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Preface 

Why a Book on C++ Memory? 

Memory is everything! It’s space, it’s speed, and it’s many bugs. There are so many 
aspects to using memory optimization techniques in C++, while avoiding all the 
pitfalls, that the humble RAM chip full deserves its own book. 

Please Leave a Review 

I hope you enjoy the book! Please consider leaving a review on the website where 
you purchased the book. Since few readers do this, each review is important to me, 
and I read them all personally. 

Feedback and Contacts 

Feedback from readers is welcome. Please feel free to tell us what you think of the 
book, the literature review, or our Aussie AI software. Contact us by email 
via support@aussieai.com. 

Other Books by the Author 

If you want fast code, here are a number of other books on efficient C++ coding: 

• Efficient Modern C++ Data Structures: Container and Algorithm 
Optimizations 

• C++ Low Latency: Multithreading and Hotpath Optimizations 

• Safe C++: Fixing Memory Safety Issues 

And some more with a particular focus on AI and fast LLM backends in C++: 

• Generative AI Applications: Planning, Design, and Implementation 

• Generative AI in C++: Coding Transformers and LLMs 

And if you’re a fan of going super-parallel with GPU chips: 

• CUDA C++ Optimization: Programming Faster GPU Kernels 

• CUDA C++ Debugging: Safer GPU Kernels 

https://www.amazon.com/dp/B0F88FPV7L/
https://www.amazon.com/dp/B0F88FPV7L/
https://www.amazon.com/dp/B0F2SNYS3L
https://www.amazon.com/gp/product/B0DK9LM8H3
https://www.amazon.com/dp/B0DMMVCMPQ
https://www.amazon.com/Generative-AI-Coding-Transformers-LLMs/dp/B0D14LHGZ6/
https://www.amazon.com/gp/product/B0DK21QQYD
https://www.amazon.com/gp/product/B0DK19V6NH


David Spuler                                              6 
 

About Aussie AI 

Aussie AI is a platform for the development of consumer AI applications, with a 
special focus on AI-based writing and editing tools for fiction. Our premier 
applications offer an extensive range of reports and error checks for both fiction 
and non-fiction writing, from a full-length novel to a short report. Please try it out 
and let us know what you think: https://www.aussieai.com 

Our AI Research 

The primary focus of research at Aussie AI is on optimizing LLM inference 
algorithms (i.e., “running” the model after training or fine-tuning), and our research 
is toward the following aims: 

• Fast on-device model inference algorithms, specifically for smartphones 
and AI PCs. 

• Scaling inference algorithms to large volumes of requests. 

• Efficient GPU inference algorithms (hardware acceleration). 

• Non-GPU inference optimization algorithms (i.e., software methods). 

Disclosure: Minimal AI Authorship 

Despite my being involved in the AI industry, there was almost no AI engine usage 
in creating this book’s text or its coding examples. Some text has been analyzed and 
reviewed using Aussie AI’s editing tools, but not even one paragraph was auto-
created by any generative AI engine. All of the CUDA C++ code is also human-
written, without involvement of any AI coding copilot tools. I mean, who needs 
them? 

However, AI was used in several ways. AI-assisted search tools, such as “Bing Chat 
with GPT-4”, were very useful in brainstorming topics and researching some of the 
technical issues. The main cover art image was AI-generated, followed by human 
editing. 

Disclaimers 

Although I hope the information is useful to you, neither the content nor code in 
this work is guaranteed for any particular purpose. Nothing herein is intended to 
be personal, medical, financial or legal advice. You should make your own enquiries 
to confirm the appropriateness to your situation of any information.  

https://www.aussieai.com/
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Many code examples are simplistic and have been included for explanatory or 
educational benefit, and are therefore lacking in terms of correctness, quality, 
functionality, or reliability. For example, some of the examples are not good at 
handling the special floating-point values such as negative zero, NaN, or Inf. 

Oh, and sometimes I’m being sarcastic, or making a joke, but it’s hard to know 
when, because there’s also a saying that “Truth is often said in jest!” Your AI engine 
certainly won’t be able to help you sort out that conundrum. 

Third-Party License Notices 

Except where expressly noted, all content and code is written by David Spuler or 
the contributors, with copyright and other rights owned by David Spuler and/or 
Aussie AI. 

Additional information, acknowledgments and legal notices in relation to this book, 
the C++ source code, or other Aussie AI software, can be found on the Aussie AI 
Legal Notices page: https://www.aussieai.com/admin/legal-notices. 

https://www.aussieai.com/admin/legal-notices
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1. C++ Memory Primitives 

Memory Functions 

Compiler vendors provide a variety of useful library functions to help with memory 
safety. Some of these are defined in C++, whereas others are platform-specific. The 
main classes of functions include: 

• Heap memory management 

• Stack memory management 

• Text string buffer management 

If we want to manage memory safely, we first need to examine all the different ways 
that a C++ program can get some memory.  

The main long-standing heap management functions are: 

• malloc 

• calloc 

• free 

And in C++ there are the basic operators: 

• new — object or primitive type allocation. 

• delete — de-allocation operator. 

• new[] — array allocation version. 

• delete[] — array de-allocation. 

Some other ones for allocating C-style strings: 

• strdup 

• _strdup 

• Strndup 
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And there’s also the rarely-used standard functions: 

• std::allocate (and custom allocators). 

• realloc — resize a heap block, possibly moving it. 

• alloca and _alloca — dynamically allocate a stack block of memory. 

• mmap — memory-mapped blocks representing disk files. 

• sbrk — low-level allocation of memory to processes. 

Stack Memory Management 

It is less commonly used, but possible, to dynamically allocate stack memory. 
Functions include: 

• alloca — the main stack memory allocation function (<alloca.h>. 

• _malloca — stack memory allocation (Microsoft CRT) 

• _freea — free memory on the stack or heap (Microsoft CRT) 

• __builtin_alloca_with_align (GCC version with alignment) 

Note that “de-allocation” of a stack block is technically not required, because the 
memory is reclaimed when the function returns and the stack is unwound. 

Platform-Specific Memory Management 

There are also a variety of platform-specific and newer functions. The main header 
files are: 

• <stdlib.h> — standard memory allocation functions. 

• <malloc.h> — Linux or Windows. 

• <crtdbg.h> — C++ Run-Time debug (Microsoft MSVS). 

• <Strsafe.h> — Microsoft MSVS. 

The platform-specific or newer memory-related functions include: 

• _expand (MSVS) — lengthen a heap block, in place, without moving it. 

• _malloc_dbg (MSVS) — debug versions of basic memory primitives 
in <crtdbg.h>. 

• reallocarray — array version of realloc. 

• free_sized (C23) 

• set_new_handler and get_new_handler (C++11) 
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Address Alignment 

One of the main problems with memory primitives was handling of alignment. The 
standard methods of achieving alignment in C++ include: 

• alignas specifier 

• __declspec(align(N)) 

• aligned_alloc (C11/C++17) 

Some other functions and language features include: 

• _alloca (aligned version). 

• free_aligned_sized (C23) 

• _aligned_malloc (Microsoft CRT) 

• _aligned_realloc (Microsoft CRT) 

• _aligned_free (Microsoft CRT) 

• _aligned_msize (Microsoft CRT) 

• _aligned_offset_malloc (Microsoft CRT) 

• _aligned_offset_realloc (Microsoft CRT) 

• posix_memalign (POSIX) 

• _aligned_storage (deprecated) 

• std::aligned_storage 

• aligned_union (deprecated) 

• alignment_of 

• _Alignas 

Unix and Linux Memory Management 

There are a variety of Linux memory management primitives available via GCC, 
mostly defined in <malloc.h>: 

• malloc_usable_size — size of an allocated memory block. 

• mallinfo, mallinfo2 — get allocated memory block information. 

• malloc_info — exports XML info about the heap state. 

• malloc_stats — allocation statistics. 

• mallopt — set memory allocation options (e.g., can control how glibc 
handles a double-free error.) 

• getrlimit and setrlimit — manage resource limits, including the 
heap. 
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Some of the other non-standard memory functions in early Unix and Linux include 
extra versions with bit flag controls: 

• mallocx 

• rallocx 

• xallocx 

• sallocx 

• dallocx 

• sdallocx 

• nallocx 

There are also “memory allocation control” and other memory allocation primitives 
in older UNIX and Linux: 

• mallctl 

• mallctlnametomib 

• mallctlbymib 

• malloc_stats_print 

• malloc_usable_size 

• malloc_message 

Windows Memory Management 

Windows has a variety of additional functions, some in <Strsafe.h> and others 
are in the C++ Runtime (CRT) functions and its debug versions in <crtdbg.h>: 

• _malloc_dbg and other “debugging heap” versions (<crtdbg.h>). 

• _CrtCheckMemory — check heap for integrity. 

• _CrtSetDbgFlag — control debug flags. 

• _CrtMemState memory block structure in crtdbg.h 

• _heapmin — reclaim some heap memory (heap minimize). 

• _heapadd — increase heap size. 

• _heapchk — self-test heap for consistency. 

• _heapset — fill all unallocated heap memory with a canary byte! 

• _heapwalk — traverse through the heap blocks. 

Windows has a feature that I especially like: callbacks for memory allocation 
operations! Here are the details: 

• _CrtSetAllocHook — set a “hook” (callback) when allocation occurs. 

• _CrtGetAllocHook 
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There are also various other calls about memory addresses: 

• _CrtIsMemoryBlock — check addresses. 

• _CrtIsValidHeapPointer — check heap addresses. 

• _CrtIsValidPointer 

• _CrtReportBlockType 

Size of Allocated Heap Block 

There’s no standardized way to take the address of a heap block and return its size. 
This is unfortunate, because that would be helpful in several ways for memory 
safety. Hence, there are platform-specific versions: 

• _msize — Windows MSVS version. 

• malloc_usable_size — GCC version. 

• malloc_size — MacOS version. 

Note that the size of the memory block returned from these functions is not 
necessarily the same as the original size of the request. It shouldn’t be less, but it 
can often be larger, because the system memory allocator has padded out the 
allocated block for alignment or other optimization reasons. When you run simple 
tests, it will probably appear to always be the correct size, but after a longer 
execution with a lot of allocations and deallocations, the algorithm for the memory 
allocator can get trickier, and it may vary significantly. 

If a platform-specific block size function does return a larger value for the block 
size, it’s not easy to know this has occurred. Hence, don’t assume that this size value 
will point exactly to your redzone area, or whatever other tricks you’re doing with 
the end of your allocated memory blocks. 

As a further warning, note that _msize on Windows is a little fragile, because it 
throws a runtime exception if the address is either: 

(a) a non-heap address, or 

(b) not the start of a heap address. 

Hence, it’s not that useful in testing whether a random address is a heap block or 
not. Maybe it needs to be combined with _CrtIsValidHeapPointer. 
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C++ Compiler Hardening 

Personally, I think that C++ compilers should have extra modes that harden the 
language. There are some standardization efforts to create a “hardened standard 
C++ library” and these are laudable, but there are language-specific issues that only 
the compiler can fix. 

As computers have gotten faster, the relative cost of addressing these issues 
becomes relatively low against the expense of tracking memory issues. Some of the 
areas where the compiled code could be safer and tolerate issues include: 

• malloc and new should zero memory (like calloc). 

• alloca should also zero memory. 

• realloc should zero any extra allocated memory areas. 

• new and delete operators should be interchangeable with malloc and 
free (e.g., free on a new block should work, although it won’t run any 
destructor). 

• new/delete should also work with the new[]/delete[] array 
versions (though this also misses some destructors). 

• Stack variables should be zeroed when a function starts (like global 
variables). 

There are a lot of little “undefined” areas that are glitches in the standard C++ 
library, which probably should be detected and tolerated, or at least warned about, 
by the library functions instead: 

• std::list crashes if deleting an object during an iterator scan. 

• fflush(stdin) should be detected and tolerated. 

• Mismatched fread/fwrite on a file without intervening fseek would 
be easy to detect. 

• strncpy should have a warning when it truncates and leaves the string 
without a null. 

• cos or sin of a number larger than two pi probably means the caller has 
confused radians and degrees. 

• strlen(NULL) should not crash. 

We can “fix” some of these issues by defining our own intercepted versions of these 
functions, either via using our own wrapper function names instead, or via 
automatic preprocessor macro intercepts or link-time changes. 
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2. Cache Locality 

What is Cache Locality? 

Cache locality is the idea of staying “local” in our accesses to memory locations to 
maximize the benefits of some hardware caches in the CPU. There are two general 
categories of cache locality: 

• Instruction cache locality — machine code instruction execution. 

• Memory cache locality — data access from memory locations. 

There’s a lot going on in the CPU in terms of caching accesses and also prefetching 
possible future accesses. Cache locality is the idea of ensuring that our C++ code 
maximizes the value of those hardware cache optimizations. 

Caching occurs primarily at a lower-level than multithreading, which means that 
each thread’s execution can benefit from these optimizations. Most of the methods 
to improve cache locality are related to the general code structure, rather than 
specific ways to do thread synchronization or other multi-threading requirements. 
The general ideas include: 

• Tight code blocks and loops — instruction cache locality. 

• Localized and predictable memory access sequences — data cache locality. 

You can do both together if you like, since they have orthogonal speedups. Easier 
said than done! 

There are various tools you can use to examine the rates of cache hits and cache 
misses in the instruction or data caches. Some of the main ones include: 

• perf (Linux) 

• cachegrind (valgrind) 

• Intel VTune 

• gperftools 

• uprof (AMD) 

• likwid-perfctr 
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Depending on how you look at it, these speedups make cache locality either more 
or less important in multithreaded applications versus sequential code. It’s more 
important in multithreading because we have lots of threads in different places 
doing different things, all of which need to have good cache locality.  

Or maybe it’s less important, because the CPU has to throw away all of those per-
thread hardware caches at every context switch, so why bother with cache locality? 
I’ll leave it to you to judge that. 

Instruction Cache Locality 

The instruction cache stores recently executed machine code instructions in a CPU 
hardware cache. There’s also a separate mechanism of “instruction prefetching” to 
try to load the next instruction that will be executed. As part of this prefetching 
method, there’s also “branch prediction” in the CPU, which attempts to predict 
which of two branch directions will get chosen. 

To get the best out of these instruction speedups, our C++ code should generally 
use: 

• Short and tight loops 

• Fewer branches 

Keeping loops short will mean that the CPU stays within the same block of code, 
maximizing the chances that it already has an instruction in its cache. Interestingly, 
this means that some common code optimizations can be bad for instruction cache 
locality: 

• Inlining of functions 

• Loop unrolling 

Both of these can cut both ways, since they both reduce branches, but also lengthen 
code blocks. Whenever you’re tempted to maximize your use of such optimizations, 
think about the plight of the poor instruction cache as it tries to keep up. 

Branches are another separate issue from short code blocks. In fact, long code 
sequences of compute instructions are fine for branch prediction. To maximize the 
CPU’s branch prediction capability, we should either have few branches, or at least 
have very predictable branches. At the limit, we could use branchless programming, 
which is a set of tricks to get rid of branches. See Chapter 4 for more on branch 
prediction and branchless coding methods. 
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Data Cache Locality 

There are numerous improvements that you can make to improve total cache 
locality of the memory access caches. And there are rather a lot of different caches 
for CPU memory accesses: 

• L1 and L2 caches (per-thread) 

• L3 cache (shared) 

• TLB cache (virtual address accesses) 

• NUMA multi-core caching 

There are some general recommendations for the entire application, that aim to 
reduce memory cache misses: 

• Use less memory! 

• Fewer memory allocations 

• Smaller data sizes 

But particular algorithms can also be modified to keep nearby memory in the 
caches. Data structures can affect the level of cache locality, with improvements 
such as: 

• Separate cold data from hot data — improve cache locality for hot data. 

• Structure of Arrays (SoA) vs Array of Structures (AoS) — which one is 
best depends on the context. 

• Contiguous data structures — arrays and vectors, not linked lists or binary 
trees. 

• Compact data structures — smaller memory sizes are easier to maintain in 
the cache. 

The code execution of various algorithms can alter the sequence of memory 
accesses, and thereby maximize cache locality. Some well-known improvements 
include: 

• Loop segmenting — process short sub-sequences of a longer array. 

• Tiling algorithms — process 2D “tiles” in a matrix or multidimensional 
data structure (also called “blocking”). 

The goal of these algorithm modifications is to iterate over a small sub-section in 
the data, keeping cache locality during that “hot” computation, and then move on 
to the next part. This works particularly well with matrix multiplication, because it 
involves multiple computations with every element of the matrix. 
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There are also some dynamic approaches whereby you can manually ensure that 
data is already in the cache when you need it: 

• Memory prefetching 

• Cache warming 

See Chapter 3 for more about prefetching and cache warming. 

Memory Hierarchy 

To fully understand the caches, we need to know of all the different types of 
memory used in a C++ program. Handling memory properly is one of the most 
important parts of C++ optimization, because memory access is much slower than 
the CPU. Memory is the bottleneck, and you need to know where the compiler puts 
everything. 

Learn to love the linker-loader! 

When your program starts running, the “loader” puts all sorts of things in different 
places. The basic moving parts that happen before execution starts are: 

• Instructions — the code’s machine instructions. 

• Global read-write memory — initialized or zero-initialized global variables. 

• Read-only data — string literal data. 

To get deeper into the memory segments used by the linker-loader, these are the 
main ones: 

• text — stores the machine code instructions (read-only, executable) 

• bss — all zero’d global data such as global arrays without non-zero 
initializers (read-write) 

• data — Initialized non-zero global variable data (read-write) 

• rodata — read-only data such as string literals or constant globals (read-
only) 

Yes, the “text” segment has a confusing name, and it’s sometimes called the “code” 
segment. According to Wikipedia, BSS stands for “Block Started by Symbol,” but 
you didn’t need to know that. 
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All of the above segments are statically resolved, for the most part, by the linker. 
However, once the program gets going, there are more dynamic allocations for 
memory within its virtual address space. The main types of dynamic memory are: 

• Stack memory — the function call stack with parameters and local variables 
(also alloca). 

• Heap memory — this is dynamically allocated by the new operator or 
the malloc function. 

• Thread-local storage — via the “thread_local” keyword (C++11). 

See Chapter 8 for more about reducing stack and heap memory, and now let’s 
discuss thread-local storage. 

Thread-Local Storage 

Thread-Local Storage (TLS) is memory that is exclusive to a particular thread. The 
other threads do not have access to it. In C++, this is defined via the 
“thread_local” keyword, available since C++11. The usage is simple: 

    thread_local int tls_variable; 

There are also some earlier and non-standard versions: 

• _Thread_local — older version of specifier. 

• __thread — GCC non-standard modifier with similar semantics. 

• __declspec(thread) — on Microsoft C++. 

The key features of thread_local variables are: 

• Accessible in one thread only. 

• Persistent memory storage. 

• Variables, objects or arrays only (cannot have a thread_local function). 

Per-thread access. If you declare a variable as “thread_local” then the C++ 
compiler has to ensure the semantics. Accesses to that variable in C++ must go to 
the version of that variable for the current thread.  

Typically, this means that the variable has multiple copies, with different addresses 
for each thread. 
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How is it implemented? It’s not necessarily using any particular hardware support 
behind the scenes, and it’s not necessarily using any magic per-thread caching. The 
C++ compiler can allocate different addresses per thread to the same data, and then 
ensure that accesses within each thread get the correct version. After all, the C++ 
compiler knows that a particular variable is “thread_local” because it’s a type 
specification. 

Persistent memory semantics. The thread_local specifier is very similar to the 
static keyword in terms of its memory persistence. Its effect is similar to: 

• Global variables (with external scope linkage) 

• static file-scope variables 

• static local variables (in a function) 

• static data members (in a C++ class) 

A thread_local variable is created when a thread starts and destroyed when the 
thread finishes. This has some implications: 

• At most one copy is created at program startup. 

• Dynamically created (along with the thread itself). 

• Does not persist across thread shutdown and restarts. 

Note that persistence and scope are different things. Persistence is whether the data 
is maintained across multiple accesses, whereas scope is simply whether its name 
can be referenced within code statements. 

For example, if you use a thread_local variable as a local variable in a function, 
its value will persist across invocations to that function, and always have the same 
address. However, it’s scope is limited to within the function, where its name is 
accessible. This is the same as a static local variable, but with the extra semantics 
that only one thread can see this version. If multiple threads call the function, they’ll 
get different versions of the thread_local variable inside the function. 

Thread-local variables occupy a special niche in the programmer’s bag of tricks. 
You don’t need to wrap accesses with any locking or other synchronizations, which 
is nice. They are like atomics, in that they cannot be messed up by another thread, 
but unlike atomics because they are not shared across threads. The main usage is to 
have some shared code, but also have a special non-shared variable, especially where 
you want the variable to persist, such as having per-thread counters, flags, 
intermediate calculations, and so on. 
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3. Cache Warming 

What is Cache Warming? 

Cache warming is a specific type of prefetching optimization aimed at keeping the 
various memory caches fresh. It typically involves scanning through all the memory 
data required for the “hot path,” even though there’s no real intention to use the 
data (until later). The hot path maintains a warm cache, so that when the hot path 
is executed for real (e.g., a trade execution in HFT), then memory accesses are very 
fast. 

There are multiple ways to trigger the prefetching of data needed to keep the cache 
warm: 

• Low-level C++ prefetching primitives. 

• Copy to volatile temporary variables. 

• Explicit dry-run parameters in the code. 

Unlike other types of CPU prefetching, cache warming is something your C++ 
code does directly, rather than a hardware-enabled feature. It’s up to you to 
determine what data is needed the most in hot path computations, and then pre-
load that data on every pass-through. You effectively do a “dry run” of the hot path, 
but access the memory to ensure it’s maintained in the cache. 

Note that cache warming is not always a guaranteed win. Using the “dry run” 
approach can end up with a lot of extra conditional tests: 

    if (!dry_run) { 

        // Do something 

    } 

This can negatively impact performance in two ways: 

• Runtime cost of testing the flag, and 

• Extra branches of code that slow down CPU branch prediction. 

As with everything in multithreading, you really need to time it to see if these costs 
are less than the gain from faster memory cache accesses. 
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Memory Prefetch Primitives 

Although you can “manually” prefetch data in basic C++ code, there are also some 
builtins that are convenient for larger amounts of data. Some of the C++ primitives 
to use for cache warming include: 

• __builtin_prefetch (GCC) 

• _mm_prefetch (GCC) 

Prefetching is more effective on some data structures than others, with a general 
preference for contiguous data blocks. Cache locality issues with the “cache lines” 
of size 64-256 bytes are another reason. As a practical example, contiguous arrays 
are better than dispersed data structures liked links lists and trees. This means 
that std::vector contiguous memory layouts can be more effectively prefetched 
than the spread-out memory used by std::list objects. 

Volatile Temporary Variables 

Another approach for manual prefetching is the use of volatile specifier on 
temporary variables. By assigning data to a volatile temporary variable, the 
optimizer cannot remove an apparently unused assignment. For example, consider 
if we do this: 

    int temp = my_order_book[0]; 

The C++ compiler may notice that “temp” is not used anywhere else, so it can 
throw away that entire assignment statement. The solution is to use 
the volatile specifier: 

    volatile int temp = my_order_book[0]; 

The compiler is forced to load the data into memory even when it seems to be 
unused by the remainder of the code, because assigning data to 
a volatile variable is itself a side-effect. 

Note that we only want to declare temporary variables as volatile, but not the 
shared global data arrays we’re trying to prefetch. We don’t want the main data 
structures to have this status. If our main global variables or arrays were declared 
as volatile, this would actually interfere with having them loaded from the 
memory caches. They would be uncached! 
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Dry-Run Executions 

A simple approach to cache warming is to still execute all the steps, even if you’re 
not going to do anything. For example, in HFT, you could call the “execute trade” 
function even if the decision is to not trade any stocks. 

The method is simply to pass a Boolean flag indicating a “dry run” or “test run” or 
“warm-up run” or whatever term you like. A simple conceptual example: 

    if (!dry_run) { 

        orderobj.setup(ticker, price); 

        execute_trade(orderobj); 

    } 

A better way to get more cache warming is to populate all the objects as if you were 
going to actually do a trade. At the very last step, the dry-run flag is tested, and no 
trade gets submitted. 

    orderobj.setup(ticker, price); 

    if (!dry_run) { 

        execute_trade(orderobj); 

    } 

But we really want to warm up the entire path, even the trade execution logic. 
Hence, we go deeper by passing the flag inside: 

    orderobj.setup(ticker, price); 

    execute_trade(orderobj, dry_run); 

And our trade execution code looks like: 

    void execute_trade(Order &order, bool dry_run) 

    { 

        if (!dry_run) { 

            g_order_count++;  // Count total 

            // Other accounting stuff.. 

            // Submit the order... 

        } 

    } 

That isn’t really much better, is it? We didn’t warm anything extra, but just pushed 
the test inside the function. 
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Double Data Trouble 

We really need to actually prefetch some data! One way is to double up all our data. 
The basic data for order count tracking is like this: 

    int g_order_count = 0; 

One common trick is to use an array of two values with two meanings: 

• Live data 

• Dry-run data (unused) 

Hence, our order count becomes: 

    int g_order_count[2] = { 0, 0 }; 

Then we can try this: 

    if (!dry_run) { 

        g_order_count[0]++;  // Live run 

    } 

    else { 

        g_order_count[1]++;  // Dummy 

    } 

The point of the dummy is that we access the [1] array element in order to warm 
up the [0] element (without changing it). This works because of “false sharing” 
with “cache lines,” which is often a slowdown problem, but here they offer an 
advantage. We can warm the cache by touching adjacent array elements, without 
disturbing the main data. (Note that here we don’t use the alignas trick to avoid 
false sharing, because we actually want it to occur!) 

In the spirit of branchless programming, we can make this code tighter by mapping 
the Boolean flag to 0 and 1 integer values: 

    g_order_count[(int)dry_run]++; 

Note that we have actually added extra computation to our hot path! Instead of a 
global variable increment, it’s now an array index lookup plus the increment.  
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We need to measure our optimizations to ensure that the gain from memory cache 
warming is greater than the extra cost of these array indexing operations. (We’ve 
also added a large amount of extra computation to our cold path, including whole 
extra function invocations, but we care less about that.) 

Our conceptual trade execution routine starts to look like: 

    void execute_trade(Order &order, bool dry_run) 

    { 

        g_order_count[(int)dry_run]++;  // Count total 

        // Other accounting stuff.. same tricks 

        if (!dry_run) { 

            // Submit the order... 

        } 

    } 

The idea is that our “dry run” mode has run over as much of the code as possible, 
only stopping short of actually submitting the order. By maintaining two copies of 
all data, with dry-run and live values, we can prefetch all of those arrays into 
memory caches. 

Problems with Cache Warming 

The above cache warming double-array trick has used false sharing of cache lines 
for good, not evil. And yet it has a problem: false sharing. 

Our use of false sharing was harmless (and helpful) because we assumed only a 
single thread was in use. There’s no cache invalidation slowdown when it’s only one 
thread. The cache warming idea for the L1 and L2 caches requires a single thread, 
although the L3 cache can be warmed for multiple threads.  

Hence, this cache warming idea has limitations: 

• Single thread required for all order submissions (if you want L1/L2 cache 
warming). 

• Thread pools and other multi-thread design patterns are therefore 
problematic. 

We cannot really have a thread pool model where each consumer thread could 
potentially submit a trade. The above cache warming logic only works for one 
thread. If we try to use multiple threads, our cache warming logic is actually a cache 
freezing de-optimization, because we’ve got the “false sharing” problem for real. 
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Even worse, consider what happens if we try to use a thread pool model with the 
following modifications: 

(a) multiple consumers, where each thread tries to decide whether to trade, 

(b) single trade submission thread. 

In other words, multiple decider threads, where each decider then hands off to the 
single trading thread (which is kept warmed). 

But then we’ve made another conceptual error. The hot path should really include 
the decision logic, as the overall latency is from receiving incoming data to 
submitting a trade. However, we haven’t kept the cache warm for these multiple 
“decider” threads, particularly so for all the data they use in deciding whether to 
trade, so the decision modules won’t run fast. 

Possible solutions include: 

• Single thread for all decision and order submission (with L1/L2 warming), 
or 

• Keep multiple threads warm (tricky!), or 

• Modify the cache warming code tricks to use reads only, not writes 
(avoiding the cache invalidation problem), or 

• Only warm up the L3 cache (for multiple threads). 

But these solutions have additional problems: 

• Single order thread idea lacks a failover or backup plan. 

• Single order thread cannot issue two trades without blocking. 

• Warming multiple threads means each thread needs its own copy of the 
data. 

None of these solutions are great, so that’s why they pay you the big bucks. 

Further Optimizing Cache Warming 

Another further iteration of advanced cache warming would be to actually submit 
a dummy order, such as if the exchange connectivity allowed the sending of test-
only transactions. Doing this would allow us to keep warm any of the data structures 
that are actually inside the client API of the exchange connection. 
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The advantage of the use of dry-run cache warming is that all the various data 
structures used to prepare a trade are kept warm in the memory caches (L1/L2/L3). 
The downside is extra processing that occurs whenever you’re not trading. In other 
words, there are extra computations done on the “cold path” every time, just to 
keep the “hot path” all snuggly and warm. 

The code to traverse all the memory data structures can be a significant cost in itself, 
although it only occurs during the cold path. There are several advanced tweaks to 
optimize your cache warming code: 

• Exploit cache line sizes for quicker loading of contiguous data. 

• Limit cache warming to the total L1/L2/L3 cache size. 

A further optimization of cache warming is to use “cache lines” to your advantage. 
The L1/L2 caches don’t work on individual bytes, but on blocks of memory called 
“cache lines”, which are usually sized between 64 bytes and 256 bytes (e.g., Intel is 
usually 64 bytes, Apple M2 is 128 bytes, some other CPUs are 256 bytes).  

Hence, to load a “cache line” of 64 bytes on an Intel CPU, you only need to load 
one of the bytes from the 64-byte block. Your C++ code doesn’t need to explicitly 
touch every element of a vector to have the entire vector hot as a fresh-baked oven 
loaf in the cache. Admittedly, this doesn’t speed up the hot path itself, but only the 
preliminary cache warming code. 

An important limitation of cache warming is the maximum sizes of the L1, L2, and 
L3 caches. If you’re trying to warm up the CPU cache for your 7B AI model, that’s 
7 billion floating-point numbers, and trying to keep them all in the CPU cache isn’t 
going to work. On the other hand, you can probably preload an entire 7B model 
into the CPU RAM (i.e., global memory, not the caches), or into the GPU’s VRAM, 
but that’s preloading not cache warming, and it’s a slightly different story. 

If you know your CPU’s cache size, you can optimize your cache warming strategy 
by only trying to prefetch that much data. If you load more data than the cache size, 
the newly warmed data is just evicting other data from the cache that you prefetched 
earlier in the warming code.  

Hence, prefetching exactly the amount of data equal to your CPU cache size is the 
optimal cache warming strategy. 
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4. Branch Prediction 

What is Branch Prediction? 

Branch prediction is an optimization in the CPU whereby efficiency is improved by 
considering upcoming branches. The CPU in its execution tries hard to predict 
which of the two paths of a branch is more likely to be taken. Some CPUs also do 
“speculative execution” of the future instructions, to get ahead, which must be 
discarded if the “wrong” branch is actually executed by the code. 

For the programmer, these branch prediction capabilities give the opportunity to 
further optimize your code to capitalize on the CPU’s abilities.  

Optimization techniques for the C++ programmer include: 

• Eliminating branches in the hotpath so that the code runs straight and 
narrow (i.e., fast!). 

• Hinting to the compiler about the most likely branches (e.g., the newer 
[[likely]] and [[unlikely]] specifiers). 

• Keep unavoidable branches in the same neighborhood (e.g., short loop 
bodies). 

Branch prediction has a problem in HFT: the hot path is rarely executed (i.e., 
actually submitting a trade). All of the branch prediction logic would try to run the 
cold path, as it would always be predicted. But what we want is for the branch 
prediction logic to always choose the hot path, even though it would mostly fail to 
be correct.  

Thus, all of HFT is at odds with a whole swathe of computing theory about branch 
prediction. HFT needs a “set opposite world mode” flag, but I’m yet to find one in 
the GCC documentation. 
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Types of Branches 

First things: analyze your hotpath code for branching. The main types of branches 
in C++ code include: 

• if statements and if-else statements. 

• Loop conditions and loop bodies. 

• Loop control statements: break, continue. 

• Function calls and return statements. 

• switch statements (multi-way branching). 

Some of the less obvious types of branches are: 

• Ternary operator (?:) 

• Short-circuiting in the && and || operators 

There are also hidden branches in C++ code features such as: 

• Virtual function calls 

• Function pointers (and function names) 

Branch Compiler Hints 

There are several ways for the programmer to give “hints” to the compiler and its 
optimizer about which pathways are more likely. As always, the compiler is free to 
ignore hints, so you have to check in the assembly output what effect your changes 
have. Some of the ways to give hints include: 

• [[likely]] and [[unlikely]] path attributes (C++20). 

• likely() condition marker (C++20) 

• noexcept attribute (C++11) 

• [[noreturn]] attribute (C++11) 

• [[assume(expression)]] attribute (C++23) 

GCC also has various extensions available to give hints: 

• __builtin_expect(expression, value) (GCC extension) 

• hot (GCC function attribute) 
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Branch Profiling 

Branch profiling is the recording of pathway stats to analyze the most likely 
branches. This can also be re-used in the compiler’s optimization mode, so that the 
optimizer can perform branch-aware optimizations. Hence, there is a two-step 
process whereby better branch prediction can be incorporated into your C++ 
executable code. 

GCC has capabilities to store and use branch prediction statistics in its optimization 
phase. The arguments to use are: 

• -fprofile-arcs (GCC command-line argument) 

• -fprofile-generate (GCC command-line argument) 

• -fprofile-use (GCC command-line argument) 

Following this process will allow GCC to generate more optimal code under 
assumptions based on branch frequency in its seen executions. Obviously, this is 
an automatic method, but needs multiple steps in the build: 

• Compile without branch hints 

• Run the tests 

• Output the branch prediction data 

• Re-compile the code with branch optimizations enabled 

Note that for HFT, the fully hot path (i.e., trade execution) is actually a rare branch, 
so this historical branch data won’t be that useful. One solution is to run GCC in a 
test mode in which the hotpath is always dummy-executed! Other early parts of the 
hotpath in HFT can still benefit in both situations, such as the trading decision 
logic, which is always executed on incoming market data. Obviously, non-HFT 
applications can always benefit, as the most likely paths are also the most heavily-
executed. 

Branch Heuristics 

In the absence of other branch prediction data, the CPU and compiler tools fall 
back on some heuristics. Some of the common ones include: 

• The if code block is more likely to be executed than the else code block. 

• Loops tend to be executed multiple times. 

• Backwards branches are assumed to be loop iterations (and are preferred 
due to the prior assumption). 
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Hence, we can make some heuristic recommendations for how to organize your 
code: 

• Put common case code in the if block. 

• Have error handling in the else block. 

• Don’t use once-only loop executions. 

Branch Elimination 

The simplest way to avoid branch prediction issues is to have fewer branches. There 
are various ways to achieve this, ranging from minor code tricks to re-writing your 
entire algorithm to have fewer conditional tests. 

Which branches to eliminate? The worst kinds of branches that need elimination 
include: 

• Long if-else-if sequences 

• Nested if-else statements 

What data is being tested by a branch condition is also critical, and some of the 
problematic branches are based on unpredictable conditions: 

• Branches depending on user inputs 

• Branches depending on random numbers 

• Branches depending on system clocks 

The best types of conditional tests include: 

• Compile-time known tests 

• Predictable conditions 

The techniques available to eliminate your least favorite branches include: 

• Reorganize the overall algorithm to have fewer branches. 

• Defer or combine error checking for multiple errors so that there’s only 
one error handling branch. 

• Function call optimizations such as inlining and call hierarchy flattening. 

• Loop conditional test reductions such as loop unrolling and iteration 
bounds known at compile-time. 

• Branchless programming techniques and tricks to change conditional paths 
to arithmetic computations. 
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Branchless Programming Tricks 

Branchless programming is a variety of coding tricks to get rid of control flow 
branches. The main approach is to remove conditional tests, such as if statements, 
by using a variety of arithmetic computations instead. Code that has no branches in 
a long block can run very fast on a CPU because of instruction prefetching. 

Advantages of branchless programming: 

• Avoids branch prediction issues (CPU speedup). 

• Avoids warp divergence in CUDA C++ (GPU speedup). 

• Job security 

Possible general software engineering disadvantages of these branchless arithmetic 
bit tricks: 

• Code complexity — isn’t it a good thing? 

• Unreadable code — as if we care. 

• Maintainability — is someone else’s problem. 

Even worse, the speed benefit might be a mirage. The issues include: 

• De-optimizations from too many arithmetic operators — benchmark your 
tricks! 

• Don’t underestimate the optimizer’s capability on simple code. 

• Tricks can confuse the optimizer (undermining any benefit). 

The types of methods for branchless coding include: 

• Bit masks 

• Bit arithmetic (bitshifts, bitwise AND/OR/XOR) 

• Mapping Boolean flags to 0 or 1 

• Mapping logical operator results to 0 or 1 

• Lookup tables 

• Conditional move (CMOV) assembly statements 

• Ternary operator (?:) 

Some of the more traditional C++ optimizations techniques can also reduce 
branching: 

• Loop code hoisting of conditional tests. 

• Compile-time settings and configurations. 
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Ternary Operator and CMOV 

Using the C++ ternary operator is one way to help the compiler write branchless 
code. Consider the basic if statement: 

    if (x > y) { 

        max = x; 

    } 

    else { 

        max = y; 

    } 

This can be more concisely written with a ternary operator: 

    max = (x > y) ? x : y; 

The ternary operator can be implemented in the compiler backend using a CMOV 
(conditional move) register assignment statement. This is a branchless instruction 
that implements the conditional assignment very efficiently. 

In theory, both pieces of code are equivalent, and the compiler really should 
generate identical code. In practice, the use of the ternary operator makes it easier 
on those poor compiler engineers, because it’s 100% guaranteed that an assignment 
is required, whereas the if statement requires a significant amount of extra 
compile-time static analysis to deduce that both assignments are setting the same 
variable. The C++ compiler is more likely to emit a branchless CMOV assembly 
statement with a ternary operator. 

Boolean Flags are 0 and 1 

Another way to reduce branches is to use Boolean flags in arithmetic, using them 
as having the values of integer 0 and 1. Here’s a simple example: 

    bool inc_flag; 

    int x = 0;  

 

    if (inc_flag) { 

        x++; 

    } 

This can be implemented in a branchless manner: 

    x += (int)inc_flag 
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Note that the type cast to int is not really needed, but helps with readability, and 
ensures you don’t get compiler or static analyzer warnings. 

Whether that is faster is something that needs testing because it forces an addition 
operator into one of the pathways that previously had none, but at least its 
branchless so it helps with branch prediction. 

That was a simple example, but many other ideas are possible. Instead of this: 

    if (clear_flag) x = 0; 

You can try this branchless version: 

    x *= (int)!clear_flag; 

I’m betting that it’s actually slower, since multiplication is an expensive operation, 
but who’s to know without running a benchmark. 

Logical Operators are 0 and 1 

In the same vein, the Boolean values of the && and || operators can be treated as 
0 and 1 in integer arithmetic expressions. Here’s an example of the maximum 
computation: 

    max = (x > y) * x + (y >= x) * y; 

Again, the ternary operator’s CMOV instruction is probably faster than this de-
optimization. 

Bitwise XOR Tricks 

There’s the well-known XOR trick to swap two integer variables without using a 
temporary: 

    x = x ^ y; 

    y = y ^ x; 

    x = x ^ y; 

Don’t worry; nobody understands how this works. But it uses three assignments, 
no temporary variable, and no branches. 
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Sign Bit Extension Masks 

If you’re doing any arithmetic with negative values, you can use bitwise tricks by 
creating two masks depending on the sign bit. The idea is that the bitmask is: 

• All 0’s if the number is positive (or zero). 

• All 1’s if the number is negative. 

In other words, the bitmask is 32 bits all set to the same bit value as the sign bit. 
The bitmask value is either 0 or 0xFFFFFFFF (which is also that artist previously 
known as -1). We can generate this using the right bitshift operator: 

    unsigned int mask = x >> 31; 

Yes, I really should portably compute the bitshift count using the standard 
macro CHAR_BIT and sizeof(int) as nicely done in [Farrier, 2025]. 

Example: RELU Activation Function 

Let’s have a go at making the RELU function branchless. RELU is an “activation 
function” in LLM backends, and it’s quite simple: 

    if (x < 0) { 

        RELU = 0; 

    } 

    else { 

        RELU = x; 

    } 

In other words, change negatives to zero, but leave positives unchanged. Here’s the 
ternary version (faster): 

    RELU = (x < 0) ? 0 : x; 

The basic idea for a branchless, bitwise RELU is: 

    unsigned int umask = (x >> 31); // All 0’s or 1's 

    RELU = (x | umask); 

Actually, that’s buggy, with the bit masking the wrong way. Here’s the correction: 

    unsigned int umask = ((-x) >> 31); // All 0’s or 1's 

    RELU = (x | umask); 
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Beware this might be a de-optimization, because the ternary version might be a 
single CMOV instructions, whereas this version has three operators: negative, right 
bitshift, and bitwise-AND. 

Sign Bitshift Portability 

There’s a major portability problem with this code, because right bitshift on a 
negative signed integer is actually undefined behavior in C++. The compiler is free 
to shift in zero bits or to sign bit extend on the leftmost bit position, in its sole 
discretion. Hence, you need to check your platform to see what the >> operator 
does, and whether this rightshift bitmask idea will work. 

Note that we cannot fix this by doing the right bitshift on an unsigned type, 
which is guaranteed to shift in a zero bit (well-defined in standard C++, but not 
what we want). Note also that this is only undefined for right bitshift, not for left 
bitshift, which is well-defined and always shifts zero bits in on the right side (again, 
not what we want). 

Of course, you can create the sign-based bitmask more portably by avoiding the 
right bitshift operator, but this loses the branchless benefits: 

    unsigned int mask = (x >= 0) ? 0 : 0xFFFFFFFF; 

That’s safe and slow, and what’s the point of that? 

Lookup Tables 

Precomputation of lookup tables is a fast way to get a double benefit of fast 
computation and branchless code. A good example in the standard C++ library are 
the functions for character types. Here’s a slow branching version: 

    #define islower(c)   (((c) >= 'a') && ((c) <= 'z') ) 

This has lots of computation and there are also branches in the short-circuiting with 
the && operator. 

A faster version uses a precomputed lookup table with 256 bytes. 

    #define islower(c)  _islower_table[(unsigned char)(c)] 

This is faster and branchless, at the cost of 256 bytes of global memory, and has 
already been done for you in the standard libraries by those uber-brainy compiler 
engineers. 
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Instruction Reordering Optimizations 

Instruction reordering is an optimization performed inside the CPU where it 
actually runs the machine code instructions out-of-order. The way this works in 
simple terms is: 

• Delay any opcodes that don’t have the data they need (e.g., from memory). 

• Run any instructions that are ready as soon as possible. 

There’s a whole smash of fun to be had researching how this all works in the CPU. 
There are schedulers and “stations” and various queues and caches. Kudos to all 
those hardware engineers. 

Another special type of fun is for compiler engineers. GCC does a lot of fancy 
optimizations in the code generation backend in terms of taking advantage of 
instruction orders. 

But what about C++? Is there anything you can do in C++ to optimize your code? 
Or with inline assembly instructions? 

Safety first. Most of the discussion of out-of-order execution and C++ occurs in 
relation to safety. Problems can arise across multiple threads if the reads and writes 
from our C++ statements are running out-of-order. I mean, how can it be good to 
just run my C++ code in any random order that the CPU chooses? 

The issue of preventing out-of-order errors involves “memory order.” These are 
especially useful for correctly implementing lock-free algorithms with atomics, but 
they also act as memory barriers that can prevent any undesirables types of out-of-
order execution. 

Speed second. But the goal is to go faster! Rather than stopping the CPU from 
reordering instructions by using memory barriers, let’s maximize it! There are at 
least two major ideas: 

• Minimize memory-waiting delays 

• Exploit out-of-order instructions 

The first point is to minimize the slowdowns whereby instructions get delayed. The 
main one is memory accesses, which has well-known solutions such as: cache hit 
maximization, cache lines, tiled memory accessing, contiguous memory blocks, 
reducing data sizes, etc. 
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Other than cache locality, there’s not a lot of discussion anywhere in books or on 
the internet about exploiting out-of-order instruction execution to make code run 
faster. But there’s some discussion of this in Agner Fog’s astounding CPU 
resources; see (Fog, 2024). The key point is: 

Free extra parallelism! 

The average CPU has hidden parallelism in terms of its various computation 
pathways. For example, the CPU can run these two computations in parallel: 

• Integer arithmetic — Arithmetic-Logic Unit (ALU) 

• Floating-point arithmetic — Floating-Point Unit (FPU) 

That’s not the full list. Some CPUs can run different types of integer arithmetic, 
such as addition and multiplication, on separate pathways. Similarly, some of the 
SIMD operations run separately from the non-SIMD instructions. 

So, you can see the opportunity here, right? Not only can the CPU run the same 
operations in parallel via SIMD instructions, but it can run two (or more!) different 
types of computations in parallel. 

Unfortunately, the opportunities for huge improvements to your C++ are 
somewhat limited. For example, if you have a computation with both integer and 
floating-point computations, can you parallelize them? Yes, but only in limited 
circumstances, where: 

• The two computations don’t depend on the results of the other. 

• Not requiring memory accesses for the computations. 

• Computation operands are values already in CPU registers. 

If there’s a dependency, they can’t run in parallel. And if they both require memory 
requests, that’s the bottleneck regardless of whether the instructions can run in 
parallel. The data needs to be already loaded from memory into CPU registers to 
run fast. 

That’s quite a list of limitations. Hence, I haven’t quite solved the problem of a 
faster vector dot product using instruction out-of-order execution. 
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5. Contiguous Memory Blocks 

Why Contiguous Memory Blocks? 

A critical part of optimizing low-latency engines is to store data in a contiguous 
memory block so that they have a sequential address space. Processing many 
chunks of data in parallel is the main optimization used in both GPU and CPU 
SIMD acceleration. All of the vectors, matrices, and tensors need their underlying 
data in a block for efficiency. 

Processing data that is in adjacent addresses is much faster than jumping all over 
the place. Vectors should obviously be stored in a simple contiguous array of 
memory. Less obviously, similar comments apply to the memory storage of 
matrices and tensors. 

The use of contiguous memory is an important optimization for both sequential 
and parallel algorithms. The reasons that memory blocks are more efficient include: 

• Data locality (cache hits) 

• Data block GPU uploads (model weights from memory-to-cache) 

• Predictive cache pipelining (in CPU sequential accesses) 

Data locality refers to using data in the same or similar address locations. This is 
helpful for the cache hit rate because data that is already in the cache is much faster 
to access that a non-cached RAM memory address. 

GPU uploads from CPU RAM to the GPU’s Video RAM (VRAM) is done in 
blocks. Obviously, we don’t want to be uploading random bits of data from 
different parts of the RAM. 

Non-GPU architectures also benefit from the use of contiguous memory. This is 
obviously true of CPU SIMD instructions (e.g., AVX on x86), but even in 
sequential execution, the CPU has its own RAM caching methods and often has 
other optimizations of memory accesses. Predictive cache pipelining is where the 
CPU attempts to predict what the next memory location will be, and load it in a 
pipelined speedup, before being asked. This pipelining of memory accesses is much 
faster than doing completely sequential address lookups. 
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Typically, predictive cache pipelining uses the simple heuristic that the next address 
is the most likely next request, which assumes that data is being processed in order 
of the addresses. Hence, scanning an array in reverse is the worst possible order for 
these CPUs. Similarly, jumping around to different memory addresses, such as 
scanning the column of a matrix using a large “stride,” is also inefficient. 

Low-Level Memory Block Functions 

Memory block operations in the standard C++ libraries are implemented using fast 
assembly language behind the scenes. The main functions in the standard C++ 
library that operate at a low level on binary bytes in a memory block are: 

• memset(): set bytes to a value, usually used to clear bytes to zero. 

• memcpy(): copy bytes. 

• memmove(): copy bytes, but tolerates overlapping regions. 

• memcmp(): compare a sequence of bytes. 

• memchr(): search for a byte in a sequence. 

These functions are lower-level than the modern C++ versions, such 
as std::copy, std::move(), and their “backward” versions. The above listed 
memory block functions are not aware of object-level semantics, and won’t run any 
of the special functions on memory containing objects. 

Note that unlike the standard string functions (such as strlen), these functions 
do not assume a block is null-terminated by a zero byte. Zero is simply a binary 
value, and these functions don’t stop at a zero byte. All of these functions operate 
on a block of memory with a known maximum byte length. 

Each compiler environment typically offers some extra non-standard byte-wise 
functions that are also fast. Some of the less standardized C++ intrinsics that 
operate on memory blocks include: 

• _memccpy(): copy bytes up to a specified sentinel byte. 

• memicmp() or _memicmp: compare bytes ignoring letter case. 

• bcopy(): copy bytes 

• bzero(): clear bytes to zero. 

• bcmp(): compare bytes. 

• _byteswap_uint64() (Microsoft intrinsic): Swap bytes of an integer. 

• __builtin_bswap16(): GCC function to swap the bytes in an integer. 
There are versions for 32-bit and 64-bit. 
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Fast Memory Block Operations 

The slow way to do things in arrays is one element at a time. The faster way is to 
use the standard memory block functions on the whole array. There are a number 
of standard functions that operate on array data or memory blocks and they are 
very fast. 

Initialize with memset byte fill. The memset function sets all of a memory block 
to a byte value. It is widely used as a fast way to initialize a block of memory to all 
zeros. 

    memset(&x, 0, sizeof(x)); 

Almost all usages of memset will be for the zero byte. The only other usage I’ve 
seen is to fill memory with a dummy non-zero byte as a form of mutation testing 
to catch uses of uninitialized memory. 

    memset(&x, 0x55, sizeof(x)); 

Fast array copying with memcpy. The fast way to copy an entire array is 
with memcpy. Rather than copy each element of an array, one at a time, in a loop, 
the memcpy standard library function can be used to copy the entire array in one 
statement: 

    memcpy(destarr, srcarr, sizeof(srcarr));  

Note that this is a bitwise copy of the array intended for simple data types. For 
example, it won’t run copy constructors if applied to an array of objects. 

The memcpy function does a very fast memory block copy. It is like strcpy in 
that the destination is the first parameter. memcpy will copy everything, even null 
bytes and hidden padding bytes. It keeps going even if it finds a null byte, so it is 
not like strcpy, and will always copy a fixed number of bytes. memcpy is a super-
fast byte copy, but is unsafe, because it does not have well-defined behavior if the 
source and destination blocks overlap. 

Safer byte copy with memmove: The memmove function is a safer version 
of memcpy, which also works correctly if the memory blocks overlap. If the source 
and destination blocks don’t overlap, it’s the same as memcpy, except probably 
slightly slower. If they do overlap, then memmove conceptually will copy the source 
to a temporary area, and then copy it to the destination block. 
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Copying arrays using struct assignment. An alternative method of copying 
arrays is to make use of struct assignments. This is similar to 
how std::array works, which could also be used in a similar vein, but this 
example totally avoids any constructor, copying or move costs (also works in C). 

This method is not portable, is very unreadable and uses pointers incorrectly by 
converting between two different pointer types. However, it can be faster 
than memcpy because it makes use of the assignment operator rather than calling a 
function.  

On the other hand, memcpy is an intrinsic function that might be inlined to 
assembler instructions by the compiler, so this trick might be a waste of time. 
Benchmarking is recommended here. 

To copy an array using this method it is necessary to declare a new 
dummy struct type that is the same size as the array that is to be copied. Then 
we use type casting to fool the compiler into thinking it is copying structures when 
really it is copying arrays. The method is illustrated below: 

    struct dummy_transfer { // The new struct type 

        int a[MAX]; // This field gives the right size 

    }; 

 

    int a[MAX], b[MAX]; // array variables being copied 

    static_assert(sizeof(struct dummy_transfer) == sizeof(a)); 

    *(struct dummy_transfer *)a = *(struct dummy_transfer *)b; 

The assignment statement first type casts both “a” and “b” to be pointers to the 
new struct type, and then dereferences these pointers so that the compiler 
believes it is assigning between two structures. The assertion is an efficient compile-
time safety net to ensure that the copying statement will work.  

Of course, a better way entirely is probably to put the array inside a class object, 
with lovely encapsulation and modularity, and then we can simply copy the objects. 

memcmp byte comparisons. The memcmp function does a byte-wise comparison 
of a memory block. Its return value is like strcmp, returning 0 for equality, and a 
negative or positive value otherwise. Note that memcmp is not like strcmp, and 
will not stop when it finds a zero byte. 
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Memory Block Function Pitfalls 

The standard memory block functions are fast, but they are not always safe. Here 
are some of the common pitfalls that commonly occur in everyday coding. 

memset sizeof problem. Here’s another glitch in using memset inside functions: 

    void zero_array(int arr[10]) 

    { 

        memset(&arr, 0, sizeof(arr));  // Bug 

    } 

The problem is not memset, but the sizeof operator on function parameters. An 
array parameter in a function is like a hologram and isn’t really there. It’s not really 
an array, but a pointer, and sizeof(int[10]) is the same as sizeof(int*). 
Hence, sizeof(arr) is probably only 4 or 8, rather than 40 or 80, leaving most 
of the array uninitialized.  

Personally, I recommend a memset debug wrapper function to catch this awful kind 
of problem at runtime, or maybe a tricky preprocessor macro can detect it at 
compile-time with a static_assert somehow. 

memset portability issue. Even though it’s a fast zeroing method, the use 
of memset to zero bytes has an obscure portability problem on any architecture 
where all-bytes-zero is not the same as all data types zero. However, on most 
standard platforms, all-bytes-zero is correct for all types: integer zero (regardless of 
endianness), floating-point zero (positive zero is all bits zero), and the null pointer. 

memcpy overlapping blocks error: The only downside with memcpy is that it can 
fail with overlapping ranges for the source and destination blocks, so if you are 
shuffling arrays up or down one element using memcpy, then you have to be 
careful, because the results on overlapping ranges are undefined.  

Here’s a buggy example of using memcpy to remove the first character of a string 
in place: 

    memcpy(s, s+1, strlen(s+1)+1);  // Bug 

The problem is that the blocks starting at “s” and “s+1” are overlapping. It is 
implementation-defined whether it will be correct.  
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The fix is simply to use memmove, which always works correctly for overlaps: 

    memmove(s, s+1, strlen(s+1)+1);  // Correct 

memcmp return value. A pitfall with memcmp is that you cannot assume that it 
returns 1 or -1, but must compare the return result to zero (like 
the strcmp function). 

    if (memcmp(&a, &b, sizeof(a)) == 1)  // Bug 

    if (memcmp(&a, &b, sizeof(a)) > 0)   // Correct 

memcmp object equality testing. Looking at the memcmp function, you might 
think of it as an opportunity to do a fast equality/inequality test on large objects by 
simply doing a byte-wise test. You would not be the first to think that. 

Consider if you have a complex number class: 

    class MyComplex { 

        float real,imag; 

        // .. etc 

    } 

The brute-force equality test is: 

    bool is_equal(const MyComplex &a, const MyComplex &b) 

    { 

        return (a.real == b.real && a.imag == b.imag); 

    } 

Our idea to optimize this with memcmp looks like: 

    bool is_equal(const MyComplex &a, const MyComplex &b) 

    { 

        // Bug! 

        return memcmp(&a, &b, sizeof(MyComplex)) == 0;   

    } 

Unfortunately, there are multiple obscure pitfalls with this approach: 

• Padding bytes 

• Two types of floating-point zero 

• Multiple types of floating-point NaN (not-a-number) 

• Bitfields 
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Padding byte problems. If float is 4 bytes, but the machine has 8-byte alignment, 
then the “real” and “imag” data members will be stored on 8-byte alignment 
addresses, and there will be another 4 bytes each of dummy padding.  

It doesn’t even have to be on a machine with alignment issue, but can occur with a 
bigger object if we’ve mixed different size objects (e.g., char, int, and pointers). 
The padding bytes will be uninitialized (e.g., for local objects or if allocated with 
“new”), in which case they can contain random values. Since memcmp does not skip 
the padding bytes, its test will fail.  

Now, we could possibly work around this portability issue via the use of memset in 
the constructor, or calloc memory allocation, to zero all of the bytes of an object 
including the padding bytes. 

