Advanced C++
Memory Techniques

Efficiency and Safety

David Spuler

Aussie Al Labs



Copyright © David Spuler, 2025. All rights reserved.

Published by Aussie Al Labs Pty Ltd, Adelaide, Australia.
https://www.aussieai.com

First published: June 2025.

This book is copyright. Subject to statutory exceptions and to the provisions of
any separate licensing agreements, no reproduction of any part of this book is

allowed without prior written permission from the publisher.

All registered or unregistered trademarks mentioned in this book are owned by
their respective rightsholders.

Neither author nor publisher guarantee the persistence or accuracy of URLs for
external or third-party internet websites referred to in this book, and do not
guarantee that any content on such websites is, or will remain, accurate or
appropriate.

David Spuler 2



About the Author

David Spuleris a C++ expert and serial technology entrepreneur who has
combined his love of writing with Al technology in his latest venture: Aussie Al is
a suite of tools for writing and editing, with a focus on fiction from short stories to
full-length novels. His published works include three advanced C++ books (low
latency, data structures, and safety), two generative Al LLM books, two CUDA
C++ books, four non-fiction textbooks on C++ programming covering
introductory and advanced C++ programming, efficiency and optimization,
debugging and testing, and software development tools, and one application
management book.

Other than writing, he’s an avid Al researcher with a Ph.D. in Computer Science
and decades of professional experience. Most recently, Dr. Spuler has been
founding startups, including the current Aussie Al startup and multiple high-traffic
website platforms with millions of monthly uniques, including an e-health startup
acquired by HealthGrades, Inc. Prior roles in the corporate world have been as a
software industry executive at BMC Software, M&A advisor, strategy consultant,
patent expert, and prolific C++ coder with expertise in autonomous agents,
compiler construction, internationalization, ontologies and AI/ML. Contact by
email to research@aussieai.com or connect via LinkedIn.

3 Advanced C++ Memory Techniques



David Spuler



Preface

Why a Book on C++ Memory?

Memory is everything! It’s space, it’s speed, and it’s many bugs. There are so many
aspects to using memory optimization techniques in C++, while avoiding all the
pitfalls, that the humble RAM chip full deserves its own book.

Please Leave a Review

I hope you enjoy the book! Please consider leaving a review on the website where
you purchased the book. Since few readers do this, each review is important to me,
and I read them all personally.

Feedback and Contacts

Feedback from readers is welcome. Please feel free to tell us what you think of the
book, the literature review, or our Aussie Al software. Contact us by email
via support@aussieai.com.

Other Books by the Author
If you want fast code, here are a number of other books on efficient C++ coding:

e FEfficient Modern C++ Data Structures: Container and Algorithm

Optimizations
o (C++ [Low Latency: Multithreading and Hotpath Optimizations
e Safe C++: Fixing Memory Safety Issues

And some more with a particular focus on Al and fast LLM backends in C++:

e Generative Al Applications: Planning, Design, and Implementation
e  Generative Al in C++: Coding Transformers and L.I.Ms

And if you’re a fan of going super-parallel with GPU chips:

e CUDA C++ Optimization: Programming Faster GPU Kernels
e CUDA C++ Debugging: Safer GPU Kernels

5 Advanced C++ Memory Techniques


https://www.amazon.com/dp/B0F88FPV7L/
https://www.amazon.com/dp/B0F88FPV7L/
https://www.amazon.com/dp/B0F2SNYS3L
https://www.amazon.com/gp/product/B0DK9LM8H3
https://www.amazon.com/dp/B0DMMVCMPQ
https://www.amazon.com/Generative-AI-Coding-Transformers-LLMs/dp/B0D14LHGZ6/
https://www.amazon.com/gp/product/B0DK21QQYD
https://www.amazon.com/gp/product/B0DK19V6NH

About Aussie Al

Aussie Al is a platform for the development of consumer Al applications, with a
special focus on Al-based writing and editing tools for fiction. Our premier
applications offer an extensive range of reports and error checks for both fiction
and non-fiction writing, from a full-length novel to a short report. Please try it out
and let us know what you think: https://www.aussieai.com

Our AI Research

The primary focus of research at Aussie Al is on optimizing LLM inference
algorithms (i.e., “running” the model after training or fine-tuning), and our research
is toward the following aims:

e Tast on-device model inference algorithms, specifically for smartphones
and Al PCs.

e Scaling inference algorithms to large volumes of requests.

e Efficient GPU inference algorithms (hardware acceleration).

¢ Non-GPU inference optimization algorithms (i.e., software methods).

Disclosure: Minimal Al Authorship

Despite my being involved in the Al industry, there was almost no Al engine usage
in creating this book’s text or its coding examples. Some text has been analyzed and
reviewed using Aussie Al’s editing tools, but not even one paragraph was auto-
created by any generative Al engine. All of the CUDA C++ code is also human-
written, without involvement of any Al coding copilot tools. I mean, who needs
them?

However, Al was used in several ways. Al-assisted search tools, such as “Bing Chat
with GPT-4”, were very useful in brainstorming topics and researching some of the
technical issues. The main cover art image was Al-generated, followed by human
editing.

Disclaimets

Although I hope the information is useful to you, neither the content nor code in
this work is guaranteed for any particular purpose. Nothing herein is intended to
be personal, medical, financial or legal advice. You should make your own enquiries
to confirm the appropriateness to your situation of any information.

David Spuler 6


https://www.aussieai.com/

Many code examples are simplistic and have been included for explanatory or
educational benefit, and are therefore lacking in terms of correctness, quality,
functionality, or reliability. For example, some of the examples ate not good at
handling the special floating-point values such as negative zero, NaN, or Inf.

Oh, and sometimes I’'m being sarcastic, or making a joke, but it’s hard to know
when, because there’s also a saying that “Truth is often said in jest!” Your Al engine
certainly won’t be able to help you sort out that conundrum.

Third-Party License Notices

Except where expressly noted, all content and code is written by David Spuler or
the contributors, with copytight and other rights owned by David Spuler and/or
Aussie AL

Additional information, acknowledgments and legal notices in relation to this book,
the C++ source code, or other Aussie Al software, can be found on the Aussie Al

Legal Notices page: https://www.aussieai.com/admin /legal-notices.

7 Advanced C++ Memory Techniques


https://www.aussieai.com/admin/legal-notices

Table of Contents

ADBOUL the AUTNOT ...c.viiiiiiiiic s 3
Preface ... 5
Table of CONtENTS.....c.ciiiiiiiiii 8
Part I: Memory Optimization Techniques .......c.cccovreeeiirreeeiireeencirreeeccenenen. 19
1. C++ Memory Primitives .....cccecieeiiiiniiiniiieiiieiiiencieniiensinisrsessennes 21
Memory FUNCHONS .uveiiiiiiiiiiiien i 21
Stack Memory Management......uiiiiiiiiniiiniiiieiic ittt 22
Platform-Specific Memory Management .......oeuevveiuiiiiiniiininiieiieenieeseeseens 22
Address AGNMENT wueiviiiiiiiiiiiii s 23
Unix and Linux Memory Management......cuvveenieiiieininninnnieineeieneens 23
Windows Memory Management ...ueeieeiieiieiniienieiieiic e 24
Size of Allocated Heap BlocK......cociiviiiviiiiiiniiiiiiiiiiiiiics 25
C++ Compiler Hardening ......coovevviiiiiniiiniiniiiiiiiiiiciciecnes 26
b - Tl 1= o Yor-1 L1 4V 2SRt 27
What is Cache LoOCality? ...ccueevviiiiiiniiiiiiiiiiiiciicie 27
Instruction Cache LOCAlty ..ccvviiiiiiiiiiiiniiiiiiniiniiii 28
Data Cache Locality......ccovvviiiiiiiiiiiiiiiiiiiiiiiiii s 29
Memory HIerarchy...ovieiiiiiiiiiiciiciiiciicini i 30
Thread-Local StOrage.......ccvvviiiiiiiiiiiiiii i 31
REfEIENCES teeiuriiieiiteeee et s 33
3. Cache Warming .....ccceciiieeeieiiiieeeciirneeetienesesreenssessennsssssesnsssssennsssssennnnens 35
What is Cache Warming? .......ceeviviiiviiniiieiniiiieincici s 35
Memory Prefetch Prmitives ....cooevveiiiiiiiiiiiiciicini s 36
Volatile Temporary Variables......cccoovviiiviiiiiininniiiiiiiiice 36

David Spuler 8



Dry-Run EXCCUONS...ciiiiiiiiiiiiiciiin it 37

Double Data Trouble .....cccciiiiiiiiiiiiiiiiiiiiiii s 38
Problems with Cache Warming ......ccccocvevviiiiinninininiieciceeenne, 39
Further Optimizing Cache Warming........cocovvvviiiiiiiniiiiiniiniiniieineeins 40
REfEIENCES . c.uviiiiiiiiiii it 42
. Branch Prediction.........ccocuiiiieiinnninnninnninnnnenene e, 43
What is Branch Prediction? ........cccoviiiiiiiiiiiiniiiiiiiiiiieeces 43
Types of Branches......coocvvviiiiiiniiiiiniiiiiii 44
Branch Compiler HINtS woovuiiiiiiiiiiiiiiiiiiiiiii s 44
Branch Profiling......ccocuiiviiiiiiiiiiiiiiiiiii 45
Branch Heutistics .oouuiiiiiiiiiiiiiiiiiiiiiiiiii e 45
Branch EImMination ... 46
Branchless Programming Tricks ...ccooviiiiiniiiiiiiiiiiiiiiiiis 47
Instruction Reordering Optimizations ......oeeeerreereesienieeeenieiieeeese e 52
REfErenCes.cuviiiiiiiiiiiciiic 54
. Contiguous Memory BIOCKS ......c..cceeeeeuiireeeniereeenciereeeneeeneeensesnenenssenennnes 55
Why Contiguous Memory Blocks?.....oouiiviiiviiniiiiiiiiiiiiiciein 55
Low-Level Memory Block FUNCtioNS......coviiiiiiiiiiiiiiiiiiiciiciciccnicnies 56
Fast Memoty Block Operations........cvvviiiiiiiiiiiiiiiiiiiiiciiceiecnieesniens 57
Memory Block Function Pitfalls .......ccoviiiiiiiiiiiiniiiiiiiiiciciececs 59
Raw Subarray Memory Blocks .....cccovviiiiiiiiiiiiiiiiiiiiiicee 62
Dynamic Memory Management Pitfalls .......cocoevviiiiiniiiiiiiniiiniiin, 64
Pitfalls for Non-Dynamic Memory BIOCks.....cccooviiviiiiiiiiiiiiiiiiiiiniiiis 65
. Pointer Arithmetic........couvuiiiiiiiiiiin e, 67
What is Pointer Afithmeticr ..oovviiviiiiiiiiiiiiciiic i, 67
Pointers and ALLays ....oceeveiieiiiiiiiii 70
Pointer Arithmetic Loop OptimiZations ........cevveivuiiniiininiiniiriieiieniennens 72
Smart POINtELS...cicuiiiiiiiiieniiiitiiiie ittt 73
Pointers vs References. ..oviiiiiiiiiiiiiiiiiiiiiiiii 74

9 Advanced C++ Memory Techniques



7. MemOry POOIS......cccceeeiiieeecciireeecsrreeeererneessernnsessennnsessrnnssessennssssennnnans 77

What are Memory POOLS? .....ccoviiiiiiiieiiiiiiiciiciciececci e 77
Why Memory POolS?.....cuiiiiiiiiiiiiiiiiiiiiciiciicci 78
Disadvantages of Memoty Pools......cocoviiiiiiiiiiiiiiiiiiiiiiiieis 79
Memory Control Block Overhead.......ccoovviiiiiiiiiiniiiiiiiiiiiiiis 79
Fixed-Size Memory Pool AlZotithms .......cccvviiviiiiiiiiiiiiiniiiiicciecees 80
Boolean Flag Memory Pool ........covuiiiiiiiiiiiiiiiiii e, 80
Disadvantages of Boolean Flag Method........ccoevuiiviiiiiiiiiiiiiiiiiiiiiciins 83
Boolean Flag Array Method......cccoviiviiiiiiiiiiiiiiiiiiics 84
Index Array Memory POOL.....coiiiiiiiiiiiiiiiiiiniii 85
Memory Pools Versus CONAINErS ....cciviiiiiiiiiiiiiiieiiis e 87
Advanced Memoty POOLS......ovviviiiiiiiiiiiiiii s 88
EXtENSIONS itiiutiiiiiiiiiii ittt 89
REfEIENCES covuviiiiiiiitii ittt 89
8. Memory Reduction Optimizations.........cceeeeirieenerriennerreeneceseeennseseennnnens 91
Memory Reduction in CH+ .o 91
Compact Data Representation ......cccvievieiiiiiiiiiiiiiiecniecnnen e 92
Reducing Data SIZe.....ooiiviiiiiiiiiiiiiiiiiiiiiii 93
Measuring Code Size and Static StOrage ......cvvvivvuiiviiiiiiiiiiiiiiiiies 95
COde Bloat....couiiiiiiiiiiciici e 96
Reducing Static StOrage......cuvvvveiiiiiiiiiiiciicii i 98
Stack USAZE wvvivviiiiiiiiiiiiiciicieci 99
Reducing Heap Usage......ccvvuiiviiiniiiiiiiiiiiiiiiiiciiiiccecseccn 100
9. False SRaring ...c...ciiieeiiiiieiiiiinc e renes s renes s s rene s s ssenesssssenens 103
False Sharing and Cache Line Sizes......cccvvvvviiniiniiniiiiiiicnicnieienic 103
Example of False Shating ......cccccoviiviiiiiiiiiiciiniicice 104
Detecting False Shating ......cccccoviiviiiiiiiiiiiiiiiiic e 106
Solutions for False Shating .......cccocvvviviiiiiiiiiiiiniiniiien 106

David Spuler 10



Part Il: Memory-Efficient Data Structures........ccccceerieeererreeencerrennnncrnennnnenne 109

0 L 111
Array Operation COMPIEXILY .veviiviiiiiiiiiiiiiiiie it 111
Modernn CH4 ALLATS wuvivviiiiiiiiiiiin i 112
Custom Array Implementation .....cueviiiiiiiiiiiieniciiin e 113
Sorted ALTAYS cviiiiiiiiiiiiiic 114
Shuffling Array EIements ....cccoviiviiiiiiiiiiiiiiiiiincccecec s 115
Binary-Like Sorted Array INSErtion ....civuveviiiniiiiiiiiiiiiiiiciicicsecsec e 116
Sorted Array Deletion ...occvvevviiniiiiiiiiiiiiiiiciici i 117
Unsorted ALFAYS oviviiiiiiiiiiiciicii i 118
Linear Search of Unsorted ALfays......cceeviviivinininniniiiinnieeineeieinenes 119
Template Value vs Reference Parameters ......ocovveivveiiniiniiiiniiniiiciccneene, 120
Fast LINear SEArch ..eeiiiiieeiiiiiieeieiee et 121
Low-Level Search SUPPOLt coviivviiiiiiiiiiiiiiiiiiii 122
Parallel Linear S€arch ....cceeivviieiiiiiiiiiiiicc e 122
Unsorted Array INSertions .ovveiiiiiciiiiiniiiiicnisieise e 123
Insertion at an INdeX cooovveeiiiiiiiiic 124
Fast Unsorted Array Deletion.......ccviiiiiiiiiiniiniiniiiiiiececien 125
Container Deletion Pitfalls ......cccoviiviiiiiiiiiiiiiiiiiiiiiiiciicis 128
Bypassing INterfaces ....coovevviiiiiiiiiiiiiiiicie 129
EXEENSIONS 1truveieiiiniiiei ittt 130

11. String OptimizationsS....c.ccciveiiieiiiiiiiiiciei s reeereasessnssenensnes 133
EAficient STNES coviviiiiiiiiiiicsiciici i 133
Common String OPEerations ......cuuieiuirinieieiiisiiiieiiee i 134
String Class INefficiencies cuoevueivueiieiiiiiiiiiiciicse s 138
String Memory LayOouL. .. cecneiiiiiiiiie s 138

11 Advanced C++ Memory Techniques



I 00 1o 1= o) 13 Y=Y o) S 141

Hash Table with Order-0f-INSertion «...ueevveerieieiieeniieerieeneeenree e 142
Contiguous Array VEISION ..cciiviciiiiiiiiiiiiiiniicniiesiee s sne s 142
Doubly-Linked List VErSION c..ccvviiiiiiiiiiiiiiiiiiciiniiccicciccsie s 144
13. LRU Cache Data Structure........cccccvviicnnnennieciiiicnnnnennieeennnnnennneeeens 147
What is an LRU Cacher ....ccveviiviiiiiiiiiiiiiiiiiiiiciiecenccinec e 147
Not a Queue of Deque ....covieiviiniiiiiiiiiiicieci e 147
Array Implementation Fails ..., 149
Doubly-Linked List LRU Cache ....ccovvuiiiiiiiiiiiiiiiiiiiciiiciiciec s 150
REFEIEINCES vevtiiiiiiiiiiiieiee ettt e s sbrre e e e e e s s s s sbraeeeeeesssssnannnes 152
14. Fast RiNG BUFfers.......ccucceiiieeciiiiiecccicrcesreneceseennnessennseessennsnesesnnsnsnees 153
What is a Ring Buffer? ..o 153
Simple Ring Buffer ... 153
Pros and Cons of Ring Buffers ......ccocvvviiviiiniiniininiiiiiin 155
Incremental Count OptimiZation ......cuvvveeeviienienieiiniiiiie e 156
Avoiding Three INtegers v 157
Modulo Arithmetic OptimiZaAtions .....cuvevveenieeierieriiriie e 158
MOVE SEMANTICS.1iiiiiiriiiiiiiiii i 162
Constructor Problems. ...t 163
Standard Vector Problems .....ocveeiieeeiirenieeeiiiesieesee e 164
Explicit Destructor Calls.......ccovvvviiiiiiiiiiiiiiciiiiece e 165
Class Interface Bypass ....cccveveeiiiniiiiiiiiiiiciciccciciccecec e 166
EXEENSIONS ot tuviiiiiiiiie ittt 168
15. LoOop Optimizations .....ccccceiieuiieiiniiinnieniinernernneeonieesiessressenscsnssenssanens 169
Sequential vs Paralle]l Loop Optimizations ......cuvveveeriiiiiiniiiniennienieniinine 169
LoOP FUSION ettt 170
Loop Petforation ....c.uiiiiiiiiiiiniiiiiiiici 171
Loop UNtolling.....cciiiiiiiiiiiiiiiiiiicieiecc s 172

David Spuler 12



Duff’s Device for Loop Untolling ........ccoeviiiiiiiiiiiiiiiniiiiiciciee, 174

Loop Tiling of BIOCKING ...civiiiiiiiiiiiiiiiiiiiiiciici e 176
Loop FiSSION wuviiiiiiiiiiiiiiiciic i 178
Loop Reversal ... 180
J7Teys 3 @o T [SLY oY o3 o M 180
Loop DiIStrDUON ..ecuviiiiiiiiiiiiicnicicct 181
Loop Reotrdering ....cccviiiiiiiiiiiiiiiiiiiiiiiiit e 183
Loop Iterator Strength Reduction.........cceeueeuieiiiniinieniiiiciccieciciccecci, 183
Loop CoaleSCing...cuivuiiiiiiiiiiiiniiiicsie it 184
Loop Collapsing....cccuevviiiviiiniiiiiiiiiiiiiiccicciesiis i 185
Loop Peeling . .ccueiiiiiiiiiiciiciiciicci 185
LoOP SPHLHNZ c.vvviveiiiiiiiicticsiicsiie s s 186
Loop Interchange......cocvvviiiiiiiniiiiiiiiiiiiiiiii 188
Loop Sentinel....cciiiiiiiiiiiiiiiiiciicii i 189
Loop Strip Mining (LoOp SECtioNiNg) ..covvevverierieiiiiiiiienieeiieiie st 190
Loop Spreadifng....cvivuiieiiiiiiiiiiiiiicninci 191
Loop Normalization .......eeueeieiiiiiiiiiiciiciecsen s 192
LOOP SKEWING wvvivviiiiiiiiiiiiiiiiiiciicii i 193
REfEIENCES cuviiiiiiiiiiiiitc e 194
16. Vector AlOorithms.......... vt rreee s e e s e e enn e s eennnaenes 195
Vector Dot PLOdUCE c.eeveeeiiiiiiiiiiiiieieeic e 195
Y103 A3 's o PPN 196
Matrix NOLINS wevviiiiiiiiiiiiiiie it 199
Vector Min and MaxX ..o 200
Top-K Vector Algorithm c...oveiviiiiiiiiiiiiiii 201
Shuffle Top-K Algofithm ....ccccviiiiiiiiiiiiiii 202
Theoretical Top-K Algofrithms ....cocvevviiiiiiniiiiiiiii e, 203

13 Advanced C++ Memory Techniques



7 2 11 4 £ o] o3OS 207

What are TEenSOIS? civivuiiiiiiiiiiiiiiiii it 207
Neural NetWork TENSOLS .vveeiiiiiiiiiiiiieiiiiiei et 208
Tensor AIRMELIC vovveureeeeiiiiie et e 210
SPALSE TENSOLS.viiitiiitiiiiiiiii it s 211
18. Lookup Tables & Precomputation..........ccceeeeerremnncerrennncereennnceneennnnenees 213
Precomputation with Lookup Tables.....ccccvivviiiiiininiiiiniiiiiiinins 213
Example: LUT Precomputation for Sqrt ...cvevieviriiniiiiiiiiiiiicninieenieinen 214
Float-to-Float Precomputation ......ccouviueiviiiniieniniiniini e 217
Precalculating C++ Source Files ..o, 220
REfEICNCES toiinriiiiiiiiii i 223
19. Matrix Multiplication............ceiieeeeiiiieccereccrreeeeerreenc e s eenaee s e e nnnenees 225
Matrix-Vector MultipiCation ......cvvevuiiiiiniiiniiciiniieiiccniecses s 225
Spot the Buggy MatMul.......ccccoiiiiiiiiiiiiiiiiiiiiie 226
Optimizing Matrix-Vector Multiplication........ccceeeeviiiiieieiiniciicicic 227
Tiled Matrix-Vector Multipication........vevveviiiveiniiiinniiiiinnsee e 228
Matrix-Matrix Multiplication ....coueveiiiiiiiinieinieiienie e 231
Vectotized MatMul......coociiiiiiiiniiiiiiiiiiiicnrecec e 235
Loop Tiled/Blocked MatMul.......cccoveviiiiiiiniiiiinienienieieieeeeesesesne s 237
Fast Matrix Multiplication Theoty.....cccocvviiniiniiiiiiiiiiiici 237
Multiplying by Transpose.....ccveueeiiiiiiiiiiniiinienien e 238
REfEICNCES teiintiiiiiiiiii i 240
Part lll: Memory Safety Techniques .......cc..ceerieecirieinrceiieeccreeecceeeeaeeees 241
20. Memory Safety TeChNIQUES.......ccoveeeiiiiieeiiiiieci e reneee e e enens 243
Memory Safety ThOUghts......cccoviiviiiiiiiiiiiii e, 243
Over 100 Memory Safety Techniques ......cvvevieviiiniininiiniiniieceiecees 244
REfEIENCES teiinreieiiiiiee et 250

David Spuler 14



21. DIY Memory Safety......cccceeceiiiiereriennncerrennnsereenssseseenssssseenssssssnnsssssenes 251

Why DIY Memory Safety? oo 251
Strategies for DIY Memory Safety.....ccocvvviiiiiiniiniiniiiiiiiiececeen 251
Making Uninitialized Accesses Harmless ......ooveviiiiiiiiiiininninniniiniiciee, 252
Intercepting C++ PLMItIVES woovveiiiiiiiiiiiiiiciicsii i 253
22. Intercepting Memory Primitives......cccccveiiieniiieeiciieniiinniiiennienineecnene 255
Interception Methods.....ccviviiiiiiiiiiiiiiiiii s 255
Preprocessor Macto INtercepts . ceuuiiiiiiieniieniieniieniinieeieeiecieese e 255
Link-Time Interception: new and delete .....coveviiiiiiiiniiniinnniiiiiiiiie, 257
Memory Debug Wrappers ....eiiiieieiieiieiiniicieicecie e 258
Memory Petrformance Analysis......cccoccvveiiiiiniiniiiniiiniciceeccee 258
23. SMArt POINLErS ......cceviieiiiiiiiieniiininennirr e 261
Overview Of SMArt POINELS ..vvveerrveeerriiieeeniiieeeesireeeesiieeeesireeessireeeeesreees 261
Basic Smart Pointer Usage.......cvvvvviiiiiiiiiiiiiiiiiiicciicccicciecie e 261
Weak POINLELS c.uuvviiiiiiiiiiiiiiie ettt 264
Limitations of Smart POINtErS .....eeiiveviiiiiiiiiiiiieecirieccee e 265
Smart Pointer Safety.....coviiiiiiiiiiiiiiiiiii 266
Smart Pointer Inefficiencies.....ovvivuiiiiiiiniiiiiiiiiiciicieccrecee e 267
Smart Pointer OptimiZations .....ecivueeiieeeiiieriniieiies s 267
Smart Pointer Bugs......cocoevviiiiiiiiiiiiiiiii 268
24. Canaries and Redzones...........ueuiiieeiiicininenniiiennnnnenineeeenenen 269
What are Canaries and Redzones? .....cveeevvciiiiiiiiiieiiiiieiieeeceec e 269
What are Array Bounds VIOlations? ......cvveviiviiiiiiiiiniiniiciiciiiccens 269
Text Buffer Last Byte Canaries ......ccvvviiviiniiiiiniiiiiiiiiniini i 270
Array Extra Element Canaries ....ocovvvvieniiiiiiiiiiiiiiinnn e 271
Redzones and Canaries for Memory Allocation Overflows.......coovvviierinnnns 272
Detection of Heap Undetrflows .....cccocuiiviiiiiiininiiiiiiiiiiiiiicie, 272
Memory Read Efrors. ... 273
Prevention Versus Detection . .uuiiiiiiiiiiiiiiiiiiiiiiiiiiecieec e, 275

15 Advanced C++ Memory Techniques



b 2T U EY= Y § (=] o o =Y < 277

What is USe-After-FIee? ..covviiiiiiiiiiiiiiiiiieeeiieee e 277
Use-After-Free Security Vulnerabilities ......cceveeriiiiiiiiiiiniiiniciiciicicceee, 278
Detecting Use-After-Free ..o 278
Double Deallocation BrfOrs...ccveeeeiirieeeiiieeeeieiieee s esieeee e ssreeee e 279
26. Array Bounds Violations .........cccoiveeeiiiieeeciiieeecnireneccsrenenesssenenssnenens 281
What are Array Bounds VIOlations? ......ccvvveeviiiiiinniieininiiennieeieinenen 281
Bounds Violation Detection Methods.....ccuveeeiiiieeeiiiieeeiiieeeeeieee e 282
Text Buffer OVErTuns . .euiivueeee e reee e 283
StENCPY PLODLEMS 1eiuviiiiiiiiiiiiiiiiiii i 283
Checking the Last Byte of Text Buffers .......ccccovvvvviiiiiiiniiniiiiiiniinin 284
Smart Buffer Variable with Bounds Checking.......ocooviviiiiniinnniiniiiiiiinnn, 287
Two-Variable Smart Buffer Wrapper Class .....cccoccveviiniiniiiniiniiiiiiiiie, 288
27. Poisoning Memory BIOCKS........ccceeteeereniiinnciiennerenereeerenseernneeenenerennes 291
What is Poisoned MemOLY? c.vcviieiviiiiiniiiiiiieniniiiienie e 291
Marking Poisoned Memory Blocks ....covviiiiiiiiiniiniiiiiiiiiinin, 292
Macro Intercepts of malloc and free ..ovviviviieiniiniiiiiiiicen 293
Link-Time Intercepts of new and delete.......ovviiviiniiniiniiiniiiniininiiniicins 294
Poisoning Deallocated Memorty BlOckS.......cooviiviiniiniiniiiiiiniiiiniicicinn 295
Poisoning Stack Buffer Memory ....coocuvvviiiiiiiiiiiiiiiiiecniee 296
Smart Stack Buffer Classes......ceeiivrieeiiiiieeiiiiiieieeeeec e 298
Stack Buffer Destructors..coimrieiiiiieiiiiiieeirieee et 299
Handling False POSIHVES ...vovvuiiiiiiiiiiiiiiciiciiiicniii s 300
Poisoning Partial Memory Buffers ......coocvvviiiiiniiniiniiiiiiiiiiiicn 300
Advanced Poisoning......ocveviiiiiiiiiiniiiiinii 302
Poisoning API Usage......covvevriiiiiiiiiiiiiiciicie s 302

David Spuler 16



28. Uninitialized Memory Safety........cccceeeiirimeiiiiinecerreecerreneeereeeeeeeneens 305

What are Uninitialized Memory Effors? ..., 305
Initializing C++ Heap MemOty ...ccvviviiiiiiiiiiiiiiiin it 305
Intercepting Memory ALlOCAtion......ocuviviiiviiiniiiniiiiiiii 307
MaCtO INtEICEPLS wuvvrureiiitiiiiiii et 307
Link-Time INtercepts...cciiniiniiiiiiiiiiiiiiiciicsiirc s 308
Advanced INtercepts. ... 309
Stack Buffer InitialiZation .....ccveeeeeieeeeeiiieee e 310
Smart Buffer Classes ....ocvveeiiiiieiiiiiieeeieeee e 311
29. Smart Stack Buffers .........ceeevviieiniiiiiinc e, 313
What are Smart Stack Buffers? .....ooovvviiiiiiiiiiiiiiiiieeeee 313
Why Use Smart Buffers? ....coovuiiiiiiiiniiniiiiiiiiciccie s 313
Two-Variable Method ....cuveiiiiiiiiiiiiiie e 314
7,108 ANA CANALIES 1eterrurrrrerriurereeriiteee ettt e ssieeeessnreeessnreeessnreeesssnreeesssnreees 315
Limitations of Smart Buffers .....ccooveviiiiiiiiiiiiicccceeee 316
30. Safe Text Buffers........cccocceeiiiiniiiiniiiicnnnnr e, 317
C-style sprintf is Unsafe.....ooveviiiiiiiiiiiiiiiiicii e 317
Somewhat Safer 15 SOPLINtE....civiiiiiiiiiii 317
Detecting Truncated Overflows with snprintf ..., 318
Macro Wrapping snprintf Return Codes. ..o, 319
Unsafe Buffer Appending with sprintf.......ccccviiiiiiniiinii, 320
Safe Buffer Appending with snprintf.....cccieiiniiiiiniiiiii s 321
31. Preventive Memory Safety...c.cccceeeieeiiieenereniieneteeecereneeeeeerennerennerennees 323
Prevention Versus Detection . .uuiiiiiiiiiiiiiiiiiiiiiiiiciiec e 323
Memory Sanitizer TOOLS ..oviiviiiiiiiiiiicicics 324
Preventing Memory Initialization Efors ...ovevveviiiiiiiiiicniicnienienncnn 324
Mismatched Allocation and Deallocation ........ccovveevviiniieiiniiiniieinieenineenns 325
Why Use Wrapper FUNCHONS? c.vovviiiiiiiiiciiiiicieniceci e 326
Fast Debug Wrapper Code....oiiiiiiniiiiiiiiiiiiiiieciceicce s 327

17 Advanced C++ Memory Techniques



Standard C++ Debug Wrapper Functions.......covueeveiiiecniiiiennieiieniniens 328

Example: Wrapping malloc......ccoveiiiiiiiiniiiniiiniiiiiiiecieciecnes e 328
Example: memset Wrapper Self-Checks......covvviiiiniiiiiiiniiiiiniiiiiicninien, 329
Preventing Null Pointer Dereferences........ovuvieiiiieiiinieiiiniiiiiiiiicicieien, 331
Generalized Self-Testing Debug Wrappers ......ccoceeviiieiieniiiciiiicicie, 332
Wrapping Math FUNCHONS ...cvieviiniiiniiiiieiiii i 332
Wrapping File Operations......c.ceevievieeneineiieiiiiciiciicnieenieesee e 333
Link-Time Interception: new and delete......ccovevviiiiiiiiiniiiiinniininiiiiee, 333
Destructor Problems with Debug Wrappers ......oooveviiieciiniiicniiicicnen, 335
Appendix: SOUrce Code ......cciremrirrnnirinerrenierenierenerenserrnseeensserenserensersnsenes 337
Tester Object Instrumentation Class........cccvevuiiiiiiiiiiniiiiiii e 337
Intercepted new and delete ...ouiviviiniiiiiiiiiiii 341

David Spuler 18



Part I: Memory Optimization
Techniques

19 Advanced C++ Memory Techniques



David Spuler

20



1. C++ Memory Primitives

Memory Functions

Compiler vendors provide a variety of useful library functions to help with memory
safety. Some of these are defined in C++, whereas others are platform-specific. The
main classes of functions include:

e Heap memory management
e Stack memory management

e  Text string buffer management

If we want to manage memory safely, we first need to examine all the different ways
that a C++ program can get some memory.

The main long-standing heap management functions are:
e malloc
e calloc
e free

And in C++ there are the basic operators:

e new — object or primitive type allocation.

delete — de-allocation operator.
e new[] — array allocation version.

delete[] — array de-allocation.
Some other ones for allocating C-style strings:
e strdup

e strdup
e Strndup

21 Advanced C++ Memory Techniques



And there’s also the rarely-used standard functions:

e std::allocate (and custom allocators).

e realloc — resize a heap block, possibly moving it.

e allocaand alloca— dynamically allocate a stack block of memory.
e mmap — memory-mapped blocks representing disk files.

e sbrk — low-level allocation of memory to processes.

Stack Memory Management

It is less commonly used, but possible, to dynamically allocate stack memory.
Functions include:

e alloca — the main stack memory allocation function (<alloca.h>.
e malloca — stack memory allocation (Microsoft CRT)

e  freea — free memory on the stack or heap (Microsoft CRT)

e  builtin alloca with align (GCC version with alignment)

Note that “de-allocation” of a stack block is technically not required, because the
memory is reclaimed when the function returns and the stack is unwound.

Platform-Specific Memory Management

There are also a variety of platform-specific and newer functions. The main header
files are:

e <stdlib.h>— standard memory allocation functions.

e <malloc.h>— Linux or Windows.

e <crtdbg.h>— C++ Run-Time debug (Microsoft MSVS).
e <Strsafe.h>— Microsoft MSVS.

The platform-specific or newer memory-related functions include:

e  expand (MSVS) — lengthen a heap block, in place, without moving it.

e malloc dbg (MSVS) — debug versions of basic memory primitives
in <crtdbg.h>.

e reallocarray — array version of realloc.

e free sized (C23)

e set new handler and get new handler (C++11)

David Spuler 22



Address Alignment

One of the main problems with memory primitives was handling of alignment. The
standard methods of achieving alignment in C++ include:

e alignas specifier
e  declspec(align(N))
e aligned alloc (C11/C++17)

Some other functions and language features include:

e alloca (aligned version).

e free aligned sized (C23)

e aligned malloc (Microsoft CRT)

e aligned realloc (Microsoft CRT)

e aligned free (Microsoft CRT)

e aligned msize (Microsoft CRT)

e aligned offset malloc (Microsoft CRT)
e aligned offset realloc (Microsoft CRT)
e posix memalign (POSIX)

e aligned storage (deprecated)

e std::aligned storage

e aligned union (deprecated)

e alignment of

e Alignas

Unix and Linux Memory Management

There are a variety of Linux memory management primitives available via GCC,
mostly defined in <malloc.h>:

e malloc usable size — size of an allocated memory block.

e mallinfo,mallinfo2 — getallocated memory block information.

e malloc info — exports XML info about the heap state.

e malloc stats — allocation statistics.

e mallopt — set memory allocation options (e.g., can control how glibc
handles a double-free error.)

e getrlimitand setrlimit — manage resource limits, including the

heap.

23 Advanced C++ Memory Techniques



Some of the other non-standard memory functions in early Unix and Linux include
extra versions with bit flag controls:

e mallocx
e rallocx
e xallocx
e sallocx
e dallocx
e sdallocx
e nallocx

There are also “memory allocation control” and other memory allocation primitives
in older UNIX and Linux:

e mallctl

e mallctlnametomib

e mallctlbymib

e malloc stats print
e malloc usable size
e malloc message

Windows Memory Management

Windows has a variety of additional functions, some in <Strsafe.h> and others
are in the C++ Runtime (CRT) functions and its debug versions in <crtdbg.h>

e malloc_dbg and other “debugging heap” versions (<crtdbg.h>).
e  CrtCheckMemory — check heap for integrity.
e CrtSetDbgFlag— control debug flags.

e CrtMemState memory block structure in crtdbg.h

e  heapmin — reclaim some heap memory (heap minimize).
e  heapadd — increase heap size.

e  heapchk — self-test heap for consistency.

e  heapset — fill all unallocated heap memory with a canary byte!
e  heapwalk — traverse through the heap blocks.

Windows has a feature that I especially like: callbacks for memory allocation
operations! Here are the details:

e CrtSetAllocHook — seta “hook” (callback) when allocation occurs.
e CrtGetAllocHook

David Spuler 24



There are also various other calls about memory addresses:

e  CrtIsMemoryBlock — check addresses.

e CrtIsValidHeapPointer — check heap addresses.
e CrtIsValidPointer

e CrtReportBlockType

Size of Allocated Heap Block

There’s no standardized way to take the address of a heap block and return its size.
This is unfortunate, because that would be helpful in several ways for memory
safety. Hence, there are platform-specific versions:

e msize — Windows MSVS version.
e malloc usable size — GCC version.
e malloc size — MacOS version.

Note that the size of the memory block returned from these functions is not
necessarily the same as the original size of the request. It shouldn’t be less, but it
can often be larger, because the system memory allocator has padded out the
allocated block for alignment or other optimization reasons. When you run simple
tests, it will probably appear to always be the correct size, but after a longer
execution with a lot of allocations and deallocations, the algorithm for the memory
allocator can get trickier, and it may vary significantly.

If a platform-specific block size function does return a larger value for the block
size, it’s not easy to know this has occurred. Hence, don’t assume that this size value
will point exactly to your redzone area, or whatever other tricks you’re doing with

the end of your allocated memory blocks.

As a further warning, note that msize on Windows is a little fragile, because it
throws a runtime exception if the address is either:

(a) a non-heap address, or
(b) not the start of a heap address.

Hence, it’s not that useful in testing whether a random address is a heap block or
not. Maybe it needs to be combined with CrtIsvValidHeapPointer.

25 Advanced C++ Memory Techniques



C++ Compiler Hardening

Personally, I think that C++ compilers should have extra modes that harden the
language. There ate some standardization efforts to create a “hardened standard
C++ library” and these are laudable, but there are language-specific issues that only
the compiler can fix.

As computers have gotten faster, the relative cost of addressing these issues
becomes relatively low against the expense of tracking memory issues. Some of the
areas where the compiled code could be safer and tolerate issues include:

e malloc and new should zero memory (like calloc).

e alloca should also zero memory.

e realloc should zero any extra allocated memory areas.

¢ new and delete operators should be interchangeable with malloc and
free (e.g., free on a new block should work, although it won’t run any
destructor).

e new/delete should also work with thenew[]/deletel[] atray
versions (though this also misses some destructors).

e Stack variables should be zeroed when a function starts (like global
variables).

There are a lot of little “undefined” areas that are glitches in the standard C++
library, which probably should be detected and tolerated, or at least warned about,
by the library functions instead:

e std::1list crashes if deleting an object during an iterator scan.

e fflush(stdin) should be detected and tolerated.

e Mismatched fread/fwrite on a file without intervening fseek would
be easy to detect.

e strncpy should have a warning when it truncates and leaves the string
without a null.

e cos or sin of a number larger than two pi probably means the caller has
confused radians and degrees.

e strlen (NULL) should not crash.

We can “fix” some of these issues by defining our own intercepted versions of these
functions, either via using our own wrapper function names instead, or via
automatic preprocessor macro intercepts or link-time changes.

David Spuler 26



2. Cache Locality

What is Cache Locality?

Cache locality is the idea of staying “local” in our accesses to memory locations to
maximize the benefits of some hardware caches in the CPU. There are two general
categories of cache locality:

e Instruction cache locality — machine code instruction execution.
e Memory cache locality — data access from memory locations.

There’s a lot going on in the CPU in terms of caching accesses and also prefetching
possible future accesses. Cache locality is the idea of ensuring that our C++ code
maximizes the value of those hardware cache optimizations.

Caching occurs primarily at a lower-level than multithreading, which means that
each thread’s execution can benefit from these optimizations. Most of the methods
to improve cache locality are related to the general code structure, rather than
specific ways to do thread synchronization or other multi-threading requirements.
The general ideas include:

e Tight code blocks and loops — instruction cache locality.
e Localized and predictable memory access sequences — data cache locality.

You can do both together if you like, since they have orthogonal speedups. Easier
said than done!

There are various tools you can use to examine the rates of cache hits and cache
misses in the instruction or data caches. Some of the main ones include:

e perf (Linux)

e cachegrind (valgrind)
e Intel VTune

e gperftools

e uprof (AMD)

o likwid-perfetr

27 Advanced C++ Memory Techniques



Depending on how you look at it, these speedups make cache locality either more
or less important in multithreaded applications versus sequential code. It’s more
important in multithreading because we have lots of threads in different places
doing different things, all of which need to have good cache locality.

Or maybe it’s less important, because the CPU has to throw away all of those per-
thread hardware caches at every context switch, so why bother with cache locality?
I'll leave it to you to judge that.

Instruction Cache Locality

The instruction cache stores recently executed machine code instructions in a CPU
hardware cache. There’s also a separate mechanism of “instruction prefetching” to
try to load the next instruction that will be executed. As part of this prefetching
method, there’s also “branch prediction” in the CPU, which attempts to predict
which of two branch directions will get chosen.

To get the best out of these instruction speedups, our C++ code should generally
use:

e Short and tight loops
e Fewer branches

Keeping loops short will mean that the CPU stays within the same block of code,
maximizing the chances that it already has an instruction in its cache. Interestingly,
this means that some common code optimizations can be bad for instruction cache
locality:

e Inlining of functions
e Loop unrolling

Both of these can cut both ways, since they both reduce branches, but also lengthen
code blocks. Whenever you’re tempted to maximize your use of such optimizations,
think about the plight of the poor instruction cache as it tries to keep up.

Branches are another separate issue from short code blocks. In fact, long code
sequences of compute instructions are fine for branch prediction. To maximize the
CPU’s branch prediction capability, we should either have few branches, or at least
have very predictable branches. At the limit, we could use branchless programming,
which is a set of tricks to get rid of branches. See Chapter 4 for more on branch
prediction and branchless coding methods.

David Spuler 28



Data Cache Locality

There are numerous improvements that you can make to improve total cache
locality of the memory access caches. And there are rather a lot of different caches
for CPU memory accesses:

e L1 and L2 caches (per-thread)

e L3 cache (shared)

e TLB cache (virtual address accesses)
e NUMA multi-core caching

There are some general recommendations for the entire application, that aim to
reduce memory cache misses:

e Use less memory!
e Fewer memory allocations
e Smaller data sizes

But particular algorithms can also be modified to keep nearby memory in the
caches. Data structures can affect the level of cache locality, with improvements
such as:

e Separate cold data from hot data — improve cache locality for hot data.

e Structure of Arrays (SoA) vs Array of Structures (AoS) — which one is
best depends on the context.

e Contiguous data structures — arrays and vectors, not linked lists or binary
trees.

e Compact data structures — smaller memory sizes are easier to maintain in
the cache.

The code execution of various algorithms can alter the sequence of memory
accesses, and thereby maximize cache locality. Some well-known improvements
include:

e Loop segmenting — process short sub-sequences of a longer array.
e Tiling algorithms — process 2D “tiles” in a matrix or multidimensional
data structure (also called “blocking”).

The goal of these algorithm modifications is to iterate over a small sub-section in
the data, keeping cache locality during that “hot” computation, and then move on
to the next part. This works particularly well with matrix multiplication, because it
involves multiple computations with every element of the matrix.

29 Advanced C++ Memory Techniques



There are also some dynamic approaches whereby you can manually ensure that
data is already in the cache when you need it:

e Memory prefetching
e Cache warming

See Chapter 3 for more about prefetching and cache warming,

Memory Hierarchy

To fully understand the caches, we need to know of all the different types of
memory used in a C++ program. Handling memory propetly is one of the most
important parts of C++ optimization, because memory access is much slower than
the CPU. Memory is the bottleneck, and you need to know where the compiler puts
everything.

Learn to love the linker-loader!

When your program starts running, the “loader” puts all sorts of things in different
places. The basic moving parts that happen before execution starts are:

e Instructions — the code’s machine instructions.
e Global read-write memory — initialized or zero-initialized global variables.
e Read-only data — string literal data.

To get deeper into the memory segments used by the linker-loader, these are the
main ones:

e text — stores the machine code instructions (read-only, executable)

e bss — all zero’d global data such as global arrays without non-zero
initializers (read-write)

e data — Initialized non-zero global variable data (read-write)

e rodata — read-only data such as string literals or constant globals (read-
only)

Yes, the “text” segment has a confusing name, and it’s sometimes called the “code”

segment. According to Wikipedia, BSS stands for “Block Started by Symbol,” but
you didn’t need to know that.

David Spuler 30



All of the above segments are statically resolved, for the most part, by the linker.
However, once the program gets going, there are more dynamic allocations for
memory within its virtual address space. The main types of dynamic memory are:

e  Stack memory — the function call stack with parameters and local variables
(also alloca).

e Heap memory this is dynamically allocated by the new operator or
the malloc function.

e Thread-local storage — via the “thread local” keyword (C++11).

See Chapter 8 for more about reducing stack and heap memory, and now let’s
discuss thread-local storage.

Thread-Local Storage

Thread-Local Storage (TLS) is memory that is exclusive to a particular thread. The
other threads do not have access to it. In C++, this is defined via the
“thread_local” keyword, available since C++11. The usage is simple:

thread local int tls variable;

There are also some eatlier and non-standard versions:

e Thread local — older version of specifier.
e  thread — GCC non-standard modifier with similar semantics.
e  declspec (thread) — on Microsoft C++.

The key features of thread local variables are:

e Accessible in one thread only.
e DPersistent memory storage.
e  Variables, objects or arrays only (cannot havea thread local function).

Per-thread access. If you declare a variable as “thread local” then the C++
compiler has to ensure the semantics. Accesses to that variable in C++ must go to
the version of that variable for the current thread.

Typically, this means that the variable has multiple copies, with different addresses
for each thread.

31 Advanced C++ Memory Techniques



How is it implemented? It’s not necessarily using any particular hardware support
behind the scenes, and it’s not necessarily using any magic per-thread caching. The
C++ compiler can allocate different addresses per thread to the same data, and then
ensure that accesses within each thread get the correct version. After all, the C++
compiler knows that a particular variable is “thread local” because it’s a type
specification.

Persistent memory semantics. The thread_local specifier is very similar to the
static keyword in terms of its memory persistence. Its effect is similar to:

e Global variables (with external scope linkage)
e static file-scope vatiables

e static local variables (in a function)

e static data members (in a C++ class)

A thread local variable is created when a thread starts and destroyed when the
thread finishes. This has some implications:

e At most one copy is created at program startup.
e Dynamically created (along with the thread itself).
e Does not persist across thread shutdown and restarts.

Note that persistence and scope are different things. Persistence is whether the data
is maintained across multiple accesses, whereas scope is simply whether its name
can be referenced within code statements.

For example, if you use a thread local variable as a local variable in a function,
its value will persist across invocations to that function, and always have the same
address. However, it’s scope is limited to within the function, where its name is
accessible. This is the same as a static local variable, but with the extra semantics
that only one thread can see this version. If multiple threads call the function, they’ll
get different versions of the thread local variable inside the function.

Thread-local variables occupy a special niche in the programmer’s bag of tricks.
You don’t need to wrap accesses with any locking or other synchronizations, which
is nice. They ate like atomics, in that they cannot be messed up by another thread,
but unlike atomics because they are not shared across threads. The main usage is to
have some shared code, but also have a special non-shared variable, especially where
you want the variable to persist, such as having per-thread counters, flags,
intermediate calculations, and so on.

David Spuler 32



References

N —

Wikipedia, May 2025 (accessed), .bss, https://en.wikipedia.org/wiki/.bss
Milan Stevanovic, 2014, Advanced C and C++ Compiling,

Apress, https://www.amazon.com.au/dp/BOTHXFIL.QHO/
John R. Levine, 1999, Linkers and I oaders, Morgan

Kaufmann, https://www.amazon.com/dp /1558604960

CPP Reference, May 2025 (accessed), Storage class

specifiers, https:/ /en.cppreference.com/w/c/language/storage class speci
fiers.html

Microsoft, 2021 Thread Local Storage

(T'LS) https:/ /learn.microsoft.com/en-us/c arallel/thread-local-
storage-tls

Larry Jones, 27 Feb 2025, Mastering Concurrency and Multithreading in C++:
Unlock the Secrets of Expert-Level

Skills, https:/ /www.amazon.com.au/Mastering-Concurrency-

Multithreading-Secrets-Expert-Level-ebook/dp/BODYSB519C

33 Advanced C++ Memory Techniques


https://en.wikipedia.org/wiki/.bss
https://www.amazon.com.au/dp/B01HXFLQH0/
https://www.amazon.com/dp/1558604960
https://en.cppreference.com/w/c/language/storage_class_specifiers.html
https://en.cppreference.com/w/c/language/storage_class_specifiers.html
https://learn.microsoft.com/en-us/cpp/parallel/thread-local-storage-tls
https://learn.microsoft.com/en-us/cpp/parallel/thread-local-storage-tls
https://www.amazon.com.au/Mastering-Concurrency-Multithreading-Secrets-Expert-Level-ebook/dp/B0DYSB519C/
https://www.amazon.com.au/Mastering-Concurrency-Multithreading-Secrets-Expert-Level-ebook/dp/B0DYSB519C/

David Spuler

34



3. Cache Warming

What is Cache Warming?

Cache warming is a specific type of prefetching optimization aimed at keeping the
various memory caches fresh. It typically involves scanning through all the memory
data required for the “hot path,” even though there’s no real intention to use the
data (until later). The hot path maintains a warm cache, so that when the hot path
is executed for real (e.g., a trade execution in HFT), then memory accesses are very
fast.

There are multiple ways to trigger the prefetching of data needed to keep the cache
warm:

e Low-level C++ prefetching primitives.
e Copytovolatile temporary variables.
e Explicit dry-run parameters in the code.

Unlike other types of CPU prefetching, cache warming is something your C++
code does directly, rather than a hardware-enabled feature. It’s up to you to
determine what data is needed the most in hot path computations, and then pre-
load that data on every pass-through. You effectively do a “dry run” of the hot path,
but access the memory to ensure it’s maintained in the cache.

Note that cache warming is not always a guaranteed win. Using the “dry run”
approach can end up with a lot of extra conditional tests:

if (!dry run) {

// Do something
}

This can negatively impact performance in two ways:

e Runtime cost of testing the flag, and
e  Extra branches of code that slow down CPU branch prediction.

As with everything in multithreading, you really need to time it to see if these costs
are less than the gain from faster memory cache accesses.

35 Advanced C++ Memory Techniques



Memory Prefetch Primitives

Although you can “manually” prefetch data in basic C++ code, there are also some
builtins that are convenient for larger amounts of data. Some of the C++ primitives
to use for cache warming include:

e  builtin prefetch (GCC)
e mm prefetch (GCC)

Prefetching is more effective on some data structures than others, with a general
preference for contiguous data blocks. Cache locality issues with the “cache lines”
of size 64-256 bytes are another reason. As a practical example, contiguous arrays
are better than dispersed data structures liked links lists and trees. This means
that std: : vector contiguous memory layouts can be more effectively prefetched
than the spread-out memory used by std: : 1ist objects.

Volatile Temporary Variables

Another approach for manual prefetching is the use of volatile specifier on
temporary variables. By assigning data to a volatile temporary variable, the
optimizer cannot remove an apparently unused assignment. For example, consider
if we do this:

int temp = my order book[0];

The C++ compiler may notice that “temp” is not used anywhere else, so it can
throw away that entire assignment statement. The solution is to use
the volatile specifier:

volatile int temp = my order book[0];

The compiler is forced to load the data into memory even when it seems to be
unused by the remainder of the code, because assigning data to
avolatile variable is itself a side-effect.

Note that we only want to declare temporary variables as volatile, but not the
shared global data arrays we’re trying to prefetch. We don’t want the main data
structures to have this status. If our main global variables or arrays were declared
as volatile, this would actually interfere with having them loaded from the
memory caches. They would be uncached!

David Spuler 36



Dry-Run Executions

A simple approach to cache warming is to still execute all the steps, even if you’re
not going to do anything. For example, in HFT, you could call the “execute trade”
function even if the decision is to ot trade any stocks.

The method is simply to pass a Boolean flag indicating a “dry run” or “test run” or
“warm-up run” or whatever term you like. A simple conceptual example:

if (!dry run) {
orderobj.setup (ticker, price);
execute trade (orderobj);

A better way to get more cache warming is to populate all the objects as if you were
going to actually do a trade. At the very last step, the dry-run flag is tested, and no
trade gets submitted.

orderobj.setup (ticker, price);
if (!dry run) {
execute trade (orderobj);

But we really want to warm up the entire path, even the trade execution logic.
Hence, we go deeper by passing the flag inside:

orderobj.setup (ticker, price);
execute trade (orderobj, dry run);

And our trade execution code looks like:

void execute trade (Order &order, bool dry run)
{
if (!dry run) {
g order count++; // Count total
// Other accounting stuff..
// Submit the order...

That isn’t really much better, is it? We didn’t warm anything extra, but just pushed
the test inside the function.

37 Advanced C++ Memory Techniques



Double Data Trouble

We really need to actually prefetch some data! One way is to double up all our data.
The basic data for order count tracking is like this:

int g _order count = 0;
One common trick is to use an array of two values with two meanings:

e Live data
e Dry-run data (unused)

Hence, our order count becomes:
int g order count([2] = { 0, O };
Then we can try this:

if (!dry run) {

g_order count[0]++; // Live run
}
else {

g order count[1l]++; // Dummy

}

The point of the dummy is that we access the [1] array element in order to warm
up the [0] element (without changing it). This works because of “false sharing”
with “cache lines,” which is often a slowdown problem, but here they offer an
advantage. We can warm the cache by touching adjacent array elements, without
disturbing the main data. (Note that here we don’t use the alignas trick to avoid
false sharing, because we actually want it to occurl)

In the spirit of branchless programming, we can make this code tighter by mapping
the Boolean flag to 0 and 1 integer values:

g _order count| (int)dry run]++;

Note that we have actually added extra computation to our hot path! Instead of a
global variable increment, it’s now an array index lookup plus the increment.

David Spuler 38



We need to measure our optimizations to ensure that the gain from memory cache
warming is greater than the extra cost of these array indexing operations. (We've
also added a large amount of extra computation to our cold path, including whole
extra function invocations, but we care less about that.)

Our conceptual trade execution routine starts to look like:

void execute trade (Order &order, bool dry run)
{
g order count[ (int)dry run]l++; // Count total
// Other accounting stuff.. same tricks
if (!dry run) {
// Submit the order...
}

The idea is that our “dry run” mode has run over as much of the code as possible,
only stopping short of actually submitting the order. By maintaining two copies of
all data, with dry-run and live values, we can prefetch all of those arrays into
memory caches.

Problems with Cache Warming

The above cache warming double-array trick has used false sharing of cache lines
for good, not evil. And yet it has a problem: false sharing.

Our use of false sharing was harmless (and helpful) because we assumed only a
single thread was in use. There’s no cache invalidation slowdown when it’s only one
thread. The cache warming idea for the L1 and L2 caches requires a single thread,
although the L3 cache can be warmed for multiple threads.

Hence, this cache warming idea has limitations:

e Single thread required for all order submissions (if you want .1 /L2 cache
warming).

e Thread pools and other multi-thread design patterns are therefore
problematic.

We cannot really have a thread pool model where each consumer thread could
potentially submit a trade. The above cache warming logic only works for one
thread. If we try to use multiple threads, our cache warming logic is actually a cache
freezing de-optimization, because we’ve got the “false sharing” problem for real.

39 Advanced C++ Memory Techniques



Even worse, consider what happens if we try to use a thread pool model with the
following modifications:

(a) multiple consumers, where each thread tries to decide whether to trade,
(b) single trade submission thread.

In other words, multiple decider threads, where each decider then hands off to the
single trading thread (which is kept warmed).

But then we’ve made another conceptual error. The hot path should really include
the decision logic, as the overall latency is from receiving incoming data to
submitting a trade. However, we haven’t kept the cache warm for these multiple
“decider” threads, particulatly so for all the data they use in deciding whether to
trade, so the decision modules won’t run fast.

