) of the
exponent, which is 127 for an 8-bit exponent. This is correct:

int exponent = ( (u >> 23) & 255 ) - 127; // Correct!

Note that the sign bit and mantissa can be stored as unsigned (i.e., positive or
zero), but the exponent must be a signed integer, even though it is extracted from
the bits of an unsigned int. For a fraction like decimal 0.25 (i.e., a quarter), this is
equal to 2"-2, so the exponent is -2. In an 8-bit exponent, the range of the
exponent is =128 to +127. Note that the sign bit in a f1oat specifies the overall
sign of the whole number, and is not the sign of the exponent.

Here are some macro versions of the above bit extractions:

#define AUSSIE_ FLOAT SIGN (f) \

((*(unsigned *)&(f)) >> 31u) // Leftmost bit
#define AUSSIE FLOAT EXPONENT (£) \

((int) (((((* (unsigned*)&(f)))>> 23u) & 255) - 127))
#define AUSSIE FLOAT MANTISSA(f) \

((* (unsigned*) & (f)) & 0x007fffffu) // Right 23 bits
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Note that these macros don’t work for constants, but give a compilation error such
as “l-value required”. This is because of the “&” address-of operator trick being
used needs a variable, not a constant. I don’t see an easy way around it for bitwise
trickery.

If you dislike bits for some strange reason, here’s a simple way to define the sign
bit macro using the “<” operator, which also works on constants:

#define AUSSIE FLOAT SIGN(f) ( (f) < 0.0f) // Sign test

Example: Add-as-int Approximate Multiply

The add-as-integer method suggested by Mogami (2020) simply adds the integer bit
representation of two floating-point variables, as if they are integers. It’s quite
surprising that this has any useful meaning, but it’s actually a type of approximate
multiplication called Mitchell’s algorithm. Here’s what the C++ code looks like on
32-bit float types:

float aussie_add as_int mogami (float fl, float £f2)
{
// Add as integer Mogami (2020)
int ¢ = *(int*) & (f1)+* (int*) & (£2)-0x3£800000;
return *(float*)&c;

The magic number 0x3£800000 is (obviously) equal to “127<<23” and its
purpose is to fix up the offset of the exponent. Otherwise, there are two offsets
with 127 combined. (Is there a faster way? It’s annoying to waste a whole addition
operation on what’s just an adjustment.)

Note that this algorithm is one exceptional case where we don’t want to
use unsigned integer types when tweaking bit representations. This trick needs
the temporary variable of type “int” and the pointers to be “int*” so that it can
correctly handle the sign bits of the two floating-point numbers.

This add-as-integer algorithm is not restricted to 32-bit £1loat data. It should also
work for 16-bit floating-point numbers in both float16 and bfloatl6 formats,
provided the magic number is changed to a different bitshift count and another
offset of 15 (not 127) for 5-bit exponents.
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Example: Float Bitshift via Integer Addition

This is another surprising bitwise trick on floating-point numbers. You cannot
perform the standard bitshift operators on float types in C++, so you cannot
easily speed up floating-point multiplication via bitshifts in the same way as for
integers.

Bitshifts are a fast way of doing an integer multiplication by a power-of-two (e.g.,
“x<<1” is the same as “x*2”). Note that it also doesn’t work to convert
the float to its unsigned int bit version and shift it using integer bitshift
operatofs.

On some platforms, there are some builtin special functions such
as 1dexp and scalbn for doing bitshifting on float data. The 1dexp function
accepts an integer power, and then bitshifts a floating-point number by this many
places. The l1dexp function is for double types, ldexpfis for float,
and 1dexpl is for long double types. The scalbn set of functions appears to
be almost identical to 1dexp functions. There is also a reverse function “frexp”
which extracts the significant (fraction) and the power-of-two for a floating-point
argument.

Although we can’t bitshift floating-pointer values, there is an intriguing alternative
optimization using integer arithmetic directly: addition. The suggestion in the
DenseShift paper (Li et al., 2023) is to simply add the shift count to the exponent
bits using integer addition.

Here’s some example C++ code that works for 32-bit floating-point numbers:

float aussie float bitshift add int(float f1, int bits)

{
// Bitshift float by adding int to exponent bits
// FP32 =1 sign bit, 8 exponent, 23 mantissa
unsigned int u = * (unsigned int*)&fl; // Get the bits
if (u == 0) return fl; // special case, don’t change
u += (bits << 23); // Add shift count to exponent
return * (float*)&u; // Convert back to float

How does it work? Well, it makes a certain kind of sense. The exponent in a
floating-point representation is a power-of-two, and we are bitshifting, which is
increasing the number by a power-of-two. Hence, we can increase the power-of-
two by adding 1 to the exponent, and it also works the same for adding numbers
more than 1.
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Note that this code also works for bitshift of a negative count (e.g., bitshift of -1
subtracts from the exponent and thereby halves the number) or zero (unchanged).
However, this exponent-addition trick can overflow if the resulting number
overflows or underflows the exponent range (e.g., =128 to +127).

This method has thereby improved the performance of floating-point
multiplication by changing it to integer addition. The idea works provided we are
multiplying by a power-of-two, which is done in logarithmic quantization.
However, it’s a little tricky in that special formats like zero (and NaN) are
problematic for this algorithm. I had to add the test “u==0" which slows things
down (maybe there’s a better way?). Also, this approach can theoretically overflow
the exponent bits, messing up the sign bit, but that’s only if the float is very big
or very tiny. Checking for all these wrinkles will slow down the code.

Example: Log2 of Floating-Point is the
Exponent

The 1og2 function for float types is a non-linear function that is quite expensive
to compute. We already computed 1og2 of an integer with low-level bit fiddling
methods based on a count-leading-zeros algorithm in the bitwise operations
chapter. There’s also a different bitwise trick for 1og2 of floating-point numbers.
This method computes the truncated integer version of the 1og2 algorithm (e.g.,
for use in logarithmic power-of-two quantization). There’s a very easy way:

The base-2 logarithm is the exponent!

It’s sitting right there, already calculated, hidden in plain sight amongst the 32 bits
of your friendly £1oat variables. Here’s some C++ code to extract it:

int ilog2 exponent (float f) // Log2 for 32-bit float
{
unsigned int u = * (unsigned int*)&f;
int iexp = ((u >> 23) & 255); // 8-bit exponent
iexp -= 127; // Remove the “offset”
return iexp;

Alternatively, for greater portability and probably extra speed, too, there are some
standardized builtin C++ functions available across vatious platforms (including
Linux and Microsoft) that can extract the exponent: frexp, ldexp, ilogb,
and scalbn, are some that come to mind.
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15. Arithmetic Optimizations

Types of Arithmetic Optimizations

There are two basic ways that arithmetic computations can be sped up whilst
retaining the same results:

e Single operator improvements
e Expression-level optimizations (multiple operators)

As an example of single operator optimizations, consider replacing the
multiplication operator. Alternative forms of arithmetic include bitwise shifting or
addition. The ways to do fewer multiplications tend to involve higher-level
algorithmic changes to the model, such as pruning or quantization.

Some of the methods of speeding up arithmetic come from the theory of compiler
optimization (e.g., strength reduction, sub-expression elimination). Hence, the
compiler will often automatically perform these types of optimizations (when the
optimizer is invoked). To some extent, this makes these transformations redundant.

Even so, good programming practice is to avoid situations where these
optimizations are needed on a large scale. The compiler does not look at the
program as a whole and can miss some “obvious” optimizations.

Operator Strength Reduction

Individual operations in C++ can be optimized in several ways. The general term
is “strength reduction” because a stronger operator with high computation
complexity is “reduced” to an equivalent operator that is simpler and faster.

Strength reduction is a technique used in automatic optimization by compilers, but
can also be used by programmers to improve algorithms.

177 C++ AVX Optimization



The main “strong” operations that we’re trying to avoid are:

¢  Floating-point arithmetic (even addition)
e  Multiplication

e Division

e Remainder (% operator)

e Math functions (e.g., sqrtf or expf)

Strength reduction has particular relevance to Al engines because the main
bottleneck is floating-point multiplication. Many of the research papers on
speedups are about replacing the floating-point multiplication operation with
something simpler, like addition or integer arithmetic.

Some of the general approaches in regard to strength reduction include:

e Bitwise operations (e.g., bitshifts can replace multiplication)

e Multiplication is slower than addition.

e Avoid division and modulo/remainder operators (they’re the worst!)
e Use integer arithmetic rather than floating-point (where possible)

e Use float single-precision arithmetic, not double-precision.

e Approximate arithmetic (e.g., for math functions)

Bitshift for multiplication: The canonical example that everybody knows is that
shift operators can replace multiplications by a power of two. But it’s only for
integers, not for floating-point numbers. Here’s a dummy example of integer
multiplication;

This can be more efficiently coded as a left bitshift:
y = x << 23

Bug alert! If you’re making this code change, you’re likely to introduce some bugs.
The “<<” and “*” operators have different precedence levels, so make sure you
add more parentheses. Also, consider whether you need to use “unsigned” type
when switching to a bitwise operator.

Right shift for division: bitshifting works for division, too (but only for unsigned):

y = x / 4;
v x >> 2u; // faster
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Bitwise remainder calculations: The arithmetic modulus operator (remainder)
can also be optimized for power-of-two operands (but only on integers):

512; // Remainder (mod)

y = %
& 511u; // Bitwise-AND

y:

And here’s another one with integer relative comparisons versus bitwise-and,
although this one might not necessarily be faster:

if (x >= 512)
if (x & ~511u) // Bitwise-AND of the complement (unsigned)

Avoiding multiplication: There are some simple cases even with the most basic
operators that have multiple options:

y X * 2;
Y X+ x; // Addition
y = x << 1; // Shift

Automatic Strength Reduction: In theory, C++ compilers could know what will
be faster on its platform, and perform all these optimizations automatically when
compiling the program. The optimizers probably do some of them, but they cannot
do them all.

Intrinsic Functions: Other more advanced types of strength reduction involve
avoiding costly primitives, such as mathematical functions. For example, there are
bitwise arithmetic tricks to quickly compute the integer Log2 function.

GPU Strength Reduction: One final note is that when doing Al coding work, we
aren’t as concerned about which C++ operator works the best. The more important

concern is which operation is most efficient in the GPU or other non-GPU
hardware acceleration (e.g., AVX-512 on CPU).

Finally, note that these optimizations are local optimizations, and the same ideas
apply globally to the entire Al engine architecture. There’s been a lot of research
trying to change a// of the arithmetic in model inference from multiplication to
bitshifting, such as using addition or bitshifts.
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Avoid % Remainder Operations

One common use of the remainder operator is the use of modulo arithmetic, such
as the wraparound array implementation of a queue abstract data type, where the
value of a variable is cyclically counted from 0 up to N-1, and then back to 0. The
most common idiom for coding this is:

Xx = (x + 1) % N;

However, the % operator is expensive, and in this case it is not really needed. The
following code sequence performs the same task more efficiently:

if (x == N - 1)
x = 0;

else
X++;

This can also be written more concisely, but not necessarily more efficiently, as an
b b
CXpI‘CSSiOﬂ with the “?:” ternary operator:

(x == N - 1) 2?2 (x =0) : (x++);

Another example of a clever avoidance of % is when the operand is similar to the
usual byte or word size. For example, consider this remainder:

x % 256

This can be more efficiently coded with bitwise-and using:
x & 255

But this can be even more efficiently coded as a type cast:

(unsigned char) x

The conversion to this “unsigned char” type will be efficiently implemented by
grabbing a byte out of a word. Unfortunately, this method is not portable to all
obscure systems, as it relies on an “overflow” being handled harmlessly, and on
“unsigned char” always containing 8 bits.
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Reciprocal Multiplication

Division is a slow operation, whether in a CPU or a GPU. Multiplication is often
significantly faster than division, and in some cases a division can be replaced by a
multiplication using the reciprocal. A case in point is floating-point division by a
constant. For example, consider the division:

f =g/ 100.0;
This can be replaced by the multiplication:

f =g * 0.01; // Reciprocal

If the divisor is a symbolic constant, it is possible to replace the symbolic constant
with a hard-coded constant (or another symbolic constant). However, it is more
convenient to replace the constant with an explicit reciprocal calculation. For
example, consider the code:

f = g / DIVISOR;
This can be rewritten as:

f =g * (1.0 / DIVISOR);

The compiler should calculate the reciprocal using “constant folding” at compile-
time. Note that the brackets around the division expression are probably not strictly
necessaty because optimizers know about associativity, but are certainly helpful to
make life easier for the optimizer (these poor critters need a break every so often).

If the divisor is a complex expression, the compiler might not automate the use
with a reciprocal. Here’s the slow version of division by a scale factor:

v[i] /= sqrtf(3.14159f);

Here’s the faster way using the reciprocal of the constant:
v([i] *= 1.0f / sqrtf(3.14159f);

We should pre-calculate this constant as a static variable:

static const float scalefactor = 1.0f / sqgrtf(3.14159f);
v[i] *= scalefactor;
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Integer Arithmetic

Real arithmetic is slow compared to integer arithmetic. Hence, it is favorable to
replace real arithmetic by equivalent integer arithmetic. Real arithmetic can be
replaced by integer arithmetic when only limited precision is required (e.g., 1-3
decimal places).

To do this, work in integer units that are 10, 100 or 1000 times larger (for 1, 2 and
3 decimal places) so that the decimal places appear as the lower digits of the integers.

To convert the integer into its true integer and fractional parts is quite simple. To
get at the fractional part, calculate the number modulo 10, 100 or 1000 (using
the % operator). To get the true integer part, divide by 10 or 100 or 1000 —
remember that integer division truncates the fractional part.

A good example is: when working in dollars and cents, do all calculations in terms
of cents (an integer). Then when printing it out, convert to dollars and cents using:

o

cents = value % 100;
dollars = value / 100;

However, note that this is now using two of the worst integer operators: remainder
and division. The hierarchy of cost for integer operations is similar to floating-point:
integer addition and subtraction are faster than multiplication, but division is still
the worst, even for integers.

There appears little to be done to replace integer division with multiplication.
Multiplying by the reciprocal will change an integer operation to a floating-point
operation and will probably increase execution time. A power-of-two integer
division could be done via the “>>” right bitshift operator, provided that it cannot
be negative and uses an unsigned type.

Expression Transformations

Arithmetic improvements on an expression with multiple operations include:

e Constant folding (compile-time precomputation of constant expressions)

e Common subexpression elimination (only computing things once in
expressions)

e Algebraic identities in computations

e Type consistency (avoid conversions)

David Spuler 182



Common Subexpression Elimination

Common subexpression elimination (CSE) is avoiding the recomputation of the
same expression twice. There are many cases where the same computation appears
multiple times in a single expression, or across the control flow of a program.
Compiler optimizers attempt to automatically detect such cases and reuse the first
computation.

In a complicated expression, there are often repeated sub-expressions. These are
inefficient as they require the computer to calculate the same value twice or more.
To save time, calculate the sub-expression first and store it in a temporary variable.
Then replace the sub-expression with the temporary variable. For example:

x = (i * 1) + (i * i);
With a temporary variable, this becomes:

temp = 1 * i;
X = temp + temp;

Note that this attempt to be concise is incorrect:
x = (temp = 1 * i) + temp; // Bug

This may fail because of its reliance on the order of evaluation of the + operator. It
is not actually guaranteed in C++ that the + operator is evaluated left-to-right.

Common sub-expressions do not occur only in single expressions. It often happens
that a program computes the same thing in subsequent statements. For example,
consider the code sequence:

if (x >y && x > 10) {
//

}

if (x> vy && y > 10) {
//
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The Boolean condition “x>y” need be calculated only once:

temp = (x > vy);

if (temp && x>10) {
//

}

if (temp && y>10) {
//

Algebraic Identities

The calculations in some complicated expressions can be reduced by transforming
the expression into another equivalent form. The aim when using algebraic
identities is to group the operations differently, to reduce the total number of
arithmetic operations. Care must be taken to ensure that the new expression has
equivalent meaning. For example, the short-circuiting of the logical operators can
cause differences. Some useful algebraic identities are:

2

a

* X
* X

<+
Il
|

-Xx + -

There are also Boolean algebraic identities that can be used to perform fewer logical
operations:

(a && b) ||
(a || b) &&
la && 'b ==
la || 'b ==

Float Type Conversions

Hidden unnecessary C++ type conversions are a common source of extra
inefficiency. The main type in a Transformer is usually “float” (32-bit), rather
than “double” (64-bit). Avoid unnecessary type conversion code in two ways:

e Don’t mix float and double
e Don’t mix float and int

The use of float and int tends to be something professional C++ programmers
are aware of, after having been burned a few times, and doesn’t occur that often by
accident.
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However, inadvertently mixing float and double is difficult to avoid, and
sneaks into your code all the time. For example, here’s some C++ code that looks
petfectly correct:

float scalefactor = sqrt(2.0) * 3.14159;

You know this isn’t Al code because it doesn’t have 27 decimal places for pi, which
we’ve memorized by rote. Al engines don’t really need anywhere near that much
precision, but it looks good for the boss.

The above code is also a small slug, because it may be unnecessarily using
“double” size arithmetic, although the compiler might fix it with constant folding
(but emit a warning anyway). Here’s the corrected code:

float scalefactor = sqrtf(2.0f) * 3.14159f;

Note that this example shows there are two places where an “f” suffix is needed to
signify that float arithmetic is required:

e Numeric constants (i.e., “2.0£” specifying a 32-bit f1loat, rather than
“2.07, which is a 64-bit double constant).

e Standard C++ functions (i.e., “sqrtf” returns float rather than
“sqgrt” returning double).

Without the “£”, the default is double type constants and double arithmetic
functions. A lot of C++ compilers will warn about these type conversions losing
precision, so if you aim for warning-free compilation as a quality goal, you’ll also
fix most of these wasteful hidden type conversions.
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16. Branch Prediction

What is Branch Prediction?

Branch prediction is an optimization in the CPU whereby efficiency is improved by
considering upcoming branches. The CPU in its execution tries to smartly predict
which of the two paths of a branch is more likely to be taken.

Some CPUs also do “speculative execution” of the future instructions, to get ahead,
which must be discarded if the “wrong” branch is actually executed by the code.

For the programmer, these branch prediction capabilities give the opportunity to
further optimize your code to capitalize on the CPU’s abilities. Optimization
techniques for the C++ programmer include:

e Eliminating branches in the hotpath so that the code runs straight and
narrow (i.e., fast!).

e Hinting to the compiler about the most likely execution path branches
(e.g., [[likely]] and [[unlikely]] specifiers).

e Keep unavoidable branches in the same neighborhood (e.g., short loop
bodies).