Negative zero problems. Unfortunately, the next problem is not a portability 
problem, but a fundamental issue with floating-point numbers. There are two zeros! 

There’s the normal zero with all bits zero, and there’s negative zero, with the sign 
bit set, but all other bits zero. Hence, the bitwise testing of both float numbers fails 
if there’s ever a negative zero. 

NaN problems. Similarly, but perhaps less seriously, the representation 
of NaN (Not-a-Number) in floating-point is also not fixed. There are multiple 
values of NaN, both positive and negative.  

So, memcmp would say the float values differ, even if both are NaN. I think 
this NaN issue is less serious than negative zero, because if your computations are 
generating NaN, then they’re probably already failing in the computations, and an 
incorrect memcmp equality test won’t matter as much. 

Bitfield problems. If our structure has any bitfield data members, 
this memcmp idea fails too. Bitfields are a standard C++ feature that is defined with 
a suffix colon and a number of bits like: 

    unsigned int myflag:1;  // Boolean bitfield with 1-bit 

With bitfields it’s implementation-defined how this is represented numerically, and 
there might be undefined bits in the same byte, or extra padding bytes again. 
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Still want your memcmp speedup? I’ve just shown you about 15 pitfalls, but 
maybe you still want to live on the edge and get that speedup? You can 
use memcmp to do fast array or object comparisons if you’re really, really sure that 
you have: 

• Zero byte initializations. All allocated arrays or objects must be first zero’d 
by memset or calloc. You cannot rely on constructors, and it’s hard to 
put a memset as the first action of the constructor due to initializer lists 
and base classes. You might have to manually intercept all of the 
new and new[] operators with your own wrapper that does memset on 
the block, rather than use constructor tricks.  

• It’s also unclear if you can actually rely on static or global variable 
initialization to carefully zero all the padding bytes in an array or object. 
Probably it works on most platforms, but I doubt it’s fully portable. To be 
sure, use memset on the global variables during program startup. 

• No bit-fields used. That’s easy, at least. 

• Floating point computations should avoid negative zero and NaN. 

Raw Subarray Memory Blocks 

Passing raw subarray types to functions can be a fast alternative to some of the 
modern C++ contiguous-memory containers (i.e., std::array, std::vector). 
However, the passing of a container object by reference with “const&” parameters 
is also very fast, so don’t assume that raw arrays are always faster. 

If a function accepts a raw array type, it is possible to pass it any array as an 
argument, or any pointer of the right type. In this way, it is possible to pass memory 
blocks or “sub-arrays” to a function by passing the address of a particular array 
element. A function to operate on a particular type of array can be written, and used 
to operate on various arrays. 

    void clear(int a[], int n) 

    { 

        int i; 

        for (i = 0; i < n; i++) 

            a[i] = 0; 

    } 
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    void test_subarrays() 

    { 

        int a[100]; 

        clear(a, 10); // clear first ten, 0..9 

        clear(a + 50, 10); // clear 50..59  

        clear(&a[50], 10); // clear 50..59 (equivalent) 

    } 

Multidimensional subarrays. It is also legal to pass multi-dimensional arrays to 
functions. However, the sizes of all but the first dimension must be specified in the 
function receiving the array. For example, to pass a two-dimensional array to a 
function, the function header would look like: 

    void fn(int a[][SIZE2]); 

The reason for this restriction is that the compiler cannot determine the address for 
an arbitrary array element if it does not know the sizes of all but one of the 
dimensions. 

Because the sizes of most of the array dimensions must be specified in the function 
declaration it is very difficult to write a function to act on sub-arrays of multi-
dimensional arrays.  

For example, this idea would be useful to define library functions to operate on 
matrices with different dimensions. Ideally, we would like one function to calculate 
the determinant of a matrix for any dimension (i.e., an n-by-n matrix 
where n varies).  

Consider how we would like the determinant function to look: 

    double determinant(double matrix[][], int n); // Wrong 

Ideally, the dimensions of the matrix are not specified at compile-time, but are 
specified at run-time by the n argument. This is not possible as a simple C++ 
declaration because the second dimension (i.e., n) needs to be specified in the 
definition of the two-dimensional array type. The best solution is to use dynamic 
multi-dimensional arrays. 
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Dynamic Memory Management Pitfalls 

Memory management is really not the strong suit of C++. If your program is 
crashing or behaving badly, it’s highly likely to be some kind of memory problem. 
There are so many pitfalls in C++ dynamic memory management, and even in static 
or global (non-dynamic) memory, that it’s hard to list them all. 

C++ programs have access to a large block of free memory, called the heap. The 
actual size of the available memory depends on the system. This memory is available 
to a C++ program which can allocate itself chunks of memory from this heap. This 
is useful when a C program does not know beforehand how much data is being 
stored, and hence, how much memory is required. Instead of allocating a large array 
to cater for the worst case, the program can allocate itself blocks of memory as 
required. 

Blocks of dynamic memory can be allocated in two main ways: 

• The C++ style “new” or “new[]” operators 

• The older style malloc() and calloc() functions (inherited from C) 

Other ways to allocate dynamic memory include: 

• strdup(): make an allocated copy of a string. 

• realloc(): a companion to malloc/calloc that is rarely used. 

Once the memory is no longer needed it is “freed” back to the heap. Again, there 
are two main ways: 

• The C++ style “delete” and “delete[]” operators 

• The older style “free” function 

Some of the main memory problems in a C++ program can include: 

Uninitialized new memory. The new operator does not initialize the 
new chunk of allocated memory. Accidentally using it is a common bug. 

Uninitialized malloc memory. The malloc function also does not 
initialize its allocated memory. Again, use of a memory block that is 
allocated by malloc but hasn’t been properly cleared is a common bug. 
One of the mitigations is to use calloc instead, because calloc does 
zero the bytes of every block it allocates. 
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Mismatched new/delete with malloc/free. Memory allocated 
with new should be deallocated by delete, but malloc’d memory 
should be free’d. Never the twain shall meet, or else kaboom. 

Mixing new/new[] and delete/delete[]. Memory allocated 
by new should be released by delete, but memory allocated by the array 
version “new[]” should be freed by the delete[] array version. Again, 
they’re not supposed to mix. 

free(nullptr) is harmless. If it’s so harmless, why is it a pitfall? 
Sure, free(nullptr) is officially defined by the standard to do nothing. 
But if your coding is doing this, it sure walks and talks and quacks like a 
buggy duck. 

strdup(nullptr) is not harmless. This is probably a crash, but even 
on systems where it’s not, it’s clearly a bug in your code if you’re trying to 
duplicate a null pointer. 

Pitfalls for Non-Dynamic Memory Blocks 

There’s so many pitfalls in management dynamic memory, with either new/delete 
or malloc/free, that surely we’ve run out? No, don’t worry, it’s comforting to know 
that there are still a bunch more insidious problems in other types of non-allocated 
memory. 

Here’s a list of some more fatal memory stomps that aren’t about allocated blocks 
on the heap: 

• Buffer overrun of a global, local, static, or stack buffer variable. 

• Returning the address of a local variable on the stack (i.e., non-
static variable). 

• Trying to write to addresses of string literals (often a crash if they’re non-
writable, but maybe worse behavior if it can be modified). 

• Modifying arr[10] in an array of size 10 (raw arrays or std::array). 

• Uninitialized local variables or local buffers on the stack (non-static). 

• Using an uninitialized local pointer variable to access some random address 
in Timbuktu. 

• Null pointer dereferences. Oh, well, at least you initialized it. 

• Returning the address of a “static” local variable (aliasing problems). 

• Using a negative array index. 

• Modifying a string literal (they’re in read-only memory on Linux). 

 



David Spuler                                              66 
 

The standard C++ library functions can also have problems: 

• strcpy() on overlapping string arguments: strcpy(s, s+1); 

• strncpy() can leave strings without a null byte terminator. 

• memcpy() on overlapping memory blocks (use memmove instead). 

• Trying to free() or delete a global, static, stack or instruction 
address will crash. 

• Double fclose() on file pointers from fopen. 

• Ignoring the return value of erase() in an iterator loop. 
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6. Pointer Arithmetic 

What is Pointer Arithmetic? 

Pointer arithmetic is a tricky C++ optimization that can be used to get rid of 
incremented variables in loops. Instead, a pointer can be incremented each loop 
iteration. This changes an array access “arr[i]” into a pointer access “*ptr” and 
is usually faster. 

What is pointer arithmetic? Arrays and pointers are buddies in C++ and there’s 
a way that mathematical arithmetic operators can work on both. Consider the 
declarations: 

    int arr[10]; 

    int *ptr; 

To start with, we can set the pointer at the array, and C++ allows us to use index 
notation on a pointer: 

    ptr = arr; 

    x = ptr[3]; 

Here, x will get the value of arr[3] via ptr[3]. The pointer and array are 
equivalent. Note that the “&” address-of operator can be optionally used here. We 
could have written “ptr=&arr” to copy the address, but it’s optional. 

C++ allows array index accesses on pointers with “ptr[3]” as above. We can also 
do this using “pointer arithmetic” with the “+” operator and the “*” pointer de-
reference operator: 

    x = *(ptr + 3);  // Same as ptr[3] 

The expression “ptr+3” is the address of the third element in the array 
(i.e., &arr[3]), and the “*” dereference operator gets the value pointed to by the 
pointer (i.e., arr[3]). 

Why does this work? If ptr is pointing to the start of an integer, shouldn’t 
“ptr+3” be a weird address in the middle of an integer? 
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No, because C++ does “pointer arithmetic” on pointers. Because “ptr” is an 
“int*” type pointer, the compiler knows to work on “int” data. With pointer 
arithmetic, the “+” operation adds a multiple of the bytes of the size of int types. 
So “ptr+1” is not the address 1 more than ptr, it’s actually 4 more than ptr for 
a 4-byte int (assuming 32-bit integers). And “ptr+3” is actually the address 
“ptr+12” in terms of bytes. 

Which Operators Do Pointer Arithmetic? Pointer arithmetic works with a 
number of arithmetic operators: 

• Increment — ptr++ adds 1*size bytes to ptr. 

• Decrement — ptr-- subtracts 1*size bytes from ptr. 

• Addition — ptr + n adds n*size bytes. 

• Subtraction — ptr-n subtracts n*size bytes. 

• Assign-Add — ptr += n adds n*size bytes to ptr. 

• Assign-Subtract — ptr -=n subtracts n*size bytes from ptr. 

Note that there’s no pointer arithmetic multiplication or division. Actually, I was 
told that C++37 was going to have a C++ pointer multiplication operator that 
scanned down an array doing paired multiplications, adding them up as it went, and 
all in one CPU cycle, but then someone woke me up. 

Pointer Comparisons: You can also compare pointers, which isn’t really doing 
any special pointer arithmetic, but works as normal comparisons on their addresses: 

• Equality tests — ptr1 == ptr2 or ptr1 != ptr2 

• Less than — ptr1 < ptr2 or ptr1 <= ptr2 

• Greater than — ptr2 > ptr2 or ptr1 >= ptr2 

Segmented Memory Model Pointer Comparisons: Note that there’s a weird 
portability gotcha in relative pointer comparisons (i.e., less-than or greater-than). 
They’re only guaranteed to work in very limited scenarios by the C++ standard, 
such as when the pointers are both operating over the same array data. 
Programmers tend to think of the address space as one huge contiguous range of 
addresses, where you can compare all of the pointers in the program against each 
other, and make some coding assumptions based on that. However, there are 
architectures where pointer addressing is more complicated, such as where pointers 
are a multi-part number pointing into different memory banks with a more 
convoluted segmented addressing scheme. For example, pointers to allocated heap 
memory might be separate from the pointers to global static data, and not easily 
comparable. 
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Pointer Differences: You can subtract two pointers using the normal “-” 
subtraction operator. The result is not the number of bytes between them, but the 
number of objects. Hence, the two pointers must be of the same type (i.e., pointing 
to the same type of object). Consider this code: 

    int arr[10]; 

    int *ptr1 = &arr[1]; 

    int *ptr2 = &arr[2]; 

    int diff = ptr2 - ptr1; 

The value of “diff” should be 1 in C++ (rather than 4 bytes), because the two 
pointers are one element apart (i.e., 1 integer difference). Note that “diff” is a 
signed integer here, and the value of subtracting two pointers can be negative (e.g., 
“ptr1-ptr2” above would be “-1” instead). Technically, the official type of the 
difference between two pointers is “std::ptrdiff_t” which is an 
implementation-specific integral signed type that you can use if you are the sort of 
person who alphabetizes their pantry. 

Adding Pointers Fails: Note that adding two pointers with “ptr1 + ptr2” is 
meaningless and usually a compilation error. Also invalid are weird things like the 
“+=” or “-=” operators on two pointers. Even though “-” is valid on two pointers, 
“ptr1-=ptr2” fails to compile because the result of “ptr1-ptr2” is a non-
pointer type. 

Char Star Pointers (Size 1 Byte): Note that if you want to avoid pointer 
arithmetic, and see the actual numeric value of addresses, you can use a “char*” 
type pointer (or “unsigned char*”). Since sizeof(char) is 1 byte, then all 
of the pointer arithmetic will just add the expected number of bytes (e.g., ptr++ on 
a char* pointer adds 1 to the address). If you want to know the number of bytes 
between two pointers, then cast them to “char*” type before doing the pointer 
subtraction. 

    int diffbytes = (char*)ptr2 - (char*)ptr1; 

Stride of an Array. A useful piece of terminology when processing lots of data in 
memory is the “stride” of an array. This means the number of bytes between 
adjacent array elements. We can try to compute it as follows: 

    int arr[100]; 

    int stride = &arr[2] - &arr[1];  // Wrong 

Nope, that’s a fail.  
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This isn’t the stride, because it did pointer arithmetic. The addresses of array 
elements are really pointers, so the stride variable above is always 1 (the adjacent 
elements are 1 apart in pointer arithmetic). We need to convert to char pointers 
to get the stride in bytes. 

    int arr[100]; 

    int stride = (char*)&arr[2] - (char*)&arr[1]; 

Can’t we just use sizeof to get the stride? Isn’t the stride above going to equal 4, 
which is sizeof(int)? Yes, in the example above the use of sizeof is correct, 
but no, that is not true in general. The stride will often equal the element size, but 
may be larger. For a simply packed array of integers or other simple types, the stride 
is almost certainly the size of the array element type. But this is not always true, 
such as if it’s an array of a larger object with an awkward size that requires padding 
bytes for address alignment considerations. 

Loop Unrolling Stride. The term “stride” also has a secondary meaning when 
talking about array processing with loop unrolling. The stride of an unrolled loop 
is how long of a segment is being processed in each section of loop unrolling code. 
For example, if a loop is unrolled with AVX-2’s 256-bit registers (equals 8 32-
bit floats), then the stride when discussed in the literature is either 8 floats or 
8x4=32 bytes. 

Void Pointer Arithmetic Fails: Note also that pointer arithmetic on a generic 
“void*” pointer should be a compile error, because it points to unknown size 
objects. Some C++ compilers will allow pointer arithmetic on void pointers with a 
warning, and pretend it’s a “char*” pointer instead. 

Finally, I don’t think you can increment a “function pointer” in valid pointer 
arithmetic, but you’re welcome to try. 

Pointers and Arrays 

There is a close relationship in C++ between arrays and pointers. Array names are, 
in many ways, just pointers to the first element in the array. The array indexing 
operation is identical to a pointer expression involving address arithmetic. The 
following algebraic identities hold: 

    array[exp] == *(array + exp) 

    &array[exp] == array + exp 
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These relationships have a number of consequences. First, the commutativity 
of + means that exp1[exp2] is equivalent to exp2[exp1], which leads to weird 
syntax tricks like “n[ptr]” instead of “ptr[n]”. 

Another consequence is that, in many situations, pointer variables can be used 
instead of arrays. For example, it is legal to apply the array indexing operator (i.e., 
square brackets) to a pointer. For example: 

    x = ptr[3];  

Just like arr[3], this sets x to equal the third element away from ptr, 
where ptr is pointing into an array. 

Array Function Parameters: The array and function relationship is complicated 
when an array is a function parameter. When an array is passed to a function, the 
address of the first element of the array is passed. An array formal parameter is 
implemented as a pointer variable (i.e., a pointer pointing to the start of the array). 

This explains why arrays are passed by reference, not by value. A local copy of the 
array is not used inside the function. Instead, a pointer to the original array is used. 
Hence, any change to an element of the local array variable is actually changing the 
original array (i.e., pass-by-reference instead of pass-by-value). 

The differences between pointers and arrays are few. The main one is that an array 
name is not a variable, whereas a pointer is. Hence, an ordinary array name declared 
as a local variable cannot be assigned to, or incremented, whereas a local pointer 
variable can be. An array is similar to a constant pointer (e.g., int *const ptr). 
Note that this is untrue when the array is a function parameter, when it can be 
incremented or modified. 

There are also the differences between pointers and arrays in relation to 
initializations. Consider the two initializations: 

   char *p = "hello"; 

   char arr[100] = "hello"; 

For the pointer p, the string “hello” is stored in separate memory. Only the 
required number of bytes are allocated (six, because of the extra character zero 
added by the compiler to terminate the string). For the character array “arr”, 100 
bytes are allocated, but only the first six are filled. 
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Pointer Arithmetic Loop Optimizations 

The main way that we use pointer arithmetic for optimization is to change a loop 
over an array into loop pointer arithmetic. Note that this is primarily a sequential 
code optimization, and does not change anything in terms of vectorization for 
parallel execution. 

Pointer arithmetic is mainly used to get rid of an incrementer variable in sequential 
code. Here’s a vector dot product with basic incremented loop variable i++ and 
array index syntax v1[i] used inside the loop: 

    float aussie_vecdot_basic(float v1[],float v2[],int n) 

    { 

        // Basic vector dot product 

        float sum = 0.0f; 

        for (int i = 0; i < n; i++) { 

            sum += v1[i] * v2[i]; 

        } 

        return sum; 

    } 

And here’s the same code when converted to pointer arithmetic: 

    float aussie_vecdot_ptr(float v1[], float v2[], int n) 

    { 

        // Pointer arithmetic vector dot product 

        float sum = 0.0f; 

        float* endv1 = v1 + n;  // v1 plus n*4 bytes 

        for (; v1 < endv1; v1++,v2++) { 

                sum += (*v1) * (*v2); 

        } 

        return sum; 

    } 

How does this work? We got rid of the temporary variable “i” by using pointer 
arithmetic “*v1” instead of array indices “v1[i]”. We are also using the function 
parameters “v1” and “v2” as temporary local variables, as permitted in C++, so 
we don’t need an extra temporary pointer variable. 

The way this works with pointer arithmetic is v1 and v2 are treated as pointers, 
which works due to the near-equivalence of pointers and arrays in C++. Rather 
than using an array index “i” we increment both these pointer-array variables: 

    v1++,v2++ 
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These for loop incrementers “v1++” and “v2++” are both adding 4 bytes (the size 
of a 32-bit float) to the pointers. Also note these two increment statements are 
separated by the C++ comma operator, not by a semicolon. 

The “endv1” end marker is calculated as the address of “v1[0]” plus “n*4” bytes, 
because the “+” operator in “v1+n” is pointer arithmetic addition, which is auto-
scaled by the size of the pointed-to object (i.e., 4 bytes for 32-bit float here), rather 
than normal integer addition. 

Note that a further micro-optimization is possible. We can change the less-than test 
(“v1 < endv1”) to an inequality test (“v1 != endv1”), because equality tests 
are slightly faster than less-than tests. Since this test is effectively inside the loop 
and done every iteration, this might be worth doing. 

The trade-off is safety: it’ll become an infinite loop if you get the pointer math 
slightly wrong, but hey, your code has no bugs, right? 

Smart Pointers 

Smart pointers are a programming idiom to make C++ pointers safer. They are not 
a speed optimization, and in fact, they are a wrapper that adds extra logic around 
the use of a raw pointer, and will be marginally slower. However, they avoid many 
C++ pointer pitfalls, thereby improving reliability, and will reduce total allocated 
memory usage by avoiding memory leaks. There may even be an indirect benefit to 
execution speed if overall memory management is improved. 

Programmers have been defining their own smart pointer wrapper classes for 
decades, but there is now standard support for the idea in the C++ library. In the 
typical idiom, a smart pointer tracks the creation and destruction of the object it 
points to, which ensures that the destructor is called. This helps avoid “memory 
leaks” in standard C++ pointers where an object is allocated with “new”, but is 
never deallocated by “delete”. 

The C++ standard libraries have various templates to support smart pointers, 
mostly since C++11, so they are longstanding features. 

• std::shared_ptr 

• std::unique_ptr 

• std::weak_ptr 

std::shared_ptr is a reference-counted shared pointer implementation. The 
idea is that it tracks the total number of pointers to an object, and then automatically 
destroys the object whenever there’s no more pointers to it.  
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This occurs when the last of the “shared_ptr” objects is itself destroyed, and 
then the reference count for the underlying object is zero. 

std::unique_ptr is a one-to-one mapping of a smart pointer to an object. 
Whenever the unique_ptr object is destroyed (e.g., goes out of scope as a local 
variable), then both the smart pointer and its underlying object are destroyed or 
otherwise cleaned up. The unique_ptr object can refer to a single object 
allocated by “new” or a single array-of-objects allocated by the “new[]” operator. 

std::weak_ptr is a less commonly used type that has relevance 
to std::shared_ptr in some complicated scenarios. Usually, you should choose 
either of std::unique_ptr or std::shared_ptr, depending on how many 
pointers will point to the underlying object. 

Pointers vs References 

Overall, pointers are a good and bad feature of C++. They are low-level variables 
that allow efficient processing of memory addresses, so we can code some very fast 
methods with pointers. They allow us to get very close to the machine. 

On the downside, there are pointer pitfalls. Pointers trip up novices and 
experienced programmers alike. There is an immense list of common faults with 
pointer manipulation, and coding problems with pointers and memory 
management are probably half of the causes of bugs in C++ (at least). There are 
some tools that mitigate against pointer problems (e.g., Linux Valgrind) but it is a 
never-ending battle against them. 

Pointers and arrays were implemented very similarly, and came from the earliest 
designs of the original C language. Basically, arrays are treated as a specific type of 
pointer, with various differences depending on whether they are variables or 
function parameters. 

Then came C++ to the rescue. References arrived with the new-fangled 
programming language (cleverly named as “C++”) and were thoughtfully designed 
as a type of safe pointer that cannot be null, but is just as efficient as a pointer 
because the constraints on references are enforced at compile-time. 

C++ allows two ways to indirectly refer to an object without creating a whole new 
copy: pointers and references. The syntax is either “*” or “&” for their declarations. 

    MyVector *myptr = &mv;  // Pointer to mv object 

    MyVector &myref = mv;   // Reference to mv object 
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Pointers and references are more efficient than spinning up a new copy of the 
object, especially when the underlying object is a complicated object. And when 
you have a function call, you should definitely avoid sending in a whole object. 

    void processit(MyVector v)  // Slow 

    { 

        // .... 

    } 

This is inefficient because the whole MyVector object will get copied, via whatever 
copy constructor you have defined, which is slow. And if you haven’t defined a 
copy constructor, then the compiler uses default bitwise copy of a structure, which 
is not only slow, but also rarely what you want, and often a bug. 

The faster reference version is to use a “const” reference (or non-const if you’re 
modifying it inside the function): 

    void processit(const MyVector & v) // Reference argument 

    { 

        // .... 

    } 

The pointer version is: 

    void processit(MyVector * v)  // Pointer argument 

    { 

        // .... 

    } 

Which is faster in C++ — pointers or references? The short answer of “not any 
difference” is the general view, because references are implemented as pointers by 
the compiler behind the scenes. The two functions above are not going to be 
significantly different in terms of speed. 

The slightly longer answer is that references can be faster because there’s no null 
case. A reference must always be referring to an object for the duration of its scope. 
The C++ compiler ensures that references cannot occur without an object: 

    MyVector &v;          // Cannot do this 

    MyVector &v = NULL;   // Nor this 

    MyVector &v = 0;      // Nor this 
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A reference must be initialized from an object, and you cannot set references equal 
to pointers, because you actually have to de-reference the pointer with the “*” 
operator, which crashes if it’s a null pointer: 

    MyVector &v = myptr;  // Disallowed 

    MyVector &v = *myptr; // Works if non-null 

There’s no way in C++ to get a zero value into a reference variable (we hope). For 
example, the address-of operator (&) applied to a reference variable returns the 
address of the referenced object, not the memory location of the reference itself. 
Hence, references are always referring to something and they cannot be equivalent 
to the null pointer. 

References are slightly faster: The guarantee of an object for a reference fixes all 
those null pointer core dumps, and also relieves the programmer of the burden of 
testing for null pointers. The compiler does this guarantee for references at compile-
time, so there’s no hidden null check being done by the compiler at run-time, 
making it efficient. So, there’s a minor speed improvement from using references, 
by not having to add safety checks for “ptr!=NULL” throughout the function call 
hierarchy. 

Pointers can be better than references if you need a “null” situation to occur. For 
example, you’re processing an object that may or may not exist, and you need the 
pointer to be allowed to be “NULL” if there’s no object. This should occur rarely, 
and references should be preferred in many cases. 

And finally, references aren’t very useful when you’re trying to scan through the 
data in vectors, matrices, or tensors in an AI engine. You can’t do pointer arithmetic 
on a reference in C++. 
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7. Memory Pools 

What are Memory Pools? 

Memory pools are a C++ optimization where you take control of the memory 
allocation used for a class of objects. The basic idea is to store all objects of the 
same type in a big array, next to each other, rather than being spread out over the 
heap wherever the new operator decides to put them. 

Memory pools are a general optimization that can be used in C++ with 
the new operator, and also in C programming with malloc.  

Some of the related data structures include: 

• Bucket array 

• Hive 

A bucket array is like a memory pool, in that it’s a big memory block, and you put 
your objects in there. However, a bucket array usually handles erasing an object by 
simply marking it as invalid using a Boolean flag. The memory for an erased object 
is not usually re-used when you insert a new object. 

A hive is a generalization of a bucket array, whereby a hive can dynamically expand 
and contract the number of buckets. Notably, there’s a std::hive class to use in 
C++26, which would make a good basis for an advanced type of memory pool.  

However, we’re going to examine some of the simpler types of memory pools first. 
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Why Memory Pools? 

Other than being a fun and gritty project in low-level C++ coding, the goal is speed, 
and this is achieved in various ways: 

• Preallocation — no need to allocate memory on a low-latency hotpath. 

• Fewer allocation calls — one big chunk rather than lots of small ones. 

• Fewer deallocation calls — reusing memory addresses within the pool. 

• No memory fragmentation — we don’t mix small and large memory 
allocations. 

• Less memory overhead — hidden heap memory “control blocks” are not 
needed. 

• Cache locality — all objects are stored contiguously. 

In fact, you can even get the number of memory allocations for your class down to 
zero, if you really want to, by using a global memory pool object. Even the memory 
pool is not on the heap!  

But this only works for a fixed-size memory pool, and thus, only if you’re really sure 
you won’t need too many objects. 

Memory fragmentation is also a slowdown that can be avoided or reduced with 
memory pools. The problems with fragmentation arise in two ways: 

• Frequent allocations and de-allocations, and 

• Different-sized memory blocks. 

A memory pool is helpful in both respects. The memory pool avoids lots of 
allocations by using one big block, and avoids deallocations by re-using the 
locations inside the block. And because the memory block stores lots of blocks of 
the same size, we aren’t mixing up different size allocations. 
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Disadvantages of Memory Pools 

Firstly, this whole idea of memory pools is only about reducing allocated memory 
on the heap. This optimization is not relevant for objects stored on the stack (i.e., 
local variables), or static objects, such as global scope objects or static data 
members. 

Memory pools are not the only option for optimization memory allocation. In fact, 
the use of an open-source drop-in replacement for the standard C++ memory 
allocators is another significant option: 

• jemalloc — the original FreeBSD allocator, now a Facebook favorite. 

• tcmalloc — from Google, with an Apache 2.0 license. 

The other disadvantages of memory pools include: 

• Fixed maximum number of objects (in the basic versions). 

• Only works for single-sized objects (e.g., one class). 

• Need one memory pool object for each type of object (via templating). 

• Not useful for optimizing variable-sized objects (e.g., strings). 

• Allocating too much memory in one massive chunk. 

However, we can work around a lot of these disadvantages by using a templated 
class for our memory pool. The optimization of memory pools is a general 
algorithm that works for all types of objects. 

Memory Control Block Overhead 

Whenever you allocate memory on the heap, using the new operator or the old-
style malloc function, it returns you the address of the block. But that’s not actually 
the start of the real memory block. 

There’s actually an extra memory control block stored before that address. It 
contains meta-information about the memory block, which is used by the C++ 
standard library to keep track of things. For example, the size of the memory block 
is stored in that control block. 

Whenever you deallocate a memory block by sending the address 
to delete or free, the standard library knows to look backwards a few bytes. 
Hence, it can find the size of the memory block, which helps it to deallocate the 
full block of memory. You don’t need to worry about it, because the standard library 
takes care of it. 
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Hence, if you create a memory pool from one big chunk to contain 100 objects, 
rather than 100 separate calls to the new operator, there are 99 fewer memory 
control blocks. This is why memory pools reduce the memory overhead from your 
objects. 

Fixed-Size Memory Pool Algorithms 

For simplicity, we’re going to limit our first memory pools to just one huge block 
of memory. This means that we can choose the overall capacity of the memory 
pool, but we can’t increase it later by adding a second big block. This makes our 
memory pool more like a vector or array, rather than a dynamic bucket array or 
hive. 

Even with these restrictions, there are still quite a few choices to make about 
designing our memory pool algorithm.  

Some of the alternatives include: 

• Boolean flag — storing an “active” flag in each object. 

• Index array — maintaining a list of indices of free blocks as a “free list” 
(instead of a per-object flag). 

• Pointer array — tracking the free list via pointers. 

• Permutation-based free list approach. 

In the first case, we only have one array, and each block contains the “active” flag 
along with the stored user objects. In the other cases, we maintain two arrays, one 
of the user’s objects, and another as the free list (with either indices, pointers, or 
permutations). 

Boolean Flag Memory Pool 

This is the simplest approach, but not the fastest. Let’s examine it to get some of 
the basic ideas. 

Some of the interesting features of this code include: 

• Boolean flag — stored as a data member in every memory pool record. 

• Pointer arithmetic — used in computing the offset when erasing an object. 

• Incremental count — increment on allocation, decrement on release. 

• Compile-time pool size — this uses std::array rather 
than std::vector. 
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Here’s the basic layout of the memory pool class. 

    template<typename T, int N> 

    class MemoryPool { 

        struct Node { 

            T data; 

            bool active; 

        }; 

    private: 

        std::array<Node, N> arr_; 

        int nextfree_; 

        int ct_; 

        // ... 

    }; 

The constructor has to set all the “active” flags (although using memset would 
be faster than a loop): 

    MemoryPool() : arr_(), nextfree_(0), ct_(0) { 

        for (int i = 0; i < N; i++) arr_[i].active = false; 

    } 

The code maintains the index of the “next free” object. Initially, it’s increasing as 
the first blocks get used, but later it’s necessary to scan linearly. 

    int find_next_free(int offset) { 

        if (offset == -1) offset = 0; 

        int i = offset; 

        do { 

            if (!arr_[i].active) return i; // Found 

            i = (i + 1) % N; 

        } while (i != offset); 

        return -1;  // It’s full! 

    } 

Here’s the code for the allocation of a memory pool block: 

    T* alloc() { 

        if (full()) return nullptr; // fail! 

        assert(nextfree_ != -1); 

        int oldindex = nextfree_; 

        arr_[oldindex].active = true; // Not free 

        nextfree_ = find_next_free(nextfree_); 

        ct_++; // Incremental count 

        return reinterpret_cast<T*>(&arr_[oldindex]); 

    } 
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And here’s the code whereby a block is released by the caller. Note that the index 
computation requires pointers converted to the correct type. This code has some 
safety checks that are quite expensive, and might later be removed for production 
usage. 

    void erase(T* addr) { 

        assert(ct_ >= 0); 

        Node* nptr = reinterpret_cast<Node*>(addr); 

        if (nptr >= reinterpret_cast<Node*>(&arr_[0]) 

          && nptr<=reinterpret_cast<Node*>(&arr_[N - 1])) { 

            // Valid pointer... 

            int offset = nptr - &arr_[0]; // Ptr arith 

            assert(nptr->active); 

            nptr->active = false;  // Free now 

            ct_--;  // Incremental count 

            if (nextfree_ == -1) { // Was full? 

                nextfree_ = offset;  

            } 

        } 

        else { // Invalid pointer... 

            assert(false); 

        } 

    } 

Constructor inefficiency. This implementation has a high-level slug if the 
memory pool is instantiated for use with a non-trivial class type. The definition 
of std::array will cause the constructors for every single object to run 
needlessly on the empty storage bytes, when the memory pool is first created or 
defined. The solution here is simply to use bytes instead of the class type for the 
storage declaration: 

    struct Node { 

        unsigned char data [sizeof(T)]; // Raw obj storage 

        bool active; 

    }; 

But we also need to be careful of memory alignment in this situation. The template 
could be instantiated on any type, some of which will need aligned addresses. 
Character addresses won’t get automatically aligned, so we have to 
use alignas specifier. However, it’s hard to fix in this implementation, because I 
cannot use alignas(alignof(T)). The extra “active” flag in the structure is 
messing everything up. But that’s only one disadvantage of this method. 
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Disadvantages of Boolean Flag Method 

The first point to remember is that this memory pool is a significant optimization. 
It achieves all the advantages of a memory pool as outlined above: preallocation, 
fewer allocations and deallocations, less memory fragmentation, and so on. Hence, 
it’s a good start, and a worthy improvement to our classes. 

We could stop now, and go home with a smile on our face. 

However, it’s not optimal. There are even better ways to code up a memory pool. 
The suboptimal features of this version of a memory pool include: 

• Mixing hot and cold data 

• Alignment issues for some types 

• Extra padding bytes needed 

• Slow insertions 

One problem with the above approach is that it mixes “hot” and “cold” data. Your 
objects are probably hot areas of processing that are doing whatever you need. The 
Boolean flags are only used by the memory pool when inserting and deleting 
objects, and are thus cold data for the main processing algorithms. It would be 
better for cache locality if the cold data was separated from our hot objects. 

Memory size is also not optimal. By adding a single Boolean variable to each object, 
it’s not just 1 byte extra, because the compiler probably has to add a number of 
padding bytes to meet the alignment requirements (depending on what’s inside your 
objects). This will increase the memory size, and worsen cache locality when 
processing multiple objects. 

However, the main problem with the Boolean flag approach is that it’s slow. In fact, 
it has worst case O(n) performance for an insertion, because it might have to scan 
the entire array to find a free block. This worst case won’t happen initially, but the 
performance can degrade as the memory pool fills up, and we do lots of insertions 
and deletions. 

We can do better! 
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Boolean Flag Array Method 

One way that we can address some of these issues is by separating all of the Boolean 
“active” flags into a different array. Rather than storing a flag in each object, we 
just store the user’s object in the main block, and have a second block that contains 
the Boolean flags. 

The advantages are that it fixes the hot-cold data problem, addresses alignment 
concerns, and the compiler won’t need to add extra padding to the array of user 
objects. The array of Boolean flags should be one byte per object, but stored in a 
different array. 

Firstly, we move the “active” flag out of the structures: 

    struct Node { 

        unsigned char data[sizeof(T)]; // Raw obj storage 

    }; 

And put it into a separate array: 

    bool activearr_[N]; 

The handful of places that used the “active” flag need to be changed to the 
“activearr_” array member. 

We can also fix the alignment issues using the alignas and alignof specifiers: 

    alignas(alignof(T)) std::array<Node, N> arr_; 

Bit packing. This active flag array method can be further improved by using bit 
packing. We only need one bit flag per object, rather than one byte each. Hence, 
we can pack them all into an array of 64-bit unsigned long, and can check for 
a free block using one integer comparison, testing 64 memory blocks at a time. 

In practice, this version is pretty fast. Even so, it is technically still an O(n) worst 
case algorithm for insertion or deletion with large numbers of objects. And there 
are a few ways to fix that. 
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Index Array Memory Pool 

The faster solution is to maintain an array of integer indices for the free locations. 
The advantages of this index array approach over the earlier “active” flag method 
include: 

• Insertion and deletion always have O(1) complexity. 

• Separates hot data from cold data. 

• No extra padding bytes needed. 

Here’s the basic definition of the class: 

    template<typename T, int N> 

    class IndexMemoryPool { 

        struct Node { 

            unsigned char data[sizeof(T)]; // Raw object 

        }; 

    private: 

        alignas(alignof(T)) std::array<Node, N> arr_; 

        int freelist_[N]; // array of free indexes (stack) 

        int ct_; 

        int ctfree_; 

    // ... 

    }; 

Some of the basic primitives are simple: 

    bool empty() { return ct_ == 0; } 

    bool full() { return ct_ == N; } 

    int capacity() { return N; } 

    int count() { return ct_; } 

    int count_free() { return ctfree_; } 

The index array is a “free list” that tells us where to find a free memory block. After 
a lot of insertions and deletions, if functions a lot like a stack of free locations. At 
the start, it’s a fixed-size stack that’s full with the index of every element available. 

    IndexMemoryPool() : arr_(), ct_(0), ctfree_(N) { 

        for (int i = 0; i < N; i++) { 

            freelist_[i] = i;  // Store all indexes 

        } 

    } 

 



David Spuler                                              86 
 

When we allocate a new block, that’s a “pop” of the stack, because we’re removing 
from the free list: 

    int pop_free_index() 

    { 

        assert(ctfree_ > 0); 

        int index = freelist_[ctfree_ - 1]; 

        assert(index != -1); 

        freelist_[ctfree_ - 1] = -1; // Clear it 

        ctfree_--; 

        return index; 

    } 

The allocation of a block is mostly a call to this “pop” of the free list: 

    T* alloc() { 

        if (full()) return nullptr; // fail! 

        int index = pop_free_index(); 

        assert(index != -1); 

        ct_++; // Incremental count 

        return reinterpret_cast<T*>(&arr_[index]); 

    } 

And the reverse is true when the caller releases a memory block. This is a push of 
a newly free index onto the stack. 

    void push_free_index(int index) 

    { 

        assert(ctfree_ < N); 

        freelist_[ctfree_] = index; 

        ctfree_++; 

    } 

And here’s the version for release the memory: 

    void erase(T* addr) { 

        Node* nptr = reinterpret_cast<Node*>(addr); 

        if (nptr >= reinterpret_cast<Node*>(&arr_[0]) 

          && nptr<=reinterpret_cast<Node*>(&arr_[N - 1])) { 

            // Valid pointer... 

            int offset = nptr - &arr_[0]; 

            push_free_index(offset); 

            ct_--;  // Incremental count 

        } else { // Invalid pointer... 

            assert(false); 

        } 

    } 
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In summary, note that the push and pop of the free list stack is very efficient with 
O(1) complexity. Everything in this index array version has constant-time 
efficiency. 

Memory Pools Versus Containers 

Why do you need a memory pool? Why not just use the standard C++ containers 
for your objects? Isn’t a memory pool about the same as std::vector? 

Yes and no. 

Yes, a memory pool for your objects is very similar to managing them all in a 
standard vector. After all, the memory pool code can use a std::vector object 
inside it as the big pool. So, yes, you can manage your objects in a standard vector 
if you: 

• Use a single reserve or resize call to allow the vector memory in one 
call. 

• Keep track of objects going in and out of the vector. 

In other words, it’s almost the same thing as writing a memory pool, except it’s 
mixed in the middle of your application’s main logic. 

Hence, no, it’s not quite the same thing. There are two types of containers: 

• Contiguous storage containers — it’s very similar. 

• Maps, sets, hash tables — memory management performance gains. 

We’ll examine vectors and arrays in a minute, but first let’s look at the other 
containers. There are two aspects to use normal memory allocation and storing your 
objects in these advanced containers: 

• Allocating memory for your objects — you’ve improved nothing (it’s one 
allocation call per object). 

• Extra container allocations — the container also needs memory allocation 
and a memory pool doesn’t help with that. 

But for the containers based on contiguous memory, the issue is less clear cut.  
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The standard containers based on contiguous storage include: 

• std::vector 

• std::array 

• std::inplace_vector (C++26) 

When you compare a memory pool to using a standard vector of your objects, there 
is less gain to performance. However, creating a memory pool as a standalone class 
has several practical advantages: 

• Separate memory management optimizations from business logic. 

• Ensures only a single (huge) memory allocation occurs (or only a few if it’s 
dynamic). 

• Callers of the interface or API don’t need to know about the memory 
management aspects. 

Creating a memory pool as a separate idiom is good for encapsulating the 
performance optimization aspects of memory management. It encourages 
modularity by isolating high-level business logic from low-level resource 
management. 

Advanced Memory Pools 

Higher-level improvements to the memory pool interface are also possible. Most 
of the discussion here has been about a memory pool for one type of class, with a 
focus on reducing the number of distinct blocks requested on the heap.  

More advanced memory allocators are well-known, and they offer a variety of 
generalized performance optimizations and convenience features: 

• Thread safety (e.g., a single mutex or a lock-free version). 

• Intercepting the class-specific new and delete operators. 

• Passing all the arguments to the object constructors via parameter packs 
and std::forward() 

• Placement new operator — does not really allocate memory! 

• Custom allocators — memory pools via allocator functor objects. 
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Additional memory management features that could be added to a memory pool 
include: 

• Dynamic expansion with multiple chunks rather than a fixed-size pool. 

• Multiple object types supported in the memory pool. 

• Dynamic size of objects allowed by allocating multiple large “pools” or 
memory chunks. 

• Downsizing the memory pool if fewer objects are required. 

Even more general than memory pools is the concept of “custom allocators.” The 
idea with custom allocators is not just to enhance the memory handling of a few 
classes, but to take over the whole memory allocation shemozzle from the standard 
library. 

Extensions 

1. Build your own simple memory pool templated class. 
2. Add a memory pool to your object class by overloading a set of class-

specific new and delete operators, sending these requests to the 
memory pool instead. 

3. Code up multiple types of memory pools and measure their performance. 
4. Generalize your memory pool class to dynamically manage multiple big 

chunks of memory, rather than just one. 
5. Implement an advanced dynamic memory pool 

using std::hive (C++26) as the underlying data structure, rather than a 
vector or array. 
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8. Memory Reduction 

Optimizations 

Memory Reduction in C++ 

There are many general techniques for reducing the memory requirements of a 
C++ program. These techniques herein aim to reduce memory usage of a program 
so that: 

(a) your C++ does not waste too much time on memory management 
activity, such as allocating too much memory, and 

(b) your C++ code can execute on a low-memory platform, such as an IoT 
embedded device. 

In these days of cheap gigabytes of memory in every PC, memory reduction 
techniques are perhaps not as important as those for increasing speed. However, 
there are certainly situations when reducing space requirements is far more 
important than increasing the speed of a program. This section discusses a number 
of general techniques for reducing C++ memory requirements. 

Unfortunately, reducing space requirements can also lead to loss of speed. There is 
often a trade-off between space efficiency and time efficiency. Every C++ program 
uses memory for a number of different purposes, and each of these areas needs to 
be attacked separately. The memory usage of the program can be divided into the 
following memory sections: 

• Executable instructions 

• Static storage 

• Stack storage 

• Heap storage 

The executable instructions for a program are usually stored in one contiguous 
block of memory. Static storage refers to memory used by global and 
local static variables, string constants and (possibly) floating-point constants. 
Stack storage refers to the dynamic storage of non-static local variables.  
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Heap storage refers to the memory that is dynamically allocated using 
the new/delete operators and the malloc/calloc/free standard library 
functions. 

The memory requirements for the executable instructions are largely independent 
of the other memory areas, whereas the techniques for reducing the memory 
required for the other three areas are often similar. However, care must be taken 
that applying a technique to reduce data space does not increase the amount of 
C++ code too greatly, thus increasing the executable size. 

Compact Data Representation 

Different algorithms may store data differently and thereby reduce memory 
requirements. There are many ways to represent data, and all have varying space 
usage. For example, storing all the primes less than 1000 can be done with a list of 
integers, a list of the incremental differences between successive primes, or a bit 
vector with one bit for each integer up to 1000. 

Different data structures. The program should be examined to determine if a 
large space reduction can be achieved by changing to different data structures. For 
example, the program could use arrays instead of linked lists or binary trees to avoid 
the extra space due to pointer storage. However, this also wastes more space if the 
array is not full, and it is even better to use dynamic arrays, which do not waste any 
storage, as exactly the right amount of memory is allocated. Unfortunately, using 
different data structures can sometimes reduce the time-efficiency of programs. 

Data compression. Compressing data can reduce space requirements when large 
amounts of data are involved. Hmm, let’s pause for a moment and try to think of 
an example application with lots of data. Just jump in whenever you’re ready. 

Billions or trillions of weights in an LLM are a good candidate. Model compression 
is the theoretical term and involves either using smaller data sizes (e.g., 8-bit integer 
weights instead of 32-bit float data) or “pruning” of weights we don’t need. More 
generally, data compression algorithms have been used in research on AI models, 
such as sparsity, run-length encoding and Huffman encoding. 

Proceduralization. Another data representation technique is to use a function to 
represent data. Instead of a list of the first 1,000 primes, you could create an 
“is_prime” function that contains a big C++ switch statement, with all the 
primes as case values, which return true. You could also write a piece of code to 
create this source code automatically. 
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Recomputation. Another example of proceduralization, consider the storage of 
several images generated by a fractal algorithm: the simplest method of storing the 
images is to store them as large image files. But a much more space-efficient method 
is simply to store the values of any arguments passed to the function creating the 
fractal images. This way, the images can be recreated by calling the fractal generation 
function with the correct arguments. The only space used is a few values containing 
the arguments and also the code instructions for the function. However, the 
recalculation of an image by this method is extremely time-inefficient. 

Reducing Data Size 

There are many techniques for reducing the size of program data. These techniques 
apply to all three types of memory — static, stack and heap storage. In some cases, 
a method may increase the memory storage in one area to decrease the memory 
usage in another, which is valid only if the total storage requirements decrease. 

Use char arrays not std::string. The use of std::string is very 
convenient, but if your program has many strings, the extra storage used by 
the string objects can add up. Consider managing your own raw char arrays as 
C-style strings if you really need the space. 

Avoid max-size arrays or buffers. When using an array data structure or buffer, 
there is temptation to be lazy and just make it bigger than it will need to be. Avoid 
this temptation and optimize the memory usage properly. Change an oversize array 
into a dynamically allocated array, if size can be determined easily at runtime. 

Smart buffers or smart array classes. An alternative to using an oversize array or 
buffer is to create “smart” classes that manage this, by automatically extending the 
array or buffer if more elements are needed. The std::vector class is a good 
way to do this. 

Bit vectors. These can be used where information can be reduced to a single 
Boolean value, such as bit flags or masks. The use of bit vectors is very compact in 
terms of space, and there are standard C++ libraries to implement these efficiently. 

Unions. When using a lot of structures, space can be reduced by overlaying the 
data fields. This can only be done if the fields to be overlayed are mutually exclusive 
(i.e., they never have active data in them at the same time). There is a special C++ 
data type for this purpose: the union. 
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Linearize multi-dimensional dynamic arrays. Use the simpler and smaller size 
of a one-dimensional array, with the two-dimensional structure mapped onto it with 
index calculations. This adds more runtime cost, but saves space over multiple 
levels of dynamic array allocations. 

Reusing space. One way to conserve memory is to reuse the space used by a 
variable. The union data type is an example of this general idea, and another is 
reusing variables for different purposes. For example, rather than letting several 
functions each have a local temporary buffer, they could all use the same global 
variable (although this is a very dangerous practice). As another example, if a 
program uses two similar arrays, examine whether the two arrays can share the same 
storage (possibly as a union). Note that I don’t recommend any of these 
approaches: too dangerous! 

Small data types: short, char. Instead of using arrays of int, use arrays 
of short, char or unsigned char. There is no problem with this method, 
provided large integer values are not being stored (e.g., larger than 127 for char, 
or larger than 255 for unsigned char). This technique is also worthwhile when 
applied to int fields in objects although alignment restrictions may limit the 
improvement — use the sizeof operator to determine if the size of the object has 
been reduced. Smaller local variables could also be declared as a smaller type, but 
this may increase the executable size due to type conversions. Note that speed can 
be compromised by using smaller data types because of the type conversions that 
often result. Similarly, use float instead of double, where the greater precision 
of results is not important (e.g., an AI model). 

Bit-fields in objects. When storing small integers in objects or structures, there is 
a way to specify exactly the number of bits required. These types are called “bit-
fields” and can only be used for fields inside objects, structures or unions. You 
cannot declare a local variable with a bit-field type. When using bit-fields, small 
integers or Boolean flags are automatically packed into a struct or union. This 
reduces storage requirements significantly, but reduces speed because it is necessary 
to pack and unpack bits. 

Parallel arrays versus arrays of objects or structures. Because of alignment 
restrictions, an object or structure may have unusable extra padding bytes. The 
number of padding bytes can be determined by using the sizeof operator, and 
subtracting the sizes of each individual field from the size of the object. If there are 
padding bytes, replacing an array of struct with a number of “parallel” arrays 
removes the need for this padding. 
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Packing. When dealing with large arrays of small integers, it can be more efficient 
to pack them together (i.e., more than one value per word), particularly when the 
information is binary (true or false), because only one bit per value is needed. The 
easiest way in standard C++ is to use std::bitset. Note that bit-fields are a 
form of packing provided by the compiler that can support more than one bit. They 
are also much easier to use than coding it yourself. 

Packing object arrays with #pragma pack. Microsoft compilers support the 
special “#pragma pack” preprocessor directive, which can specify the packing 
and alignment characteristics of an object. This can allow arrays of these objects to 
be packed more closely into storage. 

Reordering fields in objects and structures. Because of the word alignment on 
some machines, the order of fields in an object or structure can change the size of 
the object. This only applies to objects containing different size fields. A general 
rule for minimizing the space is to order the fields from largest to smallest. This 
heuristic may not give the best ordering — examine the size of a few different 
orderings using the sizeof operator, if space is crucial. This is a machine-
dependent optimization, and may not work well on some machines. 

Store integer codes instead of string names. If you’re storing a string to 
represent some particular type or a limited set of names, or something with a finite 
set, then you can use an enum instead. If you need to generate the actual string 
name, use an array lookup or a switch statement to return the equivalent string 
constant. For example, when dealing with AI word tokens, which are indeed fixed 
and finite, use the integer token code without storing the word as a string, while 
maintaining a single copy of the vocabulary strings (which you need anyway for the 
tokenizing algorithm). 

Measuring Code Size and Static Storage 

In general, it is more difficult to measure how much space a program is using than 
to measure how much time it is using. However, most environments provide some 
means of determining the size of instructions and static data in an executable 
program. If nothing else, the size of the executable file in overall bytes can be a 
reasonable guide. 

The size command. Under Linux and UNIX, a useful command is the “size” 
command, which examines an executable program and reports the memory used 
by its instructions and its global or local static variables. However, it does not 
(and cannot) report the stack or heap usage because the amount of such memory 
used is dynamic, and hence cannot be found by analyzing the executable.  
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The command is simply: 

    size a.out 

This produces output similar to the following: 

    text data bss dec hex 

    20480 8192 0 28672 7000 

The “text” value refers to the machine code instructions for the program code. 
Both the “data” and “bss” areas refer to global and local static variables. The 
“data” area refers to variables which have been explicitly initialized with values (e.g., 
string literals or initialized global variables); the “bss” area refers to variables with 
implicit initialization which defaults to zero (e.g., global variables or arrays without 
non-zero initializers). 

Function Code Sizes: If the code size is needed on a per-function basis, Linux 
and most other UNIX environments support the “nm” command. Windows also 
supports the nm command. 

    nm a.out 

The nm command differs slightly across older UNIX variants, but will usually print 
out information including the start and end address of a function, from which the 
size of a function can be trivially computed. 

Link Maps: Window users may be able to use a “link map” report. This allows to 
find out about executable size by examining the output produced by some C++ 
compilers at the link stage (although not all compilers will produce useful output). 
For example, the DOS “link” command with the “/map” option can be used 
when linking the object files: 

    link /map *.obj 

Code Bloat 

The size of the executable depends on the size of your C++ source code. Hence, 
the obvious way to reduce executable size is to go to the beach. Take a day off! Stop 
writing code, for goodness sake! 

 



97     Advanced C++ Memory Techniques 

Remove unnecessary code. Methods to reduce the number of executable 
statements in your program could involve deleting non-crucial functions from the 
program, and eliminating any dead code or old redundant code that has been “left 
in” for various reasons. The use of compile-time initialization of global 
and static variables instead of assignment statements is another method for 
reducing code size. Turning off debug code such as assertions, debug tracing, and 
self-testing code can also work, but this loses the supportability benefit of shipping 
a fully testable version. 

Compile-for-space options. Another possibility is that your compiler may 
support an option that causes the optimizer to focus on space reduction. This 
causes it to generate executable instructions that are as compact as possible, rather 
than being as fast as possible. 

Avoid using large libraries. Pay attention to what code libraries you are linking 
with. Some of them are quite extensive, and may be much more than you need. Try 
to use the basic standard libraries as much as possible. 

Template overuse. Templates are a common cause of “code bloat” and their 
usage should be reviewed. This is particularly true if you are using an integer-
parameterized template in order to gain compile-time efficiency, or an approach 
such as Template Meta-Programming (TMP). If these templates are used with a 
large number of constant values, many copies of the template’s executable code will 
be generated. 

Avoid large inline functions. Overuse of inline functions has the potential 
to create more executable code. Try to limit your use of inline to small functions 
where the overhead of the function call is significant compared to the relatively low 
runtime cost of the function body. Don’t inline very large and long functions that 
do lots of processing each call. 

Inline tiny functions. Although inlining large functions can cause code bloat, the 
reverse is usually true for very small functions. All of those getter and setter member 
functions have about one instruction. The code generated from an inlined call to 
these tiny functions may be much smaller than the instructions to call a real 
function. 

constexpr is inline, too. Remember that constexpr functions are also 
effectively a type of inline function. Again, try to limit these to relatively small 
functions. If a constexpr function is called with non-constant values, or is 
beyond the compiler’s ability to properly inline, then multiple copies of the 
executable code may result. 
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Library linkage. The size of the executable depends not only on the C++ code, 
but also on the extra library functions that are linked by the linker. Although it may 
seem that the programmer has no control over this, there are some techniques for 
reducing the amount of linked code. The techniques depend largely on how “smart” 
your linker is — that is, whether the linker links only the functions you need. 

Use DLLs for common libraries. Dynamic link libraries (DLLs) are one way to 
reduce the size of the executable, because the library executable code is loaded at 
runtime. If the DLL is a commonly used library, such as the standard C++ runtime 
libraries, not only will your executable smaller, but it’s also efficient at runtime 
because it will be loaded only once into memory, even if many programs are using 
the code. However, making your own special code into a DLL isn’t likely to offer 
much memory benefit at runtime, since it will simply be loaded dynamically rather 
than immediately at load-time. However, if it’s a library that isn’t needed in many 
invocations of your program, you can save memory by deferring loading of the 
library until you can determine whether it will be required. 

Remove executable debug information. Executable size can be reduced by 
avoiding generation of the “debug” information and symbol table information. For 
example, with GCC don’t use the “-g” debugging information or “-p” profiling 
instrumentation options. Linux programmers can also use the “strip” utility 
which strips symbol table information from the executable after it has been created. 
However, the extra symbol table information is more relevant to the amount of 
disk space the executable file uses than to the amount of memory it uses during 
runtime execution. 

Reducing Static Storage 

Static storage refers to the memory for global and local static variables, string 
constants and floating-point constants. All of the general size-reduction above can 
reduce the size of the global and static variables. 

String literal static memory. The space requirements for string constants can be 
reduced if the compiler has an option to merge identical string constants (which 
arise quite frequently). If there is no such option, or the option does not merge 
string constants across object files (which is quite likely), merging string constants 
can be achieved by the programmer, although the method is far from elegant. For 
example, including this variable in a header file and using it in multiple files may 
create multiple copies of the string literal: 

    #define TITLE "A very long string ... " 
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Instead, a global variable can be declared to hold the string constant and the name 
of this char array is used instead of the string constant. In modern C++ you can 
use “inline variables” to avoid linker problems with multiple definitions. 

    inline const char TITLE[] = "A very long string..."; 

This change is unlikely to reduce the speed of the program, nor does it increase 
memory requirements even if TITLE is used only once (there may seem to be an 
extra 4 bytes to hold a pointer value pointing at where the string of characters is 
stored, but this is not so). 