Possible solutions include:

e Single thread for all decision and order submission (with L1/L.2 warming),
or

e Keep multiple threads warm (trickyl), or

e Modify the cache warming code tricks to use reads only, not writes
(avoiding the cache invalidation problem), or

e Only warm up the L3 cache (for multiple threads).

But these solutions have additional problems:
e Single order thread idea lacks a failover or backup plan.
e Single order thread cannot issue two trades without blocking,.

e  Warming multiple threads means each thread needs its own copy of the
data.

None of these solutions are great, so that’s why they pay you the big bucks.

Further Optimizing Cache Warming

Another further iteration of advanced cache warming would be to actually submit
a dummy order, such as if the exchange connectivity allowed the sending of test-
only transactions. Doing this would allow us to keep warm any of the data structures
that are actually inside the client API of the exchange connection.

David Spuler 40



The advantage of the use of dry-run cache warming is that all the various data
structures used to prepare a trade ate kept warm in the memory caches (L1/1.2/L3).
The downside is extra processing that occurs whenever you’re not trading. In other
words, there are extra computations done on the “cold path” every time, just to
keep the “hot path” all snuggly and warm.

The code to traverse all the memory data structures can be a significant cost in itself,
although it only occurs during the cold path. There are several advanced tweaks to
optimize your cache warming code:

e Exploit cache line sizes for quicker loading of contiguous data.
e Limit cache warming to the total L1/1.2/L3 cache size.

A further optimization of cache warming is to use “cache lines” to your advantage.
The L1/1.2 caches don’t work on individual bytes, but on blocks of memory called
“cache lines”, which are usually sized between 64 bytes and 256 bytes (e.g., Intel is
usually 64 bytes, Apple M2 is 128 bytes, some other CPUs are 256 bytes).

Hence, to load a “cache line” of 64 bytes on an Intel CPU, you only need to load
one of the bytes from the 64-byte block. Your C++ code doesn’t need to explicitly
touch every element of a vector to have the entire vector hot as a fresh-baked oven
loaf in the cache. Admittedly, this doesn’t speed up the hot path itself, but only the
preliminary cache warming code.

An important limitation of cache warming is the maximum sizes of the L1, L2, and
L3 caches. If you’re trying to warm up the CPU cache for your 7B Al model, that’s
7 billion floating-point numbers, and trying to keep them all in the CPU cache isn’t
going to work. On the other hand, you can probably preload an entire 7B model
into the CPU RAM (i.e., global memory, not the caches), or into the GPU’s VRAM,
but that’s preloading not cache warming, and it’s a slightly different story.

If you know your CPU’s cache size, you can optimize your cache warming strategy
by only trying to prefetch that much data. If you load more data than the cache size,
the newly warmed data is just evicting other data from the cache that you prefetched
earlier in the warming code.

Hence, prefetching exactly the amount of data equal to your CPU cache size is the
optimal cache warming strategy.

41 Advanced C++ Memory Techniques



References

1. Paul Bilokon, Burak Gunduz, 8 Sep 2023, C++ Design Patterns for Low-

latency Applications Including High-frequency

Trading, https:/ /arxiv.org/abs/2309.04259,

Code: https://github.com/Oburak/imperial hft
2. Sarah Butcher & Alex McMurray, 2 January 2025, The C++ techniques yon

need for §600k hedge fund

Jjobs, https:/ /www.efinancialcareers.com/news /low-latency-c
3. Edelweiss Global Markets Oct 14, 2024, Cache-

W arming, https://edelweissgm.github.io /hft/2024/10/14/CacheWarmin

g.html
4. Ibrahim Essam, Jul 19, 2024, Cache warming and menmory

access, https:/ /ibrahimessam.com/posts/cache/

5. Nimrod Sapir, 2019, High-Frequency Trading and Ultra Low, Latency
Development
Techniques, https://corecppil.github.io/CoreCpp2019 /Presentations /Ni
mrod High Frequency Trading.pdf,
Code: https://github.com/DanielDubi/StaticFlatMap

6. Daniel Lemire, April 2018, Is software prefetching (__builtin_prefetch) useful for
performance? https:/ /lemire.me/blog/2018/04/30/is-software-

refetching-  builtin prefetch-useful-for-performance

7. Johnny’s Software Lab, March 31, 2024, The pros and cons of explicit software

prefetching, https:/ /johnnysswlab.com/the-pros-and-cons-of-explicit-

software-prefetching/
8. Katecpp, Oct 5, 2015, Improve performance with cache

prefetehing, http:/ /katecpp.github.io/cache-prefetching/

David Spuler 42


https://arxiv.org/abs/2309.04259
https://github.com/0burak/imperial_hft
https://www.efinancialcareers.com/news/low-latency-c
https://edelweissgm.github.io/hft/2024/10/14/CacheWarming.html
https://edelweissgm.github.io/hft/2024/10/14/CacheWarming.html
https://ibrahimessam.com/posts/cache/
https://corecppil.github.io/CoreCpp2019/Presentations/Nimrod_High_Frequency_Trading.pdf
https://corecppil.github.io/CoreCpp2019/Presentations/Nimrod_High_Frequency_Trading.pdf
https://github.com/DanielDubi/StaticFlatMap
https://lemire.me/blog/2018/04/30/is-software-prefetching-__builtin_prefetch-useful-for-performance/
https://lemire.me/blog/2018/04/30/is-software-prefetching-__builtin_prefetch-useful-for-performance/
https://johnnysswlab.com/the-pros-and-cons-of-explicit-software-prefetching/
https://johnnysswlab.com/the-pros-and-cons-of-explicit-software-prefetching/
http://katecpp.github.io/cache-prefetching/

4. Branch Prediction

What is Branch Prediction?

Branch prediction is an optimization in the CPU whereby efficiency is improved by
considering upcoming branches. The CPU in its execution tries hard to predict
which of the two paths of a branch is more likely to be taken. Some CPUs also do
“speculative execution” of the future instructions, to get ahead, which must be
discarded if the “wrong” branch is actually executed by the code.

For the programmer, these branch prediction capabilities give the opportunity to
further optimize your code to capitalize on the CPU’s abilities.

Optimization techniques for the C++ programmer include:

e Eliminating branches in the hotpath so that the code runs straight and
narrow (L.e., fast!).

e Hinting to the compiler about the most likely branches (e.g., the newer
[[likely]] and [[unlikely]] specifiers).

e Keep unavoidable branches in the same neighborhood (e.g., short loop
bodies).

Branch prediction has a problem in HFT: the hot path is rarely executed (i.c.,
actually submitting a trade). All of the branch prediction logic would try to run the
cold path, as it would always be predicted. But what we want is for the branch
prediction logic to always choose the hot path, even though it would mostly fail to
be correct.

Thus, all of HFT is at odds with a whole swathe of computing theory about branch
prediction. HFT needs a “set opposite world mode” flag, but I'm yet to find one in
the GCC documentation.

43  Advanced C++ Memory Techniques



Types of Branches

First things: analyze your hotpath code for branching. The main types of branches
in C++ code include:

e 1if statements and if-else statements.

e Loop conditions and loop bodies.

e Loop control statements: break, continue.
e Function calls and return statements.

e switch statements (multi-way branching).

Some of the less obvious types of branches are:

e Ternary operator (?:)
e Short-circuiting in the && and | | operators

There are also hidden branches in C++ code features such as:

e  Virtual function calls
e TFunction pointers (and function names)

Branch Compiler Hints

There are several ways for the programmer to give “hints” to the compiler and its
optimizer about which pathways are more likely. As always, the compiler is free to
ignore hints, so you have to check in the assembly output what effect your changes
have. Some of the ways to give hints include:

e [[likely]] and [[unlikely]] path attributes (C++20).
e likely() condition marker (C++20)

e noexcept attribute (C++11)

e [[noreturn]] attribute (C++11)

e [[assume (expression)]] attribute (C++23)

GCC also has various extensions available to give hints:

e  builtin expect (expression, value) (GCC extension)
e hot (GCC function attribute)

David Spuler 44



Branch Profiling

Branch profiling is the recording of pathway stats to analyze the most likely
branches. This can also be re-used in the compilet’s optimization mode, so that the
optimizer can perform branch-aware optimizations. Hence, there is a two-step
process whereby better branch prediction can be incorporated into your C++
executable code.

GCC has capabilities to store and use branch prediction statistics in its optimization
phase. The arguments to use are:

e -—fprofile-arcs (GCC command-line argument)
e -fprofile-generate (GCC command-line argument)
e -—fprofile-use (GCC command-line argument)

Following this process will allow GCC to generate more optimal code under
assumptions based on branch frequency in its seen executions. Obviously, this is
an automatic method, but needs multiple steps in the build:

e Compile without branch hints

e Run the tests

e  Output the branch prediction data

e Re-compile the code with branch optimizations enabled

Note that for HFT, the fully hot path (i.c., trade execution) is actually a rare branch,
so this historical branch data won’t be that useful. One solution is to run GCCin a
test mode in which the hotpath is always dummy-executed! Other eartly parts of the
hotpath in HFT can still benefit in both situations, such as the trading decision
logic, which is always executed on incoming market data. Obviously, non-HFT
applications can always benefit, as the most likely paths are also the most heavily-
executed.

Branch Heuristics

In the absence of other branch prediction data, the CPU and compiler tools fall
back on some heuristics. Some of the common ones include:

e The if code block is more likely to be executed than the else code block.

e Loops tend to be executed multiple times.

e Backwards branches are assumed to be loop iterations (and are preferred
due to the prior assumption).

45 Advanced C++ Memory Techniques



Hence, we can make some heuristic recommendations for how to organize your
code:

e Put common case code in the i f block.
e Have error handling in the else block.
e Don’t use once-only loop executions.

Branch Elimination

The simplest way to avoid branch prediction issues is to have fewer branches. There
are various ways to achieve this, ranging from minor code tricks to re-writing your
entire algorithm to have fewer conditional tests.

Which branches to eliminate? The worst kinds of branches that need elimination
include:

e Long if-else-if sequences
e Nested if-else statements

What data is being tested by a branch condition is also critical, and some of the
problematic branches are based on unpredictable conditions:

e Branches depending on user inputs
e Branches depending on random numbers
e Branches depending on system clocks

The best types of conditional tests include:

e Compile-time known tests
e Predictable conditions

The techniques available to eliminate your least favorite branches include:

e Reorganize the overall algorithm to have fewer branches.

e Defer or combine error checking for multiple errors so that there’s only
one error handling branch.

e Function call optimizations such as inlining and call hierarchy flattening.

e Loop conditional test reductions such as loop unrolling and iteration
bounds known at compile-time.

e Branchless programming techniques and tricks to change conditional paths
to arithmetic computations.

David Spuler 46



Branchless Programming Tricks

Branchless programming is a variety of coding tricks to get rid of control flow
branches. The main approach is to remove conditional tests, such as if statements,
by using a variety of arithmetic computations instead. Code that has no branches in
a long block can run very fast on a CPU because of instruction prefetching,

Advantages of branchless programming:

e Avoids branch prediction issues (CPU speedup).
e Avoids warp divergence in CUDA C++ (GPU speedup).
e Job security

Possible general software engineering disadvantages of these branchless arithmetic
bit tricks:

e Code complexity — isn’t it a good thing?
e Unreadable code — as if we care.
e  Maintainability — is someone else’s problem.

Even worse, the speed benefit might be a mirage. The issues include:

e De-optimizations from too many arithmetic operators — benchmark your
tricks!

e Don’t underestimate the optimizer’s capability on simple code.

e Tricks can confuse the optimizer (undermining any benefit).

The types of methods for branchless coding include:

e Bit masks

e Bitarithmetic (bitshifts, bitwise AND/OR/XOR)
e Mapping Boolean flags to 0 or 1

e Mapping logical operator results to 0 or 1

e Lookup tables

e Conditional move (CMOYV) assembly statements
e Ternary operator (?:)

Some of the more traditional C++ optimizations techniques can also reduce
branching:

e Loop code hoisting of conditional tests.
e Compile-time settings and configurations.

47  Advanced C++ Memory Techniques



Ternary Operator and CMOV

Using the C++ ternary operator is one way to help the compiler write branchless
code. Consider the basic 1 f statement:

if (x > vy) |

max = X;
}
else {

max = y;

This can be more concisely written with a ternary operator:
max = (x > vy) ? X : y;

The ternary operator can be implemented in the compiler backend using a CMOV
(conditional move) register assignment statement. This is a branchless instruction
that implements the conditional assignment very efficiently.

In theory, both pieces of code are equivalent, and the compiler really should
generate identical code. In practice, the use of the ternary operator makes it easier
on those poor compiler engineers, because it’s 100% guaranteed that an assignment
is required, whereas the if statement requires a significant amount of extra
compile-time static analysis to deduce that both assignments are setting the same
variable. The C++ compiler is more likely to emit a branchless CMOV assembly
statement with a ternary operator.

Boolean Flags are 0 and 1

Another way to reduce branches is to use Boolean flags in arithmetic, using them
as having the values of integer 0 and 1. Here’s a simple example:

bool inc flag;
int x = 0;

if (inc_flag) {
X++;
This can be implemented in a branchless manner:
x += (int)inc_flag

David Spuler 48



Note that the type cast to int is not really needed, but helps with readability, and
ensures you don’t get compiler or static analyzer warnings.

Whether that is faster is something that needs testing because it forces an addition
operator into one of the pathways that previously had none, but at least its
branchless so it helps with branch prediction.
That was a simple example, but many other ideas are possible. Instead of this:

if (clear flag) x = 0;
You can try this branchless version:

x *= (int) !clear flag;

I'm betting that it’s actually slower, since multiplication is an expensive operation,
but who’s to know without running a benchmark.

Logical Operators are 0 and 1

In the same vein, the Boolean values of the && and | | operators can be treated as
0 and 1 in integer arithmetic expressions. Here’s an example of the maximum
computation:

max = (x > y) * x + (y >= x) * y;

Again, the ternary operator’s CMOYV instruction is probably faster than this de-
optimization.

Bitwise XOR Tricks

There’s the well-known XOR trick to swap two integer variables without using a
temporary:

A

X = X v
y =y " %
x =x " vy;

Don’t worry; nobody understands how this works. But it uses three assignments,
no temporary variable, and no branches.

49 Advanced C++ Memory Techniques



Sign Bit Extension Masks

If you’re doing any arithmetic with negative values, you can use bitwise tricks by
creating two masks depending on the sign bit. The idea is that the bitmask is:

e All 0’s if the number is positive (or zero).
e All I’s if the number is negative.

In other words, the bitmask is 32 bits all set to the same bit value as the sign bit.
The bitmask value is either O or OxFFFFFEFFE (which is also that artist previously
known as -1). We can generate this using the right bitshift operator:

unsigned int mask = x >> 31;

Yes, I really should portably compute the bitshift count using the standard
macro CHAR BIT and sizeof (int) as nicely done in [Farrier, 2025].

Example: RELU Activation Function

Let’s have a go at making the RELU function branchless. RELU is an “activation
function” in LLM backends, and it’s quite simple:

if (x < 0) {
RELU = 0;
}
else {
RELU = x;

}

In other words, change negatives to zero, but leave positives unchanged. Here’s the
ternary version (faster):

RELU = (x < 0) ?2 0 : x;
The basic idea for a branchless, bitwise RELU is:

unsigned int umask = (x >> 31); // All 0's or 1's
RELU = (x | umask);

Actually, that’s buggy, with the bit masking the wrong way. Here’s the correction:

unsigned int umask = ((-x) >> 31); // All 0’'s or 1's
RELU = (x | umask);

David Spuler 50



Beware this might be a de-optimization, because the ternary version might be a
single CMOV instructions, whereas this version has three operators: negative, right
bitshift, and bitwise-AND.

Sign Bitshift Portability

There’s a major portability problem with this code, because right bitshift on a
negative signed integer is actually undefined behavior in C++. The compiler is free
to shift in zero bits or to sign bit extend on the leftmost bit position, in its sole
discretion. Hence, you need to check your platform to see what the >> operator
does, and whether this rightshift bitmask idea will work.

Note that we cannot fix this by doing the right bitshift on an unsigned type,
which is guaranteed to shift in a zero bit (well-defined in standard C++, but not
what we want). Note also that this is only undefined for right bitshift, not for left
bitshift, which is well-defined and always shifts zero bits in on the right side (again,
not what we want).

Of course, you can create the sign-based bitmask more portably by avoiding the
right bitshift operator, but this loses the branchless benefits:

unsigned int mask = (x >= 0) ? 0 : OxXFFFFFFFE;
That’s safe and slow, and what’s the point of that?
Lookup Tables

Precomputation of lookup tables is a fast way to get a double benefit of fast
computation and branchless code. A good example in the standard C++ library are
the functions for character types. Here’s a slow branching version:

#define islower (c) (((c) >= 'a'") && ((c) <= "z") )

This has lots of computation and there are also branches in the short-circuiting with
the && operator.

A faster version uses a precomputed lookup table with 256 bytes.

#define islower(c) islower table[ (unsigned char) (c)]
This is faster and branchless, at the cost of 256 bytes of global memory, and has
already been done for you in the standard libraries by those uber-brainy compiler

engineers.

51 Advanced C++ Memory Techniques



Instruction Reordering Optimizations

Instruction reordering is an optimization performed inside the CPU where it
actually runs the machine code instructions out-of-order. The way this works in
simple terms is:

e Delay any opcodes that don’t have the data they need (e.g., from memory).
¢ Run any instructions that are ready as soon as possible.

There’s a whole smash of fun to be had researching how this all works in the CPU.
There are schedulers and “stations” and various queues and caches. Kudos to all
those hardware engineers.

Another special type of fun is for compiler engineers. GCC does a lot of fancy
optimizations in the code generation backend in terms of taking advantage of
instruction orders.

But what about C++7? Is there anything you can do in C++ to optimize your code?
Or with inline assembly instructions?

Safety first. Most of the discussion of out-of-order execution and C++ occurs in
relation to safety. Problems can arise across multiple threads if the reads and writes
from our C++ statements are running out-of-order. I mean, how can it be good to
just run my C++ code in any random order that the CPU chooses?

The issue of preventing out-of-order errors involves “memory order.” These are
especially useful for correctly implementing lock-free algorithms with atomics, but
they also act as memory barriers that can prevent any undesirables types of out-of-
order execution.

Speed second. But the goal is to go faster! Rather than stopping the CPU from
reordering instructions by using memory barriers, let’s maximize it! There are at
least two major ideas:

e Minimize memory-waiting delays
e Exploit out-of-order instructions

The first point is to minimize the slowdowns whereby instructions get delayed. The
main one is memory accesses, which has well-known solutions such as: cache hit
maximization, cache lines, tiled memory accessing, contiguous memory blocks,
reducing data sizes, etc.

David Spuler 52



Other than cache locality, there’s not a lot of discussion anywhere in books or on
the internet about exploiting out-of-order instruction execution to make code run
faster. But there’s some discussion of this in Agner Fog’s astounding CPU
resources; see (Fog, 2024). The key point is:

Free extra parallelism!

The average CPU has hidden parallelism in terms of its various computation
pathways. For example, the CPU can run these two computations in parallel:

e Integer arithmetic — Arithmetic-Logic Unit (ALU)
e Floating-point arithmetic — Floating-Point Unit (FPU)

That’s not the full list. Some CPUs can run different types of integer arithmetic,
such as addition and multiplication, on separate pathways. Similarly, some of the
SIMD operations run separately from the non-SIMD instructions.

So, you can see the opportunity here, right? Not only can the CPU run the same
operations in parallel via SIMD instructions, but it can run two (or more!) different
types of computations in parallel.

Unfortunately, the opportunities for huge improvements to your C++ are
somewhat limited. For example, if you have a computation with both integer and
floating-point computations, can you parallelize them? Yes, but only in limited
circumstances, where:

e The two computations don’t depend on the results of the other.
e Not requiring memory accesses for the computations.
e Computation operands are values already in CPU registers.

If there’s a dependency, they can’t run in parallel. And if they both require memory
requests, that’s the bottleneck regardless of whether the instructions can run in
parallel. The data needs to be already loaded from memory into CPU registers to
run fast.

That’s quite a list of limitations. Hence, I haven’t quite solved the problem of a
faster vector dot product using instruction out-of-order execution.

53 Advanced C++ Memory Techniques



References

10.

11.

Paul Bilokon, Burak Gunduz, 8 Sep 2023, C++ Design Patterns for Low-
latency Applications Including High-frequency

Trading, https:/ /arxiv.org/abs/2309.04259,

Code: https://github.com/Oburak/imperial hft

Sarah Butcher & Alex McMurray, 2 January 2025, The C++ techniques yon
need for §600k hedge fund

Jjobs, https:/ /www.efinancialcareers.com/news /low-latency-c

Paul Alexander Bilokon, Maximilian Lucuta, Erez Shermer, 27 Aug
2023, Semi-static Conditions in Low-latency C++ for High Frequency Trading:
Better than Branch Prediction Hints, https:/ /arxiv.org/abs/2308.14185,
Code: https://¢github.com/maxlucuta/semi-static-conditions (Advanced
branch prediction analysis, a way to do branches by self-modifying code
at assembly level.)

John Farrier, March 2025, Branch Prediction: The Definitive Guide for High-
Performance C++, https:/ /johnfarrier.com/branch-prediction-the-
definitive-guide-for-high-performance-c/

Stdjan Deli¢, Apr 10, 2023, Branchless programming — Why your CPU will
thank_you, https:/ /sdremthix.medium.com/branchless-programming-why-

your-cpu-will-thank-you-5£405d97b0c8
Jared Gorski, 11 August, 2020, Branchless

programming, https:/ /jaredgorski.org/notes/branchless-programmin
Algorithmica, March 2025 (accessed), Branchless

Programming, https:/ /en.algorithmica.org/hpc/pipelining/branchless
Michael Kerrisk, Oct 5, 2012, How much do __builtin_expect(), likely(), and
unlikely() improve performance? http:/ /blog.man7.org/2012/10/how-much-
do-builtinexpect-likely-and.html

Agner Fog, 28 May, 2024 (last update), The microarchitecture of Intel, AMD,
and VIA CPUs: An optimization guide for assembly programmers and compiler
mafkers, https:/ /www.agner.org/optimize/microarchitecture.pdf

GCC, March 2025 (accessed), Common Function

Attributes, https:/ /gce.gnu.org/onlinedocs/gee/Common-Function-
Attributes.html

GNU, May 2025 (accessed), Adjusting the Instruction

Scheduler, https://gcc.gnu.org/onlinedocs/gecint/Scheduling html

David Spuler 54


https://arxiv.org/abs/2309.04259
https://github.com/0burak/imperial_hft
https://www.efinancialcareers.com/news/low-latency-c
https://arxiv.org/abs/2308.14185
https://github.com/maxlucuta/semi-static-conditions
https://johnfarrier.com/branch-prediction-the-definitive-guide-for-high-performance-c/
https://johnfarrier.com/branch-prediction-the-definitive-guide-for-high-performance-c/
https://sdremthix.medium.com/branchless-programming-why-your-cpu-will-thank-you-5f405d97b0c8
https://sdremthix.medium.com/branchless-programming-why-your-cpu-will-thank-you-5f405d97b0c8
https://jaredgorski.org/notes/branchless-programming/
https://en.algorithmica.org/hpc/pipelining/branchless/
http://blog.man7.org/2012/10/how-much-do-builtinexpect-likely-and.html
http://blog.man7.org/2012/10/how-much-do-builtinexpect-likely-and.html
https://www.agner.org/optimize/microarchitecture.pdf
https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html
https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html
https://gcc.gnu.org/onlinedocs/gccint/Scheduling.html

5. Contiguous Memory Blocks

Why Contiguous Memory Blocks?

A critical part of optimizing low-latency engines is to store data in a contiguous
memory block so that they have a sequential address space. Processing many
chunks of data in parallel is the main optimization used in both GPU and CPU
SIMD acceleration. All of the vectors, matrices, and tensors need their underlying
data in a block for efficiency.

Processing data that is in adjacent addresses is much faster than jumping all over
the place. Vectors should obviously be stored in a simple contiguous array of
memory. Less obviously, similar comments apply to the memory storage of
matrices and tensors.

The use of contiguous memory is an important optimization for both sequential
and parallel algorithms. The reasons that memory blocks are more efficient include:

e Data locality (cache hits)
e Data block GPU uploads (model weights from memory-to-cache)
e Predictive cache pipelining (in CPU sequential accesses)

Data locality refers to using data in the same or similar address locations. This is
helpful for the cache hit rate because data that is already in the cache is much faster
to access that a non-cached RAM memory address.

GPU uploads from CPU RAM to the GPU’s Video RAM (VRAM) is done in
blocks. Obviously, we don’t want to be uploading random bits of data from
different parts of the RAM.

Non-GPU architectures also benefit from the use of contignous memory. This is
obviously true of CPU SIMD instructions (e.g., AVX on x86), but even in
sequential execution, the CPU has its own RAM caching methods and often has
other optimizations of memory accesses. Predictive cache pipelining is where the
CPU attempts to predict what the next memory location will be, and load it in a
pipelined speedup, before being asked. This pipelining of memory accesses is much
faster than doing completely sequential address lookups.

55 Advanced C++ Memory Techniques



Typically, predictive cache pipelining uses the simple heuristic that the next address
is the most likely next request, which assumes that data is being processed in order
of the addresses. Hence, scanning an array in reverse is the worst possible order for
these CPUs. Similarly, jumping around to different memory addresses, such as
scanning the column of a matrix using a large “stride,” is also inefficient.

Low-Level Memory Block Functions

Memory block operations in the standard C++ libraries are implemented using fast
assembly language behind the scenes. The main functions in the standard C++
library that operate at a low level on binary bytes in a memory block are:

e memset (): set bytes to a value, usually used to clear bytes to zeto.
e memcpy (): copy bytes.

e memmove (): copy bytes, but tolerates overlapping regions.

e memcmp (): compare a sequence of bytes.

e memchr (): search for a byte in a sequence.

These functions are lower-level than the modern C++ versions, such
as std: :copy, std: :move (), and their “backward” versions. The above listed
memory block functions are not aware of object-level semantics, and won’t run any
of the special functions on memory containing objects.

Note that unlike the standard string functions (such as strlen), these functions
do not assume a block is null-terminated by a zero byte. Zero is simply a binary
value, and these functions don’t stop at a zero byte. All of these functions operate
on a block of memory with a known maximum byte length.

Each compiler environment typically offers some extra non-standard byte-wise
functions that are also fast. Some of the less standardized C++ intrinsics that
operate on memory blocks include:

e memccpy (): copy bytes up to a specified sentinel byte.

e memicmp () or memicmp: compare bytes ignoring letter case.

e Dbcopy (): copy bytes

e Dbzero (): clear bytes to zero.

e Dbcmp (): compare bytes.

e Dbyteswap uint64 () (Microsoft intrinsic): Swap bytes of an integer.

e  builtin bswapl6 (): GCC function to swap the bytes in an integer.
There are versions for 32-bit and 64-bit.

David Spuler 56



Fast Memory Block Operations

The slow way to do things in arrays is one element at a time. The faster way is to
use the standard memory block functions on the whole array. There are a number
of standard functions that operate on array data or memory blocks and they are
very fast.

Initialize with memset byte fill. The memset function sets all of a memory block
to a byte value. It is widely used as a fast way to initialize a block of memory to all
ZE10S.

memset (&x, 0, sizeof(x));

Almost all usages of memset will be for the zero byte. The only other usage I've
seen is to fill memory with a dummy non-zero byte as a form of mutation testing
to catch uses of uninitialized memory.

memset (&x, 0x55, sizeof(x));

Fast array copying with memcpy. The fast way to copy an entire array is
with memcpy. Rather than copy each element of an array, one at a time, in a loop,
the memcpy standard library function can be used to copy the entire array in one
statement:

memcpy (destarr, srcarr, sizeof (srcarr));

Note that this is a bitwise copy of the array intended for simple data types. For
example, it won’t run copy constructors if applied to an array of objects.

The memcpy function does a very fast memory block copy. It is like strcpy in
that the destination is the first parameter. memcpy will copy everything, even null
bytes and hidden padding bytes. It keeps going even if it finds a null byte, so it is
not like strcpy, and will always copy a fixed number of bytes. memcpy is a supet-
fast byte copy, but is unsafe, because it does not have well-defined behavior if the
source and destination blocks overlap.

Safer byte copy with memmove: The memmove function is a safer version
of memcpy, which also works correctly if the memory blocks ovetlap. If the source
and destination blocks don’t ovetlap, it’s the same as memcpy, except probably
slightly slower. If they do ovetlap, then memmove conceptually will copy the source
to a temporary area, and then copy it to the destination block.

57 Advanced C++ Memory Techniques



Copying arrays using struct assignment. An alternative method of copying
arrays is to make use of struct assignments. This is similar to
how std: :array works, which could also be used in a similar vein, but this
example totally avoids any constructor, copying or move costs (also works in C).

This method is not portable, is very unreadable and uses pointers incorrectly by
converting between two different pointer types. However, it can be faster
than memcpy because it makes use of the assignment operator rather than calling a
function.

On the other hand, memcpy is an intrinsic function that might be inlined to
assembler instructions by the compiler, so this trick might be a waste of time.
Benchmarking is recommended here.

To copy an array using this method it is necessary to declare a new
dummy struct type that is the same size as the array that is to be copied. Then
we use type casting to fool the compiler into thinking it is copying structures when
really it is copying arrays. The method is illustrated below:

struct dummy transfer { // The new struct type
int a[MAX]; // This field gives the right size
}i

int a[MAX], b[MAX]; // array variables being copied
static assert(sizeof (struct dummy transfer) == sizeof(a));
* (struct dummy transfer *)a = *(struct dummy transfer *)b;

The assignment statement first type casts both “a” and “b” to be pointers to the
new struct type, and then dereferences these pointers so that the compiler
believes it is assigning between two structures. The assertion is an efficient compile-
time safety net to ensure that the copying statement will work.

Of course, a better way entirely is probably to put the array inside a class object,
with lovely encapsulation and modularity, and then we can simply copy the objects.

memcmp byte comparisons. The memcmp function does a byte-wise comparison
of a memory block. Its return value is like st rcmp, returning 0 for equality, and a
negative or positive value otherwise. Note that memcmp is not like st rcmp, and
will not stop when it finds a zero byte.

David Spuler 58



Memory Block Function Pitfalls

The standard memory block functions are fast, but they are not always safe. Here
are some of the common pitfalls that commonly occur in everyday coding.

memset sizeof problem. Here’s another glitch in using memset inside functions:

void zero array(int arr[10])

{

memset (&arr, 0, sizeof(arr)); // Bug

}

The problem is not memset, but the sizeof operator on function parameters. An
array parameter in a function is like a hologram and isn’t really there. It’s not really
an array, but a pointer, and sizeof (int [10]) is the same as sizeof (int¥*).
Hence, sizeof (arr) is probably only 4 or 8, rather than 40 or 80, leaving most
of the array uninitialized.

Personally, I recommend a memset debug wrapper function to catch this awful kind
of problem at runtime, or maybe a tricky preprocessor macro can detect it at
compile-time with a static_assert somehow.

memset portability issue. Even though it’s a fast zeroing method, the use
of memset to zero bytes has an obscure portability problem on any architecture
where all-bytes-zero is not the same as all data types zero. However, on most
standard platforms, all-bytes-zero is correct for all types: integer zero (regardless of
endianness), floating-point zero (positive zero is all bits zero), and the null pointer.

memcpy overlapping blocks error: The only downside with memcpy is that it can
fail with ovetlapping ranges for the source and destination blocks, so if you are
shuffling arrays up or down one element using memcpy, then you have to be

careful, because the results on overlapping ranges are undefined.

Here’s a buggy example of using memcpy to remove the first character of a string
in place:

memcpy (s, s+1, strlen(s+1)+1); // Bug

The problem is that the blocks starting at “s” and “s+1” are overlapping. It is
implementation-defined whether it will be correct.

59 Advanced C++ Memory Techniques



The fix is simply to use memmove, which always works correctly for overlaps:

memmove (s, s+l1, strlen(s+l)+1l); // Correct

memcmp return value. A pitfall with memcmp is that you cannot assume that it
returns 1 or -1, but must compare the return result to zero (like
the strcmp function).

if (memcmp (&a, &b, sizeof(a)) == 1) // Bug
if (memcmp (&a, &b, sizeof(a)) > 0) // Correct

memcmp object equality testing. Looking at the memcmp function, you might
think of it as an opportunity to do a fast equality/inequality test on large objects by
simply doing a byte-wise test. You would not be the first to think that.

Consider if you have a complex number class:

class MyComplex {
float real,imag;
// .. etc

The brute-force equality test is:

bool is equal (const MyComplex &a, const MyComplex &b)
{

return (a.real == b.real && a.imag == b.imag);

}
Our idea to optimize this with memcmp looks like:

bool is_equal (const MyComplex &a, const MyComplex &b)
{

// Bug!

return memcmp (&a, &b, sizeof (MyComplex)) == 0;

Unfortunately, there are multiple obscure pitfalls with this approach:

e Padding bytes

e Two types of floating-point zero

e Multiple types of floating-point NaN (not-a-number)
e Bitfields

David Spuler 60



Padding byte problems. If float is 4 bytes, but the machine has 8-byte alignment,
then the “real” and “imag” data members will be stored on 8-byte alignment
addresses, and there will be another 4 bytes each of dummy padding.

It doesn’t even have to be on a machine with alignment issue, but can occur with a
bigger object if we’ve mixed different size objects (e.g., char, int, and pointers).
The padding bytes will be uninitialized (e.g., for local objects or if allocated with
“new”), in which case they can contain random values. Since memcmp does not skip
the padding bytes, its test will fail.

Now, we could possibly work around this portability issue via the use of memset in
the constructor, or calloc memory allocation, to zero all of the bytes of an object
including the padding bytes.

Negative zero problems. Unfortunately, the next problem is not a portability
problem, but a fundamental issue with floating-point numbers. There are two zeros!

There’s the normal zero with all bits zero, and there’s negative zero, with the sign
bit set, but all other bits zero. Hence, the bitwise testing of both float numbers fails
if there’s ever a negative zero.

NaN problems. Similarly, but perhaps less seriously, the representation
of NaN (Not-a-Number) in floating-point is also not fixed. There are multiple
values of NaN, both positive and negative.

So, memcmp would say the float values differ, even if both are NaN. I think
this NaN issue is less serious than negative zero, because if your computations are
generating NaN, then they’re probably already failing in the computations, and an
incorrect memcmp equality test won’t matter as much.

Bitfield problems. If our structure has any bitfield data members,
this memcmp idea fails too. Bitfields ate a standard C++ feature that is defined with
a suffix colon and a number of bits like:

unsigned int myflag:1; // Boolean bitfield with 1-bit

With bitfields it’s implementation-defined how this is represented numerically, and
there might be undefined bits in the same byte, or extra padding bytes again.

61 Advanced C++ Memory Techniques



Still want your memcmp speedup? I've just shown you about 15 pitfalls, but
maybe you still want to live on the edge and get that speedup? You can
use memcmp to do fast array or object comparisons if you’re really, really sure that
you have:

e Zero byte initializations. All allocated arrays or objects must be first zero’d
by memset or calloc. You cannot rely on constructors, and it’s hard to
put amemset as the first action of the constructor due to initializer lists
and base classes. You might have to manually intercept all of the
new and new [ ] operators with your own wrapper that does memset on
the block, rather than use constructor tricks.

e It’s also unclear if you can actually rely on static or global variable
initialization to carefully zero all the padding bytes in an array or object.
Probably it works on most platforms, but I doubt it’s fully portable. To be
sure, use memset on the global variables during program startup.

e No bit-fields used. That’s easy, at least.

e Floating point computations should avoid negative zero and NaN.

Raw Subarray Memory Blocks

Passing raw subarray types to functions can be a fast alternative to some of the
modern C++ contiguous-memory containers (i.e., std: :array, std: :vector).
However, the passing of a container object by reference with “const&” parameters
is also very fast, so don’t assume that raw arrays are always faster.

If a function accepts a raw array type, it is possible to pass it any array as an
argument, or any pointer of the right type. In this way, it is possible to pass memory
blocks or “sub-arrays” to a function by passing the address of a particular array
element. A function to operate on a particular type of array can be written, and used
to operate on various arrays.

void clear (int a[], int n)

{

int 1i;
for (i = 0; 1 < n; i++)
al[i] = 0;

David Spuler 62



void test subarrays()

{

int a[1007];

clear(a, 10); // clear first ten, 0..9

clear(a + 50, 10); // clear 50..59
clear(&a[50], 10); // clear 50..59 (equivalent)

Multidimensional subarrays. It is also legal to pass multi-dimensional arrays to
functions. However, the sizes of all but the first dimension must be specified in the
function receiving the array. For example, to pass a two-dimensional array to a
function, the function header would look like:

void fn(int al[] [SIZEZ2]);

The reason for this restriction is that the compiler cannot determine the address for
an arbitrary array element if it does not know the sizes of all but one of the
dimensions.

Because the sizes of most of the array dimensions must be specified in the function
declaration it is very difficult to write a function to act on sub-arrays of mult-
dimensional arrays.

For example, this idea would be useful to define library functions to operate on
matrices with different dimensions. Ideally, we would like one function to calculate
the determinant of a matrix for any dimension (e, an n-by-n matrix
where n varies).

Consider how we would like the determinant function to look:

double determinant (double matrix[][], int n); // Wrong
Ideally, the dimensions of the matrix are not specified at compile-time, but are
specified at run-time by the n argument. This is not possible as a simple C++
declaration because the second dimension (i.e., n) needs to be specified in the

definition of the two-dimensional array type. The best solution is to use dynamic
multi-dimensional arrays.

63 Advanced C++ Memory Techniques



Dynamic Memory Management Pitfalls

Memory management is really not the strong suit of C++. If your program is
crashing or behaving badly, it’s highly likely to be some kind of memory problem.
There are so many pitfalls in C++ dynamic memory management, and even in static
or global (non-dynamic) memory, that it’s hard to list them all.

C++ programs have access to a large block of free memoty, called the heap. The
actual size of the available memory depends on the system. This memory is available
to a C++ program which can allocate itself chunks of memory from this heap. This
is useful when a C program does not know beforechand how much data is being
stored, and hence, how much memory is required. Instead of allocating a large array
to cater for the worst case, the program can allocate itself blocks of memory as
required.

Blocks of dynamic memory can be allocated in two main ways:

e The C++ style “new” or “new[]” operators
e Theolder stylemalloc () and calloc () functions (inhetited from C)

Other ways to allocate dynamic memory include:

e strdup (): make an allocated copy of a string.
e realloc():acompanion to malloc/calloc thatis rately used.

Once the memory is no longer needed it is “freed” back to the heap. Again, there
are two main ways:

e The C++ style “delete” and “delete[]” operators
e The older style “free” function

Some of the main memory problems in a C++ program can include:

Uninitialized new memory. The new operator does not initialize the
new chunk of allocated memory. Accidentally using it is a common bug,

Uninitialized malloc memory. The malloc function also does not
initialize its allocated memory. Again, use of a memory block that is
allocated by malloc but hasn’t been propetly cleared is a common bug.
One of the mitigations is to use calloc instead, because calloc does
zero the bytes of every block it allocates.

David Spuler 64



Mismatched new/delete with malloc/free. Memory allocated
with new should be deallocated by delete, butmalloc’d memory
should be free’d. Never the twain shall meet, or else kaboom.

Mixing new/new[] and delete/delete[]. Memory allocated
by new should be released by delete, but memory allocated by the array
version “new []” should be freed by the delete[] array version. Again,
they’re not supposed to mix.

free(nullptr) is harmless. If it’s so harmless, why is it a pitfall?
Sure, free (nullptr) is officially defined by the standard to do nothing.
But if your coding is doing this, it sure walks and talks and quacks like a
buggy duck.

strdup (nullptr) is not harmless. This is probably a crash, but even
on systems where it’s not, it’s clearly a bug in your code if you’re trying to
duplicate a null pointer.

Pitfalls for Non-Dynamic Memory Blocks

There’s so many pitfalls in management dynamic memory, with either new/delete
or malloc/free, that surely we’ve run out? No, don’t wotty, it’s comforting to know
that there are still a bunch more insidious problems in other types of non-allocated
memory.

Here’s a list of some more fatal memory stomps that aren’t about allocated blocks
on the heap:

e Buffer overrun of a global, local, static, or stack buffer variable.

e Returning the address of a local variable on the stack (ie., non-
static variable).

e Trying to write to addresses of string literals (often a crash if they’re non-
writable, but maybe worse behavior if it can be modified).

e Modifying arr [10] in an array of size 10 (raw arrays or std: :array).

e Uninitialized local variables or local buffers on the stack (non-static).

e Using an uninitialized local pointer variable to access some random address
in Timbuktu.

e Null pointer dereferences. Oh, well, at least you initialized it.

e Returning the address of a “static” local variable (aliasing problems).

e Using a negative array index.

e Modifying a string literal (they’re in read-only memory on Linux).

65 Advanced C++ Memory Techniques



The standard C++ library functions can also have problems:

strcpy () on overlapping string arguments: strcpy (s, s+1);

e strncpy () canleave strings without a null byte terminator.

e memcpy () on ovetlapping memory blocks (use memmove instead).

e Trying to free () ordeletea global, static, stack or instruction
address will crash.

e Double fclose () on file pointers from fopen.

e Ignoring the return value of erase () in an iterator loop.

David Spuler 66



6. Pointer Arithmetic

What is Pointer Arithmetic?

Pointer arithmetic is a tricky C++ optimization that can be used to get rid of
incremented variables in loops. Instead, a pointer can be incremented each loop
iteration. This changes an array access “arr [1]” into a pointer access “*ptr” and
is usually faster.

What is pointer arithmetic? Arrays and pointers are buddies in C++ and there’s
a way that mathematical arithmetic operators can work on both. Consider the
declarations:

int arr([10];
int *ptr;

To start with, we can set the pointer at the array, and C++ allows us to use index
notation on a pointer:

ptr = arr;
x = ptr[3];

Here, x will get the value of arr[3] viaptr[3]. The pointer and array are
equivalent. Note that the “&” address-of operator can be optionally used here. We
could have written “ptr=s&arr” to copy the address, but it’s optional.

C++ allows array index accesses on pointers with “ptr [3]” as above. We can also
do this using “pointer arithmetic”” with the “+” operator and the “*” pointer de-
reference operator:

x = *(ptr + 3); // Same as ptr[3]
The expression “ptr+3” is the address of the third element in the array
(.e., &arr[3]), and the “*” dereference operator gets the value pointed to by the

pointer (i.e.,, arr[3]).

Why does this work? If ptris pointing to the start of an integer, shouldn’t
“ptr+3” be a weird address in the middle of an integer?

67 Advanced C++ Memory Techniques



No, because C++ does “pointer arithmetic” on pointers. Because “ptr” is an
“int*” type pointer, the compiler knows to work on “int” data. With pointer
arithmetic, the “+” operation adds a multiple of the bytes of the size of int types.
So “ptr+1” is not the address 1 more than ptr, it’s actually 4 more than ptr for
a 4-byte int (assuming 32-bit integers). And “ptr+3” is actually the address
“ptr+12”in terms of bytes.

Which Operators Do Pointer Arithmetic? Pointer arithmetic works with a
number of arithmetic operators:

e Increment — ptr++ adds 1*size bytes to ptr.

e Decrement — ptr-- subtracts 1*size bytes from ptr.

¢ Addition —ptr + naddsn*size bytes.

e Subtraction — ptr-n subtracts n*size bytes.

o Assign-Add — ptr += naddsn*size bytes to ptr.

e Assign-Subtract — ptr -=n subtracts n*size bytes from ptr.

Note that there’s no pointer arithmetic multiplication or division. Actually, I was
told that C++37 was going to have a C++ pointer multiplication operator that
scanned down an array doing paired multiplications, adding them up as it went, and
all in one CPU cycle, but then someone woke me up.

Pointer Comparisons: You can also compare pointers, which isn’t really doing
any special pointer arithmetic, but works as normal comparisons on their addresses:

e Equality tests — ptrl == ptr2 orptrl != ptr2
o lLessthan—ptrl < ptr2orptrl <= ptr2
o Greater than — ptr2 > ptr2 orptrl >= ptr2

Segmented Memory Model Pointer Comparisons: Note that there’s a weird
portability gotcha in relative pointer comparisons (i.e., less-than or greater-than).
They’re only guaranteed to work in very limited scenarios by the C++ standard,
such as when the pointers are both operating over the same array data.
Programmers tend to think of the address space as one huge contiguous range of
addresses, where you can compare all of the pointers in the program against each
other, and make some coding assumptions based on that. However, there are
architectures where pointer addressing is more complicated, such as where pointers
are a multi-part number pointing into different memory banks with a more
convoluted segmented addressing scheme. For example, pointers to allocated heap
memory might be separate from the pointers to global static data, and not easily
comparable.

David Spuler 68



Pointer Differences: You can subtract two pointers using the normal “-”
subtraction operator. The result is not the number of bytes between them, but the
number of objects. Hence, the two pointers must be of the same type (i.e., pointing
to the same type of object). Consider this code:

int arr[10];

int *ptrl = &arr[l];
int *ptr2 = &arr[2];
int diff = ptr2 - ptrl;

The value of “diff” should be 1 in C++ (rather than 4 bytes), because the two
pointers are one element apart (i.e., 1 integer difference). Note that “diff” is a
signed integer here, and the value of subtracting two pointers can be negative (e.g.,
“ptrl-ptr2” above would be “~1” instead). Technically, the official type of the
difference between two pointers is “std::ptrdiff t” which is an
implementation-specific integral signed type that you can use if you are the sort of
person who alphabetizes their pantry.

Adding Pointers Fails: Note that adding two pointers with “ptrl + ptr2”is
meaningless and usually a compilation error. Also invalid are weird things like the
“+=" or “~="" operators on two pointers. Even though “~”is valid on two pointers,
“ptrl-=ptr2” fails to compile because the result of “ptrl-ptr2” is a non-

pointer type.

Char Star Pointers (Size 1 Byte): Note that if you want to avoid pointer
arithmetic, and see the actual numeric value of addresses, you can use a “char*”
type pointer (or “unsigned char*”). Since sizeof (char) is 1 byte, then all
of the pointer arithmetic will just add the expected number of bytes (e.g., ptr++ on
a char* pointer adds 1 to the address). If you want to know the number of bytes
between two pointers, then cast them to “char*” type before doing the pointer
subtraction.

int diffbytes = (char*)ptr2 - (char*)ptrl;
Stride of an Array. A useful piece of terminology when processing lots of data in
memory is the “stride” of an array. This means the number of bytes between

adjacent array elements. We can try to compute it as follows:

int arr([100];
int stride = &arr([2] - &arr([l]; // Wrong

Nope, that’s a fail.

69 Advanced C++ Memory Techniques



This isn’t the stride, because it did pointer arithmetic. The addresses of array
elements are really pointers, so the stride variable above is always 1 (the adjacent
elements are 1 apart in pointer arithmetic). We need to convert to char pointers
to get the stride in bytes.

int arr[100];
int stride = (char*) &arr[2] - (char*)é&arr[l];

Can’t we just use sizeof to get the stride? Isn’t the stride above going to equal 4,
which is sizeof (int)? Yes, in the example above the use of sizeof is correct,
but no, that is not true in general. The stride will often equal the element size, but
may be larger. For a simply packed array of integers or other simple types, the stride
is almost certainly the size of the array element type. But this is not always true,
such as if it’s an array of a larger object with an awkward size that requires padding
bytes for address alignment considerations.

Loop Unrolling Stride. The term “stride” also has a secondary meaning when
talking about array processing with loop unrolling. The stride of an unrolled loop
is how long of a segment is being processed in each section of loop unrolling code.
For example, if a loop is unrolled with AVX-2’s 256-bit registers (equals 8 32-
bit floats), then the stride when discussed in the literature is either 8 £1loats or
8x4=32 bytes.

Void Pointer Arithmetic Fails: Note also that pointer arithmetic on a generic
“void*” pointer should be a compile error, because it points to unknown size
objects. Some C++ compilers will allow pointer arithmetic on void pointers with a
warning, and pretend it’s a “char*” pointer instead.

Finally, I don’t think you can increment a “function pointer” in valid pointer
arithmetic, but you’re welcome to try.

Pointers and Arrays

There is a close relationship in C++ between arrays and pointers. Array names are,
in many ways, just pointers to the first element in the array. The array indexing
operation is identical to a pointer expression involving address arithmetic. The
following algebraic identities hold:

arrayl[exp] == *(array + exp)
&arraylexp] == array + exp

David Spuler 70



These relationships have a number of consequences. First, the commutativity
of + means that expl [exp2] is equivalent to exp2 [expl], which leads to weird
syntax tricks like “n [ptr]” instead of “ptr[n]”.

Another consequence is that, in many situations, pointer variables can be used
instead of arrays. For example, it is legal to apply the array indexing operator (i.e.,
square brackets) to a pointer. For example:

x = ptr[3];

Just like arr[3], this sets x to equal the third element away from ptr,
where ptr is pointing into an array.

Array Function Parameters: The array and function relationship is complicated
when an array is a function parameter. When an array is passed to a function, the
address of the first element of the array is passed. An array formal parameter is
implemented as a pointer variable (i.e., a pointer pointing to the start of the array).

This explains why arrays are passed by reference, not by value. A local copy of the
array is not used inside the function. Instead, a pointer to the original array is used.
Hence, any change to an element of the local array variable is actually changing the
original array (i.e., pass-by-reference instead of pass-by-value).

The differences between pointers and arrays are few. The main one is that an array
name is not a variable, whereas a pointer is. Hence, an ordinary array name declared
as a local variable cannot be assigned to, or incremented, whereas a local pointer
variable can be. An array is similar to a constant pointer (e.g., int *const ptr).
Note that this is untrue when the array is a function parameter, when it can be
incremented or modified.

There are also the differences between pointers and arrays in relation to
initializations. Consider the two initializations:

char *p = "hello";
char arr[100] = "hello";

For the pointer p, the string “hello” is stored in separate memory. Only the
required number of bytes are allocated (six, because of the extra character zero
added by the compiler to terminate the string). For the character array “arr”, 100
bytes are allocated, but only the first six are filled.

71 Advanced C++ Memory Techniques



Pointer Arithmetic Loop Optimizations

The main way that we use pointer arithmetic for optimization is to change a loop
over an array into loop pointer arithmetic. Note that this is primarily a sequential
code optimization, and does not change anything in terms of vectorization for
parallel execution.

Pointer arithmetic is mainly used to get rid of an incrementer vatiable in sequential
code. Here’s a vector dot product with basic incremented loop variable i++ and
array index syntax v1 [i] used inside the loop:

float aussie vecdot basic(float v1[],float v2[],int n)

{
// Basic vector dot product
float sum = 0.0f;
for (int i = 0; 1 < n; i++) {
sum += v1[1i] * v2[i];
}

return sum;

And here’s the same code when converted to pointer arithmetic:

float aussie vecdot ptr(float v1[], float v2[], int n)
{

// Pointer arithmetic vector dot product
float sum = 0.0f;
float* endvl = vl + n; // vl plus n*4 bytes
for (; vl < endvl; vl++,v2++) {

sum += (*v1) * (*v2);
}

return sum;

TR}

How does this work? We got rid of the temporary variable “i” by using pointer
arithmetic “*v1” instead of array indices “v1 [i]”. We are also using the function
parameters “v1” and “v2” as temporary local variables, as permitted in C++, so
we don’t need an extra temporary pointer variable.

The way this works with pointer arithmetic is v1 and v2 are treated as pointers,
which works due to the near-equivalence of pointers and arrays in C++. Rather

{22

than using an array index “i” we increment both these pointer-array variables:

vit++, v2++

David Spuler 72



These for loop incrementers “v1++” and “v2++” are both adding 4 bytes (the size
of a 32-bit float) to the pointers. Also note these two increment statements are
separated by the C++ comma operator, not by a semicolon.

The “endv1” end marker is calculated as the address of “v1 [0]” plus “n*4” bytes,
because the “+” operator in “v1+n” is pointer arithmetic addition, which is auto-
scaled by the size of the pointed-to object (i.e., 4 bytes for 32-bit float here), rather
than normal integer addition.

Note that a further micro-optimization is possible. We can change the less-than test
(“vl < endvl”) to an inequality test (“v1 != endvl”), because equality tests
are slightly faster than less-than tests. Since this test is effectively inside the loop
and done every iteration, this might be worth doing.

The trade-off is safety: it’ll become an infinite loop if you get the pointer math
slightly wrong, but hey, your code has no bugs, right?

Smart Pointers

Smart pointers are a programming idiom to make C++ pointers safer. They are not
a speed optimization, and in fact, they are a wrapper that adds extra logic around
the use of a raw pointer, and will be marginally slower. However, they avoid many
C++ pointer pitfalls, thereby improving reliability, and will reduce total allocated
memory usage by avoiding memory leaks. There may even be an indirect benefit to
execution speed if overall memory management is improved.

Programmers have been defining their own smart pointer wrapper classes for
decades, but there is now standard support for the idea in the C++ library. In the
typical idiom, a smart pointer tracks the creation and destruction of the object it
points to, which ensures that the destructor is called. This helps avoid “memory
leaks” in standard C++ pointers where an object is allocated with “new”, but is
never deallocated by “delete”.

The C++ standard libraries have various templates to support smart pointers,
mostly since C++11, so they are longstanding features.

e std::shared ptr
e std::unique ptr
e std::weak ptr

std: :shared ptris a reference-counted shared pointer implementation. The
idea is that it tracks the total number of pointers to an object, and then automatically
destroys the object whenever there’s no more pointers to it.

73  Advanced C++ Memory Techniques



This occurs when the last of the “shared ptr” objects is itself destroyed, and
then the reference count for the undetlying object is zero.

std::unique ptris a one-to-one mapping of a smart pointer to an object.
Whenever the unique ptr object is destroyed (e.g., goes out of scope as a local
variable), then both the smart pointer and its underlying object are destroyed or
otherwise cleaned up. The unique ptr object can refer to a single object

I3

allocated by “new” or a single array-of-objects allocated by the “new[]” operator.

std::weak ptris a less commonly used type that has relevance
to std: :shared ptr in some complicated scenarios. Usually, you should choose
either of std: :unique ptr or std::shared ptr, depending on how many
pointers will point to the underlying object.

Pointers vs References

Overall, pointers are a good and bad feature of C++. They are low-level variables
that allow efficient processing of memory addresses, so we can code some very fast
methods with pointers. They allow us to get very close to the machine.

On the downside, there are pointer pitfalls. Pointers trip up novices and
experienced programmers alike. There is an immense list of common faults with
pointer manipulation, and coding problems with pointers and memory
management are probably half of the causes of bugs in C++ (at least). There are
some tools that mitigate against pointer problems (e.g., Linux Valgrind) but it is a
never-ending battle against them.

Pointers and arrays were implemented very similarly, and came from the ecarliest
designs of the original C language. Basically, arrays are treated as a specific type of
pointer, with various differences depending on whether they are variables or
function parameters.

Then came C++ to the rescue. References arrived with the new-fangled
programming language (cleverly named as “C++”) and were thoughtfully designed
as a type of safe pointer that cannot be null, but is just as efficient as a pointer
because the constraints on references are enforced at compile-time.

C++ allows two ways to indirectly refer to an object without creating a whole new
copy: pointers and references. The syntax is either “*” or “&” for their declarations.

MyVector *myptr = &mv; // Pointer to mv object
MyVector &myref = mv; // Reference to mv object

David Spuler 74



Pointers and references are more efficient than spinning up a new copy of the
object, especially when the underlying object is a complicated object. And when
you have a function call, you should definitely avoid sending in a whole object.

void processit (MyVector v) // Slow

{
//

This is inefficient because the whole MyVector object will get copied, via whatever
copy constructor you have defined, which is slow. And if you haven’t defined a
copy constructor, then the compiler uses default bitwise copy of a structure, which
is not only slow, but also rarely what you want, and often a bug.

The faster reference version is to use a “const” reference (or non-const if you’re
modifying it inside the function):

void processit (const MyVector & v) // Reference argument
{
//

The pointer version is:

void processit (MyVector * v) // Pointer argument

{
//

Which is faster in C++ — pointers or references? The short answer of “not any
difference” is the general view, because references are implemented as pointers by
the compiler behind the scenes. The two functions above are not going to be
significantly different in terms of speed.