Branch prediction has a problem in HFT: the hot path is rarely executed (i.c.,
actually submitting a trade). All of the branch prediction logic would try to run the
cold path, as it would always be predicted. But what we want is for the branch
prediction logic to always choose the hot path, even though it would mostly fail to
be correct.

Thus, all of HFT is at odds with a whole swathe of computing theory about branch
prediction. HFT needs a “set opposite world mode” flag, but I'm yet to find one in
the GCC documentation.
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Types of Branches

First things: analyze your hotpath code for branching. The main types of branches
in C++ code include:

e 1if statements and if-else statements.

e Loop conditions and loop bodies.

e Loop control statements: break, continue.
e Function calls and return statements.

e switch statements (multi-way branching).

Some of the less obvious types of branches are:

e Ternary operator (?:)
e Short-circuiting in the && and | | operators

There are also hidden branches in C++ code features such as:

e  Virtual function calls
e Function pointers (and function names)

Branch Compiler Hints

There are several ways for the programmer to give “hints” to the compiler and its
optimizer about which pathways are more likely. As always, the compiler is free to
ignore hints, so you have to check in the assembly output what effect your changes
have.

Some of the ways to give hints include:

e [[likely]] and [[unlikely]] path attributes (C++20).
e likely() andunlikely () condition markers (C++20)

e noexcept attribute (C++11)

e [[noreturn]] attribute (C++11)

e [[assume (expression)]] attribute (C++23)
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GCC also has vatious extensions available to give hints:

e  builtin expect (expression, value) (GCC extension)
e hot (GCC function attribute)

It’s common in pre-C++20 Linux code to define your own macro versions for use
with the GCC compiler:

#define likely (expr) __builtin expect ((expr), 1)
#define unlikely(expr) _ builtin expect ((expr), O0)

Branch Profiling

Branch profiling is the recording of pathway stats to analyze the most likely
branches. This can also be re-used in the compilet’s optimization mode, so that the
optimizer can perform branch-aware optimizations. Hence, there is a two-step
process whereby better branch prediction can be incorporated into your C++
executable code.

GCC has capabilities to store and use branch prediction statistics in its optimization
phase. The arguments to use are:

e -—fprofile-arcs (GCC command-line argument)
e -fprofile-generate (GCC command-line argument)
e -—fprofile-use (GCC command-line argument)

Following this process will allow GCC to generate more optimal code under
assumptions based on branch frequency in its seen executions. Obviously, this is
an automatic method, but needs multiple steps in the build:

e Compile without branch hints

¢ Run the tests

e Output the branch prediction data

e Re-compile the code with branch optimizations enabled

Note that for HFT, the fully hot path (i.e., trade execution) is actually a rare branch,
so this historical branch data won’t be that useful. One solution is to run GCC in a
test mode in which the hotpath is always dummy-executed! Other early parts of the
hotpath in HFT can still benefit in both situations, such as the trading decision
logic, which is always executed on incoming market data. Obviously, non-HFT
applications can always benefit, as the most likely paths are also the most heavily-
executed.
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Branch Heuristics

In the absence of other branch prediction data, the CPU and compiler tools fall
back on some heuristics. Some of the common ones include:

e The if code block is more likely to be executed than the else code block.

e Loops tend to be executed multiple times.

e Backwards branches are assumed to be loop iterations (and are preferred
due to the prior assumption).

Hence, we can make heuristic recommendations for how to organize your code:
e Put common case code in the if block.

e Have error handling in the else block.
e Don’t use once-only loop executions.

Branch Elimination

The simplest way to avoid branch prediction issues is to have fewer branches. There
are various ways to achieve this, ranging from minor code tricks to re-writing your
entire algorithm to have fewer conditional tests.

Which branches to eliminate? The worst kinds of branches that need elimination
include:

e Long if-else-if sequences
e Nested if-else statements

What data is being tested by a branch condition is also critical, and some of the
problematic branches are based on unpredictable conditions:

e Branches depending on user inputs
e Branches depending on random numbers
e Branches depending on system clocks

The best types of conditional tests include:

e Compile-time known tests
e Predictable conditions
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The techniques available to eliminate your least favorite branches include:

e Reorganize the overall algorithm to have fewer branches.

e Defer or combine error checking for multiple errors so that there’s only
one error handling branch.

e TFunction call optimizations such as inlining and call hierarchy flattening,

e Loop conditional test reductions such as loop unrolling and iteration
bounds known at compile-time.

e  Branchless programming techniques and tricks to change conditional paths
to arithmetic computations.

Branchless Programming Tricks

Branchless programming is a variety of coding tricks to get rid of control flow
branches. The main approach is to remove conditional tests, such as 1 f statements,
by using a variety of arithmetic computations instead. Code that has no branches in
a long block can run very fast on a CPU because of instruction prefetching,

Advantages of branchless programming:

e Avoids branch prediction issues (CPU speedup).
e Avoids warp divergence in CUDA C++ (GPU speedup).
e Job security

Possible general software engineering disadvantages of these branchless arithmetic
bit tricks:

e Code complexity — isn’t it a good thing?
e Unreadable code — as if we care.
e Maintainability — is someone else’s problem.

Even worse, the speed benefit might be a mirage. The issues include:

e De-optimizations from too many arithmetic operators — benchmark your
tricks!

e Don’t underestimate the optimizer’s capability on simple code (even if it’s
“branchy”).

e Code tricks can confuse the optimizer (undermining any benefit).

e Memory access costs may dominate over branchless code.
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One of the risks with branchless code is that it runs too fast, and gets blocked by
memory access delays. Hence, you may need to combine branchless code sequences
with software-based memory prefetch primitives, such as with GCC builtins:

e  builtin prefetch()
e mm prefetch()

Branchless Coding Techniques

Now, let’s look at some of the fun tricks in branchless C++ sequences. The types
of methods for branchless coding of basic sequential CPU code include:

e Bit masks

e Bit arithmetic (bitshifts, bitwise AND/OR/XOR)
e Mapping Boolean flags to 0 or 1

e Mapping logical operator results to 0 or 1

e  Multiplications by 0 or 1 using Booleans

e Lookup tables (maybe)

¢ Conditional move (CMOYV) assembly statements
e Ternary operator (?:)

How can we do that in AVX? Note that all SIMD operations are branchless and
efficient. All of the basic arithmetic should be vectorized into SIMD operations
where possible. Branches can also be removed in parallel using some types of AVX
instructions. The AVX equivalents of these branchless coding ideas include:

e Boolean flags — map to 0 or OxFFFFFF (-1) in AVX.

e Bitmask tricks — permute/shuffle AVX intrinsics.

e CMOV/ternary operator — combined “cmp” and “blend” AVX
primitives.

Some of the more traditional C++ optimizations techniques can also reduce
branching as an extra benefit:

e Loop code hoisting of conditional tests.
e Compile-time settings and configurations.
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Ternary Operator and CMOV

Using the C++ ternary operator is one way to help the compiler write branchless
code. Consider the basic 1 f statement:

if (x > vy) |

max = X;
}
else {

max = y;

This can be more concisely written with a ternary operator:
max = (x > vy) ? X : y;

The ternary operator can be implemented in the compiler backend using a CMOV
(conditional move) register assignment statement. This is a branchless instruction
that implements the conditional assignment very efficiently.

In theory, both pieces of code are equivalent, and the compiler really should
generate identical code. In practice, the use of the ternary operator makes it easier
on those poor compiler engineers, because it’s 100% guaranteed that an assignment
is required, whereas the if statement requires a significant amount of extra
compile-time static analysis to deduce that both assignments are setting the same
variable. The C++ compiler is more likely to emit a branchless CMOV assembly
statement with a ternary operator.

Boolean Flags are 0 and 1

Another way to reduce branches is to use Boolean flags in arithmetic, using them
as having the values of integer 0 and 1. Here’s a simple example:

bool inc flag;
int x = 0;

if (inc_flag) {
X++;
This can be implemented in a branchless manner:
x += (int)inc_flag
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Note that the type cast to int is not really needed, but helps with readability, and
ensures you don’t get compiler or static analyzer warnings.

Whether that is faster is something that needs testing because it forces an addition
operator into one of the pathways that previously had none, but at least its
branchless so it helps with branch prediction.
That was a simple example, but many other ideas are possible. Instead of this:

if (clear flag) x = 0;
You can try this branchless version:

x *= (int) !clear flag;
It’s not clear that this is faster, since multiplication is an expensive operation, but a
good compiler can actually notice that it’s a fake multiplication over two possible
values (0 and 1), and the optimizer can then use a CMOV instruction. Who’s to
know without checking the assembly code or running a benchmark.
Logical Operators are 0 and 1
In the same vein, the Boolean values of the && and | | operators can be treated as
0 and 1 in integer arithmetic expressions. Here’s an example of the maximum
computation:

max = (x > y) * x + (y >= x) * y;

Note that the optimizer can notice that a multiplication over a Boolean operand
can be replaced with a CMOV, and there are two here.

Again, the ternary operator’s single CMOV instruction is probably faster than this
possible de-optimization, because this version has either two multiplications or two
CMOV instructions.
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Bitwise XOR Tricks

There’s the well-known XOR trick to swap two integers without using a temporary:

A

X = X Vi
y =y " x;
X =x " vy;

Don’t worty; nobody understands how this works. But it uses three assignments,
no temporary variable, and no branches.

Self XOR to Zero

There’s also a well-known assembly language trick of zeroing a register using XOR
with itself. The idea is that instead of an “x=0" statement, do this:

x "= x; // Self XOR
The result is zero, and we don’t even need to initialize the variable! However, we
don’t usually do this in C++, but the equivalent is common in assembly listings and
compiler backend implementations.

Sign Bit Extension Masks

If you’re doing any arithmetic with negative values, you can use bitwise tricks by
creating two masks depending on the sign bit. The idea is that the bitmask is:

e All 0’s if the number is positive (or zero).
e All I’s if the number is negative.

In other words, the bitmask is 32 bits all set to the same bit value as the sign bit.
The bitmask value is either 0 or OxFFFFFFFF, which is also that artist previously
known as -1. One way is a ternary operator:

unsigned int mask = (x >= 0) ? 0 : OxFFFFFFFFu;
We can also generate this bitmask using right bitshift operators and sign extension:

unsigned int mask = x >> 31;

Yes, I really should portably compute the bitshift count using the pre-
defined CHAR BIT macro and sizeof (int) as nicely done in [Farrier, 2025].
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Subtraction Bit Mask

Another way to get the same result is by noting the joke about -1 being the same
value. Hence, this trick with subtraction on 2’s complement signed integers works:

unsigned int mask = (unsigned) ( (int) (x < 0) - 1 );
The comparison generates an integer 0 or 1, and then we subtract 1 to get either
OxFFFFFFFF or 0. Hence, we needed to reverse the comparison test to “<” instead.
All of the type casts are “free” without runtime costs, and are probably not
necessary because implicit conversions would work, anyway.

Example: RELU Activation Function

Let’s have a go at making the RELU function branchless. RELU is an “activation
function” in LLM backends, and it’s quite simple:

if (x < 0) {
RELU = 0;
}
else {
RELU = x;

}

In other words, change negatives to zero, but leave positives unchanged. Here’s the
ternary version (faster):

RELU = (x < 0) ?2 0 : x;
The mask-by-subtraction version combines with bitwise-and to get:

unsigned int mask = (x < 0) - 1;
RELU &= mask;

Another idea for a branchless version of a bitwise RELU is:

unsigned int umask = (x >> 31); // All 0's or 1's
RELU = (x | umask);

Actually, that’s buggy, with masking the wrong way around. Here’s the correction:

unsigned int umask = ((-x) >> 31); // All 0’s or 1's
RELU = (x | umask);
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Beware this might be a de-optimization, because the ternary version might be a
single CMOYV instructions, whereas this version has three operators: negative, right
bitshift, and bitwise-AND.

Sign Bitshift Portability

There’s a major portability problem with this code, because right bitshift on a
negative signed integer is actually undefined behavior in C++. The compiler is free
to shift in zero bits or to sign bit extend on the leftmost bit position, in its sole
discretion. Hence, you need to check your platform to see what the >> operator
does, and whether this rightshift bitmask idea will work.

Note that we cannot fix this by doing the right bitshift on an unsigned type,
which is guaranteed to shift in a zero bit (well-defined in standard C++, but not
what we want). Note also that this is only undefined for right bitshift, not for left
bitshift, which is well-defined and always shifts zero bits in on the right side (again,
not what we want).

Of course, you can create the sign-based bitmask more portably by avoiding the
right bitshift operator, but this loses the branchless benefits:

unsigned int mask = (x >= 0) ? 0 : OxFFFFFFFE;
That’s safe and slow, and what’s the point of that?
Lookup Tables
Precomputation of lookup tables is a fast way to get a double benefit of fast
computation and branchless code. A good example in the standard C++ library are
the functions for character types. Here’s a slow branching version:

#define islower (c) (((c) >= 'Ta'") && ((c) <= "z") )
This has lots of computation and also branches in the short-circuiting of &s.
A faster version uses a precomputed lookup table with 256 bytes.

#define islower(c) islower table[ (unsigned char) (c)]
This is faster and branchless, at the cost of 256 bytes of global memory, and has

already been done for you in the standard libraries by those uber-brainy compiler
engineers.

197 C++ AVX Optimization



References

10.

11.

12.

13.

Paul Bilokon, Burak Gunduz, 8 Sep 2023, C++ Design Patterns for Low-latency
Applications Including High-frequency Trading, https://arxiv.org/abs/2309.04259
Code: https://github.com/Oburak/imperial hft

Sarah Butcher & Alex McMurray, 2 January 2025, The C++ fechnigues you need for
$600F& hedge fund jobs, https:/ /www.efinancialcareers.com/news/low-latency-c
Paul Alexander Bilokon, Maximilian Lucuta, Erez Shermer, 27 Aug 2023, Senzi-
static Conditions in Low-latency C++ for High Frequency Trading: Better than Branch
Prediction Hints, https:/ /arxiv.org/abs/2308.14185,

Code: https://github.com/maxlucuta/semi-static-conditions (Advanced branch
prediction analysis, a way to do branches by self-modifying code at assembly
level.)

John Farrier, March 2025 Branch Prediction: Tbe Def initive Gma’e Sfor Hng Peg%rmame

performance c/
Stdjan Deli¢, Apr 10, 2023, Bmm/ylem programming — Why your CPU will thank

wﬂl thank—; rou-5£405d97b0c8
Jared Gorski, 11 August, 2020, Branchless

programming, https:/ /jaredgorski.org/notes/branchless-programmin,
Algorithmica, March 2025 (accessed), Branchless

Programming, https://en.algorithmica.org/hpc/pipelining/branchless

Michael Kerrisk, Oct 5, 2012, How much do __builtin_expect(), likely(), and nnlikely()
improve performance? http:/ /blog.man7.org/2012/10/how-much-do-builtinexpect-
likely-and.html

Agner Fog, 28 May, 2024 (last update), The microarchitecture of Intel, AMD, and
VLA CPUs: An optimization guide for assembly programmers and compiler

makers, https:/ /www.agner.org/optimize/microarchitecture.pdf
GCC, March 2025 (accessed), Common Function

Attributes, https:/ / gcc.gnu.org/onlinedocs/gec/Common-Function-
Attributes.html

Algorithmica, July 2025 (accessed), Binary

Search, https:/ /en.algorithmica.org/hpc/data-structures/binary-search/ (Shows a
branchless binary search algorithm with prefetching.)

Paul-Virak Khuong, Pat Morin, 15 Mar 2017 (v2), Array Layouts for Comparison-
Based Searching, https://arxiv.org/abs/1509.05053 (Branchless and cached
versions of binary search on sorted atrays.)

Agner Fog, 22 June 2024 (last updated), Optimizing subroutines in assembly langnage:
An optimization guide for x86

platforms, https:/ /www.agner.org/optimize/optimizing assembly.pdf

David Spuler 198


https://arxiv.org/abs/2309.04259
https://github.com/0burak/imperial_hft
https://www.efinancialcareers.com/news/low-latency-c
https://arxiv.org/abs/2308.14185
https://github.com/maxlucuta/semi-static-conditions
https://johnfarrier.com/branch-prediction-the-definitive-guide-for-high-performance-c/
https://johnfarrier.com/branch-prediction-the-definitive-guide-for-high-performance-c/
https://sdremthix.medium.com/branchless-programming-why-your-cpu-will-thank-you-5f405d97b0c8
https://sdremthix.medium.com/branchless-programming-why-your-cpu-will-thank-you-5f405d97b0c8
https://jaredgorski.org/notes/branchless-programming/
https://en.algorithmica.org/hpc/pipelining/branchless/
http://blog.man7.org/2012/10/how-much-do-builtinexpect-likely-and.html
http://blog.man7.org/2012/10/how-much-do-builtinexpect-likely-and.html
https://www.agner.org/optimize/microarchitecture.pdf
https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html
https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html
https://en.algorithmica.org/hpc/data-structures/binary-search/
https://arxiv.org/abs/1509.05053
https://www.agner.org/optimize/optimizing_assembly.pdf

17. Instruction-Level
Parallelism

What is Instruction-Level Parallelism?

Instruction-Level Parallelism (ILP) is a CPU optimization at the lowest levels in
machine instruction processing. If you thought parallel programming was about
multithreading, SIMD vectorization and GPU kernels, there’s a whole another level
deep down in the CPU.

Modern CPUs are amazingly advanced, and they have been architected to use
various types of extra parallelism. Some of the types of instruction-level parallelism
in a modern CPU include:

e Parallel execution units

e Pipelined execution of micro-ops

e  Out-of-order execution of instructions

e  Prefetching of instructions

e Branch prediction Memory data prefetching

Importantly, the CPU has total parallelism in its instruction execution units. In fact,
a CPU can typically run four or more machine instructions in parallel in the same
clock cycle, but using multiple execution units on different parts of the chip.

Instruction Reordering Optimizations

Instruction reordering is a type of Instruction-Level Parallelism (ILP), and is an
optimization performed inside the CPU where it actually runs the machine code
instructions out-of-order. The way this works in simple terms is:

e Delay any opcodes that don’t have the data they need (e.g., from memory).
¢ Run any instructions that are ready as soon as possible.
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There’s a whole smash of fun to be had researching how this all works in the CPU.
There are schedulers and “stations” and various queues and caches. Kudos to all
those hardware engineers.

Another special type of fun is for compiler engineers. GCC does a lot of fancy
optimizations in the code generation backend in terms of taking advantage of
instruction orders.

But what about C++7? Is there anything you can do in C++ to optimize your code?
Or with inline assembly instructions?

Safety first. Most of the discussion of out-of-order execution and C++ occurs in
relation to safety. Problems can arise across multiple threads if the reads and writes
from our C++ statements are running out-of-order. I mean, how can it be good to
just run my C++ code in any random order that the CPU chooses?