Large global variables. If there is a large global or static variable or array, the 
amount of static storage can be reduced by allocating it on the heap 
using malloc or the new operator, or by making it an automatic variable. This is 
particularly useful if the object has a short “lifetime”, in the sense that it is used only 
briefly (e.g., the array is used as temporary storage inside a function). If the variable 
is used all the time, this change doesn’t reduce the overall space problem, but simply 
moves the problem to another area. 

Stack Usage 

Stack storage refers to memory storage used for function calls, and includes (non-
static) local variables, function parameters and system information used to keep 
track of function calls. Hence, the basic methods of reducing stack storage are: 

• Use fewer and smaller automatic local variables. 

• Use fewer and smaller function parameters. 

• Use “const&” to pass objects by reference. 

• Use global or static local variables instead. 

• Reduce the depth of function call nesting. 

• Avoid recursion (always). 

Data sizes. The size of parameters and local variables can be reduced using the 
general methods of using smaller data types. Another method is to avoid passing 
large objects and to only large objects by reference (which is faster anyway). Don’t 
use large arrays or buffers as local variables, but prefer allocated buffers or global 
buffers, or declare them as local static variables. 

Fewer parameters. The number of parameters can be reduced by using global 
variables, or by packing a number of parameters into an object and passing the 
whole object (which is often faster, too). 
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Fewer local variables. The number of local variables can be reduced by re-using 
local variables, although this can introduce bugs if not enough care is taken. 
Common examples of reusable variables are scratch variables, such as temporaries 
or for loop index variables. Another method of reducing the number of local 
variables is to use parameters as if they were local variables (this is safe because of 
call-by-value). Overall, most of these suggestions are minor improvements, unless 
you’re using very large arrays or objects as local variables. 

Flatten call hierarchies. Reducing the depth of function call nesting (especially by 
avoiding recursion) also reduces stack space requirements. This can be achieved by 
using preprocessor macros or inline functions (but this may increase code size). 
You can also refactor your code to avoid too many layers of wrapping functions in 
interfaces. Naturally, recursion should be avoided as much as possible by using 
iterative loop algorithms or tail recursion elimination. 

Reducing Heap Usage 

Your C++ IDE should support tools that track heap or stack usage dynamically. 
For example, MSVS has a “heap profiler” tool that you can enable. Linux tools such 
as Valgrind can be very usual to examine heap memory usage. 

The amount of heap storage used depends on the size of blocks, the number of 
blocks and how quickly allocated blocks are deallocated. The size of blocks can be 
reduced using the general techniques of reducing data sizes (e.g., small data types, 
packing, unions). 

Fewer allocation calls. The number of heap blocks affects heap usage in the 
obvious way (more blocks means more memory) and because of the fixed space 
overhead of a few hidden bytes to store information about the block (so 
that delete or free can de-allocate it). When small blocks are used, it can be 
useful to pack more than one block together to avoid this fixed overhead. 

Avoid small frequent allocations. If your frequently-used class allocates a small 
amount of memory in a constructor and then deallocates it in the destructor, 
consider ways to avoid this pattern. Small amounts of data could possibly be stored 
in extra fields of the object. 

Memory leaks waste memory. Obviously, avoiding memory leaks which are 
never returned to the heap is important to reducing heap memory usage. There are 
many tools and debug libraries available to detect leaks, and ongoing use of these 
tools will reduce overall heap fragmentation. 
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Early deallocation of memory. It’s a win if you have avoided leaking the memory, 
but that’s not the end of the story. All allocated memory should be returned to the 
heap as early as possible. If memory is not deallocated, unused memory (called 
“garbage”) can accumulate and reduce the available memory. 

Avoid realloc. Measure and manage any calls to realloc, as they can be a 
significant cause of heap memory fragmentation. And they’re also not time-
efficient, so reducing them is a win-win. 

Manage std::vector sizes via “reserve”. The resize member operations 
in std::vector can lead to extra unnecessary allocation requests. Judicious use 
of the “reserve” function can avoid this. 

Linearize multi-dimensional allocated arrays. One big allocation of a linear 
array is much more efficient on the heap than allocating separate blocks for rows 
or lower-dimensions of the array. An array of pointers into the linearized large block 
is only one more allocation, and has the same efficiency as having each pointer be 
a separate dynamically allocated subarray. 

Smart buffers. Use objects that contain a limited amount of memory, which is used 
for the typical cases. If a longer string, or larger array is required, it needs to allocate 
memory and manage that process. Overall, this can massively reduce the number 
of allocated blocks. 

Memory fragmentation. Reduce memory fragmentation by reducing both 
allocations and deallocations. It’s also important to manage the different sizes for 
allocations, as varying block lengths cause more fragmentation. 

Per-class allocators. In severe situations, take control of your class’s dynamic 
objects by defining your own per-class allocators. Since the allocators knows that 
all block requests will be the same size, it can not only be faster, but also better at 
reusing memory blocks and avoiding memory fragmentation. But this method can 
also be a big fail if coded lazily to first allocate one huge chunk of memory. These 
allocators should dynamically manage their requests for more storage, using some 
reasonable incremental block size, rather than attempting to guess their maximum 
requirements up front. 
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9. False Sharing 

False Sharing and Cache Line Sizes 

False sharing is a slug in C++ multithreaded code preventing two threads from 
running as fast as they should. The idea of “false sharing” is that two threads can 
interfere with each other’s memory caching. The sharing is “false” because it can 
occur with data that’s not actually being intentionally shared between the threads, 
but is impeded simply because the memory addresses are too close together. 

Why does it occur? The CPU’s L1 and L2 caches don’t just cache in single bytes, 
16-bit words, or even 32-bit integers. Instead, they have caching in “chunks” in the 
hardware level, which are called “cache lines” (also “cache sectors” or “cache 
blocks” or “cache line sizes” or “bananas in pyjamas” if you prefer). 

How big? Some examples of common sizes of these cache lines include: 

• Intel CPUs — 64 bytes. 

• Apple M2 — 128 bytes. 

• Some AMD and other CPUs — 256 bytes. 

Note that you can get this number for the L1 cache line size in bytes 
programmatically in C++17 via the   newer special standard functions declared in 
the <new> header: 

• hardware_destructive_interference_size 

• hardware_constructive_interference_size 

What this means is that, on an Intel CPU, the caches are updated 64 bytes at a time, 
because one “cache line” is read or written as the minimum size. This is good 
because: 

• Cache loads are 64 bytes in parallel (in hardware). 

• Cache writes (updates) store 64 bytes in parallel. 

But this is bad because: 

• Invalidating one cache byte also invalidates all 64 cache line bytes. 
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This is where we have a slowdown from false sharing. If one thread sets any value 
in a 64-byte cache line, then all of the other 63 bytes are also invalidated in the 
cache. If a second thread needs to use any of those other 63 bytes, then it needs a 
cache line refresh. Slowness ensues. 

Example of False Sharing 

A common example would be two integers, each 4 bytes in size, but close together 
so that they sit inside the same 64-byte cache line. The most common problems 
arise with atomics or mutexes close together, but they can affect any global variable. 

Hence, first a simple example without any atomics, mutexes, or other thread 
synchronization. Let’s just look at two threads that are updating their own global 
variable, with no overlap between the threads. In theory, these two threads should 
not affect each other at all. In reality, there are CPU cache lines. 

Here are our two global counter variables: 

   int g_counter1 = 0; 

   int g_counter2 = 0; 

In practice, false sharing is more likely to occur with two atomics declared close 
together. However, in this example we’re just testing with two completely unrelated 
threads, with absolutely zero synchronization happening between them. They really 
shouldn’t impact each other, if not for false sharing. 

Here is the sequential code, which sets two global variables: 

   void runtest1_no_threads(int n) 

   { 

      for (int i = 0; i < n; i++) { 

         g_counter1++; 

      } 

      for (int i = 0; i < n; i++) { 

         g_counter2++; 

      } 

   } 
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Here are the two threads that aim to set those two global variables in parallel. Note 
that each thread only accesses one variable, without any “sharing” going on. 

   void thread1(int n) 

   { 

      for (int i = 0; i < n; i++) { 

         g_counter1++; 

      } 

   } 

 

   void thread2(int n) 

   { 

      for (int i = 0; i < n; i++) { 

         g_counter2++; 

      } 

   } 

And here’s the basic thread launching code: 

   void runtest1_threads(int n) 

   { 

      std::thread t1(thread1, n); 

      std::thread t2(thread2, n); 

      t1.join(); 

      t2.join(); 

   } 

Finally, here is the timing code using <chrono>: 

   g_counter1 = g_counter2 = 0; 

   auto before = std::chrono::high_resolution_clock::now(); 

   runtest1_no_threads(n); 

   auto now = std::chrono::high_resolution_clock::now(); 

   auto diff =         

        std::chrono::duration_cast<std::chrono::microseconds> 

       (now - before).count(); 

   std::cout << "Time (no threads): "  

             << diff << " microseconds" << std::endl; 

Here are the speed results from executing the sequential and threaded code for 100 
million iterations using g++ on Linux. 

   Time (no threads): 256079 microseconds 

   Time (2 threads): 209341 microseconds 
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Note that the threaded code does not actually run twice as fast as the sequential 
code, despite having two threads that should run in parallel. In fact, it only improves 
on the sequential code by about 19%, rather than 50%. Why? 

It’s the magic of false sharing, whereby one thread writing to its variable slows down 
the other unrelated variable that’s only being used by the other thread. The two 
threads are constantly writing to their own variable, which messes with the cached 
value of the other global variable used in the other thread. It’s kind of like 
entanglement in quantum physics, if you like that kind of thing. 

Detecting False Sharing 

According to the documentation, Valgrind’s DRD tool should be able to detect 
false sharing (and numerous other thread errors). However, I ran the command: 

    valgrind --tool=drd ./test1 

I did not get any warnings: 

    ==8618== ERROR SUMMARY: 0 errors from 0 contexts  

On closer reading of the DRD documentation, DRD seems to only detect a false 
sharing situation if the two threads are running on different cores, which may have 
been the reason. 

Solutions for False Sharing 

There are a few coding solutions to prevent false sharing. The basic idea is ensuring 
that the addresses of unrelated thread-shared global addresses are not too close. 
Options include: 

• Putting global variables in random spots throughout your C++ code. 

• Using alignas to enforce address spacing on alignment boundaries. 

The first one is kind of a joke, although it would probably work in most cases. 
However, it’s not technically guaranteed where the linker will put unrelated global 
variables in the address space. 

A more elegant solution is to put variables, especially atomics, on address alignment 
boundaries. The idea is to ensure that each important global variable is alone in its 
64-byte block.  
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The global variables in our declarations become: 

   alignas(64) int g_counter1 = 0; 

   alignas(64) int g_counter2 = 0; 

By declaring them both as alignas(64), it guarantees two things: 

• The variables start on a 64-byte alignment boundary (we don’t care about 
this here), and 

• They are the only variable in that 64 bytes (this fixes false sharing). 

The downside is that each 4-byte integer is stored in 64 bytes, so there’s 60 bytes in 
unused padding added to global memory usage. But it’s better to pad memory than 
to waste CPU cycles! (On the other hand, the CPU cache lines are also loading and 
storing 60 unused bytes, so we’ve somewhat undermined the efficiency advantages 
of the L1/L2 cache lines for this 64-byte block.) 

Anyway, who cares, it works! Here are the faster speed measurements just from 
adding alignas statements: 

   Time (no threads): 260277 microseconds 

   Time (2 threads): 133947 microseconds 

Wow! It’s almost exactly half the time! The performance gain is about 49%, which 
is much better than 19% (due to false sharing slowdowns), and is close to the 50% 
gain we were aiming for with two threads. Maybe there’s something to this 
multithreading stuff, after all. 

Some Final Tweaks 

As a finesse, you can assure that the addresses are far enough apart by simply 
checking in code. One possible method to make sure that some junior code jockey 
hasn’t deleted your alignas statements: 

    assert( (char*)&var2 - (char*)&var1 >= 64); 

Unfortunately, you can’t do it faster at compile-time, since addresses of global 
variables are not “constant” enough for the compiler: 

    static_assert( (char*)&var2 - (char*)&var1 >= 64);  // 

Fails 

Note that some CPUs have cache line sizes up to 256 bytes. Hence, you might 
need alignas(128) or alignas(256) on those platforms. 
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Note also there are various other non-standard ways to achieve alignment, most of 
them having existed on platforms prior to the alignas specifier in the C++ 
standardization. For example, GCC has a whole set of old builtins. Feel free to use 
those old things and charge extra because you’re writing antique C++ code. 

Another point is that false sharing slowdowns can arise for non-global variables, 
such as dynamic allocated memory or stack addresses. It’s not very likely for two 
threads to see contention over stack addresses inside their respective call frames, 
but it can occur with allocated memory blocks that are shared. There are various 
ways to get aligned addresses inside dynamic memory allocation, including aligned 
memory allocation primitives, so the same ideas can solve the problem. 

Nevertheless, atomics declared as global variables are probably the most likely area 
where false sharing can occur. This suggests a general rule: all global atomics should 
be declared as alignas. I’m not sure I agree, and it does sound a bit drastic. This 
does avoid the performance slug of false sharing, but it will also waste significant 
memory with padding bytes. 
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Part II: Memory-Efficient Data 

Structures 
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10. Arrays 

Arrays are wonderfully efficient! They’re the most basic data structure known to 
humanity. The main features to note about an array include: 

• Contiguous memory storage — great for cache locality. 

• Single type of data — no need to be worried about the type. 

In modern C++, there are several ways to create an array data structure: 

• std::array 

• std::vector 

• std::inplace_vector (C++26) 

There are also some older methods of using arrays that still work in modern C++ 
code: 

• Fixed-size array variable: int arr[10]; 

• Allocated fixed-size array: new int[10]; 

• Old-style allocated array: malloc(sizeof(int)*10); 

Note that the size of arrays in these examples don’t need to be a compile-time 
constant in C++. They can be a variable, where the size of the declared array is 
sorted out at run-time. 

Array Operation Complexity 

There are two main types of arrays to store objects: sorted and unsorted. Well, 
actually, there’s other types of arrays with different semantics (e.g., stacks, queues, 
heaps, ring buffers), but let’s just look at searching and sorting for now. 

Are they fast?  
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Here’s the 10,000 foot view: 

• Unsorted arrays — very fast insertions/deletions, but slow searches (linear) 
and even slower to sort the data. 

• Sorted arrays — faster search (logarithmic), slower insertions/deletions, 
and great if you need sorted data. 

In more detail, here’s the overall complexity analysis of the basic searching methods: 

• Searching — unsorted is O(n) (linear search) and O(log n) for sorted (binary 
search). 

• Inserting — unsorted is O(1) (add to the end), but O(n) if sorted (shuffle 
required). 

• Deleting — this is O(1) if unsorted (tricky swap method!), but O(n) if 
sorted (also shuffles). 

• Print unsorted — both are O(n) with a linear scan of the array. 

• Print sorted — unsorted is O(n log n) because it requires a sort, but 
only O(n) if already sorted. 

And some other algebraic operations: 

• Maximum/minimum — unsorted is O(n) because it requires a scan, but 
only O(1) if already sorted (choose first or last element). 

• Top-k elements — unsorted requires an O(n log n) sort or at least a “partial 
sort”; only O(k) for a sorted array. 

• Sum or average — both are O(n) because the whole array must be scanned. 

Modern C++ Arrays 

We’re going to implement our own sorted and unsorted arrays to examine the 
algorithms. Standard C++ already has two types of unsorted arrays 
in std::array and std::vector. We could just wrap around those types, but 
I’m going to use low-level raw arrays to show the algorithms in more detail. 

Sorted arrays are trickier. Note that there’s no “sorted array” class in the standard 
C++ library.  
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However, there are some primitives we can use to achieve sorted arrays: 

• std::sort() — modern C++ version with a hybrid quicksort/heapsort 
algorithm. 

• qsort() — old-style quicksort with function pointers (not 
recommended). 

There is also some builtins for “binary search” on a sorted array: 

• std::binary_search() — modern C++ implementation for a sorted 
array. 

• std::equal_range() — binary search that handles duplicate elements 
in the array. 

• bsearch() — old-style binary search with function pointers (not 
recommended). 

If we are inserting into a sorted array, we don’t need binary search exactly, because 
we’re assuming the element isn’t already in the array. Instead, we need a “binary-
like search” method of finding the index location to insert a new item. In other 
words, we need to find the spot where the item fits in the array, but do it 
logarithmically, rather than using a slow linear scan. 

Writing a binary-like search algorithm to find the insertion point is very fiddly 
coding! Fortunately, the standard C++ library has two methods that code it for us: 

• std::lower_bound() — generalizes binary search for use with 
insertions. 

• std::upper_bound() — similar version that finds the location above. 

Strictly speaking, std::binary_search() in the C++ standard only requires a 
“partitioned” array rather than a “sorted” array. But for a scalar type with well-
defined comparisons, this is the same thing. 

Custom Array Implementation 

Anyway, let’s look at some of the basic operations in our custom versions of array 
algorithms. We’ll examine the unsorted array version, but the sorted version is 
almost identical.  
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Here’s the overall class members: 

    template<typename T, int N> 

    class UnsortedArray { 

    private: 

        T arr_[N]; 

        int capacity_ = N; 

        int count_ = 0; 

        //... 

    }; 

Note that “capacity_” is somewhat redundant if we’re templating based on a 
compile-time array size. However, it would be useful if we were dynamically 
constructing our arrays at runtime. 

Here are some of the basic “getter” functions: 

    int size() { return count_; } 

    int count() { return count_; } 

    int capacity() { return N; } 

And here are some of the basic utility functions: 

    bool empty() { return count_ == 0; } 

    bool full() { return count_ == N; } 

Sorted Arrays 

There is no standard C++ sorted array class, so we’ve got to implement our own. 
A sorted array has a good search lookup cost, being logarithmic in the number of 
elements, by using the “binary search” lookup algorithm. However, that’s not as 
good as a hash table (e.g., std::unordered_map), which has O(1) average search 
cost. 

Insertions and deletions have a poor O(n) theoretical complexity, although the first 
phase of finding where to insert or delete is also logarithmic, using an algorithm 
very similar to binary search. The linear cost arises because once they find the 
location, they then need to shuffle elements: 

• Make a gap (insertion), or 

• Close a gap (deletion). 
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If we’re using a class object for our array, such as std::array or std::vector, 
we can use the insert() method. This is doing a shuffle behind the scenes. 

The main advantage of a sorted array is that it’s, well, sorted, so if we want to 
process the array elements in sorted order, then it’s already done for us. That’s good 
because sorting an unsorted array is expensive with an O(n log n) complexity 
(e.g., std::sort typically uses a quicksort-heapsort hybrid). 

If we need sorted data, there are other options in C++ containers. 
The std::map container is implemented as a balanced binary tree, called a “red-
black tree,” and this has logarithmic complexity for all major operations: search, 
insertions and deletions. However, a sorted array has good memory cost because it 
used contiguous storage, so it should not be underestimated! 

Shuffling Array Elements 

Shuffling of array elements along by one location is required for both insertion and 
deletion in sorted arrays. Shuffle right to create a gap for a new insertion, and shuffle 
left to close a gap after deletion. We can also use this idea for unsorted arrays, but 
there are faster tricks, as examined later in this section. 

In practice, shuffling of sorted arrays is quite efficient for scalar types via a memory 
block copy, using the memmove() standard function. Note that memmove() is an 
older function that does a bytewise copy of the memory that ignores object 
constructors and move operators. Presumably, the standard insert() method is 
using fast byte copies for scalar types. 

Here’s an obscure pitfall: we cannot use various other copying methods because 
the shuffle involves overlapping source and destination memory blocks. There does 
not seem to be a version of C++ copying that permits overlaps. These functions 
would be incorrect and lead to undefined behavior on overlapping memory blocks, 
which is definitely true of any array shuffle: 

• std::memcpy (old C-style) 

• std::copy_n 

However, we can use the overloads of the std::move function that work on 
ranges of multiple objects. These version of std::move have a real runtime cost, 
unlike the basic version, which is a compile-time type-cast that converts to a 
movable R-value reference (with no runtime code generated).  
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We also need to pay attention to whether we are shuffling to the left or right, 
because these functions don’t work for all overlapping arguments. 

• std::move or std::copy — moving or copying left (i.e., close a gap 
for deletion). 

• std::move_backward or std::copy_backward — alternative for 
moving or copying right (i.e., create a gap for insertion). 

Note that using std::copy or std::copy_backward functions also work 
here, but copying is slower than moving for non-scalar types. Hence, 
the std::move versions are more general, but still have some downsides: 

• Expensive for non-scalar objects. 

• Iterators are invalidated on the array. 

• Invalidates any pointers or references to specific objects. 

Unfortunately, the shuffle cost is terrible for complex objects that will require their 
move operators called for every single object. I can’t say that I recommended sorted 
arrays for those types.  

Note that there are also various types of objects where we could still use a memory 
block move to do a “shallow move” of the objects (i.e., “relocatable objects”), 
rather than individually moving each element. However, using this idea requires 
tricks to prevent the C++ container from doing its move thing, such as using a low-
level raw array rather than std::vector. 

Binary-Like Sorted Array Insertion 

Sorted arrays are logarithmic for searches, but not quite as good for insertions and 
deletions. Inserting a new element into a sorted array is a three-phase algorithm: 

1. Find the location to insert, 

2. Shuffle elements to the right (create a gap), and 

3. Insert the new element at the location. 
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There are three ways to find the location in a sorted array: 

1. Linear search from the front. 

2. Linear search from the back. 

3. Binary-like search (faster!) 

Linear search over a sorted array doesn’t use equality, but finds the first element the 
bigger than the new element. Or to go in reverse, start at the end and look for the 
first element that’s smaller than the new one. 

The advantage of starting at the end is that we can shuffle as we go, but it’ll have 
terrible cache locality problems in accessing memory addresses in reverse. CPU 
memory prefetch algorithms usually assume a forward access order. 

Anyway, neither of the linear algorithms are fast and they aren’t typically used. 
Instead, binary-like search for the insertion point is much faster, with a logarithmic 
complexity. 

Binary-like search for insertion involves splitting up the array into two intervals, 
and choosing between the two based on the midpoint value. This is not exactly the 
same as binary search, because we’re assuming that the element is not already in the 
array. Hence, it’s like binary search, but we’re looking for smaller versus bigger 
elements in comparison to the new element, rather than seeking equality. 

Sorted Array Deletion 

Deletion of an element in a sorted array is easier than insertion. There are two major 
phases: 

1. Find the element using binary search. 

2. Shuffle the elements left to close the gap. 

Note that we’re using real binary search, not the binary-like search for insertion, 
because we assume the element is present. We can’t delete an element that’s not in 
the array. Hence, we can use std::binary_search to find the element. 

The deletion phase is a left shuffle of all the array elements. As discussed above, we 
can do a byte copy such as memmmove() or std::move, which both are well-
defined with overlapping memory blocks. 
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These methods can be efficient for scalar and other trivial types where bitwise 
shallow copying is allowed, but may trigger a cascade of move constructors or move 
assignments on complex classes. Thus, sorted arrays can be potentially inefficient 
for non-scalars because of the hidden costs of shuffling objects. 

Unsorted Arrays 

Unsorted arrays are not an all-star data structure, and don’t get a lot of use for basic 
search requirements. The main features include: 

• Slow search lookups in cases like associative arrays or sets (linear scan cost). 

• Fast insertions and deletions (constant cost, without any “shuffle”). 

• Sorting an unsorted array is costly with O(n log n) complexity. 

Unsorted arrays are very useful if we want fast insertions and deletions, but rarely 
need to search or sort the array. Insertion is very fast with constant time, just by 
adding the new element at the end of the array. Deletions can also be implemented 
in constant time, but only via a trick of swapping the to-be-deleted element with 
the last element. 

Interestingly, we can always fix our unsorted array by sorting it, and that turns out 
to be a decent idea. Let’s examine the two ways to get a sorted array: 

• Build an unsorted array, then sort it, or 

• Incrementally maintain a sorted array. 

The first plan costs O(n) in total to do all the n insertions (unsorted), and then 
costs O(n log n) to sort it with std::sort. The second plan costs O(n) for every 
one of the n insertions into a sorted array, and so we get to O(n^2) quadratic 
complexity for the incremental sorted array approach. In summary, our analysis 
suggests: 

• Unsorted array (sort it later) — complexity of O(n log n). 

• Sorted array (incremental) — quadratic O(n^2) complexity. 

An unsorted array might be the way to go? However, as discussed above, it’s not as 
bad as that sounds if we have scalar types in a sorted array, because the “shuffle” is 
a single memory block copy. 

Note that an unsorted array is actually sorted in a weird way: by the order of 
insertions. Hence, if you have an ordered sequence of data, they are mapped into 
the array sequence according to the order in which they are processed.  
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If these objects have an associated timestamp, your supposedly unsorted array may 
well be sorted implicitly according to the timestamp field. 

Unsorted arrays are underestimated, and can be efficient in practice. An array that 
is unsorted functions as a list of items, but is stored in contiguous memory, which 
can make scanning the array efficient in terms of cache locality (e.g., faster than 
linked lists in std::list or red-black binary trees in std::map). 

Unsorted arrays can be useful for semantics other than basic search lookups. An 
array can efficiently implement a fixed-size stack, but a fixed-size queue is better 
implemented using a ring buffer that progresses around the array in a circular 
fashion. You can also put a balanced binary tree or a heap data structure into an 
array, but we’re getting far away from a basic unsorted array in doing that. 

Linear Search of Unsorted Arrays 

Linear search is the worst part of unsorted arrays. There’s not really a better way to 
search an unsorted array. Here’s a simple hand-coded linear search of the array to 
demonstrate the algorithm that’s happening: 

    int find_linear_search(const T &item) 

    { 

        for (int i = 0; i < count_; i++) { 

            if (item == arr_[i])  

                return i;  // found 

        } 

        return -1; // not found 

    } 

The above assumes we’re stored our data in a raw array type as the data member. 
If we choose to store the data as std::array or std::vector, we could use 
standard member functions to search the array, such as find(). 

Note that if we were doing a lot of searches of an array without many insertions or 
deletions, here’s an idea: pre-sort the array! This gives us this approach: 

1. Pre-sort the array with std::sort 

2. Use binary search on our newly sorted array. 

The use of binary search reduces our searches to logarithmic complexity, which is 
much faster than linear search. 
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Template Value vs Reference Parameters 

Templating based on a type has a common conundrum about how to choose 
between passing function parameters by reference or value. The desirable efficient 
that we want is usually: 

• Small integer types — pass-by-value. 

• Large class types — pass-by-reference. 

Which signature should we use? 

    int find_linear_search(const T &item)  // Const reference 

    int find_linear_search(T item)  // Pass-by-value 

Which one we desire for larger non-class types, such as long or double, is 
somewhat implementation-dependent and you need to benchmark it! 

Unfortunately, there’s no way to alter the signature of a templated function 
according to a compile-time setting. I don’t think there’s even a way to do it in type 
traits. 

However, the most common modern C++ style is to use const reference 
parameters. The reasons are: 

• Large class types — const& references are much faster. 

• Small integer types — it’s not much worse. 

In one sense, I’m not sure about the last point, because: 

1. It’s a micro-optimization, and 

2. The compiler may auto-optimize it anyway. 

But there is a simple solution whereby you can use const& reference parameters 
for generic types, but use pass-by-value for small integers.  

Template specialization to the rescue!  
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Just define specialized versions of templated functions for the handful of small 
integer types: 

    int find_linear_search(int item)  // Pass-by-value 

    { 

        // etc... 

    } 

Now you only have to define about 27 more versions for every single integral and 
floating-point type. 

Fast Linear Search 

You’re thinking that this doesn’t exist, and the heading is an oxymoron. But there 
are situations where linear search on an unsorted array can be faster than the 
alternatives: 

• Small number of elements 

• Sentinel search optimization 

• Low-level support for searching 

• Parallel linear search 

Let’s examine all of these techniques in turn. 

Sentinel linear search optimization. This is an optimization attributable to 
Knuth (1973) in the Mix programming language. The idea is to remove the 
conditional test in the loop (i.e., removing “i < count”) by guaranteeing a 
successful search. The trick is to add an extra element at the end of the array, which 
equals what we’re searching for. 

Note that this requires that we declare our array data member with one more item 
than the capacity. We always need a spare element at the end, even if the array is 
full to capacity. 

        T arr_[N + 1];  // Extra dummy element 

Sentinel-based searching is only good for arrays of scalar types, because it requires 
making a copy of the search element, which is created at the end. The sentinel 
search of an unsorted array still has linear complexity, but has a lower complexity 
constant because each loop iteration is faster in practice. 
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Low-Level Search Support 

Some types of CPU have explicit instructions that support scanning a memory 
block for a value. If we’re using an array of characters or bytes, there are these 
candidates: 

• std::find — on an array, vector, or string type. 

• strchr — old-style character strings (null-terminated) 

• memchr — low-level memory blocks of bytes. 

The modern C++ code using std::find looks something like this: 

    bool find_standard(const T& item) 

    { 

        auto iter = std::find(arr_, item); 

        return iter != arr_.end(); 

    } 

The version that returns the integer index of the element in the array is: 

    int find_standard_index(const T &item) 

    { 

        auto iter = std::find(arr_, item); 

        if (iter == arr_.end()) return -1;  // Fail 

        return iter - arr.begin();  // Pointer arithmetic 

    } 

Note that this idea only works for arrays of contiguous memory. Pointer arithmetic 
doesn’t work well on general iterators for dynamic memory containers. 

Parallel Linear Search 

There are multiple ways that we could parallelize our linear search algorithm. It just 
depends on our budget! Here are some options: 

• CPU SIMD instructions (e.g., AVX or ARM Neon) 

• Multithreading (on CPU) 

• GPU hardware 

SIMD instructions allow use to test multiple values in parallel on a CPU. For 
example, an x86 CPU from Intel or AMD allows the AVX sets of instructions. 
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There are a few versions: 

• AVX — 128 bits (4 x 32-bit integers). 

• AVX-2 — 256 bits (8 x 32-bit integers). 

• AVX-512 — 512 bits (16 x 32-bit integers). 

• AVX-10 — 1024 bits (32 x 32-bit integers). 

CUDA C++ GPU linear search. If we have an NVIDIA GPU, the type of 
parallelism is much more extensive. In fact, we can create 1024 threads, and each 
thread can compare only a few elements with our search key. This sounds like an 
almost constant-time algorithm on the GPU, but it’s not quite that good.  

In practice, there are two phases: 

1. Compare each loop element in parallel, and 

2. Collate the results. 

The GPU can compare all the array elements 1024 at a time. Hence, it’s not constant 
time, but it’s still linear time divided by 1024. 

Also, at the end we have a synchronization problem with detecting which of the 
threads had a successful result of the comparison. It’s not quite as bad as a 
“horizontal reduction” of the array (e.g., max or sum), but we have to synchronize 
the results in shared memory or global memory.  

We could use “warp shuffle” instructions that coordinate via faster GPU registers, 
but these only work within each warp of 32 threads, so it ends up being like a 
horizontal reduction over each warp. 

Unsorted Array Insertions 

Inserting into an unsorted array is very fast because we can just insert it at the end. 
This is efficient with constant time complexity.  
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The code for insertion at the end: 

    void insert_end(const T & obj) 

    { 

        if (full()) { 

          throw std::overflow_error("Insert full array"); 

        } 

        else { 

          arr_[count_++] = obj; 

        } 

    } 

There’s nothing much to this code: only one statement! It’s very efficient to insert 
at the end of an array. 

Insertion at an Index 

Inserting in the middle of an unsorted array seems to be an O(n) operation. If we 
needed to insert into the middle, it would seem slower because of the need to 
shuffle the other elements out of the way. And that would certainly be true of a 
sorted array, where a shuffle is needed to maintain the sorted array. 

But, no, we’re talking about an unsorted array here. Let’s ban the shuffle. 

There’s a move trick to insert into the middle of an unsorted array at a given index 
in O(1) time. The trick is to note that in an unsorted array we only need to move a 
single element out of the way.  

The idea is two short phases: 

1. Move the existing element “out of the way” and to the end. 

2. Insert the element at that location. 

Here’s a coded version of the “move away to the end” optimization. One fast way 
is to use std::move, which is like a type cast with no runtime code, and this causes 
move assignment on a complex object (or simple byte copying on a scalar type).  
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Here’s the code: 

    void insert_at_offset(const T & obj, int offset) 

    { 

        if (full()) { 

           throw std::overflow_error("Insert full array"); 

        } 

        else { 

           // Move to end 

           arr_[count_ + 1] = std::move(arr_[offset]);   

           arr_[offset] = obj;  // Insert at location 

           count_++; 

        } 

    } 

Note that this only works for an unsorted array, not a sorted array. If we wanted a 
sorted order, or we need the implicit order-of-insertion in an unsorted array, then 
this “move to end” idea cannot be used as it will ruin the ordering. 

Fast Unsorted Array Deletion 

There’s a trick for deleting an arbitrary element from an unsorted array that is often 
missed. Unsorted array deletion need not be O(n) complexity, but can be done 
in O(1) time. 

Deletion of an item from an unsorted array is a two-phase operation: find and 
destroy. Here’s the code to find the element, which uses linear search to find its 
offset, and is thus O(n) unavoidably: 

    void delete_key(const T& item) 

    { 

        int offset = find_linear_search(item); 

        if (offset == -1) { 

            throw std::invalid_argument("Delete error"); 

        } 

        else { 

            delete_offset_swap(offset); 

        } 

    } 

The naive idea for deleting from an unsorted array that we’ve found here is to 
remove the element and “shuffle” the rest of the elements downwards (to the left) 
so that there’s no “gap” in the array.  
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Doing a shuffle isn’t so bad for scalar types, where it’s probably just one call 
to memmove behind the scenes. But for non-scalar objects, we’re moving a lot of 
objects. Either way, our unsorted array deletion with a shuffle has cost complexity 
of O(n) time. 

There is a faster way! 

First, let’s get rid of the special cases: if there’s only one element in the array, just 
erase it, and set the count to zero. And if the erase location is the end-most object, 
just erase it there, and decrement the count. Otherwise, if the object we want to 
remove is at the front or middle of the array, we do a tricky swap with the end 
element: 

• Swap arr[i] with arr[n-1] 

• Erase at arr[n-1] 

• Decrement n 

This swap idea has changed our unsorted array deletion from O(n) time to the 
optimal O(1) complexity. There’s no loops anywhere! 

Note that we can use std::swap here, and we may need to explicitly run the 
destructor of objects being destroyed (optional for scalar types). Here’s what the 
code looks like: 

    void delete_offset_swap(int offset) 

    { 

        if (empty()) { 

            throw std::underflow_error("Delete empty array"); 

        } 

        else if (count_ == 1) { // *** 

            if (!std::is_trivially_destructible<T>::value) { 

                arr_[0].~T(); // Explicit destructor (if needed) 

            } 

            count_ = 0; 

        } 

        else { 

            if (offset != count_ - 1) { 

                // Swap with the end element 

                std::swap(arr_[offset], arr_[count_ - 1]); 

            } 

            if (!std::is_trivially_destructible<T>::value) { 

                // Explicit destructor (at end) 

                arr_[count_ - 1].~T();  

            } 

            count_--; 

        } 

     } 
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The above code uses “type traits” from modern C++ to detect whether or not we 
need to explicitly run the destructor when destroying an object in the array. This is 
very efficient because type traits are evaluated to compile-time constants, so the 
compiler should optimize out the path if not needed (i.e., using “dead code 
elimination”). There are several options available in the type traits library, 
depending on exactly what types we want to support in our array: 

• std::is_trivially_destructible<T>::value 

• std::is_destructible<T>::value 

• std::is_scalar<T>::value 

Actually, the above code has a minor inefficiency. The giveaway is that two code 
sequences with is_trivially_destructible are similar. Can you see it?  

We don’t need to expressly test for count==1 (marked with stars), because the 
general code in the else clause also works for that special case as well. 

And also, what was I thinking?  

There’s no need to swap the element to the end, only to destroy it there. That’s two 
hidden moves inside std::swap, when we only need one moved element. The 
better idea than swapping is to destroy the object where it is, and then move the 
end element down: 

    if (!std::is_trivially_destructible<T>::value) { 

        arr_[offset].~T(); // Destroy in place 

    } 

    if (offset != count_ - 1) { 

        // Move down the end element 

        arr[offset] = std::move(arr_[count_ - 1]); 

    } 

    count_--; 

Note that std::move() here is only a compile-time type cast operation. It will 
ensure that the move assignment operator is used on complex class types, and is 
also efficient for scalar and other trivial types. 

Yes, moving the end element to the middle of the unsorted array changes some 
addresses. It will certainly invalidate iterators over the container. But so would the 
shuffle of elements, so we’re okay there. 
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Note that this only works for an unsorted array data structure. If we did this on a 
sorted array, we’d ruin the sorting order in the array by moving the biggest element 
into the middle of the sequence. Sorted arrays need to do the shuffle. 

One final point is that this fast deletion trick with swapping will break the unofficial 
ordering of the array by its insertion order. If we have timestamps associated with 
our array elements, swapping the end element into the middle will ruin that implicit 
ordering. 

Container Deletion Pitfalls 

While we’re on the topic of deletions, let’s look at some common mistakes with 
deletions from C++ containers. There are at least two major pitfalls in using 
the erase() method to remove an object from a C++ container.  

Here’s the basic first attempt: 

    for (auto iter : container) { 

        if (want_to_delete(*iter)) { 

            container.erase(iter);  // Kaboom! 

        } 

    } 

This will crash with a big mushroom cloud. The problem is that we’ve assumed the 
iterator stays valid, whereas the erase() method actually returns an updated 
iterator that we need to use. We can’t use a range for loop to do this, so we have 
to use begin() and end() manually: 

    for (auto iter = container.begin();  

               iter != container.end(); ++iter) { 

        if (want_to_delete(*iter)) { 

            iter = container.erase(iter);  // Use return value 

        } 

    } 

This is not a crash, but still a major bug. The iterator loop skips over the next item 
after the erased object.  
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There are two increments in the deletion sequence: 

1. erase() returns the next valid iterator (after the removed object), and 

2. ++iter skips to the next element (again!). 

To get it correct, we need to change the loop idiom to avoid ++iter if we erase 
anything. 

    for (auto iter = container.begin();  

              iter != container.end(); /*Not here!*/ ) { 

        if (want_to_delete(*iter)) { 

            iter = container.erase(iter);  // Use return value 

        } 

        else { 

            ++iter;  // Only if not erasing! 

        } 

    } 

And now the code finally works! 

Bypassing Interfaces 

The std::array and std::vector classes are designed to allow you to get 
access to the stored data via the data() member function. It’s also guaranteed that 
the data is stored in contiguous memory locations.  

Note that this is also true of std::string, which has a data() member and 
also c_str(), which returns the same address. 

The data() method allows direct access via pointers or low-level array types to 
the data in the standard array or vector containers. Whether doing this is any faster 
is unclear, and needs benchmarking, since many of the member functions are simple 
pass-through inlined functions that work on the internal data anyway. 

But there’s certainly a few pitfalls! The address returned by the data() member is 
not guaranteed forever.  

There are at least two major types of bugs: 

• Object is destroyed, or 

• Object is moved or modified. 
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Since you have a pointer to an object’s data, you want that object to stick around. 
But the object can disappear in a few ways: 

• Stack object goes out of scope (triggering the destructor and unwinding 
the stack). 

• Allocated object is deallocated by the delete operator. 

• Object is moved by a container (e.g., an auto-resize or other “iterator 
invalidation” situation). 

Even if the object stays around to watch your skills, there’s another problem. If the 
underlying object is modified, then the internal address of the data that you have 
may become invalid. The issues are very similar to the well-known “invalidated 
iterator” problems with containers. Changes to the container that probably 
invalidate the data() pointer include: 

• Insertions and deletions 

• reserve() 

• resize() 

• shrink_to_fit() 

Any of these members that modify the object are allowed to move the data. For 
example, they might allocate a different memory block, and move the whole array 
away from your pointer.  

But there are a huge number of other situations under which an iterator into a 
container may become invalidated, which presumably also invalidates an old 
address returned from the data() member function.  

Watch out! 

Extensions 

1. Benchmark the unsorted array implementation above using a raw array 
type versus an alternative approach of using a std::vector member 
object to store the data. 

2. Benchmark the sorted array implementation with a raw array versus 
using std::vector as the internal data array, especially to see if our 
hand-coded binary search is fast or not. 

3. Explore the use of “shallow copying” on sorted arrays containing 
“relocatable objects” in the shuffle needed for insertions and deletions in 
a sorted array data structure. 
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4. Explore the efficiency of calls to move constructors in a “shuffle” for a 
sorted array implemented using std::vector or std::array. 

5. Implement the binary-like search algorithm to find the insertion location 
in a sorted array. (Note that deletion is just the normal binary search to find 
the element.) 

6. Benchmark inserting into an unsorted array and then sorting 
using std::sort, because incrementally maintaining a sorted array. Do 
the results differ for a scalar integer type versus arrays of an object 
like std::string (which has move operators)? 

7. Implement a hybrid binary-linear search where the binary search reverts to 
linear search once the interval is small enough. 

8. Implement an AVX SIMD version of linear search over integers that tests 
a number of integers in the array at once. 

9. Implement a “cache-aware” binary search that chooses the middle index at 
the start of a cache line (where possible), and tests all values in that cache 
line immediately using an unrolled linear search. 

10. Implement a binary search that is both cache-aware and uses AVX SIMD 
instructions to test all elements in the same cache line more efficiently. 
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11. String Optimizations 

Efficient Strings 

The C++ std::string class is a beautiful and elegant class that has been well-
designed and near-optimally implemented.  

Its main advantages include: 

• High-level abstraction of string coding 

• Automates management of memory buffer allocation 

• Safety (e.g., no buffer overflows when appending or concatenating) 

• Moderately efficient 

Note that I only said efficiency was “moderate”! As classes go, it’s one of the most 
efficient, with lots of inline member functions and implementations super-
optimized by compiler engineers.  

Some of the fast parts of the standard string class include: 

• Small String Optimization (SSO) 

• Fast to copy 

• Fast move semantics 

But it’s still not as efficient as bypassing the string interfaces and doing low-level 
string processing directly with char* pointers and arrays. 

So, here we have a perfect example of the maxim: don’t optimize prematurely! I’m not 
advocating to replace all strings with C-style string operations, but if your profiler 
finds a hot-spot in a C++ string operation, you can do better.  

Furthermore, if you’re doing a very string-intensive application, such as text 
processing, the lowest level kernels that spin through the document probably 
shouldn’t use the string class. 
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Common String Operations 

If you have a string, and you want to do some work on that string, 
the std::string class is often very fast. In the situations where it’s not, you can 
also revert to old-style coding on char* pointers by using the interface-
bypassing data() or c_str() methods to get to the raw character array. 

String length. The length() method is extremely fast, and always so.  

The comparison goes like this: 

• length() — always blazingly fast. 

• strlen() — slow on very long strings. 

Since the string class maintains the string length incrementally as a data member, 
it’s already been precalculated. Hence, it’s an inlined access to an already-computed 
integer. 

In comparison, C-style null-terminated strings must scan for the null byte. 
Hence, strlen() is slow on very long strings, whereas length() is still fast. 

String Equality Comparisons. Which method is faster is unclear, depending on 
the implementation of operator==, but my money’s on the string class. In 
particular, it can compare the lengths quickly, since it has that precomputed for 
both strings.  

The full list of ways to compare strings: 

• operator==() — fast version. 

• compare() — explicit method version. 

• strcmp() — old-style string comparisons. 

Case-Ignoring String Equality Comparisons. There’s not a standard case-
ignoring version of the compare() method. However, there are non-standard 
implementations: 

• stricmp() — Windows (MSVS) 

• strcasecmp() — Linux (GCC) 
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String Search. This is a very simple and long-standing requirement. Your options 
are pretty obvious: 

• find() — simple and fast! 

• strstr() — the old C function. 

Case-Ignoring String Search. There’s not a standard method function named 
“ifind” or “stristr”, but there are ways to get there: 

• strcasestr() — Linux 

• StrStrIA() on Windows in shlwapi.h 

Reverse String Search. There the string class method rfind() for reverse string 
searching. There’s not really a good alternative in the older C-style libraries. 

Character Search. Searching a string for the first occurrence of a string characters. 
The options include: 

• find(char) — string class overload. 

• strchr() — old-style C function. 

Reverse Character Search. The options here are: 

• rfind(char) — another class overload. 

• strrchr() — reverse long-standing C function. 

Note that the rfind() version is likely faster than the older function on very long 
strings, because it has the string length precalculated in the string object and can 
jump straight to the end, whereas strrchr() has to scan from the start of the 
string. 

Multi-Character Search. If you want to search for the prefix or suffix with a set 
of characters, rather than just one, then the C++ string class has what you need: 

• find_first_of() — first character from a set. 

• find_first_not_of() — first character not in the set. 

The suffix versions are: 

• find_last_of() 

• find_last_not_of() 
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Prefix and Suffix Tests. The standard C++ methods on the string class are: 

• starts_with() (C++20) 

• ends_with() (C++20) 

Other options include: 

• string::find() — search forwards 

• string::rfind() — reverse search 

• LastIndexOf — Win32 version 

There’s also some other options: 

• remove_prefix() in string_view (C++17) 

• remove_suffix() in string_view (C++17) 

You can always code your own versions: 

    inline bool STRPREFIX(const char *s, const char *prefix) { 

        return strncmp(s, prefix, strlen(prefix)) == 0; 

    } 

Here’s a modern C++ style version: 

    inline bool string_prefix(const std::string& str,  

                              const std::string& prefix) 

    { 

        return str.find(prefix) == 0; 

    } 

And here’s the same idea for suffix, using the “reverse find” method: 

    inline bool string_suffix(const std::string& str,  

                              const std::string& suffix) 

    { 

        return str.rfind(suffix) + suffix.length() == 

               str.length(); // Buggy! 

    } 
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Actually, that’s a bit careless of the failure return -1 from rfind(). Here’s a fixed 
version: 

    inline bool string_suffix(const std::string& str,  

                              const std::string& suffix) 

    { 

        int offset = str.rfind(suffix); 

        if (offset == -1) return false;  // not found 

        return offset + suffix.length() == str.length(); 

    } 

Note that rfind is needlessly inefficient here if the string is very long and the suffix 
is not present. It keeps on scanning all the way to the start of the string, rather than 
quitting early. There’s certainly a faster way to do it, such as comparing the two 
lengths, using them to compute the address of where the suffix would be, and then 
use basic string equality testing. 

Case-Ignoring Prefix and Suffix Tests. There’s not much help with this in the 
standard libraries, so you’ll have to roll your own with strnicmp (Windows) 
or strncasecmp (Linux): 

    inline bool STRIPREFIX(const char *s, const char *prefix) { 

        return strncasecmp(s, prefix, strlen(prefix)) == 0; 

    } 

Here’s my attempt at a fast suffix version, which mixes C++ and C coding, but 
won’t be slow on a long string: 

    inline bool string_strisuffix(const std::string& str, 

                                  const std::string& suffix) 

    { 

        int strlen = str.length(); 

        int suffixlen = suffix.length(); 

        if (suffixlen > strlen) return false; 

        int offset = strlen - suffixlen; 

        const char* raw = str.c_str(); 

        raw += offset; 

        const char* suffixraw = suffix.c_str(); 

        return stricmp(raw, suffixraw) == 0; 

    } 

I’m sure that you could do better! 
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String Class Inefficiencies 

What’s so bad about the standard string class? Nothing, unless you want to do a lot 
of processing of strings. Here’s a list of some of its problems: 

1. It’s a large object (e.g., 40 bytes). 

2. Sequences of binary + operators. 

3. Too many calls to new and delete. 

4. No way to use a larger non-allocated buffer. 

5. Cannot use reference counting and copy-on-write. 

A lot of these concerns can be summarized: it’s too easy to use! 

Programmers tend to get comfortable with the very convenient ways 
that std::string can be used in C++ programs. In comparison, doing C-style 
string processing with low-level character buffers is painful! Hence, there’s a 
tendency to forget that C++ strings are significant objects that invoke memory 
allocation on all but the smallest of text strings. 

String Memory Layout 

The std::string class creates objects of a reasonable size, unlike C-
style char* strings which are only the size of a pointer. In fact, a string object 
typically contains a small buffer for short strings that is packed into the object itself. 

The string class is quite complicated, although great compiler engineers have made 
it look easy. Some of the main points about string efficiency are: 

• Small String Optimization (SSO) is standard (with a small internal buffer). 

• Reference counting is not enabled (and nor is Copy-On-Write). 

The use of SSO makes sense because otherwise even just declaring an empty string 
object would cause a memory allocation call to the new operator: 

    std::string s1;   // No memory allocation! 
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We can interrogate the string objects about their features using standard member 
functions such as data(). If the pointer to the data is inside the object itself, then 
we’re using SSO. And if two objects created from each other (via copy constructor 
and/or assignment operator) have the same data buffer address, then reference 
counting is enabled. 

Here is some code that uses standard string member calls to determine some details 
about the layout of a string object. 

    void print_string_details() 

    { 

        std::string str; 

        cout << "Sizeof std::string = " << sizeof(std::string)  

                                        << " bytes" << endl; 

        int bytes = str.capacity() + 1; 

        int header = (sizeof(str) - bytes); 

        cout << "Capacity std::string = " << str.capacity()  

                                << " characters ("  

                                << bytes << " bytes)" << endl; 

        const char* datastr = str.data(); 

        char* saddr = reinterpret_cast<char*>(& str); 

        bool is_sso = datastr >= saddr  

                     && datastr < saddr + sizeof(std::string); 

        cout << "Short String Optimization (SSO): "  

             << (is_sso ? “yes” : “no”) << endl; 

        cout << "Reference counting: "  

             << (string_is_reference_counted(bytes*100)  

                 ? “yes” : “no”) << endl; 

        int offset = (int)(datastr - saddr); 

        if (offset == 0) { 

            cout << "Char buffer start string (off=0)" << endl; 

        } 

        else if (offset + bytes == sizeof(std::string)) { 

            cout << "Char buffer end string (offset = "  

                 << offset << ")" << endl; 

        } 

        else { 

            cout << "Char buffer middle of string (offset = "  

                 << offset << ")" << endl; 

        } 

        cout << "Header block bytes = " << header << " ("  

             << offset << " before buffer, "  

             << (header - offset) << " after buffer)" << endl;      

    } 
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And here are the results in MSVS on my Windows laptop: 

    Sizeof std::string = 40 bytes 

    Capacity std::string = 15 characters (16 bytes) 

    Short String Optimization (SSO): yes 

    Reference counting: no 

    Character buffer in middle of string (offset = 8) 

    Header block bytes = 24 (8 before buffer, 16 after buffer) 

As to the 24 header bytes here, that could be 3 pointers (8 bytes or 64-bits each), 
or maybe it’s 1 pointer to the buffer and 2 different 64-bit integers for length and 
capacity.  

We can go exploring in the memory layout of the header block inside a string object 
to try to answer that question. It’s non-standard coding that is implementation-
specific, but plenty of people have done it! 
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12. Order of Insertion 

Whenever you hear the words “order of insertion” in a set of requirements, it 
should be associated with certain ideas. Note that this is exactly the same as First-
In-First-Out (FIFO). 

Any type of queue is good at this: 

• Linked list queue — std::queue container. 

• Doubly-linked list queue — std::deque container. 

• Array queue or dequeue — a ring buffer. 

However, order-of-insertion is not necessarily a queue data structure. If the 
requirements include insertion or deletion in the middle of the sequence, then it’s 
not really a queue (nor even a dequeue). 

These types of requirements that combine order-of-insertion traversal along with 
generalized insertions and deletions can arise in several practical contexts: 

• Least-Recently-Used (LRU) cache. 

• Operating system paging algorithms. 

• Order book updates (trading engine). 

• Rate limiting (throttling) of requests. 

These all have a time element that causes them to have queue-like need for 
insertion-ordering. However, there needs to also be key-based searches, insertions 
and deletions, so a basic queue is not adequate. 
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Hash Table with Order-of-Insertion 

As an example, let’s consider a dream list of requirements for such a data structure: 

1. Fast search, insert and deletion, and 

2. Traversal in order-of-insertion. 

To get to the first three, with fast search, insertion, and deletion, you should 
immediately think: hash tables. 

Hash tables have average case O(1) complexity for search, insertion and deletions. 
Admittedly, hash table can degrade to linear complexity in the worst case. 
Furthermore, hash tables have a poor traversal cost generally, and totally fail at 
maintaining any order in the traversal. We can’t maintain “order of insertion” with 
just a hash table. 

Hence, to implement traversal in the insertion order we need another data structure. 
The first idea is to have two totally distinct containers, and search them both when 
we’re doing our operations. A better idea is that in our hash table nodes, we can 
insert a pointer to some other node in another data structure, so that we don’t need 
to do two lookups. Two options come to mind: 

• Array or vector — contiguous data with good cache locality. 

• Doubly-linked list — non-contiguous linked data structure. 

Let’s look at each of these options. 

Contiguous Array Version 

The idea is to maintain traversal in the order of insertion by maintaining the items 
in a separate std::vector or std::array container. For example, you could maintain an 
array of pointers to the hashed nodes in the array. And each hash node would need 
either a pointer back to the array or an index offset of where the element is found 
in the array. 

The use of an array or vector makes the traversal of items super-fast, by scanning 
the array, in contiguous memory locations. Okay, so actually the cache locality isn’t 
that great, since scanning the pointers in the array has good locality, but then it’s 
jumping via the pointers to the nodes in the hash table, which are in different places 
in memory. 
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It’s easy to maintain order-of-insertion in the array, simply by always inserting at 
the end. Our array or vector data structure has a count of how many elements are 
in the array, and we can insert a new item at the end. 

Problems arise with deletion, however. If the need for deletion was only to remove 
an item from a fixed-size array to make room for the next one, then we could 
address this by using a ring buffer implemented as an array (i.e., a fixed-size queue 
in an array). 

However, if we want to remove arbitrary items from our hash table, and hence from 
our array, the use of a contiguous array causes difficulties. The difficulty is not in 
finding the location for removal, but at the end of this sequence: 

1. Search the hash table for the key. 

2. Find the pointer or index into the array in the hash node. 

3. Remove the node from the hash table container. 

4. Remove the pointer from the array or vector container. 

However, once we try to remove the entry from the array, there’s a gap. There are 
three possible approaches: 

1. Mark the item as “deleted” (i.e., leave a gap). 

2. Shuffle the array elements down. 

3. Move the end array element down into the gap (“swap and pop”). 

None of these solutions are great. They all lead to suboptimal complexity in one or 
other of the methods. 

Marking each item with a “deleted” flag works fine on deletion, but the insertion-
order scan has to skip extra unused elements.  

There are a few ways to mark the elements: 

• Boolean flag inside each element. 

• Separate array of Boolean flags. 

• Packed bit vector representing the Boolean flags. 
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Furthermore, with the marking-as-deleted method, the array will fill up, and need 
to have its gaps removed eventually. This is a costly type of “garbage collection” or 
“memory reclamation” algorithm that will have linear complexity. And until it’s 
cleaned up, the method will waste extra memory space for all the deleted gaps. 

Shuffling all of the elements down to fill the gap does maintain the correct order in 
the array. However, it’s an O(n) operation and will also invalidate all the pointers 
into the array from other non-removed elements in our hash table. So, we’d need 
some way of finding all those elements (e.g., reverse pointers), and also the cost of 
updating them all. 

Finally, the “move end element down” array trick is an O(1) method to cover our 
gap, and would only require updating one non-removed hash node, which is also 
O(1). Admittedly, the need to store reverse pointers from the array back to the hash 
nodes adds O(n) more space. However, it fails completely, because the array is no 
longer sorted in order of insertion. 

Is there a way to salvage the dream of maintaining a contiguous array that is sorted 
by insertion order? There are some tricks to try, like permutation arrays, but I can’t 
see a good solution. 

Doubly-Linked List Version 

A more natural solution is to thread a doubly-linked list through our hash nodes. 
The advantages of a doubly-linked list are: 

1. No fixed size limits. 

2. Easier deletion with O(1) complexity. 

3. Maintains order-of-insertion naturally. 

Note that the linked list has to be doubly-linked so that deletion is easy once we 
find a node to remove. If it’s only a singly-linked list, then we cannot find the 
element before the current node, so we can’t easily unlink the current node. 

The doubly-linked list method is not without downsides. There are problems with 
time and space: 

• Extra space for previous and next pointers in each node. 

• Non-contiguous memory usage for scanning (it’s a linked list!) 
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To implement the interleaved doubly-linked list, each node in our hash table needs 
to have “next” and “previous” pointers. We also need to track the head and tail of 
this list at the container level. 