The slightly longer answer is that references can be faster because there’s no null
case. A reference must always be referring to an object for the duration of its scope.
The C++ compiler ensures that references cannot occur without an object:

MyVector &v; // Cannot do this
MyVector &v = NULL; // Nor this
MyVector &v = 0; // Nor this

75 Advanced C++ Memory Techniques



A reference must be initialized from an object, and you cannot set references equal
to pointers, because you actually have to de-reference the pointer with the “*”
operator, which crashes if it’s a null pointer:

MyVector &v = myptr; // Disallowed
MyVector &v *myptr; // Works if non-null

There’s no way in C++ to get a zero value into a reference variable (we hope). For
example, the address-of operator (&) applied to a reference variable returns the
address of the referenced object, not the memory location of the reference itself.
Hence, references are always referring to something and they cannot be equivalent
to the null pointer.

References are slightly faster: The guarantee of an object for a reference fixes all
those null pointer core dumps, and also relieves the programmer of the burden of
testing for null pointers. The compiler does this guarantee for references at compile-
time, so there’s no hidden null check being done by the compiler at run-time,
making it efficient. So, there’s a minor speed improvement from using references,
by not having to add safety checks for “ptr!=NULL” throughout the function call
hierarchy.

Pointers can be better than references if you need a “null” situation to occur. For
example, you’re processing an object that may or may not exist, and you need the
pointer to be allowed to be “NULL” if there’s no object. This should occur rarely,
and references should be preferred in many cases.

And finally, references aren’t very useful when you’re trying to scan through the
data in vectors, matrices, or tensors in an Al engine. You can’t do pointer arithmetic
on a reference in C++.

David Spuler 76



7. Memory Pools

What are Memory Pools?

Memory pools are a C++ optimization where you take control of the memory
allocation used for a class of objects. The basic idea is to store all objects of the
same type in a big array, next to each other, rather than being spread out over the
heap wherever the new operator decides to put them.

Memory pools are a general optimization that can be used in C++ with
the new operator, and also in C programming with malloc.

Some of the related data structures include:

e Bucket array
e Hive

A bucket array is like a memory pool, in that it’s a big memory block, and you put
your objects in there. However, a bucket array usually handles erasing an object by
simply marking it as invalid using a Boolean flag. The memory for an erased object
is not usually re-used when you insert a new object.

A hive is a generalization of a bucket array, whereby a hive can dynamically expand
and contract the number of buckets. Notably, there’s a std: :hive class to use in
C++26, which would make a good basis for an advanced type of memory pool.

However, we’re going to examine some of the simpler types of memory pools first.

77 Advanced C++ Memory Techniques



Why Memory Pools?

Other than being a fun and gritty project in low-level C++ coding, the goal is speed,
and this is achieved in various ways:

e Preallocation — no need to allocate memory on a low-latency hotpath.
e Fewer allocation calls — one big chunk rather than lots of small ones.
e TFewer deallocation calls — reusing memory addresses within the pool.

e No memory fragmentation — we don’t mix small and large memory
allocations.

e Less memory overhead — hidden heap memory “control blocks” are not
needed.

e Cache locality — all objects are stored contiguously.

In fact, you can even get the number of memory allocations for your class down to
zero, if you really want to, by using a global memory pool object. Even the memory
pool is not on the heap!

But this only works for a fixed-size memory pool, and thus, only if you're really sure
you won’t need too many objects.

Memory fragmentation is also a slowdown that can be avoided or reduced with
memory pools. The problems with fragmentation arise in two ways:

e Frequent allocations and de-allocations, and
e Different-sized memory blocks.

A memory pool is helpful in both respects. The memory pool avoids lots of
allocations by using one big block, and avoids deallocations by re-using the
locations inside the block. And because the memory block stores lots of blocks of
the same size, we aren’t mixing up different size allocations.

David Spuler 78



Disadvantages of Memory Pools

Firstly, this whole idea of memory pools is only about reducing allocated memory
on the heap. This optimization is not relevant for objects stored on the stack (i.e.,
local variables), or static objects, such as global scope objects or static data
members.

Memory pools are not the only option for optimization memory allocation. In fact,
the use of an open-source drop-in replacement for the standard C++ memory
allocators is another significant option:

e jemalloc — the original FreeBSD allocator, now a Facebook favorite.
e tcmalloc — from Google, with an Apache 2.0 license.

The other disadvantages of memory pools include:

e Tixed maximum number of objects (in the basic versions).

e Only works for single-sized objects (e.g., one class).

e Need one memory pool object for each type of object (via templating).
e Not useful for optimizing variable-sized objects (e.g., strings).

e Allocating too much memory in one massive chunk.

However, we can work around a lot of these disadvantages by using a templated
class for our memory pool. The optimization of memory pools is a general
algorithm that works for all types of objects.

Memory Control Block Overhead

Whenever you allocate memory on the heap, using the new operator or the old-
style malloc function, it returns you the address of the block. But that’s not actually
the start of the rea/ memory block.

There’s actually an extra memory control block stored before that address. It
contains meta-information about the memory block, which is used by the C++
standard library to keep track of things. For example, the size of the memory block
is stored in that control block.

Whenever you deallocate a memory block by sending the address
to delete or free, the standard library knows to look backwards a few bytes.
Hence, it can find the size of the memory block, which helps it to deallocate the
full block of memory. You don’t need to worty about it, because the standard library
takes care of it.

79 Advanced C++ Memory Techniques



Hence, if you create a memory pool from one big chunk to contain 100 objects,
rather than 100 separate calls to the new operator, there are 99 fewer memory
control blocks. This is why memory pools reduce the memory overhead from your
objects.

Fixed-Size Memory Pool Algorithms

For simplicity, we’re going to limit our first memory pools to just one huge block
of memory. This means that we can choose the overall capacity of the memory
pool, but we can’t increase it later by adding a second big block. This makes our
memory pool more like a vector or atray, rather than a dynamic bucket array or
hive.

Even with these restrictions, there are still quite a few choices to make about
designing our memory pool algorithm.

Some of the alternatives include:

e Boolean flag — storing an “active” flag in each object.

e Index array — maintaining a list of indices of free blocks as a “free list”
(instead of a per-object flag).

e DPointer array — tracking the free list via pointers.

e Permutation-based free list approach.

In the first case, we only have one array, and each block contains the “active” flag
along with the stored user objects. In the other cases, we maintain two arrays, one
of the user’s objects, and another as the free list (with either indices, pointers, or
permutations).

Boolean Flag Memory Pool

This is the simplest approach, but not the fastest. Let’s examine it to get some of
the basic ideas.

Some of the interesting features of this code include:

e Boolean flag — stored as a data member in every memory pool record.

e DPointer arithmetic — used in computing the offset when erasing an object.

e Incremental count — increment on allocation, decrement on release.

e Compile-time  pool size —  this wuses std::array rather
than std: :vector.

David Spuler 80



Here’s the basic layout of the memory pool class.

template<typename T, int N>
class MemoryPool {
struct Node {
T data;
bool active;
}i
private:
std::array<Node, N> arr ;
int nextfree ;
int ct ;
//
}i

The constructor has to set all the “active” flags (although using memset would
be faster than a loop):

MemoryPool () : arr (), nextfree (0), ct (0) {
for (int 1 = 0; 1 < N; i++) arr [i].active = false;

}

The code maintains the index of the “next free” object. Initially, it’s increasing as
the first blocks get used, but later it’s necessary to scan lineatly.

int find next free(int offset) {
if (offset == -1) offset = 0;
int i = offset;
do {
if (larr [i].active) return i; // Found
i= (1 4+ 1) % N;
} while (i != offset);

return -1; // It’s full!

Here’s the code for the allocation of a memory pool block:

T* alloc() {

if (full()) return nullptr; // fail!
assert (nextfree != -1);

int oldindex = nextfree ;

arr [oldindex].active = true; // Not free
nextfree = find next free(nextfree );

ct ++; // Incremental count
return reinterpret cast<T*>(&arr [oldindex]);

81 Advanced C++ Memory Techniques



And here’s the code whereby a block is released by the caller. Note that the index
computation requires pointers converted to the correct type. This code has some
safety checks that are quite expensive, and might later be removed for production
usage.

void erase (T* addr) {
assert(ct  >= 0);
Node* nptr = reinterpret cast<Node*>(addr);
if (nptr >= reinterpret cast<Node*>(&arr [0])
&& nptr<=reinterpret cast<Node*>(&arr [N -
// Valid pointer...
int offset = nptr - s&arr [0]; // Ptr arith
assert (nptr->active);

11)) |

nptr->active = false; // Free now
ct --; // Incremental count
if (nextfree == -1) { // Was full?
nextfree = offset;
}
}
else { // Invalid pointer...

assert (false);

}

Constructor inefficiency. This implementation has a high-level slug if the
memory pool is instantiated for use with a non-trivial class type. The definition
of std::array will cause the constructors for every single object to run
needlessly on the empty storage bytes, when the memory pool is first created or
defined. The solution here is simply to use bytes instead of the class type for the
storage declaration:

struct Node {
unsigned char data [sizeof (T)]; // Raw obj storage
bool active;

}r

But we also need to be careful of memory alignhment in this situation. The template
could be instantiated on any type, some of which will need aligned addresses.
Character addresses won’t get automatically aligned, so we have to
use alignas specifier. However, it’s hard to fix in this implementation, because I
cannot use alignas (alignof (T) ). The extra “active” flag in the structure is
messing everything up. But that’s only one disadvantage of this method.

David Spuler 82



Disadvantages of Boolean Flag Method

The first point to remember is that this memory pool is a significant optimization.
It achieves all the advantages of a memory pool as outlined above: preallocation,
fewer allocations and deallocations, less memory fragmentation, and so on. Hence,
it’s a good start, and a worthy improvement to our classes.

We could stop now, and go home with a smile on our face.

However, it’s not optimal. There are even better ways to code up a memory pool.
The suboptimal features of this version of a memory pool include:

e  Mixing hot and cold data

e Alignment issues for some types
e Extra padding bytes needed

e Slow insertions

One problem with the above approach is that it mixes “hot” and “cold” data. Your
objects are probably hot areas of processing that are doing whatever you need. The
Boolean flags are only used by the memory pool when inserting and deleting
objects, and are thus cold data for the main processing algorithms. It would be
better for cache locality if the cold data was separated from our hot objects.

Memory size is also not optimal. By adding a single Boolean variable to each object,
it’s not just 1 byte extra, because the compiler probably has to add a number of
padding bytes to meet the alignhment requirements (depending on what’s inside your
objects). This will increase the memory size, and worsen cache locality when
processing multiple objects.

However, the main problem with the Boolean flag approach is that it’s slow. In fact,
it has worst case O(n) performance for an insertion, because it might have to scan
the entire array to find a free block. This worst case won’t happen initially, but the
performance can degrade as the memory pool fills up, and we do lots of insertions
and deletions.

We can do bettet!

83 Advanced C++ Memory Techniques



Boolean Flag Array Method

One way that we can address some of these issues is by separating all of the Boolean
“active” flags into a different array. Rather than storing a flag in each object, we
just store the uset’s object in the main block, and have a second block that contains
the Boolean flags.

The advantages are that it fixes the hot-cold data problem, addresses alignment
concerns, and the compiler won’t need to add extra padding to the array of user
objects. The array of Boolean flags should be one byte per object, but stored in a
different array.

Firstly, we move the “active” flag out of the structures:

struct Node {
unsigned char datal[sizeof (T)]; // Raw obJj storage

i
And put it into a separate array:
bool activearr [N];

The handful of places that used the “active” flag need to be changed to the
“activearr ” array member.

We can also fix the alignment issues using the alignas and alignof specifiers:
alignas (alignof (T)) std::array<Node, N> arr ;

Bit packing. This active flag array method can be further improved by using bit

packing. We only need one bit flag per object, rather than one byte each. Hence,

we can pack them all into an array of 64-bit unsigned long, and can check for

a free block using one integer compatrison, testing 64 memory blocks at a time.

In practice, this version is pretty fast. Even so, it is technically still an O(z) worst

case algorithm for insertion or deletion with large numbers of objects. And there
are a few ways to fix that.

David Spuler 84



Index Array Memory Pool

The faster solution is to maintain an array of integer indices for the free locations.
The advantages of this index array approach over the eatlier “active” flag method
include:

e Insertion and deletion always have O(7) complexity.
e Separates hot data from cold data.
e No extra padding bytes needed.

Here’s the basic definition of the class:

template<typename T, int N>

class IndexMemoryPool {
struct Node {

unsigned char datal[sizeof (T)]; // Raw object

}i

private:
alignas (alignof (T)) std::array<Node, N> arr ;
int freelist [N]; // array of free indexes (stack)
int ct ;
int ctfree ;

//

}i

Some of the basic primitives are simple:

bool empty() { return ct == 0; }
bool full() { return ct == N; }

int capacity () { return N; }

int count() { return ct ; }

int count free() { return ctfree ; }

The index array is a “free list” that tells us where to find a free memory block. After
a lot of insertions and deletions, if functions a lot like a stack of free locations. At
the start, it’s a fixed-size stack that’s full with the index of every element available.

IndexMemoryPool () : arr (), ct (0), ctfree (N) {
for (int i = 0; 1 < N; i++) {
freelist [i1] = 1; // Store all indexes

85 Advanced C++ Memory Techniques



When we allocate a new block, that’s a “pop” of the stack, because we’re removing
from the free list:

int pop free index()
{

assert (ctfree > 0);

int index = freelist [ctfree - 1];
assert (index != -1);

freelist [ctfree - 1] = -1; // Clear it
ctfree --;

return index;

The allocation of a block is mostly a call to this “pop” of the free list:

T* alloc () {

if (full()) return nullptr; // fail!
int index = pop free index();
assert (index != -1);

ct_++; // Incremental count
return reinterpret cast<T*>(&arr_ [index]);

And the reverse is true when the caller releases a memory block. This is a push of
a newly free index onto the stack.

void push free index (int index)
{
assert (ctfree < N);
freelist [ctfree ]
ctfree ++;

I~

index;

And here’s the version for release the memory:

void erase (T* addr) {
Node* nptr = reinterpret_cast<Node*>(addr);
if (nptr >= reinterpret cast<Node*>(&arr [0])
&& nptr<=reinterpret cast<Node*>(&arr [N - 1])) {
// Valid pointer...
int offset = nptr - &arr [0];
push free index(offset);
ct_--; // Incremental count
} else { // Invalid pointer...
assert (false):;
}
}

David Spuler 86



In summary, note that the push and pop of the free list stack is very efficient with
O(1) complexity. Everything in this index array version has constant-time
efficiency.

Memory Pools Versus Containers

Why do you need a memory pool? Why not just use the standard C++ containers
for your objects? Isn’t a memory pool about the same as std: :vector?

Yes and no.

Yes, a memory pool for your objects is very similar to managing them all in a
standard vector. After all, the memory pool code can use a std: :vector object
inside it as the big pool. So, yes, you can manage your objects in a standard vector
if you:

e Use asingle reserve or resize call to allow the vector memory in one
call.
o Keep track of objects going in and out of the vector.

In other words, it’s almost the same thing as writing a memory pool, except it’s
mixed in the middle of your application’s main logic.

Hence, no, it’s not quite the same thing. There are two types of containers:

e Contiguous storage containers — it’s very similar.
e Maps, sets, hash tables — memory management performance gains.

We’ll examine vectors and arrays in a minute, but first let’s look at the other
containers. There are two aspects to use normal memory allocation and storing your
objects in these advanced containers:

e Allocating memory for your objects — you’ve improved nothing (it’s one
allocation call per object).
e Extra container allocations — the container also needs memory allocation

and a memory pool doesn’t help with that.

But for the containers based on contiguous memory, the issue is less clear cut.

87 Advanced C++ Memory Techniques



The standard containers based on contiguous storage include:

e std::vector
e std::array
e std::inplace vector (C++20)

When you compare a memory pool to using a standard vector of your objects, there
is less gain to performance. However, creating a memory pool as a standalone class
has several practical advantages:

e Separate memory management optimizations from business logic.

e Ensures only a single (huge) memory allocation occurs (or only a few if it’s
dynamic).

e Callers of the interface or API don’t need to know about the memory
management aspects.

Creating a memory pool as a separate idiom is good for encapsulating the
performance optimization aspects of memory management. It encourages
modularity by isolating high-level business logic from low-level resource
management.

Advanced Memory Pools

Higher-level improvements to the memory pool interface are also possible. Most
of the discussion here has been about a memory pool for one type of class, with a
focus on reducing the number of distinct blocks requested on the heap.

More advanced memory allocators are well-known, and they offer a variety of
generalized performance optimizations and convenience features:

e Thread safety (e.g., a single mutex or a lock-free version).

e Intercepting the class-specific new and delete operators.

e DPassing all the arguments to the object constructors via parameter packs
and std::forward ()

e Placement new operator — does not really allocate memory!

e Custom allocators — memory pools via allocator functor objects.

David Spuler 88



Additional memory management features that could be added to a memory pool

include:

Dynamic expansion with multiple chunks rather than a fixed-size pool.
Multiple object types supported in the memory pool.

Dynamic size of objects allowed by allocating multiple large “pools” or
memory chunks.

Downsizing the memory pool if fewer objects are required.

Even more general than memory pools is the concept of “custom allocators.” The
idea with custom allocators is not just to enhance the memory handling of a few
classes, but to take over the whole memory allocation shemozzle from the standard

library.

Extensions

N

>

Build your own simple memory pool templated class.

Add a memory pool to your object class by overloading a set of class-
specific new and delete operators, sending these requests to the
memory pool instead.

Code up multiple types of memory pools and measure their performance.
Generalize your memory pool class to dynamically manage multiple big
chunks of memory, rather than just one.

Implement an advanced dynamic memory pool
using std: :hive (C++26) as the underlying data structure, rather than a
vector or array.

References

Sourav Ghosh, July 2023, Building Low Latency Applications with C++, Packt
Publishing, https://www.amazon.com/dp/1837639353

Larry Jones, 27 Feb 2025, Mastering Concurrency and Multithreading in C++:
Unlock the Secrets of Excpert-1evel

Skills, https:/ /www.amazon.com.au/Mastering-Concurrency-
Multithreading-Secrets-Expert-Level-ebook/dp/BODYSB519C

Devansh, Feb 27, 2024, A guick introduction to Memory Pools: Optimizing
Memory Management in Software Engineering, https://machine-learning-made-
simple.medium.com/a-quick-introduction-to-memotry-pools-
€c3198d004db

happyer, Apr 23, 2024, Menory Pool Techniques in

C++, https://medium.com/@threchappyer/memoty-pool-techniques-
in-c-79¢01£6d2b19

89 Advanced C++ Memory Techniques


https://www.amazon.com/dp/1837639353
https://www.amazon.com.au/Mastering-Concurrency-Multithreading-Secrets-Expert-Level-ebook/dp/B0DYSB519C/
https://www.amazon.com.au/Mastering-Concurrency-Multithreading-Secrets-Expert-Level-ebook/dp/B0DYSB519C/
https://machine-learning-made-simple.medium.com/a-quick-introduction-to-memory-pools-cc3198d004db
https://machine-learning-made-simple.medium.com/a-quick-introduction-to-memory-pools-cc3198d004db
https://machine-learning-made-simple.medium.com/a-quick-introduction-to-memory-pools-cc3198d004db
https://medium.com/@threehappyer/memory-pool-techniques-in-c-79e01f6d2b19
https://medium.com/@threehappyer/memory-pool-techniques-in-c-79e01f6d2b19

5. Bernardo Palos, 2025, Memory Pools in C++_ What They Are and How to
Implement Them, https:/ /palospublishing.com/memory-pools-in-c_-what-
they-are-and-how-to-implement-them

6. Stack Overflow, 2019, C++11 memory pool design
pattern? https:/ /stackoverflow.com/questions/16378306/c11-memory-
pool-design-pattern

7. Boost,

2011, Boost.Pool, https:/ /www.boost.org/doc/libs/1 53 0/libs/pool/doc
/html/index.html

8. Roger Ferrer Ibafiez, Nov 19, 2017, A very simple memory pool in
C++11, https:/ /thinkingeek.com /2017/11/19/simple-memory-pool

9. Contributors, May 2025 (accessed), jemalloc memory
allocator, https:/ /jemalloc.net/, https://github.com/jemalloc/jemalloc (ot
iginally from FreeBSD, then updated by the Mozilla Foundation and
Facebook, Inc.)

10. Google, May 2025
(accessed), TCMalloe, https://github.com/google/tcmalloc (Apache 2.0

License)

David Spuler 90


https://palospublishing.com/memory-pools-in-c_-what-they-are-and-how-to-implement-them/
https://palospublishing.com/memory-pools-in-c_-what-they-are-and-how-to-implement-them/
https://stackoverflow.com/questions/16378306/c11-memory-pool-design-pattern
https://stackoverflow.com/questions/16378306/c11-memory-pool-design-pattern
https://www.boost.org/doc/libs/1_53_0/libs/pool/doc/html/index.html
https://www.boost.org/doc/libs/1_53_0/libs/pool/doc/html/index.html
https://thinkingeek.com/2017/11/19/simple-memory-pool/
https://jemalloc.net/
https://github.com/jemalloc/jemalloc
https://github.com/google/tcmalloc

8. Memory Reduction
Optimizations

Memory Reduction in C++

There are many general techniques for reducing the memory requirements of a
C++ program. These techniques herein aim to reduce memory usage of a program
so that:

(a) your C++ does not waste too much time on memory management
activity, such as allocating too much memory, and

(b) your C++ code can execute on a low-memory platform, such as an IoT
embedded device.

In these days of cheap gigabytes of memory in every PC, memory reduction
techniques are perhaps not as important as those for increasing speed. However,
there are certainly situations when reducing space requirements is far more
important than increasing the speed of a program. This section discusses a number
of general techniques for reducing C++ memory requirements.

Unfortunately, reducing space requirements can also lead to loss of speed. There is
often a trade-off between space efficiency and time efficiency. Every C++ program
uses memory for a number of different purposes, and each of these areas needs to
be attacked separately. The memory usage of the program can be divided into the
following memory sections:

e Executable instructions
e Static storage
e Stack storage
e Heap storage

The executable instructions for a program are usually stored in one contiguous
block of memory. Static storage refers to memory used by global and
local static variables, string constants and (possibly) floating-point constants.
Stack storage refers to the dynamic storage of non-static local variables.

91 Advanced C++ Memory Techniques



Heap storage refers to the memory that is dynamically allocated using
the new/delete operators and themalloc/calloc/free standard library
functions.

The memory requirements for the executable instructions are largely independent
of the other memory areas, whereas the techniques for reducing the memory
required for the other three areas are often similar. However, care must be taken
that applying a technique to reduce data space does not increase the amount of
C++ code too greatly, thus increasing the executable size.

Compact Data Representation

Different algorithms may store data differently and thereby reduce memory
requirements. There are many ways to represent data, and all have varying space
usage. For example, storing all the primes less than 1000 can be done with a list of
integers, a list of the incremental differences between successive primes, or a bit
vector with one bit for each integer up to 1000.

Different data structures. The program should be examined to determine if a
large space reduction can be achieved by changing to different data structures. For
example, the program could use arrays instead of linked lists or binary trees to avoid
the extra space due to pointer storage. However, this also wastes more space if the
array is not full, and it is even better to use dynamic arrays, which do not waste any
storage, as exactly the right amount of memory is allocated. Unfortunately, using
different data structures can sometimes reduce the time-efficiency of programs.

Data compression. Compressing data can reduce space requirements when large
amounts of data are involved. Hmm, let’s pause for a moment and try to think of
an example application with lots of data. Just jump in whenever you’re ready.

Billions or trillions of weights in an LLLM are a good candidate. Model compression
is the theoretical term and involves either using smaller data sizes (e.g., 8-bit integer
weights instead of 32-bit £loat data) or “pruning” of weights we don’t need. More
generally, data compression algorithms have been used in research on Al models,
such as sparsity, run-length encoding and Huffman encoding.

Proceduralization. Another data representation technique is to use a function to
represent data. Instead of a list of the first 1,000 primes, you could create an
“is prime” function that contains a big C++ switch statement, with all the
primes as case values, which return true. You could also write a piece of code to
create this source code automatically.

David Spuler 92



Recomputation. Another example of proceduralization, consider the storage of
several images generated by a fractal algorithm: the simplest method of storing the
images is to store them as large image files. But a much more space-efficient method
is simply to store the values of any arguments passed to the function creating the
fractal images. This way, the images can be recreated by calling the fractal generation
function with the correct arguments. The only space used is a few values containing
the arguments and also the code instructions for the function. However, the
recalculation of an image by this method is extremely time-inefficient.

Reducing Data Size

There are many techniques for reducing the size of program data. These techniques
apply to all three types of memory — static, stack and heap storage. In some cases,
a method may increase the memory storage in one area to decrease the memory
usage in another, which is valid only if the total storage requirements decrease.

Use char arrays not std: :string. The wuse ofstd::stringis very
convenient, but if your program has many strings, the extra storage used by
the string objects can add up. Consider managing your own raw char arrays as
C-style strings if you really need the space.

Avoid max-size arrays or buffers. When using an array data structure or buffer,
there is temptation to be lazy and just make it bigger than it will need to be. Avoid
this temptation and optimize the memory usage propetly. Change an oversize array
into a dynamically allocated array, if size can be determined easily at runtime.

Smart buffers or smart array classes. An alternative to using an oversize array or
buffer is to create “smart” classes that manage this, by automatically extending the
array or buffer if more elements are needed. The std: :vector class is a good
way to do this.

Bit vectors. These can be used where information can be reduced to a single
Boolean value, such as bit flags or masks. The use of bit vectors is very compact in
terms of space, and there are standard C++ libraries to implement these efficiently.

Unions. When using a lot of structures, space can be reduced by overlaying the
data fields. This can only be done if the fields to be overlayed are mutually exclusive
(i.e., they never have active data in them at the same time). There is a special C++
data type for this purpose: the union.

93 Advanced C++ Memory Techniques



Linearize multi-dimensional dynamic arrays. Use the simpler and smaller size
of a one-dimensional array, with the two-dimensional structure mapped onto it with
index calculations. This adds more runtime cost, but saves space over multiple
levels of dynamic array allocations.

Reusing space. One way to conserve memory is to reuse the space used by a
variable. The union data type is an example of this general idea, and another is
reusing variables for different purposes. For example, rather than letting several
functions each have a local temporary buffer, they could all use the same global
variable (although this is a very dangerous practice). As another example, if a
program uses two similar arrays, examine whether the two arrays can share the same
storage (possibly as aunion). Note that I don’t recommend any of these
approaches: too dangerous!

Small data types: short, char. Instead of using arrays of int, use arrays
of short, char or unsigned char. There is no problem with this method,
provided large integer values are not being stored (e.g., larger than 127 for char,
or larger than 255 for unsigned char). This technique is also worthwhile when
applied to int fields in objects although alighment restrictions may limit the
improvement — use the sizeof operator to determine if the size of the object has
been reduced. Smaller local variables could also be declared as a smaller type, but
this may increase the executable size due to type conversions. Note that speed can
be compromised by using smaller data types because of the type conversions that
often result. Similarly, use £loat instead of double, where the greater precision
of results is not important (e.g., an Al model).

Bit-fields in objects. When storing small integers in objects or structures, there is
a way to specify exactly the number of bits required. These types are called “bit-
fields” and can only be used for fields inside objects, structures or unions. You
cannot declare a local variable with a bit-field type. When using bit-fields, small
integers or Boolean flags are automatically packed into a struct or union. This
reduces storage requirements significantly, but reduces speed because it is necessaty
to pack and unpack bits.

Parallel arrays versus arrays of objects or structures. Because of alignment
restrictions, an object or structure may have unusable extra padding bytes. The
number of padding bytes can be determined by using the sizeof operator, and
subtracting the sizes of each individual field from the size of the object. If there are
padding bytes, replacing an array of struct with a number of “parallel” arrays
removes the need for this padding.

David Spuler 94



Packing. When dealing with large arrays of small integers, it can be more efficient
to pack them together (i.e., more than one value per word), particularly when the
information is binaty (true or false), because only one bit per value is needed. The
casiest way in standard C++ is to use std: :bitset. Note that bit-fields are a
form of packing provided by the compiler that can support more than one bit. They
are also much easier to use than coding it yourself.

Packing object arrays with #pragma pack. Microsoft compilers support the
special “#pragma pack” preprocessor directive, which can specify the packing
and alignment characteristics of an object. This can allow arrays of these objects to
be packed more closely into storage.

Reordering fields in objects and structures. Because of the word alignment on
some machines, the order of fields in an object or structure can change the size of
the object. This only applies to objects containing different size fields. A general
rule for minimizing the space is to order the fields from largest to smallest. This
heuristic may not give the best ordering — examine the size of a few different
orderings using the sizeof operator, if space is crucial. This is a machine-
dependent optimization, and may not work well on some machines.

Store integer codes instead of string names. If you’re storing a string to
represent some particular type or a limited set of names, or something with a finite
set, then you can use an enum instead. If you need to generate the actual string
name, use an array lookup or a switch statement to return the equivalent string
constant. For example, when dealing with Al word tokens, which are indeed fixed
and finite, use the integer token code without storing the word as a string, while
maintaining a single copy of the vocabulary strings (which you need anyway for the
tokenizing algorithm).

Measuring Code Size and Static Storage

In general, it is more difficult to measure how much space a program is using than
to measure how much time it is using. However, most environments provide some
means of determining the size of instructions and static data in an executable
program. If nothing else, the size of the executable file in overall bytes can be a
reasonable guide.

The size command. Under Linux and UNIX, a useful command is the “size”
command, which examines an executable program and reports the memory used
by its instructions and its global or local static variables. However, it does not
(and cannot) report the stack or heap usage because the amount of such memory
used is dynamic, and hence cannot be found by analyzing the executable.

95 Advanced C++ Memory Techniques



The command is simply:

size a.out

This produces output similar to the following:

text data bss dec hex
20480 8192 0 28672 7000

The “text” value refers to the machine code instructions for the program code.
Both the “data” and “bss” areas refer to global and local static variables. The
“data” area refers to variables which have been explicitly initialized with values (e.g.,
string literals or initialized global variables); the “bss” area refers to variables with
implicit initialization which defaults to zero (e.g., global variables or arrays without
non-zero initializers).

Function Code Sizes: If the code size is needed on a per-function basis, Linux
and most other UNIX environments support the “nm” command. Windows also
supports the nm command.

nm a.out

The nm command differs slightly across older UNIX variants, but will usually print
out information including the start and end address of a function, from which the
size of a function can be trivially computed.

Link Maps: Window users may be able to use a “link map” report. This allows to
find out about executable size by examining the output produced by some C++
compilers at the link stage (although not all compilers will produce useful output).
For example, the DOS “link” command with the “/map” option can be used
when linking the object files:

link /map *.obj

Code Bloat

The size of the executable depends on the size of your C++ source code. Hence,
the obvious way to reduce executable size is to go to the beach. Take a day off! Stop
writing code, for goodness sake!

David Spuler 96



Remove unnecessary code. Methods to reduce the number of executable
statements in your program could involve deleting non-crucial functions from the
program, and eliminating any dead code or old redundant code that has been “left
in” for various reasons. The use of compile-time initialization of global
and static variables instead of assignment statements is another method for
reducing code size. Turning off debug code such as assertions, debug tracing, and
self-testing code can also work, but this loses the supportability benefit of shipping

a fully testable version.

Compile-for-space options. Another possibility is that your compiler may
support an option that causes the optimizer to focus on space reduction. This
causes it to generate executable instructions that are as compact as possible, rather
than being as fast as possible.

Avoid using large libraries. Pay attention to what code libraries you are linking
with. Some of them are quite extensive, and may be much more than you need. Try
to use the basic standard libraries as much as possible.

Template overuse. Templates are a common cause of “code bloat” and their
usage should be reviewed. This is particularly true if you are using an integer-
parameterized template in order to gain compile-time efficiency, or an approach
such as Template Meta-Programming (TMP). If these templates are used with a
large number of constant values, many copies of the template’s executable code will
be generated.

Avoid large inline functions. Overuse of inline functions has the potential
to create more executable code. Tty to limit your use of inline to small functions
where the overhead of the function call is significant compared to the relatively low
runtime cost of the function body. Don’t inline very large and long functions that
do lots of processing each call.

Inline tiny functions. Although inlining large functions can cause code bloat, the
reverse is usually true for very small functions. All of those getter and setter member
functions have about one instruction. The code generated from an inlined call to
these tiny functions may be much smaller than the instructions to call a real
function.

constexpr is inline, too. Remember that constexpr functions are also
effectively a type of inline function. Again, try to limit these to relatively small
functions. If a constexpr function is called with non-constant values, or is
beyond the compilet’s ability to propetly inline, then multiple copies of the
executable code may result.

97 Advanced C++ Memory Techniques



Library linkage. The size of the executable depends not only on the C++ code,
but also on the extra library functions that are linked by the linker. Although it may
seem that the programmer has no control over this, thete are some techniques for
reducing the amount of linked code. The techniques depend largely on how “smart”
your linker is — that is, whether the linker links only the functions you need.

Use DLLs for common libraries. Dynamic link libraries (DLLs) are one way to
reduce the size of the executable, because the library executable code is loaded at
runtime. If the DLL is a commonly used library, such as the standard C++ runtime
libraries, not only will your executable smaller, but it’s also efficient at runtime
because it will be loaded only once into memory, even if many programs are using
the code. However, making your own special code into a DLL isn’t likely to offer
much memory benefit at runtime, since it will simply be loaded dynamically rather
than immediately at load-time. However, if it’s a library that isn’t needed in many
invocations of your program, you can save memory by deferring loading of the
library until you can determine whether it will be required.

Remove executable debug information. Executable size can be reduced by
avoiding generation of the “debug” information and symbol table information. For
example, with GCC don’t use the “~g” debugging information or “~p” profiling
instrumentation options. Linux programmers can also use the “strip” utility
which strips symbol table information from the executable after it has been created.
However, the extra symbol table information is more relevant to the amount of
disk space the executable file uses than to the amount of memory it uses during
runtime execution.

Reducing Static Storage

Static storage refers to the memory for global and local static variables, string
constants and floating-point constants. All of the general size-reduction above can
reduce the size of the global and static variables.

String literal static memory. The space requirements for string constants can be
reduced if the compiler has an option to merge identical string constants (which
arise quite frequently). If there is no such option, or the option does not merge
string constants across object files (which is quite likely), merging string constants
can be achieved by the programmer, although the method is far from elegant. For
example, including this variable in a header file and using it in multiple files may
create multiple copies of the string literal:

#define TITLE "A very long string ... "

David Spuler 98



Instead, a global variable can be declared to hold the string constant and the name
of this char array is used instead of the string constant. In modern C++ you can
use “inline variables” to avoid linker problems with multiple definitions.

inline const char TITLE[] = "A very long string...";

This change is unlikely to reduce the speed of the program, nor does it increase
memotry requirements even if TITLE is used only once (there may seem to be an
extra 4 bytes to hold a pointer value pointing at where the string of characters is
stored, but this is not so).

Large global variables. If there is a large global or static variable or atrray, the
amount of static storage can be reduced by allocating it on the heap
using malloc or the new operator, or by making it an automatic variable. This is
particularly usetul if the object has a short “lifetime”, in the sense that it is used only
briefly (e.g., the array is used as temporary storage inside a function). If the variable
is used all the time, this change doesn’t reduce the overall space problem, but simply
moves the problem to another area.

Stack Usage

Stack storage refers to memory storage used for function calls, and includes (non-
static) local variables, function parameters and system information used to keep
track of function calls. Hence, the basic methods of reducing stack storage are:

e  Use fewer and smaller automatic local variables.
e Use fewer and smaller function parameters.

e Use “consté&’” to pass objects by reference.

e Use global or static local variables instead.

e Reduce the depth of function call nesting.

e Avoid recursion (always).

Data sizes. The size of parameters and local variables can be reduced using the
general methods of using smaller data types. Another method is to avoid passing
large objects and to only large objects by reference (which is faster anyway). Don’t
use large arrays or buffers as local variables, but prefer allocated buffers or global
buffers, or declare them as local static variables.

Fewer parameters. The number of parameters can be reduced by using global
variables, or by packing a number of parameters into an object and passing the
whole object (which is often faster, too).

99 Advanced C++ Memory Techniques



Fewer local variables. The number of local vatiables can be reduced by re-using
local variables, although this can introduce bugs if not enough care is taken.
Common examples of reusable variables are scratch variables, such as temporaries
or for loop index variables. Another method of reducing the number of local
variables is to use parameters as if they were local variables (this is safe because of
call-by-value). Overall, most of these suggestions are minotr improvements, unless
you’re using very large arrays or objects as local variables.

Flatten call hierarchies. Reducing the depth of function call nesting (especially by
avoiding recursion) also reduces stack space requirements. This can be achieved by
using preprocessor macros or inline functions (but this may increase code size).
You can also refactor your code to avoid too many layers of wrapping functions in
interfaces. Naturally, recursion should be avoided as much as possible by using
iterative loop algorithms or tail recursion elimination.

Reducing Heap Usage

Your C++ IDE should support tools that track heap or stack usage dynamically.
For example, MSVS has a “heap profiler” tool that you can enable. Linux tools such
as Valgrind can be very usual to examine heap memory usage.

The amount of heap storage used depends on the size of blocks, the number of
blocks and how quickly allocated blocks are deallocated. The size of blocks can be
reduced using the general techniques of reducing data sizes (e.g., small data types,
packing, unions).

Fewer allocation calls. The number of heap blocks affects heap usage in the
obvious way (more blocks means more memory) and because of the fixed space
overhead of a few hidden bytes to store information about the block (so
that delete or free can de-allocate it). When small blocks are used, it can be
useful to pack more than one block together to avoid this fixed overhead.

Avoid small frequent allocations. If your frequently-used class allocates a small
amount of memory in a constructor and then deallocates it in the destructor,
consider ways to avoid this pattern. Small amounts of data could possibly be stored
in extra fields of the object.

Memory leaks waste memory. Obviously, avoiding memory leaks which are
never returned to the heap is important to reducing heap memory usage. There are
many tools and debug libraries available to detect leaks, and ongoing use of these
tools will reduce overall heap fragmentation.

David Spuler 100



Early deallocation of memory. It’s a win if you have avoided leaking the memory,
but that’s not the end of the story. All allocated memory should be returned to the
heap as early as possible. If memory is not deallocated, unused memory (called
“garbage”) can accumulate and reduce the available memory.

Avoid realloc. Measure and manage any calls to realloc, as they can be a
significant cause of heap memory fragmentation. And they’re also not time-
efficient, so reducing them is a win-win.

Manage std: : vector sizes via “reserve”. The resize member operations
in std: :vector can lead to extra unnecessary allocation requests. Judicious use
of the “reserve” function can avoid this.

Linearize multi-dimensional allocated arrays. One big allocation of a linear
array is much more efficient on the heap than allocating separate blocks for rows
or lower-dimensions of the array. An array of pointers into the linearized large block
is only one more allocation, and has the same efficiency as having each pointer be
a separate dynamically allocated subarray.

Smart buffers. Use objects that contain a limited amount of memory, which is used
for the typical cases. If a longer string, or larger array is required, it needs to allocate

memory and manage that process. Overall, this can massively reduce the number
of allocated blocks.

Memory fragmentation. Reduce memory fragmentation by reducing both
allocations and deallocations. It’s also important to manage the different sizes for
allocations, as varying block lengths cause more fragmentation.

Per-class allocators. In severe situations, take control of your class’s dynamic
objects by defining your own per-class allocators. Since the allocators knows that
all block requests will be the same size, it can not only be faster, but also better at
reusing memory blocks and avoiding memory fragmentation. But this method can
also be a big fail if coded lazily to first allocate one huge chunk of memory. These
allocators should dynamically manage their requests for more storage, using some
reasonable incremental block size, rather than attempting to guess their maximum
requirements up front.

101 Advanced C++ Memory Techniques



References

1. Ulrich Drepper (2007), What Every Programmer Shoutd Know About Menory,
November 21, 2007, http://people.redhat.com/drepper/cpumemoty.pdf
2. Agner Fog (2023), Optimizing software in C++: An optimization guide for
Windows, Linux, and Mac platforms,
PDF: https://www.agner.org/optimize/optimizin
3. Kurt Guntheroth (20106), Optimized C++: Proven Technigues for Heightened
Performance, O’Reilly Media, https://www.amazon.com/dp /1491922060
4. Wikibooks (2023), Optimizing C++/Writing efficient code/ Performance
improving features,
Wikibooks, https://en.wikibooks.org/wiki/Optimizing C%2B%2B/Wri

ting efficient code/Performance improving features
5. Bjorn Andrist, Viktor Sehr (2020), C++ High Performance: Master the art of

optimizing the functioning of your C++ code, 2nd Edition, Packt Publishing, Dec
2020, https:/ /www.amazon.com/dp /1839216549,
Code: https://github.com/PacktPublishing/Cpp-High-Performance-
Second-Edition (Chapter 7 is on memory management.)

6. Dung Le, Jul 30, 2020, CUDA Memory Management & Use
cases, https://medium.com/distributed-knowledge /cuda-memory-
management-use-cases-f9d340£7¢704

7. Rudy Bunel, Alban Desmaison, M. Pawan Kumar, Philip H.S. Torr,
Pushmeet Kohli, Learning to superoptimize programs. In International
Conference on Learning Representations (ICLR)
(2017). https://arxiv.org/abs/1611.01787

8. Z Guo, Z He, Y Zhang, 2023, Mira: A Program-Behavior-Guided Far Memory
System, PDF: https://cseweb.ucsd.edu/~viving/Mira-
SOSP23.pdf (Interesting memory management methods.)

David Spuler 102


http://people.redhat.com/drepper/cpumemory.pdf
https://www.agner.org/optimize/optimizing_cpp.pdf
https://www.amazon.com/dp/1491922060
https://en.wikibooks.org/wiki/Optimizing_C%2B%2B/Writing_efficient_code/Performance_improving_features
https://en.wikibooks.org/wiki/Optimizing_C%2B%2B/Writing_efficient_code/Performance_improving_features
https://www.amazon.com/dp/1839216549
https://github.com/PacktPublishing/Cpp-High-Performance-Second-Edition
https://github.com/PacktPublishing/Cpp-High-Performance-Second-Edition
https://medium.com/distributed-knowledge/cuda-memory-management-use-cases-f9d340f7c704
https://medium.com/distributed-knowledge/cuda-memory-management-use-cases-f9d340f7c704
https://arxiv.org/abs/1611.01787
https://cseweb.ucsd.edu/~yiying/Mira-SOSP23.pdf
https://cseweb.ucsd.edu/~yiying/Mira-SOSP23.pdf

9. False Sharing

False Sharing and Cache Line Sizes

False sharing is a slug in C++ multithreaded code preventing two threads from
running as fast as they should. The idea of “false sharing” is that two threads can
interfere with each other’s memory caching. The sharing is “false” because it can
occur with data that’s not actually being intentionally shared between the threads,
but is impeded simply because the memory addresses are too close together.

Why does it occur? The CPU’s L1 and L2 caches don’t just cache in single bytes,
16-bit words, or even 32-bit integers. Instead, they have caching in “chunks” in the
hardware level, which are called “cache lines” (also “cache sectors” or “cache
blocks” or “cache line sizes” or “bananas in pyjamas” if you prefer).

How big? Some examples of common sizes of these cache lines include:

e Intel CPUs — 64 bytes.
e Apple M2 — 128 bytes.
e Some AMD and other CPUs — 256 bytes.

Note that you can get this number for the L1 cache line size in bytes
programmatically in C++17 via the newer special standard functions declared in
the <new> header:

e hardware destructive interference size

® hardware constructive interference size
What this means is that, on an Intel CPU, the caches are updated 64 bytes at a time,
because one “cache line” is read or written as the minimum size. This is good

because:

e Cache loads are 64 bytes in parallel (in hardware).
e Cache writes (updates) store 64 bytes in parallel.

But this is bad because:

e Invalidating one cache byte also invalidates all 64 cache line bytes.

103 Advanced C++ Memory Techniques



This is where we have a slowdown from false sharing. If one thread sets any value
in a 64-byte cache line, then all of the other 63 bytes are also invalidated in the
cache. If a second thread needs to use any of those other 63 bytes, then it needs a
cache line refresh. Slowness ensues.

Example of False Sharing

A common example would be two integers, each 4 bytes in size, but close together
so that they sit inside the same 64-byte cache line. The most common problems
arise with atomics or mutexes close together, but they can affect any global variable.

Hence, first a simple example without any atomics, mutexes, or other thread
synchronization. Let’s just look at two threads that are updating their own global
variable, with no ovetlap between the threads. In theory, these two threads should
not affect each other at all. In reality, there are CPU cache lines.

Here are our two global counter variables:

int g counterl = 0;
int g _counter2 = 0;

In practice, false sharing is more likely to occur with two atomics declared close
together. However, in this example we’re just testing with two completely unrelated
threads, with absolutely zero synchronization happening between them. They really
shouldn’t impact each other, if not for false sharing.

Here is the sequential code, which sets two global variables:

void runtestl no threads (int n)
{
for (int 1 = 0; i < n; i++) {
g_counterl++;
}
for (int 1 = 0; i < n; i++) {
g_counter2++;

}

David Spuler 104



Here are the two threads that aim to set those two global variables in parallel. Note
that each thread only accesses one variable, without any “sharing” going on.

void threadl (int n)

{
for (int 1 = 0; 1 < n; 1i++) {

g_counterl++;

void thread2 (int n)

{

for (int i = 0; 1 < n; i++) {
g_counter2++;

And here’s the basic thread launching code:

void runtestl threads(int n)

{
std::thread tl (threadl, n);
std::thread t2(thread2, n);
tl.join();
t2.join();

Finally, here is the timing code using <chrono>

g _counterl = g counter2 = 0;
auto before = std::chrono::high resolution clock::now();

runtestl no threads(n);
auto now = std::chrono::high resolution clock::now();

auto diff =
std::chrono::duration cast<std::chrono::microseconds>

(now - before) .count();

std::cout << "Time (no threads):
<< diff << " microseconds" << std::endl;

Here are the speed results from executing the sequential and threaded code for 100
million iterations using g++ on Linux.

Time (no threads): 256079 microseconds
Time (2 threads): 209341 microseconds

105 Advanced C++ Memory Techniques



Note that the threaded code does not actually run twice as fast as the sequential
code, despite having two threads that should run in parallel. In fact, it only improves
on the sequential code by about 19%, rather than 50%. Why?

It’s the magic of false sharing, whereby one thread writing to its variable slows down
the other unrelated variable that’s only being used by the other thread. The two
threads are constantly writing to their own variable, which messes with the cached
value of the other global variable used in the other thread. It’s kind of like
entanglement in quantum physics, if you like that kind of thing.

Detecting False Sharing

According to the documentation, Valgrind’s DRD tool should be able to detect
false sharing (and numerous other thread errors). However, I ran the command:

valgrind --tool=drd ./testl

I did not get any warnings:
==8618== ERROR SUMMARY: 0 errors from 0 contexts

On closer reading of the DRD documentation, DRD seems to only detect a false
sharing situation if the two threads are running on different cores, which may have
been the reason.

Solutions for False Sharing

There are a few coding solutions to prevent false sharing. The basic idea is ensuring
that the addresses of unrelated thread-shared global addresses are not too close.
Options include:

e Putting global variables in random spots throughout your C++ code.
e Using alignas to enforce address spacing on alighment boundaries.

The first one is kind of a joke, although it would probably work in most cases.
However, it’s not technically guaranteed where the linker will put unrelated global
variables in the address space.

A more elegant solution is to put variables, especially atomics, on address alignment

boundaries. The idea is to ensure that each important global variable is alone in its
64-byte block.

David Spuler 106



The global variables in our declarations become:

alignas (64) int g counterl = 0O;
alignas (64) int g _counter2 = 0O;

By declaring them both as alignas (64), it guarantees two things:

e The variables start on a 64-byte alignhment boundary (we don’t care about
this here), and
e They are the only variable in that 64 bytes (this fixes false sharing).

The downside is that each 4-byte integer is stored in 64 bytes, so there’s 60 bytes in
unused padding added to global memory usage. But it’s better to pad memory than
to waste CPU cycles! (On the other hand, the CPU cache lines are also loading and
storing 60 unused bytes, so we’ve somewhat undermined the efficiency advantages
of the L1/1.2 cache lines for this 64-byte block.)

Anyway, who cares, it works! Here are the faster speed measurements just from
adding alignas statements:

Time (no threads): 260277 microseconds
Time (2 threads): 133947 microseconds

Wow! It’s almost exactly half the time! The performance gain is about 49%, which
is much better than 19% (due to false sharing slowdowns), and is close to the 50%
gain we were aiming for with two threads. Maybe there’s something to this
multithreading stuff, after all.

Some Final Tweaks

As a finesse, you can assure that the addresses are far enough apart by simply
checking in code. One possible method to make sure that some junior code jockey
hasn’t deleted your alignas statements:

assert ( (char*)&var2 - (char*)&varl >= 64);

Unfortunately, you can’t do it faster at compile-time, since addresses of global
variables are not “constant” enough for the compiler:

static_assert( (char*)é&var2 - (char*)e&varl >= 64); //
Fails

Note that some CPUs have cache line sizes up to 256 bytes. Hence, you might
need alignas (128) or alignas (256) on those platforms.

107 Advanced C++ Memory Techniques



Note also there are various other non-standard ways to achieve alignment, most of
them having existed on platforms prior to the alignas specifier in the C++
standardization. For example, GCC has a whole set of old builtins. Feel free to use
those old things and charge extra because you’re writing antique C++ code.

Another point is that false sharing slowdowns can arise for non-global variables,
such as dynamic allocated memory or stack addresses. It’s not very likely for two
threads to see contention over stack addresses inside their respective call frames,
but it can occur with allocated memory blocks that are shared. There are various
ways to get aligned addresses inside dynamic memory allocation, including aligned
memory allocation primitives, so the same ideas can solve the problem.

Nevertheless, atomics declared as global variables are probably the most likely area
where false sharing can occur. This suggests a general rule: all global atomics should
be declared as alignas. I'm not sure I agree, and it does sound a bit drastic. This
does avoid the performance slug of false sharing, but it will also waste significant
memory with padding bytes.

References

1. Dung Le, Aug 13, 2020, Optimizations for C++ multi-threaded
programming, https://medium.com/distributed-knowledge/optimizations-
for-c-multi-threaded-programs-33284dee5e9c

2. Paul]. Lucas Jul 13, 2023, Advanced Thread Safety in
C++, https://dev.to/paulilucas /advanced-thread-safety-in-c-3ap5

3. Larry Jones, 27 Feb 2025, Mastering Concurrency and Multithreading in C++:
Unlock the Secrets of Excpert-Level
Skills, https:/ /www.amazon.com.au/Mastering-Concurrency-
Multithreading-Secrets-Expert-Level-ebook/dp/BODYSB519C

4. Valgrind, March 2025 (accessed), DRD: a thread error
detector, https:/ /valgrind.org/docs/manual /drd-manual. html#drd-

manual.limitations

David Spuler 108


https://medium.com/distributed-knowledge/optimizations-for-c-multi-threaded-programs-33284dee5e9c
https://medium.com/distributed-knowledge/optimizations-for-c-multi-threaded-programs-33284dee5e9c
https://dev.to/pauljlucas/advanced-thread-safety-in-c-3ap5
https://www.amazon.com.au/Mastering-Concurrency-Multithreading-Secrets-Expert-Level-ebook/dp/B0DYSB519C/
https://www.amazon.com.au/Mastering-Concurrency-Multithreading-Secrets-Expert-Level-ebook/dp/B0DYSB519C/
https://valgrind.org/docs/manual/drd-manual.html#drd-manual.limitations
https://valgrind.org/docs/manual/drd-manual.html#drd-manual.limitations

Part II: Memory-Efficient Data
Structures

109 Advanced C++ Memory Techniques



David Spuler 110



10. Arrays

Arrays are wonderfully efficient! They’re the most basic data structure known to
humanity. The main features to note about an atrray include:

¢ Contiguous memory storage — great for cache locality.
e Single type of data— no need to be worried about the type.

In modern C++, there are several ways to create an array data structure:
e std::array
e std::vector

e std::inplace vector (C++26)

There are also some older methods of using arrays that still work in modern C++
code:

e Fixed-size array variable: int arr[10];
e Allocated fixed-size array: new int[10];
e Old-style allocated array: malloc (sizeof (int) *10) ;
Note that the size of arrays in these examples don’t need to be a compile-time

constant in C++. They can be a variable, where the size of the declared array is
sorted out at run-time.

Array Operation Complexity

There are two main types of arrays to store objects: sorted and unsorted. Well,
actually, there’s other types of arrays with different semantics (e.g., stacks, queues,
heaps, ring buffers), but let’s just look at searching and sorting for now.

Are they fast?

111 Advanced C++ Memory Techniques



Here’s the 10,000 foot view:

e Unsorted arrays — very fast insertions/deletions, but slow searches (linear)
and even slower to sort the data.

e Sorted arrays — faster search (logarithmic), slower insertions/deletions,
and great if you need sorted data.

In more detail, here’s the overall complexity analysis of the basic searching methods:

e Searching — unsorted is O(#) (linear search) and O(log 1) for sorted (binary
search).

e Inserting — unsorted is O(7) (add to the end), but O(») if sorted (shuffle
required).

e Deleting — this is O(7)if unsorted (tricky swap method!), but O(x) if
sorted (also shuffles).

e Print unsorted — both are O(#) with a linear scan of the array.

e DPrint sorted — unsorted is O(# /log 1) because it requires a sort, but
only O(n) if already sorted.

And some other algebraic operations:

e Maximum/minimum — unsorted is O(z) because it requites a scan, but
only O(7) if already sorted (choose first or last element).

e Top-k elements — unsorted requires an O(# log ) sort or at least a “partial
sort”; only O(k) for a sorted array.

e Sum or average — both are O(#) because the whole array must be scanned.

Modern C++ Arrays

We’re going to implement our own sorted and unsorted arrays to examine the
algorithms. Standard C++ already has two types of unsorted arrays
in std::array and std: : vector. We could just wrap around those types, but
I’'m going to use low-level raw arrays to show the algorithms in more detail.

Sorted arrays are trickier. Note that there’s no “sorted array” class in the standard
C++ library.

David Spuler 112



However, there are some primitives we can use to achieve sorted arrays:

e std::sort () — modern C++ version with a hybrid quicksort/heapsort
algorithm.

e gsort() — old-style quicksort with function pointers (not
recommended).

There is also some builtins for “binary search” on a sorted atray:

e std::binary search() — modern C++ implementation for a sorted
array.

e std::equal range () — binary search that handles duplicate elements
in the array.

e Dbsearch() — old-style binary search with function pointers (not
recommended).

If we are inserting into a sorted array, we don’t need binary search exactly, because
we’re assuming the element isn’t already in the array. Instead, we need a “binary-
like search” method of finding the index location to insert a new item. In other
words, we need to find the spot where the item fits in the array, but do it
logarithmically, rather than using a slow linear scan.

Writing a binary-like search algorithm to find the insertion point is very fiddly
coding! Fortunately, the standard C++ library has two methods that code it for us:

e std::lower bound() — generalizes binary search for use with
insertions.
e std::upper bound () — similar version that finds the location above.

Strictly speaking, std: :binary search () in the C++ standard only requires a
“partitioned” array rather than a “sorted” array. But for a scalar type with well-
defined comparisons, this is the same thing.

Custom Array Implementation

Anyway, let’s look at some of the basic operations in our custom versions of array
algorithms. We’ll examine the unsorted array version, but the sorted version is
almost identical.

113  Advanced C++ Memory Techniques



Here’s the overall class members:

template<typename T, int N>
class UnsortedArray {
private:

T arr [N];

int capacity = N;

int count = 0;

Y
bi

Note that “capacity ” is somewhat redundant if we’re templating based on a
compile-time array size. However, it would be useful if we were dynamically
constructing our arrays at runtime.

Here are some of the basic “getter” functions:

int size() { return count ; }
int count() { return count ; }
int capacity() { return N; }

And here are some of the basic utility functions:

bool empty() { return count == 0; }
bool full() { return count == N; }

Sorted Arrays

There is no standard C++ sorted array class, so we’ve got to implement our own.
A sorted array has a good search lookup cost, being logarithmic in the number of
elements, by using the “binary search” lookup algorithm. However, that’s not as
good as a hash table (e.g., std: :unordered_map), which has O(7) average search
cost.

Insertions and deletions have a poor O(#) theoretical complexity, although the first
phase of finding where to insert or delete is also logarithmic, using an algorithm
very similar to binary search. The linear cost arises because once they find the
location, they then need to shuffle elements:

e Make a gap (insertion), or
e Close a gap (deletion).

David Spuler 114



If we’re using a class object for our array, such as std: :array or std: :vector,
we can use the insert () method. This is doing a shuffle behind the scenes.

The main advantage of a sorted array is that it’s, well, sorted, so if we want to
process the array elements in sorted order, then it’s already done for us. That’s good
because sorting an unsorted array is expensive with an O(n /log #) complexity
(e.g., std: : sort typically uses a quicksort-heapsort hybrid).