The issue of preventing out-of-order errors involves “memory order.” These are
especially useful for correctly implementing lock-free algorithms with atomics, but
they also act as memory barriers that can prevent any undesirable types of out-of-
order execution.

Speed second. But the goal is to go faster! Rather than stopping the CPU from
reordering instructions by using memory barriers, let’s maximize it! There are at
least two major ideas:

e Minimize memory-waiting delays
e Exploit out-of-order instructions

The first point is to minimize the slowdowns whereby instructions get delayed. The
main one is memory accesses, which has well-known solutions such as: cache hit
maximization, cache lines, tiled memory accessing, contiguous memory blocks,
reducing data sizes, etc.

Other than cache locality, there’s not a lot of discussion anywhere in books or on
the internet about exploiting out-of-order instruction execution to make code run
faster. But there’s some discussion of this in Agner Fog’s astounding CPU
resources; see (Fog, 2024). The key point is:

Free extra parallelism!

The average CPU has hidden parallelism in terms of its various computation
pathways.
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For example, the CPU can run these two computations in parallel:

e Integer arithmetic — Arithmetic-Logic Unit (ALU)
e Floating-point arithmetic — Floating-Point Unit (FPU)

That’s not the full list. Modern CPUs now have more than one ALU, so they can
perform two or more integer additions or comparisons in parallel. Some CPUs can
also run different types of integer arithmetic, such as addition and multiplication,
on separate pathways. Similarly, some of the SIMD operations run separately from
the non-SIMD instructions.

Out-of-Order Execution Optimizations

So, you can see the opportunity here, right? Not only can the CPU run the same
operations in parallel via SIMD instructions, but it can run two (or more!) different
types of computations in parallel.

Unfortunately, the opportunities for huge improvements to your C++ are
somewhat limited. For example, if you have a computation with both integer and
floating-point computations, can you parallelize them? Yes, but only in limited
circumstances, where:

e The two computations don’t depend on the results of the other.
e Not requiring memory accesses for the computations.
e Computation operands are values already in CPU registers.

If there’s a dependency, they can’t run in parallel. And if they both require memory
requests, that’s the bottleneck regardless of whether the instructions can run in
parallel. The data needs to be already loaded from memory into CPU registers to
run fast.

That’s quite a list of limitations, but it’s not insurmountable. The optimization
methods include:

e Prefetching the memory (e.g., builtin prefch () with GCC).
e Removing “dependency chains” from the sequence of arithmetic data
instructions.

One common way to remove data dependencies is to use multiple separate variables
for intermediate results.
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Multiple Accumulator Optimizations

A simple example of using parallel arithmetic computations in a CPU is using
multiple accumulator variables for vector dot product. Here’s an unrolled version
of the dot product:

float vector dot product unroll2 ILP(
const float v1[], const float v2[], int n)
{
float sum = 0.0f;
for (int i = 0; 1 < n; i += 2) {
sum += v1[i] * v2[1i];
sum += v1[i+1] * v2[i+1];
}

return sum;

The problem is there’s a data dependency between the two additions. The two
multiplications can run in parallel, if the CPU can do so, but the second “sum+="
operation must await the completion of the first one. The solution that increases
the opportunity for CPU instruction-level parallelism is:

Multiple separate accumulators!
Hence, the code becomes:

float vector dot product unroll2(
const float v1[], const float v2[], int n)
{
float sum = 0.0f, sum2 = 0.0f; // Two accumulators!
for (int i = 0; 1 < n; 1 += 2) {
sum += v1[1i] * v2[1i];
sum?2 += v1[i+1] * v2[i+1];
}

return sum + sum2; // Add the accumulators

This new version now allows the compiler to use out-of-order execution or other
instruction-level parallelism optimizations, because the two “+=" operations are
now independent inside the loop body.

This function also needs other optimizations applied to it, which are orthogonal to
this idea of breaking data dependency chains, such as marking the pointers are
“restricted” and using AVX SIMD vectorized instructions.
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Double Loop Unrolling

The idea with double loop unrolling is to do two levels of unrolled vectorization:

e AVX SIMD instructions — vectorize 4 or 8 numbers.
e Unrolled again — multiple SIMD AVX instructions per loop body.

Here is the first level of loop unrolling by a factor of 8 using an AVX-2 method
with 256-bits SIMD instructions:

float aussie vecdot FMA unroll AVX2 (
float v1[], float v2[], int n)
{ // AVX2 vecdot using FMA (Fused Multiply-Add) primitives

aussie assert(n % == 0);
_ m256 sumdst = mm256 setzero ps(); // Set accums zero
for (int i = 0; 1 < n; i += 8) {
// AVX2: process 8x32-bit floats in 256 bits
_ m256 rl = mm256 loadu ps(&v1[i]); // Load 256-bit
~ m256 r2 = mm256 loadu ps(&v2[i]);
sumdst = mm256 fmadd ps(rl,r2,sumdst); // FMA 3 vec

}

// Add the final 8 accumulators manually

float* farr = (float*)&sumdst;

float sum = farr[0] + farr[l] + farr[2] + farr[3]
+ farr([4] + farr[5] + farr[6] + farr[7];

return sum;

But then we can unroll the loop into 2 (or more) of these SIMD instructions to
process 16 numbers at a time:

float aussie vecdot FMA double unroll AVX2 (
float v1[], float v2[], int n)
{ // Double-unrolled AVX2 vecdot using FMA
_ m256 sumdst = mm256_ setzero ps(); // Set accums zero
_ m256 sumdst2 = mm256_setzero_ps(); // Parallel accum!
for (int i = 0; 1 < n; i += 16) {
// AVX2: process 8x32-bit floats in 256 bits

~ m256 rl = mm256 loadu ps(&v1[i]); // Load 256-bit
~ m256 r2 = mm256 loadu ps(&v2[i]);

sumdst = mm256 fmadd ps(rl,r2,sumdst); // FMA 3 vec
// Double unrolled!

~ m256 r3 = mm256 loadu ps(&v1[i+8]);

~ m256 r4d = mm256 loadu ps(&v2[i+8]);

// 2nd FMA of 3 vectors

sumdst2 = mm256 fmadd ps(r3, r4, sumdst2);
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// Add the final 8 accumulators manually

float* farr = (float*) &sumdst;

float* farr2 = (float*) &sumdst?2;

float sum = farr[0] + farr[l] + farr[2] + farr[3]
farr[4] + farr[5] + farr[o] + farr[7]
farr2[0] + farr2[l] + farr2[2] + farr2[3]
farr2[4] + farr2[5] + farr2[6] + farr2[7]

+ o+ o+

’

return sum;

I mean, why bother?

It's a combination of three optimizations: (a) loop unrolling, (b) SIMD
vectorization, and (c) out-of-order execution in the CPU using instruction-level
parallelism. By having two sets of parallel accumulators in one loop
body, sumdst and sumdst2, we have removed the data dependency between the
two sets of SIMD operations. By having two sets of AVX SIMD FMA operations
available in parallel, the CPU is free to do both AVX operations in parallel, or at
least to pipeline them.

Yes, the above code is not yet polished. The last step of 15 additions can be
optimized with horizontal-add primitives. The loop condition could perhaps be
optimized with pointer arithmetic. The array parameters should be marked as
restricted and const. And we could, should we want to, unroll the loop to more
than two sets of parallel SIMD accumulators.

After we do all this, ... hopefully, it’s faster!
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18. Core Pinning

What is Core Pinning?

Core pinning is a multithreading optimization where a thread is “pinned” to only
one of the cores to give it higher priority. This means that important thread that
runs the hotpath can have guaranteed CPU availability, rather than waiting for the
default thread scheduling algorithms. Hence, core pinning can be a solution to avoid
lock contention worties or excessive context switch in the main hotpath thread.

Core pinning is also called “thread affinity” and has multiple other names (e.g,,
“processor affinity” or “CPU affinity” or “CPU pinning”), but if you hear the words
“pinning” or “affinity” in relation to threads, this is it.

Pinning has other meanings in related architectures. There’s a higher-level type for
pinning whereby whole processes or applications are pinned to a CPU core by the
operating system, rather than just a single thread, which isn’t quite the same thing.
Note also that CUDA C++ has another type of “pinned memory” for GPUs, but
that’s a memory upload optimization rather than a compute improvement.

The other side of core pinning is that you obviously don’t pin the less important
threads. All the lower-priority threads have fewer cores available, and are
downgraded.

Pros and Cons

The use of core pinning is a very powerful type of hotpath optimization. The main
pathways are super-optimized because of these factors:

e No context switches

e Fewer cache misses (no invalidated caches)
e Highest priority execution

e Guaranteed core availability (no delay)
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The downsides are fairly obvious:

e That core isn’t available for other work.
¢ Load balancing only available on the other cores.

And also, you can’t do it too many times, because the CPU only has a fixed number
of cores.

Counting Cores

The code to set up core pinning is really a two-part procedure with these steps:
1. Determine how many CPU cores are available.
2. Pin a thread to one of them.

There are various non-standard ways to interrogate the system for its CPU settings.
The standard method is to call hardware concurrency() in the standard
thread library, which tells you how many physical cores are in the CPU.

int number of cores()

{

return std::thread::hardware concurrency();

}

This has been a standard method since C++11, so it should be available to you.
Alternatively, non-standard methods include:

e sysconf () — POSIX version in <unistd.h> for Linux.

e GetSystemInfo () — Win32 API in <windows.h>.

e  cpuid() — low-level intrinsic function in <cpuid.h> that wraps
the CPUID machine instruction on x86 CPUs (Intel/ AMD).

All of these functions offer a whole wealth of other hardware information about
the CPU, rather than just the number of cores.
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Setting Up Core Pinning

There’s no standard way to set up the core pinning optimization using the
C++11 std: : thread library, nor does anything appear forthcoming in C++26
for this area. However, there are longstanding platform-specific functions to do
this.

Sometimes, you don’t need to code up core pinning in C++, but can use OS settings
or commands. On Windows, you can set up a process-level CPU pinning for an
application via the GUIL. On Linux, there is a “taskset” command that allows
running a program with core pinning.

Both Windows and Linux have non-standard C++ system calls that can set up core
pinning for either a process or a thread. Linux uses the “pthreads” library to do
core pinning, and Windows has some Win32 features.
The sequence at a high-level looks like:
1. Get a native thread id
2. Call the platform-specific core pinning API.
To implement core pinning in C++ on Linux you need to bypass std: : thread to
get to the underlying POSIX thread id, which has type pthread t as defined
in <pthread.h>. This is required because the core pinning calls are POSIX
functions on Linux.
There are at least two ways to do this:
e pthread self () — POSIX call to return the id of the current thread.
e std::thread::native handle () — returns the “native” thread ID

of a standard C++ thread object, which is a POSIX thread id on Linux.

Once you have a valid thread id, then you can set up core pinning for that thread.
The programmatic C++ APls on Linux are:

e Pinning processes — sched setaffinity ()
e Pinning threads — pthread setaffinity np()

207 C++ AVX Optimization



On Windows, these are the C++ APlIs:

e Pinning processes — SetProcessAffinityMask ()
e Pinning threads — SetThreadAffinityMask ()

Now let’s look at a full example on Linux.

Linux Core Pinning

Here’s a native pthreads sequence to pin the current thread to a core:

#include <pthread.h>
#include <unistd.h>
#include <sched.h>

bool pin me (int corenum)

{

pthread t tid = pthread self(); // Get current thread id
cpu_set t cpuset;

CPU_ZERO (&cpuset) ; // Clear all core bit flags
CPU_SET (corenum, &cpuset); // Set one core bit flag

// Pin the thread!

int ret = pthread setaffinity np(tid,
sizeof (cpuset), &cpuset);

return ret == 0; // Zero return 1is success

Note that failures can occur when attempting to pin a thread to a core. The process
needs adequate permissions to do so, and the core number needs to be valid for the

given system.

This code uses “cpu_set t” from <sched.h>, which is a bitmask (or other data
structure) that represents a mask of one or more cores. There are various bit
manipulation macros also defined in <sched.h> for use with this bitmask type:

e CPU ZERO () — clears all the bits.

e CPU SET () — sets one bit.

e CPU CLR() — unsets one bit.

e CPU ISSET () — tests one bit.

e CPU COUNT () — counts how many bits are bit.
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There are also some arithmetic operations on the CPU bit sets in <sched.h>:

e CPU EQUAL () — testif two bitsets are equal.
e CPU AND () — bitwise-and on all bits.

e CPU_OR() — bitwise-or on all bits.

e CPU XOR () — bitwise-xor on all bits.

The CPU bitmask type cpu_set_t is nota C++ object, but a raw C-like structure,
which means it can be copied or moved by bitwise copy using memcpy.

Note that pthread setaffinity np () can be passed a CPU set with more
than one bit set, in which case the thread will be migrated to one of those cores.
You can also examine the thread affinity bitmasks via”

pthread getaffinity np()

Isolating Linux Cores

To fully implement core pinning of a thread to a particular core on Linux, some
further actions may be needed. Changes are required to Linux kernel settings to do
things like:

e Isolating the core
e Disabling interrupts

Some of the Linux kernel parameters you may need to adjust include:

e nohzotnohz full
e isolcpus

e irgaffinity

e rcu nocbs

There is some industry wisdom to avoid core zero on Linux systems, because that’s
the CPU core that the kernel always tries to run system tasks on, as described in
Bernhardt (2023). There’s also a discussion of some odd issues with core 1 on Linux
in Dawson (2023).
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19. Cache Locality

What is Cache Locality?

Cache locality is the idea of staying “local” in our accesses to memory locations to
maximize the benefits of some hardware caches in the CPU. There are two general
categories of cache locality:

e Instruction cache locality — machine code instruction execution.
e Memory cache locality — data access from memory locations.

There’s a lot going on in the CPU in terms of caching accesses and also prefetching
possible future accesses. Cache locality is the idea of ensuring that our C++ code
maximizes the value of those hardware cache optimizations.

Caching occurs primarily at a lower-level than multithreading, which means that
each thread’s execution can benefit from these optimizations. Most of the methods
to improve cache locality are related to the general code structure, rather than
specific ways to do thread synchronization or other multi-threading requirements.
The general ideas include:

e Tight code blocks and loops — instruction cache locality.
e Localized and predictable memory access sequences — data cache locality.

You can do both together if you like, since they have orthogonal speedups. Easier
said than donel!

There are various tools you can use to examine the rates of cache hits and cache
misses in the instruction or data caches. Some of the main ones include:

e perf (Linux)

e cachegrind (valgrind)
e Intel VTune

e gperftools

e uprof (AMD)

o likwid-perfctr
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Depending on how you look at it, these speedups make cache locality either more
or less important in multithreaded applications versus sequential code. It’s more
important in multithreading because we have lots of threads in different places
doing different things, all of which need to have good cache locality.

Or maybe it’s less important, because the CPU has to throw away all of those per-
thread hardware caches at every context switch, so why bother with cache locality?
I'll leave it to you to judge that.

Instruction Cache Locality

The instruction cache stores recently executed machine code instructions in a CPU
hardware cache. There’s also a separate mechanism of “instruction prefetching” to
try to load the next instruction that will be executed. As part of this prefetching
method, there’s also “branch prediction” in the CPU, which attempts to predict
which of two branch directions will get chosen.

To get the best out of these instruction speedups, our C++ code should generally
use:

e Short and tight loops
e Fewer branches

Keeping loops short will mean that the CPU stays within the same block of code,
maximizing the chances that it already has an instruction in its cache. Interestingly,
this means that some common code optimizations can be bad for instruction cache
locality:

e Inlining of functions
e Loop unrolling

Both of these can cut both ways, since they both reduce branches, but also lengthen
code blocks. Whenever you’re tempted to maximize your use of such optimizations,
think about the plight of the poor instruction cache as it tries to keep up.

Branches are another separate issue from short code blocks. In fact, long code
sequences of compute instructions are fine for branch prediction. To maximize the
CPU’s branch prediction capability, we should either have few branches, or at least
have very predictable branches. At the limit, we could use branchless programming,
which is a set of tricks to get rid of branches. See Chapter 4 for more on branch
prediction and branchless coding methods.
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Data Cache Locality

There are numerous improvements that you can make to improve cache locality for
the memory access caches. And there are rather a lot of different caches for CPU
Memotry accesses:

L1 and L2 caches (per-thread)

L3 cache (shared)

TLB cache (virtual address accesses)
NUMA multi-core caching

There are some general recommendations for the entire application, that aim to
reduce memory cache misses:

e Use less memory!
e Fewer memory allocations
e Smaller data sizes

But particular algorithms can also be modified to keep nearby memory in the
caches. Data structures can affect the level of cache locality, with improvements
such as:

e Separate cold data from hot data — improve cache locality for hot data.

e Structure of Arrays (SoA) vs Array of Structures (AoS) — which one is
best depends on the context.

e Contiguous data structures — atray/vector, not linked lists or binary trees.

e Compact data structures — smaller memory sizes are easier to maintain in
the cache.

The code execution of various algorithms can alter the sequence of memory
accesses, and thereby maximize cache locality. Some well-known improvements
include:

e Loop segmenting — process short sub-sequences of a longer array.
e Tiling algorithms — process 2D “tiles” in a matrix or multidimensional
data structure (also called “blocking”).

The goal of these algorithm modifications is to iterate over a small sub-section in
the data, keeping cache locality during that “hot” computation, and then move on
to the next part. This works particularly well with matrix multiplication, because it
involves multiple computations with every element of the matrix.
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There are also some dynamic approaches whereby you can manually ensure that
data is already in the cache when you need it:

e Memory prefetching
e Cache warming

See Chapter 20 for more about prefetching and cache warming,

Memory Hierarchy

To fully understand the caches, we need to know of all the different types for
memory used in a C++ program. Handling memory propetly is one of the most
important parts of C++ optimization, because memory access is much slower than
the CPU. Memory is the bottleneck, and you need to know where the compiler puts
everything.

Learn to love the linker-loader!

When your program starts running, the “loader” puts all sorts of things in different
places. The basic moving parts that happen before execution starts are:

e Instructions — the code’s machine instructions.
e  Global read-write memory — initialized or zero-initialized global variables.
e Read-only data — string literal data.

To get deeper into the memory segments used by the linker-loader, these are the
main ones:

e text — stores the machine code instructions (read-only, executable)

e bss — all zero’d global data such as global arrays without non-zero
initializers (read-write)

e data — Initialized non-zero global variable data (read-write)

e rodata — read-only data such as string literals or constant globals (read-
only)

Yes, the “text” segment has a confusing name, and it’s sometimes called the “code”

segment. According to Wikipedia, BSS stands for “Block Started by Symbol,” but
you didn’t need to know that.
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All of the above segments are statically resolved, for the most part, by the linker.
However, once the program gets going, there are more dynamic allocations for
memory within its virtual address space. The main types of dynamic memory are:

e  Stack memory — the function call stack with parameters and local variables
(also alloca).

e Heap memory — dynamically allocated by the new operator
ormalloc function.

e Thread-local storage — via the “thread local” keyword (C++11).