The idea is that a scan in order of insertion is just to run down the doubly-linked 
list in one direction. Hence, when we insert a new item it has to be inserted at the 
end of the list. 

The reason that this method is better than an array or vector is that it’s easy to 
remove in a linked data structure. There’s no “gap” when we remove an item from 
a linked list. We just update the pointers to the adjacent list elements to point 
around the removed list node. 

Could we use a separate doubly-linked list, such as the std::list container, 
rather than manually threading pointers through our hash table? Yes, but this 
wouldn’t really avoid the space cost of storing “next” and “previous” pointers in 
each hash node, but just move them elsewhere.  

Additionally, we’d need a pointer to the list node in the doubly-linked list stored in 
the hash nodes. And each insertion would need two separate memory allocations 
for the hash nodes and linked list nodes.  

Hence, threading our doubly-linked list through the nodes themselves seems more 
efficient overall. 
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13. LRU Cache Data Structure 

What is an LRU Cache? 

Least-Recently-Used (LRU) caches are a common requirement in low-latency 
programming. There are several important applications of an LRU cache: 

• Operating system paging algorithms 

• Memory access caches (low-level) 

• Order book updates in trading 

The idea of an LRU cache is to maintain a cache of recently used data, such as 
memory we’ve just accessed, or a piece of data we’ve just updated. But we don’t 
want an unlimited size data structure, so when it gets full, we evict the data that was 
“least recently used” (i.e., the oldest data). 

Note that an LRU cache is a more specific type of cache that just mapping keys to 
the values they were set to.  

The operations we need to support include: 

• Add a new key to the cache (with its corresponding value). 

• Update a key when it gets re-used again (more recently). 

• Remove the least-recently-used item in the cache (to make room for 
insertions). 

Sounds like a queue? No, it’s not! 

Not a Queue or Deque 

An LRU cache has features that sound like a queue with FIFO ordering. We want 
to evict the oldest items from the cache, which sounds exactly like maintaining a 
queue of elements, and deleting from the tail of the queue will remove the oldest 
element.  
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These features are very queue-like and maintain a FIFO-like order-of-insertion: 

• Add a new item to the end of the queue (the newest item). 

• Remove from the front (to evict the oldest item). 

The feature that’s not like a queue occurs on the “update” of a key that’s already in 
there, which occurs if a cached item is then accessed a second time.  

This requires two problematic operations: 

• Search — find the item already in our LRU cache, and 

• Deletion — remove the item from the middle of the queue. 

It’s starting to sound less-and-less like a queue. There’s no fast searching 
of std::queue and std::deque, and we’d have to use a linear scan. 

Deletion is also a problem. We need to move an item from the middle of the queue 
back to the head of the queue. This is not like a standard queue, which only allow 
deletions from the end. A standard dequeue container also allows deletions from 
the front, but this doesn’t help us.  

Hence, we can’t just use a queue or dequeue, but need something fancier as our 
implementation of an LRU cache. 

Overall, an LRU cache has similar requirements to the general case earlier: fast 
searches, insertions, and deletions. We also need to maintain order-of-insertion for 
cache evictions, but we need to remove arbitrary nodes from that sequence, so a 
standard queue or dequeue won’t work. Note that, unlike the general case, we don’t 
actually need to traverse the sequence in order, but only use it for evictions. 

Nevertheless, the basic idea of an LRU cache implementation is similar to the 
general case of a data structure that maintains ordering by insertion sequence: 

• Hash table for fast searches, insertions, and deletions. 

• Maintain order-of-insertion sorting via an array, vector, or linked list. 

Adding a new node into the cache is simply an insertion into the hash table, and 
adding it to the head of the array or list. This item is the “most recently used” so it 
will now be the last to be evicted from the cache. 
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If our cache is full, adding a new node means removing the oldest. It’s easy to 
remove the “least recently used” by removing it from the hash table, and removing 
the end element from the list (effectively, like a queue). We could seemingly 
implement this queue-like functionality with two possible approaches: 

• Statically with a fixed-sized array (i.e., a ring buffer wraparound), or 

• Dynamically via a linked list. 

Only one of these ideas will work! 

Array Implementation Fails 

Let’s consider a contiguous array implementation first, which would be desirable 
for cache locality efficiency. In other words, we use a hash table for searching, 
insertion and deletion, but also maintain a separate array or vector data structure to 
track insertion order. In practice, we’d need to use a wrap-around of elements in a 
ring buffer structure, implemented via an array or vector container. 

This is workable for many of the LRU cache requirements. Search and insertion is 
very fast in the hash table. We don’t actually search the array, which is fortunate, 
and inserting into an array with order-of-insertion is just adding it to the end (fast!). 

However, deletion is a problem. We run into a significant efficiency problem arises 
when we need to update a cache item that’s already in the cache from a prior access: 
Every update of a value already in the cache needs to do two things to the array: 

(a) delete the node in its previous place in the array, and 

(b) re-insert the node at the head (it’s now the most-recently used item). 

The key point is that the “previous place” for an item could be anywhere in the 
array or ring buffer. So, we need arbitrary deletions at any location. For the reasons 
discussed in the general case, an array or vector that implements a ring buffer or a 
fixed-size array will fail in this situation. 

Removing an item from the middle of the array is problematic and needs an 
inefficient shuffle method to fill the gap, followed by trying to update pointers to 
all the array elements that were moved by the shuffle. Alternatively, moving the 
array’s end element down to cover the gap fails because it completely messes up the 
order of elements in the array. 
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A ring buffer implemented in an array or vector is no better at handling random 
deletions. Removing from the middle of a wraparound sequence in a ring buffer is 
actually the exact same situation, except rotated, and has the same problems. 

One solution is to not allow cache updates. If an item is already in the cache, we 
could simply not update its position in the sequence. However, this is no longer an 
LRU cache, but more like a Least-Recently-Loaded (LRL) cache, or really a FIFO 
queue version of a cache. 

The requirements for an LRU cache are somewhat different to a FIFO queue. For 
example, all frequently-used items will get evicted from the cache in a fixed order, 
getting no benefit over infrequent accesses. The efficiency of the cache does not 
adapt to access patterns. Overall, it seems that a contiguous data structure is not 
effective for an LRU cache. 

Linked lists to the rescue! 

Doubly-Linked List LRU Cache 

Fortunately, an LRU cache is also fast to implement with a hash table and doubly-
linked list. Note that a singly-linked list fails to provide efficient deletion, so we 
have to double up. Hence, the basic idea is: 

• Hash table — efficient hashed search, insertion and deletion (but without 
ordering). 

• Doubly-linked list — maintains data according to order-of-insertion. 

There are two ways to implement our doubly-linked list: 

• Second container — using the std::list container separately (yes, it’s 
doubly-linked). 

• Threaded intrusively — use a doubly-linked list that is threaded through 
the hash table nodes. 

The first solution is workable if we maintain a pointer or iterator into the linked list 
from our hash table nodes. We could make our list contain copies of the keys (if 
small), or pointers to the hash table nodes if the keys are a complex object (i.e., 
don’t copy it). But overall, the two container approach is inefficient because we’re 
doubling the number of allocated nodes by doing memory allocation once in the 
hash table, and again in the std::list container. 
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A better solution is to intrusively thread our own hand-coded doubly-linked list 
through our hash table nodes. This requires extra space for “next” and “previous” 
pointers in our hash table nodes, but doesn’t require a second memory allocation, 
and also maintains only one copy of the keys. 

Let’s run with that idea and examine the efficiency of the operations: 

• Search — use the hash table to get O(1) average search cost (we don’t 
search the linked list). 

• Insertion — fast O(1) insertion into the hash table, and also O(1) insertion 
at the end of the doubly-linked list. 

• Deletion — fast (O1) deletion from the hash table, and also O(1) deletion 
in the middle of a doubly-linked list (hooray!). 

• Traversal (insertion-ordered) — linear scan of the linked list (easy). 

The linked list needs to be doubly-linked because deletion from the middle of a 
singly-linked list is problematic. Efficient deletion from the middle of a singly-linked 
list needs to go backwards to find the previous node, which doesn’t work with one-
way pointers. 

Deletion from the middle of a doubly-linked list is easy by resetting two pointers, 
in the node prior to us, and the node afterwards. This is fiddly but has only O(1) 
complexity, with just a few pointer operations.  

Unlike the array version, there’s no “shuffling” or other hidden costs, so deletion 
is also fast, and maintains the order-of-insertion requirement. 

The deletion algorithm for doubly-linked lists is fiddly with some edge cases, but 
not that difficult. Once the list node to remove is found, we need to update the 
pointers in both the previous and the next node on the list.  

We also need to handle special cases like when the array is empty, or has only one 
element, or when deletion is at the head or tail of the array. 
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14. Fast Ring Buffers 

What is a Ring Buffer? 

A ring buffer is an array-like data structure where the data moves around in a “ring” 
so that the end wraps around to the beginning. It’s also known as a “circular buffer” 
and is often what is meant when people talk about a “fixed-size queue.” 

A ring buffer is stored in a single array or vector of contiguous data, but is not 
accessed in the same idiom. The data is processed in a FIFO (First-In-First-Out) 
idiom, where items are added to the “tail” of the queue, and removed from the 
“head” for processing.  

Hence, a ring buffer is a good data structure for implementing a fixed-size queue 
or dequeue (double-ended queue). 

Some of the main design decisions when implementing a ring buffer involve error 
handling: 

• Overflow — inserting into a full buffer 

• Underflow — removing from an empty buffer 

Should the ring buffer throw an exception, or just return a Boolean failure status to 
the caller? 

Simple Ring Buffer 

A basic ring buffer data structure has three main elements: 

• Array or vector of objects (fixed-size) 

• Head index (integer) 

• Tail index (integer) 
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Here’s some code using std::array for a ring buffer: 

    template<typename T, int sz> 

    class RingBuffer { 

    private: 

        std::array<T, sz> arr;  // Fixed-size array 

        int head; 

        int tail; 

        // .... 

    }; 

New objects are inserted at the tail, and retrieved for processing from the head. In 
a typical implementation, the progression goes from left to write, using a “+1” idea 
for the next location. Technically, the ring buffer data could be handled in reverse 
order, but the forward progression around the ring is simpler and allows marginally 
more efficient arithmetic because there are no negatives to handle. 

Thus, the basic primitives needed by a ring buffer: 

• Insert at the tail 

• Remove at the head 

Here’s the basic insertion method: 

    bool push(const T& x) { 

        int newtail = (tail + 1) % sz; 

        if (newtail == head) { 

            // Overflow (full) 

            return false;  

        } 

        tail = newtail; 

        arr[tail] = x;  

        return true;  // success 

    } 

And here’s the “top” method for an interface that allows “top” to access, and “pop” 
to remove: 

    T top() { 

        if (is_empty()) { 

            // Underflow 

            return T(0); 

        } 

        return arr[head]; 

    } 
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The “pop” method actually removes the item from the ring buffer: 

    void pop() { // Just remove (no return) 

        if (is_empty()) { 

            // Throw exception? (optional) 

            return; 

        } 

        else { 

            head = (head + 1) % sz; 

        } 

    } 

And there are also various simple primitives: 

• Capacity — the fixed-size of buffer. 

• Empty — zero elements 

• Full — fixed-size array is full. 

The code is reasonably simple: 

   int capacity() const { return sz; } 

   bool is_empty() const { return head == tail; } 

   bool is_full() const { return (tail + 1) % sz == head;} 

Pros and Cons of Ring Buffers 

The main advantage of a ring buffer is that it has contiguous data. This means that 
our fixed-size queue should be faster to access than one stored as a linked list 
using std::queue. 

The main disadvantage of a ring buffer is that it has a fixed size, 
unlike std::queue, which grows dynamically. This ring buffer size doesn’t 
necessarily need to be known at compile-time, but does need to be set when you 
initialize the ring buffer. There are also more advanced types of ring buffers which 
use multiple arrays, which can be dynamically grown in size. 

The other disadvantages are that the ring buffer is very specific to a FIFO access 
pattern. It’s not a fast data structure for these operations: 

• Searching for a value 

• Sorting data 

• Inserting at a random location (rather than the tail) 

• Deleting from a random location (rather than the head) 
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Insertions and deletions are slow because they require a “shuffle” of all objects. 
Note that there’s an interesting wrinkle: we could make insertion and deletions fast 
if we don’t mind violating the FIFO ordering and moving objects around 
(invalidating any pointers or iterators referencing them).  

The idea is that the ring buffer becomes like an unsorted array (with wraparound): 

• Fast random insertion — move the current element at the insertion 
location to a free location at the end of the ring buffer, then insert. 

• Fast random deletion — move the last element to the location we are 
deleting from. 

It’s not all bad news. The data in a ring buffer is mostly stored contiguously, so 
there are some operations that still have good cache locality properties: 

• Scanning or visiting all data elements 

• Random access of data by integer index 

A linear scan of all the elements can be quite fast, provided you don’t mind that it’s 
unsorted (or rather, it’s sorted by order-of-insertion). The data elements are always 
in one or two contiguous data blocks, which is better than dispersed data structures 
like linked lists or binary trees. However, it’s not quite as fast as an array or vector 
of objects, which is always one contiguous block. 

Accessing one of the objects via an integer ordinal is still quite fast (i.e., 0...n-1). 
Mainly, it’s just some integer arithmetic with head and tail to find its array offset in 
the ring buffer. 

Incremental Count Optimization 

Computing the count of how many elements are currently inside the ring buffer is 
somewhat tricky: In the above computations, we can compute the “count” of how 
many elements are in the buffer using arithmetic on head and tail indices. 

    int count() const {  

        return (tail >= head)  

              ? tail - head : sz - (head - tail); 

    } 

An alternative that can be faster, if the count() method is called often, is to 
maintain an incremental count, and store it in the ring buffer.  



157     Advanced C++ Memory Techniques 

The idea is pretty simple: 

• Insertions — count++ (except if full) 

• Deletions — count-- (except if empty) 

• Count — just return the count variable. 

Hence, the computations during insertion and deletion are only a single integer 
increment or decrement, and the count() function becomes a simple getter of an 
integer data member. In addition, the availability of a “count” variable actually 
allows some optimizations to some of the other methods: 

• empty() — test count==0 

• full() — test count==capacity 

These are much faster than the earlier versions using head and tail index arithmetic. 
Hence, these efficiency gains may override the extra costs from incrementally 
computing the count during object insertions and removals. 

Avoiding Three Integers 

If we use an incremental count optimization for the number of items in the ring 
buffer, we end up with three integer values: 

• Head 

• Tail 

• Count 

It turns out that we don’t need all three, because they are inter-related numbers. We 
can calculate the “tail” variable from the “head” and the “count” value. 

    tail = (head + count) %sz; 

There are actually some other numbers that are also related, which we could also 
use. For example, the total number of insertions and deletions of objects is related 
to the head and tail values, and the count is simply the difference between them. 

Alternative Variable Pairs. It turns out that a ring buffer can be defined by any 
two variables from a set of several related calculations. Some of the possible pairs: 

• Head and tail 

• Head and count 

• Tail and count 
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Note that there are two main implementations of the initialization of head and tail 
values. These yield implementations that differ by one in all calculations, so you 
have to consistently choose between them: 

• head = tail = 0 

• head = 1, tail = 0 

The meanings of head and tail differ slightly in these two variants. Hence, the inter-
relationship with the count is also different by one. Care must be taken to avoid 
off-by-one errors! 

Combining Two Variables. The optimization ideas above reduced our three 
variables (head, tail, and count) down to two variables. Any pair of them will do, 
since they are inter-related. 

But what about reducing it to one variable? Having only one integer variable in our 
ring buffer might be desirable because: 

• Efficient single arithmetic operations. 

• One integer value as an atomic for lock-free versions. 

Can it be done? 

The key point to note is that we really do need two distinct values. However, we 
can put them together into a single integer with encoding and packing ideas. For 
example, we could store the head as 16 bits and the count as 16 bits, and put both 
in a 32-bit unsigned integer. Note that this limits the capacity of the ring buffer to 
2^16 which is 65,536. We could also pack them into a 64-bit unsigned long if 
we needed more capacity. 

Modulo Arithmetic Optimizations 

The % operator for modulo arithmetic (or remainders) is one of the slowest 
operations in C++. The typical code we want to optimize in a ring buffer or fixed-
size queue uses this idiom: 

    head = (head + 1) % N; 

Modulo arithmetic is based on division, which is also slow, even on integers. Hence, 
our ring buffer can be improved by getting rid of the percent! 
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How? There are several options: 

• Bitwise arithmetic 

• Type casts 

• Ternary operator 

• Branchless coding 

• Unsigned arithmetic 

Bitwise-and trick. Firstly, if we choose the buffer size N, to be a power-of-two, 
then we can use bitwise arithmetic. A remainder of a power-of-two is the bitwise-
and of the number one less. These are equivalent: 

    head = (head + 1) % 16;   // Modulo 

    head = (head + 1) & 15;   // Bitwise-and 

Validating power-of-two. One thing you might want is a safety net to ensure 
nobody uses the ring buffer for a size that’s not a power-of-two. We want this: 

    static_assert(is_power_of_two(N)); // How? 

We can use the Kernighan bit trick: 

    static_assert( (N & (N-1)) == 0);  // Kernighan 

How does this work? 

It’s just magic, and let’s forget about it. No, actually, the Kernighan trick is that 
“N&(N-1)” clears the value of the rightmost bit of a number. Hence, if the number 
without the rightmost bit equals zero, then there’s only one bit set in the number. 
And the set of numbers with only one bit set: powers of two. 

Note that lots of parentheses are necessary around the bitwise operator to avoid an 
operator precedence glitch. Also note that the Kernigan trick fails with a false 
positive if N is zero or negative, so we should add some more safety checks at 
compile-time: 

    static_assert(N > 0); 

Type casts. The use of bitwise-and is limited to powers of two, which is annoying, 
but there’s an even more specific way to do this for some of them: type casts. If we 
can choose the size as 256 (8-bits) or 65,536 (16=bits), we can do this: 

    head = (unsigned char)(head + 1);   // 8-bits 

    head = (unsigned short)(head + 1);  // 16-bits 
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Note that type casts are often effectively free after C++ does its optimization thing. 
The register allocation algorithm can just choose to use a value in a different way, 
and propagate that forward to other arithmetic. Thus, a type cast operation may 
result in zero runtime instructions. 

Ternary operator. But why are we using arithmetic in general, when there’s actually 
only one case where we want to reset the value. Another way is to use the ternary 
operator instead of arithmetic. The calculation becomes: 

     head = (head + 1 == N) ? 0 : head + 1; 

We can also implement this logic in two instructions, which is worth a try: 

     head++; 

     if (head == N) head = 0; 

Or if you like short-circuiting operators, you can do this: 

     (++head) == N && (head = 0); 

The compiler probably treats that the same, but you never know, and you might 
want to check the assembly output (e.g., using “gcc -S”). 

Branchless coding tricks. Another trick is to notice that we just want to zero the 
value in one specific case. Hence, we can use the branchless coding trick of using 
logical operators as 0 or 1 integers. The goal of branchless coding is to remove all 
control flow branches, so that the CPU’s branch prediction logic can run fast. Note 
that the ternary operator is actually like an if statement, and it has two branches. 
The branchless version with only fixed arithmetic is: 

     head = (head + 1) * (head + 1 != N);  // Branchless 

The way this works is to multiply the value by 0 or 1, depending on the logical test. 
Again, we can also try this as two statements: 

     head++; 

     head *= (head != N);  // Branchless 

Note that I doubt the branchless versions are very efficient, because they’ve added 
a multiplication operation. The ternary operator version is likely better, and isn’t 
that bad despite its branches, if you look at the assembly. Most compilers will 
convert it to a single CMOV (conditional move) CPU instruction, which makes it 
effectively branchless, too. 
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Unsigned arithmetic. One final trick is to note that we have modulo arithmetic 
for free in the CPU: unsigned integer arithmetic. Overflow of unsigned integers is 
not an exception in C++ and when you think about it, implements the exact 
semantics of modulo arithmetic. Hence, here’s the idea: 

    unsigned char head; 

    ... 

    head++; 

It works! And there’s not a single percent operator anywhere! All this time and we 
had cheap modulo arithmetic hiding in plain sight. 

We really need to time this, because it isn’t 100% guaranteed to be faster. A lot of 
the uses of head will involve converting it from unsigned char to an integer 
offset, such as for array indexing in the vector of objects that makes up the ring 
buffer. A variation of this idea would be to store the head and tail as integers or 
unsigned integers, so that they can be used as the fastest type of normal integer, but 
still use unsigned arithmetic overflow tricks for modulo arithmetic. This is the idea 
for an N=256 size ring buffer: 

    int head; 

    .... 

    ((unsigned char*)&head)++; 

This relies on the platform being “little endian” with the lowest-order byte stored 
on the left, which is true in most modern CPUs (but not if you’re sending integers 
over the network in “network byte order”). And, yes, you got me, I really should 
use reinterpret_cast here rather than the old C-style type cast. 

Obviously, these tricks of using head and tail as unsigned integers only work for 
a limited set of sizes: 

• N=256 — unsigned char (8-bits) 

• N=65,536 — unsigned short (16-bits) 

• N=4.7 billion — unsigned int (32-bits) 

We can even do decrement and negative calculations this way, since underflow is 
also not an exception, whereas the % operator and negatives don’t talk to each other 
at parties. 
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Move Semantics 

If our ring buffer contains complex objects, there are many more considerations 
for making it efficient. One of the biggest inefficiencies in a ring buffer class is 
inserting and deleting any non-trivial objects. If we do it wrong, we’re calling copy 
assignment operators and copy constructors to make new objects in the array, and 
running the destructor when we release an object. 

Move semantics to the rescue! 

The first point to note is that it doesn’t matter for simple data types in our ring 
buffer. Any scalar values like integers or floating-point numbers don’t have any 
copy constructors or destructors to worry about. In fact, this is also true of simple 
structures and classes, so long as they are “plain-old data” or POD data types. 

But anything more complicated than this will have costly calls to copy constructors 
and copy assignment operators. To optimize this, we need to talk about: 

• Move constructor and move assignment operator 

• R-value references 

• Copy elision 

• Return Value Optimization (RVO) 

In practice, the problems arise in both our “push” and “top” versions. The “pop” 
routine causes a copy assignment operator invocation: 

    bool push(const T& x) { 

        // .... 

        arr[tail] = x;  // Copy assignment 

        return true;  // success 

    } 

And the “top” member has the problem of returning an object type, which will use 
a copy constructor call at the return statement. 

    T top() { 

        // ... 

        return arr[head]; // Copy constructor 

    } 
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The automatic compiler optimization of “copy elision” might help improve the 
performance of the “top” method. Returning an object is exactly the situation it’s 
meant for. However, we can use move semantics explicitly to ensure it’s improved: 

    bool pop_top_move(T& outobj) { 

        if (is_empty()) { return false;    } 

        ct_incremental--; 

        int oldhead = head; 

        head = (head + 1) % sz; 

        outobj = std::move(arr[oldhead]); // Move assnt 

        return true;  // success 

    } 

Note that std::move() is a compile-time type-cast here, without any runtime 
cost. And it’s required to convert to an R-value reference, as otherwise the 
assignment statement would still call a copy assignment operator. 

Constructor Problems 

One of the performance problems with our ring buffer implementation is 
that std::array calls the constructor for every object whenever a new ring 
buffer object is defined or created. This occurs with this use of std::array for our 
ring buffer: 

    std::array<T, sz> arr;  // Fixed-size array 

How to avoid these constructor calls? After all, our ring buffer is supposedly empty 
with zero objects initially. Some of the solutions that don’t work and will still call 
constructors: 

• Raw arrays 

• Pointer to std::array 

Using a raw array like this will still call all the constructors when our ring buffer is 
created: 

    T arr[sz]; 

Similarly, we could use an allocated copy of std::array, since it’s really an object 
not an array. It works like this: 

    std::array<typename T,sz> * arrptr; 

    .... 

    arrptr = new std::array<T,sz>;  // in constructor 
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This allocates our big array in the constructor rather than as a non-allocated data 
member. This adds an extra inefficiency from the extra allocated block, and doesn’t 
work anyway. The new operator will still run all the individual object constructors. 

What about using std::vector instead? 

Standard Vector Problems 

Using std::vector can be better than std::array, because it delays both its 
memory allocation and its construction of objects, 

    std::vector arr<T>; 

Unfortunately, I’m not a big fan of this approach, because it has other difficulties: 

• Extra memory allocation call (inefficient). 

• Bounds checking failures in debug libraries. 

The first point is that resize() has the same problem with too many constructor 
calls. Doing this in the constructor will still call all the constructors: 

    arr.resize(sz);  // Constructors! 

So, maybe we can call the reserve() function instead of resize(). That won’t 
call constructors: 

    std::vector arr<T>; 

    // .... 

    arr.reserve(sz);  // No constructors! 

This has hopefully allocated the memory for all the objects, without running their 
constructors. But this can run into various problems when we try to use the vector 
elements. The problem is on this type of statement in our push method: 

    arr[tail] = x;  

And the same problem still occurs with our code that gets items out of the ring 
buffer. Note that the issue is not move semantics, because this has the same issue: 

    outobj = std::move(arr[oldhead]); // Move assignment 
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The issue is bounds checking on the [] operator for std::vector. In theory, the 
reserve() function has allocated valid memory for enough objects. However, 
the size() function is still zero, so the runtime bounds checking will trigger on 
any debug run of the code. 

Yes, maybe some platforms this will work, with no bounds checking. But you can 
run into portability problems. For example, it makes the code fail with spurious 
runtime errors on any type of “hardened” standard C++ library. 

Explicit Destructor Calls 

Another problem with our ring buffer implementation when instantiated with class 
types is destructor calls. Instead of too many constructor calls, we have too few 
destructor calls. The problems include: 

• Destructor calls missed after move assignments (e.g., popping). 

• Destructor calls on destroying the whole ring buffer. 

One solution: don’t bother. If the object that’s used in a ring buffer doesn’t have 
important destructor actions after a move (and it shouldn’t), or if destroying the 
whole ring buffer is in the shutdown sequence of the application, then you can 
maybe just forget about this problem. 

Another solution is to explicitly call the destructor ourselves. You can call the 
destructor of a class like any other member function using the ~T() syntax.  

For example, in the pop function, we can do: 

    arr[head].~T();  // Explicit destructor 

Basic types don’t need destructor calls, so we ideally want to distinguish trivial types 
from fancy class objects. We can also use type traits to do this, which are 
wonderfully efficient compile-time operators that work during instantiation of the 
template.  

Here’s how it works: 

    if (!std::is_trivially_destructible<T>::value) { 

        arr[head].~T();  // Explicit destructor 

    } 
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The alternative is to note that trivial types have no-op destructors, and the compiler 
would remove them anyway. Hence, the above type trait test may be unnecessary, 
but it’s a fast compile-time test anyway, so either way is fine. 

Note that we are assuming here that the class being used has a destructor that works 
properly after an object has been moved away. In other words, it doesn’t do 
something silly like assuming a pointer in the object is non-null.  

The move assignment operator also needs to properly clear all the non-trivial data 
members, such as pointers, to zero or null values, so that the destructor doesn’t 
access bad memory after a move. 

Class Interface Bypass 

There are a couple ways to bypass the class interfaces, and thereby avoid the 
inefficiencies of construction and destruction. This makes the caller of our ring 
buffer manage when the objects are created and destroyed. The main ways are: 

• Blocking non-trivial types 

• Raw character buffer arrays 

• Pointers to objects 

Trivial types only. We can make our ring buffer, or other home-grown containers, 
faster simply by disallowing their use with complex objects. We can efficiently 
trigger compiler warnings with the type trails, so that users of the template know to 
only use scalars or other POD types.  

Here’s some examples using the various different settings: 

   static_assert(std::is_pod<T>::value);     // Plain-Old Data 

   static_assert(std::is_trivial<T>::value); // Trivial type 

Raw character-array memory buffers. The idea is to use a character array as a 
raw buffer, rather than std::array or std::vector, for our container class 
(e.g., our ring buffer).  

To bypass class constructions by using raw memory buffers, we have choices like: 

    char arr[sizeof(T) * sz];  // Static data member 

    char *arr = new char[sizeof(T)*sz]; // Dynamic allocation 
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This raw byte idea is workable, but every use of the array has to involve index 
calculations and type casts to object-type pointers. It’s fiddly and annoying, but it’s 
faster, because it avoids constructor calls, and doesn’t need all the extra messing 
around to avoid std::vector bounds checking.  

There are also concerns with: 

• Uninitialized bytes in the buffer 

• Alignment of addresses 

We really should also initialize the bytes in our array buffer to all nulls in the 
constructor using memset on the whole array. To do this, we also need to make 
sure that all the classes using the ring buffer have properties like: 

• All-bytes-null is a stable but invalid initial status of the object. 

• Destructor doesn’t fail on an all-bytes-null object. 

We also need to manually take care of alignment of the addresses, since the compiler 
thinks we only have characters, which don’t have alignment issues. There’s 
the alignas standard specifier and various non-standard implementations for 
older language versions. 

If we’re really careful, maybe the initialization is not needed and we can leave out 
the memset call in the constructor. There’s some new “uninitialized memory” 
primitives coming in C++26 that may also help to do so. You can maybe avoid 
needing the null byte initialization, but I’m betting against you when I 
run valgrind on your code. 

Pointers. As much as I admire the design of move semantics, there is a simpler 
way to avoid the overhead of objects moving in and out of our ring buffer. Old-
school coding still works: store pointers to the objects as data in the ring buffer 
instead of full objects.  

The upside is avoidance of object copying and moving overhead. 

The downside of pointers is the extra level of indirection, and double hit to memory 
with poor cache locality because of that. And pointers have a few pitfalls with a bad 
reputation as being unsafe, but I’m sure you’ve heard that before. 
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Extensions 

1. Implement a reverse ring buffer that uses decremented indices for head 
and tail, rather than addition, so that it grows from right-to-left instead of 
left-to-write. 

2. Implement a dequeue in a ring buffer by adding “insert-at-head” and 
“remove-from-tail” operations for the ring buffer (rather than the normal 
insert-at-tail and remove-from-head idiom). The trick is we’ll need to 
subtract one from indices and go in reverse. 

3. Implement a ring buffer with initialization of “head=1” and “tail=0” 
(rather than “head=tail=0”). All calculations will differ by one, such as the 
“empty” calculations is not “head==tail” anymore. 

4. Implement a ring buffer using two full-size integers that count the number 
of insertions and deletions. Note: the relationship between head and tail 
versus insertions and deletions is not that difficult! 
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15. Loop Optimizations 

Sequential vs Parallel Loop Optimizations 

Loop optimizations are the basic of many speedups to the processing of contiguous 
array data. Loops are often sources of inefficiency and can be optimized in 
numerous ways, such as: 

• Cache locality — process data in fast order for CPU caches (sequential). 

• Parallelization — allow vectorization via CPU SIMD instructions or GPU. 

Not all loop transformations are created equal. Some of them are best for sequential 
code optimizations, whereas other loop transformations are used to parallelize 
loops for vectorization. 

Loop transformations that are good for both sequential and parallel loop 
optimization include: 

• Loop unrolling — repeat the loop body to reduce loop test overhead and 
parallelize the loop body. 

• Loop peeling — unroll the first few iterations. 

• Loop coalescing — flatten nested loops. 

• Loop splitting — split out subportions of the iteration range. 

• Loop collapsing — another way to flatten nested loops. 

• Loop interchange — switch the inner/outer loop iterators of nested loops. 

• Loop reordering — change the ranges and arrangements of inner/outer 
nested loops. 

Some loop transformations are mainly for sequential improvements, and are not 
parallelization in themselves. However, these techniques can sometimes help with 
parallelization if they enable another followup loop parallelization optimization.  
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Loop transformation optimizations which tend to be good for sequential code 
optimizations but not parallelization include: 

• Loop fusion — combine or “fuse” the bodies of two loops. 

• Duff’s device — amusing but impractical coding trick for loop unrolling. 

• Loop code motion — move or “hoist” loop-invariant calculations from 
the loop body to pre-loop initialization. 

• Loop perforation — randomly skip a subset of loop iterations; it’s really a 
thing. 

• Loop sentinel — fake it till you make it. 

• Loop iterator strength reduction — change “*” to “+” if you can. 

• Loop reversal — going backwards, and yet, still making progress! 

Parallelizing loop optimizations with a main goal of vectorization of the loop body 
include: 

• Loop fission — opposite of loop fusion; split a loop body into two loops. 

• Loop tiling — process sub-parts of contiguous data in separate loops. 

• Loop distribution — split two sub-parts of a loop body into two simpler 
separate loops. 

Loop Fusion 

Loop fusion is a well-known code optimization where two separate loops are 
merged into a single loop. This does not change the amount of in-loop computation 
in either loop body, but reduces the loop overhead of the exit test by half. There is 
also often a benefit from data locality that reduces data movement and temporary 
data storage, which can also improve overall speed. 

Note that loop fusion is not great at vectorization, because complicated loop bodies 
are actually harder to parallelize. Most of the benefits arise in traditional sequential 
code execution, which is why its theory dates back many decades. For modern 
parallel execution on GPUs, loop fusion is often a poor choice, and more benefits 
may arise from loop fission (the opposite of fusion) and loop vectorization. 

Example: Loop Fusion: The general idea is to combine the body of two loops 
into a single loop. Here is a simplistic example with the (non-fused) loops for 
initializing two vectors using two sequential loops: 

   for (i = 0; i < n; i++) v1[i] = 0; 

   for (i = 0; i < n; i++) v2[i] = 0; 
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And here is the version with loop fusion: 

   for (i = 0; i < n; i++) { 

       v1[i] = 0; v2[i] = 0; 

   } 

Note that the loop fusion version incurs the same number of assignments for 
initialization, but only half of the loop overhead cost (i.e., half of the “i < n” and 
“i++” operators have been optimized away). And for the sake of argument, let’s 
pretend we don’t know a better way to initialize a vector in C++ 
like memset or calloc or load-time static variable initialization. 

Loop Perforation 

The intentional introduction of randomness to code is known as a “stochastic” 
algorithm. Personally, I’m more familiar with the idea of unintentional introduction 
of randomness, otherwise known as a “bug,” but now when it happens you can tell 
your boss that you were adding “stochastic functionality.” 

Code perforation is an optimization technique that trades accuracy for speed, by 
randomly (ahem, I mean, stochastically) skipping some computations. Essentially, 
using loop perforation is similar to an approximation with a random element, but 
in a generalized way for any iterative code. It’s kind of like how teenage children 
randomly skip their homework. 

Loop perforation skips iterations of a loop in a probabilistic manner. Randomly 
skipping some percentage of the loop bodies doesn’t sound like a good plan, but it 
has its merits. In some types of applications, such as an AI inference computation, 
there’s so much going on that no-one’s going to notice a few missed beats. 
Apparently it can even be useful. Well, at least it’s faster to do nothing. 

Example: Loop Perforation: Here is an example of adding loop perforation to a 
vector dot product computation. This is an incredibly slow version, and is not 
recommended, but is just to give the idea of skipping a percentage of the iterations: 

    float aussie_vecdot_perf(float v1[], float v2[],int n, int pc)    

    {   // Loop perforation -- vector dot product 

        float sum = 0.0; 

        for (int i = 0; i < n; i++) { 

            if ( ( rand() % 100 ) + 1 <= pc) { 

                continue; // Skip it... perforated 

            } 

            sum += v1[i] * v2[i]; 

        } 

        return sum; } 
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Loop Unrolling 

Loop unrolling is a code optimization where the body of a loop is repeated in 
sequential code. This speeds up the algorithm because the overhead of both the 
incrementer and the loop iteration test is avoided.  

In some cases, the entire loop can be unrolled, usually when the loop iterations are 
finite and known at compile-time. In other cases of partially unrolling, the loop 
body can be repeated multiple times, and thereby the loop test only occurs every 
few iterations. 

Example: C++ Loop Unrolling of Vector Dot Product. Here is the basic C++ 
non-unrolled vector dot product code: 

   float aussie_vecdot_basic(float v1[], float v2[], int n) 

   { 

        // Basic vector dot product 

        float sum = 0.0; 

        for (int i = 0; i < n; i++) { 

            sum += v1[i] * v2[i]; 

        } 

        return sum; 

   } 

If we know the value of n, e.g., that n=5, then we can completely unroll it: 

   return v1[0] * v2[0] 

        + v1[1] * v2[1] 

        + v1[2] * v2[2] 

        + v1[3] * v2[3] 

        + v1[4] * v2[4] 

        ; 

If we don’t know the value of n, we can still unroll multiple iterations.  
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Here’s an example of 4-level loop unrolling of vector dot product in C++ by 
assuming that n is a multiple of 4: 

   float aussie_vecdot_unroll4(float v1[],float v2[],int n) 

   { 

        // Loop-unrolled Vector dot product  

        if (n % 4 != 0) { 

            aussie_assert(n % 4 == 0); 

            return 0.0; // fail 

        } 

        float sum = 0.0; 

        for (int i = 0; i < n; ) { 

            sum += v1[i] * v2[i]; i++; 

            sum += v1[i] * v2[i]; i++; 

            sum += v1[i] * v2[i]; i++; 

            sum += v1[i] * v2[i]; i++; 

        } 

        return sum; 

   } 

And here’s a generalization of that 4-level unrolling with extra code to handle the 
leftover cases if n is not a multiple of 4. Although the extra cases look messy, they 
are not actually the main performance bottleneck. 

  float aussie_vecdot_unroll4b(float v1[],float v2[],int n) 

  {    

      // Better loop-unrolled Vector dot product  

      int i = 0; 

      float sum = 0.0; 

      if (n % 4 != 0) { 

          // Handle the extra cases... 

          switch (n % 4) { 

          case 1:  

              sum += v1[i] * v2[i]; i++;  

              break; 

          case 2:  

              sum += v1[i] * v2[i]; i++; 

              sum += v1[i] * v2[i]; i++; 

              break; 

          case 3: 

              sum += v1[i] * v2[i]; i++; 

              sum += v1[i] * v2[i]; i++; 

              sum += v1[i] * v2[i]; i++; 

              break; 

          default: aussie_assert_not_reached(); break; 

          } // end switch 

          // Keep going with rest of the vector 

      } 
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      for (; i < n; ) {  // Unrolled 4 times... 

          sum += v1[i] * v2[i]; i++; 

          sum += v1[i] * v2[i]; i++; 

          sum += v1[i] * v2[i]; i++; 

          sum += v1[i] * v2[i]; i++; 

      } 

      return sum; 

  } 

This code is just an example for explanation. There are various further code 
optimizations that can be done for production-level efficiency. For parallelization, 
the loop body should call an intrinsic function to vectorize the method. For many 
applications, we could choose our data structure sizes as multiples of the loop 
unrolling factor, and thereby avoid ever having any of the “leftover” cases. 

For sequential code, we could change it to use pointer arithmetic rather than array 
indices, we might try replacing the four i++ operators with i+=4, change the 
integer modulo operator (%) to a bitwise-and operator test (i.e., use “n&3” not 
“n%4”, which works since 4 is a power-of-two), and it also might be better to use 
“+” rather than the “+=” operator. Finally, if we carefully code the leftover cases, 
the main loop could be unrolled to many more levels than just four. 

Duff’s Device for Loop Unrolling 

There’s a neat coding trick called “Duff’s Device” for loop unrolling, which uses 
a switch with case fallthrough to mimic assembler coding. But it’s not great for 
vectorization as it’s likely to confuse the compiler, so mostly of theoretical interest. 

    float aussie_unroll4_duff(float v1[],float v2[],int n)   

    { 

        // Unrolled dot product with Duff’s Device  

        int i = 0; 

        float sum = 0.0; 

        switch (n % 4) { 

            for (; i < n; ) { 

                case 0: sum += v1[i] * v2[i]; i++; 

                case 3: sum += v1[i] * v2[i]; i++; 

                case 2: sum += v1[i] * v2[i]; i++; 

                case 1: sum += v1[i] * v2[i]; i++; 

                default:; 

            } // end for 

        } // end switch 

        return sum; 

    } 
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What’s happening here? My brain hurts looking at this code! The trick is that the 
outside switch branches into a case that is inside the body of a for loop. This 
is not normal everyday coding, because there’s a loop inside a switch, and the 
loop body crosses over several case statements. Also note that there are 
no case statements with a “break” statement and they instead rely on fallthrough 
semantics. Similarly, the “default” clause is mainly just to avoid getting a spurious 
compilation warning (i.e., “missing default”), and also has no “break” with only 
a lonely semicolon. Note also that the case labels are written in reverse order from 
top to bottom (3..2..1), except for 0 at the top. 

How does this even work? The first point is that it does. This code performs the 
exactly correct number of iterations for any value of n (except n==0), and similar 
versions with an unrolling factor of more than 4 will also work (i.e., if you change 
“n%4” and add more case constants). The code looks like a hack, but actually uses 
standardized C++ semantics of case fallthrough and switch multi-way control 
flow and should work on all platforms. Branching into the middle of a loop with a 
switch is valid in C++ provided it doesn’t bypass any local variable initialization 
(hence, don’t put “sum” into the switch). Also, the case fallthrough semantics 
(i.e., without a “break” ending each “case”) are standard for C and C++ since 
inception. Finally, note that this code is buggy for n==0, because it incorrectly does 
4 iterations, so it ideally needs a parameter validation assertion at the start. 

Bug alert! Note that you cannot tweak the “i++” instruction using the standard 
idiom: 

   sum += v1[i] * v2[i++];  // Bug! 

The obscure problem is that the “*” operator doesn’t guarantee left-to-right 
evaluation of its operands. The code assumes evaluation order 
of: v1[i], v2[i], *, i++, starting from the left. However, the C++ optimizer can 
legally do this order of operations: v2[i], i++, v1[i], *, which is not what you 
intended and gets the wrong array element for v1[i]. This code might be 
unreliable across platforms, or it might work in the debugger mode, but fall over 
once you turn on high levels of optimization. So, there is an “order of evaluation” 
pitfall if you put “++” in an operand of the “*” operator or many other binary 
arithmetic operators. 

Is Duff’s Device any faster? The short answer is “not really,” although it looks 
very appealing (or appalling). Firstly, note that this trick is not actually very useful 
for vectorization, because a switch cannot branch into the middle of a vectorized 
intrinsic (i.e., if you replace the loop body with a SIMD instruction). Furthermore, 
although I haven’t tested it, I doubt many optimizers will be able to auto-optimize 
that complex control flow with SIMD instructions.  
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In sequential code, this method also isn’t much faster, as it doesn’t really have any 
fewer operations than a basic unrolled loop (i.e., with extra cases handled separately 
before or after the main loop). The above example of Duff’s Device can be further 
sped up using pointer arithmetic and “looping down to zero” optimizations, but so 
can the other unrolled versions. However, there is a minor speed advantage in terms 
of “instruction locality” because the above code is very concise. 

The main advantage of Duff’s Device is to bamboozle your colleagues. You can 
use Duff’s Device with any unrolling factor, not just 4 as in the example shown 
above (e.g., change to 8 by using “n%8” and adding cases for 4, 5, 6, and 7, ordered 
from 7 down to 1, leaving 0 on top). Actually, the unrolling factor needn’t be a 
power-of-two. Make it a prime number for extra bonus points. If you want more 
of this kind of coding trickery, also search up Jensen’s device and Pigeon’s device. 

Loop Tiling or Blocking 

When you hear about a “tiled MatMul” or a “blocked GEMM,” this is the “tiling” 
or “blocking” optimization method it refers to. MatMul is matrix multiplication and 
GEMM is General Matrix Multiplication (i.e., the same thing). Tiling is the 
optimization that most applies to speeding up matrix or tensor multiplications. 

This optimization is for two-dimensional data (e.g., matrices). When you hear 
“tiles” or “blocks,” think squares or rectangles of data. For example, if you have a 
512x512 matrix, then a tiled algorithm might act on 16x16 sized chunks, one at a 
time. Loop tiling is an optimization of two-dimensional or three-dimensional data 
such as matrices or tensors. The one-dimensional equivalent of processing sub-
parts of a one-dimensional array is called “strip mining”, “loop sectioning” or often 
simply “vectorization.” 

In other words, tiling means operating on small subsections of a matrix. If you hear 
“tiled tensor” that could mean two-dimensional data (i.e., just a fancy name for a 
matrix), or alternatively it might refer to three-dimensional data, in which case, don’t 
think anything or else your head will hurt. 

Loop tiling is a method of executing sub-parts of nested loops in a way that 
maximizes data locality, increases cache utilization, and improves parallel execution. 
This is also called “loop blocking” because it processes the data a “block” at a time, 
although the term “tiling” is more widely used in research. The two-dimensional 
sub-partitions of the data that are square or rectangular are called “tiles” or 
“blocks”. 
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The same number of arithmetic operations are performed in a tiled versus non-tiled 
algorithm. However, there should be fewer loads of the data into memory with 
tiling. The downside is that tiling introduces additional loop overhead. In fact, 
rather than flattening nested loops over a 2-D array (e.g., 512x512), tiling often 
introduces additional levels of nesting! The two small loops that spin through the 
16x16 square shape of a single “tile” or “block” are often newly added inner loops. 
So, loop tiling often adds two new layers of nested loops inside your already-nested 
loops. It makes you wonder how it can even be faster! 

Example: Tiled Matrix Clear: For these examples, there is a type “ymatrix” 
type declared: typedef float ymatrix[ROWS][COLUMNS]; 

If we forget about memset, here is the simple code to clear a matrix one element 
at a time in a brute-force nested loop (non-tiled): 

    void aussie_clear_matrix(ymatrix m) 

    { 

        for (int i = 0; i < ROWS; i++) { 

            for (int j = 0; j < COLUMNS; j++) { 

                m[i][j] = 0.0; 

            } 

        } 

    } 

Now we decide to add a 4x4 square tile optimization to this code. The result is an 
extra two levels of nested loops. Here is the basic code which assumes that the row 
and column dimensions are exact multiples of the tile size, so there’s no extra 
leftover cases to handle: 

    void aussie_clear_matrix_tiled(ymatrix m) 

    { 

        const int TILEX = 4; // 4x4 tile size 

        const int TILEY = 4; 

        static_assert(ROWS % TILEX == 0, "Exact X"); 

        static_assert(COLUMNS % TILEY == 0, "Exact Y"); 

        for (int i = 0; i < ROWS; i += TILEX) { 

          for (int j = 0; j < COLUMNS; j += TILEY) { 

              // Do the 4x4 tile... 

              for (int tx=i; tx < i+TILEX; tx++) { 

                  for (int ty=j; ty < j+TILEY; ty++) { 

                      m[tx][tiley] = 0.0f; 

                  } 

              } 

          } 

        } 

    } 
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Unrolled Tiles. One followup optimization trick with a tiled loop algorithm is to 
apply loop unrolling to the two inner loops. This avoids the extra overhead of the 
two extra inner loops, but retains the data locality benefits of tiling. This 
optimization results in a fully “unrolled tile” computation without any extra inner 
loops. In the above example, the two inner loops of a 4x4 tile would be replaced 
with 16 unrolled computations in sequence. Or for a vectorized version, a fully 
unrolled tile would be 4 sequential calls to vectorized intrinsics that each do 4 
operations in parallel (e.g., AVX intrinsics each do 4 float operations in parallel). 

Example: Tiled Matrix Multiplication: Tiling techniques are widely used to 
improve the efficiency of MatMul’s and thereby get better throughput of tensor 
calculations from a GPU. Matrix multiplication is a good candidate for this 
optimization because it has complexity of O(n^3) arithmetic calculations, but uses 
only O(n^2) data. Hence, a naive matrix multiplication algorithm that doesn’t 
address cache locality will re-load the same data into memory many times, whereas 
a tiled algorithm can reuse the same data more efficiently. 

A tiled version of MatMul processes “tiles” or “blocks” of each matrix one at a time 
(i.e., small square or rectangular sections), with the aim of keeping small parts of 
the matrix in the memory cache while they are processed. The algorithm progresses 
across the matrix a tile/block at a time, rather than scanning all the way down one 
dimension (row or column). The same number of multiplication operations are 
performed as a non-tiled MatMul, but data locality and cache freshness should 
improve the overall speed. 

Loop Fission 

Loop fission is an optimization that is the opposite of loop fusion. Instead of fusing 
two loops into one, we take one loop and split parts of it into two loops. Loop 
fission also been called other names such as “loop splitting” or “loop distribution.” 

Loop fission can be more efficient for parallel execution (e.g., vectorization for 
GPUs), but is often slower for sequential execution. Whereas loop fusion aims to 
remove the overhead of one of the loops, loop fission tolerates an increased loop 
overhead in return for simpler loop bodies that can be parallelized. The kernel 
optimization of “kernel fission” is based on loop fission, and loop fission is one 
technique used to achieve vectorization for GPUs. 

The main reason to use loop fission is hardware acceleration via loop parallelization. 
A complicated single loop can often run faster if split into two simpler loops, if 
hardware acceleration can be accessed.  
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This is true even if the two resulting loops must run sequentially, because the 
iterations of each loop are parallelized, but there’s a double benefit if the two whole 
loops can also run in parallel. 

Example: Loop Fission in BatchNorm: A good example arises in part of the 
code for batch normalization. Each element of the vector needs to have two 
operations performed on it: subtract the mean (re-centering) and multiply by a 
variance factor (re-scaling). The naive implementation of the second half in the loop 
of BatchNorm looks like this: 

    float denom = sqrtf(varc + eps); // Scale factor 

    for (int i = 0; i < n; i++) { 

        // Normalize: re-center and scale 

        v[i] = (v[i] - fmean) / denom;  

    } 

This is difficult to hardware accelerate because it’s unlikely that there’s a combined 
“subtract-and-then-divide” operation to apply to all elements of a vector in parallel. 
The first point is that maybe there’s an “add-and-then-multiply,” in which case we 
can use the negative of the additive factor and the reciprocal of the scaling factor. 
However, assuming there’s not, loop fission can be used to split the single 
complicated loop into two sequential loops. 

    float negmean = -fmean;  // Use negative for addition 

    float denom = sqrtf(varc + eps); // std. deviation 

    float recip = 1.0f / denom;  // reciprocal multiply 

    // Loop 1: Re-center using mean 

    aussie_vector_add_scalar(v, n, negmean); 

    // Loop 2: Re-scale by factor 

    aussie_vector_multiply_scalar(v, n, recip); 

Each of the two loops is now easy to hardware accelerate, because they are both 
very simple vector operations: “multiply-by-scalar” and “add-scalar.” Every 
platform is likely to have hardware acceleration APIs for those simpler operations. 
So, to summarize, we got an explosive boost to hypersonic rocket speed using 
atomic operations with loop fission.  

Isn’t that just the bomb? 
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Loop Reversal 

Loop reversal is the optimization of making the loops go backwards. It does the 
same number of arithmetic operations, but in reverse order, so there is no change 
in the total arithmetic operations. 

This goal is a speedup by “looping down to zero” with a faster loop test, but it is 
often a de-optimization even for sequential execution. Typical CPU processors rely 
on ascending order of memory accesses for predictive cache pipelining, and reverse 
array access is a worst case for that. 

Loop reversal is also not a useful parallelization method in itself. Vectorization for 
GPU computation doesn’t really work in reverse. However, reversing a loop can 
sometimes be useful as an initial transformation on nested loops if reversing the 
inner loop’s direction allows another followup loop vectorization technique. 

Example: Reversed Vector Dot Product: Loop reversal can be used on vector 
dot product, as below, but it probably shouldn’t be. Here’s the basic idea: 

    float aussie_vecdot_rev(float v1[], float v2[], int n) 

    { 

        float sum = 0.0; 

        for (int i = n - 1; i >= 0; i--) { 

            sum += v1[i] * v2[i]; 

        } 

        return sum; 

    } 

Note that there are several coding pitfalls to avoid. The loop variable “i” cannot 
be “unsigned” or “size_t” type, because the test “i>=0” would never fail, 
creating an infinite loop. Also, the reversed loop needs to start at “n-1” and must 
use “i>=0” (not “i>0”) to avoid an off-by-one error. The above code also craters 
for “n<=0” and needs a safety test. 

Loop Code Motion 

Loop code motion is moving loop-invariant code from inside the loop body to the 
pre-initialization code for the loop. Any code that has the same value should not be 
performed inside the loop body. Instead, it should be pre-calculated before the 
loop, and stored in a temporary variable. This is sometimes called “hoisting” the 
code out of the loop. 



181     Advanced C++ Memory Techniques 

Example: Loop Code Motion: One common example of unnecessary 
recalculation of loop-invariant values is in the loop test. The code in the Boolean 
test for the loop is actually part of the loop body. 

An example of code that re-calculates the loop limit: 

   for (i = 0; i < vec.num_elements(); i++) { 

      // ... 

   } 

The “num_elements” call is probably loop-invariant, assuming the vector doesn’t 
change size during processing. Maybe the “num_elements” function is declared 
“inline” and the C++ compiler will fix it anyway. Nevertheless, this is a candidate 
for loop code motion, using a temporary variable instead: 

   int n = vec.num_elements();  // Loop-invariant value 

   for (i = 0; i < n; i++) { 

      // ... 

   } 

Loop Distribution 

Loop distribution is type of loop code motion that creates two loops from a single 
loop that contain an “if” statement. The hoisted code is a conditional test. Some 
early papers in the 1990s called it “loop unswitching.” Some papers use the term 
“loop distribution” with the different meaning of splitting a loop into two loops, 
which we call “loop fission.” 

The goal of loop distribution is to move an “if” test out of the loop body, by 
creating two loops, and ends up creating two separate loops on two pathways. This 
sounds similar to loop fission, but loop distribution is a more general optimization 
that doesn’t require parallelization to get a speed improvement (whereas loop 
fission does).  

Instead, loop distribution gets a benefit in ordinary sequential execution because it 
moves the if-test computation out of the loop body to a once-only pre-
initialization test (i.e., “hoisted”).  

Note that only one of the two loops is executed each time, and these two loops are 
never executed in parallel, so this technique is not really a type of loop fission. 
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Example: Loop Distribution: Here’s a dummy example of implementing an 
“add-or-subtract” function using a passed-in Boolean flag. 

    void aussie_vector_addition_slow( 

        float v[], int n,  

        bool do_add, float scalar) 

    { 

        for (int i = 0; i < n; i++) { 

            if (do_add)  

                v[i] += scalar; // Add 

            else 

                v[i] -= scalar; // Subtract 

        } 

    } 

The problem is that the test “if(do_add)” is computed for every loop iteration, 
and yet “do_add” is a loop-invariant flag variable. The faster version is to use loop 
distribution to move the if-test into the loop initialization, and then split the two 
pathways inside the loop to instead have two separate loops. Here’s the faster 
version: 

    void aussie_vector_addition_loop_distribution( 

        float v[], int n,  

        bool do_add, float scalar) 

    { 

        if (do_add) { // Add scalar 

            for (int i = 0; i < n; i++) { 

                v[i] += scalar;  // Add 

            } 

        } 

        else {  // Subtract scalar 

            for (int i = 0; i < n; i++) { 

                v[i] -= scalar; // Subtract 

            } 

        } 

    } 

This example is still far from optimal. For starters, it should be using pointer 
arithmetic rather than array indices. 
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Loop Reordering 

Loop reordering is the general class of optimizations that involves reordering loops 
or their iterations. In complex algorithms, there are many loops, and many ways for 
nesting them, or running them in sequence. Such optimizations can involve 
changing the ordering of two sequential loops or two nested loops. 

The reordering optimization to reverse the inner and outer nested loops is more 
often called “loop interchange.” One loop can be reordered with “loop reversal.” 

Loop reordering is an optimization that doesn’t reduce the total number for 
computations, because it always executes the same number of iterations as the 
original version. However, loop reordering may have several benefits: 

• Vectorization. Putting the loop in a different order may make it more 
vectorizable, or may allow other loop transformations to be applied before 
vectorization. 

• Data locality. Reordering the loops may improve data locality and cache 
access speed by doing the operations in a different order. This reduces the 
cost of accessing the data into memory (or low-level caches), rather than 
the cost of the arithmetic. It is therefore related to memory/dataflow 
optimizations and pipelining optimizations. 

• Reduced loop overhead. Both loop interchange and loop reversal can 
reduce the general overhead of loop testing. Loop interchange allows the 
shorter loop to be on the outside. Loop reversal allows “looping down to 
zero” which reduces overhead. 