If we need sorted data, there are other options in C++ containers.
The std: :map container is implemented as a balanced binary tree, called a “red-
black tree,” and this has logarithmic complexity for all major operations: search,
insertions and deletions. However, a sorted array has good memory cost because it
used contiguous storage, so it should not be underestimated!

Shuffling Array Elements

Shuffling of array elements along by one location is required for both insertion and
deletion in sorted arrays. Shuffle right to create a gap for a new insertion, and shuffle
left to close a gap after deletion. We can also use this idea for unsorted arrays, but
there are faster tricks, as examined later in this section.

In practice, shuffling of sorted arrays is quite efficient for scalar types via a memory
block copy, using the memmove () standard function. Note that memmove () is an
older function that does a bytewise copy of the memory that ignores object
constructors and move operators. Presumably, the standard insert () method is
using fast byte copies for scalar types.

Here’s an obscure pitfall: we cannot use various other copying methods because
the shuffle involves overlapping source and destination memory blocks. There does
not seem to be a version of C++ copying that permits overlaps. These functions
would be incorrect and lead to undefined behavior on overlapping memory blocks,
which is definitely true of any array shuffle:

e std::memcpy (old C-style)
e std::copy n

However, we can use the overloads of the std: :move function that work on
ranges of multiple objects. These version of std: :move have a real runtime cost,
unlike the basic version, which is a compile-time type-cast that converts to a
movable R-value reference (with no runtime code generated).

115 Advanced C++ Memory Techniques



We also need to pay attention to whether we are shuffling to the left or right,
because these functions don’t work for all overlapping arguments.

e std::move or std: :copy — moving or copying left (i.e., close a gap
for deletion).

e std::move backwardor std::copy backward — alternative for
moving or copying right (i.e., create a gap for insertion).

Note that using std::copy or std: :copy backward functions also work
here, but copying is slower than moving for non-scalar types. Hence,
the std: :move versions are more general, but still have some downsides:

e Expensive for non-scalar objects.
e Iterators are invalidated on the array.

e Invalidates any pointers or references to specific objects.

Unfortunately, the shuffle cost is terrible for complex objects that will require their
move operators called for every single object. I can’t say that I recommended sorted
arrays for those types.

Note that there are also various types of objects where we could still use a memory
block move to do a “shallow move” of the objects (i.e., “relocatable objects”),
rather than individually moving each element. However, using this idea requires
tricks to prevent the C++ container from doing its move thing, such as using a low-
level raw array rather than std: :vector.

Binary-Like Sorted Array Insertion

Sorted arrays are logarithmic for searches, but not quite as good for insertions and
deletions. Inserting a new element into a sorted array is a three-phase algorithm:

1. Find the location to insert,
2. Shuffle elements to the right (create a gap), and

3. Insert the new element at the location.

David Spuler 116



There are three ways to find the location in a sorted array:
1. Linear search from the front.
2. Linear search from the back.
3. Binary-like search (fastet!)

Linear search over a sorted array doesn’t use equality, but finds the first element the
bigger than the new element. Or to go in reverse, start at the end and look for the
first element that’s smaller than the new one.

The advantage of starting at the end is that we can shuffle as we go, but it’ll have
terrible cache locality problems in accessing memory addresses in reverse. CPU
memory prefetch algorithms usually assume a forward access order.

Anyway, neither of the linear algorithms are fast and they aren’t typically used.
Instead, binary-like search for the insertion point is much faster, with a logarithmic
complexity.

Binary-like search for insertion involves splitting up the array into two intervals,
and choosing between the two based on the midpoint value. This is not exactly the
same as binary search, because we’re assuming that the element is not already in the
array. Hence, it’s like binary search, but we’re looking for smaller versus bigger
elements in comparison to the new element, rather than seeking equality.

Sorted Array Deletion

Deletion of an element in a sorted array is easier than insertion. There are two major
phases:

1. Find the element using binary search.
2. Shuffle the elements left to close the gap.

Note that we’re using real binary search, not the binary-like search for insertion,
because we assume the element is present. We can’t delete an element that’s not in
the array. Hence, we can use std: :binary search to find the element.

The deletion phase is a left shuffle of all the array elements. As discussed above, we
can do a byte copy such as memmmove () or std: :move, which both are well-

defined with overlapping memory blocks.

117 Advanced C++ Memory Techniques



These methods can be efficient for scalar and other trivial types where bitwise
shallow copying is allowed, but may trigger a cascade of move constructors or move
assignments on complex classes. Thus, sorted arrays can be potentially inefficient
for non-scalars because of the hidden costs of shuffling objects.

Unsorted Arrays

Unsorted arrays are not an all-star data structure, and don’t get a lot of use for basic
search requirements. The main features include:

e Slow search lookups in cases like associative arrays or sets (linear scan cost).
e Tastinsertions and deletions (constant cost, without any “shuffle”).
e Sorting an unsorted array is costly with O(# /log #) complexity.

Unsorted arrays are very useful if we want fast insertions and deletions, but rarely
need to search or sort the array. Insertion is very fast with constant time, just by
adding the new element at the end of the array. Deletions can also be implemented
in constant time, but only via a trick of swapping the to-be-deleted element with
the last element.

Interestingly, we can always fix our unsorted array by sorting it, and that turns out
to be a decent idea. Let’s examine the two ways to get a sorted array:

e  Build an unsorted atray, then sort it, or
e Incrementally maintain a sorted array.

The first plan costs O)in total to do all the #insertions (unsorted), and then
costs O(n log n) to sort it with std: : sort. The second plan costs O(z) for every
one of the #insertions into a sorted array, and so we get to O(#"2) quadratic
complexity for the incremental sorted array approach. In summary, our analysis
suggests:

e Unsorted array (sort it later) — complexity of O(# log n).
e Sorted array (incremental) — quadratic O(#"2) complexity.

An unsorted array might be the way to go? However, as discussed above, it’s not as
bad as that sounds if we have scalar types in a sorted array, because the “shuffle” is
a single memory block copy.

Note that an unsorted array is actually sorted in a weird way: by the order of
insertions. Hence, if you have an ordered sequence of data, they are mapped into
the array sequence according to the order in which they are processed.

David Spuler 118



If these objects have an associated timestamp, your supposedly unsorted array may
well be sorted implicitly according to the timestamp field.

Unsorted arrays are underestimated, and can be efficient in practice. An array that
is unsorted functions as a list of items, but is stored in contiguous memory, which
can make scanning the array efficient in terms of cache locality (e.g., faster than
linked lists in std: : 1ist or red-black binary trees in std: :map).

Unsorted arrays can be useful for semantics other than basic search lookups. An
array can efficiently implement a fixed-size stack, but a fixed-size queue is better
implemented using a ring buffer that progresses around the array in a circular
fashion. You can also put a balanced binary tree or a heap data structure into an
array, but we’re getting far away from a basic unsorted array in doing that.

Linear Search of Unsorted Arrays

Linear search is the worst part of unsorted arrays. There’s not really a better way to
search an unsorted array. Here’s a simple hand-coded linear search of the array to
demonstrate the algorithm that’s happening:

int find linear search(const T &item)
{
for (int 1 = 0; i < count ; i++) {
if (item == arr [i])
return i; // found

}

return -1; // not found

The above assumes we’re stored our data in a raw array type as the data member.
If we choose to store the data as std: :array or std: :vector, we could use
standard member functions to search the array, such as £ind ().

Note that if we were doing a lot of searches of an array without many insertions or
deletions, here’s an idea: pre-sort the array! This gives us this approach:

1. Pre-sort the array with std: :sort
2. Use binary search on our newly sorted array.

The use of binary search reduces our searches to logarithmic complexity, which is
much faster than linear search.

119 Advanced C++ Memory Techniques



Template Value vs Reference Parameters

Templating based on a type has a common conundrum about how to choose
between passing function parameters by reference or value. The desirable efficient
that we want is usually:

e  Small integer types — pass-by-value.
e Large class types — pass-by-reference.

Which signature should we use?

int find linear search(const T &item) // Const reference
int find linear search(T item) // Pass-by-value

Which one we desire for larger non-class types, such as long or double, is
somewhat implementation-dependent and you need to benchmark it!

Unfortunately, there’s no way to alter the signature of a templated function
according to a compile-time setting. I don’t think there’s even a way to do it in type
traits.

However, the most common modern C++ style is to use const reference
parameters. The reasons are:

e Large class types — const& references are much faster.
e Small integer types — it’s not much worse.

In one sense, I'm not sure about the last point, because:
1. It’s a micro-optimization, and
2. The compiler may auto-optimize it anyway.

But there is a simple solution wheteby you can use const& reference parameters
for generic types, but use pass-by-value for small integers.

Template specialization to the rescuel

David Spuler 120



Just define specialized versions of templated functions for the handful of small
integer types:

int find linear search(int item) // Pass-by-value

{
// etc...

Now you only have to define about 27 more versions for every single integral and
floating-point type.

Fast Linear Search

You’re thinking that this doesn’t exist, and the heading is an oxymoron. But there
are situations where linear search on an unsorted array can be faster than the
alternatives:

e  Small number of elements

e Sentinel search optimization

e Low-level support for searching
e  Parallel linear search

Let’s examine all of these techniques in turn.

Sentinel linear search optimization. This is an optimization attributable to
Knuth (1973) in the Mix programming language. The idea is to remove the
conditional test in the loop (i.e., removing “i < count”) by guaranteeing a
successful search. The trick is to add an extra element at the end of the array, which
equals what we’re searching for.

Note that this requires that we declare our array data member with one more item
than the capacity. We always need a spare element at the end, even if the array is
full to capacity.

T arr_ [N + 1]; // Extra dummy element
Sentinel-based searching is only good for arrays of scalar types, because it requires
making a copy of the search element, which is created at the end. The sentinel

search of an unsorted array still has linear complexity, but has a lower complexity
constant because each loop iteration is faster in practice.

121 Advanced C++ Memory Techniques



Low-Level Search Support

Some types of CPU have explicit instructions that support scanning a memory
block for a value. If we’re using an array of characters or bytes, there are these
candidates:

e std::find— on an array, vectot, or string type.
e strchr — old-style character strings (null-terminated)
e memchr — low-level memory blocks of bytes.

The modern C++ code using std: : £ind looks something like this:

bool find standard(const T& item)
{

auto iter = std::find(arr_, item);
return iter != arr .end();

The version that returns the integer index of the element in the array is:

int find standard index(const T &item)

{

auto iter = std::find(arr_, item);
if (iter == arr .end()) return -1; // Fail
return iter - arr.begin(); // Pointer arithmetic

Note that this idea only works for arrays of contiguous memory. Pointer arithmetic
doesn’t work well on general iterators for dynamic memory containers.

Parallel Linear Search

There are multiple ways that we could parallelize our linear search algorithm. It just
depends on our budget! Here are some options:

e CPU SIMD instructions (e.g., AVX or ARM Neon)
e  Multithreading (on CPU)
¢ GPU hardware

SIMD instructions allow use to test multiple values in parallel on a CPU. For
example, an x86 CPU from Intel or AMD allows the AVX sets of instructions.

David Spuler 122



There are a few versions:

e AVX — 128 bits (4 x 32-bit integers).

e AVX-2— 2506 bits (8 x 32-bit integers).

e AVX-512— 512 bits (16 x 32-bit integers).
e  AVX-10 — 1024 bits (32 x 32-bit integers).

CUDA C++ GPU linear search. If we have an NVIDIA GPU, the type of
parallelism is much more extensive. In fact, we can create 1024 threads, and each
thread can compare only a few elements with our search key. This sounds like an
almost constant-time algorithm on the GPU, but it’s not quite that good.
In practice, there are two phases:

1. Compare each loop element in parallel, and

2. Collate the results.

The GPU can compare all the array elements 1024 at a time. Hence, it’s not constant
time, but it’s still linear time divided by 1024.

Also, at the end we have a synchronization problem with detecting which of the
threads had a successful result of the comparison. It’s not quite as bad as a
“horizontal reduction” of the array (e.g., max or sum), but we have to synchronize
the results in shared memory or global memory.

We could use “warp shuffle” instructions that coordinate via faster GPU registers,
but these only work within each warp of 32 threads, so it ends up being like a
horizontal reduction over each warp.

Unsorted Array Insertions

Inserting into an unsorted atray is very fast because we can just insert it at the end.
This is efficient with constant time complexity.

123 Advanced C++ Memory Techniques



The code for insertion at the end:

void insert end(const T & obj)

{
if (full()) |
throw std::overflow error ("Insert full array");

}
else {
arr_ [count ++] = obj;

}

There’s nothing much to this code: only one statement! It’s very efficient to insert
at the end of an array.

Insertion at an Index

Inserting in the middle of an unsorted array seems to be an O(#) operation. If we
needed to insert into the middle, it would seem slower because of the need to
shuffle the other elements out of the way. And that would certainly be true of a
sorted array, where a shuffle is needed to maintain the sorted array.
But, no, we’re talking about an unsorted array here. Let’s ban the shuffle.
There’s a move trick to insert into the middle of an unsorted array at a given index
in O(7) time. The trick is to note that in an unsorted array we only need to move a
single element out of the way.
The idea is two short phases:

1. Move the existing element “out of the way” and to the end.

2. Insert the element at that location.
Here’s a coded version of the “move away to the end” optimization. One fast way

is to use std: :move, which is like a type cast with no runtime code, and this causes
move assignment on a complex object (or simple byte copying on a scalar type).

David Spuler 124



Here’s the code:

void insert at offset(const T & obj, int offset)
{
if (full()) {
throw std::overflow error ("Insert full array");

}

else {
// Move to end
arr [count + 1] = std::move(arr [offset]);
arr [offset] = obj; // Insert at location

count ++;

Note that this only works for an unsorted array, not a sorted array. If we wanted a
sorted order, or we need the implicit order-of-insertion in an unsorted array, then
this “move to end” idea cannot be used as it will ruin the ordering

Fast Unsorted Array Deletion

There’s a trick for deleting an arbitrary element from an unsorted array that is often
missed. Unsorted array deletion need not be O(#) complexity, but can be done
in O(7) time.

Deletion of an item from an unsorted array is a two-phase operation: find and
destroy. Here’s the code to find the element, which uses linear search to find its
offset, and is thus O(#) unavoidably:

void delete key(const T& item)
{

int offset = find linear search(item);
if (offset == -1) {
throw std::invalid argument ("Delete error");
}
else {
delete offset swap(offset);
}

The naive idea for deleting from an unsorted array that we’ve found here is to
remove the element and “shuffle” the rest of the elements downwards (to the left)
so that there’s no “gap” in the array.

125 Advanced C++ Memory Techniques



Doing a shuffle isn’t so bad for scalar types, where it’s probably just one call
to memmove behind the scenes. But for non-scalar objects, we’re moving a lot of

objects. Either way, our unsorted array deletion with a shuffle has cost complexity
of O(n) time.

There is a faster way!

First, let’s get rid of the special cases: if there’s only one element in the array, just
erase it, and set the count to zero. And if the erase location is the end-most object,
just erase it there, and decrement the count. Otherwise, if the object we want to
remove is at the front or middle of the array, we do a tricky swap with the end
element:

e Swaparr[i] with arr[n-1]
e FEraseatarr[n-1]
e Decrement n

This swap idea has changed our unsorted array deletion from O(z) time to the
optimal O(7) complexity. There’s no loops anywhere!

Note that we can use std: : swap here, and we may need to explicitly run the
destructor of objects being destroyed (optional for scalar types). Here’s what the
code looks like:

void delete offset swap(int offset)
{
if (empty()) f{
throw std::underflow error ("Delete empty array");
}
else if (count == 1) { // ***
if (!std::is_trivially destructible<T>::value) {
arr [0].~T(); // Explicit destructor (if needed)
}

count = 0;
}
else {
if (offset != count - 1) {
// Swap with the end element
std::swap (arr [offset], arr [count - 1]);

}

if (!std::is trivially destructible<T>::value) {
// Explicit destructor (at end)
arr_[count - 1].~T();

}

count --;

}
David Spuler 126



The above code uses “type traits” from modern C++ to detect whether or not we
need to explicitly run the destructor when destroying an object in the array. This is
very efficient because type traits ate evaluated to compile-time constants, so the
compiler should optimize out the path if not needed (i.e., using “dead code
elimination”). There are several options available in the type traits library,
depending on exactly what types we want to support in our array:

e std::is _trivially destructible<T>::value
e std::is destructible<T>::value
e std::is scalar<T>::value

Actually, the above code has a minor inefficiency. The giveaway is that two code
sequences with is_trivially destructible are similar. Can you see it?

We don’t need to expressly test for count==1 (marked with stars), because the
general code in the else clause also works for that special case as well.

And also, what was I thinking?

There’s no need to swap the element to the end, only to destroy it there. That’s two
hidden moves inside std: : swap, when we only need one moved element. The
better idea than swapping is to destroy the object where it is, and then move the
end element down:

if (!std::is trivially destructible<T>::value) ({
arr [offset].~T(); // Destroy in place
}

if (offset != count - 1) {

// Move down the end element

arr[offset] = std::move(arr [count - 1]);
}
count --;

Note that std: :move () here is only a compile-time type cast operation. It will
ensure that the move assignment operator is used on complex class types, and is
also efficient for scalar and other trivial types.

Yes, moving the end element to the middle of the unsorted array changes some
addresses. It will certainly invalidate iterators over the container. But so would the
shuffle of elements, so we’re okay there.

127 Advanced C++ Memory Techniques



Note that this only works for an wusorted array data structure. If we did this on a
sorted array, we’d ruin the sorting order in the array by moving the biggest element
into the middle of the sequence. Sorted arrays need to do the shuffle.

One final point is that this fast deletion trick with swapping will break the unofficial
ordering of the array by its insertion order. If we have timestamps associated with
our array elements, swapping the end element into the middle will ruin that implicit
ordering.

Container Deletion Pitfalls

While we’re on the topic of deletions, let’s look at some common mistakes with
deletions from C++ containers. There are at least two major pitfalls in using
the erase () method to remove an object from a C++ container.

Here’s the basic first attempt:

for (auto iter : container) {
if (want to delete(*iter)) {
container.erase (iter); // Kaboom!

This will crash with a big mushroom cloud. The problem is that we’ve assumed the
iterator stays valid, whereas the erase () method actually returns an updated
iterator that we need to use. We can’t use a range for loop to do this, so we have
to use begin () and end () manually:

for (auto iter = container.begin();
iter != container.end(); ++iter) {
if (want to delete(*iter)) {
iter = container.erase(iter); // Use return value

}

This is not a crash, but still a major bug. The iterator loop skips over the next item
after the erased object.

David Spuler 128



There are two increments in the deletion sequence:
1. erase () returns the next valid iterator (after the removed object), and
2. ++iter skips to the next element (again!).

To get it correct, we need to change the loop idiom to avoid ++iter if we erase
anything,.

for (auto iter = container.begin();
iter != container.end(); /*Not here!*/ ) {
if (want to delete(*iter)) {
iter = container.erase(iter); // Use return value
}
else {

++iter; // Only if not erasing!
}

And now the code finally works!

Bypassing Interfaces

The std::array and std: :vector classes are designed to allow you to get
access to the stored data via the data () member function. It’s also guaranteed that
the data is stored in contiguous memory locations.

Note that this is also true of std: :string, which has a data () member and
also c_str (), which returns the same address.

The data () method allows direct access via pointers or low-level array types to
the data in the standard array or vector containers. Whether doing this is any faster
is unclear, and needs benchmarking, since many of the member functions are simple
pass-through inlined functions that work on the internal data anyway.

But there’s certainly a few pitfalls! The address returned by the data () member is
not guaranteed forever.

There are at least two major types of bugs:

e Object is destroyed, or
e Object is moved or modified.

129 Advanced C++ Memory Techniques



Since you have a pointer to an object’s data, you want that object to stick around.
But the object can disappear in a few ways:

e Stack object goes out of scope (triggering the destructor and unwinding
the stack).

e Allocated object is deallocated by the delete operator.

e Object is moved by a container (e.g., an auto-resize or other “iterator
invalidation” situation).

Even if the object stays around to watch your skills, there’s another problem. If the
underlying object is modified, then the internal address of the data that you have
may become invalid. The issues are very similar to the well-known “invalidated
iterator” problems with containers. Changes to the container that probably
invalidate the data () pointer include:

e Insertions and deletions
e reserve()

e resize()

e shrink to fit()

Any of these members that modify the object are allowed to move the data. For
example, they might allocate a different memory block, and move the whole array
away from your pointer.

But there are a huge number of other situations under which an iterator into a
container may become invalidated, which presumably also invalidates an old
address returned from the data () member function.

Watch out!

Extensions

1. Benchmark the unsorted array implementation above using a raw array
type versus an alternative approach of using a std::vector member
object to store the data.

2. Benchmark the sorted array implementation with a raw array versus
using std: :vector as the internal data array, especially to see if our
hand-coded binary search is fast or not.

3. Explore the use of “shallow copying” on sorted arrays containing
“relocatable objects” in the shuffle needed for insertions and deletions in
a sorted array data structure.

David Spuler 130



10.

Explore the efficiency of calls to move constructors in a “shuffle” for a
sorted array implemented using std: :vector or std: :array.
Implement the binary-like search algorithm to find the insertion location
in a sorted array. (Note that deletion is just the normal binaty search to find
the element.)

Benchmark inserting into an unsorted array and then sorting
using std: : sort, because incrementally maintaining a sorted array. Do
the results differ for a scalar integer type versus arrays of an object
like std: : string (which has move operators)?

Implement a hybrid binary-linear search where the binary search reverts to
linear search once the interval is small enough.

Implement an AVX SIMD version of linear search over integers that tests
a number of integers in the array at once.

Implement a “cache-aware” binary search that chooses the middle index at
the start of a cache line (where possible), and tests all values in that cache
line immediately using an unrolled linear search.

Implement a binary search that is both cache-aware and uses AVX SIMD
instructions to test all elements in the same cache line more efficiently.

131 Advanced C++ Memory Techniques



David Spuler 132



11. String Optimizations

Efficient Strings

The C++ std: :string class is a beautiful and elegant class that has been well-
designed and near-optimally implemented.

Its main advantages include:

High-level abstraction of string coding

e Automates management of memory buffer allocation

Safety (e.g., no buffer overflows when appending or concatenating)
e Moderately efficient

Note that I only said efficiency was “moderate”! As classes go, it’s one of the most
efficient, with lots of inline member functions and implementations supet-
optimized by compiler engineers.

Some of the fast parts of the standard string class include:

e Small String Optimization (SSO)
e Fast to copy
e Fast move semantics

But it’s still not as efficient as bypassing the string interfaces and doing low-level
string processing directly with char* pointers and arrays.

So, here we have a perfect example of the maxim: don’t gptimize prematurely! ’'m not
advocating to replace all strings with C-style string operations, but if your profiler
finds a hot-spot in a C++ string operation, you can do better.

Furthermore, if you’re doing a very string-intensive application, such as text
processing, the lowest level kernels that spin through the document probably
shouldn’t use the string class.

133  Advanced C++ Memory Techniques



Common String Operations

If you have a string, and you want to do some work on that string,
the std: : string class is often very fast. In the situations where it’s not, you can
also revert to old-style coding on char* pointers by using the interface-
bypassing data () or ¢_str () methods to get to the raw character array.

String length. The length () method is extremely fast, and always so.
The comparison goes like this:

e length () — always blazingly fast.
e strlen() — slow on very long strings.

Since the string class maintains the string length incrementally as a data member,
it’s already been precalculated. Hence, it’s an inlined access to an already-computed
integer.

In comparison, C-style null-terminated strings must scan for the null byte.
Hence, strlen () is slow on very long strings, whereas length () is still fast.

String Equality Comparisons. Which method is faster is unclear, depending on
the implementation of operator==, but my money’s on the string class. In
particular, it can compare the lengths quickly, since it has that precomputed for
both strings.

The full list of ways to compare strings:

e operator==() — fast version.
e compare () — explicit method version.
e strcmp () — old-style string comparisons.

Case-Ignoring String Equality Comparisons. There’s not a standard case-
ignoring version of the compare () method. However, there are non-standard
implementations:

e stricmp() — Windows (MSVS)
e strcasecmp () — Linux (GCC)

David Spuler 134



String Search. This is a very simple and long-standing requirement. Your options
are pretty obvious:

e find() — simple and fastl
e strstr () — the old C function.

Case-Ignoring String Search. There’s not a standard method function named
“ifind” or “stristr”, but there are ways to get there:

e strcasestr () — Linux
e StrStrIA() on Windowsin shlwapi.h

Reverse String Search. There the string class method rfind () for reverse string
searching. There’s not really a good alternative in the older C-style libraries.

Character Search. Searching a string for the first occurrence of a string characters.
The options include:

e find(char) — string class overload.
e strchr () — old-style C function.

Reverse Character Search. The options here are:

e rfind(char) — another class overload.
e strrchr () — reverse long-standing C function.

Note that the rfind () version is likely faster than the older function on very long
strings, because it has the string length precalculated in the string object and can
jump straight to the end, whereas strrchr () has to scan from the start of the

string.

Multi-Character Search. If you want to search for the prefix or suffix with a set
of characters, rather than just one, then the C++ string class has what you need:

e find first of () — first character from a set.
e find first not of () — first character not in the set.

The suffix versions are:

e find last of()
e find last not of()

135 Advanced C++ Memory Techniques



Prefix and Suffix Tests. The standard C++ methods on the string class are:

e starts with() (C++20)
e ends with() (C++20)

Other options include:

e string::find() — search forwards
e string::rfind() — reverse search
e LastIndexOf — Win32 version

There’s also some other options:

e remove prefix() in string view (C++17)
e remove suffix() in string view (C++17)

You can always code your own versions:

inline bool STRPREFIX (const char *s, const char *prefix)
return strncmp (s, prefix, strlen(prefix)) == 0;

}
Here’s a modern C++ style version:

inline bool string prefix(const std::string& str,
const std::string& prefix)

{

return str.find(prefix) == 0;

}
And here’s the same idea for suffix, using the “reverse find” method:

inline bool string suffix(const std::string& str,
const std::string& suffix)
{
return str.rfind(suffix) + suffix.length() ==
str.length(); // Buggy!

David Spuler 136

{



Actually, that’s a bit careless of the failure return -1 from rfind (). Here’s a fixed
version:

inline bool string suffix(const std::stringé& str,
const std::string& suffix)

{

int offset = str.rfind(suffix);
if (offset == -1) return false; // not found
return offset + suffix.length() == str.length();

Note that rfind is needlessly inefficient here if the string is very long and the suffix
is not present. It keeps on scanning all the way to the start of the string, rather than
quitting early. There’s certainly a faster way to do it, such as comparing the two
lengths, using them to compute the address of where the suffix would be, and then
use basic string equality testing.

Case-Ignoring Prefix and Suffix Tests. There’s not much help with this in the
standard libraries, so you’ll have to roll your own with strnicmp (Windows)
or strncasecmp (Linux):

inline bool STRIPREFIX (const char *s, const char *prefix) ({
return strncasecmp (s, prefix, strlen(prefix)) == 0;

}

Here’s my attempt at a fast suffix version, which mixes C++ and C coding, but
won’t be slow on a long string:

inline bool string strisuffix(const std::string& str,
const std::string& suffix)

{

int strlen = str.length();

int suffixlen = suffix.length();

if (suffixlen > strlen) return false;

int offset = strlen - suffixlen;

const char* raw = str.c str();

raw += offset;

const char* suffixraw = suffix.c str();

return stricmp (raw, suffixraw) == 0;

I’m sure that you could do bettet!

137 Advanced C++ Memory Techniques



String Class Inefficiencies

What’s so bad about the standard string class? Nothing, unless you want to do a lot
of processing of strings. Here’s a list of some of its problems:

1. It’s a large object (e.g., 40 bytes).

2. Sequences of binary + operators.

3. Too many calls to new and delete.

4. No way to use a larger non-allocated buffer.

5. Cannot use reference counting and copy-on-write.
A lot of these concerns can be summarized: 7£’s foo easy to use!

Programmers tend to get comfortable with the very convenient ways
that std: : string can be used in C++ programs. In comparison, doing C-style
string processing with low-level character buffers is painfull Hence, there’s a
tendency to forget that C++ strings are significant objects that invoke memory
allocation on all but the smallest of text strings.

String Memory Layout

The std: :stringclass creates objects of a reasonable size, unlike C-
style char* strings which are only the size of a pointer. In fact, a string object
typically contains a small buffer for short strings that is packed into the object itself.

The string class is quite complicated, although great compiler engineers have made
it look easy. Some of the main points about string efficiency are:

e Small String Optimization (SSO) is standard (with a small internal buffer).
e Reference counting is not enabled (and nor is Copy-On-Write).

The use of SSO makes sense because otherwise even just declaring an empty string
object would cause a memory allocation call to the new operator:

std::string sl; // No memory allocation!

David Spuler 138



We can interrogate the string objects about their features using standard member
functions such as data (). If the pointer to the data is inside the object itself, then
we’re using SSO. And if two objects created from each other (via copy constructor
and/or assignment operator) have the same data buffer address, then reference
counting is enabled.

Here is some code that uses standard string member calls to determine some details
about the layout of a string object.

void print string details()

{

std::string str;

cout << "Sizeof std::string = " << sizeof (std::string)
<< " bytes" << endl;

int bytes = str.capacity() + 1;

int header = (sizeof(str) - bytes);
cout << "Capacity std::string = " << str.capacity()
<< " characters ("
<< bytes << " Dbytes)" << endl;
const char* datastr = str.data();
char* saddr = reinterpret cast<char*>(& str);
bool is sso = datastr >= saddr

&& datastr < saddr + sizeof(std::string);
cout << "Short String Optimization (SSO): "
<< (is_sso ? “yes” : “no”) << endl;
cout << "Reference counting: "
<< (string is reference counted(bytes*100)

? “yes” : “no”) << endl;
int offset = (int) (datastr - saddr);
if (offset == 0) {

cout << "Char buffer start string (off=0)" << endl;
}

else if (offset + bytes == sizeof(std::string)) {
cout << "Char buffer end string (offset = "
<< offset << ")" << endl;
}
else {
cout << "Char buffer middle of string (offset = "
<< offset << ")" << endl;
}
cout << "Header block bytes = " << header << " ("

<< offset << " before buffer, "
<< (header - offset) << " after buffer)" << endl;

139 Advanced C++ Memory Techniques



And here are the results in MSVS on my Windows laptop:

Sizeof std::string = 40 bytes

Capacity std::string = 15 characters (16 bytes)

Short String Optimization (SSO): yes

Reference counting: no

Character buffer in middle of string (offset = 8)

Header block bytes = 24 (8 before buffer, 16 after buffer)

As to the 24 header bytes here, that could be 3 pointers (8 bytes or 64-bits each),
or maybe it’s 1 pointer to the buffer and 2 different 64-bit integers for length and

capacity.
We can go exploring in the memory layout of the header block inside a string object

to try to answer that question. It’s non-standard coding that is implementation-
specific, but plenty of people have done it!

David Spuler 140



12. Order of Insertion

Whenever you hear the words “order of insertion” in a set of requirements, it
should be associated with certain ideas. Note that this is exactly the same as First-
In-First-Out (FIFO).

Any type of queue is good at this:

e Linked list queue — std: : queue container.
e Doubly-linked list queue — std: : deque container.
e Array queue or dequeue — a ring buffer.

However, order-of-insertion is not necessarily a queue data structure. If the
requirements include insertion or deletion in the middle of the sequence, then it’s
not really a queue (nor even a dequeue).

These types of requirements that combine order-of-insertion traversal along with
generalized insertions and deletions can arise in several practical contexts:

e Least-Recently-Used (LRU) cache.

e  Operating system paging algorithms.
e Order book updates (trading engine).
e Rate limiting (throttling) of requests.

These all have a time element that causes them to have queue-like need for
insertion-ordering. However, there needs to also be key-based searches, insertions
and deletions, so a basic queue is not adequate.

141 Advanced C++ Memory Techniques



Hash Table with Order-of-Insertion

As an example, let’s consider a dream list of requirements for such a data structure:
1. Fast search, insert and deletion, and
2. Traversal in order-of-insertion.

To get to the first three, with fast search, insertion, and deletion, you should
immediately think: hash tables.

Hash tables have average case O(1) complexity for search, insertion and deletions.
Admittedly, hash table can degrade to linear complexity in the worst case.
Furthermore, hash tables have a poor traversal cost generally, and totally fail at
maintaining any order in the traversal. We can’t maintain “order of insertion” with
just a hash table.

Hence, to implement traversal in the insertion order we need another data structure.
The first idea is to have two totally distinct containers, and search them both when
we’re doing our operations. A better idea is that in our hash table nodes, we can
insert a pointer to some other node in another data structure, so that we don’t need
to do two lookups. Two options come to mind:

e Array or vector — contiguous data with good cache locality.
e Doubly-linked list — non-contiguous linked data structure.

Let’s look at each of these options.

Contiguous Array Version

The idea is to maintain traversal in the order of insertion by maintaining the items
in a separate std::vector or std::array container. For example, you could maintain an
array of pointers to the hashed nodes in the array. And each hash node would need
either a pointer back to the array or an index offset of where the element is found
in the array.

The use of an array or vector makes the traversal of items super-fast, by scanning
the array, in contiguous memory locations. Okay, so actually the cache locality isn’t
that great, since scanning the pointers in the array has good locality, but then it’s
jumping via the pointers to the nodes in the hash table, which are in different places
in memory.

David Spuler 142



It’s easy to maintain order-of-insertion in the array, simply by always inserting at
the end. Our array or vector data structure has a count of how many elements are
in the array, and we can insert a new item at the end.

Problems arise with deletion, however. If the need for deletion was only to remove
an item from a fixed-size array to make room for the next one, then we could
address this by using a ring buffer implemented as an atray (i.e., a fixed-size queue
in an array).

However, if we want to remove arbitrary items from our hash table, and hence from
our array, the use of a contiguous array causes difficulties. The difficulty is not in
finding the location for removal, but at the end of this sequence:

1. Search the hash table for the key.

2. Find the pointer or index into the array in the hash node.
3. Remove the node from the hash table container.

4. Remove the pointer from the array or vector container.

However, once we try to remove the entry from the array, there’s a gap. There are
three possible approaches:

1. Mark the item as “deleted” (i.e., leave a gap).
2. Shuffle the array elements down.
3. Move the end array element down into the gap (“swap and pop”).

None of these solutions are great. They all lead to suboptimal complexity in one or
other of the methods.

Marking each item with a “deleted” flag works fine on deletion, but the insertion-
order scan has to skip extra unused elements.

There are a few ways to mark the elements:
e Boolean flag inside each element.

e Separate array of Boolean flags.
e DPacked bit vector representing the Boolean flags.

143  Advanced C++ Memory Techniques



Furthermore, with the marking-as-deleted method, the array will fill up, and need
to have its gaps removed eventually. This is a costly type of “garbage collection” or
“memory reclamation” algorithm that will have linear complexity. And until it’s
cleaned up, the method will waste extra memory space for all the deleted gaps.

Shuftling all of the elements down to fill the gap does maintain the correct order in
the array. However, it’s an O(n) operation and will also invalidate all the pointers
into the array from other non-removed elements in our hash table. So, we’d need
some way of finding all those elements (e.g., reverse pointers), and also the cost of
updating them all.

Finally, the “move end element down” array trick is an O(1) method to cover our
gap, and would only require updating one non-removed hash node, which is also
O(1). Admittedly, the need to store reverse pointers from the array back to the hash
nodes adds O(n) more space. However, it fails completely, because the array is no
longer sorted in order of insertion.

Is there a way to salvage the dream of maintaining a contiguous array that is sorted

by insertion order? There are some tricks to try, like permutation arrays, but I can’t
see a good solution.

Doubly-Linked List Version

A more natural solution is to thread a doubly-linked list through our hash nodes.
The advantages of a doubly-linked list are:

1. No fixed size limits.
2. Hasier deletion with O(1) complexity.
3. Maintains order-of-insertion naturally.

Note that the linked list has to be doubly-linked so that deletion is easy once we
find a node to remove. If it’s only a singly-linked list, then we cannot find the
element before the current node, so we can’t easily unlink the current node.

The doubly-linked list method is not without downsides. There are problems with
time and space:

e Extra space for previous and next pointers in each node.
e Non-contiguous memory usage for scanning (it’s a linked list!)

David Spuler 144



To implement the interleaved doubly-linked list, each node in our hash table needs
to have “next” and “previous” pointers. We also need to track the head and tail of
this list at the container level.

The idea is that a scan in order of insertion is just to run down the doubly-linked
list in one direction. Hence, when we insert a new item it has to be inserted at the
end of the list.

The reason that this method is better than an array or vector is that it’s easy to
remove in a linked data structure. There’s no “gap” when we remove an item from
a linked list. We just update the pointers to the adjacent list elements to point
around the removed list node.

Could we use a separate doubly-linked list, such as the std::1ist container,
rather than manually threading pointers through our hash table? Yes, but this
wouldn’t really avoid the space cost of storing “next” and “previous” pointers in
each hash node, but just move them elsewhere.

Additionally, we’d need a pointer to the list node in the doubly-linked list stored in
the hash nodes. And each insertion would need two separate memory allocations
for the hash nodes and linked list nodes.

Hence, threading our doubly-linked list through the nodes themselves seems more
efficient overall.

145 Advanced C++ Memory Techniques



David Spuler 146



13. LRU Cache Data Structure

What is an LRU Cache?

Least-Recently-Used (LRU) caches are a common requirement in low-latency
programming. There are several important applications of an LRU cache:

e Operating system paging algorithms
e Memory access caches (low-level)
e Order book updates in trading

The idea of an LRU cache is to maintain a cache of recently used data, such as
memory we’ve just accessed, or a piece of data we’ve just updated. But we don’t
want an unlimited size data structure, so when it gets full, we evict the data that was
“least recently used” (i.e., the oldest data).

Note that an LRU cache is a more specific type of cache that just mapping keys to
the values they were set to.

The operations we need to support include:
e Add anew key to the cache (with its corresponding value).
e Update a key when it gets re-used again (more recently).
e Remove the least-recently-used item in the cache (to make room for

insertions).

Sounds like a queuer No, it’s not!

Not a Queue or Deque

An LRU cache has features that sound like a queue with FIFO ordering. We want
to evict the oldest items from the cache, which sounds exactly like maintaining a
queue of elements, and deleting from the tail of the queue will remove the oldest
element.

147 Advanced C++ Memory Techniques



These features are very queue-like and maintain a FIFO-like order-of-insertion:

e Add a new item to the end of the queue (the newest item).
e Remove from the front (to evict the oldest item).

The feature that’s not like a queue occurs on the “update” of a key that’s already in
there, which occurs if a cached item is then accessed a second time.

This requires two problematic operations:

e Search — find the item already in our LRU cache, and
e Deletion — remove the item from the middle of the queue.

It’s starting to sound less-and-less like a queue. There’s no fast searching
of std: :queue and std: :deque, and we’d have to use a linear scan.

Deletion is also a problem. We need to move an item from the middle of the queue
back to the head of the queue. This is not like a standard queue, which only allow
deletions from the end. A standard dequeue container also allows deletions from
the front, but this doesn’t help us.

Hence, we can’t just use a queue or dequeue, but need something fancier as our
implementation of an LRU cache.

Overall, an LRU cache has similar requirements to the general case earlier: fast
searches, insertions, and deletions. We also need to maintain order-of-insertion for
cache evictions, but we need to remove arbitrary nodes from that sequence, so a
standard queue or dequeue won’t work. Note that, unlike the general case, we don’t
actually need to traverse the sequence in order, but only use it for evictions.

Nevertheless, the basic idea of an LRU cache implementation is similar to the
general case of a data structure that maintains ordering by insertion sequence:

e Hash table for fast searches, insertions, and deletions.
e Maintain order-of-insertion sorting via an array, vector, or linked list.

Adding a new node into the cache is simply an insertion into the hash table, and
adding it to the head of the array or list. This item is the “most recently used” so it
will now be the last to be evicted from the cache.

David Spuler 148



If our cache is full, adding a new node means removing the oldest. It’s easy to
remove the “least recently used” by removing it from the hash table, and removing
the end element from the list (effectively, like a queue). We could seemingly
implement this queue-like functionality with two possible approaches:

e Statically with a fixed-sized array (i.e., a ring buffer wraparound), or
e  Dynamically via a linked list.

Only one of these ideas will work!

Array Implementation Fails

Let’s consider a contiguous array implementation first, which would be desirable
for cache locality efficiency. In other words, we use a hash table for searching,
insertion and deletion, but also maintain a separate array or vector data structure to
track insertion order. In practice, we’d need to use a wrap-around of elements in a
ring buffer structure, implemented via an array or vector container.

This is workable for many of the LRU cache requirements. Search and insertion is
very fast in the hash table. We don’t actually search the array, which is fortunate,
and inserting into an array with order-of-insertion is just adding it to the end (fast!).

However, deletion is a problem. We run into a significant efficiency problem arises
when we need to update a cache item that’s already in the cache from a prior access:
Every update of a value already in the cache needs to do two things to the array:

(a) delete the node in its previous place in the array, and
(b) re-insert the node at the head (it’s now the most-recently used item).

The key point is that the “previous place” for an item could be anywhere in the
array or ring buffer. So, we need arbitrary deletions at any location. For the reasons
discussed in the general case, an array or vector that implements a ring buffer or a
fixed-size array will fail in this situation.

Removing an item from the middle of the array is problematic and needs an
inefficient shuffle method to fill the gap, followed by trying to update pointers to
all the array elements that were moved by the shuffle. Alternatively, moving the
array’s end element down to cover the gap fails because it completely messes up the
order of elements in the array.

149 Advanced C++ Memory Techniques



A ring buffer implemented in an array or vector is no better at handling random
deletions. Removing from the middle of a wraparound sequence in a ring buffer is
actually the exact same situation, except rotated, and has the same problems.

One solution is to not allow cache updates. If an item is already in the cache, we
could simply 7of update its position in the sequence. However, this is no longer an
LRU cache, but more like a Least-Recently-Loaded (LRL) cache, or really a FIFO
queue version of a cache.

The requirements for an LRU cache are somewhat different to a FIFO queue. For
example, all frequently-used items will get evicted from the cache in a fixed order,
getting no benefit over infrequent accesses. The efficiency of the cache does not
adapt to access patterns. Overall, it seems that a contiguous data structure is not
effective for an LRU cache.

Linked lists to the rescuel!

Doubly-Linked List LRU Cache

Fortunately, an LRU cache is also fast to implement with a hash table and doubly-
linked list. Note that a singly-linked list fails to provide efficient deletion, so we
have to double up. Hence, the basic idea is:

e Hash table — efficient hashed search, insertion and deletion (but without
ordering).
e Doubly-linked list — maintains data according to order-of-insertion.

There are two ways to implement our doubly-linked list:

e Second container — using the std: : 1ist container separately (yes, it’s
doubly-linked).

e Threaded intrusively — use a doubly-linked list that is threaded through
the hash table nodes.

The first solution is workable if we maintain a pointer or iterator into the linked list
from our hash table nodes. We could make our list contain copies of the keys (if
small), or pointers to the hash table nodes if the keys are a complex object (i.e.,
don’t copy it). But overall, the two container approach is inefficient because we’re
doubling the number of allocated nodes by doing memory allocation once in the
hash table, and again in the std: : 1ist container.

David Spuler 150



A better solution is to intrusively thread our own hand-coded doubly-linked list
through our hash table nodes. This requires extra space for “next” and “previous”
pointers in our hash table nodes, but doesn’t require a second memory allocation,
and also maintains only one copy of the keys.

Let’s run with that idea and examine the efficiency of the operations:

e Search — use the hash table to get O(1) average search cost (we don’t
search the linked list).

e Insertion — fast O(1) insertion into the hash table, and also O(1) insertion
at the end of the doubly-linked list.

e Deletion — fast (O1) deletion from the hash table, and also O(1) deletion
in the middle of a doubly-linked list (hoorayl).

e Traversal (insertion-ordered) — linear scan of the linked list (easy).

The linked list needs to be doubly-linked because deletion from the middle of a
singly-linked list is problematic. Efficient deletion from the middle of a singly-linked
list needs to go backwards to find the previous node, which doesn’t work with one-
way pointers.

Deletion from the middle of a doubly-linked list is easy by resetting two pointers,
in the node prior to us, and the node afterwards. This is fiddly but has only O(1)
complexity, with just a few pointer operations.

Unlike the array version, there’s no “shuffling” or other hidden costs, so deletion
is also fast, and maintains the order-of-insertion requirement.

The deletion algorithm for doubly-linked lists is fiddly with some edge cases, but
not that difficult. Once the list node to remove is found, we need to update the
pointers in both the previous and the next node on the list.

We also need to handle special cases like when the array is empty, or has only one
element, or when deletion is at the head or tail of the array.

151 Advanced C++ Memory Techniques



References

1. Geeks for Geeks, 27 Dec, 2024, LLRU Cache - Complete
Tutorial, https:/ /www.geeksforgeeks.org/Iru-cache-implementation
2. Shaila Nasrin, Jan 18, 2025, LRU Cache Implementation in
C++, https://medium.com/learn-coding-concepts-with-shaila/Iru-cache-
implementation-in-c-8a52f259206f
3. CPP Scripts, May 2025 (accessed), C++ LRU Cache: Mastering Efficiency
with Ease, https:/ /cppscripts.com/cpp-lru-cache
4. Peter Goldsborough, May 2025 (accessed), Ju-cache: A feature complete L.RU
cache implementation in C++, https://github.com/goldsborough/Iru-cache
5. Tim Day, 2012, LRU cache implementation in
C++, https://timday.bitbucket.io/lru.html

David Spuler 152


https://www.geeksforgeeks.org/lru-cache-implementation/
https://medium.com/learn-coding-concepts-with-shaila/lru-cache-implementation-in-c-8a52f259206f
https://medium.com/learn-coding-concepts-with-shaila/lru-cache-implementation-in-c-8a52f259206f
https://cppscripts.com/cpp-lru-cache
https://github.com/goldsborough/lru-cache
https://timday.bitbucket.io/lru.html

14. Fast Ring Buffers

What is a Ring Buffer?

A ring buffer is an array-like data structure where the data moves around in a “ring”
so that the end wraps around to the beginning. It’s also known as a “circular buffer”
and is often what is meant when people talk about a “fixed-size queue.”

A ring buffer is stored in a single array or vector of contiguous data, but is not
accessed in the same idiom. The data is processed in a FIFO (First-In-First-Out)
idiom, where items are added to the “tail” of the queue, and removed from the
“head” for processing.

Hence, a ring buffer is a good data structure for implementing a fixed-size queue
or dequeue (double-ended queue).

Some of the main design decisions when implementing a ring buffer involve error
handling:

e Overflow — inserting into a full buffer
e Underflow — removing from an empty buffer

Should the ring buffer throw an exception, or just return a Boolean failure status to
the caller?

Simple Ring Buffer
A basic ring buffer data structure has three main elements:

e Array or vector of objects (fixed-size)
e Head index (integer)
e Tail index (integer)

153 Advanced C++ Memory Techniques



Here’s some code using std: :array for a ring buffer:

template<typename T, int sz>
class RingBuffer {
private:
std::array<T, sz> arr; // Fixed-size array
int head;
int tail;
//
bi

New objects are inserted at the tail, and retrieved for processing from the head. In
a typical implementation, the progression goes from left to write, using a “+1” idea
for the next location. Technically, the ring buffer data could be handled in reverse
order, but the forward progression around the ring is simpler and allows marginally
more efficient arithmetic because there are no negatives to handle.

Thus, the basic primitives needed by a ring buffer:

e Insert at the tail
e Remove at the head

Here’s the basic insertion method:

bool push(const T& x) {
int newtail = (tail + 1) % sz;
if (newtail == head) {
// Overflow (full)
return false;
}
tail = newtail;
arr([tail] = x;
return true; // success

>

And here’s the “top” method for an interface that allows “top” to access, and “pop’
to remove:

T top() {
if (is_empty()) {
// Underflow
return T (0);

}

return arr [head];

}
David Spuler 154



The “pop” method actually removes the item from the ring buffer:

void pop() { // Just remove (no return)

if (is_empty()) |
// Throw exception? (optional)
return;

}

else {
head = (head + 1) % sz;

}

And there are also various simple primitives:

e Capacity — the fixed-size of buffer.
e Empty — zero elements
e TFull — fixed-size array is full.

The code is reasonably simple:

int capacity() const { return sz; }
bool is empty() const { return head == tail; }
bool is full() const { return (tail + 1) % sz == head;}

Pros and Cons of Ring Buffers

The main advantage of a ring buffer is that it has contiguous data. This means that
our fixed-size queue should be faster to access than one stored as a linked list
using std: : queue.

The main disadvantage of a ring buffer is that it has a fixed size,
unlike std: : queue, which grows dynamically. This ring buffer size doesn’t
necessatily need to be known at compile-time, but does need to be set when you
initialize the ring buffer. There are also more advanced types of ring buffers which
use multiple arrays, which can be dynamically grown in size.

The other disadvantages are that the ring buffer is very specific to a FIFO access
pattern. It’s not a fast data structure for these operations:

e Searching for a value

e Sorting data

e Inserting at a random location (rather than the tail)

e Deleting from a random location (rather than the head)

155 Advanced C++ Memory Techniques



Insertions and deletions are slow because they require a “shuffle” of all objects.
Note that there’s an interesting wrinkle: we could make insertion and deletions fast
if we don’t mind violating the FIFO ordering and moving objects around
(invalidating any pointers or iterators referencing them).

The idea is that the ring buffer becomes like an unsorted array (with wraparound):

e Fast random insertion — move the current element at the insertion
location to a free location at the end of the ring buffer, then insert.
e Fast random deletion — move the last element to the location we are

deleting from.

It’s not all bad news. The data in a ring buffer is mostly stored contiguously, so
there are some operations that still have good cache locality properties:

e Scanning or visiting all data elements
e Random access of data by integer index

A linear scan of all the elements can be quite fast, provided you don’t mind that it’s
unsorted (or rather, it’s sorted by order-of-insertion). The data elements are always
in one or two contiguous data blocks, which is better than dispersed data structures
like linked lists or binary trees. However, it’s not quite as fast as an array or vector
of objects, which is always one contiguous block.

Accessing one of the objects via an integer ordinal is still quite fast (i.e., 0..n-1).
Mainly, it’s just some integer arithmetic with head and tail to find its array offset in
the ring buffer.

Incremental Count Optimization

Computing the count of how many elements are currently inside the ring buffer is
somewhat tricky: In the above computations, we can compute the “count” of how
many elements are in the buffer using arithmetic on head and tail indices.

int count () const {
return (tail >= head)
? tail - head : sz - (head - tail);

An alternative that can be faster, if the count () method is called often, is to
maintain an incremental count, and store it in the ring buffer.

David Spuler 156



The idea is pretty simple:

e Insertions — count++ (except if full)
e Deletions — count-- (except if empty)
e Count — just return the count variable.

Hence, the computations during insertion and deletion are only a single integer
increment or decrement, and the count () function becomes a simple getter of an
integer data member. In addition, the availability of a “count” variable actually
allows some optimizations to some of the other methods:

e empty () — test count==
e full() — test count==capacity

These are much faster than the earlier versions using head and tail index arithmetic.
Hence, these efficiency gains may override the extra costs from incrementally
computing the count during object insertions and removals.

Avoiding Three Integers

If we use an incremental count optimization for the number of items in the ring
buffer, we end up with three integer values:

e Head
e Tail
e Count

It turns out that we don’t need all three, because they are inter-related numbers. We
can calculate the “tail” variable from the “head” and the “count” value.

tail = (head + count) %sz;

There are actually some other numbers that are also related, which we could also
use. For example, the total number of insertions and deletions of objects is related
to the head and tail values, and the count is simply the difference between them.

Alternative Variable Pairs. It turns out that a ring buffer can be defined by any
two variables from a set of several related calculations. Some of the possible pairs:

e Head and tail
e Head and count
e Tail and count

157 Advanced C++ Memory Techniques



Note that there are two main implementations of the initialization of head and tail
values. These yield implementations that differ by one in all calculations, so you
have to consistently choose between them:

e head = tail = 0
e head = 1,tail =0

The meanings of head and tail differ slightly in these two variants. Hence, the inter-
relationship with the count is also different by one. Care must be taken to avoid
off-by-one errors!

Combining Two Variables. The optimization ideas above reduced our three
variables (head, tail, and count) down to two variables. Any pair of them will do,
since they are inter-related.

But what about reducing it to one variable? Having only one integer variable in our
ring buffer might be desirable because:

e Efficient single arithmetic operations.
e  One integer value as an atomic for lock-free versions.

Can it be done?

The key point to note is that we really do need two distinct values. However, we
can put them together into a single integer with encoding and packing ideas. For
example, we could store the head as 16 bits and the count as 16 bits, and put both
in a 32-bit unsigned integer. Note that this limits the capacity of the ring buffer to
2716 which is 65,536. We could also pack them into a 64-bit unsigned longif
we needed more capacity.

Modulo Arithmetic Optimizations

The % operator for modulo arithmetic (or remainders) is one of the slowest
operations in C++. The typical code we want to optimize in a ring buffer or fixed-
size queue uses this idiom:

head = (head + 1) % N;

Modulo arithmetic is based on division, which is also slow, even on integers. Hence,
our ring buffer can be improved by getting rid of the percent!

David Spuler 158



How? There are several options:

e Bitwise arithmetic

e Type casts

e Ternary operator

e Branchless coding

e Unsigned arithmetic

Bitwise-and trick. Firstly, if we choose the buffer size N, to be a power-of-two,
then we can use bitwise arithmetic. A remainder of a power-of-two is the bitwise-
and of the number one less. These are equivalent:

head = (head + 1) % 16; // Modulo
head (head + 1) & 15; // Bitwise-and

Validating power-of-two. One thing you might want is a safety net to ensure
nobody uses the ring buffer for a size that’s not a power-of-two. We want this:

static_assert(is_power of two(N)); // How?
We can use the Kernighan bit trick:

static assert( (N & (N-1)) == 0); // Kernighan
How does this work?

It’s just magic, and let’s forget about it. No, actually, the Kernighan trick is that
“N& (N-1)” clears the value of the rightmost bit of a number. Hence, if the number
without the rightmost bit equals zero, then there’s only one bit set in the number.
And the set of numbers with only one bit set: powers of two.

Note that lots of parentheses are necessary around the bitwise operator to avoid an
operator precedence glitch. Also note that the Kernigan trick fails with a false
positive if N is zero or negative, so we should add some more safety checks at
compile-time:

static_assert (N > 0);

Type casts. The use of bitwise-and is limited to powers of two, which is annoying,
but there’s an even more specific way to do this for some of them: type casts. If we
can choose the size as 256 (8-bits) or 65,536 (16=Dbits), we can do this:

head = (unsigned char) (head + 1); // 8-bits
head (unsigned short) (head + 1); // 1l6-bits

159 Advanced C++ Memory Techniques



Note that type casts are often effectively free after C++ does its optimization thing,
The register allocation algorithm can just choose to use a value in a different way,
and propagate that forward to other arithmetic. Thus, a type cast operation may
result in zero runtime instructions.

Ternary operator. But why are we using arithmetic in general, when there’s actually
only one case where we want to reset the value. Another way is to use the ternary
operator instead of arithmetic. The calculation becomes:

head = (head + 1 == N) ? 0 : head + 1;
We can also implement this logic in two instructions, which is worth a try:

head++;
if (head == N) head = 0;

Or if you like short-circuiting operators, you can do this:
(++head) == N && (head = 0);

The compiler probably treats that the same, but you never know, and you might
want to check the assembly output (e.g., using “gcc -S7).

Branchless coding tricks. Another trick is to notice that we just want to zero the
value in one specific case. Hence, we can use the branchless coding trick of using
logical operators as O or 1 integers. The goal of branchless coding is to remove all
control flow branches, so that the CPU’s branch prediction logic can run fast. Note
that the ternary operator is actually like an if statement, and it has two branches.
The branchless version with only fixed arithmetic is:

head = (head + 1) * (head + 1 != N); // Branchless

The way this works is to multiply the value by 0 or 1, depending on the logical test.
Again, we can also try this as two statements:

head++;
head *= (head != N); // Branchless

Note that I doubt the branchless versions are very efficient, because they’ve added
a multiplication operation. The ternary operator version is likely better, and isn’t
that bad despite its branches, if you look at the assembly. Most compilers will
convert it to a single CMOV (conditional move) CPU instruction, which makes it
effectively branchless, too.