See Chapter 8 for more about reducing stack and heap memory, and now let’s
discuss thread-local storage.

Thread-Local Storage

Thread-Local Storage (TLS) is memory that is exclusive to a particular thread. The
other threads do not have access to it. In C++, this is defined via the
“thread local” keyword, available since C++11. The usage is simple:

thread local int tls variable;

There are also some earlier and non-standard versions:

e Thread local — older version of specifier.
e  thread — GCC non-standard modifier with similar semantics.
e  declspec (thread) — on Microsoft C++.

The key features of thread local variables are:

e Accessible in one thread only.
e Persistent memory storage.
e Variables, objects or arrays only (cannot have a thread local function).

Per-thread access. If you declare a variable as “thread local” then the C++
compiler has to ensure the semantics. Accesses to that variable in C++ must go to
the version of that variable for the current thread. Typically, this means that the
variable has multiple copies, with different addresses for each thread.

How is it implemented? It’s not necessarily using any particular hardware support
behind the scenes, and it’s not necessarily using any magic per-thread caching.
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The C++ compiler can allocate different addresses per thread to the same data, and
then ensure that accesses within each thread get the correct version. After all, the
C++ compiler knows that a particular variable is “thread local” because it’s a
type specification.

Persistent memory semantics. The thread_local specifier is very similar to the
static keyword in terms of its memory persistence. Its effect is similar to:

e Global variables (with external scope linkage)
e static file-scope variables

e static local variables (in a function)

e static data members (in a C++ class)

A thread local variable is created when a thread starts and destroyed when the
thread finishes. This has some implications:

e At most one copy is created at program startup.
e Dynamically created (along with the thread itself).
e Does not persist across thread shutdown and restarts.

Note that persistence and scope are different things. Persistence is whether the data
is maintained across multiple accesses, whereas scope is simply whether its name
can be referenced within code statements.

For example, if you use a thread local variable as a local variable in a function,
its value will persist across invocations to that function, and always have the same
address. However, it’s scope is limited to within the function, where its name is
accessible. This is the same as a static local variable, but with the extra semantics
that only one thread can see this version. If multiple threads call the function, they’ll
get different versions of the thread local variable inside the function.

Thread-local variables occupy a special niche in the programmer’s bag of tricks.
You don’t need to wrap accesses with any locking or other synchronizations, which
is nice. They are like atomics, in that they cannot be messed up by another thread,
but unlike atomics because they are not shared across threads.

The main usage is to have some shared code, but also have a special non-shared
variable, especially where you want the variable to persist, such as having per-thread
counters, flags, intermediate calculations, and so on.
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20. Cache Warming

What is Cache Warming?

Cache warming is a specific type of prefetching optimization aimed at keeping the
various memory caches fresh. It typically involves scanning through all the memory
data required for the “hot path,” even though there’s no real intention to use the
data (until later). The hot path maintains a warm cache, so that when the hot path
is executed for real (e.g., a trade execution in HFT), then memory accesses are very
fast.

There are multiple ways to trigger prefetching of data to keep the cache warm:

e Low-level C++ prefetching primitives.
e Copy to volatile temporary variables.
e Explicit dry-run parameters in the code.

Unlike other types of CPU prefetching, cache warming is something your C++
code does directly, rather than a hardware-enabled feature. It’s up to you to
determine what data is needed the most in hot path computations, and then pre-
load that data on every pass-through. You effectively do a “dry run” of the hot path,
but access the memory to ensure it’s maintained in the cache.

Note that cache warming is not always a guaranteed win. Using the “dry run”
approach can end up with a lot of extra conditional tests:

if (!dry run) {
// Do something
}

This can negatively impact performance in two ways:

e Runtime cost of testing the flag, and
e  Extra branches of code that slow down CPU branch prediction.

As with everything in multithreading, you really need to time it to see if these costs
are less than the gain from faster memory cache accesses.
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Memory Prefetch Primitives

Although you can “manually” prefetch data in basic C++ code, there are also some
builtins that are convenient for larger amounts of data. Some of the C++ primitives
to use for cache warming include:

e  builtin prefetch (GCC)
e mm prefetch (GCC)

Prefetching is more effective on some data structures than others, with a general
preference for contiguous data blocks. Cache locality issues with the “cache lines”
of size 64-256 bytes are another reason. As a practical example, contiguous arrays
are better than dispersed data structures liked links lists and trees. This means
that std: : vector contiguous memory layouts can be more effectively prefetched
than the spread-out memory used by std: : 1ist objects.

Volatile Temporary Variables

Another approach for manual prefetching is the use of volatile specifier on
temporary variables. By assigning data to a volatile temporary variable, the
optimizer cannot remove an apparently unused assignment. For example, consider
if we do this:

int temp = my order book[0];

The C++ compiler may notice that “temp” is not used anywhere else, so it can
throw away that entire assignment statement. The solution is to use
the volatile specifier:

volatile int temp = my order book[0];

The compiler is forced to load the data into memory even when it seems to be
unused by the remainder of the code, because assigning data to
avolatile variable is itself a side-effect.

Note that we only want to declare temporary variables as volatile, but not the
shared global data arrays we’re trying to prefetch. We don’t want the main data
structures to have this status. If our main global variables or arrays were declared
as volatile, this would actually interfere with having them loaded from the
memory caches. They would be uncached!
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Dry-Run Executions

A simple approach to cache warming is to still execute all the steps, even if you’re
not going to do anything. For example, in HFT, you could call the “execute trade”
function even if the decision is to ot trade any stocks.

The method is simply to pass a Boolean flag indicating a “dry run” or “test run” or
“warm-up run” or whatever term you like. A simple conceptual example:

if (!dry run) {
orderobj.setup (ticker, price);
execute trade (orderobj);

A better way to get more cache warming is to populate all the objects as if you were
going to actually do a trade. At the very last step, the dry-run flag is tested, and no
trade gets submitted.

orderobj.setup (ticker, price);
if (!dry run) {
execute trade (orderobj);

But we really want to warm up the entire path, even the trade execution logic.
Hence, we go deeper by passing the flag inside:

orderobj.setup (ticker, price);
execute trade (orderobj, dry run);

And our trade execution code looks like:

void execute trade (Order &order, bool dry run)
{
if (!dry run) {
g order count++; // Count total
// Other accounting stuff..
// Submit the order...

That isn’t really much better, is it? We didn’t warm anything extra, but just pushed
the test inside the function.
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Double Data Trouble

We really need to actually prefetch some data! One way is to double up all our data.
The basic data for order count tracking is like this:

int g _order count = 0;
One common trick is to use an array of two values with two meanings:

e Live data
e Dry-run data (unused)

Hence, our order count becomes:
int g order count([2] = { 0, O };
Then we can try this:

if (!dry run) {
g order count[0]++; // Live run

}

else {
g order count[1l]++; // Dummy

}

The point of the dummy is that we access the [1] array element in order to warm
up the [0] element (without changing it). This works because of “false sharing”
with “cache lines,” which is often a slowdown problem, but here they offer an
advantage. We can warm the cache by touching adjacent array elements, without
disturbing the main data. (Note that here we don’t use the alignas trick to avoid
false sharing, because we actually want it to occurl)

In the spirit of branchless programming, we can make this code tighter by mapping
the Boolean flag to 0 and 1 integer values:

g_order count[ (int)dry run]++;

Note that we have actually added extra computation to our hot path! Instead of a
global variable increment, it’s now an array index lookup plus the increment.
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We need to measure our optimizations to ensure that the gain from memory cache
warming is greater than the extra cost of these array indexing operations. (We've
also added a large amount of extra computation to our cold path, including whole
extra function invocations, but we care less about that.)

Our conceptual trade execution routine starts to look like:

void execute trade (Order &order, bool dry run)
{
g order count[ (int)dry run]l++; // Count total
// Other accounting stuff.. same tricks
if (!dry run) {
// Submit the order...
}

The idea is that our “dry run” mode has run over as much of the code as possible,
only stopping short of actually submitting the order. By maintaining two full copies
of all data, with dry-run and live values, we can prefetch all of those arrays into
memory caches.

Problems with Cache Warming

The above cache warming double-array trick has used false sharing of cache lines
for good, not evil. And yet it has a problem: false sharing.

Our use of false sharing was harmless (and helpful) because we assumed only a
single thread was in use. There’s no cache invalidation slowdown when it’s only one
thread. The cache warming idea for the L1 and L2 caches requires a single thread,
although the L3 cache can be warmed for multiple threads. Hence, this cache
warming idea has limitations:

e Single thread required for all order submissions (if you want .1/L.2 cache
warming).

e Thread pools and other multi-thread design patterns are therefore
problematic.

We cannot really have a thread pool model where each consumer thread could
potentially submit a trade. The above cache warming logic only works for one
thread. If we try to use multiple threads, our cache warming logic is actually a cache
freezing de-optimization, because we’ve got the “false sharing” problem for real.

223 C++ AVX Optimization



Even worse, consider what happens if we try to use a thread pool model with the
following modifications:

(a) multiple consumers, where each thread tries to decide whether to trade,
(b) single trade submission thread.

In other words, multiple decider threads, where each decider then hands off to the
single trading thread (which is kept warmed).

But then we’ve made another conceptual error. The hot path should really include
the decision logic, as the overall latency is from receiving incoming data to
submitting a trade. However, we haven’t kept the cache warm for these multiple
“decider” threads, particulatly so for all the data they use in deciding whether to
trade, so the decision modules won’t run fast.

Possible solutions include:

e Single thread for all decision and order submission (with L1/L.2 warming),
or

e Keep multiple threads warm (trickyl), or

e Modify the cache warming code tricks to use reads only, not writes
(avoiding the cache invalidation problem), or

e Only warm up the L3 cache (for multiple threads).

But these solutions have additional problems:
e Single order thread idea lacks a failover or backup plan.
e Single order thread cannot issue two trades without blocking,.

e  Warming multiple threads means each thread needs its own copy of the
data.

None of these solutions are great, so that’s why they pay you the big bucks.

Further Optimizing Cache Warming

Another further iteration of advanced cache warming would be to actually submit
a dummy order, such as if the exchange connectivity allowed the sending of test-
only transactions. Doing this would allow us to keep warm any of the data structures
that are actually inside the client API of the exchange connection.
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The advantage of the use of dry-run cache warming is that all the various data
structures used to prepare a trade are kept warm in the memory caches (L1/1.2/L3).
The downside is extra processing that occurs whenever you’re not trading. In other
words, there are extra computations done on the “cold path” every time, just to
keep the “hot path” all snuggly and warm.

The code to traverse all the memory data structures can be a significant cost in itself,
although it only occurs during the cold path. There are several advanced tweaks to
optimize your cache warming code:

e Exploit cache line sizes for quicker loading of contiguous data.
e  Limit cache warming to the total L1/1.2/L3 cache size.

A further optimization of cache warming is to use “cache lines” to your advantage.
The L1/1.2 caches don’t work on individual bytes, but on blocks of memory called
“cache lines”, which are usually sized between 64 bytes and 256 bytes (e.g., Intel is
usually 64 bytes, Apple M2 is 128 bytes, some other CPUs are 256 bytes). Hence,
to load a “cache line” of 64 bytes on an Intel CPU, you only need to load any one
of the bytes from the 64-byte block. Your C++ code doesn’t need to explicitly
touch every element of a vector to have the entire vector hot as a fresh-baked oven
loaf in the cache. Admittedly, this doesn’t speed up the hot path itself, but only the
preliminary cache warming code.

An important limitation of cache warming is the maximum sizes of the L1, L.2, and
L3 caches. If you’re trying to warm up the CPU cache for your 7B Al model, that’s
7 billion floating-point numbers, and trying to keep them all in the CPU cache isn’t
going to work. On the other hand, you can probably preload an entire 7B model
into the CPU RAM (i.e., global memory, not the caches), or into the GPU’s VRAM,
but that’s preloading not cache warming, and it’s a slightly different story.

If you know your CPU’s cache size, you can optimize your cache warming strategy
by only trying to prefetch that much data. If you load more data than the cache size,
the newly warmed data is just evicting other data from the cache that you prefetched
earlier in the warming code. Hence, prefetching exactly the amount of data equal to
your CPU cache size is the optimal cache warming strategy.

225 C++ AVX Optimization



References

1. Paul Bilokon, Burak Gunduz, 8 Sep 2023, C++ Design Patterns for Low-

latency Applications Including High-frequency

Trading, https:/ /arxiv.org/abs/2309.04259,

Code: https://github.com/Oburak/imperial hft
2. Sarah Butcher & Alex McMurray, 2 January 2025, The C++ techniques yon

need for §600k hedge fund

Jjobs, https:/ /www.efinancialcareers.com/news /low-latency-c
3. Edelweiss Global Markets Oct 14, 2024, Cache-

W arming, https://edelweissgm.github.io /hft/2024/10/14/CacheWarmin

g.html
4. Ibrahim Essam, Jul 19, 2024, Cache warming and menory

access, https:/ /ibrahimessam.com/posts/cache/

5. Nimrod Sapir, 2019, High-Frequency Trading and Ultra Low, Latency
Development
Techniques, https://corecppil.github.io/CoreCpp2019 /Presentations /Ni
mrod High Frequency Trading.pdf,
Code: https://github.com/DanielDubi/StaticFlatMap

6. Daniel Lemire, April 2018, Is software prefetching (__builtin_prefetch) useful for
performance? https:/ /lemire.me/blog/2018/04/30/is-software-

refetching-  builtin prefetch-useful-for-performance

7. Johnny’s Software Lab, March 31, 2024, The pros and cons of explicit software

prefetching, https:/ /johnnysswlab.com/the-pros-and-cons-of-explicit-

software-prefetching/
8. Katecpp, Oct 5, 2015, Improve performance with cache

prefetehing, http:/ /katecpp.github.io/cache-prefetching/

David Spuler 226


https://arxiv.org/abs/2309.04259
https://github.com/0burak/imperial_hft
https://www.efinancialcareers.com/news/low-latency-c
https://edelweissgm.github.io/hft/2024/10/14/CacheWarming.html
https://edelweissgm.github.io/hft/2024/10/14/CacheWarming.html
https://ibrahimessam.com/posts/cache/
https://corecppil.github.io/CoreCpp2019/Presentations/Nimrod_High_Frequency_Trading.pdf
https://corecppil.github.io/CoreCpp2019/Presentations/Nimrod_High_Frequency_Trading.pdf
https://github.com/DanielDubi/StaticFlatMap
https://lemire.me/blog/2018/04/30/is-software-prefetching-__builtin_prefetch-useful-for-performance/
https://lemire.me/blog/2018/04/30/is-software-prefetching-__builtin_prefetch-useful-for-performance/
https://johnnysswlab.com/the-pros-and-cons-of-explicit-software-prefetching/
https://johnnysswlab.com/the-pros-and-cons-of-explicit-software-prefetching/
http://katecpp.github.io/cache-prefetching/

21. Contiguous Memory Blocks

Why Contiguous Memory Blocks?

A critical part of optimizing low-latency engines is to store data in a contiguous
memory block so that they have a sequential address space. Processing big chunks
of data in parallel is the main optimization used in both GPU and CPU SIMD
acceleration. All of the vectors, matrices, and tensors need their underlying data in
a block for efficiency.

Processing data that is in adjacent addresses is much faster than jumping all over
the place. Vectors should obviously be stored in a simple contiguous array in
memory. Less obviously, similar comments apply to the memory storage for
matrices and tensors.

The use of contiguous memory is an important optimization for both sequential
and parallel algorithms. The reasons that memory blocks are more efficient include:

e Data locality (cache hits)
e Data block GPU uploads (model weights from memory-to-cache)
e Predictive cache pipelining (in CPU sequential accesses)

Data locality refers to using data in the same or similar address locations. This is
helpful for the cache hit rate because data that is already in the cache is much faster
to access that a non-cached RAM memory address.

GPU uploads from CPU RAM to the GPU’s Video RAM (VRAM) is done in
blocks. Obviously, we don’t want to be uploading random bits of data from
different parts of the RAM.

Non-GPU architectures also benefit from the use of contignous memory. This is
obviously true of CPU SIMD instructions (e.g., AVX on x86), but even in
sequential execution, the CPU has its own RAM caching methods and often has
other optimizations of memory accesses. Predictive cache pipelining is where the
CPU attempts to predict what the next memory location will be, and load it in a
pipelined speedup, before being asked. This pipelining of memory accesses is much
faster than doing completely sequential address lookups.
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Typically, predictive cache pipelining uses the simple heuristic that the next address
is the most likely next request, which assumes that data is being processed in order
of the addresses. Hence, scanning an array in reverse is the worst possible order for
these CPUs. Similarly, jumping around to different memory addresses, such as
scanning the column of a matrix using a large “stride,” is also inefficient.

Low-Level Memory Block Functions

Memory block operations in the standard C++ libraries are implemented using fast
assembly language behind the scenes. The main functions in the standard C++
library that operate at a low level on binary bytes in a memory block are:

e memset (): set bytes to a value, usually used to clear bytes to zero.
e memcpy (): copy bytes.

e memmove (): copy bytes, but tolerates overlapping regions.

e memcmp (): compare a sequence of bytes.

e memchr (): search for a byte in a sequence.

These functions are lower-level than the modern C++ versions, such
as std: :copy, std: :move (), and their “backward” versions. The above listed
memory block functions are not aware of object-level semantics, and won’t run any
of the special functions on memory containing objects.

Note that unlike the standard string functions (such as strlen), these functions
do not assume a block is null-terminated by a zero byte. Zero is simply a binary
value, and these functions don’t stop at a zero byte. All of these functions operate
on a block of memory with a known maximum byte length.

Each compiler environment typically offers some extra non-standard byte-wise
functions that are also fast. Some of the less standardized C++ intrinsics that
operate on memory blocks include:

e memccpy (): copy bytes up to a specified sentinel byte.

e memicmp () or memicmp: compare bytes ignoring letter case.

e Dbcopy (): copy bytes

e Dbzero (): clear bytes to zero.

e Dbcmp (): compare bytes.

e Dbyteswap uint64 () (Microsoft intrinsic): Swap the bytes of an
integer.

e  builtin bswaplé6 (): GCC function to swap the bytes in an integer.
There are versions for 32-bit and 64-bit.
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Fast Memory Block Operations

The slow way to do things in arrays is one element at a time. The faster way is to
use the standard memory block functions on the whole array. There are a number
of standard functions that operate on array data or memory blocks and they are
very fast.