Loop Iterator Strength Reduction 

Loop strength reduction is the arithmetic optimization of “strength reduction” 
applied to loop iteration variables. For example, strength reduction aims to replace 
multiplication with addition. Consider this loop: 

    for (int i = 0; i < n; i++) { 

        a[i] = 10 * i; 

    } 

This can be optimized to change the multiplication into an incremental addition: 

    for (int i = 0, x = 0; i < n; i++) { 

        a[i] = x; 

        x += 10; 

    } 
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Note that the loop strength reduction optimization isn’t a good choice for loop 
parallelization. Although it would be desirable to change a vectorized multiplication 
to addition, this optimization has changed to an incremental algorithm. This makes 
each loop iteration dependent on the prior one, with the results dependent on the 
previous computation, so they cannot be done in parallel. 

Loop Coalescing 

Loop coalescing is a loop optimization that involves flattening two nested loops 
into one non-nested loop. Typically, loop coalescing will still operate on a 2-
dimensional array, whereas flattening both the nested loops and the array is called 
“loop collapsing.” 

As a dummy example, consider a matrix initialization via nested loops: 

    for (int i = 0; i < n; i++) { 

        for (int j = 0; j < m; j++) { 

            arr[i][j] = 0.0f; 

        } 

    } 

Loop coalescing involves changing to a single loop, but still using two indices i and 
j, which are calculated from the main linear index. 

    int maxx = n * m; 

    for (int x = 0; i < maxx; x++) { 

        int i = x / n; 

        int j = x % m; 

        arr[i][j] = 0.0f; 

    } 

The benefit in speed from loop coalescing can arise by simplifying the loop, which 
makes it easier to parallelize via hardware acceleration, and also maybe a different 
data access pattern which might improve data locality and cache freshness. 

This optimization is not always possible, as nested loop logic is often quite 
complicated, and flattening a nested loop may actually worsen data locality in many 
instances. However, the linear nature of a simple loop can make the code to send 
off chunks to a GPU much easier. 
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Loop Collapsing 

Loop collapsing is closely related to loop coalescing, since both aim to flatten nested 
loops, but loop collapsing is a special situation where the array is also flattened to 
one dimension. 

Consider a matrix initialization via nested loops over a 2-dimensional array: 

    for (int i = 0; i < n; i++) { 

        for (int j = 0; j < m; j++) { 

            arr[i][j] = 0.0f; 

        } 

    } 

The loop collapsed version has one big loop over a different one-dimensional array: 

    int maxx = n * m; 

    for (int x = 0; x < maxx; x++) { 

        arr2[x] = 0.0f; 

    } 

This loop transformation to a single loop is obviously more amenable to 
vectorization. 

Loop Peeling 

Loop peeling is a type of loop unrolling that involves unraveling only the first few 
iterations of a long loop. This is also similar to “loop splitting” with two sections, 
where the first section is over the early range, and the second range is the main 
section of all remaining iterations. 

Loop peeling is beneficial to the overall loop efficiency if there is code in the loop 
body that is only required for one or two early iterations, which can then be 
removed from the main loop body. Similarly, there can be benefit in unraveling the 
last few iterations of a loop, which is a similar technique. 

One common case of loop peeling is when the first iteration is different from the 
rest, so peeling off a single iteration is valuable. 

    for (int i = 0; i < n; i++) { 

        arr[i] = (i == 0) ? 0.0f : 1.0f; 

    } 
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In this case, we can peel off the first “i==0” iteration into a single unrolled 
instruction, and change the main loop to start at 1. This is also a trivial form of 
“loop distribution,” where we are hoisting an “if” conditional test out of the loop.  

The new code becomes: 

    arr[0] = 0.0f;  // Peeled 

    for (int i = 1 /*not 0*/ ; i < n; i++) { 

        arr[i] = 1.0f; 

    } 

This peeled version is faster in terms of both sequential or parallel execution. The 
loop body has less computation and is also more amenable to vectorization. 

Loop Splitting 

Loop splitting refers to splitting the sequential iterations of a loop into two loops, 
which each perform part of the original loop’s iterations. Loop splitting is closely 
related to “loop sectioning” (“strip mining”), but often relates to more complex 
arithmetic in the loop body.  

Note that “loop peeling” is a special case of loop splitting where the first section is 
a small range of a few initial iterations, but these few iterations are unrolled rather 
than looped. 

Loop splitting takes a single loop and transforms it into at least two “split-out” 
loops, one for the early iterations, and one for the remainder. However, loops can 
also be split out into more than two loops. 

In loop splitting, each split-out loop is shorter than the original loop. Unlike loop 
fission, the two loops operate over different subportions of the iterator variable 
range, executing the same number of total iterations, rather than double iterations 
as in loop fission. 
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Example: Loop Splitting: Here’s some example code to “sqrtize” a vector, using 
a cached optimization for the numbers up to 100. 

    void aussie_vector_do_sqrt(float v[], int n) 

    { 

        for (int i = 0; i < n; i++) { 

            if (i < 100) { // Fast cases 

                v[i] = aussie_sqrt_optimized(v[i]); 

            } 

            else {  // General case 

                v[i] = sqrtf(v[i]); 

            } 

        } 

    } 

However, we can use loop splitting to split this big loop into two shorter disjoint 
ranges. Instead of 0..n-1, we do 0..99, and then 100..n-1. Each loop is over part of 
the range, and has a simpler loop body. Note that this code fails with an array 
bounds violation for small values of n less than 100. 

    void aussie_vector_do_sqrt_loop_splitting( 

               float v[], int n) 

    { 

        for (int i = 0; i < 100; i++) { // Fast cases                 

            v[i] = aussie_sqrt_optimized(v[i]); 

        } 

        for (int i = 100; i < n; i++) { // General cases 

            v[i] = sqrtf(v[i]); 

        } 

    } 

The loop splitting optimization is beneficial if the loop body has different sections 
of code that only relate to a subset of the iterator range. Hence, the loop bodies in 
the two loops can be reduced to execute less code. Overall, there is still the same 
number of iterations performed in the two loops combined, but each loop performs 
only a proportion of the original iterations on a simpler loop body. This optimizes 
sequential execution and the simpler code in each loop body may make 
vectorization of one or both subloops easier. Furthermore, both subloops could 
run in parallel. 
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Loop Interchange 

Loop interchange is an optimization of nested loops that switches the inner and 
outer loops. In a typical nested loop, the outer loop body and loop test is executed 
rarely, almost lazily, whereas the inner loop body is scrambling along in a frantic 
mess. Loop interchange simply switches them, reversing their roles. 

Why is this an optimization? Although the same number of loop iterations still 
occur in total, and the newly-made inner loop body is also thrashed, various 
improvements can arise from reversing the iterator variables, usually to make the 
innermost loop the longest. Possible optimizations result from: 

• Fewer outside computations. A shorter outside loop reduces the arithmetic 
operations of the outer loop, whereas the inner loop’s number of 
computations is unchanged in either loop structure. 

• Data locality. Another possible improvement is in data locality, which can 
reduce cache misses and speeds up the overall execution. Note that this 
benefit is not guaranteed just by switching loops, and sometimes loop 
interchange can worsen data locality; careful analysis is needed. 

• Inner loop vectorization. Another important possibility is that reversing 
nested loops can create opportunities to apply other loop optimizations to 
the new inner loop, notably to vectorize the inner loop. 

Shortest loop outside, longest innermost loop: One of the considerations of 
loop interchange is the optimization of putting the shortest loop on the outside, 
and making the innermost loop with the longest range of iterations. This is an 
optimization for both sequential or parallel execution. For sequential execution, 
there is less overhead from the outer loop, because it is shorter. For parallelization, 
there is improved vectorization of the inner loop, which now has a longer range. 

Consider this example: 

    for (int i = 0; i < 1000; i++) { 

        for (int j = 0; j < 50; j++) { 

            // ... 

        } 

    } 

The current loop nesting has the longest loop (to 1000) on the outside, and the 
shorter loop (to 50) as the innermost loop.  
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Loop interchange simply makes it the reverse nesting: 

    for (int j = 0; j < 50; j++) { 

        for (int i = 0; i < 1000; i++) { 

            // ... 

        } 

   } 

Considering sequential execution, the inner loop body is executed the same number 
of times, so there’s no difference. This also includes the inner loop’s conditional 
test and incrementer, which are different variables in the two examples, but also 
execute the same number of times (50,000 times).  

However, consider the different outer loops. The first example is 1000 iterations, 
whereas the second example’s outer loop is only 50 times. Hence, the loop 
reordering optimization of “shortest outer loop” and “longest innermost loop” has 
saved 950 of the outer loop’s calculations (i.e., loop test and incrementer).  

Any extra code that’s in the outer loop, either before or after the inner loop, would 
also be executed fewer times. 

There is also an advantage for vectorization. In the first example, we could possibly 
have 1000 vectorized operations of data size 50. In the interchanged loops, there 
are 50 operations on vectors size 1000.  

Hence, there is more opportunity for much larger vectorization gains in the second 
format with the longest inner loop. 

Loop Sentinel 

Loop sentinels are an optimization that removes the overhead of checking an array 
index or pointer scanning an array or pointer chain. The technique does this by 
adding a pretend extra element onto the end of the array, in a way that we can 
pretend to succeed. And since we’re guaranteed to always succeed, we don’t need 
to check for failure while scanning the loop. 

This technique is not particularly useful for vectorization, but is quite powerful for 
long sequential scanning of arrays. It also has the downside of requiring at least one 
writeable array element, so it cannot run on read-only arrays. 
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Example: Check Vector Negatives: Here’s the basic loop sentinel version that 
sets up a dummy success in v[n]: 

   bool aussie_vector_negative_sentinel(float v[], int n) 

   { 

        v[n] = -99.0;  // Dummy negative (BUG!) 

        int i = 0; 

        for ( ; /*GONE!*/; i++) { 

            if (v[i] < 0.0) break;  // Found negative 

        } 

        if (i == n) return false;  // Fake success 

        return true;  // Found a negative (for real) 

   } 

However, this is actually buggy, since “v[n]” is potentially an array overflow. A 
better version can manipulate the last valid element “v[n-1]” instead of modifying 
“v[n]”. Then, we have to remember to fix it before we leave town. And we also 
have to remember to check the last vector element that we temporarily overwrote 
wasn’t also a real success. 

    bool aussie_vector_negative_sentinel2(float v[], int n) 

    { 

        float save = v[n - 1];  // Save it! 

        v[n - 1] = -99.0;  // Dummy negative at end 

        int i = 0; 

        for ( ; /*GONE!*/; i++) { 

            if (v[i] < 0.0) break;  // Found negative 

        } 

        v[n - 1] = save;  // Restore it! 

        if (i == n - 1) { 

            // At the dummy (fake success) 

            if (save < 0.0) return true; // Must check 

            return false;   

        } 

        return true;  // Found a negative (for real) 

    } 

Loop Strip Mining (Loop Sectioning) 

Loop strip mining is a loop optimization that scans or “mines” various “strips” of 
an array. It is related to “loop tiling” on arrays in two dimensions, but strip mining 
only applies to processing one-dimensional arrays. Loop strip mining is also called 
“loop sectioning” because it breaks an array up into sections that are operated on. 
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For a basic example, consider a simple array initialization: 

    for (int i = 0; i < n; i++) { 

        arr[i] = 0.0f; 

    } 

Let’s assume we can parallelize this with 16 elements at a time (e.g., 512 bits total 
parallel processing, which is 16 separate 32-bit float variables). So, we want to 
process “strips” of length 16. For simplicity, let us assume that n is divisible exactly 
by 16, so there’s no leftover work after the main loop. 

    for (int i = 0; i < n; i += 16) { 

        // Initialize arr[i]...arr[i+15] in parallel 

    } 

Obviously, this is a dummy example, where memset would do better for zeroing 
the array. Also, this really looks exactly like “vectorization” to me, where we are 
vectorizing 512 bits at a time (16 floats), and indeed the research mentions 
vectorization as one application. But loop strip mining and vectorization are not 
exactly the same techniques, because loop strip mining is a more general idea with 
other applications. 

Loop Spreading 

Loop spreading is an optimization of two non-nested sequential loops that have 
different iteration ranges. Typically, this refers to where the end ranges differ 
significantly. If the loop ranges only differ by an off-by-one issue, then only loop 
normalization is required. 

Loop spreading modifies one of the loops, so that part of this loop fully overlaps 
with the other loop (i.e., ideally one loop “spreads out” further to match the other 
loop’s end bounds). Hence, after loop spreading has occurred, this subloop can be 
fused with the other loop, and possibly parallelized. The remaining iterations that 
are not overlapping then have to be addressed in a followup partial loop (only for 
one of the loops). 

Loop spreading mainly enables loop fusion as a followup optimization. For using 
loop fission on the two loops, it is not necessary to do loop spreading, since the 
two loops are already split apart, and each loop could already potentially be 
vectorized independently. 
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Loop Normalization 

Loop normalization is not directly an optimization, but is a preliminary loop 
transformation that can make further loop optimizations easier. Followup 
optimizations might be to fuse the two loops with loop fusion, or to parallelize each 
loop, such as with loop fission or vectorization. 

The goal of loop normalization is to make the loop iteration variables act across the 
same range. This applies to two sequential loops, rather than nested loops. Hence, 
loop normalization is needed when two loops in sequence are starting at different 
offsets (e.g., one is i=1 and another starts at i=0), or are finished at different 
endpoints (e.g., n versus n-1). 

If two loops have the same number of computations, but with different ranges, 
then one loop can be changed with an offset. For example, these loops differ with 
ranges 0..n-1 and 1..n: 

    for (int i = 0; i < n; i++) a[i] = 0; 

    for (int j = 1; j <= n; j++) b[j] = 0; 

These can be adjusted to the same ranges with a “j+1” index offset, as follows: 

    for (int i = 0; i < n; i++) a[i] = 0; 

    for (int j = 0; j < n; j++) b[j+1] = 0; 

If the two loops have a different number of iterations, or off by 1 or 2, then “loop 
peeling” can be used to unroll and split off one or two iterations and shorten the 
longer loop, so that both loops have the same number of iterations over the same 
range. For example, in this example, one loop is 0..n-1 and another is 0..n: 

    for (int i = 0; i < n; i++) a[i] = 0; 

    for (int j = 0; j <= n; j++) b[j] = 0; 

The way to normalize loop ranges is to “peel” off the last iteration of the “j” loop: 

    for (int i = 0; i < n; i++) a[i] = 0; 

    for (int j = 0; j < n; j++) b[j] = 0; 

    b[n] = 0;  // Peeled 

This example has peeled the longer loop to make it shorter. An alternative would 
be “loop spreading” to lengthen the shorter loop, such as by adding an extra 
padding element into the array. 
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Normalizing two loops doesn’t change the number of arithmetic computations. 
However, once two loops have normalized ranges, it becomes easier to see 
opportunities for further optimizations such as loop fusion or loop fission. 

Loop Skewing 

Loop skewing is a somewhat mind-bending method to change nested loops to make 
them more parallelizable. This technique applies when there are two nested loops, 
but the inner loop is difficult to parallelize because of a dependency on the outer 
loop variable. The performance advantage from loop skewing is not directly its 
usage, but because skewing changes then make possible other loop optimizations, 
especially loop interchange, which reorders the inner and outer loop. 

The loop skewing solution is far from obvious. The range bounds of the inner loop 
are changed by “skewing” them by a factor based on the outer loop variable. And 
then, by some magical potion, this somehow breaks the dependence on the outer 
loop, and then the inner loop can run fast on a GPU. Who knew? 

As a simplistic example, consider two nested loops: 

    for (int i = 0; i < 1000; i++) { 

        for (int j = 0; j < 50; j++) { 

            arr[i][j] = something; 

        } 

    } 

We can skew the inner loop by adding a skew factor based on the outer loop 
variable (e.g., “i” or “i+1” or something similar). Add this skew factor to the 
ranges of j, but then subtract the skew factor (“i”) from any usages of the index 
“j” inside the inner loop’s body. 

    for (int i = 0; i < 1000; i++) { 

        for (int j = i; j < 50 + i; j++) { 

            arr[i][j - i] = something; 

        } 

    } 

Hence, j has changed from the range (0...50) to the skewed range (i...i+50), by 
adding the skew factor “i” to the start and end. The use of “j” in the inner loop 
body has changed from “j” to “j-i” (i.e., subtracting the skew factor “i”).  

The result is a kind of skewed and “triangular” shape of i and j indices, but the 
actual arithmetic calculations are unchanged. 
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This newly skewed code isn’t any faster, does exactly the same calculations on the 
50,000 elements of array arr, and indeed is actually worse because of the extra 
“50+i” and “j-i” computations. However, in some cases, doing this weird 
skewing transformation then allows us to follow up with a loop interchange 
optimization, switching the inner and outer loops. And I’m not even going to 
pretend to understand this, but there are situations where the non-skewed inner 
loop cannot be vectorized or interchanged, but after we’ve skewed the loop, then 
we can interchange it, and then we get via hocus pocus a different inner loop that 
can then be vectorized. Hopefully, the GPU knows what’s going on. 
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16. Vector Algorithms 

Vector Dot Product 

Vector dot product is an algorithm that has received a lot attention lately, because 
it’s the most basic computation algorithm in an AI engine. All of the tensor 
operations and matrix multiplications break down into instances of a dot product 
calculation. The dot product is so-named because its mathematical notation is a dot. 
It is also known as the “scalar product” because its result is a scalar (single number), 
rather than a vector. 

The vector dot product takes two vectors as input, and computes a 
single float number. The algorithm is a product of the elements of each vector, 
added together. Here’s the code: 

    float aussie_vecdot_basic(float v1[],float v2[], int n) 

    { 

        float sum = 0.0; 

        for (int i = 0; i < n; i++) { 

            sum += v1[i] * v2[i]; 

        } 

        return sum; 

    } 

Properties of the dot product include: 

• Two vectors as input. 

• Scalar output (single number). 

• Can be positive or negative. 

• Is zero if either vector is all zeros. 

• Can also be zero for two non-zero vectors (e.g., if the vectors are 
“perpendicular” in 2-D or 3-D space). 

• Has a physical meaning related to the “angle” between the two vectors. 

• Is an integer if both vectors contain integers. 

• Dot product of a vector with itself is the square of the vector’s magnitude 
(equivalently, the vector’s L2-squared norm). 

• Is very slooow. Dot product-based operations inside matrices and tensors 
are the main culprit for AI needing all those GPUs. 
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The dot product differs from the “vector product” of two vectors (also called 
“cross product”) that returns a vector, and is a completely different mathematical 
operation. The vector cross product is interesting mathematically in that it 
computes a vector perpendicular in 3 dimensions, but it’s not very useful in practical 
applications. The dot product is where the action’s at in big tensors. 

Vector Norms 

Vector norms are measurements of vectors that indicate features of a vector. For 
example, we can measure if two vectors are “close” to each other. Again, these used 
to be obscure linear algebra algorithms, but are now widely used in various AI 
algorithms. 

Vector norms map vectors to a single number. Note that vector norms are not the 
same thing as the “normalization” layer in a Transformer (i.e., LayerNorm or 
BatchNorm). Note also that a vector “norm” is not at all related to the similarly-
named “normal vector” (a vector perpendicular to a surface). The norm is a number, 
whereas the normal is a vector, and they’re not on speaking terms since that incident 
last summer. 

L2 Norm: The basic norm of a vector is the level-2 (L2) norm, and you probably 
already know it. This is the length of the vector in physical space, also called the 
vector’s “modulus” or “magnitude” in Mathematics 101. If you treat a vector as a 
“point” in space, the L2 norm is its straight-line distance from the origin. 

The calculation of the L2 norm of a vector is a generalization of Pythagoras’s 
Theorem: sum the squares of all the vector elements, and then take the square root. 
The code looks like: 

    float aussie_vector_L2_norm(float v[], int n) 

    { 

        float sum = 0.0f; 

        for (int i = 0; i < n; i++) { 

            sum += (v[i] * v[i]);   // Square 

        } 

        return sqrtf(sum); 

    } 

Because we square every element, they all get turned positive. Zero squared is still 
zero. Once we’ve summed all the squares, we usually get a big positive number, 
which we then square root to get a smaller positive number. Hence, the result of 
the L2 norm is compressing a whole vector down to a single positive floating-point 
number. 
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The properties of the L2 norm are: 

• Floating-point number (e.g., 0.567 or 5.6789 or 3.0 or whatever) 

• Positive number (not ever negative) 

• Zero only if the whole vector is zero. 

• Represents the “length” (or “modulus” or “magnitude”) of a vector, called 
the “Euclidean distance”. 

• Usually a non-integer, even if the vector was all integers. 

For a simple 2-D or 3-D vector in Senior Math, the L2 norm is the physical length 
of the vector in 2-D or 3-D space (or the length of the line from the origin to the 
equivalent point). For AI, which has vectors in 1024-dimensions, or N-dimensional 
vectors for whatever N is being used, there’s not really a physical explanation of the 
L2 norm that’s easy to visualize, but it’s kind of a measure of the length of the 
vector in N-dimensional space. The value of the L2 norm can be zero, but only if 
all the vector’s elements are zero. 

Note that the value of the L2 norm is not unique. Two different vectors can have 
the same value for the L2 norm. In fact, an infinite number of vectors can have the 
same value, and those vectors are the set of vectors with the same length 
(magnitude), which will define a sphere in N-dimensional space. 

L2-squared norm: A minor modification of the L2 norm is the “squared L2 
norm”, which is, as you may have guessed, the square of the L2 norm. To put it 
another way, it’s just the L2 norm without the square-root at the end. The code 
looks like: 

    float aussie_vector_L2_squared_norm(float v[], int n) 

    { 

        float sum = 0.0f; 

        for (int i = 0; i < n; i++) { 

            sum += (v[i] * v[i]);  // Square 

        } 

        return sum;  // NOT sqrtf(sum); 

    } 

The value of the L2-squared norm is a positive number, but a much larger one. The 
physical meaning is the square of the physical/Euclidean length of the vector. The 
L2-squared norm also equals the vector’s dot product with itself. 

Why use the L2-squared norm? Because it’s faster to skip the square-root operation, 
of course. Also, if the vector contains integers, then the L2-squared norm is also an 
integer, which can make it even faster to compute in integer-only mode. The L2-
squared norm is just as good as basic L2 for some uses.  
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The properties of L2 and L2-squared norms are very similar except that one is a 
much larger number. Both are positive and related to Euclidean distance, and both 
increase monotonically the further the vector is away from the origin. 

Level 1 Norm: As you can guess from my calling it the L2 norm, there’s also an 
L1 norm, and there’s L3 norms, and more. Let’s look at the L1 norm, because it’s 
even simpler, although it’s not usually something that’s covered when studying 
vectors in Math class. 

The L1 norm is simply the sum of the absolute values of all the vector elements. 
We don’t square them. We don’t take the square root. We just make them positive 
and add them up. The code looks like: 

    float aussie_vector_L1_norm(float v[], int n) 

    { 

        float sum = 0.0f; 

        for (int i = 0; i < n; i++) { 

            sum += fabsf(v[i]);   // Absolute value 

        } 

        return sum; 

    } 

Using the absolute values of elements reverses any negative vector elements to 
positive. The absolute value ensures the whole total can’t go negative, and any 
negative value also adds to the total. A zero element is fine in the vector, but does 
nothing. The result of the L1 norm is a single positive float number, which can be 
fractional or whole, ranging from zero to as high as it goes (i.e., if you have big 
numbers in the vector elements, then the L1 norm will also be large). 

The properties of the L1 norm are: 

• Floating-point number (fractional or whole). 

• Positive number (never negative). 

• Zero only if all vector elements are zero. 

• Physical meaning is an obscure distance measure (the “Manhattan 
distance”). 

• Will be an integer if the vector elements are integers. 

What does an L1 norm mean? It’s kind of like the distance you’d travel if you walked 
the longest way by going along each element/dimension of the vector, one at a 
time, and not going backwards (no negatives). So, the L2 norm was the fastest 
diagonal direct way to get to a point, but the L1 norm is going the scenic route, and 
the L1 norm is usually bigger than the L2 norm. 
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Like the L2 norm, the L1 norm is not unique. Multiple vectors can have the same 
L1 norm. For example, the vectors (1,2) and (0.5,2.5) will have L1 vector 
norm of 3.0. I’m not really sure what the set of all the vectors with the same L1 
norm means. Maybe it’s this: all the points that you can walk to from the origin 
when you travel a certain distance (going forwards-only)? 

L3 Norms and Above: The mathematical vector norms can be generalized to L3 
and higher norms, even to infinity. For an L3 norm, you cube all the vector elements 
(made positive by absolute value), and take the cube root at the end. It’s tricky to 
find the cube root in C++ until you remember that a cube root is exponentiation 
to the power of 1/3 (from Year 10 math), so we can use the “powf” function. 
Here’s the code: 

    float aussie_vector_L3_norm(float v[], int n) 

    { 

        float sum = 0.0f; 

        for (int i = 0; i < n; i++) { 

            sum += (v[i] * v[i] * v[i]);  // Cube 

        } 

        const float frac_third = 1.0f / 3.0f; 

        return powf(sum, frac_third); 

    } 

Can you guess what an L4 norm is? The higher order versions are really fun and 
interesting if you wear socks with your sandals, but not very useful in any practical 
applications of AI coding. 

Matrix Norms 

There are norms for matrices, but they’re not really that often used. Taking a 
“measurement” of a matrix via a “norm” (or a “metric”) to compare it to other 
matrices isn’t a common task. 

The silly ones are element-wise matrix norms. You can define an L1 or L2 norm 
on a matrix using the same algorithm over all its elements. You can also find the 
maximum element inside a matrix, and call that the “max norm” if you like to sound 
math-ish. The reason I say these are dumb? Because they ignore the structure in the 
matrix, so it’s a kind of “pseudo-norm” of a matrix. It’s really just treating a matrix 
like it’s a big, flat vector, and to me it seems more like misusing a vector norm on a 
matrix. 

More sensible matrix norms consider the rows or columns of the matrices as 
separate vectors. An NxN matrix has N column vectors or N matrix vectors, so 
there are N vector norms. Should we add them up?  
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No, taking the maximum of the vector-wise L1 or L2 row/column vector norms has 
a more useful meaning as a matrix norm than the element-wise matrix L1 or L2 
pseudo-norms. You can do this maximum-of-vector-norms either for rows or 
columns, but not both. 

Vector Min and Max 

Finding the maximum or minimum element of a vector is useful, and somewhat 
relevant to the L1/L2 norms. The maximum is a kind of “metric” of the size of a 
vector. Also, the maximum function over a vector is used in “greedy decoding” to 
pick the word with the highest predicted probability, which is then output. The 
minimum function would give us the least likely word, which might also be 
interesting if useless. 

The simple linear code for vector max is: 

    float aussie_vector_max(float v[], int n)  // Maximum 

    { 

        float vmax = v[0]; 

        for (int i = 1 /*not 0*/; i < n; i++) { 

            if (v[i] > vmax) vmax = v[i]; 

        } 

        return vmax; 

    } 

The vector minimum function looks similar in sequential C++ code: 

    float aussie_vector_min(float v[], int n)  // Mininum 

    { 

        float vmin = v[0]; 

        for (int i = 1 /*not 0*/; i < n; i++) { 

            if (v[i] < vmin) vmin = v[i]; 

        } 

        return vmin; 

    } 

These functions are crying out for optimizations: loop unrolling, pointer arithmetic, 
etc. However, what they really need is vectorization. There are 
parallelized max and min primitives in GPUs and CPU-based AVX intrinsics that 
you can use. 
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Top-K Vector Algorithm 

The top-k algorithm is more complicated than vector max or min: find the 
largest k elements in a vector. Note that “maximum” is the same as top-k with k=1. 
If you want the short version of the top-k story in C++, there’s 
a std::partial_sort standard function that sorts the top k elements, and 
there’s also std::sort for a full array sort. However, let’s hand-code some top-k 
algorithms for more clarity. 

Note that the top-k algorithm is a somewhat obscure algorithm that used to be 
rarely used, but now it’s a very important piece of code in AI engines. It gives us 
“top-k decoding” which is how to choose which word to output. The whole 
encoder-decoder computes a vector giving us the probability that each word should 
be output next. Using the maximum probability word gives us “greedy decoding” 
which always outputs the most likely word. But that’s kind of boring and 
predictable, so top-k decoding randomly chooses between the k most likely words 
(e.g., top-50), which is still very accurate and also more interesting because it has 
some creative variation. 

Example: Hand-coded top-2 algorithm: Since top-1 is the maximum of a vector, 
we can also find a fairly simple linear scan for k=2. The basic idea is to scan through 
and keep track of the two largest values as we go. 

    void aussie_vector_top_k_2( 

        float v[], int n, float vout[]) 

    { 

        // Order the first 2 elements 

        float vmax1 = v[0], vmax2 = v[1]; 

        if (v[1] > v[0]) { 

            vmax1 = v[1];  // Reverse them 

            vmax2 = v[0]; 

        } 

        for (int i = 2 /*not 0*/; i < n; i++) { 

            if (v[i] > vmax2) { 

                // Bigger than the smallest one 

                if (v[i] > vmax1) { // Bigger (shuffle) 

                    vmax2 = vmax1; 

                    vmax1 = v[i]; 

                } 

                else { 

                    // In the middle (fix 2nd only) 

                    vmax2 = v[i]; 

                } 

            } 

        } 

        vout[0] = vmax1;  // Biggest 

        vout[1] = vmax2;  // 2nd biggest 

    } 
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Note that the above top-2 algorithm is still impractical for our word decoding 
algorithm. We need to know not only the top probabilities, but also which two 
indices in the vector had those probabilities, because that’s how we know which 
words map to which probabilities. So, we’d need to modify the above code to track 
and return the two array indices as well (or instead). 

Shuffle Top-K Algorithm 

For a larger value of k the code becomes more complicated. The above code 
for k=2 motivates the general idea for a brute-force algorithm: shuffle sort the 
first k elements, and then scan the rest, shuffling any larger items up into place. We 
can merge the two shuffling phases into one block of code that handles both the 
startup and ongoing scan. 

    void aussie_vector_top_k_shuffle( 

        float v[], int n, int k, float vout[]) 

    { 

        vout[0] = v[0]; 

        int nout = 1; 

        for (int i = 1 /*not 0*/; i < n; i++) { 

            float fnew = v[i]; 

            int maxj; 

            if (nout < k) { 

                vout[nout++] = fnew; 

                maxj = nout - 2; 

            } 

            else { 

                maxj = nout - 1; 

            } 

            maxj = nout - 1; 

            for (int j = maxj; j >= 0; j--) { 

                if (fnew > vout[j]) { 

                    // Shuffle & insert 

                    if (j + 1 < k)  // Shuffle down 

                        vout[j + 1] = vout[j]; 

                    vout[j] = fnew; 

                    // Keep going 

                } 

                else {      // Done.. insert it 

                    if (j != maxj) { 

                        if (j + 1 < k) 

                            vout[j + 1] = vout[j]; 

                        vout[j] = fnew; 

                    } 

                    break; 

               } 

            } // end for j 

        } // end for i 

    } 
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The above example is a simplistic and inefficient top-k algorithm, not to mention 
that it was horribly fiddly and failed my unit tests for hours (i.e., that’s a special kind 
of “fun”). Several loop optimizations suggest themselves: loop sectioning for the 
outer i loop to do the first k iterations as a separate loop (avoiding lots of tests 
against k), and loop peeling of the first iteration of the inner j loop (i.e., j==maxj). 
This version also should be extended to track the indices from where the top-k 
values came. 

Theoretical Top-K Algorithms 

There’s a lot of theory about computing the top-k function of an array for 
large k values. These theoretical top-k algorithm papers mainly consider sequential 
processing, rather than vectorization. Even so, it’s not a simple linear scan 
like max or min functions, but doesn’t need to be as slow as shuffling. 

Example: Top-k with qsort sorting: The simplest method for large k is to sort 
the array with a fast method (e.g., the quicksort algorithm) and then pick off the 
top k elements from the sorted array. In C++ there are the std::sort methods 
or the older style qsort function. Here’s an example using the C++ 
standard qsort function: 

    int aussie_top_k_qsort_cmp( 

        void const* addr1, void const* addr2) 

    { 

        float f1 = *(float*)addr1; 

        float f2 = *(float*)addr2; 

        if (f1 < f2) return +1;  // Reversed (descending) 

        else if (f1 > f2) return -1; 

        else return 0; 

    } 

 

    void aussie_vector_top_k_qsort( 

         float v[], int n, int k, float vout[])   

    { 

        // Top-k with general k (qsort algorithm) 

        // Sort the array 

        qsort(v, n, sizeof(vout[0]), 

                      aussie_top_k_qsort_cmp); 

        // Copy top-k elements 

        for (int i = 0; i < k; i++) vout[i] = v[i];   

    } 
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Top-k with qsort and permutation array: We really need a version that returns 
the indices of the probabilities, rather than just their values. So, I coded up 
a qsort version that sorts via a permutation array, and then returns the top-k of 
these permutation indices. 

 
    void aussie_permutation_identity(int permut[], int n) 

    { 

        for (int i = 0; i < n; i++) permut[i] = i; 

    } 

 

    float* g_float_array_for_qsort = nullptr; 

 

    int aussie_top_k_qsort_permutation_cmp( 

        void const* addr1, void const* addr2) 

    { 

        int index1 = *(int*)addr1; 

        int index2 = *(int*)addr2; 

        float f1 = g_float_array_for_qsort[index1]; 

        float f2 = g_float_array_for_qsort[index2]; 

        if (f1 < f2) return +1; // Reverse (descending) 

        else if (f1 > f2) return -1; 

        else return 0; 

    } 

 

    void aussie_vector_top_k_qsort_permut( 

        float v[], int n, int k,  

        float vout[], int permut_out[] 

    )  

    { 

        // Create a dynamic permutation array 

        int* permut_arr = ::new int[n]; 

        // Identity permutation 

        aussie_permutation_identity(permut_arr, n);   

 

        // Sort the array (by permutation) 

        g_float_array_for_qsort = v; 

        qsort(permut_arr, n, sizeof(permut_arr[0]),  

           aussie_top_k_qsort_permutation_cmp); 

        // Copy top-k elements 

        for (int i = 0; i < k; i++) { 

                permut_out[i] = permut_arr[i]; 

                vout[i] = v[permut_arr[i]]; 

        } 

        delete[] permut_arr; 

    } 



205     Advanced C++ Memory Techniques 

Top-k without sorting: Sorting the whole array is somewhat wasteful if we only 
want the top 50 elements. There are various faster top-k algorithms that don’t fully 
sort the array. These algorithms are called a “partial sort” and can achieve the top-
k output with better performance 

Standard C++ top-k libraries: As mentioned earlier, the standard C++ libraries 
have support for sorting algorithms in std::vector, such as with: 

• std::sort — full array sort (simplest idea). 

• std::partial_sort — partial sort of k elements (faster). 

There is a top-k specialized version in the modern C++ libraries 
called std::partial_sort, which sorts the top k elements of an array, which 
can then be selected for the top-k algorithm. 

Presumably, the std::partial_sort function is a faster algorithm 
than std::sort, by not fully sorting the whole array, but I haven’t tested it. There 
is also std::nth_element, which is similar to top-k. 
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17. Tensors 

What are Tensors? 

Tensors are terrifying at first! I avoided learning about them for ages. All those 
nested loops are scary. But eventually it dawned on me that they’re just three-
dimensional arrays, and the computations are nothing harder than multiplication 
and addition. 

An important point is that “tensors” in Computer Science are much different to 
the mathematical forms used in Physics. AI tensors are used in “linear algebra” for 
LLMs and are much more basic than the 4-D space-time tensors in Einstein’s 
theory of general relativity. Which may explain why all those brainy physicists are 
so smug, despite being unable to predict if it’ll rain tomorrow. 

Tensors are simply multi-dimensional arrays, and are usually 3-dimensional. Each 
slice of a 3-D tensor is a two-dimensional matrix. And like vectors and matrices, 
tensors have these basic properties: 

(a) Each element stores a single number (i.e., no strings or objects). 

(b) All elements have the same data type (e.g., int or float). 

(c) Elements may be positive, negative or zero. 

(d) There are no missing elements. The concept of “missing” can only be 
represented by zero in a normal tensor. 

There are exceptions, of course. There are “sparse tensors” that can represent 
elements as missing. Also, you can technically store strings or objects in a C++ 
three-dimensional array, but then it’s more of a misuse of a tensor. Numbers are 
where it’s at. 

Tensors are technically the superset of all of the computational structures, and the 
number of dimensions is called the “rank” or “dimension” or “axes” of a tensor. 
Matrices are rank-2 tensors, vectors are rank-1 tensors, and even scalars are rank-0 
tensors. 



David Spuler                                              208 
 

Conceptually, there’s a hierarchy of complexity for tensor operations: 

• 3-D tensor operations break down into 2-D matrix multiplications. 

• 2-D matrix multiplications break down into vector dot products. 

• 1-D vector dot products break down to a single float number (a scalar). 

• 0-D scalars are single numbers. 

Another way to think about tensors is in terms of nested loops. Scanning a vector 
requires one loop, and a matrix needs two nested loops. Tensor operations require 
three or more nested loops to process all their data. 

Neural Network Tensors 

I’m not going to take you in detail through the theory of how neural networks 
function. But in broad strokes, there are “neurons” in layers, where each neuron 
has a “signal,” and there are also connections between neurons that forward the 
strength of a signal on to the next layer of neurons. So, each neuron in connected 
to every neuron in the previous layer by an “arc” and on that arc is a “weight” that 
says how strong or weak to consider the incoming neuron’s signal. 

But how do we get to tensors from that? Not obvious. 

Let’s step back a little and be one with the neuron. So, we are just one neuron in a 
layer of 100 neurons. And the previous layer has 100 neurons, and we are “fully 
connected” with arcs from every one of those 100 prior neurons. With 100 neurons 
in the previous layer, our little lonely neuron has to consider the signals from all of 
the 100 neurons in the prior layer, with 100 weights on the arcs to help decide how 
much attention to pay to each of the 100 prior neurons. 

If we consider the previous layer of 100 neurons as a “vector” of each neuron’s 
computed values. What this means is that every one of the 100 prior neurons has a 
number of its computed signal, so we have a vector of 100 signal numbers from the 
prior layer (i.e., a vector full of 100 neuron computed values). 

Again, our little neuron has to receive a computed signal value from every one of 
the 100 prior layer neurons, so we have 100 arcs coming into our little neuron, each 
with a different number, that is the “weight” of that arc. The computed value of a 
prior neuron is multiplied by the “weight” that’s on each arc (i.e., there’s 100 
weights, one for each arc). So, every one of the arcs from the 100 neurons in the 
prior layer has a weight, and what does that sound like? A vector of weights. 
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So, we have a bunch of 100 prior-layer neuron’s computed values in a vector, where 
each one of those 100 signal values is multiplied by a weight that’s in a vector with 
100 weights. Hence, we’ve got to pairwise multiplication, where we multiply 100 
neuron values times 100 associated weights. Hence, we’ve got a bunch of element-
wise multiplications of two vectors (100 values times 100 weights), which creates a 
vector of 100 multiplication computations. 

But our little neuron cannot have 100 computed values, but can really only have 
one number, the total computed signal for our current neuron. There are various 
things we could do to “reduce” our interim vector of 100 multiplications, but the 
simplest is to add them all up, and this gives us one number. Now we have one 
number, and it’s the computed signal value for our current neuron. 

Umm, I remember that from High School. If we multiply two vectors together with 
the numbers in pairs, and then add it all up: vector dot product. 

In summary, we have a vector dot product for our single neuron in the current 
layer, based on two vectors from the prior layer (the vector of 100 calculated neuron 
values, and the vector of 100 weights). 

But this is just for our one lonely neuron. Except, it’s not lonely, since it has 99 
friends, because it’s in a layer of 100 neurons itself. So, our neuron and its 99 friends 
in the current layer, all have to do a different dot product computation because the 
weights are different for each set of arcs into each neuron. We have a whole vector 
of 100 neurons in the current layer, for which we have to compute dot products for 
100 values times 100 weights (i.e., using the prior layer). So, we have to do 100 
vector dot products to calculate the result for our neuron and its 99 friends. If we 
do 100 repetitions of vector dot products, this sounds like...matrix multiplication. 

But that’s not all. There’s a third dimension based on the “tokens” in the prompt, 
which is represented by an “embeddings” vector. And with this third dimension 
thrown in, well, then it’s a whole vector worth of matrix multiplications, and we get 
to a 3-D operation called a “tensor product.” Tensors are three-dimensional blocks 
full of numbers (i.e., cubes or rectangular prisms), which generalize two-
dimensional matrices, which generalize one-dimensional vectors, which generalize 
zero-dimensional scalars. And if you have any common sense, you’ve stopped 
reading this section by now, so I’m not going to try explaining this mind-bending 
tensor stuff any further. 
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Tensor Arithmetic 

Tensors are a convenient and efficient representation of multi-dimensional data. 
Since complex computations may involve a lot of matrix multiplications, it is useful 
to represent a sequence of matrix operations as a tensor operation. 

Importantly, the arithmetic performed is the same. Using a tensor is 
computationally efficient for parallelization of algorithms, and also mathematically 
concise for theoretical analysis, but is not some fantastically amazing matrix 
algorithm. It’s just crunching lots of numbers with the standard matrix 
multiplication methods. Usually, it’s the same as an array of matrices, where you do 
matrix multiplication on each one. 

In practice, tensor kernels will send out different chunks of that computation all 
over the place for parallel speedup, but it’s still computing the exact same numbers 
as if you did it all brute-force in nested loops. You could even follow along with a 
pen and paper, except that the computer is better because it won’t forget to carry 
the negative sign. 

Tensor shape. Another point is the shape of a tensor. I’m sure you know that 
matrices may be square or rectangular in shape, but can’t be a skewed parallelogram 
or a circle. Yes, you’re right, there are triangular matrices, but now you’re messing 
up my nice clean point. 

Anyway, a 3-D tensor can have different sizes on each of its three dimensions. 
Hence, a 3-D tensor can be a cube if all three sizes are identical, but usually they 
have the shape of a more general rectangular prism. And it still has a brick-like 
shape, and can’t really represent a triangle, cone, or sphere. Tensors are much less 
scary if you sing Everything is Awesome while you code the nested loops. 

Unary Tensor Operations 

Like a 2-D matrix, there are various simple operations we can define on a single 
tensor. The various element-wise operations apply individually to each tensor item. 

• Clear or set to a value 

• Add or subtract a scalar 

• Multiply or divide by a scalar 

Similarly, we could apply a particular unary mathematical function to each element 
separately: square root, exponentiation, natural logarithm, and more. 
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Binary Elementwise Tensor Operations 

Adding two matrices means simply adding each pair of elements in the matrix, 
which only works if the two matrices have the same size and shape. The same idea 
generalizes to the addition of tensor elements of two tensors with the same size 
(i.e., all three dimensions are the same). Hence, we can do element-wise binary 
arithmetic on each element in two tensors to create a third tensor of the same size: 

• Addition or subtraction 

• Multiplication or division 

• Maximum or minimum 

Note that element-wise multiplication of tensor elements is not “tensor 
multiplication” in the same way that matrix multiplication isn’t just paired 
multiplications of the elements in two matrices. Such an element-wise 
multiplication is called the “Hadamard product” of matrices, and is so useless that 
I don’t think I was ever taught that in High School. The Hadamard product is not 
what is used by normal multiplication computations, but I’ve seen a few research 
papers where it was proposed as an optimization (probably unsuccessfully). Matrix 
multiplication is more complex, with its row-by-column vector dot product 
multiplications, and so is generalizing that to tensors. 

That’s how we get to “tensor product” of two tensors. It’s really just nested loops 
doing matrix multiplications on slices of each tensor. And then matrix 
multiplications are just nested loops doing vector dot products. Like I said, tensors 
are just three-dimensional arrays doing multiplication and addition. 

Sparse Tensors 

Sparse tensors occur when most of the values are zero. These are a generalization 
of sparse vectors and sparse matrices, and offer the same advantages: compressed 
storage and faster arithmetic operations (by skipping operations involving zero). 

The level of sparsity required for optimization usually means 80-90% of the weights 
are zero. With so few non-zero values, tensor arithmetic involves fewer operations 
and the memory requirements are low (i.e., store only the non-zero weights). Such 
sparsity is often the result of a “pruning” optimization, but there are also obscure 
theoretical means to get sparse tensors using tensor algebra (let’s not even go 
there!). 

When there is a high degree of sparsity, such as when 80-90% of the values are 
zero, it becomes more efficient to use alternative algorithms. Sparse tensors can be 
stored in a permutation index format, where only the index locations of non-zero 
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items are stored (e.g., storing a four-tuple with the non-zero value and the three 
indices at which it is located in the tensor). Operations on sparse tensors can use 
the alternative storage format to create much more efficient kernels that avoid most 
of the computations involving the missing zero values. 

Parallelization of sparse tensor operations is a double optimization, because there 
are fewer operations (only on non-zero weights), and you can parallelize them as 
well. Although a permuted index data format is not the usual contiguous memory 
space amenable to vectorization, there are other methods to vectorize permutation 
indices, such as with “gather” and “scatter” SIMD operations. 
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18. Lookup Tables & 

Precomputation 

Precomputation with Lookup Tables 

Look-up tables (LUTs) are a well-known simple data structure for optimizing code. 
They have been used to optimize algorithms in various ways. Some examples 
include: 

• Precomputed activation functions 

• Zero-multiplication networks 

• Approximation of non-linear functions 

Precalculation or precomputation is a code optimization where results are partially 
or fully calculated ahead of time. This method is similar to caching and computation 
reuse but refers to calculations being performed long before they are needed, often 
at program startup or compile-time, and stored in lookup tables. Like caching, this 
method trades extra space for time. 

Vectorization of LUTs is possible with hardware acceleration primitives that 
support parallel memory accesses using integer indices. For example, the x86 CPU 
with AVX intrinsics has a set of “gather” instructions for doing indexed lookup 
that can be used to load from a LUT into the internal registers, and “scatter” 
instructions for storing the registers back to an indexed LUT. 

Typical precalculations are those where the results are computed at program 
initialization or compile-time. The best methods generate the results at compile-
time, and are simply loaded as data, such as numeric constants or pre-initialized data 
arrays. There are multiple ways to do this: 

• Program startup initialization 

• Lazy evaluation 

• Binary data file 

• Precompiled source code 
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One method for precomputation of larger amounts of data in an array or lookup 
table is to perform the initialization dynamically at program startup. A lookup table 
can be populated with the required results, before the main logic of the program 
begins. Or alternatively, the idea of “lazy evaluation” allows storing the 
precomputation into a lookup table only when the program first needs the data. 

A faster alternative is to calculate all this data offline before program startup, and 
store the results in a binary data file. This data file can then be loaded into an array 
at program startup, without needing to perform any of the arithmetic computations. 
Whether this is beneficial depends on the cost of the computations versus the cost 
of file loading. 

The logical extension of the precomputation method for a large number of numeric 
results is to write special C++ code that performs these calculations, but then 
outputs the results into a text file in the exact format of a C++ source code file 
(rather than a data file), that declares a global array name and the numeric values. 
This auto-created C++ code is then linked with your program. 

Example: LUT Precomputation for sqrt 

Let’s say that you want to optimize a slow non-linear function like “sqrtf” (or 
“expf” or “logf”). These are good candidates for optimization because of their 
non-linearity. 

The first point is that you’d better do a really good job, because there are actually 
hardware instructions for these common math functions, even in x86 architectures. 
So, you could easily optimize this into a table lookup, and find that your C++ code 
is still slower than the single CPU instruction that’s called by the standard C++ 
library versions.  

Hence, investigate the C++ intrinsic functions for common math functions before 
you assume that you can do better than electrons zipping through silicon. 

This example investigates precomputing “sqrtf” even though that may not be as 
fast as hardware-acceleration. However, the same ideas apply to precomputing 
more sophisticated derivative functions, such as Softmax and activation functions, 
which are not hardware-supported (or not yet, anyway). The same general ideas 
apply. 

 

 



215     Advanced C++ Memory Techniques 

The basic method for table lookup optimization is: 

• Declare a big array (the bigger the better). 

• Run a loop sending every value to the real “sqrtf” function. 

• Store each result in the big array. 

• Now you have a precomputed table of all possible values. 

• Later, use an array index lookup to compute the function fast. 

How is than any faster? I mean, we’ve just called “sqrtf” a bazillion times with 
numbers that we probably won’t ever need. Yes, there is extra cost, and we are 
running slower during program initialization. There are at least two ways to fix this: 

1. Load the array values from a pre-built binary data file instead, or, 

2. Precompile the array data into a C++ source code file. 

However, this complaint underestimates just how many times the code may call 
these functions. Even with this startup cost, once that is all done and dusted, we 
have a big array of precomputed data that we can use to speed up the program 
execution, which is our main goal. And in a production environment, any extra 
startup cost is hopefully amortized over many executions. 

Example: Precomputing sqrt of integer: For simplicity, we’re going to first 
assume that we’re computing a float square root of integers. The function we are 
precomputing is “int-to-float” type. This makes it easier, because the int can 
be used as an array index. 

Here’s my big array with about 65,000 entries: 

    #define AUSSIE_SQRT_PRECOMP_MAX (1u<<16) 

    float g_sqrt_precomp_table[AUSSIE_SQRT_PRECOMP_MAX]; 

Here’s the unoptimized function “int-to-float” version of “sqrtf” that we are 
planning to precompute: 

    float aussie_sqrtf_basic_int(int x) 

    { 

        return sqrtf((float)x); 

    } 
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Here’s the initialization call to the precomputation routine, sending in the array, the 
size N, and the function pointer: 

    aussie_generic_precompute_int( 

        g_sqrt_precomp_table,   // Big array 

        AUSSIE_SQRT_PRECOMP_MAX,  // N 

        aussie_sqrtf_basic_int    // Function pointer 

    ); 

And here’s the code to run the big precomputation loop: 

    void aussie_generic_precompute_int(float arr[],  

              unsigned int maxn, float (*fnptr)(int)) 

    { 

        for (unsigned int i = 0; i < maxn; i++) { 

                arr[i] = fnptr(i); 

        } 

    } 

So, that’s all there is to the startup initialization of the lookup table. Once this 
function returns, we now have a big array full of data. Here’s what the new 
optimized “sqrtf” looks like: 

    float aussie_table_lookup_sqrt(int i) 

    { 

        return g_sqrt_precomp_table[i]; 

    } 

And we can either make that function “inline” or use a macro: 

    #define AUSSIE_TABLE_LOOKUP_SQRT_BASIC(i) \ 

         ( g_sqrt_precomp_table[(i)] ) 

So, here are a few provisos about this code: 

1. Might be slower than sqrt in hardware (needs benchmarking). 

2. Unsafe array index accesses (e.g., crashes on negatives or larger values). 

3. unsigned int types might overflow and spin for precomputing tables 
of size “1<<32” (need to change to unsigned long). 

4. The memory size of the precomputed table for 1<<16 is already about 
262k (65k times 4 bytes). 
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Float-to-Float Precomputation 

Using a precomputed table lookup for a float-to-float function is more complicated 
than integers. However, this is also the main approximation needed for non-linear 
functions, or even the basic math library functions like sqrtf or expf or logf. 

Why is it tricky? The reason that float inputs are more difficult is that we need to 
convert a float into an array index in order to look it up. For example, we could 
try type casts: 

   int offset = (int)f; 

But that limits us to only precalculating values for 1.0, 2.0, 3.0, etc. Our 
approximation works poorly on any fractions, and we also haven’t limited the array 
index to a fixed finite range, so it won’t work for any negative values or very large 
positive values. And the type cast of a float is also slow! 

Scaled Multiple: Another idea is that we could scale it upwards to get more 
decimals: 

   int offset = (int) (f * 1000.0f); 

This approach at least gives us 3 decimal places: e.g., 1.234 or 23.456, or similar. 
We will still have to check for negatives and large values to bound it. But again, this 
is even slower! 

Bitwise Floating-Point Truncations: The above truncation via a floating-point 
scaled multiple is not very fast. Twiddling the bits is much faster. For example, 
when we have a standard 32-bit float type, it has 1 sign bit, 8 exponent bits, and 
23 mantissa bits. This is from left-to-right, with the sign bit as the most significant 
bit, and the low-end mantissa bits are the least significant bits. Remember that this 
is like Scientific notation: 

• Number = Mantissa x 2 ^ Exponent 

Also, the sign bit makes it all negative, if set. Note that exponent in 8-bits encodes 
the numbers -128 to +127, so that ranges from very small 2^-128 near-zero values, 
to very huge 2^127 sized values. 

If the mantissa was in decimal, and it was “1234567” and the exponent was “17” 
then we’d have: 

• Number = 1.234567 x 10^17 
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If the mantissa was 23 bits, it’s actually binary digits, with about 3 binary digits per 
decimal digit, so a 23-bit mantissa is about 7 or 8 decimal digits. Note that the 
mantissa is actually 24 bits, not 23, because there’s an extra “implicit one” mantissa 
bit, not that it changes the above calculation, but you needed to know that for C++ 
trivia night. 

So, if we think about it for a year or two, it becomes obvious that the rightmost bits 
of the mantissa are simply the rightmost digits in “1.234567”, and if we truncate 
some of the rightmost bits, it’s like truncating a very small fraction (e.g., “1.234567” 
becomes “1.2345” or whatever). 

Hence, a first idea is just to cut off 2 of the 4 bytes of a 32-bit float. This leaves 
us with 1 sign bit, 8 exponent bits, and 7 mantissa bits (plus 1 implied bit makes 8 
mantissa bits). In decimal, the 8-bit mantissa now encodes only about 2 or 3 decimal 
digits, as if we’ve truncated “1.234567” to “1.23”. 

Incidentally, congratulations, you’ve created “bloat16” type, which is what Google 
did with TPUs, making a 2-byte float format with 1 sign bit, 8 exponent bits, and 
7 stored mantissa bits. So, now you can get into your blue telephone booth, time 
travel back a decade, file a patent, and retire on your royalties.  

If you’re ever a contestant on Wheel of Fortune you probably won’t need to know 
that the “b” in “bfloat16” stands for “brain float” and that is such a great name. 
But I digress. 

Anyhow, this idea actually works for precomputation. A 2-byte integer 
in bloat16 format is easy to extract from a 4-byte FP32 float (i.e., the uppermost 
two bytes). The trick for bitwise processing is to convert the float to unsigned 
int, because the bitwise shift operators don’t work on float (it’s planned for 
C++37, as I heard at my fungus collector’s club trivia night). 

   float f32 = 3.14f; 

   unsigned u32 = *(unsigned int*)&f32; 

Extracting the top-most 2 bytes (16 bits) is simply a right bitshift: 

   unsigned ubf16 = ( u32 >> 16 ); 

Note that here’s a good reason that we had to use “unsigned” integer type. The 
right bitshift operator (>>) has undefined behavior on negatives, so “int” type 
wouldn’t work predictably (or portably) if the floating-point sign bit was set. 
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The result is a 16-bit unsigned integer to use as the array index. Hence, there are 
only 1<<16=65,536 entries in our precomputation table. Assuming we store 
results as 4-byte float values, this makes the precomputation array’s memory size 
about 262kb. What’s more, it works for negative float numbers, because the sign 
bit is still part of that shemozzle, and we also don’t need to check any minimum or 
maximum bounds, because it works for all 32-bit float numbers. 

Precomputing with 24-Bit Lookup Tables: Interestingly, none of the above 
code is especially tied to 16-bit sizes. The bfloat16 version truncates 32-bit float 
to 16-bit by truncating the rightmost 16 mantissa bits. But we can actually choose 
to keep however many mantissa bits we like. The trade-off is that more mantissa 
bits increase accuracy, but at the cost of needing a much bigger precomputation 
array (doubling the storage size for each extra bit). 

Let’s try only cutting the rightmost 8 mantissa bits, leaving us with 24 stored bits 
total (i.e., 1 sign bit, 8 exponent bits, and 15 stored mantissa bits). The mantissa bits 
reduce from 23 to 15 (plus one implied bit makes 16), so this now stores about 5 
decimal digits (e.g., “1.2345”), giving quite good precision on our results. When I 
tested the 16-bit version, it had some reasonably large errors of almost 0.1 in 
computing sqrt, whereas this 24-bit version has much lower errors, as expected. 