David Spuler 160



Unsigned arithmetic. One final trick is to note that we have modulo arithmetic
for free in the CPU: unsigned integer arithmetic. Overflow of unsigned integers is
not an exception in C++ and when you think about it, implements the exact
semantics of modulo arithmetic. Hence, here’s the idea:

unsigned char head;
head++;

It works! And there’s not a single percent operator anywhere! All this time and we
had cheap modulo arithmetic hiding in plain sight.

We really need to time this, because it isn’t 100% guaranteed to be faster. A lot of
the uses of head will involve converting it from unsigned char to an integer
offset, such as for array indexing in the vector of objects that makes up the ring
buffer. A variation of this idea would be to store the head and tail as integers or
unsigned integers, so that they can be used as the fastest type of normal integer, but
still use unsigned arithmetic overflow tricks for modulo arithmetic. This is the idea
for an N=2506 size ring buffer:

int head;

((unsigned char*) &¢head) ++;

This relies on the platform being “little endian” with the lowest-order byte stored
on the left, which is true in most modern CPUs (but not if you’re sending integers
over the network in “network byte order”). And, yes, you got me, I really should
use reinterpret cast here rather than the old C-style type cast.

Obviously, these tricks of using head and tail as unsigned integers only work for
a limited set of sizes:

e N=256—unsigned char (8-bits)
e N=05,536 — unsigned short (16-bits)
e N=4.7 billion — unsigned int (32-bits)

We can even do decrement and negative calculations this way, since underflow is
also not an exception, whereas the $ operator and negatives don’t talk to each other
at parties.

161 Advanced C++ Memory Techniques



Move Semantics

If our ring buffer contains complex objects, there are many more considerations
for making it efficient. One of the biggest inefficiencies in a ring buffer class is
inserting and deleting any non-trivial objects. If we do it wrong, we’re calling copy
assignment operators and copy constructors to make new objects in the array, and
running the destructor when we release an object.

Move semantics to the rescuel

The first point to note is that it doesn’t matter for simple data types in our ring
buffer. Any scalar values like integers or floating-point numbers don’t have any
copy constructors or destructors to worry about. In fact, this is also true of simple
structures and classes, so long as they are “plain-old data” or POD data types.

But anything more complicated than this will have costly calls to copy constructors
and copy assignment operators. To optimize this, we need to talk about:

e Move constructor and move assighment operator
e R-value references

e Copy elision

e Return Value Optimization (RVO)

In practice, the problems arise in both our “push” and “top” versions. The “pop”
routine causes a COpy assignment operator invocation:

bool push(const T& x) {
//
arr[tail] = x; // Copy assignment
return true; // success

And the “top” member has the problem of returning an object type, which will use
a copy constructor call at the return statement.

T top() {
//

return arrlhead]; // Copy constructor

David Spuler 162



The automatic compiler optimization of “copy elision” might help improve the
performance of the “top” method. Returning an object is exactly the situation it’s
meant for. However, we can use move semantics explicitly to ensure it’s improved:

bool pop top move (T& outobj) {
if (is_empty()) { return false; }
ct_incremental--;
int oldhead = head;
head = (head + 1) % sz;
outob] = std::move (arr[oldhead]); // Move assnt
return true; // success

Note that std: :move () is a compile-time type-cast here, without any runtime
cost. And it’s required to convert to an R-value reference, as otherwise the
assignment statement would still call a copy assignment operator.

Constructor Problems

One of the performance problems with our ring buffer implementation is
that std: :array calls the constructor for every object whenever a new ring
buffer object is defined or created. This occurs with this use of std::array for our
ring buffer:

std::array<T, sz> arr; // Fixed-size array
How to avoid these constructor calls? After all, our ring buffer is supposedly empty

with zero objects initially. Some of the solutions that don’t work and will still call
constructors:

e Raw arrays
e DPointer to std::array

Using a raw array like this will still call all the constructors when our ring buffer is
created:

T arr([sz];

Similarly, we could use an allocated copy of std: :array, since it’s really an object
not an array. It works like this:

std::array<typename T,sz> * arrptr;

arrptr = new std::array<T,sz>; // in constructor

163  Advanced C++ Memory Techniques



This allocates our big array in the constructor rather than as a non-allocated data
member. This adds an extra inefficiency from the extra allocated block, and doesn’t
work anyway. The new operator will still run all the individual object constructors.

What about using std: : vector instead?

Standard Vector Problems

Using std: :vector can be better than std: :array, because it delays both its
memory allocation and its construction of objects,

std::vector arr<T>;
Unfortunately, I’'m not a big fan of this approach, because it has other difficulties:

e Extra memory allocation call (inefficient).
e Bounds checking failures in debug libraries.

The first point is that resize () has the same problem with too many constructor
calls. Doing this in the constructor will still call all the constructors:

arr.resize(sz); // Constructors!

So, maybe we can call the reserve () function instead of resize (). That won’t
call constructors:

std::vector arr<T>;
//

arr.reserve (sz); // No constructors!
This has hopefully allocated the memory for all the objects, without running their
constructors. But this can run into various problems when we try to use the vector
elements. The problem is on this type of statement in our push method:

arr[tail] = x;

And the same problem still occurs with our code that gets items out of the ring
buffer. Note that the issue is not move semantics, because this has the same issue:

outobj = std::move (arr[oldhead]); // Move assignment

David Spuler 164



The issue is bounds checking on the [] operator for std: : vector. In theory, the
reserve() function has allocated valid memory for enough objects. However,
the size () function is still zero, so the runtime bounds checking will trigger on
any debug run of the code.

Yes, maybe some platforms this will work, with no bounds checking. But you can
run into portability problems. For example, it makes the code fail with spurious
runtime errors on any type of “hardened” standard C++ library.

Explicit Destructor Calls

Another problem with our ring buffer implementation when instantiated with class
types is destructor calls. Instead of too many constructor calls, we have too few
destructor calls. The problems include:

e Destructor calls missed after move assignments (e.g., popping).
e Destructor calls on destroying the whole ring buffer.

One solution: don’t bother. If the object that’s used in a ring buffer doesn’t have
important destructor actions after a move (and it shouldn’t), or if destroying the
whole ring buffer is in the shutdown sequence of the application, then you can
maybe just forget about this problem.

Another solution is to explicitly call the destructor ourselves. You can call the
destructor of a class like any other member function using the ~T () syntax.

For example, in the pop function, we can do:
arrl[head] .~T(); // Explicit destructor

Basic types don’t need destructor calls, so we ideally want to distinguish trivial types
from fancy class objects. We can also use type traits to do this, which are
wonderfully efficient compile-time operators that work during instantiation of the
template.

Here’s how it works:

if (!std::is trivially destructible<T>::value) {

arr[head] .~T(); // Explicit destructor
}

165 Advanced C++ Memory Techniques



The alternative is to note that trivial types have no-op destructors, and the compiler
would remove them anyway. Hence, the above type trait test may be unnecessary,
but it’s a fast compile-time test anyway, so either way is fine.

Note that we are assuming here that the class being used has a destructor that works
propetly after an object has been moved away. In other words, it doesn’t do
something silly like assuming a pointer in the object is non-null.

The move assignment operator also needs to properly clear all the non-trivial data
members, such as pointers, to zero or null values, so that the destructor doesn’t
access bad memory after a move.

Class Interface Bypass

There are a couple ways to bypass the class interfaces, and thereby avoid the
inefficiencies of construction and destruction. This makes the caller of our ring
buffer manage when the objects are created and destroyed. The main ways are:

e Blocking non-trivial types
e  Raw character buffer arrays
e DPointers to objects

Trivial types only. We can make our ring buffer, or other home-grown containers,
faster simply by disallowing their use with complex objects. We can efficiently
trigger compiler warnings with the type trails, so that users of the template know to
only use scalars or other POD types.

Here’s some examples using the various different settings:

static_assert (std::is pod<T>::value); // Plain-01d Data
static_assert(std::is_trivial<T>::value); // Trivial type

Raw character-array memory buffers. The idea is to use a character array as a
raw buffer, rather than std::array or std: :vector, for our container class
(e.g., our ring buffer).

To bypass class constructions by using raw memory buffers, we have choices like:

char arr[sizeof(T) * sz]; // Static data member
char *arr = new char[sizeof(T)*sz]; // Dynamic allocation

David Spuler 166



This raw byte idea is workable, but every use of the array has to involve index
calculations and type casts to object-type pointers. It’s fiddly and annoying, but it’s
faster, because it avoids constructor calls, and doesn’t need all the extra messing
around to avoid std: : vector bounds checking.

There are also concerns with:

e Uninitialized bytes in the buffer
e Alignment of addresses

We really should also initialize the bytes in our array buffer to all nulls in the
constructor using memset on the whole array. To do this, we also need to make
sure that all the classes using the ring buffer have properties like:

e All-bytes-null is a stable but invalid initial status of the object.
e Destructor doesn’t fail on an all-bytes-null object.

We also need to manually take care of alignment of the addresses, since the compiler
thinks we only have characters, which don’t have alignment issues. There’s
the alignas standard specifier and various non-standard implementations for
older language versions.

If we’re really careful, maybe the initialization is not needed and we can leave out
the memset call in the constructor. There’s some new “uninitialized memory”
primitives coming in C++26 that may also help to do so. You can maybe avoid
needing the null byte initialization, but I'm betting against you when I
run valgrind on your code.

Pointers. As much as I admire the design of move semantics, there is a simpler
way to avoid the overhead of objects moving in and out of our ring buffer. Old-
school coding still works: store pointers to the objects as data in the ring buffer
instead of full objects.

The upside is avoidance of object copying and moving overhead.

The downside of pointers is the extra level of indirection, and double hit to memory
with poor cache locality because of that. And pointers have a few pitfalls with a bad
reputation as being unsafe, but I’'m sure you’ve heard that before.

167 Advanced C++ Memory Techniques



Extensions

1. Implement a reverse ring buffer that uses decremented indices for head
and tail, rather than addition, so that it grows from right-to-left instead of
left-to-write.

2. Implement a dequeue in a ring buffer by adding “insert-at-head” and
“remove-from-tail” operations for the ring buffer (rather than the normal
insert-at-tail and remove-from-head idiom). The trick is we’ll need to
subtract one from indices and go in reverse.

3. Implement a ring buffer with initialization of “head=1" and “tail=0"
(rather than “head=tail=07). All calculations will differ by one, such as the
“empty” calculations is not “head==tail” anymore.

4. Implement a ring buffer using two full-size integers that count the number
of insertions and deletions. Note: the relationship between head and tail
versus insertions and deletions is not that difficult!

David Spuler 168



15. Loop Optimizations

Sequential vs Parallel Loop Optimizations

Loop optimizations are the basic of many speedups to the processing of contiguous
array data. Loops are often sources of inefficiency and can be optimized in
numerous ways, such as:

e  Cache locality — process data in fast order for CPU caches (sequential).
e Parallelization — allow vectorization via CPU SIMD instructions or GPU.

Not all loop transformations are created equal. Some of them are best for sequential
code optimizations, whereas other loop transformations are used to parallelize
loops for vectorization.

Loop transformations that are good for both sequential and parallel loop
optimization include:

e Loop unrolling — repeat the loop body to reduce loop test overhead and
parallelize the loop body.

e Loop peeling — unroll the first few iterations.

e Loop coalescing — flatten nested loops.

e Loop splitting — split out subportions of the iteration range.

e Loop collapsing — another way to flatten nested loops.

e Loop interchange — switch the inner/outer loop iterators of nested loops.

e Loop reordering — change the ranges and arrangements of inner/outer
nested loops.

Some loop transformations are mainly for sequential improvements, and are not
parallelization in themselves. However, these techniques can sometimes help with
parallelization if they enable another followup loop parallelization optimization.

169 Advanced C++ Memory Techniques



Loop transformation optimizations which tend to be good for sequential code
optimizations but not parallelization include:

e Loop fusion — combine or “fuse” the bodies of two loops.

e Duff’s device — amusing but impractical coding trick for loop unrolling.

¢ Loop code motion — move or “hoist” loop-invariant calculations from
the loop body to pre-loop initialization.

e Loop perforation — randomly skip a subset of loop iterations; it’s really a
thing.

e Loop sentinel — fake it till you make it.

e Loop iterator strength reduction — change “*” to “+” if you can.

e Loop reversal — going backwards, and yet, still making progress!

Parallelizing loop optimizations with a main goal of vectorization of the loop body
include:

e Loop fission — opposite of loop fusion; split a loop body into two loops.

e Loop tiling — process sub-parts of contiguous data in separate loops.

e Loop distribution — split two sub-parts of a loop body into two simpler
separate loops.

Loop Fusion

Loop fusion is a well-known code optimization where two separate loops are
merged into a single loop. This does not change the amount of in-loop computation
in either loop body, but reduces the loop overhead of the exit test by half. There is
also often a benefit from data locality that reduces data movement and temporary
data storage, which can also improve overall speed.

Note that loop fusion is not great at vectorization, because complicated loop bodies
are actually harder to parallelize. Most of the benefits arise in traditional sequential
code execution, which is why its theory dates back many decades. For modern
parallel execution on GPUs, loop fusion is often a poor choice, and more benefits
may arise from loop fission (the opposite of fusion) and loop vectorization.

Example: Loop Fusion: The general idea is to combine the body of two loops
into a single loop. Here is a simplistic example with the (non-fused) loops for
initializing two vectors using two sequential loops:

for (1 = 0; i < n; i++) v1[i] = 0;
for (1 = 0; i < n; i++) v2[i] = 0;

David Spuler 170



And here is the version with loop fusion:

< n; 1i++) {

for (i = 0; 1
0; v2[i] = 0;

v1[i]

| ~e

Note that the loop fusion version incurs the same number of assignments for
initialization, but only half of the loop overhead cost (i.e., half of the “1 < n” and
“i++” operators have been optimized away). And for the sake of argument, let’s
pretend we don’t know a better way to initialize a vector in CH++
like memset or calloc or load-time static variable initialization.

Loop Perforation

The intentional introduction of randomness to code is known as a “stochastic”
algorithm. Personally, I’'m more familiar with the idea of unintentional introduction
of randomness, otherwise known as a “bug,” but now when it happens you can tell
your boss that you were adding “stochastic functionality.”

Code perforation is an optimization technique that trades accuracy for speed, by
randomly (ahem, I mean, stochastically) skipping some computations. Essentially,
using loop perforation is similar to an approximation with a random element, but
in a generalized way for any iterative code. It’s kind of like how teenage children
randomly skip their homework.

Loop perforation skips iterations of a loop in a probabilistic manner. Randomly
skipping some percentage of the loop bodies doesn’t sound like a good plan, but it
has its merits. In some types of applications, such as an Al inference computation,
there’s so much going on that no-one’s going to notice a few missed beats.
Apparently it can even be useful. Well, at least it’s faster to do nothing,.

Example: Loop Perforation: Here is an example of adding loop perforation to a
vector dot product computation. This is an incredibly slow version, and is not
recommended, but is just to give the idea of skipping a percentage of the iterations:

float aussie vecdot perf (float v1[], float v2[],int n, int pc)
{ // Loop perforation -- vector dot product
float sum = 0.0;
for (int i = 0; i < n; i++) {
if ( ( rand() % 100 ) + 1 <= pc) {
continue; // Skip it... perforated
}
sum += v1[i] * v2[i];
}

return sum; }

171 Advanced C++ Memory Techniques



Loop Unrolling

Loop unrolling is a code optimization where the body of a loop is repeated in
sequential code. This speeds up the algorithm because the overhead of both the
incrementer and the loop iteration test is avoided.

In some cases, the entire loop can be unrolled, usually when the loop iterations are
finite and known at compile-time. In other cases of partially unrolling, the loop
body can be repeated multiple times, and thereby the loop test only occurs every
few iterations.

Example: C++ Loop Unrolling of Vector Dot Product. Here is the basic C++
non-unrolled vector dot product code:

float aussie vecdot basic(float v1[], float v2[], int n)
{
// Basic vector dot product
float sum = 0.0;
for (int i = 0; 1 < n; 1i++) {
sum += v1[1i] * v2[1i];
}

return sum;

If we know the value of 7, e.g., that »=3, then we can completely unroll it:

return v1[0] * v2[0]
+ v1[1] * v2[1]
+ v1[2] * v2[2]
+ v1[3] * v2[3]
+ v1[4] * v2[4]

’

If we don’t know the value of #, we can still unroll multiple iterations.

David Spuler 172



Here’s an example of 4-level loop unrolling of vector dot product in C++ by
assuming that # is a multiple of 4:

float aussie vecdot unroll4 (float v1[],float v2[],int n)
{
// Loop-unrolled Vector dot product
if (n % 4 !'= 0) {
aussie assert(n % 4 == 0);
return 0.0; // fail
}
float sum = 0.0;

for (int i = 0; 1 < n; ) {
sum += v1[1i] * v2[1]; 1i++;
sum += v1[i] * v2[i]; 1i++;
sum += v1[i] * v2[i]; 1i++;
sum += v1[i] * v2[i]; 1i++;

}

return sum;

And here’s a generalization of that 4-level unrolling with extra code to handle the
leftover cases if # is not a multiple of 4. Although the extra cases look messy, they
are not actually the main performance bottleneck.

float aussie vecdot unrollé4b(float v1[],float v2[],int n)
{
// Better loop-unrolled Vector dot product
int i = 0;
float sum = 0.0;
if (n % 4 !'= 0) {
// Handle the extra cases...
switch (n % 4) {
case 1:
sum += v1[1i] * v2[1i]; 1i++;
break;
case 2:
sum += v1[1i] * v2[i]; i++;
sum += v1[1i] * v2[1i]; 1i++;
break;
case 3:
sum += v1[1i] * v2[i]; 1i++;
sum += v1[1i] * v2[i]; 1i++;
sum += v1[1i] * v2[1i]; 1i++;
break;
default: aussie assert not reached(); break;
} // end switch
// Keep going with rest of the vector

173  Advanced C++ Memory Techniques



for (; 1 <n; ) { // Unrolled 4 times...
sum += v1[1] * v2[1]; 1++;
sum += v1[1i] * v2[1i]; 1++;
sum += v1[i] * v2[i]; 1i++;
sum += v1[i] * v2[i]; 1i++;

}

return sum;

This code is just an example for explanation. There are various further code
optimizations that can be done for production-level efficiency. For parallelization,
the loop body should call an intrinsic function to vectotize the method. For many
applications, we could choose our data structure sizes as multiples of the loop
unrolling factor, and thereby avoid ever having any of the “leftover” cases.

For sequential code, we could change it to use pointer arithmetic rather than array
indices, we might try replacing the four i++ operators with i+=4, change the
integer modulo operator (%) to a bitwise-and operator test (i.e., use “n&3” not
“n%4”, which works since 4 is a power-of-two), and it also might be better to use
“+” rather than the “+="" operator. Finally, if we carefully code the leftover cases,
the main loop could be unrolled to many more levels than just four.

Duff’s Device for Loop Unrolling

There’s a neat coding trick called “Duff’s Device” for loop unrolling, which uses
a switch with case fallthrough to mimic assembler coding. But it’s not great for
vectorization as it’s likely to confuse the compiler, so mostly of theoretical interest.

float aussie unrolld4 duff (float v1[],float v2[],int n)
{
// Unrolled dot product with Duff’s Device
int i = 0;
float sum =
switch (n %
for (; 1 n; ) {

0.0;
4)
<
case 0: sum += vl
3
2

{

[1] * v2[1i]; i++;
case sum += v1[1i] * v2[1]; 1++;
case sum += v1[1i] * v2[1i]; 1i++;
case 1l: sum += v1[i] * v2[i]; i++;

default:;
} // end for
} // end switch
return sum;

David Spuler 174



What’s happening here? My brain hurts looking at this code! The trick is that the
outside switch branches into a case that is inside the body of a for loop. This
is not normal everyday coding, because there’s a loop inside a switch, and the
loop body crosses over several case statements. Also note that there are
no case statements with a “break” statement and they instead rely on fallthrough
semantics. Similarly, the “default” clause is mainly just to avoid getting a spurious
compilation warning (i.e., “missing default”), and also has no “break” with only
a lonely semicolon. Note also that the case labels are written in reverse order from
top to bottom (3..2..1), except for 0 at the top.

How does this even work? The first point is that it does. This code performs the
exactly correct number of iterations for any value of n (except n==0), and similar
versions with an unrolling factor of more than 4 will also work (i.e., if you change
“n%4” and add more case constants). The code looks like a hack, but actually uses
standardized C++ semantics of case fallthrough and switch multi-way control
flow and should work on all platforms. Branching into the middle of a loop with a
switch is valid in C++ provided it doesn’t bypass any local variable initialization
(hence, don’t put “sum” into the switch). Also, the case fallthrough semantics
(i.e., without a “break” ending each “case”) are standard for C and C++ since
inception. Finally, note that this code is buggy for n==0, because it incorrectly does
4 iterations, so it ideally needs a parameter validation assertion at the start.

Bug alert! Note that you cannot tweak the “i++” instruction using the standard
idiom:
sum += v1[i] * v2[i++]; // Bug!

The obscure problem is that the “*” operator doesn’t guarantee left-to-right
evaluation of its operands. The code assumes evaluation order
of: v1[i], v2[i], *, i++, starting from the left. However, the C++ optimizer can
legally do this order of operations: v2 [1i], i++, v1[i], *, which is not what you
intended and gets the wrong array element for v1[i]. This code might be
unreliable across platforms, or it might work in the debugger mode, but fall over
once you turn on high levels of optimization. So, there is an “order of evaluation”
pitfall if you put “++” in an operand of the “*” operator or many other binary
arithmetic operators.

Is Duff’s Device any faster? The short answer is “not really,” although it looks
very appealing (or appalling). Firstly, note that this trick is not actually very useful
for vectorization, because a switch cannot branch into the middle of a vectorized
intrinsic (i.e., if you replace the loop body with a SIMD instruction). Furthermore,
although I haven’t tested it, I doubt many optimizers will be able to auto-optimize
that complex control flow with SIMD instructions.

175 Advanced C++ Memory Techniques



In sequential code, this method also isn’t much faster, as it doesn’t really have any
fewer operations than a basic unrolled loop (i.e., with extra cases handled separately
before or after the main loop). The above example of Duff’s Device can be further
sped up using pointer arithmetic and “looping down to zero” optimizations, but so
can the other unrolled versions. However, there is a minor speed advantage in terms
of “instruction locality” because the above code is very concise.

The main advantage of Duff’s Device is to bamboozle your colleagues. You can
use Duff’s Device with any unrolling factor, not just 4 as in the example shown
above (e.g., change to 8 by using “n%8” and adding cases for 4, 5, 6, and 7, ordered
from 7 down to 1, leaving 0 on top). Actually, the unrolling factor needn’t be a
power-of-two. Make it a prime number for extra bonus points. If you want more
of this kind of coding trickery, also search up Jensen’s device and Pigeon’s device.

Loop Tiling or Blocking

When you hear about a “tiled MatMul” or a “blocked GEMM,” this is the “tiling”
or “blocking” optimization method it refers to. MatMul is matrix multiplication and
GEMM is General Matrix Multiplication (i.e., the same thing). Tiling is the
optimization that most applies to speeding up matrix or tensor multiplications.

This optimization is for two-dimensional data (e.g., matrices). When you hear
“tiles” or “blocks,” think squares or rectangles of data. For example, if you have a
512x512 matrix, then a tiled algorithm might act on 16x16 sized chunks, one at a
time. Loop tiling is an optimization of two-dimensional or three-dimensional data
such as matrices or tensors. The one-dimensional equivalent of processing sub-
parts of a one-dimensional array is called “strip mining”, “loop sectioning” or often
simply “vectorization.”

In other words, tiling means operating on small subsections of a matrix. If you hear
“tiled tensor” that could mean two-dimensional data (i.e., just a fancy name for a
matrix), or alternatively it might refer to three-dimensional data, in which case, don’t
think anything or else your head will hurt.

Loop tiling is a method of executing sub-parts of nested loops in a way that
maximizes data locality, increases cache utilization, and improves parallel execution.
This is also called “loop blocking” because it processes the data a “block” at a time,
although the term “tiling” is more widely used in research. The two-dimensional

sub-partitions of the data that are square or rectangular are called “tiles” or
“blocks”.

David Spuler 176



The same number of arithmetic operations are performed in a tiled versus non-tiled
algorithm. However, there should be fewer loads of the data into memory with
tiling. The downside is that tiling introduces additional loop overhead. In fact,
rather than flattening nested loops over a 2-D array (e.g., 512x512), tiling often
introduces additional levels of nesting! The two small loops that spin through the
16x16 square shape of a single “tile” or “block” are often newly added inner loops.
So, loop tiling often adds two new layers of nested loops inside your already-nested
loops. It makes you wonder how it can even be faster!

Example: Tiled Matrix Clear: For these examples, there is a type “ymatrix”
type declared: typedef float ymatrix[ROWS] [COLUMNS];

If we forget about memset, here is the simple code to clear a matrix one element
at a time in a brute-force nested loop (non-tiled):

void aussie clear matrix(ymatrix m)
{
for (int i = 0; 1 < ROWS; 1i++) {
for (int j = 0; j < COLUMNS; j++) {
m[i][j] = 0.0;

Now we decide to add a 4x4 square tile optimization to this code. The result is an
extra two levels of nested loops. Here is the basic code which assumes that the row
and column dimensions are exact multiples of the tile size, so there’s no extra
leftover cases to handle:

void aussie clear matrix tiled(ymatrix m)

{

const int TILEX = 4; // 4x4 tile size

const int TILEY = 4;

static_assert (ROWS % TILEX == 0, "Exact X");
static_assert (COLUMNS % TILEY == 0, "Exact Y");

for (int i = 0; 1 < ROWS; 1 += TILEX) {
for (int j = 0; j < COLUMNS; j += TILEY) {
// Do the 4x4 tile...
for (int tx=i; tx < 1+TILEX; tx++) {
for (int ty=j; ty < J+TILEY; ty++) {
m[tx] [tiley] = 0.0f;

177 Advanced C++ Memory Techniques



Unrolled Tiles. One followup optimization trick with a tiled loop algorithm is to
apply loop unrolling to the two inner loops. This avoids the extra overhead of the
two extra inner loops, but retains the data locality benefits of tiling. This
optimization results in a fully “unrolled tile” computation without any extra inner
loops. In the above example, the two inner loops of a 4x4 tile would be replaced
with 16 unrolled computations in sequence. Or for a vectorized version, a fully
unrolled tile would be 4 sequential calls to vectorized intrinsics that each do 4
operations in parallel (e.g., AVX intrinsics each do 4 £1oat operations in parallel).

Example: Tiled Matrix Multiplication: Tiling techniques are widely used to
improve the efficiency of MatMul’s and thereby get better throughput of tensor
calculations from a GPU. Matrix multiplication is a good candidate for this
optimization because it has complexity of O(»"3) arithmetic calculations, but uses
only O(#"2) data. Hence, a naive matrix multiplication algorithm that doesn’t
address cache locality will re-load the same data into memory many times, whereas
a tiled algorithm can reuse the same data more efficiently.

A tiled version of MatMul processes “tiles” or “blocks” of each matrix one at a time
(i.e., small square or rectangular sections), with the aim of keeping small parts of
the matrix in the memory cache while they are processed. The algorithm progresses
across the matrix a tile/block at a time, rather than scanning all the way down one
dimension (row or column). The same number of multiplication operations are
performed as a non-tiled MatMul, but data locality and cache freshness should
improve the overall speed.

Loop Fission

Loop fission is an optimization that is the opposite of loop fusion. Instead of fusing
two loops into one, we take one loop and split parts of it into two loops. Loop
fission also been called other names such as “loop splitting” or “loop distribution.”

Loop fission can be more efficient for parallel execution (e.g., vectorization for
GPUs), but is often slower for sequential execution. Whereas loop fusion aims to
remove the overhead of one of the loops, loop fission tolerates an increased loop
overhead in return for simpler loop bodies that can be parallelized. The kernel
optimization of “kernel fission” is based on loop fission, and loop fission is one
technique used to achieve vectorization for GPUs.

The main reason to use loop fission is hardware acceleration via loop parallelization.
A complicated single loop can often run faster if split into two simpler loops, if
hardware acceleration can be accessed.

David Spuler 178



This is true even if the two resulting loops must run sequentially, because the
iterations of each loop are parallelized, but there’s a double benefit if the two whole
loops can also run in parallel.

Example: Loop Fission in BatchNorm: A good example arises in patt of the
code for batch normalization. Each element of the vector needs to have two
operations performed on it: subtract the mean (re-centering) and multiply by a
variance factor (re-scaling). The naive implementation of the second half in the loop
of BatchNorm looks like this:

float denom = sqrtf (varc + eps); // Scale factor

for (int i = 0; 1 < n; 1i++) {
// Normalize: re-center and scale
v[i] = (v[i] - fmean) / denom;

This is difficult to hardware accelerate because it’s unlikely that there’s a combined
“subtract-and-then-divide” operation to apply to all elements of a vector in parallel.
The first point is that maybe there’s an “add-and-then-multiply,” in which case we
can use the negative of the additive factor and the reciprocal of the scaling factor.
However, assuming there’s not, loop fission can be used to split the single
complicated loop into two sequential loops.

float negmean = -fmean; // Use negative for addition
float denom = sqgrtf(varc + eps); // std. deviation
float recip = 1.0f / denom; // reciprocal multiply
// Loop 1l: Re-center using mean

aussie vector add scalar(v, n, negmean);

// Loop 2: Re-scale by factor

aussie vector multiply scalar(v, n, recip);

Each of the two loops is now easy to hardware accelerate, because they are both
very simple vector operations: “multiply-by-scalar” and “add-scalar.” Every
platform is likely to have hardware acceleration APIs for those simpler operations.
So, to summarize, we got an explosive boost to hypersonic rocket speed using
atomic operations with loop fission.

Isn’t that just the bomb?

179 Advanced C++ Memory Techniques



Loop Reversal

Loop reversal is the optimization of making the loops go backwards. It does the
same number of arithmetic operations, but in reverse order, so there is no change
in the total arithmetic operations.

This goal is a speedup by “looping down to zero” with a faster loop test, but it is
often a de-optimization even for sequential execution. Typical CPU processors rely
on ascending order of memory accesses for predictive cache pipelining, and reverse
array access is a worst case for that.

Loop reversal is also not a useful parallelization method in itself. Vectorization for
GPU computation doesn’t really work in reverse. However, reversing a loop can
sometimes be useful as an initial transformation on nested loops if reversing the
inner loop’s direction allows another followup loop vectorization technique.

Example: Reversed Vector Dot Product: Loop reversal can be used on vector
dot product, as below, but it probably shouldn’t be. Here’s the basic idea:

float aussie vecdot rev(float v1[], float v2[], int n)
{
float sum = 0.0;
for (int 1 = n - 1; 1 >= 0; i--) {
sum += v1[i] * v2[i];
}

return sum;

[T

Note that there are several coding pitfalls to avoid. The loop variable “i” cannot
be “unsigned” or “size t” type, because the test “i>=0" would never fail,
creating an infinite loop. Also, the reversed loop needs to start at “n-1"" and must
use “1>=0" (not “1>0") to avoid an off-by-one etror. The above code also craters
for “n<=0” and needs a safety test.

Loop Code Motion

Loop code motion is moving loop-invariant code from inside the loop body to the
pre-initialization code for the loop. Any code that has the same value should not be
performed inside the loop body. Instead, it should be pre-calculated before the
loop, and stored in a temporary variable. This is sometimes called “hoisting” the
code out of the loop.

David Spuler 180



Example: Loop Code Motion: One common example of unnecessaty
recalculation of loop-invariant values is in the loop test. The code in the Boolean
test for the loop is actually part of the loop body.

An example of code that re-calculates the loop limit:

for (1 = 0; 1 < vec.num _elements(); i++) {

//

The “num_elements” call is probably loop-invariant, assuming the vector doesn’t
change size during processing. Maybe the “num elements” function is declared
“inline” and the C++ compiler will fix it anyway. Nevertheless, this is a candidate
for loop code motion, using a temporary variable instead:

int n = vec.num _elements(); // Loop-invariant value
for (i = 0; i < n; 1i++) {
//

Loop Distribution

Loop distribution is type of loop code motion that creates two loops from a single
loop that contain an “if£” statement. The hoisted code is a conditional test. Some
eatly papers in the 1990s called it “loop unswitching.” Some papers use the term
“loop distribution” with the different meaning of splitting a loop into two loops,
which we call “loop fission.”

The goal of loop distribution is to move an “if” test out of the loop body, by
creating two loops, and ends up creating two separate loops on two pathways. This
sounds similar to loop fission, but loop distribution is a more general optimization
that doesn’t require parallelization to get a speed improvement (whereas loop
fission does).

Instead, loop distribution gets a benefit in ordinary sequential execution because it
moves the if-test computation out of the loop body to a once-only pre-
initialization test (i.e., “hoisted”).

Note that only one of the two loops is executed each time, and these two loops are
never executed in parallel, so this technique is not really a type of loop fission.

181 Advanced C++ Memory Techniques



Example: Loop Distribution: Here’s a dummy example of implementing an
“add-or-subtract” function using a passed-in Boolean flag.

void aussie vector addition slow(

float v[], int n,
bool do add, float scalar)

for (int i = 0; 1 < n; i++) {
if (do add)
v[i] += scalar; // Add
else
v[i] -= scalar; // Subtract

The problem is that the test “if (do_add)” is computed for every loop iteration,
and yet “do_add” is a loop-invariant flag variable. The faster version is to use loop
distribution to move the 1 f-test into the loop initialization, and then split the two

pathways inside the loop to instead have two separate loops. Here’s the faster
version:

void aussie vector addition loop distribution(
float v[], int n,

bool do_add, float scalar)

if (do_add) { // Add scalar
for (int i = 0; 1 < n; i++) {
v([i] += scalar; // Add
}
}
else { // Subtract scalar
for (int 1 = 0; 1 < n; 1i++) {
v[i] -= scalar; // Subtract

This example is still far from optimal. For starters, it should be using pointer
arithmetic rather than array indices.

David Spuler 182



Loop Reordering

Loop reordering is the general class of optimizations that involves reordering loops
or their iterations. In complex algorithms, there are many loops, and many ways for
nesting them, or running them in sequence. Such optimizations can involve
changing the ordering of two sequential loops or two nested loops.

The reordering optimization to reverse the inner and outer nested loops is more
often called “loop interchange.” One loop can be reordered with “loop reversal.”

Loop reordering is an optimization that doesn’t reduce the total number for
computations, because it always executes the same number of iterations as the
original version. However, loop reordering may have several benefits:

e Vectorization. Putting the loop in a different order may make it more
vectorizable, or may allow other loop transformations to be applied before
vectorization.

e Data locality. Reordering the loops may improve data locality and cache
access speed by doing the operations in a different order. This reduces the
cost of accessing the data into memory (or low-level caches), rather than
the cost of the arithmetic. It is therefore related to memory/dataflow
optimizations and pipelining optimizations.

e Reduced loop overhead. Both loop interchange and loop reversal can
reduce the general overhead of loop testing. Loop interchange allows the
shorter loop to be on the outside. Loop reversal allows “looping down to
zero” which reduces overhead.

Loop Iterator Strength Reduction

Loop strength reduction is the arithmetic optimization of “strength reduction”
applied to loop iteration variables. For example, strength reduction aims to replace
multiplication with addition. Consider this loop:

for

This can be optimized to change the multiplication into an incremental addition:

for (int i = 0, x = 0; 1 < n; i++) {

183 Advanced C++ Memory Techniques



Note that the loop strength reduction optimization isn’t a good choice for loop
parallelization. Although it would be desirable to change a vectorized multiplication
to addition, this optimization has changed to an incremental algorithm. This makes
each loop iteration dependent on the prior one, with the results dependent on the
previous computation, so they cannot be done in parallel.

Loop Coalescing

Loop coalescing is a loop optimization that involves flattening two nested loops
into one non-nested loop. Typically, loop coalescing will still operate on a 2-
dimensional array, whereas flattening both the nested loops and the array is called
“loop collapsing.”

As a dummy example, consider a matrix initialization via nested loops:

for (int 1 = 0; 1 < n; 1++) {
for (int j = 0; j < m; J++) |
arr[i][j] = 0.0f;

Loop coalescing involves changing to a single loop, but still using two indices i and
j, which are calculated from the main linear index.

int maxx = n * m;

for (int x = 0; 1 < maxx; x++) {
int 1 = x / n;
int 3 = x % m;
arr[i][j] = 0.0f;

The benefit in speed from loop coalescing can arise by simplifying the loop, which
makes it easier to parallelize via hardware acceleration, and also maybe a different
data access pattern which might improve data locality and cache freshness.

This optimization is not always possible, as nested loop logic is often quite
complicated, and flattening a nested loop may actually worsen data locality in many
instances. However, the linear nature of a simple loop can make the code to send
off chunks to a GPU much easier.

David Spuler 184



Loop Collapsing

Loop collapsing is closely related to loop coalescing, since both aim to flatten nested
loops, but loop collapsing is a special situation where the array is also flattened to
one dimension.

Consider a matrix initialization via nested loops over a 2-dimensional array:

for (int i = 0; i < n; i++) |
for (int j = 0; j < m; J++) |
arr[i][j] = 0.0f;

}

The loop collapsed version has one big loop over a different one-dimensional array:
int maxx = n * m;
for (int x = 0; x < maxx; x++) {
arr2[x] = 0.0f;
}

This loop transformation to a single loop is obviously more amenable to
vectorization.

Loop Peeling

Loop peeling is a type of loop unrolling that involves unraveling only the first few
iterations of a long loop. This is also similar to “loop splitting” with two sections,
where the first section is over the early range, and the second range is the main
section of all remaining iterations.

Loop peeling is beneficial to the overall loop efficiency if there is code in the loop
body that is only required for one or two early iterations, which can then be
removed from the main loop body. Similarly, there can be benefit in unraveling the
last few iterations of a loop, which is a similar technique.

One common case of loop peeling is when the first iteration is different from the
rest, so peeling off a single iteration is valuable.

0;
(i

for (int 1

i < n; i++) {
arr[i] =

=0) 2 0.0f : 1.0£;

}

185 Advanced C++ Memory Techniques



In this case, we can peel off the first “i==0" iteration into a single unrolled
instruction, and change the main loop to start at 1. This is also a trivial form of
“loop distribution,” where we are hoisting an “1 £” conditional test out of the loop.

The new code becomes:

arr[0] = 0.0f; // Peeled
for (int 1 = 1 /*not 0*/ ; 1 < n; 1i++) {
arr[i] = 1.0f;

This peeled version is faster in terms of both sequential or parallel execution. The
loop body has less computation and is also more amenable to vectorization.

Loop Splitting

Loop splitting refers to splitting the sequential iterations of a loop into two loops,
which each perform part of the original loop’s iterations. Loop splitting is closely
related to “loop sectioning” (“strip mining”), but often relates to more complex
arithmetic in the loop body.

Note that “loop peeling” is a special case of loop splitting where the first section is
a small range of a few initial iterations, but these few iterations are unrolled rather
than looped.

Loop splitting takes a single loop and transforms it into at least two “split-out”
loops, one for the early iterations, and one for the remainder. However, loops can
also be split out into more than two loops.

In loop splitting, each split-out loop is shorter than the original loop. Unlike loop
fission, the two loops operate over different subportions of the iterator variable
range, executing the same number of total iterations, rather than double iterations
as in loop fission.

David Spuler 186



Example: Loop Splitting: Here’s some example code to “sqrtize” a vector, using
a cached optimization for the numbers up to 100.

void aussie vector do sqgrt(float v[], int n)

{

for (int i = 0; 1 < n; i++) {
if (i < 100) { // Fast cases
v[i] = aussie sqgrt optimized(v[i]);

}

else { // General case
v[i] = sqgrtf(v[i]);

}

However, we can use loop splitting to split this big loop into two shorter disjoint
ranges. Instead of 0..n-1, we do 0..99, and then 100..n-1. Each loop is over part of
the range, and has a simpler loop body. Note that this code fails with an array
bounds violation for small values of n less than 100.

void aussie vector do sqrt loop splitting(
float v[], int n)
{
for (int i = 0; i < 100; i++) { // Fast cases

v[i] = aussie sqgrt optimized(v[i]);

}

for (int i1 = 100; i < n; i++) { // General cases
v[i] = sgrtf(v[i]);

}

The loop splitting optimization is beneficial if the loop body has different sections
of code that only relate to a subset of the iterator range. Hence, the loop bodies in
the two loops can be reduced to execute less code. Overall, there is still the same
number of iterations performed in the two loops combined, but each loop performs
only a proportion of the original iterations on a simpler loop body. This optimizes
sequential execution and the simpler code in each loop body may make
vectorization of one or both subloops easier. Furthermore, both subloops could
run in parallel.

187 Advanced C++ Memory Techniques



Loop Interchange

Loop interchange is an optimization of nested loops that switches the inner and
outer loops. In a typical nested loop, the outer loop body and loop test is executed
rarely, almost lazily, whereas the inner loop body is scrambling along in a frantic
mess. Loop interchange simply switches them, reversing their roles.

Why is this an optimization? Although the same number of loop iterations still
occur in total, and the newly-made inner loop body is also thrashed, various
improvements can arise from reversing the iterator variables, usually to make the
innermost loop the longest. Possible optimizations result from:

e TFewer outside computations. A shorter outside loop reduces the arithmetic
operations of the outer loop, whereas the inner loop’s number of
computations is unchanged in either loop structure.

e Data locality. Another possible improvement is in data locality, which can
reduce cache misses and speeds up the overall execution. Note that this
benefit is not guaranteed just by switching loops, and sometimes loop
interchange can worsen data locality; careful analysis is needed.

e Inner loop vectorization. Another important possibility is that reversing
nested loops can create opportunities to apply other loop optimizations to
the new inner loop, notably to vectorize the inner loop.

Shortest loop outside, longest innermost loop: One of the considerations of
loop interchange is the optimization of putting the shortest loop on the outside,
and making the innermost loop with the longest range of iterations. This is an
optimization for both sequential or parallel execution. For sequential execution,
there is less overhead from the outer loop, because it is shorter. For parallelization,
there is improved vectorization of the inner loop, which now has a longer range.

Consider this example:
for (int 1 = 0; 1 < 1000; 1i++) {

for (int j = 0; 3§ < 50; J++) {
//

The current loop nesting has the longest loop (to 1000) on the outside, and the
shorter loop (to 50) as the innermost loop.

David Spuler 188



Loop interchange simply makes it the reverse nesting:

for (int j = 0; j < 50; j++) {
for (int i = 0; i < 1000; i++) {
//

Considering sequential execution, the inner loop body is executed the same number
of times, so there’s no difference. This also includes the inner loop’s conditional
test and incrementer, which are different variables in the two examples, but also
execute the same number of times (50,000 times).

However, consider the different outer loops. The first example is 1000 iterations,
whereas the second example’s outer loop is only 50 times. Hence, the loop
reordering optimization of “shortest outer loop” and “longest innermost loop” has
saved 950 of the outer loop’s calculations (i.e., loop test and incrementer).

Any extra code that’s in the outer loop, either before or after the inner loop, would
also be executed fewer times.

There is also an advantage for vectorization. In the first example, we could possibly
have 1000 vectorized operations of data size 50. In the interchanged loops, there
are 50 operations on vectors size 1000.

Hence, there is more opportunity for much larger vectorization gains in the second
format with the longest inner loop.

Loop Sentinel

Loop sentinels are an optimization that removes the overhead of checking an array
index or pointer scanning an array or pointer chain. The technique does this by
adding a pretend extra element onto the end of the array, in a way that we can
pretend to succeed. And since we’re guaranteed to always succeed, we don’t need
to check for failure while scanning the loop.

This technique is not particularly useful for vectorization, but is quite powerful for
long sequential scanning of arrays. It also has the downside of requiring at least one
writeable array element, so it cannot run on read-only arrays.

189 Advanced C++ Memory Techniques



Example: Check Vector Negatives: Here’s the basic loop sentinel version that
sets up a dummy success in v [n]:

bool aussie vector negative sentinel (float v[], int n)

{
v[n] = -99.0; // Dummy negative (BUG!)
int 1 = 0;
for ( ; /*GONE!*/; i++) {
if (v[i] < 0.0) break; // Found negative
}

if (i == n) return false; // Fake success
return true; // Found a negative (for real)

However, this is actually buggy, since “v[n]” is potentially an array overflow. A
better version can manipulate the last valid element “v [n-1]" instead of modifying
“v[n]”. Then, we have to remember to fix it before we leave town. And we also
have to remember to check the last vector element that we temporarily overwrote
wasn’t also a real success.

bool aussie vector negative sentinel2 (float v[], int n)

{

float save = v[n - 1]; // Save it!
v[in - 1] = -99.0; // Dummy negative at end
int i = 0;

for ( ; /*GONE!*/; i++) {
if (v[i] < 0.0) break; // Found negative
}
v[n - 1] = save; // Restore it!
if (i ==n - 1) {
// At the dummy (fake success)
if (save < 0.0) return true; // Must check
return false;

}

return true; // Found a negative (for real)

Loop Strip Mining (Loop Sectioning)

Loop strip mining is a loop optimization that scans or “mines” various “strips” of
an array. It is related to “loop tiling” on arrays in two dimensions, but strip mining
only applies to processing one-dimensional arrays. Loop strip mining is also called
“loop sectioning” because it breaks an array up into sections that are operated on.

David Spuler 190



For a basic example, consider a simple array initialization:

for (int 1 = 0; 1 < n; 1i++) {
arr[i] = 0.0f;
}

Let’s assume we can parallelize this with 16 elements at a time (e.g., 512 bits total
parallel processing, which is 16 separate 32-bit f£1oat variables). So, we want to
process “strips” of length 16. For simplicity, let us assume that n is divisible exactly
by 16, so there’s no leftover work after the main loop.

for (int i = 0; 1 < n; i += 16) {
// Initialize arr([i]...arr[i+15] in parallel

}

Obviously, this is a dummy example, where memset would do better for zeroing
the array. Also, this really looks exactly like “vectorization” to me, where we are
vectorizing 512 bits at a time (16 £loats), and indeed the research mentions
vectorization as one application. But loop strip mining and vectorization are not
exactly the same techniques, because loop strip mining is a more general idea with
other applications.

Loop Spreading

Loop spreading is an optimization of two non-nested sequential loops that have
different iteration ranges. Typically, this refers to where the end ranges differ
significantly. If the loop ranges only differ by an off-by-one issue, then only loop
normalization is required.

Loop spreading modifies one of the loops, so that part of this loop fully overlaps
with the other loop (i.e., ideally one loop “spreads out” further to match the other
loop’s end bounds). Hence, after loop spreading has occurred, this subloop can be
fused with the other loop, and possibly parallelized. The remaining iterations that
are not ovetlapping then have to be addressed in a followup partial loop (only for
one of the loops).

Loop spreading mainly enables loop fusion as a followup optimization. For using
loop fission on the two loops, it is not necessary to do loop spreading, since the
two loops are already split apart, and each loop could already potentially be
vectorized independently.

191 Advanced C++ Memory Techniques



Loop Normalization

Loop normalization is not directly an optimization, but is a preliminary loop
transformation that can make further loop optimizations easier. Followup
optimizations might be to fuse the two loops with loop fusion, or to parallelize each
loop, such as with loop fission or vectorization.

The goal of loop normalization is to make the loop iteration variables act across the
same range. This applies to two sequential loops, rather than nested loops. Hence,
loop normalization is needed when two loops in sequence are starting at different
offsets (e.g., one is i=1 and another starts at 1=0), or are finished at different
endpoints (e.g., n versus n-1).

If two loops have the same number of computations, but with different ranges,
then one loop can be changed with an offset. For example, these loops differ with

ranges 0. .n-land 1. .n:

for (int 1 = 0; 1 < n; 1i++) ali] = 0;
for (int j = 1; j <= n; j++) blj] = 0;

These can be adjusted to the same ranges with a “j+1" index offset, as follows:

for (int 1 = 0; 1 < n; 1i++) af[i] = 0;
for (int 7 0; jJ < n; j++) b[j+1] =

If the two loops have a different number of iterations, or off by 1 or 2, then “loop
peeling” can be used to unroll and split off one or two iterations and shorten the
longer loop, so that both loops have the same number of iterations over the same
range. For example, in this example, one loop is 0. .n-1 and anotheris 0. .n:

for (int i = 0; 1 < n; i++) ali] = 0;
for (int j = 0; Jj <= n; Jj++) b[j] = 0;

[IESH]

The way to normalize loop ranges is to “peel” off the last iteration of the “3” loop:

for (int i = 0; 1 < n; i++) ali] = 0;
for (int j = 0; j < n; j++) b[j] = 0;
bln] = 0; // Peeled

This example has peeled the longer loop to make it shorter. An alternative would
be “loop spreading” to lengthen the shorter loop, such as by adding an extra
padding element into the array.

David Spuler 192



Normalizing two loops doesn’t change the number of arithmetic computations.
However, once two loops have normalized ranges, it becomes easier to see
opportunities for further optimizations such as loop fusion or loop fission.

Loop Skewing

Loop skewing is a somewhat mind-bending method to change nested loops to make
them more parallelizable. This technique applies when there are two nested loops,
but the inner loop is difficult to parallelize because of a dependency on the outer
loop variable. The performance advantage from loop skewing is not directly its
usage, but because skewing changes then make possible other loop optimizations,
especially loop interchange, which reorders the inner and outer loop.

The loop skewing solution is far from obvious. The range bounds of the inner loop
are changed by “skewing” them by a factor based on the outer loop variable. And
then, by some magical potion, this somehow breaks the dependence on the outer
loop, and then the inner loop can run fast on a GPU. Who knew?

As a simplistic example, consider two nested loops:

for (int i = 0; 1 < 1000; i++) {
for (int j = 0; j < 50; j++) {
arr[il[7] something;

I~

}

We can skew the inner loop by adding a skew factor based on the outer loop
variable (e.g., “i” or “i+1” or something similar). Add this skew factor to the
ranges of j, but then subtract the skew factor (“i”) from any usages of the index

[TER]

j” inside the inner loop’s body.

for (int i = 0; 1 < 1000; 1i++) {
for (int J = 1i; j < 50 + 1i; Jj++) {
arr[i][j - 1] = something;

}

Hence, j has changed from the range (0...50) to the skewed range (i...1+50), by
adding the skew factor “i” to the start and end. The use of “j” in the inner loop
body has changed from “3” to “j-1" (i.e., subtracting the skew factor “1”

The result is a kind of skewed and “triangular” shape of i and j indices, but the
actual arithmetic calculations are unchanged.

193 Advanced C++ Memory Techniques



This newly skewed code isn’t any faster, does exactly the same calculations on the
50,000 elements of array arr, and indeed is actually worse because of the extra
“50+1” and “j-1i” computations. However, in some cases, doing this weird
skewing transformation then allows us to follow up with a loop interchange
optimization, switching the inner and outer loops. And I’'m not even going to
pretend to understand this, but there are situations where the non-skewed inner
loop cannot be vectorized or interchanged, but after we’ve skewed the loop, then
we can interchange it, and then we get via hocus pocus a different inner loop that
can then be vectorized. Hopefully, the GPU knows what’s going on.

References

1. Allen, F. E., and Cocke, J. 1972. A catalogue of optimizing transformations. In
Design and Optimization of Compilers, Prentice-Hall, Englewood Cliffs,
N.J., pp. 1-30.

PDF: https://www.clear.rice.edu/comp512/ILectures/Papers/1971-
allen-catalog.pdf

2. D.F.Bacon, S. L. Graham, and O. J. Sharp. 1994. Compiler transformations
Jfor high-performance computing . ACM Computing Surveys 26, 4 (1994), 345—
420. https://dl.acm.org/do0i/10.1145/197405.1974006,

PDF: https://people.cecs.berkeley.edu/~fateman /264 /papers/bacon.pd
f (Paper with extensive coverage of numerous compiler auto-
optimizations of program code.)

3. Paul Bilokon, Burak Gunduz, 8 Sep 2023, C++ Design Patterns for Low-
latency Applications Including High-frequency
Trading, https:/ /arxiv.org/abs/2309.04259,

Code: https://github.com/Oburak/imperial hft

4. Eric LaForest, March 19, 2010, Swurvey of Loop Transformation Technigues,
ECE 1754, http://fpgacpu.ca/writings /Surveyl.oopTransformations.pdf

5. B Qiao, O Reiche, F Hannig, 2019, From loop fusion to kernel fusion: A
domain-specific approach to locality optimization, 2019 IEEE/ACM
International Symposium on Code Generation and Optimization
(CGO), https://ieeexplore.ieee.org/document/8661176 (Theory of loop
fusion generalized to graph kernel fusion for image processing.)

6. Kathryn S. McKinley, Steve Carr, Chau-Wen Tseng, 19906, Improving data
locality with loop transformations, ACM Transactions on Programming
Languages and Systems, Volume 18, Issue 4, pp 424—

453, https://dl.acm.org/doi/10.1145/233561.233564

7. B Blainey, C Barton, JN Amaral, 2002, Renoving impediments to loop fusion
through code transformations, International Workshop on Languages and
Compilers for Parallel Computing, LCPC 2002: Languages and Compilers
for Parallel Computing pp 309—

328, https://link.springer.com/chapter/10.1007/11596110 21

David Spuler 194



https://www.clear.rice.edu/comp512/Lectures/Papers/1971-allen-catalog.pdf
https://www.clear.rice.edu/comp512/Lectures/Papers/1971-allen-catalog.pdf
https://dl.acm.org/doi/10.1145/197405.197406
https://people.eecs.berkeley.edu/~fateman/264/papers/bacon.pdf
https://people.eecs.berkeley.edu/~fateman/264/papers/bacon.pdf
https://arxiv.org/abs/2309.04259
https://github.com/0burak/imperial_hft
http://fpgacpu.ca/writings/SurveyLoopTransformations.pdf
https://ieeexplore.ieee.org/document/8661176
https://dl.acm.org/doi/10.1145/233561.233564
https://link.springer.com/chapter/10.1007/11596110_21

16. Vector Algorithms

Vector Dot Product

Vector dot product is an algorithm that has received a lot attention lately, because
it’s the most basic computation algorithm in an Al engine. All of the tensor
operations and matrix multiplications break down into instances of a dot product
calculation. The dot product is so-named because its mathematical notation is a dot.
It is also known as the “scalar product” because its result is a scalar (single number),
rather than a vector.

The vector dot product takes two vectors as input, and computes a
single float number. The algorithm is a product of the elements of each vector,
added together. Here’s the code:

float aussie vecdot basic(float v1[],float v2[], int n)
{
float sum = 0.0;
for (int i = 0; 1 < n; i++) {
sum += v1[i] * v2[i];
}

return sum;

Properties of the dot product include:

e Two vectors as input.

e Scalar output (single number).

e Can be positive or negative.

e Is zero if either vector is all zeros.

e Can also be zero for two non-zero vectors (e.g., if the vectors are
“perpendicular” in 2-D or 3-D space).

e Has a physical meaning related to the “angle” between the two vectors.

e Isan integer if both vectors contain integers.

e Dot product of a vector with itself is the square of the vector’s magnitude
(equivalently, the vector’s L2-squared norm).

e Is very slooow. Dot product-based operations inside matrices and tensors
are the main culprit for Al needing all those GPUs.

195 Advanced C++ Memory Techniques



The dot product differs from the “vector product” of two vectors (also called
“cross product”) that returns a vector, and is a completely different mathematical
operation. The vector cross product is interesting mathematically in that it
computes a vector perpendicular in 3 dimensions, but it’s not very useful in practical
applications. The dot product is where the action’s at in big tensors.

Vector Norms

Vector norms are measurements of vectors that indicate features of a vector. For
example, we can measure if two vectors are “close” to each other. Again, these used
to be obscure linear algebra algorithms, but are now widely used in various Al
algorithms.

Vector norms map vectors to a single number. Note that vector norms are not the
same thing as the “normalization” layer in a Transformer (i.e., LayerNorm or
BatchNorm). Note also that a vector “norm” is not at all related to the similarly-
named “normal vector” (a vector perpendicular to a surface). The o is a number,
whereas the normal is a vector, and they’re not on speaking terms since that incident
last summer.

L2 Norm: The basic norm of a vector is the level-2 (L2) norm, and you probably
already know it. This is the length of the vector in physical space, also called the
vector’s “modulus” or “magnitude” in Mathematics 101. If you treat a vector as a
“point” in space, the L2 norm is its straight-line distance from the origin.

The calculation of the L2 norm of a vector is a generalization of Pythagoras’s
Theorem: sum the squares of all the vector elements, and then take the square root.
The code looks like:

float aussie vector L2 norm(float v[], int n)
{
float sum = 0.0f;
for (int i = 0; 1 < n; 1i++) {
sum += (v[i] * v[i]); // Square
}

return sqrtf (sum);

Because we square every element, they all get turned positive. Zero squared is still
zero. Once we’ve summed all the squares, we usually get a big positive number,
which we then square root to get a smaller positive number. Hence, the result of
the L2 norm is compressing a whole vector down to a single positive floating-point
number.