Initialize with memset byte fill. The memset function sets all of a memory block
to a byte value. It is widely used as a fast way to initialize a block of memory to all
ZE10S.

memset (&x, 0, sizeof(x));

Almost all usages of memset will be for the zero byte. The only other usage I've
seen is to fill memory with a dummy non-zero byte as a form of mutation testing
to catch uses of uninitialized memory.

memset (&x, 0x55, sizeof(x));

Fast array copying with memcpy. The fast way to copy an entire array is
with memcpy. Rather than copy each element of an array, one at a time, in a loop,
the memcpy standard library function can be used to copy the entire array in one
statement:

memcpy (destarr, srcarr, sizeof (srcarr));

Note that this is a bitwise copy of the array intended for simple data types. For
example, it won’t run copy constructors if applied to an array of objects.

The memcpy function does a very fast memory block copy. It is like strcpy in
that the destination is the first parameter. memcpy will copy everything, even null
bytes and hidden padding bytes. It keeps going even if it finds a null byte, so it is
not like strecpy, and will always copy a fixed number of bytes. memcpy is a super-
fast byte copy, but is unsafe, because it does not have well-defined behavior if the
source and destination blocks ovetlap.

Safer byte copy with memmove: The memmove function is a safer version
of memcpy, which also works correctly if the memory blocks ovetlap. If the source
and destination blocks don’t ovetlap, it’s the same as memcpy, except probably
slightly slower. If they do overlap, then memmove conceptually will copy the source
to a temporary area, and then copy it to the destination block.
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Copying arrays using struct assignment. An alternative method of copying
arrays is to make use of struct assignments. This is similar to
how std: :array works, which could also be used in a similar vein, but this
example totally avoids any constructor, copying or move costs (and works in C).

This method is not portable, is very unreadable and uses pointers incorrectly by
converting between two different pointer types. However, it can be faster
than memcpy because it makes use of the assignment operator rather than calling a
function. On the other hand, memcpy is an intrinsic function that might be inlined
to assembler instructions by the compiler, so this trick might be a waste of time.
Benchmarking is recommended here.

To copy an array using this method it is necessary to declare a new
dummy struct type that is the same size as the array that is to be copied. Then
we use type casting to fool the compiler into thinking it is copying structures when
really it is copying arrays. The method is illustrated below:

struct dummy transfer { // The new struct type
int a[MAX]; // This field gives the right size
}i

int a[MAX], b[MAX]; // The array variables being copied
static assert(sizeof (struct dummy transfer) == sizeof(a));
* (struct dummy transfer *)a = *(struct dummy transfer *)b;

The assignment statement first type casts both “a” and “b” to be pointers to the
new struct type, and then dereferences these pointers so that the compiler
believes it is assigning between two structures. The assertion is an efficient compile-
time safety net to ensure that the copying statement will work. Of course, a better
way entirely is probably to put the array inside a class object, with lovely
encapsulation and modularity, and then we can simply copy the objects.

memcmp byte comparisons. The memcmp function does a byte-wise comparison
of a memory block. Its return value is like strcmp, returning 0 for equality, and a
negative or positive value otherwise. Note that memcmp is not like strcmp, and
will not stop when it finds a zero byte.
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Memory Block Function Pitfalls

The standard memory block functions are fast, but they are not always safe. Here
are some of the common pitfalls that commonly occur in everyday coding.

memset sizeof problem. Here’s another glitch in using memset inside functions:

void zero array(int arr[10])

{

memset (&arr, 0, sizeof(arr)); // Bug

}

The problem is not memset, but the sizeof operator on function parameters. An
array parameter in a function is like a hologram and isn’t really there. It’s not really
an array, but a pointer, and sizeof (int [10]) is the same as sizeof (int¥*).
Hence, sizeof (arr) is probably only 4 or 8, rather than 40 or 80, leaving most
of the array uninitialized. Personally, I recommend a memset debug wrapper
function to catch this kind of problem at runtime, or maybe a tricky preprocessor
macro can detect it at compile-time with a static assert somehow.

memset portability issue. Even though it’s a fast zeroing method, the use
of memset to zero bytes has an obscure portability problem on any architecture
where all-bytes-zero is not the same as all data types zero. However, on most
standard platforms, all-bytes-zero is correct for all types: integer zero (ignoring
endianness), floating-point zero (positive zero is all bits zero), and the null pointer.

memcpy overlapping blocks error: The only downside with memcpy is that it can
fail with ovetlapping ranges for the source and destination blocks, so if you are
shuffling arrays up or down one element using memcpy, then you have to be
careful, because the results on overlapping ranges are undefined. Here’s a buggy
example of using memcpy to remove the first character of a string in place:

memcpy (s, s+1, strlen(s+1)+1); // Bug
The problem is that the blocks starting at “s” and “s+1” are overlapping. It is
implementation-defined whether it will be correct. The fix is simply to

use memmove, which always works correctly for overlaps:

memmove (s, s+1, strlen(s+1l)+1); // Correct
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memcmp return value. A pitfall with memcmp is that you cannot assume that it
returns 1 or =1, but must compare the return result to zero (like
the strcmp function).

if (memcmp (&a, &b, sizeof(a)) == 1) // Bug
if (memcmp (&a, &b, sizeof(a)) > 0) // Correct

memcmp object equality testing. Looking at the memcmp function, you might
think of it as an opportunity to do a fast equality/inequality test on large objects by
simply doing a byte-wise test. You would not be the first to think that.

Consider if you have a complex number class:

class MyComplex {
float real,imag;
// .. etc

The brute-force equality test is:

bool is_equal (const MyComplex &a, const MyComplex &b)
{
return (a.real == b.real && a.imag == b.imag);

}
Our idea to optimize this with memcmp looks like:

bool is_equal (const MyComplex &a, const MyComplex &b)
{

return memcmp (&a, &b, sizeof (MyComplex))==0; // Bug!
}

Unfortunately, there are multiple obscure pitfalls with this approach:

e Padding bytes

e Two types of floating-point zero

e Multiple types of floating-point NaN (not-a-number)
e Bitfields

Padding byte problems. If float is 4 bytes, but the machine has 8-byte alignment,
then the “real” and “imag” data members will be stored on 8-byte alignment
addresses, and there will be another 4 bytes each of dummy padding.
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It doesn’t even have to be on a machine with alignhment issue, but can occur with a
bigger object if we’ve mixed different size objects (e.g., char, int, and pointers).
The padding bytes will be uninitialized (e.g., for local objects or if allocated with
“new”), in which case they can contain random values. Since memcmp does not skip
the padding bytes, its test will fail. Now, we could possibly work around this
portability issue via the use of memset in the constructor, or calloc memory
allocation, to zero all of the bytes of an object including the padding bytes.

Negative zero problems. Unfortunately, the next problem is not a portability
problem, but a fundamental issue with floating-point numbers. There are two zeros!
There’s the normal zero with all bits zero, and there’s negative zero, with the sign
bit set, but all other bits zero. Hence, the bitwise testing of both float numbers fails
if there’s ever a negative zero.

NaN problems. Similarly, but perhaps less seriously, the representation
of NaN (Not-a-Number) in floating-point is also not fixed. There are multiple
values of NaN, both positive and negative. So, memcmp would say the float values
differ, even if both are NaN. I think this NaN issue is less serious than negative zero,
because if your computations are generating NaN, then they’re probably already
failing, and an incorrect memcmp equality test won’t matter as much.

Bitfield problems. If our structure has any bitfield data members,
this memcmp idea fails too. Bitfields are a standard C++ feature that is defined with
a suffix colon and a number of bits like:

unsigned int myflag:1; // Boolean bitfield with 1-bit

With bitfields it’s implementation-defined how this is represented numerically, and
there might be undefined bits in the same byte, or extra padding bytes again.

Still want your memcmp speedup? I've just shown you about 15 pitfalls, but
maybe you still want to live on the edge and get that speedup? You can
use memcmp to do fast array or object comparisons if you’re really, really sure that
you have:

e Zero byte initializations. All allocated arrays or objects must be first zero’d
by memset or calloc. You cannot rely on constructors, and it’s hard to
put amemset as the first action of the constructor due to initializer lists
and inherited C++ base classes. You might have to intercept
all new and new [ ] operators with your own link-time function wrapper
that does memset on the block, rather than use constructor tricks.
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e It’s also unclear if you can actually rely on static or global variable
initialization to carefully zero all the padding bytes in an array or object.
Probably it works on most platforms, but I doubt it’s fully portable. To be
sure, use memset on the global variables during program startup.

e No bit-fields used. That’s easy, at least.

e Floating-point computations should avoid negative zero and NaN.

Raw Subarray Memory Blocks

Passing raw subarray types to functions can be a fast alternative to some of the
modern C++ contiguous containers (L.e., std::array, std: :vector).
However, the passing of a container object by reference with “const&” parameters
is also very fast, so don’t assume that raw arrays are always faster.

If a function accepts a raw array type, it is possible to pass it any array as an
argument, or any pointer of the right type. In this way, it is possible to pass memory
blocks or “sub-atrays” to a function by passing the address of a particular array
element. A function to operate on a particular type of array can be written, and used
to operate on various arrays.

void clear (int a[], int n)

{

int 1i;
for (1 = 0; i < n; i++)
al[i] = 0;

}

void test subarrays()

{

0); // clear first ten, 0..9
+ 50, 10); // clear 50..59
a[50], 10); // clear 50..59 (equivalent)

clear
clear

int a[100];
(a, 1
(a
clear (&

Multidimensional subarrays. It is also legal to pass multi-dimensional arrays to
functions. However, the sizes of all but the first dimension must be specified in the
function receiving the array. For example, to pass a two-dimensional array to a
function, the function header would look like:

void fn(int al[][SIZE2]);
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The reason for this restriction is that the compiler cannot determine the address for
an arbitrary array element if it does not know the sizes of all but one of the
dimensions.

Because the sizes of most of the array dimensions must be specified in the function
declaration it is very difficult to write a function to act on sub-arrays of multi-
dimensional arrays. For example, this idea would be useful to define library
functions to operate on matrices with different dimensions. Ideally, we would like
one function to calculate the determinant of a matrix for any dimension (i.e., an n-
by-n matrix where n varies). Consider how we would like the determinant function
to look:

double determinant (double matrix[][], int n); // Fail

Ideally, the dimensions of the matrix are not specified at compile-time, but are
specified at run-time by the n argument. This is not possible as a simple C++
declaration because the second dimension (i.e., n) needs to be specified in the
definition of the two-dimensional array type. The best solution is to use dynamic
multi-dimensional arrays.

Dynamic Memory Management Pitfalls

Memory management is really not the strong suit of C++. If your program is
crashing or behaving badly, it’s highly likely to be some kind of memory problem.
There are so many pitfalls in C++ dynamic memory management, and even in static
or global (non-dynamic) memory, that it’s hard to list them all.

C++ programs have access to a large block of free memory, called the heap. The
actual size of the available memory depends on the system. This memory is available
to a C++ program which can allocate itself chunks of memory from this heap. This
is useful when a C program does not know beforehand how much data is being
stored, and hence, how much memory is required. Instead of allocating a large array
to cater for the worst case, the program can allocate itself blocks of memory as
required.

Blocks of dynamic memory can be allocated in two main ways:

e The C++ style “new” or “new []” operators
e The older stylemalloc () and calloc () functions (inherited from C)
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Other ways to allocate dynamic memory include:

e strdup (): make an allocated copy of a string.
e realloc():acompanion tomalloc/calloc thatis rarely used.

Once the memory is no longer needed it is “freed” back to the heap. Again, there
are two main ways:

e The C++ style “delete” and “delete[]” operators
e The older style “free” function

Some of the main memory problems in a C++ program can include:

Uninitialized new memory. The new operator does not initialize the
new chunk of allocated memory. Accidentally using it is a common bug.

Uninitialized malloc memory. The malloc function also does not
initialize its allocated memory. Again, use of a memory block that is
allocated by malloc but hasn’t been propetly cleared is a common bug.
One of the mitigations is to use calloc instead, because calloc does
zero the bytes of every block it allocates.

Mismatched new/delete with malloc/free. Memory allocated
with new should be deallocated by delete, butmalloc’d memory
should be free’d. Never the twain shall meet, or else kaboom.

Mixing new/new[] and delete/delete[]. Memory allocated
by new should be released by delete, but memory allocated by the array
version “new []” should be freed by the delete[] array version. Again,
they’re not supposed to mix.

free(nullptr) is harmless. If it’s so harmless, why is it a pitfall?
Sure, free (nullptr) is officially defined by the standard to do nothing.
But if your coding is doing this, it sure walks and talks and quacks like a
buggy duck.

strdup (nullptr) is not harmless. This is probably a crash, but even

on systems where it’s not, it’s clearly a bug in your code if you’re trying to
duplicate a null pointer.
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Pitfalls for Non-Dynamic Memory Blocks

There’s so many pitfalls in management dynamic memory, with either new/delete
or malloc/free, that surely we’ve run out? No, don’t worty, it’s comforting to know
that there are still a bunch more insidious problems in other types of non-allocated
memory.

Here’s a list of some more fatal memory stomps that aren’t about allocated blocks
on the heap:

e Buffer overrun of a global, local, static, or stack buffer variable.

e Returning the address of a local variable on the stack (ie., non-
static variable).

e Trying to write to addresses of string literals (often a crash if they’re non-
writable, but maybe worse behavior if it can be modified).

e Modifying arr [10] in an array of size 10 (raw arrays or std: :array).

e Uninitialized local variables or local buffers on the stack (non-static).

e Using an uninitialized local pointer variable to access some random address
in Timbuktu.

e Null pointer dereferences. Oh, well, at least you initialized it.

e Returning the address of a “static” local variable (aliasing problems).

e Using a negative array index.

e Modifying a string literal (they’re in read-only memory on Linux).

The standard C++ library functions can also have problems:

e strcpy () on overlapping string arguments: strcpy (s, s+1);

e strncpy () canleave strings without a null byte terminator.

e memcpy () on overlapping memory blocks (use memmove instead).

e Trying to free() ordeletea global, static, stack or instruction
address will crash.

e Double fclose () on file pointers from fopen.

e Ignoring the return value of erase () in an iterator loop.
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22. False Sharing

False Sharing and Cache Line Sizes

False sharing is a slug in C++ multithreaded code preventing two threads from
running as fast as they should. The idea of “false sharing” is that two threads can
interfere with each other’s memory caching. The sharing is “false” because it can
occur with data that’s not actually being intentionally shared between the threads,
but is impeded simply because the memory addresses are too close together.

Why does it occur? The CPU’s L1 and L2 caches don’t just cache in single bytes,
16-bit words, or even 32-bit integers. Instead, they have caching in “chunks” in the
hardware level, which are called “cache lines” (also “cache sectors” or “cache
blocks” or “cache line sizes” or “bananas in pyjamas” if you prefer).

How big? Some examples of common sizes of these cache lines include:

e Intel CPUs — 64 bytes.
e Apple M2 — 128 bytes.
¢ Some AMD and other CPUs — 256 bytes.

Note that you can get this number for the L1 cache line size in bytes
programmatically in C++17 via the functions declared in the <new> header:

hardware destructive interference size()
hardware constructive interference size ()
What this means is that, on an Inte] CPU, the caches are updated 64 bytes at a time,

because one “cache line” is read or written as the minimum size. This is good
because:

e Cache loads are 64 bytes in parallel (in hardware).
e Cache writes (updates) store 64 bytes in parallel.
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But this is bad because:
e Invalidating one cache byte also invalidates all 64 cache line bytes.

This is where we have a slowdown from false sharing. If one thread sets any value
in a 64-byte cache line, then all of the other 63 bytes are also invalidated in the
cache. If a second thread needs to use any of those other 63 bytes, then it needs a
cache line refresh. Slowness ensues.

Example of False Sharing

A common example would be two integers, each 4 bytes in size, but close together
so that they sit inside the same 64-byte cache line. The most common problems
arise with atomics or mutexes close together, but they can affect any global variable.

Hence, first a simple example without any atomics, mutexes, or other thread
synchronization. Let’s just look at two threads that are updating their own global
variable, with no overlap between the threads. In theory, these two threads should
not affect each other at all. In reality, there are CPU cache lines.

Here are our two global counter variables:

int g counterl = 0;
int g counter2 = 0;

In practice, false sharing is more likely to occur with two atomics declared close
together. However, in this example we’re just testing with two completely unrelated
threads, with absolutely zero synchronization happening between them. They really
shouldn’t impact each other, if not for false sharing.

Here is the sequential code, which sets two global variables:

void runtestl no threads (int n)
{
for (int i = 0; 1 < n; 1i++) {
g_counterl++;
}
for (int i = 0; 1 < n; i++) {
g_counter2++;

}
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Here are the two threads that aim to set those two global variables in parallel. Note
that each thread only accesses one variable, without any “sharing” going on.

void threadl (int n)
{
for (int i = 0; 1 < n; i++) {
g_counterl++;

void thread2 (int n)
{
for (int i = 0; 1 < n; 1i++) {
g_counter2++;

And here’s the basic thread launching code:

void runtestl threads(int n)

{
std::thread tl (threadl, n);
std::thread t2(thread2, n);
tl.join();
t2.join();

Finally, here is the timing code using <chrono>:

g _counterl = g counter2 = 0;

auto before = std::chrono::high resolution clock::now();
runtestl no threads(n);

auto now = std::chrono::high resolution clock::now();

auto diff = std::chrono::duration cast
<std::chrono::microseconds> (now - before).count();
std::cout << "Time (no threads): " << diff

<< " microseconds" << std::endl;

Here are the speed results from executing the sequential and threaded code for 100
million iterations using g++ on Linux.

Time (no threads): 256079 microseconds
Time (2 threads): 209341 microseconds
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Note that the threaded code does not actually run twice as fast as the sequential
code, despite having two threads that should run in parallel. In fact, it only improves
on the sequential code by about 19%, rather than 50%. Why?

It’s the magic of false sharing, whereby one thread writing to its variable slows down
the other unrelated variable that’s only being used by the other thread. The two
threads are constantly writing to their own variable, which messes with the cached
value of the other global variable used in the other thread. It’s kind of like
entanglement in quantum physics, if you like that kind of thing.

Detecting False Sharing

According to the documentation, Valgrind’s DRD tool should be able to detect
false sharing (and numerous other thread errors). However, I ran the command:

valgrind --tool=drd ./testl

I did not get any warnings:
ERROR SUMMARY: 0 errors from 0 contexts

On closer reading of the DRD documentation, DRD seems to only detect a false
sharing situation if the two threads are running on different cores, which may have
been the reason.