Code changes are minor. The bitshift operations simply change from 16 bits to 8 
bits (i.e., 32-24=8 bits). This is the precomputation loop for 24 bits: 

    void aussie_generic_precomp_24bit_float(float farr[], 

                 unsigned int maxn, float (*fnptr)(float)) 

    { 

        for (unsigned int u = 0; u < maxn; u++) { 

           unsigned int unum = (u << 8u); // 32-24=8 bits! 

           float f = *(float*)&unum; 

           farr[u] = fnptr(f); 

        } 

    } 

And this is the call to the precomputation function in the startup phase: 

    aussie_generic_precompute_24bit_float( 

        g_sqrt_float_24bit_precomp_table, // Bigger array 

        (int)AUSSIE_SQRT_24bit_MAX,    // 1 << 24 

        aussie_sqrtf_basic_float       // Function pointer 

    ); 
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The table lookup routine also similarly shifts 8 bits, rather than 16, but is otherwise 
unchanged: 

    float aussie_table_lookup_sqrt_24bit_float(float f) 

    { 

        unsigned u = *(unsigned int*)&f; 

        u >>= 8;  // 32-24=8 bits 

        return g_sqrt_float_24bit_precomp_table[u]; 

    } 

Note that this only works if we are sure that both “float” and “unsigned int” 
are 32-bits, so we should check that during startup with some assertions 
via static_assert. If we are sure of that fact, then not only will it work, but we 
don’t also need to check the array bounds. It won’t try a negative array index, and 
won’t overflow no matter what bit pattern we send it in as a float. 

But there is one problem. If we send the fast table lookup version the 
special float value of NaN (“not a number”), then the table lookup routine will 
actually return a valid numeric answer, which probably isn’t what we want. Maybe 
we need to add a check for that special case, and this needs more testing. 

The new size of the precomputation array is 2^24=16,777,216, so we have 
about 16.7 million results If our results are 32-bit float values, 
our bloat16 precomputed array above requires about 262kb, and the new size 
with 24-bits is a lookup table (array) of about 67 megabytes. It wouldn’t have 
worked on my old TRS-80 CoCo in 1986, but it’ll work nowadays. 

Precalculating C++ Source Files 

One way to improve on the precomputation of a big array is to skip it entirely during 
startup by writing a lot of code. It’s like using an AI coding copilot, only it’s not 
really. I mean, come on, the day an AI writes better code than me is the day that I 
retire to the hologram beach with my robot dog companions. 

The idea here is to write a program to generate a C++ source file that contains the 
global precomputed lookup table. Yes, it’s a C++ program that creates part of a 
C++ program, which is almost like your AI has become self-aware, only one step 
away from Skynet. Well, maybe not, it’s just a dumb C++ program written by a 
dumb human creating some dumb data. 

Anyway, this auto-generated C++ code can be compiled and linked into your C++ 
program, and used like a global array of data in other parts of the program. Zero 
calculations are required at runtime, and the data can be read-only. 
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The benefit is that this auto-generated code method does not even require the time 
cost of startup initialization for any precomputations. There’s not even the cost of 
data file loading. Instead, the data is auto-loaded by the linker-loader during 
executable file instantiation (i.e., when the user starts the app). The only downsides 
for the user are that the size of the executable program increases, which means 
more disk space usage, and that application program startup may take longer and it 
will use more memory (regardless of whether it ever needs this precomputed data). 
Also, various offline tasks take longer for the software developers, such as 
compilation and linking for testing, which is why we bill per hour. 

I tried this out for precalculating GELU with a 24-bit table. The C++ source file 
was size 514k for 24-bit precomputation table of size 1<<24. This is what the auto-
generated source code should look like: 

    // Precomputed table source code:  

    // GELU, "gelu_precomp_24bits.cpp" 

    float g_gelu_table_precompute_24bits[] = {  

    0f, 

    1.793662034335765850782373866611092648039e-43f, 

    3.587324068671531701564747733222185296077e-43f, 

    5.380986103007297552347121599833277944116e-43f, 

    7.174648137343063403129495466444370592155e-43f, 

    ... 

    ... 

    }; 

Here’s the code to generate the code to generate the code to generate the code: 

   void aussie_generic_setup_table_FP32_24bits_PRINT_SOURCE(  
        char* nickname, 

        char* outfname, 

        float (*fnptr)(float),  // e.g., GELU 

        int maxn,  // e.g., 1<<24 

        float arrout[]  // array to store, can be null 

    ) 

    { 

        // Print C++ of 24-bits GELU precomputed table  

        if (!fnptr) { 

                aussie_assert(fnptr); 

                return; 

        } 

        // Generate C++ source code so we can pre-compile the 

        // precomputed GELU table (24-bits) 

        // There are 2^24 = 16.7 million numbers... 

        FILE* fp = stdout; 

        bool writingfile = false; 

        bool add_commented_number = true; 

        if (outfname && *outfname) { 

                fp = fopen(outfname, "w"); 

                if (!fp) { 

                        aussie_assert(fp);  // file write failed 

                        return;  // fail 

                } 
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                writingfile = true; 

                // No extra comments for file output version 

                add_commented_number = false;   

        } 

        unsigned int u = 0; 

        fprintf(fp, "// Precomputed table source code: %s, \"%s\"\n", 

nickname, outfname); 

        fprintf(fp, "float g_gelu_table_precompute_24bits[] = { \n"); 

        char numbuf[5000] = ""; 

        for (; u < maxn /*1<<24*/ ; u++) { // For all 2^24=~16.7M 

                unsigned int uval = u << 8;  // put zeros in the least 

significant 8 mantissa bits 

                float f = AUSSIE_UINT_TO_FLOAT(uval); 

                float g = fnptr(f);  // Call GELU or whatever 

                if (arrout) arrout[u] = g;  // Store precomputed data 

 

                // Format: %g means the smaller of %e or %f 

                // ... %e is the exponent format (scientific-like format) 

                char* buf = numbuf; 

                // Format %g (Number) and suffix "f" (float constant) 

                sprintf(buf, "%40.40gf", g);   

                if (strchr(buf, 'n')) { 

                        // Nan or "-nan" ...  

                        strcpy(buf, "0.0 /*nan*/"); // Dummy for NaN 

                } 

                // Remove prefix padding spaces... 

                while (buf[0] == ' ') buf++; 

 

                // Remove suffix zeros ... 

                int len = (int)strlen(buf); 

                if (buf[len - 1] == 'f') len--;  // skip suffix f 

                if (buf[len - 1] == '0') { 

                        while (len > 5) { 

                                if (buf[len - 1] == '0'  

                                  && isdigit(buf[len - 2])) { 

                                        if (buf[len] == 'f') { 

                                            // remove, but leave 'f' 

                                            buf[len - 1] = 'f';   

                                            buf[len] = 0; 

                                        } 

                                        else { 

                                            buf[len - 1] = 0;  // remove 

                                            buf[len] = 0; 

                                        } 

                                        len--; 

                                } 

                                else break; 

                        } 

                } 

 

                if (add_commented_number) { 

                    fprintf(fp, "%s // (%40.40f) [%u] \n", buf, f, u); 

                } 

                else {  // No comments... 

                    fprintf(fp, "%s,\n", buf); 

                } 

 

 

 

 



223     Advanced C++ Memory Techniques 

                // Progress update 

                if (u % 100000 == 0 && u != 0) { 

                    // Progress to stdout... 

                    if (writingfile)  

                        fprintf(stdout, "%u -- %s\n", u, buf);   

                    // Comment occasionally 

                    fprintf(fp, "// U= [%u]\n", u);   

                } 

        } 

        fprintf(fp, "}; \n");  // Close initializer... 

        if (fp && fp != stdout) fclose(fp); 

    } 

Conclusions on Source Code Generation: Does it work? Yes and no. It builds 
the output file quite quickly, zipping through 1<<24 computations and writing to 
disk. But I can’t get this 24-bit version with its 500k CPP source file to actually 
compile in the Microsoft Visual Studio IDE. Maybe it works on Windows 
command-line or Linux GCC, but I haven’t tried. 

Anyway, this self-generating code idea is certainly quite workable for table lookups 
of approximations for FP16 numbers (16-bit half-precision floating-point), because 
the lookup table needs to “only” contain 2^16=65,536 numbers. This is about a 
200k C++ source file in plain text, and creates linked data of about 65k times 4 
bytes equals about 256k space usage. This would use half that space if you also store 
the computation as 16-bit numbers rather than 32-bit floats or integers. 
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19. Matrix Multiplication 

Matrix-Vector Multiplication 

Matrix multiplication by a vector gives another vector. Let us consider the simple 
case first, where the matrix is square with dimensions NxN and the vector is also 
of size N. The matrix has N rows and N columns, and the vector has N elements. 
The resulting vector will also have N elements. Conceptually, in pseudocode: 

    MAT[N][N] * VIN[N] -> VOUT[N] 

It’s not immediately obvious, or at least, I don’t remember my High School Math 
teacher mentioning it, but matrix-vector multiplication is a bunch of vector dot 
product computations. We need to do a vector dot product for each of the elements 
of the output vector. Each element is a dot product of a matrix row times the input 
vector. Note that the dimensions match for a dot product, with N matrix rows 
and N elements in the input vector. 

Rectangular matrices. The general case of a rectangular matrix multiplied by a 
vector is a little trickier, but not a lot. If our matrix is MxN and the vector is size N, 
then the output vector has size M. Note the two of the dimensions must match: the 
columns of the matrix and the elements of the input vector are both N. However, 
this dimension N “disappears” and the output vector has size only dependent 
on M. The pseudocode: 

    MAT[M][N] * VIN[N] -> VOUT[M] 

The rectangular matrix-vector multiplication is almost identical to square matrix-
vector computations. Each element of the output is a dot product of a matrix row 
with the input. Again, the dimensions of the matrix rows (N) must match the size 
of the input vector (N), or else we cannot compute it. I mean, we could still compute 
it with mismatched dimensions, such as by assuming that the shorter one (matrix 
row or input vector) had zeros in the missing elements, but that sounds buggy. 

Complexity of Matrix-Vector Multiplication. The algorithmic complexity of 
matrix-vector multiplication is quadratic in N, whereas matrix-matrix multiplication 
is cubic in N. The basic matrix-vector multiplication scans N rows of the matrix, 
with each row element performing a computation against each of the N elements 
of the vector, giving two nested loops with an overall O(N^2) cost. 
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Memory layout: One important point for the efficiency of matrix-vector 
multiplication is that the default memory layout has contiguous addresses for both 
the matrix row and the vector. Obviously, a vector is just a sequence of memory 
with all the elements in series. Not so obviously, a row of a matrix, when stored as 
a C++ two-dimensional array, is also a contiguous set of data (i.e., a matrix row is 
like a vector). Hence, the dot product multiplication of a matrix row and the input 
vector is simply scanning forward along contiguous addresses for both of its inputs, 
which makes it easy to vectorize. 

Spot the Buggy MatMul 

Have a look at this code for a matrix-vector multiplication using vector dot product. 
It took me a long time to realize what was wrong with this. Can you spot the bug? 

    void aussie_matmul_vector_basic1_buggy( 

              ymatrix m, float v[], int n) 

    { 

        // Basic matrix-by-vector using vector dot products.. 

        for (int i = 0; i < n; i++) { 

            float* rowvector = &m[i][0]; 

            // Dot product 

            float sum = aussie_vecdot_basic(rowvector, v, n);   

            v[i] = sum; 

        } 

    } 

The bug is a kind of aliasing problem here: 

    v[i] = sum;  // Bug! 

It looks correct, but it’s wrong. The computation of v[i] is setting its value in the 
middle of the loop, and then going around for the next matrix row, which will then 
use that newly calculated v[i] value as if it was part of the input vector. Because 
I’m misusing “v” as both the input and output vector, parts of the output vector 
will get used as the input vector. It’s a very insidious type of aliasing bug, and many 
of my simple unit tests with zero matrices and identity matrices were still 
succeeding. It’s my fault for trying to do matrix-vector multiplication as an element-
wise vector method. The solution is simple: matrix-vector multiplication needs a 
third operand for the output vector. 
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Optimizing Matrix-Vector Multiplication 

The fixed-up version of matrix-vector multiplication with row-wise vector dot 
products simply outputs to another separate destination vector operand. 

    void aussie_matmul_vector_basic_out1( 

          const ymatrix m, const float v[], int n, float vout[]) 

    { 

        // Basic matrix-by-vector using vector dot products.. 

        for (int i = 0; i < n; i++) { 

            const float* rowvector = &m[i][0]; 

            float sum = aussie_vecdot_basic(rowvector, v, n);   

            vout[i] = sum; 

        } 

    } 

Nested Loop Matrix-Vector Version: The same matrix-vector multiplication 
algorithm in the form of two nested loops is below. This is flattening the call to the 
lower-level vector dot product function and putting its inner summation loop 
directly inside the outer main loop. The basic C++ code looks like: 

    void aussie_matmul_vector_basic_out2( 

       const ymatrix m,  

       const float v[], int n, float vout[]) 

    { 

        // Basic matrix-by-vector using nested loops.. 

        for (int row = 0; row < n; row++) { 

            float sum = 0.0f; 

            for (int col = 0; col < n; col++) { 

                sum += (m[row][col] * v[col]); 

            } 

            vout[row] = sum; 

        } 

    } 

Optimizations of matrix-vector multiplication. Various ways to optimize the 
naive nested loop matrix-vector multiplication suggest themselves: 

• Hoisting loop-invariant code (loop code motion) of the “m[row]” 
expression. 

• Loop pointer arithmetic for both loops. 

• Loop unrolling of the inner loop to unroll 4, 8 or more iterations. 

• Loop tiling to unroll a 2x2 tile/block. 

• Vectorization using the AVX1/AVX2 vector dot product versions we 
already examined. 
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I tried coding several more of these optimizations and here are the benchmarks: 

    Matrix-Vector mult (MatMulVec) benchmarks (N=2048, ITER=300): 

    Matrix-vector nested loops: 3480 ticks (3.48 seconds) 

    Matrix-vector nested loops hoisted: 3489 ticks (3.49 seconds) 

    Matrix-vector nested ptr-arith: 3415 ticks (3.42 seconds) 

    Matrix-vector unrolled inner (4): 1166 ticks (1.17 seconds) 

    Matrix-vector unrolled inner (8): 938 ticks (0.94 seconds) 

    Matrix-vector nested tiled 2x2: 1995 ticks (2.00 seconds) 

    Matrix-vector vecdot AVX1 DP: 1414 ticks (1.41 seconds) 

    Matrix-vector vecdot AVX2 FMA: 929 ticks (0.93 seconds) 

Interestingly, code hoisting and loop pointer arithmetic were a waste of effort. Loop 
tiling did better than the original, but probably its speedup is primarily from the 
effect of loop unrolling rather than data locality or cache hit rates, since simpler 
loop unrolling did better. Note that the AVX1 version used the “dot product” 
intrinsic but AVX-2 used the FMA intrinsic. Simple loop unrolling also did as well 
as AVX2 hardware vectorization, probably because the versions of AVX1 and 
AVX2 were simply calling the vector dot product functions, so they still had 
function call overhead. Hence, this algorithm can be further optimized by inlining 
to fix the AVX function call overhead, combining AVX intrinsics with unrolling of 
the inner loop, and then some minor final tweaks such as pointer arithmetic. 

Tiled Matrix-Vector Multiplication 

A more detailed analysis of the matrix-vector algorithm shows that it is not optimal 
in at least three areas: 

• Data locality 

• Pipelining AVX intrinsic arithmetic 

• Redundant loads 

The data locality of the 2x2 tiled version is better, but more improvement is 
possible, starting with the use of AVX intrinsics inside the “sub-kernel” for the tile. 
The AVX instruction sequences of “load, calculate, store” in the earlier non-tiled 
AVX-optimized versions are not allowing for the natural instruction pipelining of 
the AVX intrinsics to calculate multiple sums or FMA operations with near-parallel 
pipelining. And the entire input vector is getting re-loaded repeatedly for every row 
of the matrix. So, we need to examine improvements on three aspects. 

A tiled sub-kernel is the main way to fix data locality and pipelining. Improving data 
locality is somewhat inherent to tiling. The pipelining can be improved by unrolling 
the tiled sub-kernel and reordering the loads and stores so they don’t block the 
arithmetic of AVX intrinsics. 
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Can we avoid redundant vector loads? Since it’s unavoidable to access every 
element of every row at least once, the redundant loads of the vector suggest that 
we should modify the algorithm so as to work on a subsection of the vector for 
each of the matrix rows. This suggests an inversion of the main nested loops of the 
algorithm. However, that runs into the major problem that it destroys cache locality, 
by scanning down the column of the first matrix. I benchmarked this loop 
interchange idea, and it actually increased execution time. Maybe we should use the 
transpose of the first matrix, so that it’s in column-major order when scanning its 
columns? No, that’s actually just going back to the original algorithm without the 
loop interchange. 

Anyway, a better plan seems to be to reduce the redundant loading by using 
temporary calculations inside the tile sub-kernel. Here is what a basic tiled/blocked 
algorithm using 2x2 tiles looks like in basic sequential C++: 

    void aussie_matmul_vector_tiled_2x2_better(const ymatrix m, 

          const float v[], int n, float vout[]) 

    { 

        // Tiled/blocked matrix-by-vector using 2x2 tiling..  

        aussie_assert(n % 2 == 0); 

        for (int row = 0; row < n; row += 2) { 

            vout[row] = 0.0f; 

            vout[row + 1] = 0.0f; 

            for (int col = 0; col < n; col += 2) { 

                vout[row] +=  

                  (m[row][col] * v[col])  // row+0, col + 0 

                  + (m[row][col+1] * v[col+1]) // row+0,col+1 

                  ; 

                vout[row + 1] +=  

                  (m[row + 1][col] * v[col])   // row+1, col + 0 

                   + (m[row + 1][col+1]*v[col+1]) // row+1,col+1 

                  ;  

                } 

        } 

    } 

One minor improvement would be to use memset to clear the whole output vector 
to zero, rather than individual assignments, which I added to the 4x4 tiled version. 
There is another minor improvement is removing the “common sub-expressions” 
of v[col] and v[col+1] and I tried this with no improvement noted in the 2x2 
tiled version, but about 10% improvement in the 4x4 tiled version. The 
computations of m[row] and m[row+1], etc., can also be hoisted out of the inner 
loop, giving another 10% gain for the 4x4 tiled version.  
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The C++ code for the 4x4 tiled version with a fully unrolled 4x4 sub-kernel now 
looks like: 

    void aussie_matmul_vector_tiled_4x4_CSE2(const ymatrix m, 

           const float v[], int n, float vout[]) 

    { 

        // Tiled/blocked matrix-by-vector using 4x4 tiling.. 

        aussie_assert(n % 4 == 0); 

        memset(vout, 0, sizeof(float) * n); 

        for (int row = 0; row < n; row += 4) { 

            const float* rowvec = &m[row][0]; 

            const float* rowvec1 = &m[row + 1][0]; 

            const float* rowvec2 = &m[row + 2][0]; 

            const float* rowvec3 = &m[row + 3][0]; 

            for (int col = 0; col < n; col += 4) { 

                float fcol0 = v[col]; 

                float fcol1 = v[col + 1]; 

                float fcol2 = v[col + 2]; 

                float fcol3 = v[col + 3]; 

                vout[row] += 

                    (rowvec[col] * fcol0) // row+0, col + 0 

                    + (rowvec[col+1] * fcol1) // row+0, col + 1 

                    + (rowvec[col+2] * fcol2) // row+0, col + 2 

                    + (rowvec[col+3] * fcol3) // row+0, col + 3 

                    ; 

                vout[row + 1] += 

                    (rowvec1[col] * fcol0) // row+1, col + 0 

                    + (rowvec1[col+1] * fcol1) // row+1, col + 1 

                    + (rowvec1[col+2] * fcol2) // row+1, col + 2 

                    + (rowvec1[col+3] * fcol3) // row+1, col + 3 

                    ; 

                vout[row + 2] += 

                   (rowvec2[col] * fcol0) // row+2, col + 0 

                    + (rowvec2[col+1] * fcol1) // row+2, col + 1 

                    + (rowvec2[col+2] * fcol2) // row+2, col + 2 

                    + (rowvec2[col+3] * fcol3) // row+2, col + 3 

                    ; 

                vout[row + 3] += 

                    (rowvec3[col] * fcol0) // row+3, col + 0 

                    + (rowvec3[col+1] * fcol1) // row+3, col + 1 

                    + (rowvec3[col+2] * fcol2) // row+3, col + 2 

                    + (rowvec3[col+3] * fcol3) // row+3, col + 3 

                    ; 

                } 

        } 

    } 
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Matrix-Matrix Multiplication 

Now let’s look at matrix-matrix multiplication, whereas above we looked at matrix-
vector multiplication. The proper MatMul and GEMM kernels are coded for full 
matrix-matrix multiplication. 

Matrix multiplication results in another matrix as the output. For the simple case 
with two square matrices of the same size, the resulting output matrix is also of the 
same dimensions.  

In pseudocode: 

    M1[N][N] * M2[N][N] -> MOUT[N][N] 

For multiplying two rectangular matrices, or sizes MxN and NxP, we get an output 
matrix of size MxP (i.e., the inner N dimensions disappear). In pseudocode style: 

    M1[M][N] * M2[N][P] -> MOUT[M][P] 

Note that P=1 is the case of matrix-vector multiplication, because an Nx1 matrix 
is actually a vector with N rows of a single element (i.e., one column). 

Algorithmic Complexity. The naive implementation of a matrix-matrix 
multiplication via three nested loops is a cubic algorithm, with O(N^3) complexity. 
The well-known Strassen algorithm has complexity about O(N^2.7), which looks 
like such a massive improvement.  

Other algorithms such as the Coppersmith-Winograd algorithm and numerous sub-
variants have better asymptotic complexity, but with a high constant overhead, 
making them impracticable for anything but very large values of N. 

Basic Matrix-Matrix Multiplication. The basic algorithm for matrix 
multiplication is three nested loops. There is nothing fancy here: this is just coding 
up the basic matrix multiplication method that you forgot the second you finished 
your Senior math exam.  

If you don’t believe me, check it out on Wikipedia.  
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Here’s the C++ code: 

    void aussie_matmul_matrix_basic(const ymatrix m1,  

                      const ymatrix m2, int n, ymatrix mout) 

    { 

        // Matrix-Matrix multiplication basic naive n^3 algo 

        for (int row = 0; row < n; row++) { 

            for (int col = 0; col < n; col++) { 

                float sum = 0.0f; 

                for (int k = 0; k < n; k++) { 

                    sum += (m1[row][k] * m2[k][col]); 

                } 

                mout[row][col] = sum; 

            } 

        } 

    } 

The two outer loops are scanning the rows of the first matrix, and the columns of 
the second matrix. The innermost of the three loops is doing a vector dot product 
computation over the “k” index variable. However, it’s not a normal vector-vector 
dot product. Instead, it’s the dot product of one “horizontal” vector, which is a row 
of the first matrix, and of a second “vertical” vector, which is a column of the 
second matrix. Hence, the number of rows in the first matrix must equal the 
columns of the second matrix, which is true here because we’re assuming that both 
matrices are square. Hence, the “k” variable is spinning down the n elements of a 
row and a column at the same time. Every element of the NxN output matrix 
requires a vector dot product calculation like this. 

Vectorization. None of these matrix multiplication algorithms are especially good, 
because they are all sequential, rather than parallel algorithms. Neither the naive cubic 
version nor the Strassen algorithm are what we need. What we need for GPUs and 
CPU SIMD intrinsics are vectorizable algorithms for matrix-matrix multiplication. 
Unfortunately, the above simple triple-nested matrix multiplication algorithm 
is not one of them, because non-contiguous storage of the second matrix hampers 
vectorization. 

Memory layout problems for matrix-matrix multiplication: The layout of 
memory for matrix-matrix multiplications is not as fortuitous as it was for matrix-
vector multiplications. Each computation in matrix-matrix multiplication is a vector 
dot product of a row of the first matrix with a column of the second matrix. Each 
row of the first matrix is happily stored in contiguous memory, but the columns of 
the second matrix are not. In fact, the “stride” between two elements of a column 
of a matrix is a very large number of bytes in the default memory layout. 
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The default storage of matrices and two-dimensional arrays in C++ is called “row-
major” storage layout. Row-major storage has each row in contiguous memory. The 
rows are stored one at a time, top to bottom, and adjacent elements in a row are 
also adjacent memory addresses. Columns are a second-class citizen in row-major 
layout, and you have to jump around to find adjacent elements of a column vector. 

The alternative storage method is “column-major” storage layout where the 
columns are stored in contiguous memory, and it’s the rows that are in the smoker’s 
carriage at the back of the train. However, column-major is not the default C++ 
storage mode. 

Hence, to vectorize a matrix-matrix multiplication, we want to keep the first matrix 
in row-major storage, but we need to rearrange the storage of the second matrix to 
be column-major storage, rather than the default row-major storage. Column-major 
storage would help vectorize the columns with each column element in adjacent 
memory locations. The first matrix is fine, but we want the second matrix to be 
stored in a mirror image of itself. 

Hmm, a mirror and a matrix. What does that sound like? A transposed matrix. 

Pseudo-Transposed Second Matrix. The simplest way to get column-major 
order of a matrix (especially if square) is to use the transpose of the matrix, and 
modify the internals of the matrix multiplication function to pretend that the 
transpose is actually the column-major storage of the original second matrix. I call 
it the “fake transpose” method, which is a bit of a misnomer because it is the actual 
transposed matrix, but we modify the matrix multiplication code to access it with 
reversed logic indices. 

Confusing? Yes, I felt the same way, but if you follow it through carefully, you can 
see that the transpose is really very similar to storing the original matrix in column-
major order, where each column element is stored in adjacent memory. The 
columns of the original problematic matrix become fake rows in the fake transpose, 
stored in sequential memory addresses. So, for square matrices, we can take the 
transpose of a matrix, and it’s like the matrix has been converted into column major 
storage. However, we also need to change the C++ code in the matrix 
multiplication kernel, because it assumes row-major order storage of both matrices, 
but now we’ve got row-major storage only for the first matrix, and column-major 
storage for the second one (our fake transpose). 

The main point of optimization with a transpose is that the column becomes a 
contiguous vector from a row in the transposed matrix.  
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Here’s what the matrix multiplication algorithm looks like when it’s working on a 
“fake” transpose: 

    void aussie_matmul_matrix_fake_transpose(const ymatrix m1, 

                    const ymatrix m2, int n, ymatrix mout) 

    { 

        // Matrix-Matrix naive n^3 algorithm on a TRANSPOSE... 

        for (int row = 0; row < n; row++) { 

            const float* rowvec = &m1[row][0]; 

            for (int col = 0; col < n; col++) { 

                float sum = 0.0f; 

                const float* colvec = &m2[col][0];  // Row! 

                for (int k = 0; k < n; k++) { 

                    sum += (rowvec[k] * colvec[k]); 

                } 

                mout[row][col] = sum; 

            } 

        } 

    } 

Note that the above code assumes the transpose has already been computed. 
However, it is viable to compute a new transpose matrix in a preliminary step and 
still be faster, because transposing a matrix only adds an extra O(N^2) time to 
compute the transpose (and N^2 storage space to store it temporarily), whereas the 
main matrix multiplication is O(N^3) time. 

Perhaps surprisingly, this transpose method is much faster even without any 
vectorization. Because the column vectors are accessed in sequential order from 
contiguous memory, there is much better data locality for the memory cache, and 
also for any predictive pipelining happening in the cache. Here’s the benchmark 
comparison: 

    Matrix-Matrix mult (MatMul) benchmarks (N=2048, ITER=1): 

    Matrix-matrix mult basic: 69479 ticks (69.48 seconds) 

    Matrix-matrix fake transpose: 47469 ticks (47.47 seconds) 

The transpose method is 31% faster with an unchanged basic MatMul algorithm. 
And all we did was permute two indices in a two-dimensional array. This code does 
exactly the same arithmetic computations as the naive version, but accesses memory 
in a different order, giving us a cache speedup. 

There are various other small coding optimizations that can improve the transposed 
MatMul method further. The loop body could be partially unrolled by 4 or 8 
iterations (or more). Here’s the C++ code of the version with an unrolling factor 
of 8 iterations: 
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    void aussie_matmul_matrix_fake_transpose_unrolled8( 

      const ymatrix m1, const ymatrix m2, int n, ymatrix mout) 

    { 

        // Transpose Matrix-Matrix multiplication 8 iter unroll 

        aussie_assert(n % 8 == 0); 

        for (int row = 0; row < n; row++) { 

            const float* rowvec = &m1[row][0]; 

            for (int col = 0; col < n; col++) { 

                float sum = 0.0f; 

                const float* colvec = &m2[col][0]; 

                for (int k = 0; k < n; k += 8) { 

                    sum += (rowvec[k] * colvec[k]) 

                            + (rowvec[k + 1] * colvec[k + 1]) 

                            + (rowvec[k + 2] * colvec[k + 2]) 

                            + (rowvec[k + 3] * colvec[k + 3]) 

                            + (rowvec[k + 4] * colvec[k + 4]) 

                            + (rowvec[k + 5] * colvec[k + 5]) 

                            + (rowvec[k + 6] * colvec[k + 6]) 

                            + (rowvec[k + 7] * colvec[k + 7]) 

                            ; 

                } 

                mout[row][col] = sum; 

            } 

        } 

    } 

Here are the benchmark results: 

    Matrix-Matrix multipl (MatMul) benchmarks (N=2048, ITER=1): 

    Matrix-matrix fake transpose unroll 4: 15221 ticks (15.22 s) 

    Matrix-matrix fake transpose unroll 8: 12151 ticks (12.15 s) 

Further tweaks are possible. The internal loop could be fully unrolled for a known 
vector size. Also, the initialization “sum=0.0f” could be removed by peeling the 
first iteration and starting the loop at “k=1”. Pointer arithmetic could be used to 
avoid loop indices and the double bracket accesses. However, these are small fry, 
and we’re now on the hunt for the Spanish mackerel of MatMul 
optimizations: vectorization. 

Vectorized MatMul 

Cache speedup is not the only benefit of the transpose method. Once we have 
column-major storage for the second matrix, then both the rows of the first matrix, 
and the columns of the second matrix are in contiguous memory. The computation 
is a normal vector dot product again on two vectors stored as arrays in memory 
(i.e., “rowvec” and “colvec” in the C++ code above). Hence, we can re-use all 
of our standard vector dot product speedups again, including vectorization and 
hardware acceleration. 
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As an example, here’s the AVX-2 vectorization of the transpose method using the 
FMA 256-bit intrinsics to do the vector dot product in parallel. This parallelizes the 
dot product by 8 elements at a time: 

    void aussie_matmul_matrix_fake_transpose_vecdot_AVX2( 

        const ymatrix m1, const ymatrix m2, int n, ymatrix mout) 

    { 

        // AVX2 Matrix-Matrix multiplication  

        aussie_assert(n % 8 == 0); 

        for (int row = 0; row < n; row++) { 

            const float* rowvec = &m1[row][0]; 

            for (int col = 0; col < n; col++) { 

                const float* colvec = &m2[col][0]; 

                mout[row][col] =  

                    aussie_vecdot_FMA_unroll_AVX2(rowvec, 

                                                colvec, n); 

            } 

        } 

    } 

Here are the benchmark results: 

    Matrix-Matrix multi (MatMul) benchmarks (N=2048, ITER=1): 

    Matrix-matrix fake transpose AVX1: 19522 ticks (19.52 s) 

    Matrix-matrix fake transpose AVX2: 12747 ticks (12.75 s) 

If anything, these AVX results are disappointing. Basic loop unrolling techniques 
(in the prior section) did better than AVX1 and the same as AVX2 vectorization. 
However, we haven’t used AVX optimally inside the sequential code here. The 
AVX intrinsic calls should be moved up into the loop body without any function 
call overhead (i.e., inlining the function manually). I coded up that idea, and it made 
almost zero difference! I guess the C++ compiler is already inlining it, or function 
call overhead is a tiny percentage. 

Further parallelization speedups would include using AVX-512 or AVX-10 
intrinsics for vectorizing 16 elements in parallel. Also desirable are various further 
optimizations of the sequential code around any AVX intrinsics. The inner “col” 
loop could be fully or partially unrolled with multiple AVX sequences and/or 
optimized with pointer arithmetic. 
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Loop Tiled/Blocked MatMul 

The triple-nested MatMul version with the vectorized inner loop is still nowhere 
near what is possible. There are three more ways to increase throughput: 

• Data locality within the matrices. 

• Pipelining of the SIMD instructions. 

• Avoiding repeated loads of the same data. 

The data locality of the basic AVX transposed MatMul algorithm is still far from 
optimal, although we fixed the most egregious problem by using the transpose. The 
algorithm is simply scanning down all of the dimensions, without really any attempt 
to maintain data locality. 

The method of calling AVX intrinsics is simply doing “load, FMA, store” repeatedly 
along blocks of 4 or 8 elements, which does not allow for the natural pipelining of 
the FMA instructions. The loads and stores are interrupting the flow of 
computation. 

Secondly, if you look carefully at the “load” operations that are happening in the 
sequence, you realize that it is repeatedly loading the same regions of the matrices. 

Tiling or blocking the MatMul loops are far more effective. The basic idea is that 
instead of scanning sequentially, we process smaller square or rectangular “tiles” or 
“blocks” of the data, one at a time. Data locality is the main aim of a tiled algorithm, 
but it also helps us achieve better pipelining of SIMD instructions, because we can 
load all the data in, and then perform multiple arithmetic operations on it without 
any intervening loads or stores. And since a tiled MatMul is iterating more carefully 
over smaller blocks of data within the matrices, there’s also less redundant loading 
of the data overall. 

Fast Matrix Multiplication Theory 

The main techniques for faster matrix multiplication of general matrices include: 

• Strassen’s algorithm 

• Winograd’s algorithm 

• Fast Fourier Transform (FFT) methods 
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Matrix multiplications can also be sped up by restricting our algorithm to only use 
matrices that are of special types: 

• Low-rank matrix factorization 

• Sparse matrices 

• Special matrix methods (e.g., Butterfly matrices, Monarch matrices, etc.) 

Each of these specialized matrix types can have a faster matrix multiplication kernel 
than using the all-purpose GEMM kernel. For example, sparse matrices can be 
stored in a compacted permuted-tuple format, with parallelization of permutation 
arrays for computation. 

Approximate Matrix Multiplication. Approximate Matrix Multiplication (AMM) 
refers to a variety of complicated model optimization techniques that replace matrix 
multiplications with various approximations that avoid the cost of arithmetic 
multiplication, trading off some accuracy. These methods are usually distinct from 
quantization methods, are not specific to certain subclasses of matrices, and evoke 
more advanced mathematics in the theory of matrices. 

Note that these algorithms apply at the high-level of how matrices are multiplied 
with other matrices or with vectors (e.g., avoiding some vector dot products), 
whereas there are also low-level optimizations of the arithmetic operation of 
multiplying two numbers.  

These two classes of approximation research are not the same, and are actually 
orthogonal to each other. 

Multiplying by Transpose 

The transpose of a matrix is commonly used in matrix multiplications, both as part 
of the algorithms and as a speedup. For example, this occurs in AI engines with the 
QKV matrix computations inside the attention heads, where the transpose of K is 
used, usually denoted as KT in the algebraic formula. 

Note that this is the actual algebraic use of the real transpose, as opposed to the idea 
of using a “fake transpose” to get column-major storage of matrices for easier 
vectorization.  
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The code to compute the transpose of a matrix is shown below for a square matrix: 

    void aussie_matrix_transpose_basic( 

             const ymatrix m1, int n, ymatrix transpose) 

    { 

        // Transpose: put the transposed matrix 

        // into the output matrix (square matrix) 

        for (int i = 0; i < n; i++) { 

            for (int j = 0; j < n; j++) { 

                transpose[j][i] = m1[i][j]; 

            } 

        } 

    } 

The funny thing is that if we want to multiply a “real” transpose as the second 
matrix in some computation, then the original non-transposed matrix is the “fake 
transpose” of the “real” transpose.  

How awkward!  

But it’s actually good, because we usually already have the original matrix in 
memory, and we don’t even need to compute the (real) transpose. Instead, to do a 
MatMul of a matrix with this real transpose, we can instead use the original matrix 
as the second operand in the kernel that is based on the column-major storage of a 
fake transpose.  

Oh, dear, I feel like it’s all circular and I’m digging myself into a word pit here! But 
it all works out in the end, and it’s fast, which is really the one and only thing. 
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Part III: Memory Safety 
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20. Memory Safety Techniques 

Memory Safety Thoughts 

As a response to Bjarne Stroustrup’s call to action regarding “C++ attacks” related 
to memory safety [1], I decided to compile a list of the possible methods, and count 
them. It’s disheartening to see ongoing knee-jerk reactions to C++ memory issues, 
being effectively just to ban it. The plan to replace C++ with another programming 
language, usually Rust, is not a good idea because: 

• It’s expensive, 

• It’s not necessary, and 

• It’s too slow. 

It’s much more expensive to hire new programmers and do a ground-up rewrite 
with your application, than it is to refactor the code with extra memory safety 
mitigations. Admittedly, your C++ programmers are already expecting to get fired 
because of AI, so go crazy if you really like firing people. I guess you could be kinder 
and ask your C++ programmers to retrain in Rust, but then what you really have is 
a bunch of newbie programmers writing your business applications. 

And it’s not necessary. The cost of upgrading C++ to better memory safety is much 
less. Even upcoming standards improvements, such as “Profiles” as espoused by 
Bjarne Stroustrup [2], will only require code changes similar to getting C++ to work 
with a very picky compiler (because Profiles are statically enforced by the compiler). 
Similarly, adding pragmatic memory safety approaches is similar to a code 
refactoring effort, not a rewrite. Furthermore, some approaches that you can do 
today involve the use of new builds, new compiler tools, and upgraded standard 
libraries, rather than code changes. 

Which one is faster? The ground-up rewrite really doesn’t sound that fast to me. 
Many of the pragmatic code changes are a refactoring effort, where many existing 
techniques can be integrated into existing code bases in a day or so. Similarly, 
changes to the tools in build, compilers, static analyzers, and runtime checkers, are 
all very fast, with no code changes (except when they find bugs, haha!). 
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Over 100 Memory Safety Techniques 

Herewith, I provide a list of all the C++ memory safety risk mitigation methods of 
which I’m aware, in the categories of: 

• Upcoming C++ language safety features (e.g., Profiles [2], Safe C++). 

• Already-completed and ongoing C++ mitigation work (e.g., C++ Core 
Guidelines, hardening standard C++ libraries). 

• Pragmatic memory safety coding approaches (e.g., safety wrapper 
functions). 

Without further ado... 

 
C++ Safety Future Standardization Efforts: 

1. Profiles [2] — supported by Bjarne Stroustrup, with C++ memory-safety 
enforceable by the compiler statically. 

2. Safe C++ — C++ language extensions with “safe” and “unsafe” 
keywords. 

3. TrapC 
4. FilC 
5. Mini-C 

 
Existing C++ Safety Guidelines: 

6. C++ Core Guidelines — from C++ standardization gurus Bjarne 
Stroustrup and Herb Sutter. 

7. SEI CERT C++ Secure Coding Guidelines 
8. SEI CERT C Secure Coding Guidelines 

 
Big Quality Improvements (General Approaches): 

9. Automate full test runs regularly — use CI/CD, or nightly builds when it 
gets too slow for CI/CD. 

10. Nightly build tests with sanitizers/runtime checkers — detect bugs as early 
as possible. 

11. Fuzzing — thrash your code with lots of weird stuff, long inputs, etc. 
12. Fuzzing with runtime sanitizers — it’s slow, but worth it. 
13. AI code checking and debugging — it’s already good, and will be great. 
14. Review “technical debt” — but fixing it is not usually as impactful as 

programmers think. 
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Build Improvements for Safety: 

15. Run memory safety checkers and sanitizers regularly — e.g., nightly builds. 
16. Use multiple runtime memory safety checkers — Valgrind, ASan, MSVS. 
17. Build a custom memory-safe coding style enforcer — e.g., even grep for 

a file of patterns containing the names of memory-unsafe functions works 
quite well. 

18. Extra warnings — separate build path for running compilers enabled with 
extra picky warnings. 

19. Optimizer levels — separate build path for running code with different 
optimizer levels to shake out rare but insidious memory errors that only 
occur when optimized. 

20. Run builds on multiple platforms of your core platform-independent code 
(Windows, Linux, Mac) — more compiler warnings, more ways to thrash 
the code at runtime, more sanitizers (you can always spin up a cloud virtual 
machine for whatever platforms you need). 

General Safe Coding Style Improvements: 

21. Assertions 
22. Check return codes 
23. Validate incoming parameter values in functions 
24. Debug tracing macros (logging) 
25. Unit tests (can never have too many) 
26. Module-level tests 
27. Automated integration tests 
28. Exception handling — consider whether to use C-style return codes versus 

C++ try/catch exceptions. 
29. Painstaking work — adding reliability to code is endless small 

improvements, not just throw an exception and you’re done. 

Specific Coding Improvements for C++ Memory Safety: 

30. Use macro wrappers to ensure checking of return codes for common 
functions (both library and custom code) — this is more general 
than [nodiscard] which guarantees only that the return code is assigned 
somewhere, but not that it’s well handled, whereas a wrapper guarantees 
that failures are at least logged somewhere (and then hopefully properly 
handled by the caller). 

31. Unreachable code marked with assertions or other handling. 
32. Not-yet-implemented code marked with assertions or other handling. 
33. Safety wrapper functions for common library or non-library functions — 

validate inputs, check for common usage errors, and check the return value 
for failure so it’s never undetected. 
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34. Detect uncommon “undefined behavior” in wrapper functions — e.g., 
overlapping memory blocks in memcpy, file read and write without 
intervening seek, etc. 

35. Intercept fatal signals (e.g., SIGSEGV) with a handler that at least prints a 
nice message and ideally even a stacktrace — no, you can’t really recover 
at this point, but you can provide extra debugging context for 
supportability; also watch out it doesn’t get re-raised. 

DIY Memory Safety Classes: 

36. Safe smart buffer class (two-variable method) — add a second “buffer 
safety checker” object to watch an existing buffer. 

37. Safe smart buffer class (one-variable method) — replace simple buffer 
variables with a templated smart buffer object of the required size 

Heap Memory Safety Methods for C++: 

38. Macro interception of C-style memory primitives (malloc, calloc, free, 
strdup, etc.) 

39. Link-time interception of C++ new/delete memory primitives — it’s been 
a standard feature of C++ for many years. 

40. Implement a randomized delayed deallocator — this blocks most Use-
After-Free attack vectors. 

DIY Heap Memory Safety Wrapper Libraries for C++: 

41. Validate all memory primitives (e.g., detect free non-heap, double-
deallocation, mixed C/C++ memory primitives, null pointers, overlapping 
memory blocks, and more.) 

42. Use canary values for a fast way to detect buffer overflows. 
43. Use “last-byte-null” canary values in string buffers. 
44. Use redzones to detect buffer overflows. 
45. Detect buffer underflows with canaries and redzones. 
46. Poison uninitialized or freed memory blocks 
47. Poison after the null byte in long buffers containing short strings. 
48. Implement a “never-free” approach to detect all Use-After-Free errors — 

probably only in testing, not production. 
49. Check memory block size parameters are not equal 

to sizeof(char*) — indicating sizeof used on a pointer or array 
parameter, then passed to memset or other functions. 

50. Find memory block sizes in safety wrapper functions — each platform has 
its own way to find the size of an allocated block using the address of the 
start of the block (but not from the middle of the block). 
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Stack Memory Safety Methods for C++: 

51. Macro interception of C-style stack memory primitives (alloca, other 
variants, etc.) 

52. Use a runtime sanitizer that detects stack buffer overflows (i.e., not 
Valgrind). 

53. Use a stack overflow canary object as a local variable — the constructor 
sets it to a fixed value, and the destructor checks the value hasn’t changed, 
or calls abort if it has. Use volatile to prevent a smart optimizer 
removing it. 

54. Use a semi-randomized stack overflow canary object — to further thwart 
stack buffer overflow attacks, don’t just use a fixed value, but a semi-
random value that changes with time. 

55. Use an obscured pair of numbers in a semi-randomized stack object — 
both values are stored in the stack object and can be overwritten, so even 
further you can either: (a) allocate heap memory for the expected value 
(effective but inefficient), or (b) use some obscure formula to generate and 
validate the two values. 

Compile-Time Memory Safety Methods for C++: 

56. Warning-free compilation policy — fix all compiler warnings, even the 
“unused variable” ones, lest they hide serious bugs. 

57. Use static_assert — e.g., check the sizeof for your types at 
compile-time (avoids portability glitches later). 

Specific Coding Improvements for Non-Memory Safety: 

58. Add loop counters to detect and prevent infinite loops 
59. Add [nodiscard] to your functions to detect thrown-away return 

codes. 
60. Add a standardized stack trace reporting library — you can 

use std::backtrace, Boost or Gnu; useful for assertions, return code 
failures, memory failures, etc. 

61. Add math function wrappers — e.g., cos(90) is probably mistaking 
radians and degrees. 

62. Add fopen/fclose file function wrappers — prevent 
double fclose errors, and other crashes. 

63. Safe integer classes to detect overflow — a little slow for my taste. 
 
Weird arithmetic problems: 

64. Check for arithmetic overflow and underflow 
65. Check for floating-point overflow and underflow 
66. Beware floating-point denormalized values — tiny and weird. 
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67. Two floating-point zeros — there is now a level negative-zero. 
68. Floating point has many different values for infinity and negative infinity. 
69. Order of evaluation errors on various binary operators. 
70. Order of evaluation errors on function call arguments. 
71. Floating-point runtime error checker tools — seems like these are only in 

research papers, not used commercially yet. 

Basic Standard C++ Coding Changes: 

72. Use references not pointers — references are a longstanding compiler-
enforced way to replace pointers, with zero extra runtime cost. 

73. Use “const correctness” — I’m not a fan of this, because it’s a lot of busy 
work if the code doesn’t already adhere to proper const usage, and fixing 
it rarely finds any real bugs. 

Unsafe C-style Functions: 

74. Change sprintf to snprintf — but beware using its return value. 
75. Use safe versions of unsafe string primitives (e.g., strcpy, strcat) 
76. Avoid or wrap strncpy — it’s actually unsafe despite having a buffer size 

parameter because it can leave a string without a null byte. 
77. Avoid fflush(stdin) — officially undefined behavior, although I’ve 

seen it used and it’s simply a nop. 
78. Avoid the old strncat function — Write your own safe version 

of strcat instead. 
79. Prefer memmove to memcpy — it handles overlapping ranges without 

failure. 
80. Avoid longjmp and setjmp for exception handling — they’re old, 

unsafe, and superceded by many other options. 
81. Avoid tmpfile and mktemp — they have a race condition that’s a 

security risk. 
82. Avoid scanf and sscanf — they’re just a hot mess! 

Standard C++ Library Memory Safety Techniques: 

83. Use std::string not char* or char[]. 
84. Use std::span — safe view onto other array data. 
85. Use std::mdspan — safe view onto multi-dimensional data. 
86. Use standard data structure classes — don’t write your own hash table ever 

again. 
87. Use standard smart pointer types (e.g., shared_ptr, weak_ptr, etc.) 
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Sanitizer Tools for Runtime C++ Memory Safety Checking: 

88. Valgrind (free on Linux) 
89. ASan (address sanitizer, free) 
90. Various commercial runtime memory checkers 

 
Compilers for C++ Memory Safety: 

91. GCC warning options (-Wall is my favorite, and there’s -Wextra, -
Wpointer-arith, and various others) 

92. CLANG warnings — enable more to check more. 
93. MSVS warnings — click on some checkboxes. 

 
Linters for C++ Memory Safety: 

94. Use compilers and extra warnings as linters 
95. Set up a separate “lint” build path (e.g., “make lint”) 
96. Use freeware linters 
97. Use commercial linters 

 
Library Improvements for C++ Memory Safety: 

98. C++ standard library hardening efforts 
99. libc++ hardening 
100. Debug versions of libc++ — with extra error checking, self-validation, and 

instrumentation. 

Sigh. Okay, so I admit they’re not all about memory safety, but some are more 
about software quality and non-memory undefined behaviors.  

On the other hand, I didn’t list out every different warning to use for each compiler, 
every free and commercial lint checker, every different type of memory error, and 
so on. 
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21. DIY Memory Safety 

Why DIY Memory Safety? 

Well, because you fix some bugs yourself! Instead of waiting for compiler vendors 
to add a “-safe” option, or the standards organizations to define “Safe C++” 
language, you do it yourself! 

These are the main memory safety issues in C++: 

• Array bounds writes (buffer overflow writes) 

• Array bounds reads (buffer overflow reads) 

• Uninitialized memory usage (e.g., malloc, new, stack buffers). 

• Use-after-deallocation (i.e., reads or writes after free or delete). 

• Double-deallocation (i.e., double-free, double-delete). 

There are also other special cases of memory issues: 

• File pointer misuses (e.g., double-fclose). 

• Text buffer overruns (e.g., string copy overwrites). 

Strategies for DIY Memory Safety 

There are two overarching strategies, which are the opposite of each other: 

• Make some failures harmless (e.g., get rid of uninitialized memory usage 
errors by always initializing memory to zero). 

• Detect more failures by automatically causing memory problems 
intentionally. 

You can pick one of these and do it for both developer testing and production runs 
by customers.  
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Or you can vary the idea: 

• Detect more bugs in developer mode. 

• Make the bugs harmless in production mode. 

Why would we do this? Why not just run AddressSanitizer or valgrind? 
There’s a few reasons: 

• The sanitizers run too slow, so we cannot use them all the time, or in 
production. 

• If we implement fast DIY methods, we can use them continually during 
testing. 

• If they’re really fast, we might even leave the self-checks in for production 
runs. 

The DIY techniques to detect more bugs inside your own code include: 

• Canary regions (“redzones”) around memory blocks. 

• Poisoning memory inside the blocks with error-triggering values. 

• Magic values for statuses stored in buffers. 

• Full address tracking (i.e., your own hash table of memory block addresses). 

Hence, there are multiple levels of error detection, ranging from super-fast to 
almost-as-slow-as-valgrind. 

Making Uninitialized Accesses Harmless 

There’s another option: just fix it! Instead of trying to find the bugs, just make them 
disappear by becoming harmless. This is particularly true of the whole class of 
memory bugs base on uninitialized memory reads. 

Why are these even bugs? They seem more like language design failures, with too 
great a focus on speed. The basic problem with standard C++ and memory 
initialization is this patchwork of choices: 

• Global variables are initialized to zero (hooray!). 

• Local static local variables are initialized to zero (hooray!). 

• Stack variables are not initialized to zero (boo!). 

• Heap-allocated memory blocks are sometimes initialized to zero (boo!). 
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For heap memory allocation, we have again a patchwork: 

• malloc memory is never initialized. 

• calloc initializes to zero always. 

• new of object types relies on constructors to initialize. 

• new of arrays of objects relies on (many) constructors to initialize. 

• new of primitive data types does not initialize at all (single variables or 
arrays). 

• realloc does not initialize extra memory. 

Really we want: change all malloc and new calls to calloc. Then a whole class 
of memory safety issues just disappears! Honestly, rather than detecting 
uninitialized memory uses, shouldn’t we just make them a non-issue? Why would 
we even bother trying the other strategy of filling uninitialized memory with 
poisoned values, when we could just fix it everywhere? 

Intercepting C++ Primitives 

Here are the basic strategies for how to integrate safety into your code with DIY 
fixes to your codebase: 

• Coding style to require calling safe functions 

• Wrapper functions to automatically fix or detect issues. 

The way that debug wrapper functions work includes these ideas: 

• Macro intercepts of malloc, calloc, and free. 

• Link-time intercepts of new and delete operators. 

• Macro intercepts for strlen and strcpy, etc. 

• Macro intercepts for fopen and fclose. 

We have to be aware of a few issues: 

• Macro intercepts won’t get any allocations from any less-used primitives 
we don’t intercept. 

• Macro intercepts won’t see anything in third-party libraries (including 
Standard C++/STL). 

• Link-time new and delete intercepts will see Standard C++ calls (which 
can be good or bad). 

• Link-time new and delete intercepts must define four versions, two for 
objects, and two array versions. 
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• There’s no simple way to intercept stack-based memory operations for 
local variables (i.e., from function calls or returns). 

• We can macro-intercept stack-based alloca calls, but it’s hard to know 
when the function returns. 

• We can macro-intercept fopen type file operations, but it’s hard for 
C++ fstream types. 

Overall, the DIY memory safety approach is a patchwork of techniques in itself. It 
would be so much easier if the compiler vendors would just add a “-safe” flag 
that does all this! 
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22. Intercepting Memory 

Primitives 

Interception Methods 

Intercepts can be useful for both performance instrumentation and memory error 
detection or prevention. There are two main ways to intercept memory primitives 
in your C++ code. 

• Preprocessor macro interception — used for old-style allocation functions 
like malloc and free. 

• Link-time interception — used for new and delete operators. 

Once you have a successful intercept, it’s amazing the things you can do! Here are 
some ideas: 

• Detect various types of memory errors 

• Prevent some types of memory crashes 

• Track statistics on memory allocations 

• Detect and prevent errors in various non-memory functions 

Preprocessor Macro Intercepts 

There are different approaches to consider when wrapping system calls, which we 
examine using memset as an example: 

• Leave “memset” calls in your code (auto-intercepts) 

• Use “memset_wrapper” in your code instead (manual intercepts) 

Macro auto-intercepts: You might want to leave your code unchanged 
using memset. To leave “memset” in your code, but have it automatically call 
“memset_wrapper” you can use a macro intercept in a header file. 

    #undef memset // ensure no prior definition 

    #define memset memset_wrapper  // Intercept 
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Note that you can also use preprocessor macros to add context information to the 
debug wrapper functions. For example, you could add extra parameters to 
“memset_wrapper” such as: 

  #define memset(x,y,z) \ 

  memset_wrapper((x),(y),(z),__FILE__,__LINE__,__func__) 

Note that in the above version, the macro parameters must be parenthesized even 
between commas, because there’s a C++ comma operator that could occur in a 
passed-in expression. Also note that these context macros (e.g., __FILE__) aren’t 
necessary if you have a C++ stack trace library, such as std::stacktrace, on 
your platform. 

Variadic preprocessor macros: Note also that there is varargs support in 
C++ #define macros. If you want to track variable-argument functions 
like sprintf, printf, or fprintf, or other C++ overloaded functions, you can 
use “...” and “__VA_ARGS__” in preprocessor macros as follows. 

    #define sprintf(fmt,...) \ 

        sprintf_wrapper((fmt),__FILE__,__LINE__, \ 

                              __func__, __VA_ARGS__ ) 

Manual Wrapping: Alternatively, you might want to individually change the calls 
to memset to call memset_wrapper without hiding it behind a macro. If you’d 
rather have to control whether or not the wrapper is called, then you can use both 
in the program, wrapped or non-wrapped. Or if you want them all changed, but 
want the intercept to be less hidden (e.g., later during code maintenance), then you 
might consider adding a helpful reminder instead: 

    #undef memset 

    #define memset dont_use_memset_please 

This trick will give you a compilation error at every call to memset that hasn’t been 
changed to memset_wrapper. 

 

 

 

 



257     Advanced C++ Memory Techniques 

Link-Time Interception: new and delete 

The idea of a tool to test memory allocations is to shine light on the hidden calls 
that create and destroy allocated memory. This helps examine how containers are 
using allocated memory, and it’s not usually pretty! 

Macro interception does not work for the new and delete operators, because 
they don’t use function-like syntax. Fortunately, you can use link-time interception 
of these operators instead, simply by defining your own versions. This is a standard 
feature of C++ that has been long supported. 

Note that defining class-level versions of the new and delete operators is a well-
known optimization for a class to manage its own memory allocation pool, but this 
isn’t what we’re doing here. Instead, this link-time interception requires defining 
four operators at global scope: 

• new and new[] 

• delete and delete[] 

There’s a pitfall in implementing our intercepted versions. You cannot use the 
real new and delete inside these link-time wrappers. They would get intercepted 
again, and you’d have infinite stack recursion. 

However, you can call malloc and free instead, assuming they aren’t also macro-
intercepted in this code. Here’s the simplest versions: 

    void * operator new(size_t n) 

    { 

        return malloc(n);         

    } 

 

    void* operator new[](size_t n) 

    { 

        return malloc(n);         

    } 

 

    void operator delete(void* v) 

    { 

        free(v); 

    } 

 

    void operator delete[](void* v) 

    { 

        free(v); 

    } 
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This method of link-time interception is an officially sanctioned standard C++ 
language feature since the 1990s. Be careful, though, that the return types and 
parameter types are precise, using size_t and void*, as you cannot 
use int or char*.  

Also, declaring these intercept functions as inline gets a compilation warning, 
and is presumably ignored by the compiler, as this requires link-time interception. 

Memory Debug Wrappers 

I’ve always used this intercept method for some self-testing debug wrappers. Here’s 
an example of some ideas of some basic possible checks you can do in these 
intercepted operators: 

    void * operator new(size_t n) 

    { 

        if (n == 0) { 

            AUSSIE_ERROR("new operator size is zero"); 

        } 

        void *v = malloc(n);         

        if (v == nullptr) { 

            AUSSIE_ERROR("new operator: alloc failure"); 

        }         

        return v; 

    } 

Note that you can’t use __FILE__ or __LINE__ as these are link-time intercepts, 
not macros. However, you could use std::backtrace in C++23 instead. 