David Spuler 196



The properties of the L2 norm are:

e Tloating-point number (e.g., 0.567 or 5.6789 or 3.0 or whatever)

e DPositive number (not ever negative)

e Zero only if the whole vector is zero.

e Represents the “length” (or “modulus” or “magnitude”) of a vector, called
the “Euclidean distance”.

e  Usually a non-integer, even if the vector was all integers.

For a simple 2-D or 3-D vector in Senior Math, the L2 norm is the physical length
of the vector in 2-D or 3-D space (or the length of the line from the origin to the
equivalent point). For Al which has vectors in 1024-dimensions, or N-dimensional
vectors for whatever N is being used, there’s not really a physical explanation of the
L2 norm that’s easy to visualize, but it’s kind of a measure of the length of the
vector in N-dimensional space. The value of the L2 norm can be zero, but only if
all the vector’s elements are zero.

Note that the value of the L2 norm is not unique. Two different vectors can have
the same value for the 1.2 norm. In fact, an infinite number of vectors can have the
same value, and those vectors are the set of vectors with the same length
(magnitude), which will define a sphere in N-dimensional space.

L2-squared norm: A minor modification of the L2 norm is the “squared L2
norm”, which is, as you may have guessed, the square of the L2 norm. To put it
another way, it’s just the L2 norm without the square-root at the end. The code
looks like:

float aussie vector L2 squared norm(float v[], int n)
{
float sum = 0.0f;
for (int i = 0; 1 < n; i++) {
sum += (v[i] * v[i]l); // Square
}
return sum; // NOT sqrtf (sum);

The value of the L2-squared norm is a positive number, but a much larger one. The
physical meaning is the squate of the physical/Euclidean length of the vector. The
L2-squared norm also equals the vector’s dot product with itself.

Why use the L2-squared norm? Because it’s faster to skip the square-root operation,
of course. Also, if the vector contains integers, then the L2-squared norm is also an
integer, which can make it even faster to compute in integer-only mode. The L2-
squared norm is just as good as basic L2 for some uses.

197 Advanced C++ Memory Techniques



The properties of 1.2 and L.2-squared norms are very similar except that one is a
much larger number. Both are positive and related to Euclidean distance, and both
increase monotonically the further the vector is away from the origin.

Level 1 Norm: As you can guess from my calling it the L2 norm, there’s also an
L1 norm, and there’s 1.3 norms, and more. Let’s look at the 1.1 norm, because it’s
even simpler, although it’s #of usually something that’s covered when studying
vectors in Math class.

The L1 norm is simply the sum of the absolute values of all the vector elements.
We don’t square them. We don’t take the square root. We just make them positive
and add them up. The code looks like:

float aussie vector L1 norm(float v[], int n)
{
float sum = 0.0f;
for (int i = 0; 1 < n; i++) {
sum += fabsf(v[i]); // Absolute value
}

return sum;

Using the absolute values of elements reverses any negative vector elements to
positive. The absolute value ensures the whole total can’t go negative, and any
negative value also adds to the total. A zero element is fine in the vector, but does
nothing. The result of the L1 norm is a single positive float number, which can be
fractional or whole, ranging from zero to as high as it goes (i.e., if you have big
numbers in the vector elements, then the L1 norm will also be large).

The properties of the L1 norm are:

e Tloating-point number (fractional or whole).

e DPositive number (never negative).

e  Zero only if all vector elements are zero.

e DPhysical meaning is an obscure distance measure (the “Manhattan
distance”).

e Wil be an integer if the vector elements are integers.

What does an L1 norm mean? It’s kind of like the distance you’d travel if you walked
the longest way by going along each element/dimension of the vector, one at a
time, and not going backwards (no negatives). So, the L2 norm was the fastest
diagonal direct way to get to a point, but the L1 norm is going the scenic route, and
the L1 norm is usually bigger than the L2 norm.

David Spuler 198



Like the L2 norm, the L1 norm is not unique. Multiple vectors can have the same
L1 norm. For example, the vectors (1,2) and (0.5,2.5) will have L1 vector
norm of 3.0. ’'m not really sure what the set of all the vectors with the same L1
norm means. Maybe it’s this: all the points that you can walk to from the origin
when you travel a certain distance (going forwards-only)?

L3 Norms and Above: The mathematical vector norms can be generalized to L3
and higher norms, even to infinity. For an 1.3 norm, you cube all the vector elements
(made positive by absolute value), and take the cube root at the end. It’s tricky to
find the cube root in C++ until you remember that a cube root is exponentiation
to the power of 1/3 (from Year 10 math), so we can use the “powf” function.
Here’s the code:

float aussie vector L3 norm(float v[], int n)
{
float sum = 0.0f;
for (int i = 0; 1 < n; 1i++) {
sum += (v[i] * v[i] * v[i]); // Cube
}
const float frac third = 1.0f / 3.0f;
return powf (sum, frac third);

Can you guess what an L4 norm is? The higher order versions are really fun and
interesting if you wear socks with your sandals, but not very useful in any practical
applications of Al coding.

Matrix Norms

There are norms for matrices, but they’re not really that often used. Taking a
“measurement” of a matrix via a “norm” (or a “metric”’) to compare it to other
matrices isn’t a common task.

The silly ones are element-wise matrix norms. You can define an L1 or L2 norm
on a matrix using the same algorithm over all its elements. You can also find the
maximum element inside a matrix, and call that the “max norm” if you like to sound
math-ish. The reason I say these are dumb? Because they ignore the structure in the
matrix, so it’s a kind of “pseudo-norm” of a matrix. It’s really just treating a matrix
like it’s a big, flat vector, and to me it seems more like misusing a vector norm on a
matrix.

More sensible matrix norms consider the rows or columns of the matrices as
separate vectors. An NxN matrix has N column vectors or N matrix vectors, so
there are N vector norms. Should we add them up?

199 Advanced C++ Memory Techniques



No, taking the maximum of the vector-wise L1 or L2 row/column vector norms has
a more useful meaning as a matrix norm than the element-wise matrix L1 or L2
pseudo-norms. You can do this maximum-of-vector-norms either for rows or
columns, but not both.

Vector Min and Max

Finding the maximum or minimum element of a vector is useful, and somewhat
relevant to the LL1/1.2 norms. The maximum is a kind of “metric” of the size of a
vector. Also, the maximum function over a vector is used in “greedy decoding” to
pick the word with the highest predicted probability, which is then output. The
minimum function would give us the least likely word, which might also be
interesting if useless.

The simple linear code for vector max is:

float aussie vector max(float v[], int n) // Maximum
{
float vmax = v[0];
for (int i = 1 /*not 0*/; 1 < n; 1i++) {
if (v[i] > vmax) vmax = v[i];

}

return vmax;

The vector minimum function looks similar in sequential C++ code:

float aussie vector min(float v[], int n) // Mininum
{
float vmin = v[0];
for (int 1 = 1 /*not 0*/; i < n; i++) {
if (v[i] < vmin) vmin = v[i];

}

return vmin;

These functions are crying out for optimizations: loop unrolling, pointer arithmetic,
etc. However, what they really need is vectorization. There are
parallelized max and min primitives in GPUs and CPU-based AVX intrinsics that
you can use.

David Spuler 200



Top-K Vector Algorithm

The top-k algorithm is more complicated than vector max or min: find the
largest £ elements in a vector. Note that “maximum” is the same as top-k with £=7.
If you want the short version of the top-k story in C++, there’s
astd::partial sort standard function that sorts the top k elements, and
there’s also std: : sort for a full array sort. However, let’s hand-code some top-k
algorithms for more clarity.

Note that the top-k algorithm is a somewhat obscure algorithm that used to be
rarely used, but now it’s a very important piece of code in Al engines. It gives us
“top-k decoding” which is how to choose which word to output. The whole
encoder-decoder computes a vector giving us the probability that each word should
be output next. Using the maximum probability word gives us “greedy decoding”
which always outputs the most likely word. But that’s kind of boring and
predictable, so top-k decoding randomly chooses between the £ most likely words
(e.g., top-50), which is still very accurate and also more interesting because it has
some creative variation.

Example: Hand-coded top-2 algorithm: Since top-1 is the maximum of a vector,
we can also find a fairly simple linear scan for £=2. The basic idea is to scan through
and keep track of the two largest values as we go.

void aussie vector top k 2(
float v[], int n, float vout[])

{
// Order the first 2 elements

float vmaxl = v[0], vmax2 = v[1l];
if (v[1] > v[0]) |
vmaxl = v[1]; // Reverse them
vmax2 = v[0];

}
for (int 1 = 2 /*not 0*/; 1 < n; 1i++) {
if (v[i] > vmax2) {
// Bigger than the smallest one
if (v[i] > vmaxl) { // Bigger (shuffle)

vmax?2 = vmaxl;
vmaxl = v[i];
}
else {
// In the middle (fix 2nd only)
vmax2 = v[i];

vout[0] = vmaxl; // Biggest
vout[1l] = vmax2; // 2nd biggest

201 Advanced C++ Memory Techniques



Note that the above top-2 algorithm is still impractical for our word decoding
algorithm. We need to know not only the top probabilities, but also which two
indices in the vector had those probabilities, because that’s how we know which
words map to which probabilities. So, we’d need to modify the above code to track
and return the two array indices as well (or instead).

Shuffle Top-K Algorithm

For a larger value of £the code becomes more complicated. The above code
for £=2 motivates the general idea for a brute-force algorithm: shuffle sort the
first £ elements, and then scan the rest, shuffling any larger items up into place. We
can merge the two shuffling phases into one block of code that handles both the
startup and ongoing scan.

void aussie vector top k shuffle(
float v[], int n, int k, float wvout[])
{

int nout =
for (int 1 1 /*not 0*/; 1 < n; 1i++) {
float fnew = vI[i];
int maxj;
if (nout < k) {

’

vout [0] = vI[0];
1

vout [nout++] = fnew;
maxj = nout - 2;
}
else {
maxj = nout - 1;
}
maxj = nout - 1;
for (int j = maxj; j >= 0; j--) {
if (fnew > vout[j]) {

// Shuffle & insert
if (J + 1 < k) // Shuffle down
vout[j + 1] = vout[]j];
vout[]j] = fnew;
// Keep going
}

else { // Done.. insert it
if (3 !'= maxj) {
if (341 < k)
vout[j + 1] = vout[Jj];
vout[]j] = fnew;
}
break;

}
} // end for j
} // end for i
}

David Spuler 202



The above example is a simplistic and inefficient top-k algorithm, not to mention
that it was horribly fiddly and failed my unit tests for hours (i.e., that’s a special kind
of “fun”). Several loop optimizations suggest themselves: loop sectioning for the
outer i loop to do the first k iterations as a separate loop (avoiding lots of tests
against k), and loop peeling of the first iteration of the inner j loop (i.e., j==maxj).
This version also should be extended to track the indices from where the top-k
values came.

Theoretical Top-K Algorithms

There’s a lot of theory about computing the top-k function of an array for
large £ values. These theoretical top-k algorithm papers mainly consider sequential
processing, rather than vectorization. Even so, it’s not a simple linear scan
like ax or min functions, but doesn’t need to be as slow as shuffling.

Example: Top-k with gsort sorting: The simplest method for large £ is to sort
the array with a fast method (e.g., the quicksort algorithm) and then pick off the
top £ elements from the sorted array. In C++ there are the std: : sort methods
or the older style gsort function. Here’s an example using the CH++
standard gsort function:

int aussie top k gsort cmp (
void const* addrl, void const* addr?)
{
float fl1 = *(float*)addrl;
float f2 = *(float*)addr2;
if (f1 < £2) return +1; // Reversed (descending)
else 1f (f1 > £2) return -1;
else return 0;

}

void aussie vector top k gsort(
float v[], int n, int k, float vout[])
{
// Top-k with general k (gsort algorithm)
// Sort the array
gsort (v, n, sizeof (voutl[0]),
aussie top k gsort cmp);
// Copy top-k elements

for (int i = 0; 1 < k; i++) vout[i] v[i];

203 Advanced C++ Memory Techniques



Top-k with gsort and permutation array: We really need a version that returns
the indices of the probabilities, rather than just their values. So, 1 coded up
a gsort version that sorts via a permutation array, and then returns the top-k of
these permutation indices.

void aussie permutation identity(int permut[], int n)
{
for (int i = 0; i < n; i++) permut[i] = i;

}
float* g float array for gsort = nullptr;

int aussie top k gsort permutation cmp (
void const* addrl, void const* addr2)
{
int indexl = * (int*)addrl;
int index?2 * (int*)addr2;
float fl = g float array for gsort[indexl];
float f2 = g float array for gsort[index2];
if (f1 < £f2) return +1; // Reverse (descending)
else 1f (f1 > £f2) return -1;
else return 0;

}

void aussie vector top k gsort permut (
float v[], int n, int k,
float vout[], int permut out[]

// Create a dynamic permutation array

int* permut arr = ::new int[n];

// Identity permutation

aussie permutation identity(permut arr, n);

// Sort the array (by permutation)

g float array for gsort = v;

gsort (permut arr, n, sizeof(permut arr([0]),
aussie top k gsort permutation cmp);

// Copy top-k elements

for (int i = 0; 1 < k; 1i++) {
permut out[i] = permut arr[i];
vout[i] = v([permut arr[i]];

}

delete[] permut arr;

David Spuler 204



Top-k without sorting: Sorting the whole array is somewhat wasteful if we only
want the top 50 elements. There are various faster top-k algorithms that don’t fully
sort the array. These algorithms are called a “partial sort” and can achieve the top-
k output with better performance

Standard C++ top-k libraries: As mentioned earlier, the standard C++ libraries
have support for sorting algorithms in std: : vector, such as with:

e std::sort — full array sort (simplest idea).
e std::partial sort — partial sort of £ elements (faster).

There is a top-k specialized version in the modern C++ libraries
called std: :partial sort, which sorts the top £ elements of an array, which
can then be selected for the top-k algorithm.

Presumably, the std::partial sort function 1is a faster algorithm
than std: : sort, by not fully sorting the whole array, but I haven’t tested it. There
is also std::nth element, which is similar to top-k.

205 Advanced C++ Memory Techniques



David Spuler 206



17. Tensors

What are Tensors?

Tensors are terrifying at first! I avoided learning about them for ages. All those
nested loops are scary. But eventually it dawned on me that they’re just three-
dimensional arrays, and the computations are nothing harder than multiplication
and addition.

An important point is that “tensors” in Computer Science are much different to
the mathematical forms used in Physics. Al tensors are used in “linear algebra” for
LLMs and are much more basic than the 4-D space-time tensors in Einstein’s
theory of general relativity. Which may explain why all those brainy physicists are
so smug, despite being unable to predict if it’ll rain tomorrow.

Tensors are simply multi-dimensional arrays, and are usually 3-dimensional. Each
slice of a 3-D tensor is a two-dimensional matrix. And like vectors and matrices,
tensors have these basic properties:

(a) Each element stores a single number (i.e., no strings or objects).
(b) All elements have the same data type (e.g., int or f£loat).
(c) Elements may be positive, negative or zero.

(d) There are no missing elements. The concept of “missing” can only be
represented by zero in a normal tensor.

There are exceptions, of course. There are “sparse tensors” that can represent
elements as missing. Also, you can technically store strings or objects in a C++
three-dimensional array, but then it’s more of a misuse of a tensor. Numbers are
where it’s at.

Tensors are technically the superset of all of the computational structures, and the
number of dimensions is called the “rank” or “dimension” or “axes” of a tensor.
Matrices are rank-2 tensors, vectors are rank-1 tensors, and even scalars are rank-0
tensors.

207 Advanced C++ Memory Techniques



Conceptually, there’s a hierarchy of complexity for tensor operations:

e 3-D tensor operations break down into 2-D matrix multiplications.

e 2-D matrix multiplications break down into vector dot products.

e 1-D vector dot products break down to a single f£1oat number (a scalar).
e 0-D scalars are single numbers.

Another way to think about tensors is in terms of nested loops. Scanning a vector
requires one loop, and a matrix needs two nested loops. Tensor operations require
three or more nested loops to process all their data.

Neural Network Tensors

I’m not going to take you in detail through the theory of how neural networks
function. But in broad strokes, there are “neurons” in layers, where each neuron
has a “signal,” and there are also connections between neurons that forward the
strength of a signal on to the next layer of neurons. So, each neuron in connected
to every neuron in the previous layer by an “arc” and on that arc is a “weight” that
says how strong or weak to consider the incoming neuron’s signal.

But how do we get to tensors from that? Not obvious.

Let’s step back a little and be one with the neuron. So, we are just one neuron in a
layer of 100 neurons. And the previous layer has 100 neurons, and we are “fully
connected” with arcs from every one of those 100 prior neurons. With 100 neurons
in the previous layer, our little lonely neuron has to consider the signals from all of
the 100 neurons in the prior layer, with 100 weights on the arcs to help decide how
much attention to pay to each of the 100 prior neurons.

If we consider the previous layer of 100 neurons as a “vector” of each neuron’s
computed values. What this means is that every one of the 100 prior neurons has a
number of its computed signal, so we have a vector of 100 signal numbers from the
ptior layer (i.e., a vector full of 100 neuron computed values).

Again, our little neuron has to receive a computed signal value from every one of
the 100 prior layer neurons, so we have 100 arcs coming into our little neuron, each
with a different number, that is the “weight” of that arc. The computed value of a
prior neuron is multiplied by the “weight” that’s on each arc (i.e., there’s 100
weights, one for each arc). So, every one of the arcs from the 100 neurons in the
prior layer has a weight, and what does that sound like? A vector of weights.

David Spuler 208



So, we have a bunch of 100 prior-layer neuron’s computed values in a vector, where
each one of those 100 signal values is multiplied by a weight that’s in a vector with
100 weights. Hence, we’ve got to pairwise multiplication, where we multiply 100
neuron values times 100 associated weights. Hence, we’ve got a bunch of element-
wise multiplications of two vectors (100 values times 100 weights), which creates a
vector of 100 multiplication computations.

But our little neuron cannot have 100 computed values, but can really only have
one number, the total computed signal for our current neuron. There are various
things we could do to “reduce” our interim vector of 100 multiplications, but the
simplest is to add them all up, and this gives us one number. Now we have one
number, and it’s the computed signal value for our current neuron.

Umm, I remember that from High School. If we multiply two vectors together with
the numbers in pairs, and then add it all up: vector dot product.

In summary, we have a vector dot product for our single neuron in the current
layer, based on two vectors from the prior layer (the vector of 100 calculated neuron
values, and the vector of 100 weights).

But this is just for our one lonely neuron. Except, it’s not lonely, since it has 99
friends, because it’s in a layer of 100 neurons itself. So, our neuron and its 99 friends
in the current layer, all have to do a different dot product computation because the
weights are different for each set of arcs into each neuron. We have a whole vector
of 100 neurons in the current layer, for which we have to compute dot products for
100 values times 100 weights (i.e., using the prior layer). So, we have to do 100
vector dot products to calculate the result for our neuron and its 99 friends. If we
do 100 repetitions of vector dot products, this sounds like...natrix multiplication.

But that’s not all. There’s a third dimension based on the “tokens” in the prompt,
which is represented by an “embeddings” vector. And with this third dimension
thrown in, well, then it’s a whole vector worth of matrix multiplications, and we get
to a 3-D operation called a “tensor product.” Tensors are three-dimensional blocks
full of numbers (i.e.,, cubes or rectangular prisms), which generalize two-
dimensional matrices, which generalize one-dimensional vectors, which generalize
zero-dimensional scalars. And if you have any common sense, you’ve stopped
reading this section by now, so I’'m not going to try explaining this mind-bending
tensor stuff any further.

209 Advanced C++ Memory Techniques



Tensor Arithmetic

Tensors are a convenient and efficient representation of multi-dimensional data.
Since complex computations may involve a lot of matrix multiplications, it is useful
to represent a sequence of matrix operations as a tensor operation.

Importantly, the arithmetic performed is the same. Using a tensor is
computationally efficient for parallelization of algorithms, and also mathematically
concise for theoretical analysis, but is not some fantastically amazing matrix
algorithm. It’s just crunching lots of numbers with the standard matrix
multiplication methods. Usually, it’s the same as an array of matrices, where you do
matrix multiplication on each one.

In practice, tensor kernels will send out different chunks of that computation all
over the place for parallel speedup, but it’s still computing the exact same numbers
as if you did it all brute-force in nested loops. You could even follow along with a
pen and paper, except that the computer is better because it won’t forget to carry
the negative sign.

Tensor shape. Another point is the shape of a tensor. I'm sure you know that
matrices may be square or rectangular in shape, but can’t be a skewed parallelogram
or a circle. Yes, you’re right, there are triangular matrices, but now you’re messing
up my nice clean point.

Anyway, a 3-D tensor can have different sizes on each of its three dimensions.
Hence, a 3-D tensor can be a cube if all three sizes are identical, but usually they
have the shape of a more general rectangular prism. And it still has a brick-like
shape, and can’t really represent a triangle, cone, or sphere. Tensors are much less
scary if you sing Everything is Awesome while you code the nested loops.

Unary Tensor Operations

Like a 2-D matrix, there are various simple operations we can define on a single
tensor. The various element-wise operations apply individually to each tensor item.

e C(lear or set to a value
e Add or subtract a scalar

e Multiply or divide by a scalar

Similatly, we could apply a particular unary mathematical function to each element
separately: square root, exponentiation, natural logarithm, and more.

David Spuler 210



Binary Elementwise Tensor Operations

Adding two matrices means simply adding each pair of elements in the matrix,
which only works if the two matrices have the same size and shape. The same idea
generalizes to the addition of tensor elements of two tensors with the same size
(i.e., all three dimensions are the same). Hence, we can do element-wise binary
arithmetic on each element in two tensors to create a third tensor of the same size:

e Addition or subtraction
e Multiplication or division
e Maximum or minimum

Note that element-wise multiplication of tensor elements is not “tensor
multiplication” in the same way that matrix multiplication isn’t just paired
multiplications of the elements in two matrices. Such an element-wise
multiplication is called the “Hadamard product” of matrices, and is so useless that
I don’t think I was ever taught that in High School. The Hadamard product is not
what is used by normal multiplication computations, but I’ve seen a few research
papers where it was proposed as an optimization (probably unsuccessfully). Matrix
multiplication is more complex, with its row-by-column vector dot product
multiplications, and so is generalizing that to tensors.

That’s how we get to “tensor product” of two tensors. It’s really just nested loops
doing matrix multiplications on slices of each tensor. And then matrix
multiplications are just nested loops doing vector dot products. Like I said, tensors
are just three-dimensional arrays doing multiplication and addition.

Sparse Tensors

Sparse tensors occur when most of the values are zero. These are a generalization
of sparse vectors and sparse matrices, and offer the same advantages: compressed
storage and faster arithmetic operations (by skipping operations involving zero).

The level of sparsity required for optimization usually means 80-90% of the weights
are zero. With so few non-zero values, tensor arithmetic involves fewer operations
and the memory requirements are low (i.e., store only the non-zero weights). Such
spatsity is often the result of a “pruning” optimization, but there are also obscure
theoretical means to get sparse tensors using tensor algebra (let’s not even go
there!).

When there is a high degree of sparsity, such as when 80-90% of the values are
zero, it becomes more efficient to use alternative algorithms. Sparse tensors can be
stored in a permutation index format, where only the index locations of non-zero

211 Advanced C++ Memory Techniques



items are stored (e.g., storing a four-tuple with the non-zero value and the three
indices at which it is located in the tensor). Operations on sparse tensors can use
the alternative storage format to create much more efficient kernels that avoid most
of the computations involving the missing zero values.

Parallelization of sparse tensor operations is a double optimization, because there
are fewer operations (only on non-zero weights), and you can parallelize them as
well. Although a permuted index data format is not the usual contiguous memory
space amenable to vectorization, there are other methods to vectorize permutation
indices, such as with “gather” and “scatter” SIMD operations.

David Spuler 212



18. Lookup Tables &
Precomputation

Precomputation with Lookup Tables

Look-up tables (LUTSs) are a well-known simple data structure for optimizing code.
They have been used to optimize algorithms in various ways. Some examples
include:

e Precomputed activation functions
e Zero-multiplication networks
e Approximation of non-linear functions

Precalculation or precomputation is a code optimization where results are partially
ot fully calculated ahead of time. This method is similar to caching and computation
reuse but refers to calculations being performed long before they are needed, often
at program startup or compile-time, and stored in lookup tables. Like caching, this
method trades extra space for time.

Vectorization of LUTSs is possible with hardware acceleration primitives that
supportt parallel memory accesses using integer indices. For example, the x86 CPU
with AVX intrinsics has a set of “gather” instructions for doing indexed lookup
that can be used to load from a LUT into the internal registers, and “scatter”
instructions for storing the registers back to an indexed LUT.

Typical precalculations are those where the results are computed at program
initialization or compile-time. The best methods generate the results at compile-
time, and are simply loaded as data, such as numeric constants or pre-initialized data
arrays. There are multiple ways to do this:

e Program startup initialization
e Lazy evaluation

e Binary data file

e Precompiled source code

213  Advanced C++ Memory Techniques



One method for precomputation of larger amounts of data in an array or lookup
table is to perform the initialization dynamically at program startup. A lookup table
can be populated with the required results, before the main logic of the program
begins. Or alternatively, the idea of “lazy evaluation” allows storing the
precomputation into a lookup table only when the program first needs the data.

A faster alternative is to calculate all this data offline before program startup, and
store the results in a binary data file. This data file can then be loaded into an array
at program startup, without needing to perform any of the arithmetic computations.
Whether this is beneficial depends on the cost of the computations versus the cost
of file loading.

The logical extension of the precomputation method for a large number of numeric
results is to write special C++ code that performs these calculations, but then
outputs the results into a text file in the exact format of a C++ source code file
(rather than a data file), that declares a global array name and the numeric values.
This auto-created C++ code is then linked with your program.

Example: LUT Precomputation for sqrt

Let’s say that you want to optimize a slow non-linear function like “sqrtf” (or
“expf” or “logf”). These are good candidates for optimization because of their
non-linearity.

The first point is that you’d better do a really good job, because there are actually
hardware instructions for these common math functions, even in x86 architectures.
So, you could easily optimize this into a table lookup, and find that your C++ code
is still slower than the single CPU instruction that’s called by the standard C++
library versions.

Hence, investigate the C++ intrinsic functions for common math functions before
you assume that you can do better than electrons zipping through silicon.

This example investigates precomputing “sqrt £” even though that may not be as
fast as hardware-acceleration. However, the same ideas apply to precomputing
more sophisticated derivative functions, such as Softmax and activation functions,
which are not hardware-supported (or not yet, anyway). The same general ideas

apply.

David Spuler 214



The basic method for table lookup optimization is:

e Declare a big array (the bigger the better).

¢ Run aloop sending every value to the real “sqrtf” function.
e Store each result in the big array.

e Now you have a precomputed table of all possible values.

e Later, use an array index lookup to compute the function fast.

How is than any faster? I mean, we’ve just called “sqrt£” a bazillion times with
numbers that we probably won’t ever need. Yes, there is extra cost, and we are
running slower during program initialization. There are at least two ways to fix this:

1. Load the array values from a pre-built binary data file instead, or,
2. Precompile the array data into a C++ source code file.

However, this complaint underestimates just how many times the code may call
these functions. Even with this startup cost, once that is all done and dusted, we
have a big array of precomputed data that we can use to speed up the program
execution, which is our main goal. And in a production environment, any extra
startup cost is hopefully amortized over many executions.

Example: Precomputing sqrt of integer: For simplicity, we’re going to first
assume that we’re computing a £1oat square root of integers. The function we are
precomputing is “int-to-float” type. This makes it easier, because the int can
be used as an array index.

Here’s my big array with about 65,000 entries:

#define AUSSIE SQRT PRECOMP MAX (1lu<<16)
float g sqrt precomp table[AUSSIE SQRT PRECOMP MAX];

Here’s the unoptimized function “int-to-float” version of “sqrt£” that we are
planning to precompute:

float aussie sqrtf basic int (int x)
{
return sgrtf ((float)x);

215 Advanced C++ Memory Techniques



Here’s the initialization call to the precomputation routine, sending in the array, the
size N, and the function pointer:

aussie generic precompute int (
g _sqrt precomp table, // Big array
AUSSIE SQRT PRECOMP MAX, // N
aussie sqgrtf basic_ int // Function pointer

)i
And here’s the code to run the big precomputation loop:

void aussie generic precompute int (float arr([],
unsigned int maxn, float (*fnptr) (int))

{
for (unsigned int i = 0; i < maxn; i++) {
arr[i] = fnptr(i);

So, that’s all there is to the startup initialization of the lookup table. Once this
function returns, we now have a big array full of data. Here’s what the new
optimized “sqrt£” looks like:

float aussie table lookup_ sqgrt(int i)

{

return g sgrt precomp table[i];

}
And we can either make that function “inline” or use a macro:

#define AUSSIE TABLE LOOKUP SQRT BASIC (i) \
( g sgrt precomp table[(i)] )

So, here are a few provisos about this code:
1. Might be slower than sqrt in hardware (needs benchmarking).
2. Unsafe array index accesses (e.g., crashes on negatives or larger values).

3. unsigned int types might overflow and spin for precomputing tables
of size “1<<32” (need to change to unsigned long).

4. The memory size of the precomputed table for 1<<16 is already about
262k (65k times 4 bytes).

David Spuler 216



Float-to-Float Precomputation

Using a precomputed table lookup for a float-to-float function is more complicated
than integers. However, this is also the main approximation needed for non-linear
functions, or even the basic math library functions like sqrtf or expf or 1ogt.

Why is it tricky? The reason that £1oat inputs are more difficult is that we need to
convert a float into an array index in order to look it up. For example, we could
try type casts:

int offset = (int) f;

But that limits us to only precalculating values for 1.0, 2.0, 3.0, etc. Our
approximation works poorly on any fractions, and we also haven’t limited the array
index to a fixed finite range, so it won’t work for any negative values or very large
positive values. And the type cast of a f1loat is also slow!

Scaled Multiple: Another idea is that we could scale it upwards to get more
decimals:

int offset = (int) (£ * 1000.0f);

This approach at least gives us 3 decimal places: e.g., 1.234 or 23.456, or similar.
We will still have to check for negatives and large values to bound it. But again, this
is even slower!

Bitwise Floating-Point Truncations: The above truncation via a floating-point
scaled multiple is not very fast. Twiddling the bits is much faster. For example,
when we have a standard 32-bit £loat type, it has 1 sign bit, 8 exponent bits, and
23 mantissa bits. This is from left-to-right, with the sign bit as the most significant
bit, and the low-end mantissa bits are the least significant bits. Remember that this
is like Scientific notation:

e Number = Mantissa x 2~ Exponent
Also, the sign bit makes it all negative, if set. Note that exponent in 8-bits encodes
the numbers -128 to +127, so that ranges from very small 2°-128 near-zero values,

to very huge 27127 sized values.

If the mantissa was in decimal, and it was “1234567” and the exponent was “17”
then we’d have:

e  Number = 1.234567 x 10"17
217 Advanced C++ Memory Techniques



If the mantissa was 23 bits, it’s actually binary digits, with about 3 binary digits per
decimal digit, so a 23-bit mantissa is about 7 or 8 decimal digits. Note that the
mantissa is actually 24 bits, not 23, because there’s an extra “implicit one” mantissa
bit, not that it changes the above calculation, but you needed to know that for C++
trivia night.

So, if we think about it for a year or two, it becomes obvious that the rightmost bits
of the mantissa are simply the rightmost digits in “1.234567”, and if we truncate
some of the rightmost bits, it’s like truncating a very small fraction (e.g., “1.234567”
becomes “1.2345” or whatever).

Hence, a first idea is just to cut off 2 of the 4 bytes of a 32-bit £1oat. This leaves
us with 1 sign bit, 8 exponent bits, and 7 mantissa bits (plus 1 implied bit makes 8
mantissa bits). In decimal, the 8-bit mantissa now encodes only about 2 or 3 decimal
digits, as if we’ve truncated “1.234567” to “1.23”.

Incidentally, congratulations, you’ve created “bloat16” type, which is what Google
did with TPUs, making a 2-byte £loat format with 1 sign bit, 8 exponent bits, and
7 stored mantissa bits. So, now you can get into your blue telephone booth, time
travel back a decade, file a patent, and retire on your royalties.

If you’re ever a contestant on Wheel of Fortune you probably won’t need to know
that the “b” in “bfloat16” stands for “brain float” and that is such a great name.
But I digress.

Anyhow, this idea actually works for precomputation. A 2-byte integer
inbloatl6 formatis easy to extract from a 4-byte FP32 float (i.c., the uppermost
two bytes). The trick for bitwise processing is to convert the float to unsigned
int, because the bitwise shift operators don’t work on float (it’s planned for
C++37, as I heard at my fungus collector’s club trivia night).

float £32 = 3.14f;
unsigned u32 = * (unsigned int*)&f32;

Extracting the top-most 2 bytes (16 bits) is simply a right bitshift:
unsigned ubfl6e = ( u32 >> 16 );

Note that here’s a good reason that we had to use “unsigned” integer type. The
right bitshift operator (>>) has undefined behavior on negatives, so “int” type
wouldn’t work predictably (or portably) if the floating-point sign bit was set.

David Spuler 218



The result is a 16-bit unsigned integer to use as the array index. Hence, there are
only 1<<16=65, 536 entries in our precomputation table. Assuming we store
results as 4-byte £1loat values, this makes the precomputation array’s memory size
about 262kb. What’s more, it works for negative f1oat numbers, because the sign
bit is still part of that shemozzle, and we also don’t need to check any minimum or
maximum bounds, because it works for all 32-bit float numbers.

Precomputing with 24-Bit Lookup Tables: Interestingly, none of the above
code is especially tied to 16-bit sizes. The bf Lloat16 version truncates 32-bit float
to 16-bit by truncating the rightmost 16 mantissa bits. But we can actually choose
to keep however many mantissa bits we like. The trade-off is that more mantissa
bits increase accuracy, but at the cost of needing a much bigger precomputation
array (doubling the storage size for each extra bit).

Let’s try only cutting the rightmost 8 mantissa bits, leaving us with 24 stored bits
total (i.e., 1 sign bit, 8 exponent bits, and 15 stored mantissa bits). The mantissa bits
reduce from 23 to 15 (plus one implied bit makes 16), so this now stores about 5
decimal digits (e.g., “1.2345”), giving quite good precision on our results. When I
tested the 16-bit version, it had some reasonably large errors of almost 0.1 in
computing sqrt, whereas this 24-bit version has much lower errors, as expected.

Code changes are minor. The bitshift operations simply change from 16 bits to 8
bits (i.e., 32-24=8 bits). This is the precomputation loop for 24 bits:

void aussie generic precomp 24bit float (float farr[],
unsigned int maxn, float (*fnptr) (float))
{
for (unsigned int u = 0; u < maxn; u++) {
unsigned int unum = (u << 8u); // 32-24=8 bits!
float £ = *(float*) &unum;
farr[u] = fnptr(f);

And this is the call to the precomputation function in the startup phase:

aussie generic precompute 24bit float (
g sqgrt float 24bit precomp table, // Bigger array
(int)AUSSIE SQRT 24bit MAX, // 1 << 24
aussie sqrtf basic float // Function pointer

) 7

219 Advanced C++ Memory Techniques



The table lookup routine also similarly shifts 8 bits, rather than 16, but is otherwise
unchanged:

float aussie table lookup sqrt 24bit float (float f)
{

unsigned u = * (unsigned int¥*)&f;

u >>= 8; // 32-24=8 bits

return g sqgrt float 24bit precomp tablelu];

Note that this only works if we are sure that both “float” and “unsigned int”
are 32-bits, so we should check that during startup with some assertions
via static_assert. If we are sure of that fact, then not only will it work, but we
don’t also need to check the array bounds. It won’t try a negative array index, and
won’t overflow no matter what bit pattern we send it in as a float.

But there is one problem. If we send the fast table lookup version the
special f1oat value of NaN (“not a number”), then the table lookup routine will
actually return a valid numeric answer, which probably isn’t what we want. Maybe
we need to add a check for that special case, and this needs more testing,.

The new size of the precomputation array is 2°24=16, 777,216, so we have
about 16.7 million results If our results are 32-bit float values,
our bloatl6 precomputed array above requires about 262kb, and the new size
with 24-bits is a lookup table (array) of about 67 megabytes. It wouldn’t have
worked on my old TRS-80 CoCo in 1986, but it'll work nowadays.

Precalculating C++ Source Files

One way to improve on the precomputation of a big array is to skip it entirely during
startup by writing a lot of code. It’s like using an Al coding copilot, only it’s not
really. I mean, come on, the day an Al writes better code than me is the day that I
retire to the hologram beach with my robot dog companions.

The idea here is to write a program to generate a C++ source file that contains the
global precomputed lookup table. Yes, it’s a C++ program that creates part of a
C++ program, which is almost like your Al has become self-aware, only one step
away from Skyner. Well, maybe not, it’s just a dumb C++ program written by a
dumb human creating some dumb data.

Anyway, this auto-generated C++ code can be compiled and linked into your C++
program, and used like a global array of data in other parts of the program. Zero
calculations are required at runtime, and the data can be read-only.

David Spuler 220



The benefit is that this auto-generated code method does not even require the time
cost of startup initialization for any precomputations. There’s not even the cost of
data file loading. Instead, the data is auto-loaded by the linker-loader during
executable file instantiation (i.e., when the user starts the app). The only downsides
for the user are that the size of the executable program increases, which means
more disk space usage, and that application program startup may take longer and it
will use more memory (regardless of whether it ever needs this precomputed data).
Also, various offline tasks take longer for the software developers, such as
compilation and linking for testing, which is why we bill per hour.

I tried this out for precalculating GELU with a 24-bit table. The C++ source file
was size 514k for 24-bit precomputation table of size 1<<24. This is what the auto-
generated source code should look like:

// Precomputed table source code:

// GELU, "gelu precomp 24bits.cpp"

float g gelu table precompute 24bits[] = {

0f,
1.793662034335765850782373866611092648039e-43f,
3.587324068671531701564747733222185296077e-431,
5.380986103007297552347121599833277944116e-43f,
7.174648137343063403129495466444370592155e-431,

b
Here’s the code to generate the code to generate the code to generate the code:

void aussie_generic setup table FP32 24bits PRINT_SOURCE (
char* nickname,
char* outfname,

float (*fnptr) (float), // e.g., GELU
int maxn, // e.g., 1<<24
float arrout[] // array to store, can be null

// Print C++ of 24-bits GELU precomputed table
if (!fnptr) {
aussie assert (fnptr);
return;
}
// Generate C++ source code so we can pre-compile the
// precomputed GELU table (24-bits)
// There are 2724 = 16.7 million numbers...
FILE* fp = stdout;
bool writingfile = false;
bool add commented number = true;
if (outfname && *outfname) {

fp = fopen(outfname, "w");

if (!fp) |
aussie assert(fp); // file write failed
return; // fail

221 Advanced C++ Memory Techniques



writingfile = true;
// No extra comments for file output version
add commented number = false;

}

unsigned int u = 0;

fprintf (fp, "// Precomputed table source code: %s, \"%s\"\n",
nickname, outfname) ;

fprintf (fp, "float g gelu table precompute 24bits[] = { \n");

char numbuf[5000] = "";
for (; u < maxn /*1<<24*/ ; u++) { // For all 2724=~16.7M
unsigned int uval = u << 8; // put zeros in the least
significant 8 mantissa bits
float f = AUSSIE UINT TO FLOAT (uval);
float g = fnptr(f); // Call GELU or whatever
if (arrout) arrout[u] = g; // Store precomputed data

// Format: %g means the smaller of %e or &f

// ... %e is the exponent format (scientific-like format)
char* buf = numbuf;

// Format %$g (Number) and suffix "f" (float constant)
sprintf (buf, "%40.40g9f", g);

if (strchr(buf, 'n')) {
// Nan or "-nan" .
strcpy (buf, "0.0 /*nan*/"); // Dummy for NaN

}
// Remove prefix padding spaces...
while (buf[0] == ' ') buf++;

// Remove suffix zeros

int len = (int)strlen (buf);
if (buf[len - 1] == 'f') len--; // skip suffix f
if (buff[len - 1] == '0") {
while (len > 5) {
if (buf[len - 1] == '0"'
&& isdigit(bufllen - 2]1)) {
if (buf[len] == 'f') {
// remove, but leave 'f'
buf[len - 1] = "f';
buf[len] = 0;
}
else {
buf[len - 1] = 0; // remove
buf[len] = 0;
}
len--;

}

else break;

}

if (add commented number) {
fprintf (fp, "%s // (%40.40f) [%u] \n", buf, £, u);
}
else { // No comments...
fprintf (fp, "%s,\n", buf);
}

David Spuler 222



// Progress update
if (u % 100000 == 0 && u != 0) {
// Progress to stdout...
if (writingfile)
fprintf (stdout, "%u -- %s\n", u, buf);
// Comment occasionally
fprintf (fp, "// U= [%ul\n", u);
}
}
fprintf (fp, "}; \n"); // Close initializer...
if (fp && fp != stdout) fclose (fp);
}

Conclusions on Source Code Generation: Does it work? Yes and no. It builds
the output file quite quickly, zipping through 1<<24 computations and writing to
disk. But I can’t get this 24-bit version with its 500k CPP source file to actually
compile in the Microsoft Visual Studio IDE. Maybe it works on Windows
command-line ot Linux GCC, but I haven’t tried.

Anyway, this self-generating code idea is certainly quite workable for table lookups
of approximations for FP16 numbers (16-bit half-precision floating-point), because
the lookup table needs to “only” contain 2716=65,536 numbers. This is about a
200k C++ source file in plain text, and creates linked data of about 65k times 4
bytes equals about 256k space usage. This would use half that space if you also store
the computation as 16-bit numbers rather than 32-bit floats or integers.

References

1. Nils Graef, 12 Mar 2024 (v3), Transformer tricks: Precomputing the first
layer, https://arxiv.org/abs /2402.13388 Code: https://github.com/Open
Machine-ai/transformer-tricks (Because the first layer only depends on
the embeddings, it can be precomputed.)

2. SZ Lin, YC Chen, YH Chang, TW Kuo, HP Li, 2024, LUTIN: Efficient
Neural Network Inference with Table Lookup, ISLPED °24, August 5-7, 2024,
Newport Beach, CA,

USA, https://dl.acm.org/doi/pdf/10.1145/3665314.3670804

3. S Fanning, Fixed Point Multiplication-Free Implementation of Deep Neural
Networks for Embedded Systems, Masters Thesis, School of Electrical and
Electronic Engineering, University College Dublin
2018, https://seanfanning.eu/posts/projects/low-bitwidth-neural-
networks/Thesis SeanFanning 13360951.pdf

4.  Mohammad Samragh Razlighi; Mohsen Imani; Farinaz Koushanfar;
Tajana Rosing LooANN: Newural network with no multiplication, Design,
Automation & Test in Europe Conference & Exhibition (DATE), 27-31
March 2017, https://ieeexplore.ieee.org/document/7927280 (Lookup-
table based multiplication.)

223 Advanced C++ Memory Techniques


https://arxiv.org/abs/2402.13388
https://github.com/OpenMachine-ai/transformer-tricks
https://github.com/OpenMachine-ai/transformer-tricks
https://dl.acm.org/doi/pdf/10.1145/3665314.3670804
https://seanfanning.eu/posts/projects/low-bitwidth-neural-networks/Thesis_SeanFanning_13360951.pdf
https://seanfanning.eu/posts/projects/low-bitwidth-neural-networks/Thesis_SeanFanning_13360951.pdf
https://ieeexplore.ieee.org/document/7927280

5. Covell M, Marwood D, Baluja S, Johnston N., Table-based neunral units: Fully
quantizing networks for multiply-free inference, 2019, arXiv preprint
arXiv:1906.04798, http:/ /arxiv.org/abs/1906.04798

6. Joonsang Yu, Junki Park, Seongmin Park, Minsoo Kim, Sihwa Lee, Dong
Hyun Lee, Jungwook Choi, Dec 2021, NN-LUT: Neural Approximation of
Non-Linear Operations for Efficient Transformer
Inference, https:/ /arxiv.org/pdf/2112.02191

7. Neelesh Gupta, Narayanan Kannan, Pengmiao Zhang, Viktor Prasanna, 8
Apr 2024, TabConp: Low-Computation CNIN Inference via Table
Lookunps, https:/ /arxiv.org/abs/2404.05872

8. Darshan C. Ganji, Saad Ashfaq, Ehsan Saboori, Sudhakar Sah, Saptarshi
Mitra, Mohammad Hossein Askari Hemmat, Alexander Hoffman,
Ahmed Hassanien, Mathieu Léonardon, 18 Apr 2023, DeepGEMM.:
Accelerated Ultra Low-Precision Inference on CPU Architectures using Lookup
Tables, https:/ /arxiv.org/abs/2304.09049

9. Grigor Gatchev, Valentin Mollov, 4 Apr 2021, Faster Convolution Inference
Through Using Pre-Calculated 1ookup
Tables, https:/ /arxiv.org/abs/2104.01681

10. Han Guo, William Brandon, Radostin Cholakov, Jonathan Ragan-Kelley,
Eric P. Xing, Yoon Kim, 15 Jul 2024, Fast Matrix Multiplications for Lookup
Table-Qnantized LLMs, https:/ /arxiv.org/abs/2407.10960

11. Davis Blalock, John Guttag, 21 Jun 2021, Multiplying Matrices Withont
Multiplying, https:/ /arxiv.org/abs/2106.10860

12. Gunho Park, Hyeokjun Kwon, Jiwoo Kim, Jeongin Bae, Baeseong Park,
Dongsoo Lee, Youngjoo Lee, 10 Mar 2025, FIGLUT: An Energy-Efficient
Accelerator Design_for FP-INT GEMM Using Look-Up
Tables, https: / /arxiv.org/abs/2503.06862

David Spuler 224


http://arxiv.org/abs/1906.04798
https://arxiv.org/pdf/2112.02191
https://arxiv.org/abs/2404.05872
https://arxiv.org/abs/2304.09049
https://arxiv.org/abs/2104.01681
https://arxiv.org/abs/2407.10960
https://arxiv.org/abs/2106.10860
https://arxiv.org/abs/2503.06862

19. Matrix Multiplication

Matrix-Vector Multiplication

Matrix multiplication by a vector gives another vector. Let us consider the simple
case first, where the matrix is square with dimensions NxIN and the vector is also
of size N. The matrix has N rows and IN columns, and the vector has IN elements.
The resulting vector will also have N elements. Conceptually, in pseudocode:

MAT[N] [N] * VIN[N] -> VOUT[N]

It’s not immediately obvious, or at least, I don’t remember my High School Math
teacher mentioning it, but matrix-vector multiplication is a bunch of vector dot
product computations. We need to do a vector dot product for each of the elements
of the output vector. Each element is a dot product of a matrix row times the input
vector. Note that the dimensions match for a dot product, with N matrix rows
and NN elements in the input vector.

Rectangular matrices. The general case of a rectangular matrix multiplied by a
vector is a little trickier, but not a lot. If our matrix is MxIN and the vector is size IN,
then the output vector has size M. Note the two of the dimensions must match: the
columns of the matrix and the elements of the input vector are both N. However,
this dimension N “disappears” and the output vector has size only dependent
on M. The pseudocode:

MAT[M] [N] * VIN[N] -> VOUT[M]

The rectangular matrix-vector multiplication is almost identical to square matrix-
vector computations. Each element of the output is a dot product of a matrix row
with the input. Again, the dimensions of the matrix rows (IN) must match the size
of the input vector (IN), or else we cannot compute it. I mean, we co/d still compute
it with mismatched dimensions, such as by assuming that the shorter one (matrix
row or input vector) had zeros in the missing elements, but that sounds buggy.

Complexity of Matrix-Vector Multiplication. The algorithmic complexity of
matrix-vector multiplication is quadratic in N, whereas matrix-matrix multiplication
is cubic in N. The basic matrix-vector multiplication scans N rows of the matrix,
with each row element performing a computation against each of the N elements
of the vector, giving two nested loops with an overall O(N"2) cost.

225 Advanced C++ Memory Techniques



Memory layout: One important point for the efficiency of matrix-vector
multiplication is that the default memory layout has contiguous addresses for both
the matrix row and the vector. Obviously, a vector is just a sequence of memory
with all the elements in series. Not so obviously, a row of a matrix, when stored as
a C++ two-dimensional array, is also a contiguous set of data (i.e., a2 matrix row is
like a vector). Hence, the dot product multiplication of a matrix row and the input
vector is simply scanning forward along contiguous addresses for both of its inputs,
which makes it easy to vectorize.

Spot the Buggy MatMul

Have alook at this code for a matrix-vector multiplication using vector dot product.
It took me a long time to realize what was wrong with this. Can you spot the bug?

void aussie matmul vector basicl buggy(
ymatrix m, float vI[], int n)
{
// Basic matrix-by-vector using vector dot products..
for (int i = 0; 1 < n; i++) {
float* rowvector = &m[i] [0];
// Dot product
float sum = aussie vecdot basic(rowvector, v, n);
v[i] = sum;

The bug is a kind of aliasing problem here:
v[i] = sum; // Bug!

It looks correct, but it’s wrong. The computation of v [1] is setting its value in the
middle of the loop, and then going around for the next matrix row, which will then
use that newly calculated v [1] value as if it was part of the input vector. Because
I’'m misusing “v” as both the input and output vector, parts of the output vector
will get used as the input vector. It’s a very insidious type of aliasing bug, and many
of my simple unit tests with zero matrices and identity matrices were still
succeeding. It’s my fault for trying to do matrix-vector multiplication as an element-
wise vector method. The solution is simple: matrix-vector multiplication needs a
third operand for the output vector.

David Spuler 226



Optimizing Matrix-Vector Multiplication

The fixed-up version of matrix-vector multiplication with row-wise vector dot
products simply outputs to another separate destination vector operand.

void aussie matmul vector basic outl(
const ymatrix m, const float v[], int n, float vout[])
{
// Basic matrix-by-vector using vector dot products..
for (int 1 = 0; i < n; i++) {

const float* rowvector = &m[i][0];
float sum = aussie vecdot basic(rowvector, v, n);
vout [i] = sum;

Nested Loop Matrix-Vector Version: The same matrix-vector multiplication
algorithm in the form of two nested loops is below. This is flattening the call to the
lower-level vector dot product function and putting its inner summation loop
directly inside the outer main loop. The basic C++ code looks like:

void aussie matmul vector basic out2(
const ymatrix m,
const float v[], int n, float wvout[])

// Basic matrix-by-vector using nested loops..

for (int row = 0; row < n; row++) {
float sum = 0.0f;
for (int col = 0; col < n; col++) {
sum += (m[row] [col] * v[col]):;
}
vout [row] = sum;

Optimizations of matrix-vector multiplication. Various ways to optimize the
naive nested loop matrix-vector multiplication suggest themselves:

113 b3

e Hoisting loop-invariant code (loop code motion) of the “m[row]
expression.

e Loop pointer arithmetic for both loops.

e Loop unrolling of the inner loop to unroll 4, 8 or more iterations.

e Loop tiling to unroll a 2x2 tile/block.

e Vectotization using the AVX1/AVX2 vector dot product versions we

already examined.

227 Advanced C++ Memory Techniques



I tried coding several more of these optimizations and here are the benchmarks:

Matrix-Vector mult (MatMulVec) benchmarks (N=2048, ITER=300):
Matrix-vector nested loops: 3480 ticks (3.48 seconds)
Matrix-vector nested loops hoisted: 3489 ticks (3.49 seconds)
Matrix-vector nested ptr-arith: 3415 ticks (3.42 seconds)
Matrix-vector unrolled inner (4): 1166 ticks (1.17 seconds)
Matrix-vector unrolled inner (8): 938 ticks (0.94 seconds)
Matrix-vector nested tiled 2x2: 1995 ticks (2.00 seconds)
Matrix-vector vecdot AVX1 DP: 1414 ticks (1.41 seconds)
Matrix-vector vecdot AVX2 FMA: 929 ticks (0.93 seconds)

Interestingly, code hoisting and loop pointer arithmetic were a waste of effort. Loop
tiling did better than the original, but probably its speedup is primarily from the
effect of loop unrolling rather than data locality or cache hit rates, since simpler
loop unrolling did better. Note that the AVX1 version used the “dot product”
intrinsic but AVX-2 used the FMA intrinsic. Simple loop unrolling also did as well
as AVX2 hardware vectorization, probably because the versions of AVX1 and
AVX2 were simply calling the vector dot product functions, so they still had
function call overhead. Hence, this algorithm can be further optimized by inlining
to fix the AVX function call overhead, combining AVX intrinsics with unrolling of
the inner loop, and then some minor final tweaks such as pointer arithmetic.

Tiled Matrix-Vector Multiplication

A more detailed analysis of the matrix-vector algorithm shows that it is not optimal
in at least three areas:

e Data locality
e Pipelining AVX intrinsic arithmetic
e Redundant loads

The data locality of the 2x2 tiled version is better, but more improvement is
possible, starting with the use of AVX intrinsics inside the “sub-kernel” for the tile.
The AVX instruction sequences of “load, calculate, store” in the eatlier non-tiled
AVX-optimized versions are not allowing for the natural instruction pipelining of
the AVX intrinsics to calculate multiple sums or FMA operations with near-parallel
pipelining. And the entire input vector is getting re-loaded repeatedly for every row
of the matrix. So, we need to examine improvements on three aspects.

A tiled sub-kernel is the main way to fix data locality and pipelining. Improving data
locality is somewhat inherent to tiling. The pipelining can be improved by unrolling
the tiled sub-kernel and reordering the loads and stores so they don’t block the
arithmetic of AVX intrinsics.

David Spuler 228



Can we avoid redundant vector loads? Since it’s unavoidable to access every
element of every row at least once, the redundant loads of the vector suggest that
we should modify the algorithm so as to work on a subsection of the vector for
each of the matrix rows. This suggests an inversion of the main nested loops of the
algorithm. However, that runs into the major problem that it destroys cache locality,
by scanning down the column of the first matrix. I benchmarked this loop
interchange idea, and it actually increased execution time. Maybe we should use the
transpose of the first matrix, so that it’s in column-major order when scanning its
columns? No, that’s actually just going back to the original algorithm without the
loop interchange.

Anyway, a better plan seems to be to reduce the redundant loading by using
temporary calculations inside the tile sub-kernel. Here is what a basic tiled/blocked
algorithm using 2x2 tiles looks like in basic sequential C++:

void aussie matmul vector tiled 2x2 better (const ymatrix m,
const float v[], int n, float vout[])

{
// Tiled/blocked matrix-by-vector using 2x2 tiling..
aussie assert(n % 2 == 0);
for (int row = 0; row < n; row += 2) {
vout [row] = 0.0f;
vout [row + 1] = 0.0f;
for (int col = 0; col < n; col += 2) {
vout [row] +=
(m[row] [col] * v[col]) // row+0, col + 0
+ (m[row] [col+l] * v[col+l]) // row+0,col+l
vout [row + 1] +=
(m[row + 1][col] * v[col]) // row+l, col + 0
+ (m[row + 1][col+l]l*v[col+1l]) // row+l,col+1l

One minor improvement would be to use memset to clear the whole output vector
to zero, rather than individual assignments, which I added to the 4x4 tiled version.
There is another minor improvement is removing the “common sub-expressions”
of vicol] and v[col+1] and I tried this with no improvement noted in the 2x2
tiled version, but about 10% improvement in the 4x4 tiled version. The
computations of m[row] and m[row+1], etc., can also be hoisted out of the inner
loop, giving another 10% gain for the 4x4 tiled version.