Solutions for False Sharing

There are a few coding solutions to prevent false sharing. The basic idea is ensuring
that the addresses of unrelated thread-shared global addresses are not too close.
Options include:

e DPutting global variables in random spots throughout your C++ code.
e Using alignas to enforce address spacing on alignment boundaries.

The first one is kind of a joke, although it would probably work in most cases.
However, it’s not technically guaranteed where the linker will put unrelated global
variables in the address space.

A more elegant solution is to put variables, especially atomics, on address alignment
boundaries. The idea is to ensure that each important global variable is alone in its
64-byte block.
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The global variables in our declarations become:

alignas (64) int g counterl = 0O;
alignas (64) int g _counter2 = 0O;

By declaring them both as alignas (64), it guarantees two things:

e The variables start on a 64-byte alignhment boundary (we don’t care about
this here), and
e They are the only variable in that 64 bytes (this fixes false sharing).

The downside is that each 4-byte integer is stored in 64 bytes, so there’s 60 bytes
with unused padding added to global memory usage. But it’s better to pad memory
than to waste CPU cycles! (On the other hand, the CPU cache lines are also loading
and storing 60 unused bytes, so we’ve somewhat undermined the efficiency
advantages of the .1/L.2 cache lines for this 64-byte block.)

Anyway, who cares, it works! Here are the faster speed measurements just from
adding alignas statements:

Time (no threads): 260277 microseconds
Time (2 threads): 133947 microseconds

Wow! It’s almost exactly half the time! The performance gain is about 49%, which
is much better than 19% (due to false sharing slowdowns), and is close to the 50%
gain we were aiming for with two threads. Maybe there’s something to this
multithreading stuff, after all.

Some Final Tweaks

As a finesse, you can assure that the addresses are far enough apart by simply
checking in code. One possible method to make sure that some junior code jockey
hasn’t deleted your alignas statements:

assert ( (char*)&var2 - (char*)é&varl >= 64);

Unfortunately, you can’t do it faster at compile-time, since addresses of global
variables are not “constant” enough for the compiler:

static_assert ((char*)&var2-(char*)&varl>=64); // Fail
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Note that some CPUs have cache line sizes up to 256 bytes. Hence, you might
need alignas (128) or alignas (256) on those platforms.

Note also there are various other non-standard ways to achieve alignment, most of
them having existed on platforms prior to the alignas specifier in the C++
standardization. For example, GCC has a whole set of old builtins. Feel free to use
those old things and charge extra because you’re writing antique C++ code.

Another point is that false sharing slowdowns can arise for non-global variables,
such as dynamic allocated memory or stack addresses. It’s not very likely for two
threads to see contention over stack addresses inside their respective call frames,
but it can occur with allocated memory blocks that are shared. There are various
ways to get aligned addresses inside dynamic memory allocation, including aligned
memory allocation primitives, so the same ideas can solve the problem.

Nevertheless, atomics declared as global variables are probably the most likely area
where false sharing can occur. This suggests a general rule: all global atomics should
be declared as alignas. I'm not sure I agree, and it does sound a bit drastic. This
does avoid the performance slug of false sharing, but it will also waste significant
memory with padding bytes.
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23. Memory Pools

What are Memory Pools?

Memory pools are a C++ optimization where you take control of the memory
allocation used for a class of objects. The basic idea is to store all objects of the
same type in a big array, next to each other, rather than being spread out over the
heap wherever the new operator decides to put them.

Memory pools are a general optimization that can be used in C++ with
the new operator, and also in C programming with malloc.

Some of the related data structures include:

e Bucket array
e Hive

A bucket array is like 2 memory pool, in that it’s a big memory block, and you put
your objects in there. However, a bucket array usually handles erasing an object by
simply marking it as invalid using a Boolean flag. The memory for an erased object
is not usually re-used when you insert a new object.

A hive is a generalization of a bucket array, whereby a hive can dynamically expand
and contract the number of buckets. Notably, there’s a std: :hive class to use in

C++26, which would make a good basis for an advanced type of memory pool.

However, we’re going to examine some of the simpler types of memory pools first.

245 C++ AVX Optimization



Why Memory Pools?

Other than being a fun and gritty project in low-level C++ coding, the goal is speed,
and this is achieved in various ways:

e Preallocation — no need to allocate memory on a low-latency hotpath.
e Fewer allocation calls — one big chunk rather than lots of small ones.
e TFewer deallocation calls — reusing memory addresses within the pool.

e No memory fragmentation — we don’t mix small and large memory
allocations.

e Less memory overhead — hidden heap memory “control blocks” are not
needed.

e Cache locality — all objects are stored contiguously.

In fact, you can even get the number of memory allocations for your class down to
zero, if you really want to, by using a global memory pool object. Even the memory
poolis not on the heap! But this only works for a tixed-size memory pool, and thus,
only if you’re really sure you won’t need too many objects.

Memory fragmentation is also a slowdown that can be avoided or reduced with
memory pools. The problems with fragmentation atise in two ways:

e Frequent allocations and de-allocations, and
e Different-sized memory blocks.

A memory pool is helpful in both respects. The memory pool avoids lots of
allocations by using one big block, and avoids deallocations by re-using the
locations inside the block. And because the memory block stores lots of blocks of
the same size, we aren’t mixing up different size allocations.

Disadvantages of Memory Pools

Firstly, this whole idea of memory pools is only about reducing allocated memory
on the heap. This optimization is not relevant for objects stored on the stack (i.e.,
local variables), or static objects, such as global scope objects or static data
members.

David Spuler 246



Memory pools are not the only option for optimization memory allocation. In fact,
the use of an open-source drop-in replacement for the standard C++ memory
allocators is another significant option:

e jemalloc — the original FreeBSD allocator, now a Facebook favorite.
e tcmalloc — from Google, with an Apache 2.0 license.

The other disadvantages of memory pools include:

e Fixed maximum number of objects (in the basic versions).

e Only works for single-sized objects (e.g., one class).

e Need one memory pool object for each type of object (via templating).
e Not useful for optimizing variable-sized objects (e.g., strings).

e Allocating too much memory in one massive chunk.

However, we can work around a lot of these disadvantages by using a templated
class for our memory pool. The optimization of memory pools is a general
algorithm that works for all types of objects.

Memory Control Block Overhead

Whenever you allocate memory on the heap, using the new operator or the old-
style malloc function, it returns you the address of the block. But that’s not actually
the start of the rea/ memory block.

There’s actually an extra memory control block stored before that address. It
contains meta-information about the memory block, which is used by the C++
standard library to keep track of things. For example, the size of the memory block
is stored in that control block.

Whenever you deallocate a memory block by sending the address
to delete or free, the standard library knows to look backwards a few bytes.
Hence, it can find the size of the memory block, which helps it to deallocate the
full block of memory. You don’t need to worty about it, because the standard library
takes care of it.

Hence, if you create a memory pool from one big chunk to contain 100 objects,
rather than 100 separate calls to the new operator, there are 99 fewer memory
control blocks. This is why memory pools reduce the memory overhead from your
objects.
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Fixed-Size Memory Pool Algorithms

For simplicity, we’re going to limit our first memory pools to just one huge block
of memory. This means that we can choose the overall capacity of the memory
pool, but we can’t increase it later by adding a second big block.

This makes our memory pool more like a vector or array, rather than a dynamic
bucket array or hive.

Even with these restrictions, there are still quite a few choices to make about
designing our memory pool algorithm.

Some of the alternatives include:

e Boolean flag— storing an “active” flag in each object.

e Index array — maintaining a list of indices of free blocks as a “free list”
(instead of a per-object flag).

e DPointer array — tracking the free list via pointers.

e Permutation-based free list approach.

In the first case, we only have one array, and each block contains the “active” flag
along with the stored user objects. In the other cases, we maintain two arrays, one
of the user’s objects, and another as the free list (with either indices, pointers, or
permutations).

Boolean Flag Memory Pool

This is the simplest approach, but not the fastest. Let’s examine it to get some of
the basic ideas.

Some of the interesting features of this code include:
e Boolean flag — stored as a data member in every memory pool record.
e DPointer arithmetic — used in computing the offset when erasing an object.

e Incremental count — increment on allocation, decrement on release.
e Compile-time pool size —uses std: :array rather than std: :vector.
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Here’s the basic layout of the memory pool class.

template<typename T, int N>
class MemoryPool {
struct Node {
T data;
bool active;
}i
private:
std::array<Node, N> arr ;
int nextfree ;
int ct ;
//
}i

The constructor has to set all the “active” flags (although using memset would
be faster than a loop):

MemoryPool () : arr (), nextfree (0), ct (0) {
for (int 1 = 0; i < N; i++) arr [i].active = false;

}

The code maintains the index of the “next free” object. Initially, it’s increasing as
the first blocks get used, but later it’s necessary to scan lineatly.

int find next free(int offset) {
if (offset == -1) offset = 0;
int i = offset;
do {
if (larr [i].active) return i; // Found
i=(1+ 1) % N;
} while (i != offset);

return -1; // It’s full!

Here’s the code for the allocation of a memory pool block:

T* alloc() {

if (full()) return nullptr; // fail!
assert (nextfree != -1);

int oldindex = nextfree ;

arr [oldindex].active = true; // Not free
nextfree = find next free (nextfree );

ct ++; // Incremental count
return reinterpret cast<T*>(&arr [oldindex]);
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And here’s the code whereby a block is released by the caller. Note that the index
computation requires pointers converted to the correct type. This code has some
safety checks that are quite expensive, and might later be removed for production
usage.

void erase (T* addr) {

assert(ct  >= 0);

Node* nptr = reinterpret cast<Node*>(addr);

if (nptr >= reinterpret cast<Node*>(&arr [0])

&& nptr <= reinterpret cast<Node*>(&arr [N-1])) {

// Valid pointer...
int offset = nptr - &arr [0]; // Ptr arith
assert (nptr->active);

nptr->active = false; // Free now

ct --; // Incremental count

if (nextfree == -1) { // Was full?
nextfree = offset;

}

}

else { // Invalid pointer...
assert (false);

}

Constructor inefficiency. This implementation has a high-level slug if the
memory pool is instantiated for use with a non-trivial class type. The definition
of std::array will cause the constructors for every single object to run
needlessly on the empty storage bytes, when the memory pool is first created or
defined. The solution here is simply to use bytes instead of the class type for the
storage declaration:

struct Node {
unsigned char data [sizeof(T)]; // Raw object storage
bool active;

}7

But we also need to be careful of memory alignment in this situation. The template
could be instantiated on any type, some of which will need aligned addresses.
Character addresses won’t get automatically aligned, so we have to
use alignas specifier. However, it’s hard to fix in this implementation, because I
cannot use alignas (alignof (T) ). The extra “active” flag in the structure is
messing everything up. But that’s only one disadvantage of this method.
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Disadvantages of Boolean Flag Method

The first point to remember is that this memory pool is a significant optimization.
It achieves all the advantages of a memory pool as outlined above: preallocation,
fewer allocations and deallocations, less memory fragmentation, and so on. Hence,
it’s a good start, and a worthy improvement to our classes.

We could stop now, and go home with a smile on our face.

However, it’s not optimal. There are even better ways to code up a memory pool.
The suboptimal features of this version of a memory pool include:

e  Mixing hot and cold data

e Alignment issues for some types
e Extra padding bytes needed

e Slow insertions

One problem with the above approach is that it mixes “hot” and “cold” data. Your
objects are probably hot areas of processing that are doing whatever you need. The
Boolean flags are only used by the memory pool when inserting and deleting
objects, and are thus cold data for the main processing algorithms. It would be
better for cache locality if the cold data was separated from our hot objects.

Memory size is also not optimal. By adding a single Boolean variable to each object,
it’s not just 1 byte extra, because the compiler probably has to add a large number
of padding bytes to meet the alignment requirements (depending on what’s inside
your objects). This will increase the memory size, and worsen cache locality when
processing multiple objects.

However, the main problem with the Boolean flag approach is that it’s slow. In fact,
it has worst case O(#) performance for an insertion, because it might have to scan
the entire array to find a free block. This worst case won’t happen initially, but the
performance can degrade as the memory pool fills up, and we do lots of insertions
and deletions.

We can do bettet!
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Boolean Flag Array Method

One way that we can address some of these issues is by separating all of the Boolean
“active” flags into a different array. Rather than storing a flag in each object, we
just store the uset’s object in the main block, and have a second block that contains
the Boolean flags.

The advantages are that it fixes the hot-cold data problem, addresses alignment
concerns, and the compiler won’t need to add extra padding to the array of user
objects. The array of Boolean flags should be one byte per object, but stored in a
different array.

Firstly, we move the “active” flag out of the structures:

struct Node {
unsigned char datal[sizeof(T)]; // Raw object storage

b
And put it into a separate array:
bool activearr [N];

The handful of places that used the “active” flag need to be changed to the
“activearr ” array member.
We can also fix the alignment issues using the alignas and alignof specifiers:

alignas (alignof (T)) std::array<Node, N> arr ;

Bit packing. This active flag array method can be further improved by using bit
packing. We only need one bit flag per object, rather than one byte each. Hence,
we can pack them all into an array of 64-bit unsigned long, and can check for
a free block using one integer compatison, testing 64 memory blocks at a time.

In practice, this version is pretty fast. Even so, it is technically still an O(#) worst
case algorithm for insertion or deletion with large numbers of objects. And there
are a few ways to fix that.
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Index Array Memory Pool

The faster solution is to maintain an array of integer indices for the free locations.
The advantages of this index array approach over the eatlier “active” flag method
include:

e Insertion and deletion always have O(7) complexity.
e Separates hot data from cold data.
e No extra padding bytes needed.

Here’s the basic definition of the class:

template<typename T, int N>
class IndexMemoryPool {
struct Node {
unsigned char datal[sizeof(T)]; // Raw storage
}i

private:
alignas(alignof (T)) std::array<Node, N> arr ;
int freelist [N]; // array of free indexes (stack-like)
int ct ;

int ctfree ;

//
}i

Some of the basic primitives are simple:

bool empty () { return ct == 0; }
bool full() { return ct == N; }

int capacity() { return N; }

int count() { return ct ; }

int count free() { return ctfree ; }

The index array is a “free list” that tells us where to find a free memory block. After
a lot of insertions and deletions, if functions a lot like a stack of free locations. At
the start, it’s a fixed-size stack that’s full with the index of every element available.

IndexMemoryPool () : arr (), ct (0), ctfree (N) {

for (int i = 0; 1 < N; i++) {
freelist [i] = i; // Store all indexes
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When we allocate a new block, “pop” the stack, to remove from the free list:

int pop free index()
{

assert (ctfree > 0);

int index = freelist [ctfree - 1];
assert (index != -1);

freelist [ctfree - 1] = -1; // Clear it
ctfree --;

return index;

The allocation of a block is mostly a call to this “pop” of the free list:

T* alloc () {
if (full()) return nullptr; // fail!
int index = pop free index();
assert (index != -1);
ct ++; // Incremental count
return reinterpret cast<T*>(&arr [index]);

And the reverse is true to release a memory block. This is a push onto the stack.

void push free index(int index)
{
assert (ctfree < N);
freelist [ctfree ] = index;
ctfree ++;

And here’s the version for release the memory:

void erase (T* addr) {

assert (ct_ >= 0);

Node* nptr = reinterpret cast<Node*>(addr);

if (nptr >= reinterpret cast<Node*>(&arr [0])
&& nptr <= reinterpret cast<Node*>(&arr [N - 1])) {
// Valid pointer...
int offset = nptr - &arr [0];
push free index (offset);
ct_--; // Incremental count

}

else { // Invalid pointer...

}

In summary, note that the push and pop of the free list stack is very efficient with
O(1) complexity. Everything in this array version has constant-time efficiency.
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Memory Pools Versus Containers

Why do you need a memory pool? Why not just use the standard C++ containers
for your objects? Isn’t a memory pool about the same as std: : vector?

Yes and no.

Yes, a memory pool for your objects is very similar to managing them all in a
standard vector. After all, the memory pool code can use a std: : vector object
inside it as the big pool. So, yes, you can manage your objects in a standard vector
if you:

e Use asingle reserve or resize call to allow the vector memory in one
call.
o Keep track of objects going in and out of the vector.

In other words, it’s almost the same thing as writing a memory pool, except it’s
mixed in the middle of your application’s main logic.

Hence, no, it’s not quite the same thing. There are two types of containers:

e Contiguous storage containers — it’s very similar.
e Maps, sets, hash tables — memory management performance gains.

We'll examine vectors and arrays in a minute, but first let’s look at the other
containers. There are two aspects to use normal memory allocation and storing your
objects in these advanced containers:

e Allocating memory for your objects — you’ve improved nothing (it’s one
allocation call per object).

e  Extra container allocations — the container also needs memory allocation
and a memory pool doesn’t help with that.

But for the containers based on contiguous memoty, the issue is less clear cut. The
standard containers based on contiguous storage include:

e std::vector

e std::array
e std::inplace vector (C++26)
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When you compare a memory pool to using a standard vector of your objects, there
is less gain to performance. However, creating a memory pool as a standalone class
has several practical advantages:

e Separate memory management optimizations from business logic.

e Ensures only a single (huge) memory allocation occurs (or only a few if it’s
dynamic).

e Callers of the interface or API don’t need to know about the memory
management aspects.

Creating a memory pool as a separate idiom is good for encapsulating the
performance optimization aspects of memory management. It encourages
modularity by isolating high-level business logic from low-level resource
management.

Advanced Memory Pools

Higher-level improvements to the memory pool interface are also possible. Most
of the discussion here has been about a memory pool for one type of class, with a
focus on reducing the number of distinct blocks requested on the heap. More
advanced memory allocators are well-known, and they offer a variety of generalized
performance optimizations and convenience features:

e Thread safety (e.g., a single mutex or a lock-free version).

e Intercepting the class-specific new and delete operators.

e DPassing arguments to object constructors via parameter packs
and std:: forward()

e Placement new operator — does not really allocate memory!

e Custom allocators — memory pools via allocator functor objects.

Additional memory management features that could be added to a memory pool
include:

e Dynamic expansion with multiple chunks rather than a fixed-size pool.

e  Multiple object types supported in the memory pool.

e Dynamic size of objects allowed by allocating multiple large “pools” or
memory chunks.

e Downsizing the memory pool if fewer objects are required.

Even more general than memory pools is the concept of “custom allocators.” The
idea with custom allocators is not just to enhance the memory handling of a few
classes, but to take over the whole memory shemozzle from the standard library.
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Extensions

1. Build your own simple memory pool templated class.

2. Add a memory pool to your object class by overloading a set of class-
specific new and delete operators, sending these requests to the
memoty pool instead.