Memory Performance Analysis 

We can also use the idea of link-time interception to do performance improvement 
on memory allocation. This helps us find the slugs in both standard containers and 
our own code. 

The modified version of these link intercepts is shown in the Appendix, with full 
source code. The idea is that you can examine the behavior of code by wrapping 
memory debug calls around it: 

    memory_reset_counters(); 

    std::vector<int> v; 

    memory_report(); 
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This allows investigation of the memory characteristics of any sequence of code. 
It’s quite enlightening to investigate what sort of actions in the standard C++ 
libraries will trigger memory allocations. 

Unit Testing of Memory Allocation. Another useful idea is to add unit tests to 
your build, so as to ensure that nobody’s accidentally added some memory 
allocations to the code. 

    memory_reset_counters(); 

    std::vector<MyClass> v; 

    TEST(s_new_count == 0);  // No memory allocations! 

You know what I mean: trust but verify! 
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23. Smart Pointers 

Overview of Smart Pointers 

Smart pointers are a major addition to the C++ language in C++11. The three main 
types of smart pointers are: 

• std::unique_ptr — exclusive ownership of an object. 

• std::shared_ptr — reference-counted multiple owners. 

• std::weak_ptr — not an owner, but keeping an eye on things. 

These classes are defined in the <memory> header file, and are templated by the 
type of the object. There was also std::auto_ptr in C++98, but that was 
deprecated in C++11 and finally removed in C++17. 

The main features of the smart pointer library include: 

• Use smart pointers like raw pointers via the *, [] and -> operators. 

• Automatic deallocation of the object when the smart pointer disappears. 

• Destructors called for the underlying object. 

• Automatically chooses delete for objects and delete[] for arrays. 

And some of the advanced features include: 

• Thread-safety of the smart pointers library. 

• Custom deleters can be used for actions on smart pointer destruction. 

But we’re getting ahead of ourselves there. 

Basic Smart Pointer Usage 

Here’s a couple of empty smart pointer declarations that are managing nothing yet: 

    std::unique_ptr<Object> up1; 

    std::shared_ptr<Object> sp1; 

    std::weak_ptr<Object> wp1; 
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However, those declarations are smart pointers without a pointer! The normal 
scheme of things is to use the new operator in the initialization of the smart pointer: 

    std::unique_ptr<Object> up1(new Object); 

Here’s the key point: auto-deallocation! The destructor for the unique_ptr type 
will automatically call the delete operator on the object that was created with 
the new operator. In fact, it’s even smarter and will know whether to 
call delete or delete[], depending on whether you called new or new[] in the 
initializer. 

Copying smart pointers. Note that you can “copy” a smart pointer in a 
constructor or an assignment. This not only copies the address being managed to 
the new shared pointer, but increases the reference count by one in the control 
block. But copying a unique pointer makes no sense, because it’s the exclusive 
owner. Hence, copy construction or copy assignment has these effects: 

• Shared pointer — increases the reference count with the copy now also 
managing the object. 

• Unique pointer — copying is explicitly disallowed via the “=delete” 
syntax! 

Hence, the unique pointer class has deleted copy constructor and copy assignment 
declarations. You can only move a unique pointer, not copy it. 

Moving smart pointers. There are move constructors and move assignment 
operators for all types of smart pointer objects. The smart pointer being moved to 
will first unmanage its object, if any, which could call its destructor (i.e., always for 
a unique pointer, or based on the reference count for shared pointers, but never for 
a weak pointer). The details of the underlying object are then moved to the left 
operand smart pointer, and the smart pointer on the right becomes an empty smart 
pointer (managing nothing). 

Take care with choosing between copying and moving, which have very different 
semantics for shared pointers, and copying is disallowed for unique pointers. Use 
of the std::move() type cast is helpful to ensure move semantics. 

Details of auto-deallocation. The idea of auto-deallocation is to avoid memory 
leaks. It also allows smart pointers to embody the RAII idiom, provided your 
initializer does allocate the object. 

The call to delete is made in the destructor of the smart pointer object, if it hasn’t 
already been destroyed.  
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So, there are a few ways for the destructor to run: 

• The destructor at the end of scope. 

• The reset() member function to deallocate earlier. 

Note that the deallocation differs for unique pointers with exclusive object control 
versus shared pointers with non-exclusive control: 

• Unique pointers — always deallocates its fully-controlled object. 

• Shared pointers — only deallocated when the reference count says it’s the 
last shared pointer managing this object. 

Note the exceptions to deallocation in the destructor: 

• Weak pointers don’t deallocate. 

• You can define “custom deleters” in the declaration of a smart pointer. 

Hence, technically, you can override the calls to delete in the destructor. The idea 
is mainly when using custom allocators such as memory pools (as an optimization), 
but it means you can workaround some limitations if you really need to. For 
example, you could define a “do-nothing” deleter to manage addresses of stack or 
global objects. Or you could define a custom deleter that calls free() if you want 
to manage malloc() blocks. 

Pitfalls. There is no magic whereby the unique_ptr object knows that new was 
called in its initializer. It just assumes that you’ve given it an allocated pointer to 
manage. Hence, you can do this: 

    Object *objptr = new Object; 

    std::unique_ptr<Object> up1(objptr);  // Dangerous 

This will also be auto-deallocated correctly. But you have to be careful that the 
scope of objptr does not outlast the up1 smart pointer object. 
Because objptr will point to an already-deallocated pointer after the destructor 
for up1 runs. Here’s an example: 

    Object *objptr = new Object; 

    { 

       std::unique_ptr<Object> up1(objptr);  // Dangerous 

    } // Destructor calls delete 

    // .... 

    obj->my_method();  // Kaboom! 
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There are also various other pitfalls whereby you can get a double-delete error 
on a pointer managed by a smart pointer: 

• Declaring two smart pointers on the same raw pointer. 

• Calling delete on your raw pointer (before or after the smart pointer 
destructor). 

There also pitfalls whereby delete is called on the wrong type of address: 

• Using smart pointers with a stack or global/static address. 

• Using malloc addresses with smart pointers. 

Note that the nullptr is not a crash with the smart pointer classes. It simply 
means an “empty” smart pointer that isn’t managing anything yet. 

These memory address problems don’t arise with std::weak_ptr, which doesn’t 
ever do any deallocation of the managed pointer. Also, if you were desperate, you 
could use a custom deleter that doesn’t call delete. But the main defence is to 
stick to the idiom whereby the new operator is expressly called in the initializer of 
your smart pointer. 

Pointer Templating. Note that templating with a pointer type “Object*” rather 
than “Object” is a misunderstanding, and will get a compilation error for this 
declaration: 

   std::unique_ptr<Object*>up1(new Object); // Error 

You can use that type of templating if you’re really wanting your smart pointers to 
manage other raw pointers, but why would you want to? Anyway, this would 
compile: 

   std::unique_ptr<Object*> up1(new Object*);   // Strange! 

Weak Pointers 

Weak pointers are used much less than unique or shared pointers. They are 
“observers” that do not change the lifetime of the managed object. In fact, the 
object can be destroyed or deallocated before the weak pointer has finished 
watching.  
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The main features of weak pointers: 

• Observer idiom without control. 

• Does not destroy the object ever. 

• Can be “upgraded” to a shared pointer. 

Weak pointers cannot be initialized with a raw pointer. They can only be initialized 
with nothing (or nullptr), or via another shared pointer. Weak pointers can stop 
watching in two ways: they can go out-of-scope, in which case their destructor 
reduces the reference count (of weak pointers) on any object they’ve been watching. 
Or you can expressly call the reset() member function for an early release, which 
releases the object, and causes the weak pointer object to be empty thereafter. 

One misunderstanding about weak pointers is that you might have read something 
that implies the objects managed by shared pointers are not deallocated if the 
number of weak pointers is not zero. And yes, there’s a separate reference count 
for weak pointers that’s used in a shared pointer. However, this is only that 
the control block is not deallocated until the weak pointer reference count is zero (and 
also the shared pointer reference count). This is an internal allocated block that 
contains the reference counters and other stuff. As mentioned above, the object 
being managed by a shared pointer is destroyed when zero shared pointers are 
managing it (ignoring the weak pointer reference count), so a weak pointer can be 
pointing to a deallocated object if all the shared pointers have disappeared. There 
is the expired() member function to test whether the weak pointer still has a 
valid non-destroyed object. 

Limitations of Smart Pointers 

The smart pointer library has many advanced features, but there are still some things 
you cannot do. Some of the limitations of smart pointers include: 

• Only work with heap pointers via new — not addresses of stack objects or 
global objects. 

• Cannot be used with old-style malloc or calloc objects. 

• Weak pointers cannot deallocate the pointer — whereas unique pointers 
and shared pointers do deallocate (and must!). 

• No way to avoid deallocation in shared pointers — you can deallocate early 
with reset(), but cannot specify that a shared pointer destructor 
shouldn’t do so (except by adding a custom “do-nothing” deleter at the 
declaration of the smart pointer, and unique pointers have 
the release() function). 

• Smart pointers don’t know about anything you do with its raw pointer — 
e.g., if you extract the raw pointer using the get() method. 
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Okay, so I’m wrong. I’ve written that you cannot do these things, but really you can 
work around most of these by defining a custom deleter. Your custom deleter might 
simply do nothing, rather than deallocating memory. If you really had to 
use malloc addresses, your custom deleter could call free. 

Note that there’s a valid and complicated reason that shared_ptr does not have 
a release() function, whereas unique_ptr does. The idea with shared 
pointers is that they are reference counted and a sharing ownership of an item. 
Hence, it makes less sense for a shared pointer to “release” an object to the wild, 
whereas unique pointer is the only manager of an object. 

Furthermore, the last point about the shared pointer not knowing what you’re doing 
if you call get(), this means that if you use a shared or unique pointer, it will 100% 
be deallocated. You cannot return your pointer to the wild, except that, again, you 
could use a do-nothing custom deleter. 

Smart Pointer Safety 

The proper use of smart pointers can significantly improve the safety of pointer-
related code. Some of the errors avoided include: 

• Wild pointer addresses — the smart pointer object is safe within its scope. 

• Memory leaks — instead, delete is automatically called. 

Best practices for using smart pointers for safety include: 

• Choose carefully between unique pointers and shared pointers 
(occasionally also weak pointers). 

• Initialize smart pointers using new directly as the initializer (rather than an 
already-allocated raw pointer). 

• Use smart pointers with function-local scope (i.e., stack variables, not 
global or static smart pointer objects). 

• Use scope of the smart pointer to control when delete is called. 

Some problematic styles to avoid with smart pointers include: 

• Avoid using the raw pointer via get() by using * and -> operators on 
the smart pointer object itself. 

• Avoid using smart pointers on raw pointers that already exit (i.e., prefer to 
allocate the objects in the smart pointer’s initializer). 

• Avoid allocating smart pointer objects via new (it gets very confusing!). 
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Smart Pointer Inefficiencies 

Generally, smart pointers focus more on safety than speed, so that add some 
inefficiency to your code. However, they are relatively efficient with a limited 
amount of extra overhead for each smart pointer: 

• The smart pointer object itself, and 

• A “control block” with details about the managed object. 

The control block is an internal data structure, which is not explicitly part of the 
smart pointer object (by default). The contents of the control block include: 

• Address of managed object (i.e., the raw pointer). 

• Reference count of shared pointers to the object. 

• Reference count of weak pointers to the object. 

• Deleter to be used (e.g., by default, it’s automatically chosen as 
the delete or delete[] operator). 

Smart Pointer Optimizations 

What can you do to reduce the inefficiencies of smart pointers? I mean, other than 
going back to the use of raw pointers, which is not ideal. Using “dumb pointers” 
would lose all the safety advantages of smart pointers. 

Some of the optimizations include: 

• Avoid two separate objects per smart pointer (with the extra control block). 

• Minimize the scope of the smart pointer. 

• Call reset() to deallocate the memory for the object earlier. 

Making Smart Pointers. By default, smart pointers have two separate objects: the 
smart pointer object itself, and an internal allocated object called the “control 
block.” One of the main ways to optimize smart pointer objects is to merge the 
smart pointer object with its control block. The way to do this is by calling either 
of the “make” methods for smart pointers: 

• std::make_unique() (C++14) 

• std::make_shared() (C++11) 

Both of these standard functions create a single object with both the smart pointer 
and its control block. Note that there’s no “make_weak()” version of these 
functions. 
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Smart Pointer Bugs 

Although the idea of smart pointers is to prevent common problems with raw 
pointers, such as wild pointers or memory leaks, there are also some new types of 
bugs that can occur due to misuses of smart pointer objects. Some of the possible 
bugs include: 

• Templating the smart pointer classes with a pointer type — usually a 
compilation error. 

• Smart pointer leaks — if you lose track of your smart pointers, their 
destructors never run, and the underlying objects are never cleaned up 
either. 

• Using the delete operator on a raw pointer used with a smart pointer — 
it’s also double-deallocated by the smart pointer’s destructor. 

• Creating two smart pointers from the same raw pointer — also causes a 
double delete memory error, since both destructors run. 

• Accessing the raw pointer from a smart pointer via get() — very risky, 
allowing various raw pointer problems. 

• Using smart pointers with malloc() blocks — this causes delete on 
a malloc() block (a bad error). 

• Using a non-heap pointer to initialize a smart pointer — will 
cause delete on a stack or static address in the destructor (crashing). 

• Weak pointer refers to an object that has “expired” (i.e., been destroyed) 
— the last shared_ptr or the single unique_ptr has already 
deallocated the object via reset() or its destructor, although this can be 
avoided by always testing the weak_ptr::expired() member 
function. 

Note that a weak pointer does not ever deallocate the object, but only “observes” 
the object (or “refers” to it). Only unique pointers and shared pointers can 
actually delete the object from memory. Note also that you can also define 
“custom deleters” for your smart pointers, if you really need to avoid some of these 
problems. 

Fortunately, there are quite a few bugs that smart pointers avoid. For example, the 
smart pointer destructor should automatically know whether to 
use delete or delete[], depending on whether it was initialized by a simple 
object pointer or an array type. This is important, because a call of delete on 
a new[] block will not properly run the destructors of all objects in the array. 
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24. Canaries and Redzones 

What are Canaries and Redzones? 

The two terms are related to memory safety for prevention and detection of 
memory areas. Redzones are regions of bytes around a memory block that are 
marked as invalid or “poisoned” for use. Canary values are a special type of redzone, 
with a single value, which is examined to see if it has changed. 

There are various other terms used for these two approaches. Redzones are also 
called memory poisoning, memory tainting, memory tagging, memory coloring, and 
I’ve probably missed a few. Canaries are sometimes called sentinel values or guard 
values. The general techniques are referred to as memory safety or buffer overflow 
protection. 

The main usage of redzones and canaries is to detect buffer overflows that result in 
array bounds violations, which are a common C++ bug and also a security 
vulnerability. These types of array buffer overflow attacks are more likely to be a 
security vulnerability if they occur in stack memory (rather than the heap), because 
the program stack can be corrupted intentionally.  

However, never underestimate human creativity, and many other memory errors 
can also be used as an attack vector. Surprisingly, one of the other major 
vulnerabilities is by abusing “dangling pointers” that arise from use-after-free 
errors. 

What are Array Bounds Violations? 

There are a lot of imprecise names used for basically the same thing: 

• Array bounds violation 

• Array overflow or array underflow 

• Buffer overrun or underrun 

• Buffer overwrite 

Enough with the terminology; let’s look at code!  
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An example with string buffers on the stack looks like: 

    char buf[3]; 

    strcpy(buf, "abcd");  // Boom! (buffer overflow) 

An example of a buffer overwrite or overflow with an array looks like this: 

    int arr[10]; 

    arr[10] = 0;    // Write error 

    val = arr[55];  // Read error 

And this is an array “underflow” error: 

    arr[-1] = 0;  // Boom! 

Note that watching for changes in canary values can only detect “write” array 
bounds errors, rather than reads, but more advanced methods with redzones can 
also detect some read accesses to redzone memory. 

Text Buffer Last Byte Canaries 

One of the simplest methods of using a canary is useful for text buffers. The very 
last byte of a memory block containing a text string can be used as a canary. This 
last byte must either be the null byte, if the string buffer is full, or an unused byte if 
the string is shorter. Hence, there is a trick where we set the last byte of a text buffer 
to the null byte, even if it’s not going to be used. Then this last byte is a canary, 
where a non-zero value being found afterwards means it has overflowed at some 
previous point (i.e., a bounds overflow write error).  

Here’s a raw example of how it works: 

    char buf[100] = ""; 

    buf[99] = 0;  // Set canary null value in last byte 

    // ... Do stuff with buf 

    if (buf[99] != 0) {  // Check at the end 

        // Canary squawks!  

        // Text buffer has bounds-violation 

    } 

The advantage of this method is that it has no extra memory overhead, and only 
two fast single-byte operations (null byte assignment and testing for the null byte). 
However, it only works for text string with a null byte at the end, rather than for 
other types of arrays, and can only detect write errors (not reads). 
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Array Extra Element Canaries 

The idea of using the last element in text buffers as a canary can be generalized to 
non-text arrays. An array overflow error would look like this: 

    int arr[10]; 

    arr[10] = 0;  // Error 

To add a canary, we need to do this: 

• Allocate one more element for the array. 

• Set it to a magic value at the start. 

• Check it still has the magic value at the end. 

Here’s the basic hand-coded idea: 

    const int sz = 10; 

    int arr[sz + 1];  // +1 for the canary 

 

    // Set up the canary (last element) 

    const unsigned magic = 0x12345678; 

    arr[sz] = magic; 

 

    // Do stuff.... 

    arr[10] = 0;  // Error 

 

    // Check canary afterwards 

    if (arr[sz] != magic) { 

        // Overflow write error detected! 

    } 

Note the features of this canary technique: 

• Works for any basic data type. 

• Works for any array memory type (e.g., heap, stack, global, etc.) 

• Canary value can be checked multiple times, not only at the very end. 

The disadvantages include: 

• After-the-fact detection of the overwrite, rather than immediately. 

• Memory overhead is one extra array element per array. 

• Time cost is setting one array element, and then checking it later. 

• Need to disable this trick, or use a poisoning API, when running a sanitizer, 
because it interferes with their checks. 
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Redzones and Canaries for Memory Allocation 
Overflows 

Array buffer overflows are the main reason to use redzones or canary values. These 
occur where an array access goes beyond the end of a valid array block, whether for 
a read access or a write access. Canary values can only detect writes, because they 
rely on the code changing the canary value, but redzones can also be used to detect 
reads. 

The general idea is to add some extra memory to the end of an allocated block. We 
can intercept malloc or new memory primitives and replace them with wrapper 
versions that set aside some extra memory for use in error checking. Then we can 
check for modifications to these redzone or canary bytes, in which case an array 
write has occurred that is a bounds violation. 

Hence, the basic steps are: 

• Macro-intercepts of the memory allocation functions malloc, calloc, 
and free (also strdup and realloc, amongst others). 

• Linker intercepts of new and delete (four versions with two basic and 
two array versions). 

• Add extra bytes to be allocated in the memory block we return from our 
wrapper versions. 

• Fill these extra redzone bytes with a special value. 

• Detect uses of these special bytes later. 

In advanced implementations, we can mark these redzone bytes with binary 
instrumentation or hardware-assisted pointer tagging. 

Detection of Heap Underflows 

Checking for underflows of heap addresses, such as addr[-1], is trickier because 
we cannot just add more memory to the start of the block. The region prior to an 
allocated heap block contains a system header block, which is used by the system 
allocator (i.e., the system’s malloc or new primitives). Hence, we cannot just write 
a canary value to addr[-1], because doing so would be an underflow write error 
in itself, which will trigger a crash. Our technique is supposed to prevent memory 
glitches, not cause them! 

The tricky way to detect underflow is to allocate extra memory for this underflow 
redzone, but not in the system header block.  
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The idea is to take a simple allocation: 

    char *str = (char*)malloc(100); 

    // Do stuff with 'str' 

    free(str); 

Instead, we allocated more memory, say 16 bytes, like this: 

    char *mem = (char*)malloc(100 + 16); 

    // Set up the redzone mem[0]..mem[15] 

    char *str = mem + 16;   

    // Do stuff with 'str' ... 

    // Check the redzone mem[0]..mem[15] 

    free(str - 16); 

This is messy, because we need to keep adding and subtracting the size of the 
redzone block (i.e., 16 bytes) but that’s the overall idea. The first 16 bytes of the 
larger block are the redzone for underflow checking. The original code is passed a 
pointer to the middle of the block for use with the original code. 

More generally, we can do this in a debug memory allocation library. As usual with 
this approach, the code needs to macro-intercept malloc and free, and link-
intercept new and delete operators.  

There are several problems that make this plan difficult: 

• Memory alignment of addresses 

• Calls to free need to be offset (or it crashes!) 

• new and delete cannot be used in manual code sequences like the above. 

• Non-intercepted calls to malloc in third-party linked libraries will not 
have redzones and are thus problematic to deallocate. 

Memory Read Errors 

Read errors are those that access memory, but don’t change the value. Some 
examples of memory safety concerns with read accesses include: 

• Uninitialized memory usage 

• Array bound overflow reads 

• Array bound underflow reads 

• Use-after-free errors 

• Use-after-delete errors 
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Superficially, it might seem that these reads are less likely to be dangerous than 
writes. However, it’s not really the case, because read errors can still be important 
to detect and prevent because they can be: 

(a) crashes — e.g., segmentation faults. 

(b) invalid results — e.g., reading the wrong values. 

(c) attack vectors — use-after-free exploits are a major category of 
vulnerabilities. 

Redzones can be used to detect read errors if it is possible to intercept read 
operations on an invalid block. There are several techniques in detecting memory 
read errors including uninitialized memory and use-after-free: 

• Instrumentation of assembly or binary code 

• Memory tagging (pointer tagging) 

• Hardware-assisted exceptions 

• Shadow memory 

The technologies for hardware-assisted memory management include: 

• ARM Memory Tagging Extension (ARM MTE) 

• Intel Memory Protection Extensions (MPX) 

• Sparc Application Data Integrity (ADI) 

All of these techniques are somewhat beyond a basic DIY memory safety technique. 
These are the types of methods used in runtime memory checker tools such as 
Valgrind and AddressSanitizer.  

The basic idea is to set aside a redzone area of unused memory around every 
memory block, such as heap and stack memory, and then various methods are used 
to check every memory access for an invalid redzone address. 
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Prevention Versus Detection 

Most of the above DIY techniques are about detecting memory safety issues, rather 
than preventing crashes or blocking security attackers using exploits.  

Full prevention requires instrumentation or hardware-assisted shadow memory, as 
done by sanitizers, but then the code tends to run too slow for use in production. 

However, these techniques are great to use continually during development and 
testing. Some of the simpler methods are also fast enough to leave in production 
code, or at least when shipping to beta customers. 

The idea is to find as many of these issues as possible. Hence, canary and redzone 
techniques should be combined with fuzzing and other types of stress testing, such 
as passing invalid or very long inputs to the code.  

And these methods are complementary to sanitizers, which should still be run in 
nightly builds of the regression test suites, and also sometimes combined with 
fuzzing and other longer tests. 

Limitations of Canaries and Redzones 

The canary and redzone techniques are not perfect, and won’t do as well as a real 
runtime sanitizer tool.  

Some of the problems include: 

• Canary value checks only detect prior failures (not immediately). 

• Redzone techniques to detect overflows immediately are difficult for DIY. 

• Extra memory overhead to store the canary values and redzone bytes. 

• Extra time cost of setting up canaries/redzones, and then later testing 
them. 

• Read errors are much harder to detect than writes (almost impossible in 
DIY techniques). 

• Crashes and memory corruption are not actually prevented (in most cases). 

• Bounds violations further away than the length of the redzone will be 
missed. 

• Security attacks are not actually prevented (and redzones can be worked 
around anyway). 
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Nevertheless, the goal of DIY canaries and redzones is to add some checking that 
detects a subset of failures, but is much faster than sanitizers, so it can be run 100% 
of the time, maybe even in production for customers. 
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25. Use-After-Free 

What is Use-After-Free? 

Use-after-free errors arise when heap memory is de-allocated, but there is still a 
pointer to that address. This becomes a “dangling pointer” (or “dangling 
reference”) and any use of that memory via the pointer is a “use-after-free” error.  

Note that the word “free” means any memory deallocation primitive, such as 
the free function or the delete operator. 

Although the error usually refers to heap memory addresses, it can also occur with 
stack addresses.  

A stack-based use-after-free type of error can occur if the address of a stack variable 
is returned to a caller, and then it can be misused later when the call stack expands 
deeper again. This is a rarer type, but it’s still an error and security risk. 

There are several problems with use-after-free errors: 

• Crashes 

• Insidious program errors 

• Portability issues 

• Security exploits 

Programs with use-after-free errors often exhibit unpredictable behavior with 
intermittent failures. They may also work fine on one platform, but crash when 
ported to a different platform, or when the optimizer level is turned up. 
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Use-After-Free Security Vulnerabilities 

Surprisingly, use-after-free errors in heap memory are a very common security 
vulnerability, second only to buffer overflow attacks on stack memory. The attack 
involves these steps: 

(a) Intentionally triggering a problematic free to gain a dangling pointer, 

(b) Waiting for something important to get allocated into the previously-
freed memory, and 

(c) Accessing or modifying the important data (e.g., Unix suid bits) via the 
dangling pointer. 

This sounds very complicated and unwieldy, but it’s been a very successful method 
of targeting vulnerabilities in C++ software. 

Detecting Use-After-Free 

The methods to detect use-after-free errors include: 

• Memory sanitizer runtime tools 

• Memory tagging 

• Memory poisoning (magic bytes) 

• Hardware-assisted memory block exceptions 

The main way to detect these sorts of errors is to use memory sanitizers, such as 
Valgrind or AddressSanitizer. These tools are very good at this stuff, and you should 
be running them in your nightly builds with a full regression test suite. It’s also 
useful to run these tools when using “fuzzing” (testing with many large random 
inputs), as a way to detect these memory errors on unexpected inputs. 

Some of the ways to reduce these errors, or to mitigate them as a security attack 
vector, include: 

• Never-free policies (where possible). 

• Delayed-free policies (with various configurations). 

• Random delayed free (less predictable delayed-free sequences). 
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Note that if you change the memory deallocation policy, you need to do it at a low 
level, such as in your own custom memory allocators, or in debug wrappers for 
allocation functions. You can’t just comment out all the delete statements in 
destructors, because it’s sometimes important that the destructors for these sub-
objects can still run. 

The idea of never deallocating any memory is horror-inspiring for most 
programmers. However, it’s a plausible idea for short batch programs that aren’t 
hanging around long enough for the leaks to matter. 

Also, one particular case is that you can disable memory deallocation whenever the 
program is shutting down, whether it’s a batch program or a long-running service. 
Program termination commonly triggers a huge volume of deallocation requests in 
destructors for stack, heap, and global objects, making it a fertile field for memory 
deallocation errors, not to mention that it also causes annoying slow program exits! 
Plenty of inadequately tested programs will crash on exit due to earlier heap 
corruptions. And yet, these deallocations don’t actually matter because the 
operating system will reclaim all the memory once the program shuts down. 

Double Deallocation Errors 

One special case of the use-after-free error is a double-free or a double-delete. 
A program crash is likely from this: 

    char *s = (char*)malloc(100); 

    free(s); 

    free(s);  // Boom! 

One minor mitigation is to clear the pointer to null whenever using any deallocation: 

    free(s); 

    s = NULL;  // safety 

Hence, the second call will do free(NULL), which is not a crash, and supposedly 
harmless according to the standards. 

You can do self-referential macro tricks with the comma operator: 

    #define free(s)  ( free((s)), (s) = NULL ) 
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Another way is that you can define wrapper functions with reference parameters: 

    #define free free_wrapper 

 

    inline void free_wrapper(void *&v) 

    { 

        free(v); 

        v = NULL;  // change reference parameter 

    } 

However, it’s harder to do these types of tricks for the delete operator because 
its syntax is not function-like. If only C++ had a more powerful preprocessor 
mode! 
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26. Array Bounds Violations 

What are Array Bounds Violations? 

Array bounds violations are memory errors where an array or buffer has its memory 
block bounds exceeded. For an array block of memory arr of size N, the valid 
range for the array index is 0..N-1. Array bounds violations come in two types: 

• Overflow — accessing arr[N] or larger N. 

• Underflow — accessing arr[-1] or earlier. 

Each of these two types of bounds violations also has two subtypes: 

• Write — modify the out-of-bounds memory. 

• Read — get a value from out-of-bounds memory. 

All types of memory blocks can be affected by overflows or underflows: 

• Global variables — these are stored in global memory. 

• C-style allocated memory — malloc and calloc allocations. 

• C++-style allocated memory — new and new[] memory. 

• Local variables in functions on the stack — such as string buffer variables. 

• Local static variables in functions — in global memory, not the stack. 

• Class data members — in whatever type of memory that contains the 
object (i.e., any). 

• Class static data members — these are in global memory. 

• Read-only memory regions — string literals and numeric constants, and 
simple const variables. 

There are a variety of lesser-known memory allocation functions, and also platform-
specific functions that allocate memory: 

• realloc — when it increases memory block size or moves the block. 

• aligned_alloc — allocation with address alignment restrictions. 

• cudaMalloc — CUDA C++ GPU memory allocation. 

• alloca memory — dynamically allocated stack memory. 

• sbrk — lower-level memory allocation controls. 
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Bounds Violation Detection Methods 

The methods to detect memory errors in general, including array bounds violations, 
include: 

• Sanitizer runtime tools — e.g., valgrind and AddressSanitizer. 

• DIY methods — as described in this chapter. 

The main advantage of the sanitizer tools is that they catch the errors immediately, 
as they happen. Unfortunately, they’re too slow to run all the time, or in production, 
but still should be running every night with all the automated regression tests. 

The DIY methods aim to be much faster, but tend to only catch buffer overruns 
after they have occurred, so it is not always clear when the buffer was previously 
overrun or what code caused it. However, some DIY methods can catch and 
prevent buffer overruns beforehand. The various DIY methods range in efficiency 
from adding only a single byte test (very fast) to a fully instrumented “memory 
wrapper library” that is as slow as the sanitizers. 

Sanitizers typically detect multiple types of errors in different memory. 
However, valgrind notably does not check stack buffers. The DIY methods for 
array overruns can also be combined with other techniques: 

• Uninitialized memory read detection. 

• Poisoned memory blocks usage. 

• Basic parameter validation (e.g., deallocation of a null address). 

The main techniques for DIY buffer overflow techniques include: 

• Canary regions (“redzones”) of extra bytes around the memory block. 

• Explicit checking of sizes and addresses at intercepted points. 

• Checking the last byte of a text buffer is the null byte. 

• Checking the last element of a non-text buffer (e.g., float array). 

The remainder of this chapter is about text buffers and detecting overruns without 
any canary redzone areas. Canaries and redzone memory regions for text and non-
text buffers are shown in Chapter 24. 
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Text Buffer Overruns 

The classic case of a text buffer overrun occurs on the stack: 

    char buf[3]; 

    strcpy(buf, "abcd"); 

The typical method to avoid such overflows is the “safe” string functions: 

• strncpy (with a big proviso!) 

• snprintf 

• strcpy_s 

There are a few disadvantages of these functions. Firstly, strncpy has issues 
(discussed below). These functions also have the problem that they silently truncate 
the string, without giving the programmer a way to detect that an overflow has 
occurred. No error messages! 

strncpy problems 

The funny thing is that strncpy in standard C or C++ is intended to help with 
array bounds, and yet it is literally the worst function. Sure, if the string is too long, 
it will avoid a buffer overrun right there. But it fills the whole buffer, which then 
leaves the string without a null byte at the end. Any subsequent use of the string 
(e.g., strlen) will be a buffer overrun.  

The solution is to manually add your own null byte: 

    strncpy(buf, sz, s); 

    buf[sz - 1] = 0;   // ensure null 

The better way is to declare your own strncpy safety wrapper: 

    inline char *safe_strncpy(char *dest, char *src, int n) 

    { 

        #undef strncpy  // remove wrapper 

        char *s = strncpy(dest, src, n); 

        dest[n - 1] = 0;  // ensure nulled 

        return s; 

    } 
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Then you should macro intercept all calls to strncpy, or otherwise ban them. 

    #define strncpy safe_strncpy 

A more advanced version of the safety wrapper would check for null parameter 
values. We’d also like to check the last byte was already null at the start, and that 
any canary redzones have not been changed by a prior buffer overrun. However, in 
the general case of intercepts, we cannot necessarily be sure that strncpy is 
occurring at the start of the buffer, or that the size is that of the whole buffer. 

Checking the Last Byte of Text Buffers 

This method is a buffer overrun detection method that uses the very last byte of a 
text string buffer. It only works for text strings, not for other types of arrays. The 
advantages include: 

• No extra memory overhead 

• Fast single-byte tests 

The main disadvantages of this quick approach: 

• After-the-fact detection (does not prevent the overrun). 

• No information on when and where it was overrun. 

Here’s how it works. Let’s assume that we have a simple buffer variable on the 
stack: 

    char buf[100]; 

Slightly better is to initialize it: 

    char buf[100] = ""; 

This avoids uninitialized memory usage, with a null at the first byte (and 99 
uninitialized characters), but this variable still has no overflow checking. 

 

 



285     Advanced C++ Memory Techniques 

The trick is to think about the last byte, not the first. Now, if we have such a text 
buffer that contains strings, then the last byte in the buffer is either: 

(a) the null byte (for a full buffer), or 

(b) unused (for a shorter string). 

We’d like to use this byte for overflow checking, but in the latter case, it could have 
a random value. Hence, the insightful trick is to always set the last byte to zero right 
at the start, even if we aren’t necessarily going to use it. Then we can be sure it must 
be zero at all times when using the buffer, or else there’s been a buffer overflow (at 
some time previously). We can be sure the last byte is zero for global text buffers, 
but not for stack variables or allocated buffers, so we have to add our own “set” 
method near the buffer initialization. 

With this idea, we can add some checks: 

    char buf[100]; 

    DEBUG_SET_BUFFER_OVERRUN(buf, 100);  // Set zero 

    // ... rest of function 

    DEBUG_CHECK_BUFFER_OVERRUN(buf, 100);  // Check zero 

The macros are quite small and efficient, only setting and checking a single byte of 
the array: 

    #define DEBUG_SET_BUFFER_OVERRUN(buf, len) ( \ 

        ((buf)[(len)-1] = 0)) 

 

    #define DEBUG_CHECK_BUFFER_OVERRUN(buf,len) \ 

        (( (buf)[(len)-1] == 0) ? \ 

           true /*ok*/ :\ 

           debug_buffer_overrun_failed((buf),(len))) 

This idea will work with any kind of memory block, where we know the size of the 
buffer, whether local, global, or heap memory. If you have a class object with a text 
buffer data member, then add the “set” macro in the constructor, and the “check” 
macro in the destructor (and optionally also other places along the way). 

We can clean this up a little with the sizeof operator. But be aware that there’s 
an insidious sizeof error if the buffer is ever a function parameter, in which case 
it returns the size of a pointer (too small).  
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Here’s the version: 

    char buf[100]; 

    DEBUG_SET_BUFFER_OVERRUN(buf, sizeof buf);  // Set zero 

    // ... rest of function 

    DEBUG_CHECK_BUFFER_OVERRUN(buf, sizeof buf);  // Check zero 

Note that we can actually use the check as often as we like, at any point where we 
think that a buffer overflow might have occurred. 

    char buf[100]; 

    DEBUG_SET_BUFFER_OVERRUN(buf, sizeof buf);  // Set zero 

    // ... some of the function 

    DEBUG_CHECK_BUFFER_OVERRUN(buf, sizeof buf); // Check middle 

    // ... rest of the function 

    DEBUG_CHECK_BUFFER_OVERRUN(buf, sizeof buf);  // Check final 

We can hide the sizeof operator behind a macro. Here are some macros based 
on this idea: 

    #define DEBUG_SET_BUFFER_OVERRUN(buf) ( \ 

        ((buf)[(sizeof(buf))-1] = 0)) 

 

    #define DEBUG_CHECK_BUFFER_OVERRUN(buf) \ 

        (( (buf)[(sizeof(buf))-1] == 0) ? \ 

           true /*ok*/ :\ 

                

         debug_buffer_overrun_failed((buf),(sizeof(buf)))) 

If you don’t like typing, you can do this: 

    #define SET DEBUG_SET_BUFFER_OVERRUN 

    #define CHK DEBUG_CHECK_BUFFER_OVERRUN 

Note that sizeof only works on local variables and global variables, but not for 
heap buffers or array function parameters. Hence, you can choose between both 
versions, and prefer the additional macro version with a separate length parameter 
in some cases, where the caller can provide the memory block size.  

Finally, note that we need to change the last byte, so this doesn’t work for read-
only constants (e.g., string literals), but they can’t really have buffer overruns 
anyway. 
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Smart Buffer Variable with Bounds Checking 

One way to add bounds checking of text buffers is to replace a simple char buffer 
with a smart buffer object. This is a “one-variable” solution because we change the 
original buffer to our smart object. The simple code is this: 

    char buf[100]; 

We write this instead: 

    SafeStackBuf<100> buf; 

The full class code is a template with an integer parameter, like this: 

    template<int bufsize>  

    class SafeStackBuf {    

        const char magicbyte = '@'; 

        static_assert(bufsize > 0); 

    private: 

        char m_buffer[bufsize];  // The stack buffer 

    private: 

        SafeStackBuf(const SafeStackBuf&) = delete; // disallow 

        void operator=(const SafeStackBuf&) = delete;  

    public: 

        SafeStackBuf() {   // Constructor 

            m_buffer[0] = 0;  // Ensure initialized 

            // Mark end for later overrun detection.. 

            m_buffer[bufsize - 1] = 0;  // Sentinel byte 

        } 

        void check_overflow() { 

            // Check for buffer overrun... (at some prior time) 

            if (m_buffer[bufsize - 1] != 0) {   

                // Sentinel byte changed 

                // Overrun detected (at some previous time)         

                AUSSIE_ERROR("ERROR: SafeStackBuf overflow”); 

            } 

        } 

        ~SafeStackBuf() { // Destructor 

            check_overflow(); 

        } 

        // Type conversion to "char*" type... 

        operator char* () { return m_buffer; }   

    }; 

Note that we defined a type conversion operator so that this smart buffer variable 
can hopefully be used without changing much of the other code in the function.  
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In theory, we should be able to compile-out the checking for production mode with 
this style (and no other code changes): 

    #if DEBUG 

        SafeStackBuf<100> buf; 

    #else 

        char buf[100]; 

    #endif 

An important advantage is that there’s literally no extra memory overhead. We’ve 
simply put the original text buffer inside an object framework, but it’s the same size. 
As for runtime overhead, there’s the extra “set” of the last byte in the constructor, 
and the “check” in the destructor, but these are inline functions, and should be 
the same as using the macro versions earlier. 

Two-Variable Smart Buffer Wrapper Class 

The two-variable version of using a smart buffer object puts the bounds overflow 
checking on the “outside” in a different object. This extra object does the “set” in 
its constructor (clearing the last byte to zero), and the “check” in its destructor.  

The way to set up the bounds overflow detection works looks like this with two 
separate variables: 

    char buf[100]; 

    SafeBufferWrap bufwrap(buf, sizeof buf); 

This is more elegant that the original macro versions, in that you don’t need to add 
an explicit “check” call at the end of the function, because the wrapper object’s 
destructor is automatically called when it goes out of scope. The wrapper object 
does the bounds overflow detection in the destructor, just before it disappears. 

One of the advantages of this two-variable approach over the one-variable smart 
buffer is that we can easily compile-out the bounds checking object for production.  
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The checking is not inherent to the buffer itself, and we can do this style and the 
overhead of the bounds checking completely disappears: 

        char buf[100]; 

    #if DEBUG 

        SafeBufferWrap bufwrap(buf, sizeof buf); 

    #endif 

Another advantage of the two-variable approach is that the original variable is 
unchanged, so there is no need to fuss about whether type conversions are working. 
The original variable uses the original code. No problems at all! 

Here’s what the full class looks like to implement this wrapper. Note that it’s not 
a template. 

    class SafeBufferWrap { // Safe wrapper for char[] buffer 

        const char magicbyte = '@'; 

    private: 

        char* m_string;  // Address this wrapper is tracking 

        int m_bufsize;   // Number of bytes allocated 

    public: 

        SafeBufferWrap() = delete; // disallow without string... 

        SafeBufferWrap(char* addr, int bufsize) {  // Initialize 

            ASSERT_RETURN(addr != NULL); 

            m_string = addr; 

            m_bufsize = bufsize; 

            // Set the overrun detection sentinel byte to zero 

            m_string[m_bufsize - 1] = 0; 

        } 

        void check_overflow() { // Check for overrun (prior)  

            if (m_string[m_bufsize - 1] != 0) { 

                // Detected overflow (but don’t know when) 

                AUSSIE_ERROR("ERROR: SafeBufferWrap overrun"); 

            } 

        } 

        ~SafeBufferWrap() { // Destructor 

            check_overflow(); 

        } 

        char* string() { return m_string; } 

        int size() { return m_bufsize; } 

    }; 

 

 

 

 

 

 

 



David Spuler                                              290 
 

The downside to this approach, when compared to the simple “set” and “check” 
macro versions, is two-fold: 

• Memory overhead from the extra object (a pointer and an integer). 

• Runtime overhead from storing data in the extra object (a couple extra 
assignments). 

Note that there’s nothing requiring this to be used on a stack buffer. Hence, you 
can use a wrapper object for allocated memory blocks, global arrays, or any other 
memory object, provided you supply the correct buffer size. The last byte has to be 
writeable, so this doesn’t work on read-only memory. 

Furthermore, this approach can be used in other ways, because the wrapper object 
does not need the same lifetime as the original buffer object. You can use a wrapper 
object multiple times for the same buffer, and you can also combine this approach 
with other calls to the earlier macros that check that the last byte is null. Too many 
options! 
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27. Poisoning Memory Blocks 

What is Poisoned Memory? 

Poisoning memory is a technique where memory blocks are intentionally set to non-
zero bytes, hoping to provide a failure if this memory block is used. The general 
breakdown of DIY memory safety C++ techniques includes: 

• Canary regions (“redzones”) around memory blocks. 

• Poisoned memory blocks inside the memory block. 

• Magic values stored at the start of a block. 

Hence, poisoned memory aims to detect some of these memory failures: 

• Uninitialized allocated memory use (e.g., malloc, new). 

• Uninitialized stack memory buffer usage. 

• Use-after-delete heap memory. 

• Use-after-free heap memory. 

• Use-after-return for stack memory blocks 

Hence, here are some of the places where we want to poison memory blocks: 

• new or new[] heap block — uninitialized heap memory. 

• malloc block — old-style uninitialized heap memory. 

• delete or delete[] — de-allocated heap block. 

• free — old-style de-allocated heap block. 

Those above examples are for the heap, but we also care about stack memory, and 
ideally we also want to poison: 

• Local buffer variables on entry to a function (uninitialized stack memory). 

• Returning from a function with a local buffer variable (invalid memory 
after stack unwind). 
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Note that we don’t need poisoning for these cases: 

• Global variable or object (already initialized to zero). 

• Class-level static data members (are initialized). 

• Function-local static variable (also zeroed in C++). 

And this makes a good point: if the C++ compiler auto-zeroed all the allocated and 
stack memory, we wouldn’t have to worry about this. Hence, I want a “-safe” 
flag for my compiler. 

Marking Poisoned Memory Blocks 

The simplest way to “poison” a block with bytes is simply to put a special value 
into every byte: 

    char buf[100]; 

    memset(buf, '@', sizeof buf); 

Here is a general utility routine to poison a buffer more elegantly. Note that this 
code does not poison the final byte in the buffer, so that any inadvertent use of the 
string in the buffer won’t actually go beyond the buffer. Whether you do or don’t 
want this to crash depends on context. 

    inline void aussie_poison_buffer(char* s, int bufsize,  

                                     char magicchar /* = '@'*/) 

    { 

        // PURPOSE: buffer is unused, mark with poison bytes. 

        // Put some very visible magic letters e.g., @@@@@ 

        // They can be tested in other use of the buffer,  

        // .. and also make any errors visible in output... 

        memset(s, bufsize - 1, magicchar); // Clear all but last 

        // Note: null byte after many @@@’s means  

        // it won’t crash on strlen/etc. 

        s[bufsize - 1] = 0;   // Put null byte at end for safety 

    } 

I like the use of multiple @ characters as a poisoned value, because it’s highly visible 
in a printout or HTML page. It’s also possible to quickly test for a likely poisoned 
address: 

    bool is_poisoned = s[0] == '@' && s[1]=='@' && s[2] == '@'; 
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We can make this into a macro: 

    #define is_poisoned(s) \ 

        ((s)[0] == '@' && (s)[1] == '@' && (s)[2] == '@') 

The preprocessor macro version really needs all those parentheses to avoid operator 
precedence errors, but also isn’t fully safe against any side-effects in the argument 
expression. Safer is to use a modern inline function version: 

    inline bool is_poisoned(const char *s)  

    { 

        return s[0] == '@' && s[1] == '@' && s[2] == '@'; 

    } 

This example is looking for three @’s in a row. It’s up to you whether you want to 
check for 1, 2, 3, or 4 bytes in a row. Fewer means more false positives, and one @ 
is probably too few, as it will get a false positive for every email address or social 
media handle in your input text. 

However, you can also use other poison byte values, such as special 
numbers (char)1 or (char)127 or some other escape. I prefer to use the range 
1..127 because you needn’t worry about signed versus unsigned char. Using 
an explicit type cast of the byte is annoying but omitting the cast is non-portable 
across different compilers, too. Note also that most 128..255 values are used in valid 
UTF8 for European or DBCS languages (or emojis!), but there are a few bytes that 
are not valid UTF8 (in which case, you have to be careful to cast to unsigned 
char when testing). 

Obviously, you cannot use the null byte or any commonly used character as the 
poison marker. Also, you would usually repeat the same byte in sequence, which is 
fast to set using memset. However, if you really prefer slower code with fewer false 
positives, you can use alternating byte patterns or other variations. 

Macro Intercepts of malloc and free 

The simplest method of poisoning newly allocated blocks with malloc is with 
preprocessor macro intercepts. Note that we don’t want to poison calloc, 
because it’s already initialized. Here’s the basic idea for the macro intercept in a 
header file: 

    #define malloc aussie_malloc 
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And here’s the basic idea for the wrapper function that initializes: 

    void* aussie_malloc(int sz) 

    { 

        #undef malloc  // avoid wrapper 

        void* v = malloc(sz, 1);   // Call real malloc 

        if (v) memset(v, '@', sz);  // Poison 

        return v; 

    } 

Link-Time Intercepts of new and delete 

The C++ memory allocation operators cannot be macro-intercepted because they 
are not a function-like syntax. However, link-time interception is a standard feature 
of C++ that has been supported for decades.  

Here’s the basic code to create a global link-time intercept for new, simply by 
defining your own version: 

    void* operator new(size_t n) 

    { 

        #undef malloc // avoid macro intercept 

        void* v = malloc(n); // Call malloc (Not ::new) 

        if (v) memset(v, '@', n);  // Poison 

        return v; 

    } 

Note that you need to exactly match the types, with a size_t parameter and 
a void* return type. And we also need to intercept delete, so that we can change 
it to free; otherwise there is a mismatch error. 

    void operator delete(void* v) 

    { 

        #undef free // avoid macro intercept 

        free(v);  // call the real free (Not delete!) 

    } 
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And we also need the pair of intercepted array allocate and deallocate versions: 

    void* operator new[](size_t n) 

    { 

        #undef malloc // avoid macro intercept 

        void* v = malloc(n1);  // Call malloc (Not ::new) 

        if (v) memset(v, '@', n);  // Poison 

        return v; 

    } 

 

    void operator delete[](void* v) 

    { 

        #undef free // avoid macro intercept 

        free(v);  // call the real free (Not delete here!) 

    } 

Poisoning Deallocated Memory Blocks 

Note that the above macro intercept of free and link-time intercept for 
the delete operator are not really doing anything. There’s no poisoning, and it 
just calls another deallocation routine. 

The main problem is that we don’t know the size of the block being deallocated, so 
how can we poison it? There’s no standard function for the size of a memory block. 

However, non-portable code to the rescue! The methods to get the size of a block 
from its address include: 

• _msize — Windows MSVS version. 

• malloc_usable_size — GCC version. 

• malloc_size — MacOS version. 

So, here’s what a semi-portable block size function would look like: 

    int size_of_block(void *addr) 

    { 

        #if DOS || MSVS || _MSC_VER 

            return _msize(addr); 

        #elif LINUX || UNIX || GCC 

            return malloc_usable_size(addr); 

        #elif MACOS 

            return malloc_size(addr); 

        #else 

        #error What is this platform? 

        #endif 

    } 
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Note that the _msize function actually fails with a runtime exception if the address 
is not the start of an allocated block (e.g., the middle of an allocated block, or a 
non-heap address). However, we can certainly use this in a deallocation sequence, 
which would crash anyway if we passed it a non-block address. 

Hence, we can use this idea to poison de-allocated memory in free using a macro 
interception: 

    #define free aussie_free 

And here’s the basic definition for the wrapper function that poisons freed memory: 

    void aussie_free(void *v) 

    { 

        int sz = size_of_block(v); 

        memset(v, '@', sz); 

        #undef free // avoid macro intercept 

        free(v);  // call the real free  

    } 

And here is the C++ delete operator version: 

    void operator delete(void* v) 

    { 

        int sz = size_of_block(v); 

        memset(v, '@', sz); 

        #undef free // avoid macro intercept 

        free(v);  // call the real free (Not delete here!) 

    } 

Poisoning Stack Buffer Memory 

Stack variables are still a problem, even if we’re intercepting all heap allocation 
primitives. The simple example of an uninitialized stack variable looks like this: 

    void my_stack_crash_function() 

    { 

        char buf[100]; 

        std::cerr << buf << std::endl; 

    } 

Fixing stack buffer usage is more difficult than heap memory. We cannot easily 
intercept when the stack frame is increased on function entry, nor when it is 
released on function returns.  
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Compiler vendors could do this, but it’s hidden from the programmer. There’s no 
way to use macros, and I’m not aware of any callback mechanisms or compiler 
settings to control the memory on the stack. 

Some of the possible approaches to poisoning uninitialized stack variables include: 

• Explicit calls to memset 

• Use smart buffer objects instead of local array buffers (i.e., a one-variable 
wrapper). 

• Use two-variable methods with smart buffer wrapping objects. 

• Macro-intercept the alloca dynamic stack block allocation method (but 
it’s rarely used, so this isn’t that valuable). 

This is the usual way of requiring an initialization, which obviates the need to do 
poisoning completely (except see below about partial buffers): 

    char buf[100] = ""; 

This is a worthwhile policy, and it fixes the bug in my above code example. The 
downside is that the whole buffer is not zero. 

Here’s the manual way to poison a stack variable: 

    char buf[100] = ""; 

    memset(buf + 1, '@', 100 - 1); 

And here’s the slightly improved way of poisoning with sizeof operator: 

    char buf[100] = ""; 

    memset(buf + 1, '@', sizeof buf - 1); 

And we can use a macro to reduce the chances of copy-paste errors: 

    #define POISON_STACK_BUFFER(buf) \ 

          memset((buf)+1, '@', sizeof(buf)-1) 

    // .... 

    char buf[100] = ""; 

    POISON_STACK_BUFFER(buf) 

But beware the trap of using sizeof on a parameter of a function, rather than a 
local variable. An array function parameter is a pointer, rather than a real array type, 
the result of sizeof is the 4 or 8 byte size of a pointer rather than the size of array 
buffer (i.e., too small).  
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Don’t do this: 

    void poison_my_buffer(char buf[100])  

    { 

        memset(buf, '@', sizeof buf);  // Bug with sizeof! 

    } 

The above methods are fine for poisoning the uninitialized part of a stack buffer, 
to detect a future use of uninitialized stack memory from the poisoned characters. 
But this doesn’t poison the stack memory once the function returns. Instead, to 
achieve this, we need to use a smart buffer class. 

Smart Stack Buffer Classes 

Another way to handle stack buffers, with poisoning both before usage and after 
function return, is to use smart buffer classes. There are two approaches: 

(a) One-variable method replacing the buffer with a class object, or 

(b) Two-variable method with a second variable that is a wrapper or 
“watcher” object of the buffer. 

The way to replace the buffer with a class looks like this: 

    char buf[100];  // Original 

    SmartStackBuffer<100> buf; // Template-based size 

Or you can do this, but it’s inefficient because it has to allocate on the heap instead 
of using stack memory, because it doesn’t rely on compile-time sizing of the object: 

    SmartStackBuffer buf(100);  // Really it’s on the heap 

The two-variable method looks like this: 

    char buf[100]; 

    SmartStackWrapper bufwrap(buf, sizeof buf); 

In this two-variable method, we use the character array buffer as usual. But the 
extra smart stack wrapper object does some extra work at the start, and at the end 
in its destructor. 
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The performance downside of the one-variable or two-variable smart buffer 
approach is that we’ve added class overhead to a very primitive type. On the other 
hand, we can make them all short functions that are declared as inline, so the 
performance hit is minimal. 

The overhead of smart buffer classes is more worthwhile when used to do a variety 
of checks. Using them on stack buffers can do all of these things (some of which 
are shown in other chapters): 

• Poison the stack buffer on entry to catch uninitialized memory usage. 

• Poison the unused portion of a partially-filled buffer. 

• Detect buffer overrun writes (after they occur, in the destructor). 

• Detect some buffer overrun reads/writes as they occur (with extra member 
functions). 

• Poison the stack memory on function return (in the destructor), to detect 
use-after-return. 

• Track stack memory block addresses in more detail. 

Stack Buffer Destructors 

The neatest thing about smart stack buffer objects it that the destructor runs 
whenever it goes out of scope, at the end of a code block or the end of the function. 
Hence, we don’t need to do anything extra to detect when the stack has unwound 
and the buffer is no longer valid memory. 

Here’s an example of the two-variable class wrapper method, which works like this: 

    char buf[1000]; 

    SafeBufferWrap bufwrap(buf, sizeof buf); 

Here’s the code and note that the stack object wrapper has both types of poisoning 
and also buffer overrun post-detection: 

    class SafeBufferWrap { // Safe wrapper for char[] buffers 

        const char magicbyte = '@'; 

    private: 

        char* m_string;  // Address this wrapper is tracking 

        int m_bufsize;   // Number of bytes allocated 

    public: 

        SafeBufferWrap() = delete; // disallow without string 

        SafeBufferWrap(char* addr, int bufsize) {  // Initialize 

            m_string = addr; 

            m_bufsize = bufsize; 

            memset(m_string, magicbyte, m_bufsize); // Poison! 

            // Set the overrun detection sentinel byte to zero 

            m_string[m_bufsize - 1] = 0; 

        } 
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        void check_overflow() { 

            // Check for buffer overrun... (at some prior time) 

            if (m_string[m_bufsize - 1] != 0) { 

                // Detected overflow (but don’t know when) 

                AUSSIE_ERROR("SafeBufferWrap overrun"); 

            } 

        } 

        ~SafeBufferWrap() { // Destructor 

            check_overflow(); 

            // Poison on stack unwind 

            memset(m_string, '@', m_bufsize);  

        } 

        char* string() { return m_string; } 

        int size() { return m_bufsize; } 

    }; 

Handling False Positives 

The idea with the above poison method is three @’s in a row indicates poisoned 
memory, as defined by the “is_poisoned” function above. If you prefer, it could 
be two or four characters. Regardless of the length, you’ll get a false positive if any 
input text contains that sequence. This is a “false positive” where an error is 
detected that is not real. 

How to handle false positives? 

The simplest idea is to ignore them, since the poisoning technique is mainly for use 
in development and testing phases, rather than in production. It’s better to suppress 
false positives, as they may otherwise hide real errors. For example, if your 
regression tests are somehow triggering a false positive error on every nightly build, 
add some code to suppress it. You can build a suppression method into your error 
reporting mechanism, such as simply searching for other string patterns related to 
the error, or by suppressing it based on context values found 
via __func__, __FILE__ or __LINE__. 