229 Advanced C++ Memory Techniques



The C++ code for the 4x4 tiled version with a fully unrolled 4x4 sub-kernel now
looks like:

void aussie matmul vector tiled 4x4 CSE2(const ymatrix m,
const float v[], int n, float vout[])
{
// Tiled/blocked matrix-by-vector using 4x4 tiling..
aussie assert(n % 4 == 0);
memset (vout, 0, sizeof(float) * n);
for (int row = 0; row < n; row += 4) {

const float* rowvec = &m[row] [0];

const float* rowvecl = &m[row + 1][0];

const float* rowvec?2 = &ml[row + 2][0];

const float* rowvec3 = &m[row + 3][0]
)

for (int col = 0; col < n; col += 4
float fcolO
float fcoll vicol + 11;
float fcol2 v[col + 21;
float fcol3 = v[col + 3];
vout [row] +=

(rowvec[col] * fcol0O) // row+0, col + O

+ (rowvec[col+l] * fcoll) // row+0, col + 1
+ (rowvec[col+2] * fcol2) // row+0, col + 2
+ (rowvec[col+3] * fcol3) // row+0, col + 3

v[icoll;

vout [row + 1] +=
(rowvecl[col] * fcolO) // row+l, col + 0
+ (rowvecl[col+l] * fcoll) // row+l, col + 1
+ (rowvecl[col+2] * fcol2) // row+l, col
+ (rowvecl[col+3] * fcol3) // row+l, col + 3

+
N

vout [row + 2] +=
(rowvec2[col] * fcolO) // row+2, col + O
+ (rowvec2[col+l] * fcoll) // row+2, col + 1
+ (rowvec2[col+2] * fcol2) // row+2, col
+ (rowvec2[col+3] * fcol3) // row+2, col + 3

+
N

vout [row + 3] +=
(rowvec3[col] * fcolQ) // row+3, col + 0
+ (rowvec3[col+l] * fcoll) // row+3, col + 1
+
+

+
N

(rowvec3[col+2] * fcol2) // row+3, col
(rowvec3[col+3] * fcol3) // row+3, col + 3

’

David Spuler 230



Matrix-Matrix Multiplication

Now let’s look at matrix-matrix multiplication, whereas above we looked at matrix-
vector multiplication. The proper MatMul and GEMM kernels are coded for full
matrix-matrix multiplication.

Matrix multiplication results in another matrix as the output. For the simple case
with two square matrices of the same size, the resulting output matrix is also of the
same dimensions.

In pseudocode:
MI1[N] [N] * M2[N][N] -> MOUT[N] [N]

For multiplying two rectangular matrices, or sizes MxIN and NxP, we get an output
matrix of size MxP (i.e., the inner N dimensions disappear). In pseudocode style:

M1[M] [N] * M2[N][P] -> MOUTI[M] [P]

Note that P=7 is the case of matrix-vector multiplication, because an Nx7 matrix
is actually a vector with N rows of a single element (i.e., one column).

Algorithmic Complexity. The naive implementation of a matrix-matrix
multiplication via three nested loops is a cubic algorithm, with O(N"3) complexity.
The well-known Strassen algorithm has complexity about O(IN"2.7), which looks
like such a massive improvement.

Other algorithms such as the Coppersmith-Winograd algorithm and numerous sub-
variants have better asymptotic complexity, but with a high constant overhead,
making them impracticable for anything but very large values of IN.

Basic Matrix-Matrix Moultiplication. The basic algorithm for matrix
multiplication is three nested loops. There is nothing fancy here: this is just coding
up the basic matrix multiplication method that you forgot the second you finished
your Senior math exam.

If you don’t believe me, check it out on Wikipedia.

231 Advanced C++ Memory Techniques



Here’s the C++ code:

void aussie matmul matrix basic(const ymatrix ml,
const ymatrix m2, int n, ymatrix mout)
{
// Matrix-Matrix multiplication basic naive n”3 algo
for (int row = 0; row < n; row++) {
for (int col = 0; col < n; col++) {
float sum = 0.0f;
for (int k = 0; k < n; k++) {
sum += (ml[row] [k] * m2[k][col]);
}

mout [row] [col] = sum;

The two outer loops are scanning the rows of the first matrix, and the columns of
the second matrix. The innermost of the three loops is doing a vector dot product
computation over the “k” index variable. However, it’s not a normal vector-vector
dot product. Instead, it’s the dot product of one “horizontal” vector, which is a row
of the first matrix, and of a second “vertical” vector, which is a column of the
second matrix. Hence, the number of rows in the first matrix must equal the
columns of the second matrix, which is true here because we’re assuming that both
matrices are square. Hence, the “k” variable is spinning down the n elements of a
row and a column at the same time. Every element of the NxIN output matrix
requires a vector dot product calculation like this.

Vectorization. None of these matrix multiplication algorithms are especially good,
because they are all sequential, rather than parallel algorithms. Neither the naive cubic
version nor the Strassen algorithm are what we need. What we need for GPUs and
CPU SIMD intrinsics are vectorizable algorithms for matrix-matrix multiplication.
Unfortunately, the above simple triple-nested matrix multiplication algorithm
is not one of them, because non-contiguous storage of the second matrix hampers
vectorization.

Memory layout problems for matrix-matrix multiplication: The layout of
memory for matrix-matrix multiplications is not as fortuitous as it was for matrix-
vector multiplications. Each computation in matrix-matrix multiplication is a vector
dot product of a row of the first matrix with a column of the second matrix. Each
row of the first matrix is happily stored in contiguous memory, but the columns of
the second matrix are not. In fact, the “stride” between two elements of a column
of a matrix is a very large number of bytes in the default memory layout.

David Spuler 232



The default storage of matrices and two-dimensional arrays in C++ is called “row-
major” storage layout. Row-major storage has each row in contiguous memory. The
rows are stored one at a time, top to bottom, and adjacent elements in a row are
also adjacent memory addresses. Columns are a second-class citizen in row-major
layout, and you have to jump around to find adjacent elements of a column vector.

The alternative storage method is “column-major” storage layout where the
columns are stored in contiguous memory, and it’s the rows that are in the smoker’s
carriage at the back of the train. However, column-major is not the default C++
storage mode.

Hence, to vectorize a matrix-matrix multiplication, we want to keep the first matrix
in row-major storage, but we need to rearrange the storage of the second matrix to
be column-major storage, rather than the default row-major storage. Column-major
storage would help vectorize the columns with each column element in adjacent
memory locations. The first matrix is fine, but we want the second matrix to be
stored in a mirror image of itself.

Hmm, a mirror and a matrix. What does that sound like? A transposed matrix.

Pseudo-Transposed Second Matrix. The simplest way to get column-major
order of a matrix (especially if square) is to use the transpose of the matrix, and
modify the internals of the matrix multiplication function to pretend that the
transpose is actually the column-major storage of the original second matrix. I call
it the “fake transpose” method, which is a bit of a misnomer because it is the actual
transposed matrix, but we modify the matrix multiplication code to access it with
reversed logic indices.

Confusing? Yes, I felt the same way, but if you follow it through carefully, you can
see that the transpose is really very similar to storing the original matrix in column-
major order, where each column element is stored in adjacent memory. The
columns of the original problematic matrix become fake rows in the fake transpose,
stored in sequential memory addresses. So, for square matrices, we can take the
transpose of a matrix, and it’s like the matrix has been converted into column major
storage. However, we also need to change the C++ code in the matrix
multiplication kernel, because it assumes row-major order storage of both matrices,
but now we’ve got row-major storage only for the first matrix, and column-major
storage for the second one (our fake transpose).

The main point of optimization with a transpose is that the column becomes a
contiguous vector from a row in the transposed matrix.

233 Advanced C++ Memory Techniques



Here’s what the matrix multiplication algorithm looks like when it’s working on a
“fake” transpose:

void aussie matmul matrix fake transpose(const ymatrix ml,
const ymatrix m2, int n, ymatrix mout)
{
// Matrix-Matrix naive n”3 algorithm on a TRANSPOSE...
for (int row = 0; row < n; row++) {
const float* rowvec = &ml[row] [0];
for (int col = 0; col < n; col++) {
float sum = 0.0f;

const float* colvec = &m2[col][0]; // Row!
for (int k = 0; k < n; k++) {
sum += (rowvecl[k] * colvecl[k]);
}
mout [row] [col] = sum;

Note that the above code assumes the transpose has already been computed.
However, it is viable to compute a new transpose matrix in a preliminary step and
still be faster, because transposing a matrix only adds an extra O(N"2) time to
compute the transpose (and N2 storage space to store it temporarily), whereas the
main matrix multiplication is O(IN"3) time.

Perhaps surprisingly, this transpose method is much faster even without any
vectorization. Because the column vectors are accessed in sequential order from
contiguous memory, there is much better data locality for the memory cache, and
also for any predictive pipelining happening in the cache. Here’s the benchmark
comparison:

Matrix-Matrix mult (MatMul) benchmarks (N=2048, ITER=1):
Matrix-matrix mult basic: 69479 ticks (69.48 seconds)
Matrix-matrix fake transpose: 47469 ticks (47.47 seconds)

The transpose method is 31% faster with an unchanged basic MatMul algorithm.
And all we did was permute two indices in a two-dimensional array. This code does
exactly the same arithmetic computations as the naive version, but accesses memory
in a different order, giving us a cache speedup.

There are various other small coding optimizations that can improve the transposed
MatMul method further. The loop body could be partially unrolled by 4 or 8
iterations (or more). Here’s the C++ code of the version with an unrolling factor
of 8 iterations:

David Spuler 234



void aussie matmul matrix fake transpose unrolleds8(
const ymatrix ml, const ymatrix m2, int n, ymatrix mout)
{

// Transpose Matrix-Matrix multiplication 8 iter unroll

aussie assert(n % 8 == 0);
for (int row = 0; row < n; row++) {
const float* rowvec = &ml[row] [0];

for (int col = 0; col < n; col++) {
float sum = 0.0f;

const float* colvec = &m2[col][0];
for (int k = 0; k < n; k += 8) {
sum += (rowvecl[k] * colvecl[k])

+ (rowvecl[k + 1] * colveclk + 117])
+ (rowvecl[k + 2] * colveclk + 21])
+ (rowvecl[k + 3] * colvecl[k + 3])
+ (rowvecl[k + 4] * colveclk + 41])
+ (rowvecl[k + 5] * colveclk + 5])
+ (rowvecl[k + 6] * colvecl[k + 6])
+ (rowveclk + 7] * colveclk + 7])

}

mout [row] [col] = sum;

Here are the benchmark results:

Matrix-Matrix multipl (MatMul) benchmarks (N=2048, ITER=1):
Matrix-matrix fake transpose unroll 4: 15221 ticks (15.22 s)
Matrix-matrix fake transpose unroll 8: 12151 ticks (12.15 s)

Further tweaks are possible. The internal loop could be fully unrolled for a known
vector size. Also, the initialization “sum=0.0£” could be removed by peeling the
first iteration and starting the loop at “k=1". Pointer arithmetic could be used to
avoid loop indices and the double bracket accesses. However, these are small fry,
and we’re now on the hunt for the Spanish mackerel of MatMul
optimizations: vectorigation.

Vectorized MatMul

Cache speedup is not the only benefit of the transpose method. Once we have
column-major storage for the second matrix, then both the rows of the first matrix,
and the columns of the second matrix are in contiguous memory. The computation
is a normal vector dot product again on two vectors stored as arrays in memory
(.e., “rowvec” and “colvec” in the C++ code above). Hence, we can re-use all
of our standard vector dot product speedups again, including vectorization and
hardware acceleration.

235  Advanced C++ Memory Techniques



As an example, here’s the AVX-2 vectorization of the transpose method using the
FMA 256-bit intrinsics to do the vector dot product in parallel. This parallelizes the
dot product by 8 elements at a time:

void aussie matmul matrix fake transpose vecdot AVX2 (
const ymatrix ml, const ymatrix m2, int n, ymatrix mout)

{
// AVX2 Matrix-Matrix multiplication

o)

aussie assert(n % 8 == 0);
for (int row = 0; row < n; row++) {
const float* rowvec = &ml[row] [0];
for (int col = 0; col < n; col++) {
const float* colvec = &m2[col][0];
mout [row] [col] =
aussie vecdot FMA unroll AVX2 (rowvec,
colvec, n);

Here are the benchmark results:

Matrix-Matrix multi (MatMul) benchmarks (N=2048, ITER=1):
Matrix-matrix fake transpose AVX1l: 19522 ticks (19.52 s)
Matrix-matrix fake transpose AVX2: 12747 ticks (12.75 s)

If anything, these AVX results are disappointing. Basic loop unrolling techniques
(in the prior section) did better than AVX1 and the same as AVX2 vectorization.
However, we haven’t used AVX optimally inside the sequential code here. The
AVX intrinsic calls should be moved up into the loop body without any function
call overhead (i.e., inlining the function manually). I coded up that idea, and it made
almost zero difference! I guess the C++ compiler is already inlining it, or function
call overhead is a tiny percentage.

Further parallelization speedups would include using AVX-512 or AVX-10
intrinsics for vectorizing 16 elements in parallel. Also desirable are vatrious further
optimizations of the sequential code around any AVX intrinsics. The inner “col”
loop could be fully or partially unrolled with multiple AVX sequences and/or
optimized with pointer arithmetic.

David Spuler 236



Loop Tiled/Blocked MatMul

The triple-nested MatMul version with the vectorized inner loop is still nowhere
near what is possible. There are three more ways to increase throughput:

e Data locality within the matrices.
e Pipelining of the SIMD instructions.
e Avoiding repeated loads of the same data.

The data locality of the basic AVX transposed MatMul algorithm is still far from
optimal, although we fixed the most egregious problem by using the transpose. The
algorithm is simply scanning down all of the dimensions, without really any attempt
to maintain data locality.

The method of calling AVX intrinsics is simply doing “load, FMA, store” repeatedly
along blocks of 4 or 8 elements, which does not allow for the natural pipelining of
the FMA instructions. The loads and stores are interrupting the flow of
computation.

Secondly, if you look carefully at the “load” operations that are happening in the
sequence, you realize that it is repeatedly loading the same regions of the matrices.

Tiling or blocking the MatMul loops are far more effective. The basic idea is that
instead of scanning sequentially, we process smaller square or rectangular “tiles” or
“blocks” of the data, one at a time. Data locality is the main aim of a tiled algorithm,
but it also helps us achieve better pipelining of SIMD instructions, because we can
load all the data in, and then perform multiple arithmetic operations on it without
any intervening loads or stores. And since a tiled MatMul is iterating more carefully
over smaller blocks of data within the matrices, there’s also less redundant loading
of the data overall.

Fast Matrix Multiplication Theory

The main techniques for faster matrix multiplication of general matrices include:
e Strassen’s algorithm

e Winograd’s algorithm
e  Fast Foutier Transform (FFT) methods

237 Advanced C++ Memory Techniques



Matrix multiplications can also be sped up by restricting our algorithm to only use
matrices that are of special types:

e Low-rank matrix factorization
e Sparse matrices
e  Special matrix methods (e.g., Butterfly matrices, Monarch matrices, etc.)

Each of these specialized matrix types can have a faster matrix multiplication kernel
than using the all-purpose GEMM kernel. For example, sparse matrices can be
stored in a compacted permuted-tuple format, with parallelization of permutation
arrays for computation.

Approximate Matrix Multiplication. Approximate Matrix Multiplication (AMM)
refers to a variety of complicated model optimization techniques that replace matrix
multiplications with various approximations that avoid the cost of arithmetic
multiplication, trading off some accuracy. These methods are usually distinct from
quantization methods, are not specific to certain subclasses of matrices, and evoke
more advanced mathematics in the theory of matrices.

Note that these algorithms apply at the high-level of how matrices are multiplied
with other matrices or with vectors (e.g., avoiding some vector dot products),
whereas there are also low-level optimizations of the arithmetic operation of
multiplying two numbers.

These two classes of approximation research are not the same, and are actually
orthogonal to each other.

Multiplying by Transpose

The transpose of a matrix is commonly used in matrix multiplications, both as part
of the algorithms and as a speedup. For example, this occurs in Al engines with the
QKYV matrix computations inside the attention heads, where the transpose of K is
used, usually denoted as KT in the algebraic formula.

Note that this is the actual algebraic use of the rea/ transpose, as opposed to the idea
of using a “fake transpose” to get column-major storage of matrices for easier
vectorization.

David Spuler 238



The code to compute the transpose of a matrix is shown below for a square matrix:

void aussie matrix transpose basic(
const ymatrix ml, int n, ymatrix transpose)
{
// Transpose: put the transposed matrix
// into the output matrix (square matrix)
for (int 1 = 0; i < n; i++) {
for (int j = 0; j < n; J++) |
transpose[j]1[i] = ml1[i][3];

The funny thing is that if we want to multiply a “real” transpose as the second
matrix in some computation, then the original non-transposed matrix is the “fake
transpose” of the “real” transpose.

How awkward!

But it’s actually good, because we usually already have the original matrix in
memory, and we don’t even need to compute the (real) transpose. Instead, to do a
MatMul of a matrix with this real transpose, we can instead use the original matrix
as the second operand in the kernel that is based on the column-major storage of a
fake transpose.

Oh, dear, I feel like it’s all circular and I'm digging myself into a word pit here! But
it all works out in the end, and it’s fast, which is really the one and only thing.

239  Advanced C++ Memory Techniques



References

1. Ulrich Drepper (2007), What Every Programmer Shoutd Know About Memory,
November 21, 2007, http://people.redhat.com/drepper/cpumemoty.pdf

2. Kazushige Goto (2008), Anatomy of High-Performance Matrix Multiplication,
ACM Transactions on Mathematical Software, Volume 34, Issue 3,
Article No.: 12, May 2008, pp 1-
25, https://doi.org/10.1145/1356052.1356053,
PDF: https://www.cs.utexas.edu/~flame/pubs/GotoTOMS revision.pd
£

3. Harald Prokop (1999), Cache-Oblivions Algorithms, Masters Thesis, MIT,
June 1999, http://supertech.csail. mit.edu/papers/Prokop99.pdf

4. Intel (2023), Intel® 64 and LA-32 Architectures Optimization Reference Mannal:
Volume 1, August 2023, 248966-Software-Optimization-Manual-V1-
048.pdf

5. Agner Fog (2022), VVector Class Library
(I’CL), https:/ /www.agner.org/optimize/vel manual.pdf

6. Sergey Slotin (2022), Matrix Multiplication,

Algorithmica, https://en.algorithmica.org/hpc/algorithms/matmul/ Cod
e: https://github.com/algorithmica-
org/algorithmica/blob/master/content/english /hpc/algorithms /matmul

.md

David Spuler 240


http://people.redhat.com/drepper/cpumemory.pdf
https://doi.org/10.1145/1356052.1356053
https://www.cs.utexas.edu/~flame/pubs/GotoTOMS_revision.pdf
https://www.cs.utexas.edu/~flame/pubs/GotoTOMS_revision.pdf
http://supertech.csail.mit.edu/papers/Prokop99.pdf
https://www.agner.org/optimize/vcl_manual.pdf
https://en.algorithmica.org/hpc/algorithms/matmul/
https://github.com/algorithmica-org/algorithmica/blob/master/content/english/hpc/algorithms/matmul.md
https://github.com/algorithmica-org/algorithmica/blob/master/content/english/hpc/algorithms/matmul.md
https://github.com/algorithmica-org/algorithmica/blob/master/content/english/hpc/algorithms/matmul.md

Part III: Memory Safety
Techniques

241  Advanced C++ Memory Techniques



David Spuler 242



20. Memory Safety Techniques

Memory Safety Thoughts

As a response to Bjarne Stroustrup’s call to action regarding “C++ attacks” related
to memory safety [1], I decided to compile a list of the possible methods, and count
them. It’s disheartening to see ongoing knee-jerk reactions to C++ memory issues,
being effectively just to ban it. The plan to replace C++ with another programming
language, usually Rust, is not a good idea because:

e It’s expensive,
e It’s not necessary, and
e It’s too slow.

It’s much more expensive to hire new programmers and do a ground-up rewrite
with your application, than it is to refactor the code with extra memory safety
mitigations. Admittedly, your C++ programmers are already expecting to get fired
because of Al so go crazy if you really like firing people. I guess you could be kinder
and ask your C++ programmers to retrain in Rust, but then what you really have is
a bunch of newbie programmers writing your business applications.

And it’s not necessary. The cost of upgrading C++ to better memory safety is much
less. Even upcoming standards improvements, such as “Profiles” as espoused by
Bjarne Stroustrup [2], will only require code changes similar to getting C++ to work
with a very picky compiler (because Profiles are statically enforced by the compiler).
Similarly, adding pragmatic memory safety approaches is similar to a code
refactoring effort, not a rewrite. Furthermore, some approaches that you can do
today involve the use of new builds, new compiler tools, and upgraded standard
libraries, rather than code changes.

Which one is faster? The ground-up rewrite really doesn’t sound that fast to me.
Many of the pragmatic code changes are a refactoring effort, where many existing
techniques can be integrated into existing code bases in a day or so. Similarly,
changes to the tools in build, compilers, static analyzers, and runtime checkers, are
all very fast, with no code changes (except when they find bugs, hahal).

243 Advanced C++ Memory Techniques



Over 100 Memory Safety Techniques

Herewith, I provide a list of all the C++ memory safety risk mitigation methods of
which I’'m aware, in the categories of:

Upcoming C++ language safety features (e.g., Profiles 2], Safe C++).
Already-completed and ongoing C++ mitigation work (e.g., C++ Core
Guidelines, hardening standard C++ libraries).

Pragmatic memory safety coding approaches (e.g., safety wrapper
functions).

Without further ado...

>

10.

11.
12.
13.
14.

C++ Safety Future Standardization Efforts:

Profiles [2] — supported by Bjarne Stroustrup, with C++ memory-safety
enforceable by the compiler statically.

Safe C++ — C++ language extensions with “safe” and “unsafe”
keywords.

TrapC

FilC

Mini-C

Existing C++ Safety Guidelines:

C++ Core Guidelines — from C++ standardization gurus Bjarne
Stroustrup and Herb Sutter.

SEI CERT C++ Secure Coding Guidelines

SEI CERT C Secure Coding Guidelines

Big Quality Improvements (General Approaches):

Automate full test runs regulatly — use CI/CD, ot nightly builds when it
gets too slow for CI/CD.

Nightly build tests with sanitizers/runtime checkers — detect bugs as eatly
as possible.

Fuzzing — thrash your code with lots of weird stuff, long inputs, etc.
Fuzzing with runtime sanitizers — it’s slow, but worth it.

Al code checking and debugging — it’s already good, and will be great.
Review “technical debt” — but fixing it is not usually as impactful as
programmers think.

David Spuler 244



15.
16.
17.

18.

19.

20.

Build Improvements for Safety:

Run memory safety checkers and sanitizers regularly — e.g., nightly builds.
Use multiple runtime memory safety checkers — Valgrind, ASan, MSVS.
Build a custom memory-safe coding style enforcer — e.g., even grep for
a file of patterns containing the names of memory-unsafe functions works
quite well.

Extra warnings — separate build path for running compilers enabled with
extra picky warnings.

Optimizer levels — separate build path for running code with different
optimizer levels to shake out rare but insidious memory errors that only
occur when optimized.

Run builds on multiple platforms of your core platform-independent code
(Windows, Linux, Mac) — more compiler warnings, more ways to thrash
the code at runtime, more sanitizers (you can always spin up a cloud virtual
machine for whatever platforms you need).

General Safe Coding Style Improvements:

21.
22.
23.
24,
25.
20.
27.
28.

29.

30.

31.
32.
33.

Assertions

Check return codes

Validate incoming parameter values in functions

Debug tracing macros (logging)

Unit tests (can never have too many)

Module-level tests

Automated integration tests

Exception handling — consider whether to use C-style return codes versus
C++ try/catch exceptions.

Painstaking work — adding reliability to code is endless small
improvements, not just throw an exception and you’re done.

Specific Coding Improvements for C++ Memory Safety:

Use macro wrappers to ensure checking of return codes for common
functions (both library and custom code) — this is more general
than [nodiscard] which guarantees only that the return code is assigned
somewhere, but not that it’s well handled, whereas a wrapper guarantees
that failures are at least logged somewhere (and then hopefully properly
handled by the caller).

Unreachable code marked with assertions or other handling.
Not-yet-implemented code marked with assertions or other handling.
Safety wrapper functions for common library or non-library functions —
validate inputs, check for common usage errors, and check the return value
for failure so it’s never undetected.

245  Advanced C++ Memory Techniques



34.

35.

36.

37.

38.

39.

40.

41.

42.
43.
44.
45.
406.
47.
48.

49.

50.

Detect uncommon “undefined behavior” in wrapper functions — e.g.,
overlapping memory blocks in memcpy, file read and write without
intervening seek, etc.

Intercept fatal signals (e.g., SIGSEGV) with a handler that at least prints a
nice message and ideally even a stacktrace — no, you can’t really recover
at this point, but you can provide extra debugging context for
supportability; also watch out it doesn’t get re-raised.

DIY Memory Safety Classes:

Safe smart buffer class (two-variable method) — add a second “buffer
safety checker” object to watch an existing buffer.

Safe smart buffer class (one-variable method) — replace simple buffer
variables with a templated smart buffer object of the required size

Heap Memory Safety Methods for C++:

Macro interception of C-style memory primitives (malloc, calloc, free,
strdup, etc.)

Link-time interception of C++ new/delete memory primitives — it’s been
a standard feature of C++ for many years.

Implement a randomized delayed deallocator — this blocks most Use-
After-Free attack vectors.

DIY Heap Memory Safety Wrapper Libraries for C++:

Validate all memory primitives (e.g., detect free non-heap, double-
deallocation, mixed C/C++ memorty primitives, null pointers, ovetlapping
memory blocks, and more.)

Use canary values for a fast way to detect buffer overflows.

Use “last-byte-null” canary values in string buffers.

Use redzones to detect buffer overflows.

Detect buffer underflows with canaries and redzones.

Poison uninitialized or freed memory blocks

Poison after the null byte in long buffers containing short strings.
Implement a “never-free” approach to detect all Use-After-Free errors —
probably only in testing, not production.

Check  memory  block  size  parameters are not  equal
to sizeof (char*) — indicating sizeof used on a pointer or array
parameter, then passed to memset or other functions.

Find memory block sizes in safety wrapper functions — each platform has

its own way to find the size of an allocated block using the address of the
start of the block (but not from the middle of the block).

David Spuler 246



51.

52.

53.

54.

55.

56.

57.

58.
59.

60.

61.

62.

63.

64.

65.
66.

Stack Memory Safety Methods for C++:

Macro interception of C-style stack memory primitives (alloca, other
variants, etc.)

Use a runtime sanitizer that detects stack buffer overflows (i.e., not
Valgrind).

Use a stack overflow canary object as a local variable — the constructor
sets it to a fixed value, and the destructor checks the value hasn’t changed,
or calls abort if it has. Use volatile to prevent a smart optimizer
removing it.

Use a semi-randomized stack overflow canary object — to further thwart
stack buffer overflow attacks, don’t just use a fixed value, but a semi-
random value that changes with time.

Use an obscured pair of numbers in a semi-randomized stack object —
both values are stored in the stack object and can be overwritten, so even
further you can either: (a) allocate heap memory for the expected value
(effective but inefficient), or (b) use some obscure formula to generate and
validate the two values.

Compile-Time Memory Safety Methods for C++:

Warning-free compilation policy — fix all compiler warnings, even the
“unused variable” ones, lest they hide serious bugs.
Use static_assert — e.g., check the sizeof for your types at

compile-time (avoids portability glitches later).
Specific Coding Improvements for Non-Memory Safety:

Add loop counters to detect and prevent infinite loops

Add [nodiscard] to your functions to detect thrown-away return
codes.

Add a standardized stack trace reporting library — you can
use std: :backtrace, Boost or Gnu; useful for assertions, return code
failures, memory failures, etc.

Add math function wrappers — e.g., cos (90) is probably mistaking
radians and degrees.

Add  fopen/fclose  file  function  wrappers ~—  prevent
double fclose errors, and other crashes.
Safe integer classes to detect overflow — a little slow for my taste.

Weird arithmetic problems:

Check for arithmetic overflow and underflow

Check for floating-point overflow and underflow

Beware floating-point denormalized values — tiny and weird.

247  Advanced C++ Memory Techniques



67.
68.
69.
70.
71.

72.

73.

74.
75.
76.
77.
78.
79.
80.
81.

82.

83.
84.
85.
86.

87.

Two floating-point zeros — there is now a level negative-zero.

Floating point has many different values for infinity and negative infinity.
Otder of evaluation errors on various binary operators.

Otrder of evaluation errors on function call arguments.

Floating-point runtime error checker tools — seems like these are only in
research papers, not used commercially yet.

Basic Standard C++ Coding Changes:

Use references not pointers — references are a longstanding compiler-
enforced way to replace pointers, with zero extra runtime cost.

Use “const cotrectness” — I’'m not a fan of this, because it’s a lot of busy
work if the code doesn’t already adhere to proper const usage, and fixing
it rarely finds any real bugs.

Unsafe C-style Functions:

Change sprintf to snprintf — but beware using its return value.
Use safe versions of unsafe string primitives (e.g., strcpy, strcat)
Avoid or wrap strncpy — it’s actually unsafe despite having a buffer size
parameter because it can leave a string without a null byte.

Avoid £flush (stdin) — officially undefined behavior, although I've
seen it used and it’s simply a nop.

Avoid the old strncat function — Write your own safe version
of strcat instead.

Prefer memmove to memcpy — it handles overlapping ranges without
failure.

Avoid longjmp and setjmp for exception handling — they’re old,
unsafe, and superceded by many other options.

Avoid tmpfile and mktemp — they have a race condition that’s a
security risk.

Avoid scanf and sscanf — they’re just a hot mess!

Standard C++ Library Memory Safety Techniques:

Use std: :string not char* or char|[].

Use std: : span — safe view onto other array data.

Use std: :mdspan — safe view onto multi-dimensional data.

Use standard data structure classes — don’t write your own hash table ever
again.

Use standard smart pointer types (e.g., shared ptr, weak ptr, etc.)

David Spuler 248



88.
89.
90.

91.

92.
93.

94.
95.
96.
97.

98.
99.

Sanitizer Tools for Runtime C++ Memory Safety Checking:

Valgrind (free on Linux)
ASan (address sanitizer, free)
Various commercial runtime memory checkers

Compilers for C++ Memory Safety:

GCC warning options (-Wall is my favorite, and there’s ~Wextra, -
Wpointer-arith, and vatious others)

CLANG warnings — enable more to check more.

MSVS warnings — click on some checkboxes.

Linters for C++ Memory Safety:

Use compilers and extra warnings as linters

Set up a separate “lint” build path (e.g., “make 1int”)
Use freeware linters

Use commercial linters

Library Improvements for C++ Memory Safety:
C++ standard library hardening efforts
libc++ hardening

100.Debug versions of libc++ — with extra error checking, self-validation, and

instrumentation.

Sigh. Okay, so 1 admit they’re not all about memory safety, but some are more
about software quality and non-memory undefined behaviors.

On the other hand, I didn’t list out every different warning to use for each compiler,
every free and commercial lint checker, every different type of memory error, and

SO on.

249  Advanced C++ Memory Techniques



References

1. Thomas Claburn, Sun 2 Mar 2025, C++ creator calls for help to defend
programming language from 'serious attacks": Bjarne Stroustrup wants
standards body to respond to memory-safety push as Rust monsters lurk
at the door, The
Register, https://www.theregister.com/2025/03/02/¢ creator calls for

action

2. Bjarne Stroustrup, March 2025 (accessed), *"Profiles" -- What we
need, https://github.com/BjarneStroustrup /profiles

David Spuler 250


https://www.theregister.com/2025/03/02/c_creator_calls_for_action
https://www.theregister.com/2025/03/02/c_creator_calls_for_action
https://github.com/BjarneStroustrup/profiles

21. DIY Memory Safety

Why DIY Memory Safety?

Well, because you fix some bugs yourself! Instead of waiting for compiler vendors
to add a “-safe” option, or the standards organizations to define “Safe C++”
language, you do it yourself!

These are the main memory safety issues in C++:
e Array bounds writes (buffer overflow writes)
e Array bounds reads (buffer overflow reads)
e Uninitialized memory usage (e.g., malloc, new, stack buffers).
e  Use-after-deallocation (i.c., reads or writes after free or delete).
e Double-deallocation (i.e., double-free, double-delete).

There are also other special cases of memory issues:

e Tile pointer misuses (e.g., double-fclose).
e Text buffer overruns (e.g., string copy overwrites).

Strategies for DIY Memory Safety

There are two overarching strategies, which are the opposite of each other:

e Make some failures harmless (e.g., get rid of uninitialized memory usage
errors by always initializing memory to zero).

e Detect more failures by automatically causing memory problems
intentionally.

You can pick one of these and do it for both developer testing and production runs
by customers.

251 Advanced C++ Memory Techniques



Or you can vary the idea:

e Detect more bugs in developer mode.
e Make the bugs harmless in production mode.

Why would we do this? Why not just run AddressSanitizer or valgrind?
There’s a few reasons:

e The sanitizers run too slow, so we cannot use them all the time, or in

production.

e If we implement fast DIY methods, we can use them continually during
testing.

e If they’re really fast, we might even leave the self-checks in for production
runs.

The DIY techniques to detect more bugs inside your own code include:

e Canary regions (“redzones”) around memory blocks.

e Poisoning memory inside the blocks with error-triggering values.

e Magic values for statuses stored in buffers.

e TFulladdress tracking (i.e., your own hash table of memory block addresses).

Hence, there are multiple levels of error detection, ranging from super-fast to
almost-as-slow-as-valgrind.

Making Uninitialized Accesses Harmless

There’s another option: just fix it! Instead of trying to find the bugs, just make them
disappear by becoming harmless. This is particulatly true of the whole class of
memory bugs base on uninitialized memory reads.

Why are these even bugs? They seem more like language design failures, with too
great a focus on speed. The basic problem with standard C++ and memory
initialization is this patchwork of choices:

e  Global variables are initialized to zero (hoorayl).

e Local static local variables are initialized to zero (hooray!).

e  Stack variables are not initialized to zero (bool).

e Heap-allocated memory blocks are sometimes initialized to zero (bool!).

David Spuler 252



For heap memory allocation, we have again a patchwork:

e malloc memory is never initialized.

e calloc initializes to zero always.

e new of object types relies on constructors to initialize.

e new of arrays of objects relies on (many) constructors to initialize.

e new of primitive data types does not initialize at all (single variables or
arrays).

e realloc does not initialize extra memoty.

Really we want: change all malloc and new calls to calloc. Then a whole class
of memory safety issues just disappears! Honestly, rather than detecting
uninitialized memory uses, shouldn’t we just make them a non-issue? Why would
we even bother trying the other strategy of filling uninitialized memory with
poisoned values, when we could just fix it everywhere?

Intercepting C++ Primitives

Here are the basic strategies for how to integrate safety into your code with DIY
fixes to your codebase:

e Coding style to require calling safe functions
e Wrapper functions to automatically fix or detect issues.

The way that debug wrapper functions work includes these ideas:

e  Macro intercepts of malloc, calloc, and free.

e Link-time intercepts of new and delete operators.
e Macro intercepts for strlen and strcpy, etc.

e Macro intercepts for fopen and fclose.

We have to be aware of a few issues:

e Macro intercepts won’t get any allocations from any less-used primitives
we don’t intercept.

e Macro intercepts won’t see anything in third-party libraries (including
Standard C++/STL).

e Link-time new and delete intercepts will see Standard C++ calls (which
can be good or bad).

e Link-time new and delete intercepts must define four versions, two for
objects, and two array versions.

253  Advanced C++ Memory Techniques



e There’s no simple way to intercept stack-based memory operations for
local variables (i.e., from function calls or returns).

e We can macro-intercept stack-based alloca calls, but it’s hard to know
when the function returns.

e We can macro-intercept fopen type file operations, but it’s hard for
C++ fstream types.

Overall, the DIY memory safety approach is a patchwork of techniques in itself. It
would be so much easier if the compiler vendors would just add a “~-safe” flag
that does all this!

David Spuler 254



22. Intercepting Memotry
Primitives

Interception Methods

Intercepts can be useful for both performance instrumentation and memory error
detection or prevention. There are two main ways to intercept memory primitives
in your C++ code.

e Preprocessor macro interception — used for old-style allocation functions
like malloc and free.
e Link-time interception — used for new and delete operators.

Once you have a successful intercept, it’s amazing the things you can do! Here are
some ideas:

e Detect various types of memory errors

e Prevent some types of memory crashes

e Track statistics on memory allocations

e Detect and prevent errors in various non-memory functions

Preprocessor Macro Intercepts

There are different approaches to consider when wrapping system calls, which we
examine using memset as an example:

e Leave “memset” calls in your code (auto-intercepts)
e Use “memset_wrapper” in your code instead (manual intercepts)

Macro auto-intercepts: You might want to leave your code unchanged
using memset. To leave “memset” in your code, but have it automatically call

“memset wrapper” you can use a macro intercept in a header file.

#undef memset // ensure no prior definition
#define memset memset wrapper // Intercept

255  Advanced C++ Memory Techniques



Note that you can also use preprocessor macros to add context information to the
debug wrapper functions. For example, you could add extra parameters to
“memset wrapper” such as:

#define memset (x,vy,2z) \
memset wrapper ((x), (y),(z), FILE , LINE , func )

Note that in the above version, the macro parameters must be parenthesized even
between commas, because there’s a C++ comma operator that could occur in a
passed-in expression. Also note that these context macros (e.g., FILE ) aren’t
necessaty if you have a C++ stack trace library, such as std: :stacktrace, on
your platform.

Variadic preprocessor macros: Note also that there is varargs support in
C++ #define macros. If you want to track variable-argument functions
like sprintf, printf, or fprintf, or other C++ overloaded functions, you can
use “...7and “ VA ARGS _” in preprocessor macros as follows.

#define sprintf (fmt,...) \
sprintf wrapper ((fmt), FILE , LINE , \
__func__, VA ARGS__ )

Manual Wrapping: Alternatively, you might want to individually change the calls
to memset to call memset wrapper without hiding it behind a macro. If you’d
rather have to control whether or not the wrapper is called, then you can use both
in the program, wrapped or non-wrapped. Or if you want them all changed, but
want the intercept to be less hidden (e.g., later during code maintenance), then you
might consider adding a helpful reminder instead:

#undef memset
#define memset dont use memset please

This trick will give you a compilation error at every call to memset that hasn’t been
changed to memset wrapper.

David Spuler 256



Link-Time Interception: new and delete

The idea of a tool to test memory allocations is to shine light on the hidden calls
that create and destroy allocated memory. This helps examine how containers are
using allocated memory, and it’s not usually pretty!

Macro interception does not work for the new and delete operators, because
they don’t use function-like syntax. Fortunately, you can use link-time interception
of these operators instead, simply by defining your own versions. This is a standard
feature of C++ that has been long supported.

Note that defining class-level versions of the new and delete operators is a well-
known optimization for a class to manage its own memory allocation pool, but this
isn’t what we’re doing here. Instead, this link-time interception requires defining
four operators at global scope:

e new and new(]
e delete anddelete]]

There’s a pitfall in implementing our intercepted versions. You cannot use the
real new and delete inside these link-time wrappers. They would get intercepted
again, and you’d have infinite stack recursion.

However, you can call malloc and free instead, assuming they aren’t also macro-
intercepted in this code. Here’s the simplest versions:

void * operator new(size t n)

{

return malloc(n);

}

void* operator new[] (size_ t n)

{

return malloc(n);

}

void operator delete(void* v)

{

free(v);

}

void operator delete[] (void* v)

{

free(v);

}

257 Advanced C++ Memory Techniques



This method of link-time interception is an officially sanctioned standard C++
language feature since the 1990s. Be careful, though, that the return types and
parameter types are precise, using size t andvoid*, as you cannot
use int ofr char*.

Also, declaring these intercept functions as inline gets a compilation warning,
and is presumably ignored by the compiler, as this requires link-time interception.

Memory Debug Wrappers

I’ve always used this intercept method for some self-testing debug wrappers. Here’s
an example of some ideas of some basic possible checks you can do in these
intercepted operators:

void * operator new(size t n)
{
if (n == 0) {
AUSSIE ERROR ("new operator size is zero");
}
void *v = malloc (n);
if (v == nullptr) {
AUSSIE ERROR ("new operator: alloc failure");
}

return v;

Note that you can’tuse  FILE or LINE  as these are link-time intercepts,
not macros. However, you could use std: :backtrace in C++23 instead.

Memory Performance Analysis

We can also use the idea of link-time interception to do performance improvement
on memory allocation. This helps us find the slugs in both standard containers and
our own code.

The modified version of these link intercepts is shown in the Appendix, with full
source code. The idea is that you can examine the behavior of code by wrapping
memory debug calls around it:

memory reset counters();
std::vector<int> v;
memory report();

David Spuler 258



This allows investigation of the memory characteristics of any sequence of code.

It’s quite enlightening to investigate what sort of actions in the standard C++
libraries will trigger memory allocations.

Unit Testing of Memory Allocation. Another useful idea is to add unit tests to

your build, so as to ensure that nobody’s accidentally added some memory
allocations to the code.

memory reset counters();
std: :vector<MyClass> v;
TEST (s_new _count == 0); // No memory allocations!

You know what I mean: trust but verify!

259 Advanced C++ Memory Techniques



David Spuler 260



23. Smart Pointers

Overview of Smart Pointers

Smart pointers are a major addition to the C++ language in C++11. The three main
types of smart pointers are:

e std::unique ptr — exclusive ownership of an object.

e std::shared ptr — reference-counted multiple owners.

e std::weak ptr — notan ownet, but keeping an eye on things.
These classes are defined in the <memory> header file, and are templated by the
type of the object. There was also std::auto_ptrin C++98, but that was
deprecated in C++11 and finally removed in C++17.
The main features of the smart pointer library include:

e Use smart pointers like raw pointers via the *, [] and -> operators.

e Automatic deallocation of the object when the smart pointer disappears.

e Destructors called for the underlying object.

e Automatically chooses delete for objects and delete[] for arrays.

And some of the advanced features include:

e Thread-safety of the smart pointers library.
e Custom deleters can be used for actions on smart pointer destruction.

But we’re getting ahead of ourselves there.

Basic Smart Pointer Usage

Here’s a couple of empty smart pointer declarations that are managing nothing yet:
std::unique ptr<Object> upl;

std::shared ptr<Object> spl;
std::weak ptr<Object> wpl;

261 Advanced C++ Memory Techniques



However, those declarations are smart pointers without a pointer! The normal
scheme of things is to use the new operator in the initialization of the smart pointer:

std::unique ptr<Object> upl (new Object);

Here’s the key point: auto-deallocation! The destructor for the unique ptr type
will automatically call the delete operator on the object that was created with
the new operator. In fact, it’s even smarter and will know whether to
call delete or delete[], depending on whether you called new or new [] in the
initializer.

Copying smart pointers. Note that you can “copy”’ a smart pointer in a
constructor or an assignment. This not only copies the address being managed to
the new shared pointer, but increases the reference count by one in the control
block. But copying a unique pointer makes no sense, because it’s the exclusive
owner. Hence, copy construction or copy assignment has these effects:

e Shared pointer — increases the reference count with the copy now also
managing the object.

e Unique pointer — copying is explicitly disallowed via the “=delete”
syntax!

Hence, the unique pointer class has deleted copy constructor and copy assignment
declarations. You can only move a unique pointer, not copy it.

Moving smart pointers. There are move constructors and move assignment
operators for all types of smart pointer objects. The smart pointer being moved to
will first unmanage its object, if any, which could call its destructor (i.e., always for
a unique pointer, or based on the reference count for shared pointers, but never for
a weak pointer). The details of the underlying object are then moved to the left
operand smart pointer, and the smart pointer on the right becomes an empty smart
pointer (managing nothing).

Take care with choosing between copying and moving, which have very different
semantics for shared pointers, and copying is disallowed for unique pointers. Use
of the std: :move () type cast is helpful to ensure move semantics.

Details of auto-deallocation. The idea of auto-deallocation is to avoid memory
leaks. It also allows smart pointers to embody the RAII idiom, provided your
initializer does allocate the object.

The call to delete is made in the destructor of the smart pointer object, if it hasn’t
already been destroyed.
David Spuler 262



So, there are a few ways for the destructor to run:

e The destructor at the end of scope.
e The reset () member function to deallocate earlier.

Note that the deallocation differs for unique pointers with exclusive object control
versus shared pointers with non-exclusive control:

e Unique pointers — always deallocates its fully-controlled object.
e Shared pointers — only deallocated when the reference count says it’s the
last shared pointer managing this object.

Note the exceptions to deallocation in the destructor:

e Weak pointers don’t deallocate.
e You can define “custom deleters” in the declaration of a smart pointer.

Hence, technically, you can override the calls to delete in the destructor. The idea
1s mainly when using custom allocators such as memory pools (as an optimization),
but it means you can workaround some limitations if you really need to. For
example, you could define a “do-nothing” deleter to manage addresses of stack or
global objects. Ot you could define a custom deleter that calls free () if you want
to manage malloc () blocks.

Pitfalls. There is no magic whereby the unique ptr object knows that new was
called in its initializer. It just assumes that you’ve given it an allocated pointer to
manage. Hence, you can do this:

Object *objptr = new Object;
std::unique ptr<Object> upl (objptr); // Dangerous

This will also be auto-deallocated correctly. But you have to be careful that the
scope  of objptr does not outlast the upl smart pointer  object.
Because objptr will point to an already-deallocated pointer after the destructor
for upl runs. Here’s an example:

Object *objptr = new Object;
{
std::unique ptr<Object> upl (objptr); // Dangerous
} // Destructor calls delete
//
obj->my method(); // Kaboom!

263 Advanced C++ Memory Techniques



There are also various other pitfalls whereby you can get a double-delete error
on a pointer managed by a smart pointer:

e Declaring two smart pointers on the same raw pointer.
e Calling delete on your raw pointer (before or after the smart pointer
destructor).

There also pitfalls whereby delete is called on the wrong type of address:

e Using smatt pointers with a stack or global/static address.
e Using malloc addresses with smart pointers.

Note that the nullptr is not a crash with the smart pointer classes. It simply
means an “empty” smart pointer that isn’t managing anything yet.

These memory address problems don’t arise with std: :weak_ptr, which doesn’t
ever do any deallocation of the managed pointer. Also, if you were desperate, you
could use a custom deleter that doesn’t call delete. But the main defence is to
stick to the idiom whereby the new operator is expressly called in the initializer of
your smart pointer.

Pointer Templating. Note that templating with a pointer type “Object*” rather
than “Object” is a misunderstanding, and will get a compilation error for this
declaration:

std::unique ptr<Object*>upl (new Object); // Error
You can use that type of templating if you’re really wanting your smart pointers to
manage other raw pointers, but why would you want to? Anyway, this would

compile:

std::unique ptr<Object*> upl (new Object*); // Strange!

Weak Pointers

Weak pointers are used much less than unique or shared pointers. They are
“observers” that do not change the lifetime of the managed object. In fact, the
object can be destroyed or deallocated before the weak pointer has finished
watching,.

David Spuler 264



The main features of weak pointers:

e Observer idiom without control.
e Does not destroy the object ever.
e Can be “upgraded” to a shared pointer.

Weak pointers cannot be initialized with a raw pointer. They can only be initialized
with nothing (or nullptr), or via another shared pointer. Weak pointers can stop
watching in two ways: they can go out-of-scope, in which case their destructor
reduces the reference count (of weak pointers) on any object they’ve been watching.
Or you can expressly call the reset () member function for an early release, which
releases the object, and causes the weak pointer object to be empty thereafter.

One misunderstanding about weak pointers is that you might have read something
that implies the objects managed by shared pointers are not deallocated if the
number of weak pointers is not zero. And yes, there’s a separate reference count
for weak pointers that’s used in a shared pointer. However, this is only that
the control block is not deallocated until the weak pointer reference count is zero (and
also the shared pointer reference count). This is an internal allocated block that
contains the reference counters and other stuff. As mentioned above, the object
being managed by a shared pointer is destroyed when zero shared pointers are
managing it (ignoring the weak pointer reference count), so a weak pointer can be
pointing to a deallocated object if all the shared pointers have disappeared. There
is the expired () member function to test whether the weak pointer still has a
valid non-destroyed object.

Limitations of Smart Pointers

The smart pointer library has many advanced features, but there are still some things
you cannot do. Some of the limitations of smart pointers include:

e Only work with heap pointers via new — not addresses of stack objects or
global objects.

e Cannot be used with old-style malloc or calloc objects.

e Weak pointers cannot deallocate the pointer — whereas unique pointers
and shared pointers do deallocate (and must!).

e No way to avoid deallocation in shared pointers — you can deallocate eatly
with reset (), but cannot specify that a shared pointer destructor
shouldn’t do so (except by adding a custom “do-nothing” deleter at the
declaration of the smart pointer, and unique pointers have
the release () function).

e  Smart pointers don’t know about anything you do with its raw pointer —
e.g., if you extract the raw pointer using the get () method.

265 Advanced C++ Memory Techniques



Okay, so I’'m wrong. I’'ve written that you cannot do these things, but really you can
work around most of these by defining a custom deleter. Your custom deleter might
simply do nothing, rather than deallocating memory. If you really had to
use malloc addresses, your custom deleter could call free.

Note that there’s a valid and complicated reason that shared ptr does not have
arelease () function, whereas unique ptr does. The idea with shared
pointers is that they are reference counted and a sharing ownership of an item.
Hence, it makes less sense for a shared pointer to “release” an object to the wild,
whereas unique pointer is the only manager of an object.

Furthermore, the last point about the shared pointer not knowing what you’re doing
if you call get (), this means that if you use a shared or unique pointer, it will 100%
be deallocated. You cannot return your pointer to the wild, except that, again, you
could use a do-nothing custom deleter.

Smart Pointer Safety

The proper use of smart pointers can significantly improve the safety of pointer-
related code. Some of the errors avoided include:

e Wild pointer addresses — the smart pointer object is safe within its scope.
e Memory leaks — instead, delete is automatically called.

Best practices for using smart pointers for safety include:

e Choose carefully between unique pointers and shared pointers
(occasionally also weak pointers).

e Initialize smart pointers using new directly as the initializer (rather than an
already-allocated raw pointer).

e Use smart pointers with function-local scope (i.e., stack variables, not
global or static smart pointer objects).

e Use scope of the smart pointer to control when delete is called.

Some problematic styles to avoid with smart pointers include:

e Avoid using the raw pointer via get () by using * and -> operators on
the smart pointer object itself.

e Avoid using smart pointers on raw pointers that already exit (i.e., prefer to
allocate the objects in the smart pointer’s initializer).

e Avoid allocating smart pointer objects via new (it gets very confusing!).

David Spuler 266



Smart Pointer Inefficiencies

Generally, smart pointers focus more on safety than speed, so that add some
inefficiency to your code. However, they are relatively efficient with a limited
amount of extra overhead for each smart pointer:

e The smart pointer object itself, and
e A “control block” with details about the managed object.

The control block is an internal data structure, which is not explicitly part of the
smart pointer object (by default). The contents of the control block include:

e Address of managed object (i.e., the raw pointer).

e Reference count of shared pointers to the object.

e Reference count of weak pointers to the object.

e Deleter to be used (e.g., by default, it’s automatically chosen as
the delete or delete[] operator).

Smart Pointer Optimizations

What can you do to reduce the inefficiencies of smart pointers? I mean, other than
going back to the use of raw pointers, which is not ideal. Using “dumb pointers”
would lose all the safety advantages of smart pointers.

Some of the optimizations include:

e Avoid two separate objects per smart pointer (with the extra control block).
e  Minimize the scope of the smart pointer.
e Call reset () to deallocate the memory for the object eatlier.

Making Smart Pointers. By default, smart pointers have two separate objects: the
smart pointer object itself, and an internal allocated object called the “control
block.” One of the main ways to optimize smart pointer objects is to merge the
smart pointer object with its control block. The way to do this is by calling either
of the “make” methods for smart pointers:

e std::make unique () (C++14)
e std::make shared() (C++11)

Both of these standard functions create a single object with both the smart pointer
and its control block. Note that there’s no “make weak ()” version of these
functions.

267 Advanced C++ Memory Techniques



Smart Pointer Bugs

Although the idea of smart pointers is to prevent common problems with raw
pointers, such as wild pointers or memory leaks, there are also some new types of
bugs that can occur due to misuses of smart pointer objects. Some of the possible
bugs include:

e Templating the smart pointer classes with a pointer type — usually a
compilation error.

e Smart pointer leaks — if you lose track of your smart pointers, their
destructors never run, and the underlying objects are never cleaned up
either.

e Using the delete operator on a raw pointer used with a smart pointer —
it’s also double-deallocated by the smart pointer’s destructor.

e Creating two smart pointers from the same raw pointer — also causes a
double delete memory errot, since both destructors run.

e Accessing the raw pointer from a smart pointer via get () — very risky,
allowing various raw pointer problems.

e Using smart pointers with malloc () blocks — this causes delete on
amalloc () block (a bad error).

e Using a non-heap pointer to initialize a smart pointer — will

cause delete on a stack or static address in the destructor (crashing).

e Weak pointer refers to an object that has “expired” (i.e., been destroyed)
— the last shared ptror the singleunique ptr has already
deallocated the object via reset () or its destructor, although this can be
avoided by always testing the weak ptr::expired() member
function.

Note that a weak pointer does not ever deallocate the object, but only “observes”
the object (or “refers” to it). Only unique pointers and shared pointers can
actually delete the object from memory. Note also that you can also define
“custom deleters” for your smart pointers, if you really need to avoid some of these
problems.

Fortunately, there are quite a few bugs that smart pointers avoid. For example, the
smart  pointer destructor should automatically know  whether to
use delete or delete[], depending on whether it was initialized by a simple
object pointer or an array type. This is important, because a call of delete on
a new [] block will not propetly run the destructors of all objects in the array.

David Spuler 268



24. Canaries and Redzones

What are Canaries and Redzones?

The two terms are related to memory safety for prevention and detection of
memory areas. Redzones are regions of bytes around a memory block that are
marked as invalid or “poisoned” for use. Canary values are a special type of redzone,
with a single value, which is examined to see if it has changed.

There are various other terms used for these two approaches. Redzones are also
called memory poisoning, memory tainting, memory tagging, memory coloring, and
I’'ve probably missed a few. Canaries are sometimes called sentinel values or guard
values. The general techniques are referred to as memory safety or buffer overflow
protection.

The main usage of redzones and canaries is to detect buffer overflows that result in
array bounds violations, which are a common C++ bug and also a security
vulnerability. These types of array buffer overflow attacks are more likely to be a
security vulnerability if they occur in stack memory (rather than the heap), because
the program stack can be corrupted intentionally.

However, never underestimate human creativity, and many other memory errors
can also be used as an attack vector. Surprisingly, one of the other major
vulnerabilities is by abusing “dangling pointers” that arise from use-after-free
errofs.

What are Array Bounds Violations?

There are a lot of imprecise names used for basically the same thing:
e Array bounds violation
e Array overflow or array underflow
e Buffer overrun or underrun

e Buffer overwrite

Enough with the terminology; let’s look at code!

269 Advanced C++ Memory Techniques



An example with string buffers on the stack looks like:

char buf[3];
strcpy (buf, "abcd"); // Boom! (buffer overflow)

An example of a buffer overwrite or overflow with an array looks like this:

int arr[10];
arr[10] = 0; // Write error
val = arr([55]; // Read error

And this is an array “underflow” error:
arr[-1] = 0; // Boom!

Note that watching for changes in canary values can only detect “write” array
bounds etrors, rather than reads, but more advanced methods with redzones can
also detect some read accesses to redzone memory.

Text Buffer Last Byte Canaries

One of the simplest methods of using a canary is useful for text buffers. The very
last byte of a memory block containing a text string can be used as a canary. This
last byte must either be the null byte, if the string buffer is full, or an unused byte if
the string is shorter. Hence, there is a trick where we sez the last byte of a text buffer
to the null byte, even if it’s not going to be used. Then this last byte is a canary,
where a non-zero value being found afterwards means it has overflowed at some
previous point (i.e., a bounds overflow write error).

Here’s a raw example of how it works:

char buf[100] = "";

buf[99] = 0; // Set canary null value in last byte
// ... Do stuff with buf

if (buf[99] != 0) { // Check at the end

// Canary squawks!
// Text buffer has bounds-violation

The advantage of this method is that it has no extra memory overhead, and only
two fast single-byte operations (null byte assignment and testing for the null byte).
However, it only works for text string with a null byte at the end, rather than for
other types of arrays, and can only detect write errors (not reads).

David Spuler 270



Array Extra Element Canaries

The idea of using the last element in text buffers as a canary can be generalized to

non-text arrays. An array overflow error would look like this:

int arr]1l

01;
arr[10] 0; // Error

To add a canary, we need to do this:

e Allocate one more element for the array.
e Set it to a magic value at the start.
e Check it still has the magic value at the end.

Here’s the basic hand-coded idea:

const int sz = 10;
int arr[sz + 1]; // +1 for the canary

// Set up the canary (last element)
const unsigned magic = 0x12345678;

arr([sz] = magic;

// Do stuff....
arr[10] = 0; // Error

// Check canary afterwards
if (arr[sz] != magic) {
// Overflow write error detected!

Note the features of this canary technique:

e Works for any basic data type.

e Works for any array memory type (e.g., heap, stack, global, etc.)
e Canary value can be checked multiple times, not only at the very end.

The disadvantages include:

o After-the-fact detection of the overwrite, rather than immediately.

e Memory overhead is one extra array element per array.

e Time cost is setting one array element, and then checking it later.
e Need to disable this trick, or use a poisoning API, when running a sanitizer,

because it interferes with their checks.