3. Code up multiple types of memory pools and measure their performance.

4. Generalize your memory pool class to dynamically manage multiple big
chunks of memory, rather than just one.

5. Implement an advanced dynamic memory pool using the standard
C++ std: :hive (C++206) as the underlying data structure, rather than a
vector or array.
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Appendix A: Long List of Low

Latency Techniques

This is a compilation of coding efficiency and low latency C++ programming
techniques from various books and articles:

C++ Low Latency, David Spuler, March 2025.
CUDA C++ Optimization, David Spuler, June 2024.
Generative Al in C++, David Spuler, March 2024.

500+ LIM Inference Optimization Techniques (blog article)

Here’s the long list:

S A N e
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Low Latency C++ General Software Approaches:

Cache warming

Core pinning (“affinity”)

False sharing (avoiding)

Branch prediction optimizations

Hotpath optimizations

Slowpath removal

Kernel bypass

Lock contention (reducing)

Lock-free programming (with atomics and memory ordering issues)

. Thread pools

. SIMD CPU instructions

. Inline assembly language (“asm” statements)

. Intrinsic functions (often closely mapping to machine code instructions)

In-memory logging

. Cache locality (for L1/L.2/1.3 memory caches and instruction caches)
. Specialized data structures

Thread-Local Storage (TLS) (“thread local” type in C++11)

. Shared memory (e.g., shmctl, shmget, shm open, ftruncate)
. Memory mapped files/devices (e.g., mmap, munmap)
. Asynchronous programming (std: :async)
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Concurrency-Friendly Data Structures:

21. Read-only data structures

22. Reader-friendly data structures (e.g., many readers, one writer)

23. Copy-on-write data structures (for readers)

24. Versioned data structures (for readers)

25. Partition data across threads (vertically: columns)

26. Shard data across threads (horizontally: rows)

27. Read-Copy-Update(RCU)—mostly the same as copy-on-write.

28. NUMA-aware data structures—reduce cross-node communications

29. Transactional memory (synchronization efficiency, reduces contention)
— use atomic/isolated transactions (an emerging technology)

Hotpath Optimizations:

30. Optimize all steps in the hotpath (e.g., data ingestion, decision, trade
execution, logging, risk management)

31. Profile the hotpath specifically (e.g., a test mode that always runs the
hotpath)

32. Examine assembly code of the hotpath

33. Avoid memory allocation calls on hotpath (e.g., memory pools,
preallocation)

34. Avoid free/deallocation of memory on hotpath

35. Use preallocated memory on hotpath

36. Review data de-serialization and serialization costs

37. Use in-memory databases for any significant amounts of incoming data

38. Keep the client network connection warm (method depends on the API)

39. Re-use objects to avoid constructor/destructor calls on hotpath

General Tuning Advice:
40. Avoid micro-optimization
41. Avoid optimizing error handling code (it’s a slowpath)
42. Loop optimizations (see below)
43. Avoid nested loops
44. Tune inner loop for nested loops
45. Avoid excessive function wrapper overhead

Performance Profiling Tools:
46. gprof
47. perf
48. prof (older)
49. pixie (older)
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50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
6l.
62.
63.

64.
65.

66.
67.
68.
069.
70.
71.

72.
73.
74.
75.

Lock Contention Reduction:

Late lock acquisition

Early lock release

Short critical section of code

Generally reduce total numbers of locks used

Locking fine-grain vs coarse-grain

Use fine-grain locks for contested resources

Use a hybrid fine-grain/coarse-grain lock strategy

Release locks before significant computation

Copy data to temporary variables to unlock before computation
Release locks before blocking for I/O

Release locks before blocking for system calls

Release locks before blocking for networking

Tolerate lockless output ovetlaps

std::shared mutex and std: :shared lock — multiple reads,
one writer.

Double lock check method (check first without a lock)

Use message-passing via std: :promise and std: : future rather
than shared memory.

Thread-specific queues and “work stealing” design pattern

Use a lock-free queue data structure

thread local keyword (C++11)

std::lock guard (C++11)

std: :lock guard early release by scope control

std: :unique lock (C++11) (more granular control than
std::lock_guard)

std::scoped lock (C++17)

Locking with timeouts (try locks)

Avoid spinlock busy waiting

Exponential backoff to avoid spinlock costs

See also “lock-free programming”
See also “concurrency-friendly data structures”
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76.
77.
78.
79.
80.

81.

82.
83.

84.

85.

86.
87.
88.
89.
90.

91.

92.
93.
94.
95.
96.
97.

Thread/lock overhead reduction (generally):

Reduce thread launch overhead

Reduce thread destruction overhead

Reduce lock acquisition/release overhead

Reduce lock contention overhead

std: :make shared() orstd::allocate shared() do only one
allocation (combined shared pointer and control block),

whereas shared ptr<type> does two allocations (shared pointer and
the control block are separate).

Weak pointers (std: :weak_ptr) can delay the deallocation of

a shared_ptr and its object even after the main reference count is zero.

System code optimizations (general ideas):
Avoid system calls to reduce context switches (in Linux)
Use C++ “intrinsics” functions (highly optimized assembly-level code)

Linux socket programming:

Non-blocking sockets versus using select () with a timeout—allows
thread to do “other” useful work rather than just wait.

poll () orepoll () system call rather than waiting

Context Switching Reduction:

Thread counts (not too many threads)

Thread specialization

Thread specialization (producer-consumer thread model)

Use custom thread pools with only preallocated memory block pools.
spinlocks avoid context switches (especially good if spins for only a short
time)

Avoid context switch cost by having a thread do “other” work, rather
than just blocking.

Cache Locality Optimizations:

Tiling/blocking algorithms

Tiling/blocking matrix multiplication (MatMul/ GEMM)

Smaller data type sizes for increased locality

Choose a CPU with a larger L1 “cache line size” (64-256 bytes common)
std::hardware destructive interference size (C++17)
std::initializer list (C++11) can be used as a lightweight
container with contiguous elements

See also “cache warming (prefetch)” optimizations

See also “false sharing (avoid)” optimizations
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Instruction Cache Locality Optimizations:

98. Prefer shorter blocks of code in the hotpath

99. Consider not inlining function calls (for instruction cache locality)
See also “branch prediction optimizations”

Branch Prediction Optimizations (General):
100. Branch elimination
101. Branch compiler hints
102. Branch prediction heuristics
103. Branch profiling (two-phase)
104. Branchless programming
105. Tools—measure branch prediction data (e.g., perf)

Branch Reductions Techniques:

106. Algorithm-level changes to reduce branches

107. Keep loop bodies short (shorter branches)

108. Reduce far branching (e.g., function calls)

109. Reduce overall use of function calls (see function call optimizations)

110. Reduce use of 1 f statements

111. Reduce use of loops

112. Reduce use of break statements (in loops, not switchl)

113. Reduce use of continue statements

114. Reduce use of switch statements

115. Reduce short-circuiting in &&/ | | operators

116. Reduce short-circuiting of ?: ternary operator

117. Avoid virtual function calls (hidden dynamic branches)

118. Avoid pointer-to-functions (hidden dynamic branches; blocks inlining)

119. Avoid function objects/functors (hidden dynamic branches)

120. Avoid lambda functions passed as arguments (depends on how well the
optimizer can handle them)

121. Reduce long 1 f-else-if sequences

122. Reduce nested 1 f-else sequences

123. Avoid branches depending on anything unpredictable

124. Avoid branches depending on user inputs

125. Avoid branches depending on random numbers

126. Avoid branches depending on system clocks

127. Sort array data for efficient branch prediction, if scanning through the
array comparing the data (e.g., before testing for error range)
See also “compile-time optimizations” (remove branches at compile-
time)
See also “loop optimizations” (reduce loop iterations, e.g., loop unrolling)
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Branch Prediction Heuristics:

128. Common case code in if block

129. Uncommon case code in else block

130. Error handling code in else block (uncommon code)
131. Avoid zero-iteration loops (never entered)

132. Avoid single-iteration loops (never loop back)

Branch Prediction Compiler Hints:
133. [[1ikely]] and [ [unlikely]] path attributes (C++20)
134. 1ikely () and unlikely () expressions (C++20)
135.  builtin expect (GCC)
136. Define LIKELY and UNLIKELY macros
with  builtin expect (pre-C++20)
137. [ [noreturn]] (C++11)
138. [ [assume (expression) ]] attribute (C++23)
139. hot (GCC function attribute)
140. GCC _ builtin unreachable
141. std: :unreachable—helps branch prediction (C++23)
142. [ [fallthrough] ] — more for safety than speed (C++17)
143. -fdelayed-branch compiler flag
144. -fguess-branch-probability compiler flag
145. -fif-conversionand -fif-conversion2 compiler flags
146. Use “1likely” and “unlikely” in custom assertion macros
147. Use “likely” and “unlikely” in error handling code macros

Branch Profiling:
148. ~-fprofile-arcs (GCC option)
149. -fprofile-generate (GCC command-line argument)
150. ~fprofile-use (GCC command-line argument)
151. Branch profiling with 100% hotpath (test modes)

Branchless Programming Techniques:
152. Ternary operator preferred over if statements (if CMOV instruction)
153. Boolean variables as 0 or 1 in arithmetic
154. Logical operators (&&/ | |) as 0 or 1 in arithmetic
155. Bitwise operators (&/ |) teplace logical operators (&&/ | |)
156. Sign bit extension bit masks
157. Lookup tables for branchless programming
158. XOR trick to swap two integer variables without a temporary variable
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Slowpath Removal:

159. Optimize error checking pathways

160. Remove error checking tests

161. Defer error checking tests to later

162. Combine error checking tests together (and do it later)

163. Avoid adding error checks deeper in the call hierarchy

164. Never-failing functions (cannot return an error)

165. Don’t use memory allocation (avoids memory allocation failure)

Cache Warming Methods:

166. Prefetch memory primitives

167.  builtin prefetch (GCC)

168. mm prefetch (GCC)

169. volatile on temporary variables

170. Dry-run execution mode

171. Branchless dry-run execution with arr [2] declarations

172. Use read-only cache warming pathways (avoids cache invalidation for
other threads)

173. Use deep cache warming all the way down into the NIC

174. Optimize cache warming code by reducing data reads (relies on cache
line sizes)

175. Reduce cache warming code to the maximum size of the memory cache
(avoids redundant cache warming when cache is already full).

False Sharing (Avoiding):
176. Using alignas (64) or 128 or 256 to avoid false sharing (C++11)
177. Use alignas on all shared memory or atomics (C++11)
178. Tools to automatically detect false sharing (DRD fails?)

Parallelism (General Categories):
179. Multithreading
180. Multiprocess
181. Vectorization
182. Pipelining
183. Parallel execution modes (C++17)
184. Coroutines (C++20)

Advanced C++ Concurrency Data Structures:

185. Read-only (“immutable”) data structures

186. Lock-free algorithms and data structures

187. Linear search can be efficient for small sizes because of cache
prefetching (e.g., rather than binary search; also doesn’t need sorting
maintained)
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SIMD Instructions:
188. AVX (x86 CPUs)
189. ARM Neon
190. std: : simd (expetimental/C++26)
191. <immintrin.h>

Linux O/S Optimizations:
192. Process priority upgrades (“nice” command or system call)
193. Disable unimportant processes
194. Overclocking CPU
195. Overclocking GPU
196. Disable Security Enhanced (SE) Linux
197. Disable accounting mode in Linux (should be off anyway)

Linux Kernel Optimizations:
198. Scheduling algorithm kernel modifications
199. Tweak TCP/UDP network buffer settings (Linux kernel)
200. Turn off file “last access date” storage (“noatime” in /etc/fstab)

System Hardware Optimizations (Categories):
201. Processor hardware (CPU)
202. Network optimizations
203. Disk optimizations
204. RAM Memory optimizations

Processor Hardware Major Categories of Optimizations:
205. CPU
206. GPU
207. NPU
208. FPGA
209. ASIC

Networking Hardware Optimizations (Categories):
210. NIC
211. Switches
212. Load balancer devices
213. Size of the packet buffer of a switch (optimizing for)

Networking Transmission/Protocol Optimizations (Categories):
214. Physical proximity
215. Co-Lo
216. TCP vs UDP (faster than TCP but unreliable)
217. Optical networking (optical fiber cables)
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218. Microwave network transmission

219. Packet fragment manipulations (e.g., out-of-order)

220. Reduce packet fragment collation overhead

221. Reduce packet consistency checking (error safety overhead)

Networking Software Optimizations:
222. TcepDirect/Onload
223. SolarFlare/OpenOnload (kernel bypass)
224. Exablaze (NIC with kernel bypass support)
225. DMA
226. PCle bus
227. Compress data sizes for your network transmissions
228. Sticky sessions (avoids needing to send user caches between servers)
229. Shared storage vs other server-to-server networking (e.g., NAS/SAN)
230. Use custom wrappers for TCP and UDP network processing

GPU & Distributed Networking Optimizations:
231. RDMA
232. nvlink
233. Infiniband
234. RoCE
235. GPUDirect
236. PXN

Deployment Optimizations (Website backends):
237. DNS optimizations
238. Round-Robin DNS (RRDNS)
239. SSL time optimizations
240. etags (website server speedup)
241. Multiple identical servers architecture
242. Use subdomains for static files
243. CDN for static files
244. Compression modes enabled
245. Static files compressed
246. Minity static files (CSS, JavaScript)
247. Merge multiple small files together
248. Use smaller image files (low precision)
249. Merge multiple small icon images into one image file
250. Cache duration settings
251. Database optimizations (vatious, e.g., MySQL/MariaDB/MongoDB)
252. Database indexes
253. Application server optimizations (e.g., Tomcat)
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Apache/Nginx Subprocess Optimizations:

254. Use FCGI not classic CGI integrations

255. Flush stdout of subprocesses (sends partial output earlier to Apache or
Nginx)

256. Close stdout of subprocesses before shutdown sequence (finishes
earlier to Apache or Nginx)

257. Early tests for violations and invalidity (fails quickly)

Algorithm Enhancements:
258. Precomputation (lookup tables)
259. Precomputation to data file
260. Precomputation of source code
261. Incremental algorithms
262. Data structure augmentation
2063. Parallelization
264. Vectorization
265. Caching
266. Lazy evaluation
267. Common case first
268. Simple case first
269. Approximate tests first
270. Bounding box approximate tests
271. Bounding sphere approximate tests
272. Avoiding sqrt by using arithmetic on squares
273. Integer arithmetic on squares: avoid floating-point by using arithmetic on
squares
274. Use variance not standard-deviation (arithmetic on squares)
275. Approximations
276. Compute budget algorithms
277. Probabilistic/stochastic algorithms
278. Skipping algorithms
279. Heuristic algorithms
280. Greedy algorithms

Memory Reduction Strategies:

281. Take care with memory reduction as some methods can reduce speed
(trade-offs)

282. Reduce allocated memory

283. Smaller data sizes

284. Pack data into smaller integer sizes

285. Pack data into bits

286. Pack data using bit-fields

287. Pack data into unions
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288. Use std: :bitvector

289. Use std: :vector<bool> (it is a special bit-packed template
instantiation)

290. Structure packing (also for class data members): reorder different-sized
data members for better packing and fewer padding bytes

291. Structure packing: biggest data types first (heuristic)

292. Structure packing: MSVS /dlreportSingleClassLayout compiler
option to report on it

293. #pragma pack reduces padding to reduce size, but may worsen
structure access Costs

294. Stack data reductions

295. Avoid deallocation of heap memory when in shutting-down mode

Heap Allocated Memory Reduction Strategies:

296. Fewer allocated memory blocks

297. Avoid frequent small allocations

298. Preallocation of dynamic memory

299. Memory fragmentation avoidance

300. Memory leak avoidance

301. Merge memory allocations together

302. Memory pools (fixed-size allocations, often a type of preallocation)

303. Memory pool with O(1) deletion and O(1) insertion via permutation
array

304. Merge fixed-size allocated objects into a large array

305. Custom memory allocators (generalized)

306. Class-specific memory allocator

307. Custom global memory allocator

308. Late allocation (allocate memory as late as possible)

309. Early free memory (deallocate as early as possible)

310. Early delete memory (deallocate eatly)

311. Avoid realloc (slow, memory fragmentation)

312. Smart dynamic buffers (hybrid of allocated and non-allocated memory)

313. std::aligned_alloc - memory alignment improvement (C++17)

314. std::aligned union (C++11)

Static Memory Size Reductions:
315. Avoid large global arrays and buffers
316. Avoid large static arrays and buffers
317. Avoid large static C++ data members
318. String literal memory reductions
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Stack Memory Size Reductions:

319. Avoid large local arrays and buffers
320. Avoid large function non-reference parameter arrays and buffers
321. Use pass-by-reference on large function parameters
322. Use integer parameters as local variables
323. Consider stack versus memory allocation
324. Flattening/reducing function call hierarchy
325. Inline small functions (compiler can disappear them)
326. Use #define macros for small functions (versus inlining)
See also: function call hierarchy flattening
See also: recursion avoidance

Code Size Reduction Strategies:
327. Code size reductions
328. DLLs versus static libraries
329. Remove executable debug information
330. Avoid the compiler “~g”” debug option
331. Avoid the compiler “~p” profiler option
332. Unix strip command
333. Avoid large inline functions (instruction cache locality)
334. Don’t overuse “always inline” or “force inline”
335. Template overuse
336. Google “bloaty” tool

Standard Library Optimizations (STL Optimizations):
337. String processing efficiency (e.g., “+” for std: : string can be slow)
338. std: :vector of non-trivial class objects calls constructor/destructors
339. Control array size for std: : vector using “reserve ()”
340. Use std: : sort rather than gsort
341. bsearch is not your friend
342. Consider hard-coded arrays versus std: :array versus std: :vector
343. Compare the first letters of strings before calling st rcmp
344. Consider type casts to int versus round (), ceil (), floor ()
345. Avoid printf/fprintf format string processing
with putchar/putc/fputc or puts/fputs
346. Hand-code versions of abs and fabs/fabsf that don’t
handle Inf/NaN numbers (but benchmark it).
347. Change strlen ("literal") to char arr[]="literal" and
use sizeof (arr) -1
348. Don’t use strlen (s) ina for loop condition
349. Consider your own atoi/itoa versions that don’t handle all the
obscure cases.
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350. Avoid sprintf and snprintf (both are slow)

351. sync_with stdio (false)
352. std: :stringstream is slow (hand-code text field processing instead)

353

367.
368.
369.
370.

371.
372.
373.
374.
375.
376.
3717.
378.
379.
380.
381.
382.
383.
384.
385.
386.
387.
388.

Data Structures:

. Hashing (basic)
354.
355.
356.
357.
358.
359.
360.
361.
362.
363.
364.
365.
3060.