Poisoning Partial Memory Buffers 

It is useful to detect errors where there are “semantically unusable” memory bytes, 
even where the memory is still officially safe in C++ terms. A good example is 
copying a string into a larger buffer. 

    char buf[100] = ""; 

    snprintf(buf, 100, "abc"); 
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There is nothing wrong with the start of the buffer, and it has been safely copied 
using snprintf. However, any use of the end of the buffer beyond the string 
stored there has no valid meaning.  

In this case, it’s also uninitialized stack memory, but even if it was a fully-initialized 
global buffer, any use of that memory is still suspect. 

Hence, we want to mark indices 4..99 as invalid memory. There’s no standard way 
to do this in C++, but we can “poison” this area with special byte values. Here is 
the hand-coded version to do that with the above buffer: 

    int len = (int)strlen(buf); 

    memset(buf + len + 1, 100 - len - 1, '@'); 

Obviously, you can generalize that into a useful utility function. 

    void aussie_poison_unused_part_buffer(char* s,  

                 int maxbufsize, char magicchar /* = '@'*/) 

    { 

        // PURPOSE: buffer contains string, poison unused bytes 

        if (!s) { 

            AUSSIE_ASSERT(s != NULL); 

            return; 

        } 

        int len = (int)strlen(s); 

        int validbytes = len + 1;  // add 1 for the null byte 

        if (validbytes > maxbufsize) { 

            // Too many bytes (overrun the buffer already?) 

            AUSSIE_ASSERT(validbytes <= maxbufsize); 

            return;  // avoid this overrun! 

        } 

        int remaining_bytes = maxbufsize - validbytes; 

        if (remaining_bytes == 0) return;  // Buffer full 

        if (remaining_bytes > 1) { 

                // Poison bytes ... except last byte 

                memset(s + validbytes, magicchar, 

                     remaining_bytes - 1);   

        } 

        s[maxbufsize - 1] = 0;  // Null at very end for safety 

    } 
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Advanced Poisoning 

But wait, there’s more! If you really want the poisoning approach to be complete, 
there are various ways to uplevel: 

• Add automated checks for poisoned addresses via the “is_poisoned” 
function in intercepts of functions such as: strlen, strcmp, strcpy, 
etc. 

• Ensure the macro intercept header file is at the top of each C++ source 
file (after the system headers, but before any application headers). 

• Either include the macro intercept at the top of your header files, or ensure 
there’s no malloc or free used in inline functions in header files. 

• Macro-intercept other functions (e.g., realloc, alloca). 

• Linked third-party libraries will not get macro-intercepted, but will still 
work for link-time interception. 

• Header-only third-party libraries might need review of their memory 
allocation usage (e.g., maybe add your macro intercept header file before 
including them, or maybe not). 

• Any other custom allocators, such as class-specific ones, may need changes 
for this approach. 

• Add a compile-out preprocessor macro, because you’ll need to remove 
some of your poisonings when using a sanitizer or valgrind. 

• Detect whether a runtime memory sanitizer is already running (e.g., 
the RUNNING_ON_VALGRIND variable) and modify the approach (e.g., 
don’t use your own redzones, because these become valid memory in the 
silicon mind of the sanitizer). 

• Call the sanitizer APIs to poison memory blocks when running in a 
sanitizer mode (e.g., not usually necessary for heap or stack memory block 
issues, but useful for partially empty buffers). 

Poisoning API Usage 

One advanced usage is modifying your approach if a sanitizer such as ASan or 
Valgrind is running. You can detect these with features such as: 

• RUNNING_ON_VALGRIND — true if Valgrind is currently running. 

• __SANITIZE_ADDRESS__ preprocessor macro. 

• __has_feature(address_sanitizer) preprocessor test. 

The ASan examples above are preprocessor constructs that detect whether GCC is 
compiling the C++ in ASan mode (e.g., the -fsanitize=address option).  
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This isn’t exactly the same thing as whether ASan is currently active at runtime, but 
it’s a good proxy. 

The AddressSanitizer tool has macros whereby you can poison custom memory 
blocks, so that ASan will treat their use as an error. Valgrind also has a much larger 
range of functions, from custom allocator controls to explicit “poisoning” calls. 

ASAN poisoning API. The usage of the AddressSanitizer macros to control 
poisoning of memory blocks looks like: 

    ASAN_POISON_MEMORY_REGION(addr, size) 

    ASAN_UNPOISON_MEMORY_REGION(addr, size) 

There is also a runtime flag “allow_user_poisoning” that controls these, and 
can remove them for production code. 

Valgrind API. There’s also a lot of API macros for fine-grained control of memory 
blocks in Valgrind. These macros can be useful: 

• VALGRIND_MALLOCLIKE_BLOCK — mark a block as if it’s newly 
allocated. 

• VALGRIND_FREELIKE_BLOCK — mark as if this block is now freed. 

• VALGRIND_MAKE_MEM_UNDEFINED — data in this memory is 
undefined. 

• VALGRIND_MAKE_MEM_UNDEFINED — reset memory to be defined. 

• VALGRIND_MAKE_MEM_NOACCESS — any use of this memory is an 
error. 

The VALGRIND_MAKE_MEM_NOACCESS macro can be used to mark redzones or 
other poisoned regions, and VALGRIND_MAKE_MEM_UNDEFINED can mark 
memory as uninitialized. 

What are these used for? Manually marking of memory blocks as poisoned or 
freed can be useful to manage the status of memory for ASan, including situations 
such as: 

• Partial string buffer poisoning (as shown above). 

• Memory pools or class-specific memory allocators that pre-allocate a large 
memory block using the system allocator, but it is then later “allocated” in 
small chunks. 

• Data structures with initialized memory, whether cleared by constructors 
or allocated physically via calloc, but where the memory is not all used 
at a logical level. 
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• Custom memory allocators with fine-grained control over the memory 
blocks. 

• Implementing a “never-free” or “delayed-free” memory management 
method for better detection of use-after-free errors, thereby getting more 
warnings from ASan about uses of the pseudo-deallocated memory blocks, 
even if they haven’t really been freed yet. 

• High-level logic whereby a memory block is known to be no-longer-used 
by the program (e.g., after move semantics), or is otherwise invalid, but is 
still valid from a low-level system allocator perspective. 

In conclusion, the above has presented a variety of methods of poisoning both the 
uninitialized memory on the heap or stack, de-allocated heap memory, and 
unwound stack memory. The goal is to detect reads of uninitialized or invalid 
already-freed memory blocks. 

This chapter shows a variety of techniques, and these are a lot of extra work for the 
programmer. It would be better if the compiler vendors did this for us! Hence, I 
vote for a “-poison” option in the next compiler release. 
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28. Uninitialized Memory Safety 

What are Uninitialized Memory Errors? 

There are fundamental problems with memory initialized in C++. This is the 
standard C++ situation: 

• Global variables are initialized to zero. 

• Basic stack local variables are not initialized (buggy!). 

• Local static variables are initialized to zero. 

• Heap-allocated variables are sometimes initialized (buggy!). 

There are two main strategies for dealing with uninitialized memory: 

• Detect the problems (e.g., run sanitizers, or use poisoned memory DIY 
methods), or 

• Just fix them! 

This chapter is about ways to fix uninitialized memory usage in C++ by DIY 
initialization-to-zero tricks. Really, there should be a compiler “-safe” option that 
does this for you, but I’m not aware of a vendor that offers it yet. 

Initializing C++ Heap Memory 

The situation with memory initialization on the heap in C++ includes: 

• malloc memory is never initialized. 

• calloc initializes to zero always (hooray!). 

• new of object types relies on constructors to initialize. 

• new of arrays of objects relies on (many) constructors to initialize. 

• new of primitive data types does not initialize at all (single variables or 
arrays). 

• realloc does not initialize extra memory. 
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A first approach would be to fix these via a coding standard: 

• Never use malloc; only use calloc. 

• Never use new for basic data types (e.g., int). 

Here’s one simple try to automate this: 

    #define malloc(n)   calloc(1,(n)) 

Note that we cannot macro-intercept the new operator because it’s not function-
like. Further, we can’t really institute a coding policy of replacing the new operator 
with malloc, or delete with free, for any object types, because we need the 
constructors and destructors to run. We could do that for non-object types, such 
as basic data type arrays, but it becomes a problematic patchwork in itself. 

These are all worthwhile ideas, and will fix some issues. But it doesn’t address these 
uninitialized memory usage errors: 

• Forgetting to initialize a data member in a constructor. 

• Stack variables are not addressed. 

• Less common methods like realloc still have the problem. 

• Easy to get confused and mix-up the matching free and delete. 

Here’s another idea for fixing the uninitialized data member problems: 

    memset(this, 0, sizeof(*this)); // in constructor 

But this is an annoying manual coding intervention, and also doesn’t fully handle 
the issue, because it may get confused about the object size in base versus derived 
objects. 
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Intercepting Memory Allocation 

A more comprehensive approach is to intercept all of the memory allocation 
primitives. This is possible in this way: 

• Macro intercepts of malloc, calloc, and free. 

• Link-time intercepts of new and delete. 

There are also some platform-specific tricks that are neat. Microsoft CRT has a 
callback mechanism called “hooks” that gets called whenever an allocation occurs. 
You simply register your own callback functions. 

What do we do in these intercepts? The basic idea is: 

• Change malloc to calloc 

• Change new and new[] to use calloc. 

• Change delete and delete[] to use free (avoids mismatches). 

Note that there’s no problems with constructors and destructors with these 
intercepts, because they are low-level memory primitives. The new intercepts run 
before the constructors, and the delete intercepts run after the destructors. 

The bugs that we can fix with memory allocation interception include: 

• Uninitialized heap memory. 

• Mismatched new/delete with malloc/free. 

Macro Intercepts 

Here’s the basic idea for the macro intercept in a header file: 

    #define malloc aussie_malloc 

And here’s the basic idea for the wrapper function that initializes: 

    void* aussie_malloc(int sz) 

    { 

        #undef calloc  // avoid wrapper 

        void* v = calloc(sz, 1);   // Call real calloc 

        return v; 

    } 
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Link-Time Intercepts 

Here’s the basic code to create a global link-time intercepts: 

    void* operator new(size_t n) 

    { 

        #undef calloc // avoid macro intercept 

        void* v = calloc(n,1);  // Call calloc (Not ::new) 

        return v; 

    } 

 

    void operator delete(void* v) 

    { 

        #undef free // avoid macro intercept 

        free(v);  // call the real free (Not delete here!) 

    } 

And we also need the array versions: 

    void* operator new[](size_t n) 

    { 

        #undef calloc // avoid macro intercept 

        void* v = calloc(n,1); // Call calloc (Not ::new) 

        return v; 

    } 

 

    void operator delete[](void* v) 

    { 

        #undef free // avoid macro intercept 

        free(v); // call the real free (Not delete here!) 

    } 
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Advanced Intercepts 

To make these ideas as robust as possible, it’s necessary to do this work: 

• Ensure macro intercept header file is included at the top of every C++ file 

• Macro intercept headers may be needed at the top of some header files, 
too (e.g., for inline functions). 

• Add four C++ link intercept functions: basic and array overrides 
for new/new[] and delete/delete[] operators. 

• Intercept less common functions: realloc, aligned_alloc, etc. 

• Examine third-party allocation functions in non-header linked libraries 
(C++ allocation will be handled automatically by the link-time intercepts, 
but C-style allocations won’t be seen by the macro intercepts.) 

• Class-specific allocators may bypass this method, or not, depending on 
how they are implemented. 

• The Standard C++ library/STL uses a lot of C++ memory allocation, 
which isn’t necessarily a problem, but be aware of it. 

• Global or static C++ objects of your own or STL global variables will 
run your link-time intercept functions before the main function starts 
(again, not usually a problem). 

• Add an option to compile-out these initializations, such as for use when 
running sanitizers to detect uninitialized memory errors. 

On the other hand, ignore that last point. Why bother ever detecting them now? 
They’re fixed! Just initialize the memory to zero for ever after. 

One of the main downsides of the above methods is that these interception 
methods only work for the heap, and don’t help with the stack. We can’t use these 
two approaches of function-like macro interception or link-time interception with 
local stack variables. 
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Stack Buffer Initialization 

Stack variables are still a problem, even if we’re intercepting all heap allocation 
primitives. The simple example of an uninitialized stack variable looks like this: 

    void my_stack_crash_function() 

    { 

        char buf[100]; 

        printf("%s\n", buf); 

    } 

Fixing stack buffer usage is more difficult than heap memory. We cannot easily 
intercept when the stack frame is increased on function entry, nor when it is 
released on function returns. Compiler vendors could do this, but it’s hidden from 
the programmer. There’s no way to use macros, and I’m not aware of any callback 
mechanisms or compiler settings to always zero the stack. 

Some of the possible approaches include: 

• Require all local variables to be initialized. 

• Coding standard requirement to use memset or other methods after every 
stack array variable. 

• Use smart buffer objects instead of local array buffers (i.e., a one-variable 
wrapper object). 

• Use two-variable methods with smart buffer wrapping objects. 

• Macro-intercept the alloca dynamic stack block allocation method (but 
it’s rarely used, so this isn’t that valuable). 

There’s no easy method to do this comprehensively for stack memory, and I’m not 
aware of any compiler flags that guarantee zeroing of the stack frame on function 
entry. 

This is the usual way of requiring an initialization: 

    char buf[100] = “”; 

This is a worthwhile policy, and it fixes the bug in my above code example. The 
downside is that the whole buffer is not zero. 
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Here’s the manual way: 

    char buf[100] = “”; 

    memset(buf, 0, 100); 

And here’s the better way with sizeof operator: 

    char buf[100] = “”; 

    memset(buf, 0, sizeof buf); 

And we can use a macro to reduce the chances of copy-paste errors: 

    #define INIT_MY_BUFFER(buf) \ 

            memset((buf), 0, sizeof(buf)) 

    // .... 

    char buf[100] = ""; 

    INIT_MY_BUFFER(buf) 

But beware the trap of using sizeof for a parameter rather than a local variable. An 
array function parameter is a pointer, rather than a real array type, so it’ll be the size 
of a pointer rather than the size of a buffer (i.e., too small). Don’t do this: 

    void init_my_buffer(char buf[100])  

    { 

        memset(buf, 0, sizeof buf);   // Bug!! 

    } 

Smart Buffer Classes 

Another way to handle stack buffers is to use smart buffer classes. There are two 
approaches: either replace the buffer with a class object, or use a second variable 
that is a wrapper or “watcher” of the buffer. 

The way to replace the buffer with a class looks like this: 

    char buf[100];  // Original 

    SmartStackBuffer<100> buf;  // Smart buffer version 
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Or you can do this, but it’s inefficient because it has to allocate on the heap instead 
of using stack memory, because it doesn’t rely on compile-time sizing of the object: 

    SmartStackBuffer buf(100);  // Really it’s on the heap 

The performance downside is that we’ve added class overhead to a very primitive 
type. On the other hand, we can make them all short functions that are declared 
as inline, so the performance hit is minimal. 

I’m not especially fond of the idea of using smart buffer classes just for fixing 
uninitialized stack memory. After all, the memset ideas above are almost as good, 
and faster than adding class apparatus around a buffer. However, smart buffer 
classes are worthwhile because they can also do these things: 

• Detect buffer overrun writes (after they occur, in the destructor). 

• Detect some buffer overrun reads/writes as they occur (with extra member 
functions). 

• Poison the stack memory on function return (in the destructor), to detect 
use-after-return. 

• Track stack memory block addresses in more detail. 

In conclusion, the above has presented a variety of methods of making the 
uninitialized memory read error into a harmless non-issue. But it’s a variety of 
techniques, and a lot of extra work, so it would be better if the compiler vendors 
did this for us! 
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29. Smart Stack Buffers 

What are Smart Stack Buffers? 

The idea behind smart stack buffers is to use a light wrapper around any text buffers 
or arrays on the stack (i.e., a local variable inside a C++ function). The idea is 
reasonably efficient and convenient, because: 

• inline functions make it fast (even as a class wrapper). 

• Fast tests detect buffer overflow with a single arithmetic test. 

• Destructors are automatically executed whenever it goes out-of-scope (e.g., 
function returns), so we don’t need to track that. 

Here’s one way to use a class wrapper to track an automatic array buffer: 

    char stackbuf[1000] = ""; 

    SafeBufferWrap stackwrap(stackbuf, sizeof stackbuf); 

Note that this is a two-variable method: the original buffer is unchanged, but a 
second class object is used to check it. There are other methods whereby a class 
object is used instead of a text buffer variable, which we’ll explore further below. 

Why Use Smart Buffers? 

Why do we need this type of smartness? After all, the various sanitizers such 
as valgrind or AddressSanitizer (ASan), can find stack buffer overflows. 
Well, actually, the valgrind memory checker cannot find stack overflows, but 
only heap-allocated memory overflows, though at least ASan does detect stack 
variable glitches.The reason to use our own smart buffers is simple: it’s faster! 

Since the wrapper checking is much faster than sanitizers, we can just leave it 
running all the time. This means that we can detect these overflows: 

• Continuous detection during development and testing (by dev or QA). 

• Early detection in CI/CD workflows and nightly builds. 

• Optionally, could even be shipped to customers enabled (either when beta 
testing, or maybe even in production). 

• Helps tracking down intermittent and hard-to-reproduce cases. 
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We can’t realistically be running the sanitizers in any of those situations. I’m not 
saying to replace them, because it’s critically important to run full sanitizers on the 
overall regression test suite as part of your nightly builds. We can do both. 

Two-Variable Method 

Here’s the example wrapper class called SafeBufferWrap, which is initialized 
with the raw text buffer variable, and tracks it from the outside: 

    class SafeBufferWrap {   // Safe wrapper for char[] buffers 

    private: 

        char* m_string;  // Address buffer wrapper is tracking 

        int m_bufsize;   // Number of bytes allocated 

    public: 

        SafeBufferWrap() = delete; // disallow without a string 

        SafeBufferWrap(char* addr, int bufsize) {  // Initialize 

            ASSERT_RETURN(addr != NULL); 

            m_string = addr; 

            m_bufsize = bufsize; 

            // Set the overrun detection sentinel byte to zero 

            m_string[m_bufsize - 1] = 0; 

        } 

        void check_overflow() { 

            // Check for buffer overrun... (at some prior time) 

            if (m_string[m_bufsize - 1] != 0) { 

                // Detected overflow (but don’t know when) 

                AUSSIE_ERROR("SafeBufferWrap overrun"); 

             } 

        } 

        ~SafeBufferWrap() { // Destructor 

            check_overflow(); 

        } 

 

        char* string() { return m_string; } 

        int size() { return m_bufsize; } 

    }; 

It’s quite a lot of code, which gives it a “heavy” appearance, but note it’s actually 
quite “light” with relative efficiency. Firstly, all the functions can be inline. 
Secondly, the tripwire is to clear a single byte to null, and the test for overflow is a 
single byte test for non-null. That is very efficient. 
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Zeros and Canaries 

There are two ways to further extend this safe buffer wrapper idea: 

• Auto-initialize the buffer to all-zeros (safety). 

• Set the buffer to “canary” bytes (triggers failures). 

Note that the two ideas are mutually exclusive. We can either go for suppressing all 
the initialization errors, or we can intentionally set the buffer to non-zero values, so 
as to shake out more bugs. Less bugs, or more bugs, take your choice. Here’s the 
code with these two additional options: 

    #define SAFE_BUFFER_WRAP_CLEAR  1 // 1 inits bytes to 0 

    #define SAFE_BUFFER_WRAP_CANARY 1 // 1 inits to canary byte 

 

    class SafeBufferWrap {   // Safe wrapper for char[] buffers 

        const char magicbyte = '@'; 

    private: 

        char* m_string;  // Address this wrapper is tracking 

        int m_bufsize;   // Number of bytes allocated 

    public: 

        SafeBufferWrap() = delete; // disallow without a string 

        SafeBufferWrap(char* addr, int bufsize) {  // Initialize 

            ASSERT_RETURN(addr != NULL); 

            m_string = addr; 

            m_bufsize = bufsize; 

            // Optionally: clear all bytes to zero 

    #if SAFE_BUFFER_WRAP_CLEAR 

            memset(m_string, 0, m_bufsize);  // Clear to zero 

    #endif 

    #if SAFE_BUFFER_WRAP_CANARY 

            // Mark all buffer with canary bytes 

            memset(m_string, magicbyte/*'@'*/, m_bufsize);  

    #endif 

            // Set the overrun detection byte to zero 

            m_string[m_bufsize - 1] = 0; 

        } 

        void check_overflow() { 

            // Check for buffer overrun... (at some prior time) 

            if (m_string[m_bufsize - 1] != 0) { 

                // Detected overflow (but don’t know when) 

                AUSSIE_ERROR("SafeBufferWrap overrun"); 

            } 

        } 

        ~SafeBufferWrap() { // Destructor 

            check_overflow(); 

        } 

        char* string() { return m_string; } 

        int size() { return m_bufsize; } 

    }; 
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Limitations of Smart Buffers 

The limitations of this approach include: 

• After-the-fact detection of buffer overruns (we don’t know when it 
occurred, or what code caused the overrun). 

• Does not prevent the overrun so it won’t stop a crash and isn’t a protection 
against attackers. 

• Only detects writes beyond array bounds, not reads. 

Hence, we still need to do all that work to make sure that the buffers don’t overrun! 
And we still need to run the sanitizers in auto mode while we sleep. 
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30. Safe Text Buffers 

C-style sprintf is Unsafe 

The first assumption here is that you want to use sprintf rather than 
C++ std::string for performance. It’s hard to get a buffer overflow 
with std::string, because it manages its own allocated buffer, but feel free to 
try. The only problem is speed, because std::string will make calls to the 
memory allocator once the string exceeds about 16 characters in length. 

The C++ sprintf function for formatting strings is a long-standing part of C and 
C++, but it’s also unsafe. It can easily overflow a buffer, and there’s no way to 
know without inspecting the parameters in greater detail. Consider this code: 

    char buf[100]; 

    sprintf(buf, "%s", str);   // Buffer overflow? 

One marginally safer way is to use the precision markers, such as in: 

    char buf[100]; 

    sprintf(buf, "%.100s", str);   // Still overflows 

In this way, the output is limited to 100 bytes, but this is still an overflow because 
of the +1 for the null byte. We really need this: 

    char buf[100]; 

    sprintf(buf, "%.99s", str);   // No buffer overflow 

Somewhat Safer is snprintf 

The snprintf function is safer than sprintf. On some platforms, there is also 
the sprintf_s safe function. Here’s how snprintf works: 

    char buf[100]; 

    snprintf(buf, 100, "%s", str);   // Safer 

 



David Spuler                                              318 
 

We can write this more portably: 

    char buf[100]; 

    snprintf(buf, sizeof buf, "%s", str);   // Safer 

Problems with snprintf 

Although using snprintf will avoid a buffer overrun and a crash 
(whereas sprintf didn’t), there are still some limitations: 

• Not easy to detect if any overflow occurs (i.e., was prevented). 

• Difficult to use snprintf in the middle of a string. 

• Appending with snprintf is similarly tricky. 

Detecting Truncated Overflows with snprintf 

In many applications, you might want to know that a buffer overflow was avoided, 
such as by emitting an error message or throwing an exception. By 
default, snprintf will quietly truncate the output and do nothing else. 

It is possible to examine the return value of snprintf to know whether an 
overflow has been prevented and the output truncated. The returned value is an 
integer and it’s rather weird: 

The bytes that would have been output if there was enough room in buffer. 

If there’s no overflow, then snprintf returns the bytes output (excluding the 
terminating null byte), just like unsafe sprintf. If there’s an overflow, then the 
return value will be more than (or equal to) the size of the buffer. This seems odd, 
but it’s actually quite useful, because the way to detect an overflow is simply to 
compare the return code to the buffer size: 

    int bufsize = sizeof buf; 

    int ret = snprintf(buf, bufsize, "%s", s); 

    if (ret < 0) { 

        // snprintf failure... (can this really occur?) 

    } 

    else if (ret >= bufsize) { 

        // Overflow has occurred! (Truncated text) 

    } 

    else { 

        // Normal case.  

        // The string and its null byte fit in the buffer. 

    } 
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Note that if the return code exactly equals the buffer size (i.e., ret==bufsize), 
this is still an overflow because the extra null byte didn’t fit, and snprintf has 
truncated one character from the output string so as to leave room for the null byte. 

Macro Wrapping snprintf Return Codes 

The above code sequence is rather a lot of typing if you’re going to do that for every 
call to snprintf. Here’s a way to automate it, using a preprocessor macro 
intercept and an inline function to check the return code: 

    #undef snprintf 

    #define snprintf(dest, bufsize, ...) \ 

        aussie_snprintf_return_check( \ 

           snprintf(dest, bufsize,__VA_ARGS__), \ 

                  bufsize, __func__, __FILE__, __LINE__) 

This looks dangerous since the macro snprintf is also in the macro value. 
However, C++ preprocessor macros that are self-referential are only expanded 
once. This is standard functionality since inception for both C and C++. 

Note that this is using variable-arguments C++ macros, which are also standard 
C++ for many years now. These include the “...” and the “__VA_ARGS__” 
tokens. There’s also a useful __VA_OPT__ macro, but we don’t need it here. 

The above macro simply wraps the call to snprintf with another function whose 
only task is to check the return value. Here’s an example of that definition: 

    inline int aussie_snprintf_return_check( 

        int snprintf_retval, int bufsize,  

        const char* func, const char* file, int line 

        ) { 

        // PURPOSE: Wrapper for snprintf return value  

        if (snprintf_retval < 0) { 

            AUSSIE_ERROR_CONTEXT("snprintf returned negative", 

                    func, file, line); 

            return snprintf_retval;  // pass through 

        } 

        else if (snprintf_retval >= bufsize) { 

            int bytes_truncated = snprintf_retval - bufsize + 1; 

            // Optionally: report the bytes truncated, bufsize, 

            // etc., as extra error context... 

            AUSSIE_ERROR_CONTEXT("snprintf overflow truncated",  

                   func, file, line); 

            return snprintf_retval;  // pass through 

        } 

        return snprintf_retval;  // pass through 

    } 
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Unsafe Buffer Appending with sprintf 

It’s tricky to append to a string using sprintf or snprintf. Here’s the basic 
idiom for unsafe sprintf appending using strlen: 

    char xbuf[1000] = ""; 

    sprintf(xbuf + strlen(xbuf), "abc"); 

    sprintf(xbuf + strlen(xbuf), "def"); 

    sprintf(xbuf + strlen(xbuf), "xyz"); 

Note that this works even for the special case of an empty string, 
where strlen will return 0, and add nothing to the location. 

If you do this a lot, or the buffer is a massive text string (e.g., a long HTML 
document in memory), then the call to strlen is a slug. Marginally better is to 
maintain an incremental buffer pointer, so that the strlen calls are only from the 
current location, which is faster. 

    char* where = xbuf; 

    sprintf(where, "abc"); 

    where += strlen(where); // append 

    sprintf(where, "def"); 

    where += strlen(where); // append 

    sprintf(where, "xyz"); 

And you can micro-optimize this using the return code, which works for sprintf, 
which returns the number of bytes output. 

    char* where = xbuf; 

    where += sprintf(where, "abc"); 

    where += sprintf(where, "def"); 

    where += sprintf(where, "xyz"); 

But beware a pitfall: don’t do this trick for snprintf, because it doesn’t always 
return the actual bytes output, but returns the bytes it would have output, had it been 
in the right frame of mind. 

There’s only one problem with all those appending tricks: none of them are safe! 
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Safe Buffer Appending with snprintf 

How do we append safely to a buffer? We want to do this: 

    char xbuf[1000] = "abc"; 

    snprintf_append(xbuf, sizeof xbuf, "def"); 

But this function doesn’t exist. We have to try to define our own via a macro: 

    #define snprintf_append(dest, bufsize, ...) \ 

        do { \ 

         int snplentmp = (int)strlen((char*)dest); \ 

         snprintf((char*)(dest) + snplentmp,  \ 

              (bufsize) - snplentmp, __VA_ARGS__); \ 

        } while(0) 

As you can see, this figures out how far along the buffer to append using strlen. 
Then it adds that byte count to the location, but also reduces the buffer size by that 
amount. 

It’s difficult to return the value of snprintf in this statement-like macro. 
However, if we’re using the macro intercept with #define snprintf (as in prior 
sections), then the wrapped return value checking will also be occurring in this usage 
of snprintf, so maybe we don’t need to return the value to the caller. 

Again, the call to strlen can become a slug for large buffers, because it’s always 
scanning from the very start of the buffer. The alternative is to maintain a pointer 
to the end of the string, which is the location from which to append. Pointer 
arithmetic can compute the byte count more efficiently. 

    #define snprintf_append_end(dest, bufsize, endstr, ...) \ 

        do { \ 

         long int snplentmp = (long) ( \ 

              (char*)endstr - (char*)dest); \ 

         snprintf((char*)(dest) + snplentmp, \  

              (bufsize) - snplentmp, __VA_ARGS__); \ 

        } while(0) 

If we really do need to return the code through, then it’s hard to do this in a macro, 
which looks like a code block rather than a function-like macro. Instead of using a 
macro, you can define a C++ function with variable arguments, and then have it 
call the vsnprintf function. 
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    #include <stdarg.h> 

 

    int snprintf_append_function(char *dest, int bufsize,  

                                 char* format, ...) 

    { 

        va_list ap; 

 

        int len = (int)strlen(dest); 

        va_start(ap, format); 

        int ret = vsnprintf(dest+len, bufsize-len, format, ap); 

        va_end(ap); 

        return ret; 

    } 

Again, we can avoid the slowdown from the strlen call if we maintain another 
pointer to the end (or middle) of the text buffer: 

    #include <stdarg.h> 

 

    int snprintf_append_end_function(char* dest, int bufsize, 

                             char *endstr, char* format, ...) 

    { 

        va_list ap; 

 

        if (*endstr != 0) endstr += strlen(endstr);  // Safety 

        long int len = (long)((char*)endstr - (char*)dest); 

        va_start(ap, format); 

        int ret = vsnprintf(dest+len, bufsize-len, format, ap); 

        va_end(ap); 

        return ret; 

    } 

Actually, for a further optimization, the parameter endstr probably should be a 
reference parameter, so that its value is automatically updated in the calling code 
whenever it gets moved to the end. 

And one final safety point: we need to check the return value of vsnprintf, so 
that we know when an overflow caused a truncation. This is possible either through 
another macro intercept, like we did above for snprintf, or by adding extra code 
directly into the above varargs functions. 
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31. Preventive Memory Safety 

Prevention Versus Detection 

This chapter examines the question as to what DIY memory safety techniques can 
be used to prevent an error from occurring, or to prevent a security exploit being 
used. There are many other techniques to “detect” a memory error, which are 
valuable, but do not directly prevent a memory glitch in production. These improve 
quality indirectly by finding bugs, which can then be fixed. 

The list of memory errors to consider for prevention includes: 

• Uninitialized memory usage (heap and stack) 

• Null pointer dereference 

• Buffer overflows (reads and writes) 

• Buffer underflows (reads and writes) 

• Use-after-free 

• Double-deallocation 

• Mismatched allocation and deallocation 

• Standard library container memory issues 

• Standard library function problems 

Some of the standard library issues include: 

• Unsafe string functions — e.g., strcpy, strcat, sprintf. 

• Detecting when the “safe” string functions truncate the text 
(e.g., snprintf, strcpy_s). 

• strncpy is a special problematic case that is easily fixed by a wrapper. 

• File pointer problems and file operation sequence errors (e.g., null file 
pointers, double-fclose). 

• Removing an object from a container in the middle of an iterator. 

The DIY memory techniques that we can consider include: 

• Memory sanitizer tools 

• Macro intercepts (e.g., malloc and free) 

• Linker intercepts (e.g., new and delete) 
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Some more tricks: 

• Initialization methods 

• Canary values 

• Redzone memory regions 

• Memory poisoning 

• Delayed-deallocation 

• Safe wrapper functions 

• Smart wrapper classes 

Memory Sanitizer Tools 

The most obvious method of prevention of memory problems is to use runtime 
memory checkers and sanitizers. Examples include: 

• Valgrind (Linux) 

• AddressSanitizer (GCC) 

• compute-sanitizer (CUDA C++) 

These tools will detect and prevent a vast range of memory errors in the stack and 
heap. Examples include uninitialized memory usage, array bounds overflows, and 
use-after-free errors. 

But these tools are simply too slow to use in production. They are valuable in terms 
of indirectly improving memory safety because glitches are detected early and fixed 
by programmers. But they really don’t solve the prevention problem. 

Preventing Memory Initialization Errors 

One of the simplest DIY fixes is to avoid uninitialized memory errors in C++ by 
initializing memory ourselves. To do this, we need to use these techniques: 

• Intercept malloc with macros (or linking) and replace with a wrapper that 
uses calloc (or uses memset to zero). 

• Intercept other heap allocation primitives (e.g., strdup, realloc). 

• Link-time intercept new and change to calloc (also requires matching 
linker intercepts of delete to change to free). 

• Intercept alloca dynamic stack memory function (and use memset to 
zero memory). 

• Use smart buffer wrapper classes to initialize local buffer variables on the 
stack (i.e., function local variables). 
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A whole class of memory errors disappears! 

Most of the above techniques require minimal code changes to existing code, such 
as to add a header file for macro intercepts. Note that C++ already zeroes all 
memory for global variables and local static variables, without needing any 
special changes. 

The most invasive of the above methods is adding safety class wrappers for stack 
buffers, but there’s not really any intercepts possible in C++ for stack memory. 
Other possible solutions for stack buffers would involve changes to the code itself, 
such as to use heap memory instead, or changing to dynamic alloca stack 
memory (which can be macro-intercepted). 

Overall, there’s only a few exceptions to what memory we can initialize with DIY 
techniques, in that compiler changes are probably needed for: 

• Full stack frame initialization to zero on function entry. 

• Initialization of small local variables on the stack (without extra class 
wrapper variables). 

• Register variable initialization (also related to local variables). 

Mismatched Allocation and Deallocation 

Mismatches between the various types of allocation and deallocation cause 
undefined behavior, and can even crash. In some cases, they won’t crash, but will 
fail to run the correct constructors or destructors. The correct matches are: 

• malloc, calloc, strdup — free 

• new — delete 

• new[] — delete[] 

Any crossover between any of the three categories is technically a failure. However, 
these are easily resolved by DIY memory primitive wrappers. By using link-time 
intercepting of the four new and delete primitives, everything can be converted 
to malloc/calloc and free. In this way, there won’t be any crashes anymore, 
even if this error occurs. However, note that many of these failures are still higher-
level errors even if they don’t crash, because they won’t correctly run all the 
destructors if non-scalar objects are being deallocated. 
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Why Use Wrapper Functions? 

The idea of debug wrapper functions is to fill a small gap in the self-checking 
available in the C++ ecosystem. There are two types of self-testing that happen 
when you run C++ programs: 

• Self-tests such as error return checks, assertions, and wrappers in the main 
C++ code. 

• valgrind or sanitizer detection of numerous run-time errors. 

Both of these methods are highly capable and will catch a lot of bugs. To optimize 
your use of these capabilities in debugging, you should: 

• Test all error return codes (e.g., a fancy macro method), and 

• Run valgrind and/or other sanitizers on lots of unit tests and regression 
tests in your CI/CD approval process, or, when that gets too slow, at least 
in the nightly builds. 

But this is not perfection! But there’s two main reasons that some bugs will be 
missed: 

• Self-testing doesn’t detect all the bugs. 

• You have to remember to run sanitizers on your code. 

Okay, so I’m joking about “remembering” to run the debug tests, because you’ve 
probably got them running automatically in your build. But there’s some real cases 
where the application won’t ever be run in debug mode: 

• Many internal failures trigger no visible symptoms for users (silent failures). 

• Customers cannot run valgrind on their premises (unless you ask 
nicely). 

• Your website “customers” also cannot run it on the website backends. 

• Some applications are too costly to re-run just to debug an obscure error 
(I’m looking at you, AI training). 

Hence, in the first case, there’s bugs missed in total silence, never to be fixed. And 
in the latter cases, there’s a complex level of indirection between the failure 
occurring and the C++ programmer trying to reproduce it in the test lab. It’s much 
easier if your application self-diagnoses the error! 
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Fast Debug Wrapper Code 

But it’s too slow, I hear you say. Running the code with valgrind or other 
runtime memory checkers is much slower than without. We can’t ship an executable 
where the application has so much debug instrumentation that they’re running that 
much slower. 

You’re not wrong, and it’s the age-old quandary about whether to ship testing code. 
Fortunately, there are a few solutions: 

• Use fast self-testing tricks like magic numbers in memory. 

• Have a command-line flag or config option that turns debug tests on and 
off at runtime. 

• Have “fast” and “debug” versions of your executable (e.g., ship both to 
beta customers). 

At the very least, you could have a lot of your internal C++ code development and 
QA testing done on the debug wrapper version that self-detects and reports internal 
errors. 

As the first point states, there are “layers” of debugging wrappers (also ogres, like 
Shrek). You can define very fast or very slow types of self-checking code into debug 
wrapper code. These self-tests can be as simple as parameter null tests or as 
complex as detecting memory stomp overwrites with your own custom code. In 
approximate order of time cost, here are some ideas: 

• Parameter basic validation (e.g., null pointer tests). 

• Magic values added to the initial bytes of uninitialized and freed memory 
blocks. 

• Magic values stored in every byte of these blocks. 

• Tracking 1 or 2 (or 3) of the most recently allocated/freed addresses. 

• Hash tables to track addresses of every allocated or freed memory block. 

I’ve actually done all of the above for a debug library in standard C++. Make sure 
you check the Aussie AI website to see when it gets released. 
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Standard C++ Debug Wrapper Functions 

It can be helpful during debugging to wrap several standard C++ library function 
calls with your own versions, so as to add additional parameter validation and self-
checking code. Some of the functions which you might consider wrapping include: 

• malloc 

• calloc 

• memset 

• memcpy 

• memcmp 

If you’re doing string operations in your code, you might consider wrapping these: 

• strdup 

• strcmp 

• strcpy 

• sprintf 

Note that you can wrap the C++ “new” and “delete” operators at the linker level 
by defining your own versions, but not as macro intercepts. You can also intercept 
the “new[]” and “delete[]” array allocation versions at link-time. 

Example: Wrapping malloc 

You can use macros to intercept various standard C++ functions. For example, 
here’s a simple interception of malloc: 

    // intercept malloc 

    #undef malloc 

    #define malloc aussie_malloc 

    void*aussie_malloc(int sz); 

Once intercepted, the wrapper code can perform simple validation tests of the 
various parameters.  
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Here’s a simple wrapper for the malloc function in a debug library for C++ that 
I’m working on: 

    void *aussie_malloc(int sz) 

    { 

        // Debug wrapper version: malloc()  

        AUSSIE_DEBUGLIB_TRACE("malloc called"); 

        AUSSIE_DEBUG_PRINTF("%s: == ENTRY malloc === sz=%d\n",  

             __func__, sz); 

 

        g_aussie_malloc_count++; 

        AUSSIE_CHECK(sz != 0, "AUS007", "malloc size is zero"); 

        AUSSIE_CHECK(sz >= 0, "AUS008", "malloc size negative"); 

 

        // Call the real malloc 

        void *new_v = NULL; 

        new_v = malloc(sz); 

        if (new_v == NULL) { 

                AUSSIE_ERROR("AUS200", "ERROR: malloc failure"); 

                // Try to keep going? 

        }  

        return new_v; 

    } 

This actually has multiple levels of tests: 

• Validation of called parameter values. 

• Detection of memory allocation failure. 

• Builtin debug tracing macros that can be enabled. 

A more advanced version could also attempt to check pointer addresses are valid 
and have not been previously freed, and a variety of other memory errors. Coming 
soon! 

Example: memset Wrapper Self-Checks 

Here’s an example of what you can do in a wrapper function called 
“memset_wrapper” from one of the Aussie AI projects: 

    void *memset_wrapper(void *dest, int val, int sz)   

    { 

        if (dest == NULL) { 

            aussie_assert2(dest != NULL, "memset null dest"); 

            return NULL; 

        } 

        if (sz < 0) { // Why we have "int sz" not "size_t sz"  

            aussie_assert2(sz >= 0, "memset size negative"); 

            return dest;  // fail 
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        } 

        if (sz == 0) { 

            aussie_assert2(sz != 0, "memset zero size"); 

            return dest; 

        } 

        if (sz <= sizeof(void*)) { 

            // Suspiciously small size 

            aussie_assert2(sz > sizeof(void*),  

                   "memset with sizeof array parameter?"); 

            // Allow it, keep going 

        } 

        if (val >= 256) { 

            aussie_assert2(val < 256, "memset value not char"); 

            return dest; // fail 

        } 

        void* sret = ::memset(dest, val, sz);  // Call real one! 

        return sret; 

    } 

It’s a judgement call whether or not to leave the debug wrappers in place, in the 
vein of speed versus safety. Do you prefer sprinting to make your flight, or arriving two 
hours early? Here’s one way to remove the wrapper functions completely with the 
preprocessor if you’ve been manually changing them to the wrapper names: 

    #if DEBUG 

        // Debug mode, leave wrappers.. 

    #else // Production (remove them all) 

        #define memset_wrapper memset 

        //... others 

    #endif 

Compile-time self-testing macro wrappers 

Here’s an idea for combining the runtime debug wrapper function idea with some 
additional compile-time tests using static_assert. 

    #define memset(addr,ch,n) ( \ 

        static_assert(n != 0), \ 

        static_assert(ch == 0), \ 

     memset_wrapper((addr),(ch),(n),__FILE__,__LINE__,__func__)) 

The idea is interesting, but it doesn’t really work, because not all calls to 
the memset wrapper will have constant arguments for the character or the number 
of bytes, so the static_assert commands will fail in that case. You could use 
standard assertions, but this adds runtime cost. Note that it’s a self-referential 
macro, but that C++ guarantees it only gets expanded once (i.e., there’s no infinite 
recursion of preprocessor macros). 
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Preventing Null Pointer Dereferences 

A huge number of null pointer dereferences can be prevented and detected by 
wrapping the many standard library functions. Here’s a simple example of the 
intercept: 

    #define strcmp strcmp_safe 

And here’s the wrapper function with parameter validation checks that prevent null 
pointer crashes: 

    int strcmp_safe(const char* s1, const char* s2) 

    { 

        if (!s1 && s2) { 

            AUSSIE_ASSERT(s1); 

            return -1; 

        } 

        else if (s1 && !s2) { 

            AUSSIE_ASSERT(s2); 

            return 1; 

        } 

        else if (!s1 && !s2) { 

            AUSSIE_ASSERT(s1); 

            AUSSIE_ASSERT(s2); 

            return 0;  // Equal-ish 

        } 

        else { 

            // Both non-null 

            return strcmp(s1, s2); 

        } 

        // NOTREACHED 

   } 

Unfortunately, detecting null pointer usage requires compiler changes for direct 
pointer or array operations, such as: 

    *ptr = 0; 

    ptr->value = 0; 

    arr[0] = 0; 
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Generalized Self-Testing Debug Wrappers 

The technique of debug wrappers can be extended to offer a variety of self-testing 
and debug capabilities. The types of messages that can be emitted by debug 
wrappers include: 

• Input parameter validation failures (e.g., non-null) 

• Failure returns (e.g., allocation failures) 

• Common error usages 

• Informational tracing messages 

• Statistical tracking (e.g., call counts) 

Personally, I’ve built some quite extensive debug wrapping layers over the years. It 
always surprises me that this can be beneficial, because it would be easier if it were 
done fully by the standard libraries of compiler vendors. The level of debugging 
checks has been increasing significantly (e.g., in GCC), but I still find value in adding 
my own wrappers. 

There are several major areas where you can really self-check for a lot of problems 
with runtime debug wrappers: 

• File operations 

• Memory allocation 

• String operations 

Wrapping Math Functions 

It might seem that it’s not worth wrapping the mathematical functions, as their 
failures are rare. However, these are some things you can check: 

• errno is already set on entry. 

• errno is set afterwards (if not already set). 

• Function returns NaN. 

• Function returns negative zero. 

Most of these can be implemented as a single integer test (e.g., errno) or as a 
bitwise trick on the underlying floating-point representation (e.g., 
convert float to an unsigned). There are also builtin library functions to detect 
floating-point categories such as NaN. 
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In this way, a set of math wrapper functions has automated a lot of your detection 
of common issues. These aren’t as common as memory issue, but it’s yet another 
way to move towards a safe C++ implementation. 

Wrapping File Operations 

Many of the file operations are done via function calls, and are a good candidate 
for debug wrapper functions. Examples of standard C++ functions that you could 
intercept include: 

• fopen, fread, fwrite, fseek, fclose 

• open, read, write, creat, close 

Note that intercepting fstream operations in this way is not workable. They don’t 
use a function-like syntax for file operations. 

Using the approach of wrapping file operations can add error detection, error 
prevention, and tracing capabilities to these operations. Undefined situations and 
errors that can be auto-detected include: 

• File did not open (i.e., trace this). 

• Read or write failed or was truncated. 

• Read and write without intervening seek operation. 

Link-Time Interception: new and delete 

Macro interception works for C++ functions like the standard C++ functions 
like malloc and free, but unfortunately you really can’t possibly macro-intercept 
the new and delete operators, because they don’t use function-like syntax. 
Fortunately, you can use link-time interception of these operators instead, simply 
by defining your own versions. This is a standard feature of C++ that has been long 
supported. 

Note that defining class-level versions of the new and delete operators is a well-
known optimization for a class to manage its own memory allocation pool, but this 
isn’t what we’re doing here. Instead, this link-time interception requires defining 
four operators at global scope: 

• new 

• new[] 

• delete 

• delete[] 
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You cannot use the real new and delete inside these link-time wrappers. They 
would get intercepted again, and you’d have infinite stack recursion. 

However, you can call malloc and free instead, assuming they aren’t also macro-
intercepted in this code. Here’s the simplest versions: 

    void * operator new(size_t n) 

    { 

        return malloc(n);         

    } 

 

    void* operator new[](size_t n) 

    { 

        return malloc(n);         

    } 

 

    void operator delete(void* v) 

    { 

        free(v); 

    } 

 

    void operator delete[](void* v) 

    { 

        free(v); 

    } 

This method of link-time interception is an officially sanctioned standard C++ 
language feature since the 1990s. Be careful, though, that the return types and 
parameter types are precise, using size_t and void*, as you cannot 
use int or char*. Also, declaring these functions as inline gets a compilation 
warning, and is presumably ignored by the compiler, as this requires link-time 
interception. 

Here’s an example of some ideas of some basic possible checks: 

    void * operator new(size_t n) 

    { 

        if (n == 0) { 

            AUSSIE_ERROR("new operator size is zero\n"); 

        } 

        void *v = malloc(n);         

        if (v == NULL) { 

            AUSSIE_ERROR("new operator: alloc failure\n"); 

        }         

        return v; 

    } 
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Note that you can’t use __FILE__ or __LINE__ as these are link-time intercepts, 
not macros. Maybe you could use std::backtrace instead, but I have my 
doubts. 

Destructor Problems with Debug Wrappers 

The use of a debug wrapper library can be very valuable. However, there are a few 
problematic areas: 

• Destructors should not throw an exception. 

• Destructors should not call exit or abort. 

• Destructor issues with assert. 

Any of these happenstances can trigger an infinite loop situation. Exception 
handlers can trigger destructors, which in turn trigger exceptions again. Exiting or 
aborting in a destructor may trigger global variable destruction, which calls the same 
destructor, which tries to exit or abort again (and loops). Be careful of the 
system assert macro inside destructors, because it’s a hidden call to abort if it 
fails. 

Although these infinite-looping problems are serious, it would seem that these are 
minor issues to add to your coding standards: don’t do these things inside a 
destructor. However, we’re talking about debug wrapper libraries, rather than 
explicit calls, and destructors often have need to: 

• De-allocate memory 

• Close files 

Both of these tasks are often intercepted by debug wrapper libraries, whether 
macro-intercepted or at link-time. Hence, the issue we have is that any failure 
detected by the debug wrapper code may trigger one of the above disallowed calls, 
depending on our policy for handling a detected failure. 

Unfortunately, I’m not aware of an API that checks if “I’m running a destructor” 
in C++. Hence, it’s hard for the debug library to address this issue itself. There are 
a few mitigations you can use in coding destructors: 

• Recursive re-entry detection inside destructors using a static local 
variable. 

• Modify the debug library’s error handling flags on entry and exit of a 
destructor 

• Have global flags called “I’m exiting” or “I’m failing” that are checked by 
all your destructors, in which case it should probably do nothing. 
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Alternatively, you could manage your own global flag “I’m in a destructor” in every 
destructor function. More accurately, this is not a flag, but a counter of destructor 
depth. This flag or counter is then checked by the debug library to check if it’s in a 
destructor before it throws an exception, exits, or aborts. 

But I’m not sure what the debug library should do instead? Maybe it can itself set a 
global flag saying “I want to exit soon” and then it will later detect this flag is set 
on the next intercepted call to the debug library, provided that it’s not still inside a 
destructor. Perhaps your application’s main processing loop could regularly check 
with the debug library whether it wants to quit, by just checking that global variable 
often. 

Ugh! None of that sounds workable. 

A better plan is probably that your debugging library wrapper functions should 
never throw an exception, exit, abort, or use the builtin system assert function, 
because it can’t ever be sure it’s not inside a destructor. Instead, report errors and 
log errors in another way, but try to keep going, which is a good idea anyway. 
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Appendix: Source Code 

Tester Object Instrumentation Class 

This code is for “object instrumentation” that can be useful for performance 
analysis, and also for debugging and unit testing. 

Here’s a test usage to see what constructors and move operations are performed 
by push_back in the std::vector class: 

    Tester::reset_counters(); 

    std::vector<Tester> vectest4; 

    for (int i = 1; i <= 100; i++)  

        vectest4.push_back(i); 

    Tester::print_report(); 

Here’s the full code: 

    class Tester { 

    private:  // Static data members 

        static bool traceall_; 

        static int count_default_constructor; 

        static int count_copy_constructor; 

        static int count_move_constructor; 

        static int count_copy_assignment; 

        static int count_move_assignment; 

        static int count_destructor; 

        static int count_int_constructor; 

 

    private:  // Object data members 

        int ival_; 

        bool trace_; 

 

    public: 

        Tester() { 

            ival_ = 0; 

            count_default_constructor++; 

            trace_ = false; 

            if (traceall_) { 

                cout << "Tester: default constructor: "  

                     << ival_ << endl; 

            } 

        } 
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        Tester(int val) { 

            count_int_constructor++; 

            ival_ = val; 

            trace_ = false; 

            if (traceall_) { 

                cout << "Tester: int constructor: "  

                     << ival_ << endl; 

            } 

        } 

 

        Tester(const Tester &other)  // Copy constructor 

        { 

            ival_ = other.ival_; 

            trace_ = other.trace_; 

            count_copy_constructor++; 

            if (trace_ || traceall_) { 

                cout << "Tester: copy constructor: "   

                     << ival_ << endl; 

            } 

        } 

 

        Tester(Tester&& other) noexcept  // Move constructor 

        { 

            ival_ = other.ival_; 

            trace_ = other.trace_; 

            other.ival_ = -1;  // Invalidate moved data 

            count_move_constructor++; 

            if (trace_ || traceall_) { 

                cout << "Tester: move constructor: "  

                     << ival_ << endl; 

            } 

        } 

 

        Tester& operator=(const Tester& other)  // Copy assign 

        { 

            count_copy_assignment++; 

            if (this != &other) {  // Avoid aliasing 

                ival_ = other.ival_; 

                if (trace_ || traceall_) { 

                    cout << "Tester: copy assignment: "  

                         << ival_ << endl; 

                } 

            } 

            else { 

                if (trace_ || traceall_) { 

                    cout << "Tester: copy assignment aliasing: " 

                         << ival_ << endl; 

                } 

            } 

            return *this; 

        } 
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        Tester& operator=(Tester&& other) noexcept 

        { 

            count_move_assignment++; 

            if (this != &other) {  // Avoid aliasing 

                ival_ = other.ival_; 

                if (trace_ || traceall_) { 

                    cout << "Tester: move assignment: "  

                         << ival_ << endl; 

                } 

            } 

            else { 

                if (trace_ || traceall_) { 

                    cout << "Tester: move assignment aliasing: " 

                         << ival_ << endl; 

                } 

            } 

            other.ival_ = -1;  // Invalidate moved data 

            return *this; 

        } 

 

        ~Tester() 

        { 

            count_destructor++; 

            if (trace_ || traceall_) { 

                cout << "Tester: destructor: " << ival_ << endl; 

            } 

            ival_ = -1;  // Safety 

        } 

 

        // Equality operators 

        bool operator==(const Tester& other) {  

             return ival_ == other.ival_;  

        } 

 

 

        // Setters for object members 

        void trace(bool bval) { trace_ = bval; } 

 

        // Setters for static data members 

        static void traceall(bool bval) { traceall_ = bval; } 

        static void reset_counters() { 

            count_default_constructor = 0; 

            count_copy_constructor = 0; 

            count_move_constructor = 0; 

            count_copy_assignment = 0; 

            count_move_assignment = 0; 

            count_destructor = 0; 

            count_int_constructor = 0; 

        } 

        static void print_report() { 

            cout << "Tester Count Report" << endl; 

            cout << "- Default constructor: "  

                 << count_default_constructor << endl; 

            cout << "- Int constructor: "  

                 << count_int_constructor << endl; 
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            cout << "- Copy constructor: "  

                 << count_copy_constructor << endl; 

            cout << "- Move constructor: "  

                 << count_move_constructor << endl; 

            cout << "- Copy assignment: "  

                 << count_copy_assignment << endl; 

            cout << "- Move assignment: "  

                 << count_move_assignment << endl; 

            cout << "- Destructor: "  

                 << count_destructor << endl; 

        } 

 

        static void selftest() { 

            // Constructors should equal destructors 

            // ... but move constructors don’t increase count 

            int errors = 0; 

            int total_constructors = count_default_constructor  

                 + count_int_constructor  

                 + count_copy_constructor; 

            if (total_constructors != count_destructor) { 

                if (total_constructors > count_destructor) { 

                    cout << "Tester selftest: constructors ("  

                         << total_constructors  

                         << ") more than destructors ("  

                         << count_destructor << ")" << endl; 

                    errors++; 

                } 

                else { 

                    cout << "Tester selftest: destructors ("  

                         << count_destructor  

                         << ") more than constructors ("  

                         << total_constructors << ")" << endl; 

                    errors++; 

                } 

            } 

 

            if (errors == 0) { 

                cout << "Tester selftest: no errors" << endl; 

            } 

        } 

 

    }; 

 

    // Define Tester static data members 

    bool Tester::traceall_ = false; 

    int Tester::count_default_constructor = 0; 

    int Tester::count_copy_constructor = 0; 

    int Tester::count_move_constructor = 0; 

    int Tester::count_copy_assignment = 0; 

    int Tester::count_move_assignment = 0; 

    int Tester::count_destructor = 0; 

    int Tester::count_int_constructor = 0; 
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Intercepted new and delete 

This source code is the global scope intercept functions for 
the new and delete operators. The library tracks basic statistics about calls and 
bytes allocated. 

    // Global counters 

    unsigned long int s_new_count = 0; 

    unsigned long int s_newarr_count = 0; 

    unsigned long int s_delete_count = 0; 

    unsigned long int s_deletearr_count = 0; 

    unsigned long int s_new_bytes = 0; 

    unsigned long int s_newarr_bytes = 0; 

 

    void memory_reset_counters() 

    { 

        s_new_count = 0; 

        s_newarr_count = 0; 

        s_delete_count = 0; 

        s_deletearr_count = 0; 

        s_new_bytes = 0; 

        s_newarr_bytes = 0; 

    } 

 

    void memory_report() 

    { 

        cout << "MEMORY CALLS REPORT" << endl; 

        cout << "- new calls: " << s_new_count << endl; 

        cout << "- new[] calls: " << s_newarr_count << endl; 

        cout << "- delete calls: " << s_delete_count << endl; 

        cout << "- delete[] calls: " << s_deletearr_count<<endl; 

        cout << "MEMORY SIZE REPORT" << endl; 

        cout << "- new bytes: " << s_new_bytes << endl; 

        cout << "- new[] bytes: " << s_newarr_bytes << endl; 

    } 

 

    void* operator new(size_t n) 

    { 

        s_new_count++;  

        s_new_bytes += n; 

        return malloc(n); 

    } 

 

    void* operator new[](size_t n) 

    { 

        s_newarr_count++; 

        s_newarr_bytes += n; 

        return malloc(n); 

    } 

 

 

 



David Spuler                                              342 
 

    void operator delete(void* v) 

    { 

        s_delete_count++; 

        free(v); 

    } 

 

    void operator delete[](void* v) 

    { 

        s_deletearr_count++; 

        free(v); 

    } 

 