Perfect hashing
Bit vectors
Bit sets

Bloom filters (bit vectors + hashing)

Binary tree

Sorted arrays
Unsorted arrays
Stacks

Queues

Dequeues

Vector hashing
Permutation arrays

Locality-sensitive hashing (LSH)
Bit signatures (vector algorithm)

K-means clustering (vector algorithm)

Hyper-cube (vector algorithm)
Approximate nearest neighbor (ANN) (vector algorithm)

Variable Optimizations:
Prefer int types to char or short (usually)
Prefer int types to unsigned int (usually)

Prefer int types to size t (usually unsigned long;uint32 t)
Avoid unnecessary initializations

Re-use objects to avoid initializations/destruction

Avoid temporary variables

Use reference variables instead of full temporary variables

Avoid creating temporary objects
Put commonly used data fields first in struct/class
Declare variables as close as possible to usage

if initializer syntax (C++17)

switch initializer syntax (C++17)

Avoid bit-fields (smaller but slower to access or set)

Use memory alignment primitives to avoid slow-downs

Put the most-used data member first (it has a zero offset)

Order data members most used to least (smaller offsets are faster)
Array initializer lists as local variables (re-initialized each call)

Structure of arrays (SoA) data layout is more vectorizable than Array of

Structures (AoS).
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Arithmetic Optimizations:
389. Operator strength reduction
390. Reciprocal multiplication
391. Integer arithmetic
392. Use float not double

Expression Optimizations:

393. Expression transformations

394. const

395. mutable keyword — bypasses const (C++98) (speedy but unsafe)

396. Common subexpression elimination (CSE)

397. Constant folding

398. Template fold expressions (C++17) are concise but often lots of
computation

399. Expression templates—avoids explicit temporary variables, compiler
optimizes it better.

400. Constant propagation

401. Redundant assignment removal

402. Strength reduction

403. Algebraic identities

404. Implicit type conversions (avoiding; type consistency)

405. explicit keyword (prevent implicit type conversions) (C++98)

406. Brace initialization syntax {} (avoids implicit narrowing conversions)

407. auto variable declarations avoid accidental temporaries and implicit type
conversions.

408. Don’t mix float/double types (including their constants)

409. Don’t mix integer types

410. Prefer signed integers over unsigned types

411. Short-circuiting of sub-expressions (using &&/||/?:)

412. Register allocation optimizations

413. mprotect page system call — used as optimization to make memory
writeable

414. <algorithm> simple algorithms: min, max, etc.

415. Range check faster with casts via “ (unsigned) i < MAX” not “i >=0
&& 1 < MAX”
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Memory Block Operations:

416. Prefer contiguous memory (locality, efficient block operations, etc.)

417. Ditferent class types can allow block copying: POD (Plain Old Data),
trivial types, standard layout types (e.g., check in a template
using std::is trivial<T>)

418. Copy arrays by wrapping them in a dummy struct

419. Copy arrays with memcpy

420. Compare arrays with memcmp (very dangerous: padding bytes, negative
zero, NaNss)

421. Use memcpy not memmove if arguments won’t overlap.

422. Linearize multi-dimensional arrays (contiguous memory blocks)

Operator Strength Reduction Optimizations:
423. Replace * with bitshifts
424. Replace * with addition
425. Replace x*2 with x+x
426. Replace % with bitwise-and (&)
427. Replace % with increment and test
428. Replace % with type casts (if byte sizes)

Bitwise Optimizations:
429. Intrinsic bitwise functions
430. CLZ (count leading zeros) bitwise intrinsics
431. CTZ (count trailing zeros) bitwise intrinsics
432. Popcount bitwise intrinsics (set bit count)
433. Kernighan bit trick (find highest bit set)
434. Fast NOR/NAND/XNOR via assembly instructions
435. Fast LOG2 of integers
436. Fast largest power-of-two of integers

Floating-Point Optimizations:
437. Convert float to 32-bit integers (float bit manipulations)
438. FTZ (Flush to Zero) mode
439. DAZ (Denormals Are Zero) mode
440. LOG2 of floating-point is the exponent
441. Zero/negative zero bitwise tests
442. Disallow negative zero (to use faster zero comparisons)
443. NaN (Not-a-Number) bitwise tests
444, Inf/-Inf bitwise tests
445. Avoid denormalized numbers
446. Disable denormalized numbers (subnormals) (compiler/library modes)
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447. Avoid underflow in floating-point (ignore it)
448. Avoid overflow in floating-point (ignore it)
449. memcmp float vector equality (disallow special values for
fast f£1oat vector equality comparison)
450. Fast detection of special values in £1oat vectors (bitwise operations)
451. Floating-point intrinsic functions (various)
452. Exponent addition: bitshift floating-point by add of the exponent bits
453. Sign bit flipping/extraction/setting (bitwise tricks)

Compiler Settings for Floating-Point:
454. GCC -ffast-math option — faster math mode.
455. GCC -fno-math-errno — faster math by not setting errno.
456. GCC -ffinite-math-only
457. GCC fno-trapping-math
458. MSVS /fp:precise, /fp:strict, /fp:fast
459. Disable floating-point exceptions

Loop Optimizations:
460. Exit loops eatly (e.g., break or return statements)
461. Finish loop body eatly (i.e., continue statement)
462. Correct choice of loop
463. Loop unrolling
464. $pragma unroll
465. Loop fusion
466. Loop perforation (probabilistic)
467. Loop tiling/blocking
468. Loop fission
469. Loop reversal (don’t usel)
470. Loop code motion (“hoisting”)
471. Loop distribution
472. Loop iterator strength reduction
473. Loop coalescing
474. Loop collapsing
475. Loop peeling
476. Loop splitting
477. Loop interchange
478. Loop sentinel
479. Loop strip mining (loop sectioning)
480. Loop spreading
481. Loop normalization
482. Loop skewing
483. Loop intetleaving
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If Statement Optimizations:

484. Replace 1f-else-if sequences with switch.
485. Replace 1f-else-1if sequences with lookup table loop.

Switch Statement Optimizations:
486. Use compact numeric ranges in switch (compiler can use a LUT)

Compile-Time Optimizations:

487. inline functions

488. always inline specifier

489. GCC flatten inline specifier

490. gnu_inline GCC specifier

491. Keep inline functions short (helps compiler to inline)

492. Keep inline functions in header files (source available to all its calls)

493. Avoid making a virtual function “inline”—compiles but usually is
a slug.

494. sizeof

495. Use sizeof with static_assert (e.g., portability checks)

496. Virtual functions cannot be inlined (although it compiles)

497. Pointer-to-function usages of functions cannot be inlined

498. Function objects (functors) cannot always be inlined

499. Lambda functions cannot always be inlined

500. inline variables (C++17) (helps with linking)

501. static_assert (compile-time assertions)

502. const is good

503. constexpr (C++11) is great

504. constexpr functions allow 1f, switch, loops, etc. (C++14)

505. constexpr lambda functions (C++17)

506. constexpr and placement new (C++20)

507. References to constexpr variables (C++26)

508. if constexpr statements

509. constinit

510. consteval

511.if consteval (C++23)

512. Type traits <type_traits> (C++11)

513. typeidis slow (RTTI)

514.std::is_same v (type trait test)

515. Template specialization (for specific types)

516. Template specialization (for constant integers)

517. Variadic templates (C++11)

518. Template Meta Programming (TMP) still works, but prefer constexpr
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519. Auto-vectorization (by compiler)
520. Auto-unrolling of loops (by compiler)
521. SFINAE tricks (mostly an issue for compiler engineers)

Pointer Aliasing:
522. Reorganize functions with awareness of pointer aliasing issues
523. Restricted pointers (to avoid pointer aliasing slowdowns)
524. -fstrict-aliasing compiler option (alternative to using
“restrict”)

Pointer Arithmetic:
525. Loop pointer arithmetic
526. End pointer address tricks (Loop pointer arithmetic)
527. Use references not pointers (avoids null testing)
528. Prefer postfix operations with the *ptr++ idiom (not prefix ++ptr)
529. Pointer comparison tricks
530. Pointer difference tricks
531. Avoid safe pointer class wrappers (prefer raw pointers for speed)

Pointer Optimizations (Other):

532. reinterpret cast (helps the optimizer and is effectively a free
compile-time hint)

533. Avoid dynamic_cast (to downcast from a base to a derived class,
which can be helpful for specializing member calls, but dynamic casts can
be expensive at runtime because of RTTT)

Function Optimizations:

534. Return early from functions

535. Flatten function call hierarchies

536. Callbacks are an extra layer of function call

537. Lambda functions are convenient but are an extra function call layer
(though often inlined)

538. Function objects (functors) are an extra function call

539. Avoid recursion (completely; we’re not in High School anymore)

540. Replace simple recursion with a loop

541. Replace complex recursion with a stack

542. Tail recursion elimination

543. Recursion higher base level

544. Collapse recursion levels

545. Specialize functions with default arguments (use two versions)

546. Specialize functions with void and non-void versions (if return value
often ignored)

547. Avoid function pointers (cannot be inline or constexpr)
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548. Merge multiple Boolean function parameters into a “config” object with
Boolean data fields.

549. noexcept attributes allow compiler to avoid adding extra code
(C++11)

550. std::initializer list can be used to return multiple values
(benchmark against other methods)

C++ Class Optimizations:

551. friend functions (bypass interfaces)

552. friend classes (bypass interfaces)

553. Return references rather than objects

554. Avoid temporary class objects in expressions

555. Add extra member functions to avoid temporary object creation

556. Pass objects by reference to functions (i.e., “&” or “const&”)

557. Disable copy constructors with “private” or “= delete”

558. Disable assignment operators with “private” and “= delete”

559. Declare assignment operators with void return type (except when
defaulting)

560. Re-use objects to avoid constructor and destructor calls

561. Avoid calling the destructor when in shutting down mode

562. Uninitialized memory algorithms,
e.g,std::uninitialized £fill (C++17)

563. CRTP (Cutiously Recurring Template Pattern): derived class derives
from base class which is itself a template involving a pointer to the
derived class (optimizes polymorphism to be compile-time, avoiding
virtual function calls; also this allows more inlining of these calls.)

564. Move constructors

565. Move assignment operators

566. std: :move (C++11, C++14) is usually a compile-time cast.

567. Return object reference types (not complicated objects)

568. Avoid virtual function calls with explicit calls to the specific function

569. Specialize inherited member functions (for the more restrictive type)

570. Avoid overloading the postfix increment/decrement operators

571. Block the overloaded postfix increment/decrement operators
(void body or =delete)

572. Consider skipping destructor cleanup if program is shutting down

573. Avoid accidental double initialization of data members in constructors

574. Avoid redundant initialization of same members in both constructor and
“setup” methods

575. Specialize member functions with default arguments (use two versions
instead)

576. Default constructors/destructors with “=default” may be more
efficient than hand-coded versions.
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577. Trick for singleton pattern in multithreading — threads initializing
function-local static variable, other threads block, once-only initialization
guaranteed by C++ compiler.

Advanced C++ Compiler Optimizations:
578. Copy elision (compiler auto-optimization with avoidance of a copy
constructor in certain cases)
579. Guaranteed copy elision (C++17)
580. Named return value elision (a type of copy elision)
581. Temporary return value elision (a type of copy elision)
582. Copy elision in exception handling (special case for copy elision)
583. Allocation elision (new operator) (C++14)
584. Use xvalue or “expiring value” optimizations (various)
585. Trick: to disallow creating an object on stack, make its destructor private.
586. Trick: to disallow creating an object on the heap, make
its new and new [] operators private.

Byte Block Operations in C++ Classes: (Use with extreme carel)

587. memset/bzero to zero in a constructor — fast but dangerous,
overwrites internal “vtable” data in object if class has
any virtual functions, does not call constructors of its data members
or base class members; also cannot use an initializer list as this overwrites
with zero after any objects were set by the initializer list.

588. memcpy to bitwise copy in a copy constructor or assignment operator
— fast but dangerous, impropetly copies internal vtable data in object if
class has any virtual functions, does not deeply copy any of its members
or base class members nor call their constructors.

589. memcpy to bitwise copy in a move copy constructor or move
assignment operator — fast but dangerous; impropetly copies “vtable”.

590. memcmp to bitwise compare for equality/inequality tests — fast but fails
in many situations due to pitfalls: padding bytes, bit-field members,
negative versus positive zero floating-point values, NaN floating-point
values.

591. Virtual inheritance — usually for pure virtual base classes; avoids double
objects if the same base class is inherited in two different ways.

Timing C++ Methods:
592. std::chrono C++ class (highly granular)
593. clock () C/C++ function
594. time command (Linux shell)
595. time () function (granularity is only in seconds)
596. gettimeofday ()
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Benchmarking C++ Methods:

597. Loop unrolling for accurate benchmarking

598. Use volatile specifier for accurate benchmarking
599. Loop overhead measurement for accurate benchmarking
600. Google Benchmark: Apache 2 license;

code: https://github.com/google/benchmark

Compiler Settings:
601. Optimizer settings
602. Optimizing for space/memory size (compiler flags)

General Build & Software Development Practices for Efficiency:
603. Maintain separate builds for slow testables versus production executables
604. Compile-out assertions
605. Compile-out self-testing code
606. Compile-out debug code or tracing code
607. Ensure test code not accidentally left in production (test a global flag

based on these macros at startup)

CUDA C++ GPU Optimizations:
608. Coalesced memory accesses
609. Thread specialization (GPU)
610. GPU thread pools
611. Producer-consumer thread pools
612. GPU kernel optimizations
613. Striding (GPU kernels)
614. Overlapping GPU uploads and compute
615. Ovetlapping with recomputation/rematerialization
616. Offloading to CPU
617. Pinned memory blocks
618. Warp divergence (warp coherence)
619. Grid optimizations
620. Grid size optimizations

Core Utility Classes (Efficiency Helpers): (to build for overall
efficiency practices)

621. Bitwise macro library (bitflag management)

622. Floating-point fast bitwise operations macro library

623. Benchmarking/timing library

624. Smart buffer library (reduce allocations by combining allocated/non-
allocated memory management)

625. TCP/UDP wrapper library

0626. Specialized data structures for small amounts of data (faster than STL)
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627.
628.
629.
630.
631.
632.
633.
634.
635.
636.
637.
638.
639.
640.
641.
642.
643.
644.
645.
6406.
647.

648.
649.
650.
651.
652.
653.
654.
655.
656.
657.
658.
659.
660.
661.
662.
663.

Sorted array and binary search (small array size)
Lock-free queues

Perfect hashing library

Bit vector data structures (possibly based on STL)

Bit set data structures (possibly based on STL)

Bloom filter library

Vector hashing library

Caching utilities library

Source code precomputation library

Basic data and statistics on vectors (e.g., averages, std dev/variance, etc.)
Incremental vector algorithms (averages, min, max, etc.)
Branchless coding primitives library

Graph library for locking analysis

Data compression library

Approximate tests library

Math library (versus STL)

Memoty pools library (fixed-size custom memory allocators)
Custom memory allocator library

Placement new operator versions

Placement delete operator (write your own)
Multi-dimensional array library (linearize your

vectors/matrices/tables/tensors)

AI Kernel Optimizations (using LLM Inference Optimizations for
non-Al low latency applications): (subset of methods to consider)

Reference: 500+ LIM Inference Optimization Techniques (blog article)

Kernel fusion

Kernel fission

Kernel tiling/blocking

Quantization (integer-based approximation of floating-point)
Low-bit quantization

Binary quantization (1-bit)

Integer-only arithmetic

Floating-point quantization (FP16/FP8/FP4)
Mixed precision quantization

Logarithmic quantization

Dyadic quantization

Low rank matrices

MatMul/ GEMM optimizations (many)
MatMul data locality optimizations

Sparse MatMul

Approximate matrix multiplication
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664.
665.
666.
667.
668.
669.
670.
671.
672.
673.
674.
675.
676.
677.
678.
679.
680.
681.
682.
683.
684.
685.
686.
687.
688.
689.
690.
691.
692.
693.
694.
695.
696.
697.
698.
699.
700.
701.
702.
703.
704.
705.
706.
707.

Contiguous memory block matrix multiplication
Cached transpose MatMul

Fused transpose MatMul

Tiled/blocked MatMul

Sparsification (Pruning/Sparsity)

Token pruning (input compression)

Token skipping

Token merging

Data compression algorithms

Eatly exiting (of layers)

Caching optimizations

Vector computation caching

Zero skipping

Negative skipping

Padding optimizations

Zero padding removal

Zero-multiplication arithmetic
Adder/addition (zero-multiply)

Bitshifts (zero-multiply)

Bitshift-add (zero-multiply)

Double bitshift-add (zero-multiply)
Add-as-integer (zero-multiply)

Logarithmic arithmetic (zero-multiply)
Hadamard element-wise matrix multiplication
End-to-end integer arithmetic

Table lookup matrix multiplication

Weight clustering (grouped quantization)
Vector quantization

Parameter sharing

Activation function optimizations (non-linear functions)
Precomputation of Activation functions
Approximation of Activation functions
Integer-only approximation of Activation functions
Fused activation functions

Normalization optimizations (non-linear vector data functions)
Fused normalization optimizations

FFN optimizations (double MatMul)

FFN approximations

FFN integer-only

Decoding algorithm optimizations
Speculative decoding

Multi-token decoding

Ensemble decoding
Consensus/majotity-vote decoding
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708. Easy-hard queries

709. Batching computations

710. Advanced number systems

711. Posit numbers

712. Dyadic numbers

713. Hybrid number systems

714. Fixed point numbers (integers not floating-point)
715. Block floating-point (BFP) hybrids
716. Logarithmic number system (LNS)
717. Disaggtregation (prefill/decoding)
718. Computation re-use

719. Conditional computation

720. Approximate caching

721. Addition arithmetic optimizations
722. Approximate addition

723. Bitwise arithmetic optimizations
724. Fast multiplication arithmetic

725. Approximate multiplication

726. Logarithmic approximate multiplication
727. Approximate division

728. Bitserial arithmetic
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Appendix B: License Details

GGML License

Source URL: https://github.com/ggerganov/ggml/blob/master/stc/ggml.c
Project: GGML, https://github.com/ggerganov/ggml

Authors: Georgi Gerganov and ggml authors.

Copyright: Copyright (c) 2023-2024 The ggml authors.

Date: July 26th, 2024 (accessed)

License Type: MIT License

License URL: https://github.com/ggerganov/ggml?tab=MIT-1-ov-file#readme

Llama.cpp License

Source URL: https://github.com/ggerganov/llama.cpp

Project: Llama.cpp framework, https://github.com/ggerganov/llama.cpp

Author: Georgi Gerganov

Copyright: Copyright (c) The ggml authors

Date: August 2024 (accessed)

License Type: MIT License

License URL: https://github.com/ggerganov/llama.cpp/blob/master/LICENSE
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