271 Advanced C++ Memory Techniques



Redzones and Canaries for Memory Allocation
Overflows

Array buffer overflows are the main reason to use redzones or canary values. These
occur where an array access goes beyond the end of a valid array block, whether for
a read access or a write access. Canary values can only detect writes, because they
rely on the code changing the canary value, but redzones can also be used to detect
reads.

The general idea is to add some extra memory to the end of an allocated block. We
can intercept malloc or new memory primitives and replace them with wrapper
versions that set aside some extra memory for use in error checking. Then we can
check for modifications to these redzone or canary bytes, in which case an array
write has occurred that is a bounds violation.

Hence, the basic steps are:

e Macro-intercepts of the memory allocation functions malloc, calloc,
and free (also strdup and realloc, amongst others).

e Linker intercepts of new and delete (four versions with two basic and
two array versions).

e Add extra bytes to be allocated in the memory block we return from our
wrapper versions.

e Till these extra redzone bytes with a special value.

e Detect uses of these special bytes later.

In advanced implementations, we can mark these redzone bytes with binary
instrumentation or hardware-assisted pointer tagging.

Detection of Heap Underflows

Checking for underflows of heap addresses, such as addr [-11], is trickier because
we cannot just add more memory to the start of the block. The region prior to an
allocated heap block contains a system header block, which is used by the system
allocator (i.e., the system’s malloc or new primitives). Hence, we cannot just write
a canary value to addr [-1], because doing so would be an underflow write error
in itself, which will trigger a crash. Our technique is supposed to prevent memory
glitches, not cause them!

The tricky way to detect underflow is to allocate extra memory for this underflow
redzone, but not in the system header block.
David Spuler 272



The idea is to take a simple allocation:

char *str = (char*)malloc (100);
// Do stuff with 'str'
free(str);

Instead, we allocated more memory, say 16 bytes, like this:

char *mem = (char*)malloc (100 + 16);
// Set up the redzone mem[0]..mem[15]
char *str = mem + 16;

// Do stuff with 'str'

// Check the redzone mem[0]..mem[15]
free(str - 16);

This is messy, because we need to keep adding and subtracting the size of the
redzone block (i.e., 16 bytes) but that’s the overall idea. The first 16 bytes of the
larger block are the redzone for underflow checking. The original code is passed a
pointer to the middle of the block for use with the original code.

More generally, we can do this in a debug memory allocation library. As usual with
this approach, the code needs to macro-interceptmalloc and free, and link-
intercept new and delete operatofs.

There are several problems that make this plan difficult:

e Memory alignment of addresses

e Calls to free need to be offset (or it crashes!)

e newand delete cannot be used in manual code sequences like the above.

e Non-intercepted calls to malloc in third-party linked libraries will not
have redzones and are thus problematic to deallocate.

Memory Read Errors

Read errors are those that access memory, but don’t change the value. Some
examples of memory safety concerns with read accesses include:

e Uninitialized memory usage

e Array bound overflow reads
e Array bound underflow reads
e  Usec-after-free errors

e  Usec-after-delete errors

273  Advanced C++ Memory Techniques



Superficially, it might seem that these reads are less likely to be dangerous than
writes. However, it’s not really the case, because read errors can still be important
to detect and prevent because they can be:

(a) crashes — e.g., segmentation faults.
(b) invalid results — e.g., reading the wrong values.

(c) attack vectors — use-after-free exploits are a major category of
vulnerabilities.

Redzones can be used to detect read errors if it is possible to intercept read
operations on an invalid block. There are several techniques in detecting memory
read errors including uninitialized memory and use-after-free:

¢ Instrumentation of assembly or binary code
e  Memory tagging (pointer tagging)

e Hardware-assisted exceptions

e Shadow memory

The technologies for hardware-assisted memory management include:

e ARM Memory Tagging Extension (ARM MTE)
e Intel Memory Protection Extensions (MPX)
e Sparc Application Data Integrity (ADI)

All of these techniques are somewhat beyond a basic DIY memory safety technique.
These are the types of methods used in runtime memory checker tools such as
Valgrind and AddressSanitizer.

The basic idea is to set aside a redzone area of unused memory around every
memory block, such as heap and stack memory, and then various methods are used
to check every memory access for an invalid redzone address.

David Spuler 274



Prevention Versus Detection

Most of the above DIY techniques are about detecting memory safety issues, rather
than preventing crashes or blocking security attackers using exploits.

Full prevention requires instrumentation or hardware-assisted shadow memory, as
done by sanitizers, but then the code tends to run too slow for use in production.

However, these techniques are great to use continually during development and
testing. Some of the simpler methods are also fast enough to leave in production
code, or at least when shipping to beta customers.

The idea is to find as many of these issues as possible. Hence, canary and redzone
techniques should be combined with fuzzing and other types of stress testing, such
as passing invalid or very long inputs to the code.

And these methods are complementary to sanitizers, which should still be run in
nightly builds of the regression test suites, and also sometimes combined with
fuzzing and other longer tests.

Limitations of Canaries and Redzones

The canary and redzone techniques are not perfect, and won’t do as well as a real
runtime sanitizer tool.

Some of the problems include:

e Canary value checks only detect prior failures (not immediately).

e  Redzone techniques to detect overflows immediately are difficult for DIY.

e Extra memory overhead to store the canary values and redzone bytes.

e Extra time cost of setting up canaries/redzones, and then later testing
them.

e Read errors are much harder to detect than writes (almost impossible in
DIY techniques).

e Crashes and memory corruption are not actually prevented (in most cases).

e Bounds violations further away than the length of the redzone will be
missed.

e Security attacks are not actually prevented (and redzones can be worked
around anyway).

275 Advanced C++ Memory Techniques



Nevertheless, the goal of DIY canaries and redzones is to add some checking that
detects a subset of failures, but is much faster than sanitizers, so it can be run 100%
of the time, maybe even in production for customers.

David Spuler 276



25. Use-After-Free

What is Use-After-Free?

Use-after-free errors arise when heap memory is de-allocated, but there is still a
pointer to that address. This becomes a “dangling pointer” (or “dangling
reference”) and any use of that memory via the pointer is a “use-after-free” error.

Note that the word “free” means any memory deallocation primitive, such as
the free function or the delete operator.

Although the error usually refers to heap memory addresses, it can also occur with
stack addresses.

A stack-based use-after-free type of error can occur if the address of a stack variable
is returned to a caller, and then it can be misused later when the call stack expands
deeper again. This is a rarer type, but it’s still an error and security risk.

There are several problems with use-after-free errors:

e Crashes

e Insidious program errors
e DPortability issues

e Security exploits

Programs with use-after-free errors often exhibit unpredictable behavior with
intermittent failures. They may also work fine on one platform, but crash when
ported to a different platform, or when the optimizer level is turned up.

277 Advanced C++ Memory Techniques



Use-After-Free Security Vulnerabilities

Surprisingly, use-after-free errors in heap memory are a very common security
vulnerability, second only to buffer overflow attacks on stack memory. The attack
involves these steps:

(a) Intentionally triggering a problematic free to gain a dangling pointer,

(b) Waiting for something important to get allocated into the previously-
freed memory, and

(c) Accessing or modifying the important data (e.g., Unix suid bits) via the
dangling pointer.

This sounds very complicated and unwieldy, but it’s been a very successful method
of targeting vulnerabilities in C++ software.

Detecting Use-After-Free

The methods to detect use-after-free errors include:

e Memory sanitizer runtime tools

e Memory tagging

e Memory poisoning (magic bytes)

e Hardware-assisted memory block exceptions

The main way to detect these sorts of errors is to use memory sanitizers, such as
Valgrind or AddressSanitizer. These tools are very good at this stuff, and you should
be running them in your nightly builds with a full regression test suite. It’s also
useful to run these tools when using “fuzzing” (testing with many large random
inputs), as a way to detect these memory errors on unexpected inputs.

Some of the ways to reduce these errors, or to mitigate them as a security attack
vectort, include:

e Never-free policies (where possible).

e Delayed-free policies (with various configurations).
e Random delayed free (less predictable delayed-free sequences).

David Spuler 278



Note that if you change the memory deallocation policy, you need to do it at a low
level, such as in your own custom memory allocators, or in debug wrappers for
allocation functions. You can’t just comment out all the delete statements in
destructors, because it’s sometimes important that the destructors for these sub-
objects can still run.

The idea of never deallocating any memory is horror-inspiring for most
programmers. However, it’s a plausible idea for short batch programs that aren’t
hanging around long enough for the leaks to matter.

Also, one particular case is that you can disable memory deallocation whenever the
program is shutting down, whether it’s a batch program or a long-running service.
Program termination commonly triggers a huge volume of deallocation requests in
destructors for stack, heap, and global objects, making it a fertile field for memory
deallocation errors, not to mention that it also causes annoying slow program exits!
Plenty of inadequately tested programs will crash on exit due to eatlier heap
corruptions. And yet, these deallocations don’t actually matter because the
operating system will reclaim all the memory once the program shuts down.

Double Deallocation Errors

One special case of the use-after-free error is a double-free or a double-delete.
A program crash is likely from this:

char *s = (char*)malloc (100);
free(s);
free(s); // Boom!

One minor mitigation is to clear the pointer to null whenever using any deallocation:

free(s);
s = NULL; // safety

Hence, the second call will do free (NULL), which is not a crash, and supposedly
harmless according to the standards.

You can do self-referential macro tricks with the comma operator:

#define free (s) ( free((s)), (s) = NULL )

279 Advanced C++ Memory Techniques



Another way is that you can define wrapper functions with reference parameters:

#define free free wrapper

inline void free wrapper (void *&v)

{
free(v);
v = NULL; // change reference parameter

However, it’s harder to do these types of tricks for the delete operator because
its syntax is not function-like. If only C++ had a more powertul preprocessor
mode!

David Spuler 280



26. Array Bounds Violations

What are Array Bounds Violations?

Array bounds violations are memory errors where an array or buffer has its memory
block bounds exceeded. For an array block of memory arr of size N, the valid
range for the array index is 0..N-1. Array bounds violations come in two types:

e Overflow — accessing arr [N] or larger N.
e Underflow — accessing arr [-1] or earlier.

Each of these two types of bounds violations also has two subtypes:

e Write — modify the out-of-bounds memory.
e Read — get a value from out-of-bounds memory.

All types of memory blocks can be affected by overflows or underflows:

e Global variables — these are stored in global memory.

e C-style allocated memory — malloc and calloc allocations.

o  C++-style allocated memory — new and new [] memoty.

e  Local variables in functions on the stack — such as string buffer variables.

e Local static variables in functions — in global memory, not the stack.

e C(lass data members — in whatever type of memory that contains the
object (i.e., any).

e C(Class static data members — these are in global memory.

e Read-only memory regions — string literals and numeric constants, and
simple const variables.

There are a variety of lesser-known memory allocation functions, and also platform-
specific functions that allocate memory:

e realloc — when it increases memory block size or moves the block.
e aligned alloc — allocation with address alignhment restrictions.

e cudaMalloc — CUDA C++ GPU memory allocation.

e alloca memory — dynamically allocated stack memory.

e sbrk — lower-level memory allocation controls.

281 Advanced C++ Memory Techniques



Bounds Violation Detection Methods

The methods to detect memory errors in general, including array bounds violations,
include:

e Sanitizer runtime tools — e.g., valgrind and AddressSanitizer.
e DIY methods — as described in this chapter.

The main advantage of the sanitizer tools is that they catch the errors immediately,
as they happen. Unfortunately, they’re too slow to run all the time, or in production,
but still should be running every night with all the automated regression tests.

The DIY methods aim to be much faster, but tend to only catch buffer overruns
after they have occurred, so it is not always clear when the buffer was previously
overrun ot what code caused it. However, some DIY methods can catch and
prevent buffer overruns beforehand. The various DIY methods range in efficiency
from adding only a single byte test (very fast) to a fully instrumented “memory
wrapper library” that is as slow as the sanitizers.

Sanitizers typically detect multiple types of errors in different memory.
However, valgrind notably does not check stack buffers. The DIY methods for
array overruns can also be combined with other techniques:

e  Uninitialized memory read detection.
e DPoisoned memory blocks usage.
e  Basic parameter validation (e.g., deallocation of a null address).

The main techniques for DIY buffer overflow techniques include:

e Canary regions (“redzones”) of extra bytes around the memory block.
e  Explicit checking of sizes and addresses at intercepted points.

e  Checking the last byte of a text buffer is the null byte.

e Checking the last element of a non-text buffer (e.g., float array).

The remainder of this chapter is about text buffers and detecting overruns without
any canary redzone areas. Canaries and redzone memory regions for text and non-
text buffers are shown in Chapter 24.

David Spuler 282



Text Buffer Overruns

The classic case of a text buffer overrun occurs on the stack:

char buf[3];

strcpy (buf, "abcd");

The typical method to avoid such overflows is the “safe” string functions:

e strncpy (with a big provisol)

e snprintf
e strcpy s

There are a few disadvantages of these functions. Firstly, strncpy has issues
(discussed below). These functions also have the problem that they silently truncate
the string, without giving the programmer a way to detect that an overflow has

occurred. No error messages!

strncpy problems

The funny thing is that strncpy in standard C or C++ is intended to help with
array bounds, and yet it is literally the worst function. Sure, if the string is too long,
it will avoid a buffer overrun right there. But it fills the whole buffer, which then
leaves the string without a null byte at the end. Any subsequent use of the string
(e.g., strlen) will be a buffer overrun

The solution is to manually add your own null byte:

strncpy (buf, s);

buf(sz - 1]

sz,
= 0;

// ensure null

The better way is to declare your own strncpy safety wrapper:

inline char *safe strncpy(char *dest, char *src, int n)

{
#undef strncpy
char *s =
dest[n - 1]
return s;

- 0;

// remove wrapper
strncpy (dest,
// ensure nulled

src, n);

283 Advanced C++ Memory Techniques



Then you should macro intercept all calls to strncpy, or otherwise ban them.

#define strncpy safe strncpy
A more advanced version of the safety wrapper would check for null parameter
values. We’d also like to check the last byte was already null at the start, and that
any canary redzones have not been changed by a prior buffer overrun. However, in

the general case of intercepts, we cannot necessarily be sure that strncpy is
occurring at the start of the buffer, or that the size is that of the whole buffer.

Checking the Last Byte of Text Buffers

This method is a buffer overrun detection method that uses the very last byte of a
text string buffer. It only works for text strings, not for other types of arrays. The
advantages include:

e No extra memory overhead
e  Fast single-byte tests

The main disadvantages of this quick approach:

o After-the-fact detection (does not prevent the overrun).
e No information on when and where it was overrun.

Here’s how it works. Let’s assume that we have a simple buffer variable on the
stack:

char buf[100];
Slightly better is to initialize it:
char buf[100] = "";

This avoids uninitialized memory usage, with a null at the first byte (and 99
uninitialized characters), but this variable still has no overflow checking.

David Spuler 284



The trick is to think about the /a7 byte, not the first. Now, if we have such a text
buffer that contains strings, then the last byte in the buffer is either:

(a) the null byte (for a full buffer), or
(b) unused (for a shorter string).

We’d like to use this byte for overflow checking, but in the latter case, it could have
a random value. Hence, the insightful trick is to always sez the last byte to zero right
at the start, even if we aren’t necessarily going to use it. Then we can be sure it must
be zero at all times when using the buffer, or else there’s been a buffer overflow (at
some time previously). We can be sure the last byte is zero for global text buffers,
but not for stack variables or allocated buffers, so we have to add our own “set”
method near the buffer initialization.

With this idea, we can add some checks:

char buf[100];

DEBUG SET BUFFER OVERRUN (buf, 100); // Set zero

// ... rest of function

DEBUG_CHECK BUFFER_OVERRUN (buf, 100); // Check zero

The macros are quite small and efficient, only setting and checking a single byte of
the array:

#define DEBUG SET BUFFER OVERRUN (buf, len) ( \
((buf) [(len)-1] = 0))

#define DEBUG_CHECK_BUFFER_OVERRUN(buf,len) \
(( (buf) [(len)-1] == 0) 2 \
true /*ok*/ :\
debug buffer overrun failed((buf), (len)))

This idea will work with any kind of memory block, where we know the size of the
buffer, whether local, global, or heap memory. If you have a class object with a text
buffer data member, then add the “set” macro in the constructor, and the “check”
macro in the destructor (and optionally also other places along the way).

We can clean this up a little with the sizeof operator. But be aware that there’s
an insidious sizeof error if the buffer is ever a function parameter, in which case
it returns the size of a pointer (too small).

285 Advanced C++ Memory Techniques



Here’s the version:

char buf[100];

DEBUG_SET BUFFER OVERRUN (buf, sizeof buf); // Set zero
// ... rest of function
DEBUG CHECK BUFFER OVERRUN (buf, sizeof buf); // Check zero

Note that we can actually use the check as often as we like, at any point where we
think that a buffer overflow might have occurred.

char buf[100];

DEBUG_SET BUFFER OVERRUN (buf, sizeof buf); // Set zero

// ... some of the function

DEBUG CHECK BUFFER_OVERRUN (buf, sizeof buf); // Check middle
// ... rest of the function

DEBUG_CHECK BUFFER OVERRUN (buf, sizeof buf); // Check final

We can hide the sizeof operator behind a macro. Here are some macros based
on this idea:

#define DEBUG_SET BUFFER OVERRUN (buf) ( \
((buf) [ (sizeof (buf))-1] = 0))

#define DEBUG_CHECK BUFFER_OVERRUN (buf) \
(( (buf) [ (sizeof (buf))-1] == 0) 2 \
true /*ok*/ :\

debug buffer overrun failed( (buf), (sizeof (buf))))
If you don’t like typing, you can do this:

#define SET DEBUG SET BUFFER OVERRUN
#define CHK DEBUG CHECK BUFFER OVERRUN

Note that sizeof only works on local variables and global variables, but not for
heap buffers or array function parameters. Hence, you can choose between both
versions, and prefer the additional macro version with a separate length parameter
in some cases, where the caller can provide the memory block size.

Finally, note that we need to change the last byte, so this doesn’t work for read-

only constants (e.g., string literals), but they can’t really have buffer overruns
anyway.

David Spuler 286



Smart Buffer Variable with Bounds Checking

One way to add bounds checking of text buffers is to replace a simple char buffer
with a smart buffer object. This is a “one-variable” solution because we change the
original buffer to our smart object. The simple code is this:

char buf[100];
We write this instead:
SafeStackBuf<100> buf;
The full class codeis a template with an integer parameter, like this:

template<int bufsize>
class SafeStackBuf {

const char magicbyte = '@';
static assert (bufsize > 0);
private:
char m buffer([bufsize]; // The stack buffer
private:
SafeStackBuf (const SafeStackBuf&) = delete; // disallow
void operator=(const SafeStackBuf&) = delete;
public:
SafeStackBuf () { // Constructor
m _buffer[0] = 0; // Ensure initialized
// Mark end for later overrun detection..
m_buffer[bufsize - 1] = 0; // Sentinel byte
}
void check overflow() {
// Check for buffer overrun... (at some prior time)
if (m _buffer[bufsize - 1] != 0) {

// Sentinel byte changed

// Overrun detected (at some previous time)

AUSSIE_ERROR("ERROR: SafeStackBuf overflow”);
}

}
~SafeStackBuf () { // Destructor
check overflow();

}
// Type conversion to "char*" type...
operator char* () { return m buffer; }

}i

Note that we defined a type conversion operator so that this smart buffer variable
can hopefully be used without changing much of the other code in the function.

287 Advanced C++ Memory Techniques



In theory, we should be able to compile-out the checking for production mode with
this style (and no other code changes):

#if DEBUG
SafeStackBuf<100> buf;
felse
char buf[1007];
#endif

An important advantage is that there’s literally no extra memory overhead. We've
simply put the original text buffer inside an object framework, but it’s the same size.
As for runtime overhead, there’s the extra “set” of the last byte in the constructor,
and the “check” in the destructor, but these are inline functions, and should be
the same as using the macro versions earlier.

Two-Variable Smart Buffer Wrapper Class

The two-variable version of using a smart buffer object puts the bounds overflow
checking on the “outside” in a different object. This extra object does the “set” in
its constructor (clearing the last byte to zero), and the “check” in its destructor.

The way to set up the bounds overflow detection works looks like this with two
separate variables:

char buf[100];
SafeBufferWrap bufwrap (buf, sizeof buf);

This is more elegant that the original macro versions, in that you don’t need to add
an explicit “check” call at the end of the function, because the wrapper object’s
destructor is automatically called when it goes out of scope. The wrapper object
does the bounds overflow detection in the destructor, just before it disappears.

One of the advantages of this two-variable approach over the one-variable smart
buffer is that we can easily compile-out the bounds checking object for production.

David Spuler 288



The checking is not inherent to the buffer itself, and we can do this style and the
overhead of the bounds checking completely disappears:

char buf[100];
#if DEBUG

SafeBufferWrap bufwrap (buf, sizeof buf);
#endif

Another advantage of the two-variable approach is that the original variable is
unchanged, so there is no need to fuss about whether type conversions are working.
The original variable uses the original code. No problems at all!

Here’s what the full class looks like to implement this wrapper. Note that it’s not
a template.

class SafeBufferWrap { // Safe wrapper for char[] buffer
const char magicbyte = '@';

private:
char* m string; // Address this wrapper is tracking
int m bufsize; // Number of bytes allocated

public:

SafeBufferWrap () = delete; // disallow without string...

SafeBufferWrap (char* addr, int bufsize) { // Initialize
ASSERT RETURN (addr != NULL) ;
m string = addr;
m bufsize = bufsize;
// Set the overrun detection sentinel byte to zero
m _string[m bufsize - 1] = 0;

}

void check overflow() { // Check for overrun (prior)
if (m_string[m bufsize - 1] != 0) {

// Detected overflow (but don’t know when)
AUSSIE_ERROR("ERROR: SafeBufferWrap overrun");
}

}
~SafeBufferWrap () { // Destructor

check overflow();

}
char* string() { return m string; }
int size() { return m bufsize; }

289 Advanced C++ Memory Techniques



The downside to this approach, when compared to the simple “set” and “check”
macro versions, is two-fold:

¢ Memory overhead from the extra object (a pointer and an integer).
¢ Runtime overhead from storing data in the extra object (a couple extra
assignments).

Note that there’s nothing requiring this to be used on a stack buffer. Hence, you
can use a wrapper object for allocated memory blocks, global arrays, or any other
memory object, provided you supply the correct buffer size. The last byte has to be
writeable, so this doesn’t work on read-only memory.

Furthermore, this approach can be used in other ways, because the wrapper object
does not need the same lifetime as the original buffer object. You can use a wrapper
object multiple times for the same buffer, and you can also combine this approach
with other calls to the earlier macros that check that the last byte is null. Too many
options!

David Spuler 290



27. Poisoning Memory Blocks

What is Poisoned Memory?

Poisoning memory is a technique where memory blocks are intentionally set to non-
zero bytes, hoping to provide a failure if this memory block is used. The general
breakdown of DIY memory safety C++ techniques includes:

e Canary regions (“redzones”) around memory blocks.
e Poisoned memory blocks inside the memory block.
e Magic values stored at the start of a block.

Hence, poisoned memory aims to detect some of these memory failures:

e Uninitialized allocated memory use (e.g., malloc, new).
e  Uninitialized stack memory buffer usage.

e Use-after-delete heap memory.

e Use-after-free heap memory.

e Use-after-return for stack memory blocks

Hence, here are some of the places where we want to poison memory blocks:

e new or new[] heap block — uninitialized heap memory.
e malloc block — old-style uninitialized heap memory.

e deleteordelete[] — de-allocated heap block.

e free — old-style de-allocated heap block.

Those above examples are for the heap, but we also care about stack memory, and
ideally we also want to poison:

e Local buffer variables on entry to a function (uninitialized stack memory).
e Returning from a function with a local buffer variable (invalid memory
after stack unwind).

291 Advanced C++ Memory Techniques



Note that we don’t need poisoning for these cases:

e Global variable or object (already initialized to zero).
e C(Class-level static data members (are initialized).
e Function-local static variable (also zeroed in C++).

And this makes a good point: if the C++ compiler auto-zeroed all the allocated and
stack memory, we wouldn’t have to worry about this. Hence, I want a “~safe”
flag for my compiler.

Marking Poisoned Memory Blocks

The simplest way to “poison” a block with bytes is simply to put a special value
into every byte:

char buf[100];
memset (buf, '@', sizeof buf);

Here is a general utility routine to poison a buffer more elegantly. Note that this
code does not poison the final byte in the buffer, so that any inadvertent use of the
string in the buffer won’t actually go beyond the buffer. Whether you do or don’t
want this to crash depends on context.

inline void aussie poison buffer(char* s, int bufsize,
char magicchar /* = '@'*/)

{

// PURPOSE: buffer is unused, mark with poison bytes.

// Put some very visible magic letters e.g., QQ@QREQ

// They can be tested in other use of the buffer,

// .. and also make any errors visible in output...

memset (s, bufsize - 1, magicchar); // Clear all but last

// Note: null byte after many Q@Q@’'s means

// it won’t crash on strlen/etc.

s[bufsize - 1] = 0; // Put null byte at end for safety

I like the use of multiple (@ characters as a poisoned value, because it’s highly visible
in a printout or HTML page. It’s also possible to quickly test for a likely poisoned
address:

bool is poisoned = s[0] == '"@' && s[1l]=="Q" && s[2] == '@";

David Spuler 292



We can make this into a macro:

#define is poisoned(s) \
((s) [0] == "@" && (s)[1] == "@' && (s)[2] == 'E@")

The preprocessor macro version really needs all those parentheses to avoid operator
precedence errors, but also isn’t fully safe against any side-effects in the argument
expression. Safer is to use a modern inline function version:

inline bool is poisoned(const char *s)

{
return s[0] == '@' && s[l] == 'Q' && s[2] == '@';
}

This example is looking for three (@’s in a row. It’s up to you whether you want to
check for 1, 2, 3, or 4 bytes in a row. Fewer means more false positives, and one @
is probably too few, as it will get a false positive for every email address or social
media handle in your input text.

However, you can also use other poison byte values, such as special
numbers (char)l or (char) 127 or some other escape. I prefer to use the range
1..127 because you needn’t worry about signed versus unsigned char. Using
an explicit type cast of the byte is annoying but omitting the cast is non-portable
across different compilers, too. Note also that most 128..255 values are used in valid
UTFS for European or DBCS languages (or emojis!), but there are a few bytes that
are not valid UTF8 (in which case, you have to be careful to cast to unsigned
char when testing).

Obviously, you cannot use the null byte or any commonly used character as the
poison marker. Also, you would usually repeat the same byte in sequence, which is
fast to set using memset. However, if you really prefer slower code with fewer false
positives, you can use alternating byte patterns or other variations.

Macro Intercepts of malloc and free

The simplest method of poisoning newly allocated blocks with malloc is with
preprocessor macro intercepts. Note that we don’t want to poison calloc,
because it’s already initialized. Here’s the basic idea for the macro intercept in a
header file:

#define malloc aussie malloc

293 Advanced C++ Memory Techniques



And here’s the basic idea for the wrapper function that initializes:

void* aussie malloc (int sz)
{
#undef malloc // avoid wrapper
void* v = malloc(sz, 1); // Call real malloc
if (v) memset (v, '@', sz); // Poison
return v;

Link-Time Intercepts of new and delete

The C++ memory allocation operators cannot be macro-intercepted because they
are not a function-like syntax. However, link-time interception is a standard feature
of C++ that has been supported for decades.

Here’s the basic code to create a global link-time intercept for new, simply by
defining your own version:

void* operator new(size t n)
{
#undef malloc // avoid macro intercept
void* v = malloc(n); // Call malloc (Not ::new)
if (v) memset (v, 'Q', n); // Poison
return v;

Note that you need to exactly match the types, with a size t parameter and
a void* return type. And we also need to intercept delete, so that we can change
it to free; otherwise there is a mismatch error.

void operator delete(void* v)

{
#undef free // avoid macro intercept
free(v); // call the real free (Not delete!)

David Spuler 294



And we also need the pair of intercepted array allocate and deallocate versions:

void* operator new[] (size t n)
{
#undef malloc // avoid macro intercept
void* v = malloc(nl); // Call malloc (Not ::new)
if (v) memset(v, '@', n); // Poison
return v;

}

void operator delete[] (void* wv)
{
#undef free // avoid macro intercept
free(v); // call the real free (Not delete here!)

Poisoning Deallocated Memory Blocks

Note that the above macro intercept of free and link-time intercept for
the delete operator are not really doing anything. There’s no poisoning, and it
just calls another deallocation routine.

The main problem is that we don’t know the size of the block being deallocated, so
how can we poison it? There’s no standard function for the size of a memory block

However, non-portable code to the rescue! The methods to get the size of a block
from its address include:

e msize — Windows MSVS version.
e malloc usable size — GCC version.
e malloc size — MacOS version.

So, here’s what a semi-portable block size function would look like:

int size of block(void *addr)

{

#if DOS || MSVS || _MSC_VER
return msize (addr);
#elif LINUX || UNIX || GCC

return malloc usable size (addr);
#elif MACOS
return malloc size(addr);
#else
#error What is this platform?
fendif

295 Advanced C++ Memory Techniques



Note that the msize function actually fails with a runtime exception if the address
is not the start of an allocated block (e.g., the middle of an allocated block, or a
non-heap address). However, we can certainly use this in a deallocation sequence,
which would crash anyway if we passed it a non-block address.

Hence, we can use this idea to poison de-allocated memory in free using a macro
interception:

#define free aussie free

And here’s the basic definition for the wrapper function that poisons freed memory:

void aussie free(void *v)
{
int sz = size of block(v);
memset (v, '@', sz);
#undef free // avoid macro intercept
free(v); // call the real free

And here is the C++ delete operator version:

void operator delete(void* v)
{
int sz = size of block(v);
memset (v, '@', sz);
#undef free // avoid macro intercept
free(v); // call the real free (Not delete here!)

Poisoning Stack Buffer Memory

Stack variables are still a problem, even if we’re intercepting all heap allocation
primitives. The simple example of an uninitialized stack variable looks like this:

void my stack crash function()

{
char buf[100];
std::cerr << buf << std::endl;

Fixing stack buffer usage is more difficult than heap memory. We cannot easily
intercept when the stack frame is increased on function entry, nor when it is
released on function returns.

David Spuler 296



Compiler vendors could do this, but it’s hidden from the programmer. There’s no
way to use macros, and I’'m not aware of any callback mechanisms or compiler
settings to control the memory on the stack.

Some of the possible approaches to poisoning uninitialized stack variables include:

e Explicit calls to memset

e  Use smart buffer objects instead of local array buffers (i.e., a one-variable
wrapper).

e Use two-variable methods with smart buffer wrapping objects.

e Macro-intercept the alloca dynamic stack block allocation method (but
it’s rarely used, so this isn’t that valuable).

This is the usual way of requiring an initialization, which obviates the need to do
poisoning completely (except see below about partial buffers):

char buf[100] = "";

This is a worthwhile policy, and it fixes the bug in my above code example. The
downside is that the whole buffer is not zero.

Here’s the manual way to poison a stack variable:

char buf[100] = "";
memset (buf + 1, '@', 100 - 1);

And here’s the slightly improved way of poisoning with sizeof operator:

char buf[100] = "";
memset (buf + 1, 'Q@', sizeof buf - 1);

And we can use a macro to reduce the chances of copy-paste errors:

#define POISON_STACK_BUFFER(buf) \
memset ((buf)+1, '@', sizeof (buf)-1)

/] ..

char buf[100] = "";

POISON STACK BUFFER (buf)

But beware the trap of using sizeof on a parameter of a function, rather than a
local variable. An array function parameter is a pointer, rather than a real array type,
the result of sizeof is the 4 or 8 byte size of a pointer rather than the size of array
buffer (i.e., too small).

297 Advanced C++ Memory Techniques



Don’t do this:

void poison my buffer (char buf[100])
{
memset (buf, 'Q@', sizeof buf); // Bug with sizeof!

}

The above methods are fine for poisoning the uninitialized part of a stack buffer,
to detect a future use of uninitialized stack memory from the poisoned characters.
But this doesn’t poison the stack memory once the function returns. Instead, to
achieve this, we need to use a smart buffer class.

Smart Stack Buffer Classes

Another way to handle stack buffers, with poisoning both before usage and after
function return, is to use smart buffer classes. There are two approaches:

(a) One-variable method replacing the buffer with a class object, or

(b) Two-variable method with a second variable that is a wrapper or
“watcher” object of the buffer.

The way to replace the buffer with a class looks like this:

char buf[100]; // Original
SmartStackBuffer<100> buf; // Template-based size

Or you can do this, but it’s inefficient because it has to allocate on the heap instead
of using stack memory, because it doesn’t rely on compile-time sizing of the object:

SmartStackBuffer buf (100); // Really it’s on the heap
The two-variable method looks like this:

char buf[100];
SmartStackWrapper bufwrap (buf, sizeof buf);

In this two-variable method, we use the character array buffer as usual. But the
extra smart stack wrapper object does some extra work at the start, and at the end
in its destructor.

David Spuler 298



The performance downside of the one-variable or two-variable smart buffer
approach is that we’ve added class overhead to a very primitive type. On the other
hand, we can make them all short functions that are declared as inline, so the
performance hit is minimal.

The overhead of smart buffer classes is more worthwhile when used to do a variety
of checks. Using them on stack buffers can do all of these things (some of which
are shown in other chapters):

e DPoison the stack buffer on entry to catch uninitialized memory usage.

e DPoison the unused portion of a partially-filled buffer.

e Detect buffer overrun writes (after they occur, in the destructor).

e Detect some buffer overrun reads/writes as they occur (with extra member
functions).

e DPoison the stack memory on function return (in the destructor), to detect
use-after-return.

e Track stack memory block addresses in more detail.

Stack Buffer Destructors

The neatest thing about smart stack buffer objects it that the destructor runs
whenever it goes out of scope, at the end of a code block or the end of the function.
Hence, we don’t need to do anything extra to detect when the stack has unwound
and the buffer is no longer valid memory.

Here’s an example of the two-variable class wrapper method, which works like this:

char buf[10007];
SafeBufferWrap bufwrap (buf, sizeof buf);

Here’s the code and note that the stack object wrapper has both types of poisoning
and also buffer overrun post-detection:

class SafeBufferWrap { // Safe wrapper for char[] buffers

const char magicbyte = '@';
private:
char* m _string; // Address this wrapper is tracking
int m bufsize; // Number of bytes allocated
public:
SafeBufferWrap () = delete; // disallow without string

SafeBufferWrap (char* addr, int bufsize) { // Initialize
m string = addr;
m bufsize = bufsize;

memset (m_string, magicbyte, m bufsize); // Poison!
// Set the overrun detection sentinel byte to zero
m string[m bufsize - 1] = 0;

299 Advanced C++ Memory Techniques



void check overflow() {
// Check for buffer overrun... (at some prior time)
if (m_string[m bufsize - 1] != 0) {
// Detected overflow (but don’t know when)
AUSSIE _ERROR ("SafeBufferWrap overrun");
}
}
~SafeBufferWrap() { // Destructor
check overflow();
// Poison on stack unwind

memset (m string, 'Q@', m bufsize);
}
char* string() { return m string; }
int size() { return m bufsize; }

}i

Handling False Positives

The idea with the above poison method is three @’s in a row indicates poisoned
memoty, as defined by the “is_poisoned” function above. If you prefer, it could
be two or four characters. Regardless of the length, you’ll get a false positive if any
input text contains that sequence. This is a “false positive” where an error is
detected that is not real.

How to handle false positives?

The simplest idea is to ignore them, since the poisoning technique is mainly for use
in development and testing phases, rather than in production. It’s better to suppress
false positives, as they may otherwise hide real errors. For example, if your
regression tests are somehow triggering a false positive error on every nightly build,
add some code to suppress it. You can build a suppression method into your etror
reporting mechanism, such as simply searching for other string patterns related to
the error, or by suppressing it based on context values found
via func , FILE or LINE .

Poisoning Partial Memory Buffers

It is useful to detect errors where there are “semantically unusable” memory bytes,
even where the memory is still officially safe in C++ terms. A good example is
copying a string into a larger buffer.

char buf[100] = "";
snprintf (buf, 100, "abc");

David Spuler 300



There is nothing wrong with the start of the buffer, and it has been safely copied
using snprintf. However, any use of the end of the buffer beyond the string
stored there has no valid meaning,

In this case, it’s also uninitialized stack memory, but even if it was a fully-initialized
global buffer, any use of that memory is still suspect.

Hence, we want to mark indices 4..99 as invalid memory. There’s no standard way
to do this in C++, but we can “poison” this area with special byte values. Here is
the hand-coded version to do that with the above buffer:

int len = (int)strlen (buf);
memset (buf + len + 1, 100 - len - 1, '@");

Obviously, you can generalize that into a useful utility function.

void aussie poison unused part buffer(char* s,
int maxbufsize, char magicchar /* = '@'*/)
{
// PURPOSE: buffer contains string, poison unused bytes

if (!'s) {
AUSSIE_ASSERT(S != NULL) ;
return;

}

int len = (int)strlen(s);

int validbytes = len + 1; // add 1 for the null byte
if (validbytes > maxbufsize) {
// Too many bytes (overrun the buffer already?)
AUSSIE ASSERT (validbytes <= maxbufsize);
return; // avoid this overrun!
}

int remaining bytes = maxbufsize - validbytes;

if (remaining bytes == 0) return; // Buffer full
if (remaining bytes > 1) {
// Poison bytes ... except last byte
memset (s + validbytes, magicchar,
remaining bytes - 1);
}
s[maxbufsize - 1] = 0; // Null at very end for safety

301 Advanced C++ Memory Techniques



Advanced Poisoning

But wait, there’s more! If you really want the poisoning approach to be complete,
there are various ways to uplevel:

Add automated checks for poisoned addresses via the “is_poisoned”
function in intercepts of functions such as: strlen, strcmp, strcpy,
etc.

Ensure the macro intercept header file is at the top of each C++ source
file (after the system headers, but before any application headers).

Either include the macro intercept at the top of your header files, or ensure
there’s nomalloc or free used in inline functions in header files.
Macro-intercept other functions (e.g., realloc, alloca).

Linked third-party libraries will not get macro-intercepted, but will still
work for link-time interception.

Header-only third-party libraries might need review of their memory
allocation usage (e.g., maybe add your macro intercept header file before
including them, or maybe not).

Any other custom allocators, such as class-specific ones, may need changes
for this approach.

Add a compile-out preprocessor macro, because you’ll need to remove
some of your poisonings when using a sanitizer or valgrind.

Detect whether a runtime memory sanitizer is already running (e.g.,
the RUNNING ON_ VALGRIND variable) and modify the approach (e.g.,
don’t use your own redzones, because these become valid memory in the
silicon mind of the sanitizer).

Call the sanitizer APIs to poison memory blocks when running in a
sanitizer mode (e.g., not usually necessary for heap or stack memory block
issues, but useful for partially empty buffers).

Poisoning API Usage

One advanced usage is modifying your approach if a sanitizer such as ASan or
Valgrind is running. You can detect these with features such as:

RUNNING ON VALGRIND — true if Valgrind is currently running.
__SANITIZE ADDRESS  preprocessor macro.
__has feature(address sanitizer) preprocessor test.

The ASan examples above are preprocessor constructs that detect whether GCC is
compiling the C++ in ASan mode (e.g., the ~fsanitize=address option).

David Spuler 302



This isn’t exactly the same thing as whether ASan is currently active at runtime, but
it’s a good proxy.

The AddressSanitizer tool has macros whereby you can poison custom memory

blocks, so that ASan will treat their use as an error. Valgrind also has a much larger
range of functions, from custom allocator controls to explicit “poisoning” calls.

ASAN poisoning API. The usage of the AddressSanitizer macros to control
poisoning of memory blocks looks like:

ASAN POISON MEMORY REGION (addr, size)
ASAN _UNPOISON MEMORY REGION (addr, size)

There is also a runtime flag “allow user poisoning” that controls these, and
can remove them for production code.

Valgrind API. There’s also a lot of API macros for fine-grained control of memory
blocks in Valgrind. These macros can be useful:

e VALGRIND MALLOCLIKE BLOCK— mark a block as if it’s newly

allocated.

e VALGRIND FREELIKE BLOCK — mark as if this block is now freed.

e VALGRIND MAKE MEM UNDEFINED — data in this memory is
undefined.

e VALGRIND MAKE MEM UNDEFINED — reset memory to be defined.
e VALGRIND MAKE MEM NOACCESS — any use of this memory is an
€rror.

The VALGRIND MAKE MEM NOACCESS macro can be used to mark redzones or
other poisoned regions, and VALGRIND MAKE MEM UNDEFINED can mark
memory as uninitialized.

What are these used for? Manually marking of memory blocks as poisoned or
freed can be useful to manage the status of memory for ASan, including situations
such as:

e DPartial string buffer poisoning (as shown above).

e Memory pools or class-specific memory allocators that pre-allocate a large
memory block using the system allocator, but it is then later “allocated” in
small chunks.

e Data structures with initialized memory, whether cleared by constructors
or allocated physically via calloc, but where the memory is not all used
at a logical level.

303 Advanced C++ Memory Techniques



e Custom memory allocators with fine-grained control over the memory
blocks.

e Implementing a “never-free” or “delayed-free” memory management
method for better detection of use-after-free errors, thereby getting more
warnings from ASan about uses of the pseudo-deallocated memory blocks,
even if they haven’t really been freed yet.

e High-level logic whereby a memory block is known to be no-longer-used
by the program (e.g., after move semantics), or is otherwise invalid, but is
still valid from a low-level system allocator perspective.

In conclusion, the above has presented a variety of methods of poisoning both the
uninitialized memory on the heap or stack, de-allocated heap memory, and
unwound stack memory. The goal is to detect reads of uninitialized or invalid
already-freed memory blocks.

This chapter shows a variety of techniques, and these are a lot of extra work for the
programmer. It would be better if the compiler vendors did this for us! Hence, I
vote for a “~poison” option in the next compiler release.

David Spuler 304



28. Uninitialized Memory Safety

What are Uninitialized Memory Errors?

There are fundamental problems with memory initialized in C++. This is the
standard C++ situation:

e Global variables are initialized to zero.

e Basic stack local variables are not initialized (buggy!).

e Local static variables are initialized to zero.

e Heap-allocated variables are sometimes initialized (buggy!).

There are two main strategies for dealing with uninitialized memory:

e Detect the problems (e.g., run sanitizers, or use poisoned memory DIY
methods), or
e Just fix them!

This chapter is about ways to fix uninitialized memory usage in C++ by DIY
initialization-to-zero tricks. Really, there should be a compiler “~safe” option that
does this for you, but I’'m not aware of a vendor that offers it yet.

Initializing C++ Heap Memory
The situation with memory initialization on the heap in C++ includes:

e malloc memory is never initialized.

e calloc initializes to zero always (hoorayl).

e new of object types relies on constructors to initialize.

e new of arrays of objects relies on (many) constructors to initialize.

e new of primitive data types does not initialize at all (single variables or
arrays).

e realloc does not initialize extra memory.

305 Advanced C++ Memory Techniques



A first approach would be to fix these via a coding standard:

e Never use malloc;only use calloc.
e Never use new for basic data types (e.g., int).

Here’s one simple try to automate this:
#define malloc (n) calloc (1, (n))

Note that we cannot macro-intercept the new operator because it’s not function-
like. Further, we can’t really institute a coding policy of replacing the new operator
withmalloc, or delete with free, for any object types, because we need the
constructors and destructors to run. We could do that for non-object types, such
as basic data type arrays, but it becomes a problematic patchwork in itself.

These are all worthwhile ideas, and will fix some issues. But it doesn’t address these
uninitialized memory usage errors:

e Forgetting to initialize a data member in a constructor.

e  Stack variables are not addressed.

e Less common methods like realloc still have the problem.

e Easy to get confused and mix-up the matching free and delete.

Here’s another idea for fixing the uninitialized data member problems:
memset (this, 0, sizeof (*this)); // in constructor

But this is an annoying manual coding intervention, and also doesn’t fully handle
the issue, because it may get confused about the object size in base versus derived
objects.

David Spuler 306



Intercepting Memory Allocation

A more comprehensive approach is to intercept all of the memory allocation
primitives. This is possible in this way:

e Macro intercepts of malloc, calloc, and free.
e Link-time intercepts of new and delete.

There are also some platform-specific tricks that are neat. Microsoft CRT has a
callback mechanism called “hooks” that gets called whenever an allocation occurs.
You simply register your own callback functions.

What do we do in these intercepts? The basic idea is:

e Changemalloc to calloc

e Change new and new[] to use calloc.

e Change delete and delete[] to use free (avoids mismatches).
Note that there’s no problems with constructors and destructors with these
intercepts, because they are low-level memory primitives. The new intercepts run
before the constructors, and the delete intercepts run after the destructors.

The bugs that we can fix with memory allocation interception include:

e  Uninitialized heap memory.
e Mismatched new/delete withmalloc/free.

Macro Intercepts

Here’s the basic idea for the macro intercept in a header file:
#define malloc aussie malloc
And here’s the basic idea for the wrapper function that initializes:

void* aussie malloc(int sz)

{
#undef calloc // avoid wrapper
void* v = calloc(sz, 1); // Call real calloc
return v;

307 Advanced C++ Memory Techniques



Link-Time Intercepts

Here’s the basic code to create a global link-time intercepts:

void* operator new(size t n)
{
#undef calloc // avoid macro intercept

void* v = calloc(n,1l); // Call calloc (Not
return v;

}

void operator delete(void* wv)

{
#undef free // avoid macro intercept
free(v); // call the real free (Not delete

And we also need the array versions:

void* operator new[] (size t n)
{
#undef calloc // avoid macro intercept

void* v = calloc(n,1l); // Call calloc (Not
return v;

}

void operator delete[] (void* wv)

{

#undef free // avoid macro intercept

rinew)

here!)

rinew)

free(v); // call the real free (Not delete here!)

David Spuler 308



Advanced Intercepts

To make these ideas as robust as possible, it’s necessary to do this work:

e  Ensure macro intercept header file is included at the top of every C++ file

e Macro intercept headers may be needed at the top of some header files,
too (e.g., for inline functions).

e Add four C++ link intercept functions: basic and array overrides
for new/new[] and delete/delete|] operatofs.

e Intercept less common functions: realloc, aligned allogc, etc.

e Examine third-party allocation functions in non-header linked libraties
(C++ allocation will be handled automatically by the link-time intercepts,
but C-style allocations won’t be seen by the macro intercepts.)

e Class-specific allocators may bypass this method, or not, depending on
how they are implemented.

e The Standard C++ library/STL uses a lot of C++ memory allocation,
which isn’t necessarily a problem, but be aware of it.

e Global or static C++ objects of your own or STL global variables will
run your link-time intercept functions before the main function starts
(again, not usually a problem).

e Add an option to compile-out these initializations, such as for use when
running sanitizers to detect uninitialized memory errors.

On the other hand, ignore that last point. Why bother ever detecting them now?
They’re fixed! Just initialize the memory to zero for ever after.

One of the main downsides of the above methods is that these interception
methods only work for the heap, and don’t help with the stack. We can’t use these
two approaches of function-like macro interception or link-time interception with
local stack variables.

309 Advanced C++ Memory Techniques



Stack Buffer Initialization

Stack variables are still a problem, even if we’re intercepting all heap allocation
primitives. The simple example of an uninitialized stack vatiable looks like this:

void my stack crash function()

{
char buf[100];
printf ("$s\n", buf);

Fixing stack buffer usage is more difficult than heap memory. We cannot easily
intercept when the stack frame is increased on function entry, nor when it is
released on function returns. Compiler vendors could do this, but it’s hidden from
the programmer. There’s no way to use macros, and I’m not aware of any callback
mechanisms or compiler settings to always zero the stack.

Some of the possible approaches include:

e Require all local variables to be initialized.

e Coding standard requirement to use memset or other methods after every
stack array variable.

e  Use smart buffer objects instead of local array buffers (i.e., a one-variable
wrapper object).

e  Use two-variable methods with smart buffer wrapping objects.

e Macro-intercept the alloca dynamic stack block allocation method (but
it’s rarely used, so this isn’t that valuable).

There’s no easy method to do this comprehensively for stack memory, and I’'m not
aware of any compiler flags that guarantee zeroing of the stack frame on function
entry.

This is the usual way of requiring an initialization:

char buf[100] = “7;

This is a worthwhile policy, and it fixes the bug in my above code example. The
downside is that the whole buffer is not zero.

David Spuler 310



Here’s the manual way:

char buf[100] = “7;
memset (buf, 0, 100);

And here’s the better way with sizeof operator:

char buf[100] = “7;
memset (buf, 0, sizeof buf);

And we can use a macro to reduce the chances of copy-paste errors:

#define INIT MY BUFFER (buf) \
memset ( (buf), 0, sizeof (buf))

/] e

char buf[100] = "";

INIT MY BUFFER (buf)

But beware the trap of using sizeof for a parameter rather than a local variable. An
array function parameter is a pointer, rather than a real array type, so it’ll be the size
of a pointer rather than the size of a buffer (i.e., too small). Don’t do this:

void init my buffer(char buf[100])

{
memset (buf, 0, sizeof buf); // Bug!!

}

Smart Buffer Classes

Another way to handle stack buffers is to use smart buffer classes. There are two
approaches: either replace the buffer with a class object, or use a second variable
that is a wrapper or “watcher” of the buffer.

The way to replace the buffer with a class looks like this:

char buf[100]; // Original
SmartStackBuffer<100> buf; // Smart buffer version

311 Advanced C++ Memory Techniques



Or you can do this, but it’s inefficient because it has to allocate on the heap instead
of using stack memory, because it doesn’t rely on compile-time sizing of the object:

SmartStackBuffer buf (100); // Really it’s on the heap

The performance downside is that we’ve added class overhead to a very primitive
type. On the other hand, we can make them all short functions that are declared
as inline, so the performance hit is minimal.

I'm not especially fond of the idea of using smart buffer classes just for fixing
uninitialized stack memory. After all, the memset ideas above are almost as good,
and faster than adding class apparatus around a buffer. However, smart buffer
classes are worthwhile because they can also do these things:

e Detect buffer overrun writes (after they occur, in the destructor).

e Detect some buffer overrun reads/writes as they occur (with extra member
functions).

e Poison the stack memory on function return (in the destructor), to detect
use-after-return.

e Track stack memory block addresses in more detail.

In conclusion, the above has presented a variety of methods of making the
uninitialized memory read error into a harmless non-issue. But it’s a variety of
techniques, and a lot of extra work, so it would be better if the compiler vendors
did this for us!

David Spuler 312



29. Smart Stack Buffers

What are Smart Stack Buffers?

The idea behind smart stack buffers is to use a light wrapper around any text buffers
or arrays on the stack (i.e., a local variable inside a C++ function). The idea is
reasonably efficient and convenient, because:

e inline functions make it fast (even as a class wrapper).

e Tast tests detect buffer overflow with a single arithmetic test.

e  Destructors are automatically executed whenever it goes out-of-scope (e.g.,
function returns), so we don’t need to track that.

Here’s one way to use a class wrapper to track an automatic array buffer:

char stackbuf[1000] = "";
SafeBufferWrap stackwrap (stackbuf, sizeof stackbuf);

Note that this is a two-variable method: the original buffer is unchanged, but a
second class object is used to check it. There are other methods whereby a class
object is used instead of a text buffer variable, which we’ll explore further below.

Why Use Smart Buffers?

Why do we need this type of smartness? After all, the various sanitizers such
as valgrind or AddressSanitizer (ASan), can find stack buffer overflows.
Well, actually, the valgrind memory checker cannot find stack overflows, but
only heap-allocated memory overflows, though at least ASan does detect stack
variable glitches. The reason to use our own smart buffers is simple: it’s faster!

Since the wrapper checking is much faster than sanitizers, we can just leave it
running a// the time. This means that we can detect these overflows:

e Continuous detection during development and testing (by dev or QA).
¢ Early detection in CI/CD workflows and nightly builds.
e Optionally, could even be shipped to customers enabled (either when beta
testing, or maybe even in production).
e Helps tracking down intermittent and hard-to-reproduce cases.
313 Advanced C++ Memory Techniques



We can’t realistically be running the sanitizers in any of those situations. I’'m not
saying to replace them, because it’s critically important to run full sanitizers on the
overall regression test suite as part of your nightly builds. We can do both.

Two-Variable Method

Here’s the example wrapper class called SafeBufferWrap, which is initialized
with the raw text buffer variable, and tracks it from the outside:

class SafeBufferWrap { // Safe wrapper for char[] buffers
private:
char* m_string; // Address buffer wrapper is tracking
int m bufsize; // Number of bytes allocated
public:
SafeBufferWrap() = delete; // disallow without a string
SafeBufferWrap (char* addr, int bufsize) { // Initialize
ASSERT_RETURN (addr != NULL) ;
m string = addr;
m bufsize = bufsize;
// Set the overrun detection sentinel byte to zero
m string[m bufsize - 1] = 0;
}
void check overflow() {
// Check for buffer overrun... (at some prior time)
if (m_string[m bufsize - 1] != 0) {
// Detected overflow (but don’t know when)
AUSSIE ERROR ("SafeBufferWrap overrun");
}

}
~SafeBufferWrap() { // Destructor
check overflow();

}

char* string() { return m string; }
int size() { return m bufsize; }

}i

It’s quite a lot of code, which gives it a “heavy” appearance, but note it’s actually
quite “light” with relative efficiency. Firstly, all the functions can be inline.
Secondly, the tripwire is to clear a single byte to null, and the test for overtlow is a
single byte test for non-null. That is very efficient.

David Spuler 314



Z.eros and Canaries

There are two ways to further extend this safe buffer wrapper idea:

e Auto-initialize the buffer to all-zeros (safety).
e Set the buffer to “canary” bytes (triggers failures).

Note that the two ideas are mutually exclusive. We can either go for suppressing all
the initialization errors, or we can intentionally set the buffer to non-zero values, so
as to shake out more bugs. Less bugs, or more bugs, take your choice. Here’s the
code with these two additional options:

#define SAFE BUFFER WRAP CLEAR 1 // 1 inits bytes to 0
#define SAFE BUFFER WRAP CANARY 1 // 1 inits to canary byte

class SafeBufferWrap { // Safe wrapper for char[] buffers
const char magicbyte = '@';
private:

char* m string; // Address this wrapper is tracking
int m bufsize; // Number of bytes allocated

public:
SafeBufferWrap () = delete; // disallow without a string
SafeBufferWrap (char* addr, int bufsize) { // Initialize
ASSERT RETURN (addr != NULL) ;
m string = addr;

m bufsize = bufsize;

// Optionally: clear all bytes to zero
#1if SAFE BUFFER WRAP CLEAR

memset (m_string, 0, m bufsize); // Clear to zero
fendif
#if SAFE BUFFER WRAP CANARY

// Mark all buffer with canary bytes

memset (m_string, magicbyte/*'@'*/, m bufsize);

fendif
// Set the overrun detection byte to zero
m string[m bufsize - 1] = 0;
}
void check overflow() {
// Check for buffer overrun... (at some prior time)
if (m_string[m bufsize - 1] != 0) {

// Detected overflow (but don’t know when)
AUSSIE_ERROR("SafeBufferWrap overrun") ;
}
}
~SafeBufferWrap() { // Destructor
check overflow();
}
char* string() { return m string; }
int size() { return m bufsize; }

315 Advanced C++ Memory Techniques



Limitations of Smart Buffers

The limitations of this approach include:

o After-the-fact detection of buffer overruns (we don’t know when it
occurred, or what code caused the overrun).

e Does not prevent the overrun so it won’t stop a crash and isn’t a protection
against attackers.

e Only detects writes beyond array bounds, not reads.

Hence, we still need to do all that work to make sure that the buffers don’t overrun!
And we still need to run the sanitizers in auto mode while we sleep.

David Spuler 316



30. Safe Text Buffers

C-style sprintf is Unsafe

The first assumption here is that you want to use sprintf rather than
C++ std::string for performance. It’s hard to get a buffer overflow
with std: :string, because it manages its own allocated buffer, but feel free to
try. The only problem is speed, because std: :string will make calls to the
memory allocator once the string exceeds about 16 characters in length.

The C++ sprintf function for formatting strings is a long-standing part of C and
C++, but it’s also unsafe. It can easily overflow a buffer, and there’s no way to
know without inspecting the parameters in greater detail. Consider this code:

char buf[100];
sprintf (buf, "%s", str); // Buffer overflow?

One marginally safer way is to use the precision markers, such as in:

char buf[100];
sprintf (buf, "%.100s", str); // Still overflows

In this way, the output is limited to 100 bytes, but this is still an overflow because
of the +1 for the null byte. We really need this:

char buf[100];
sprintf (buf, "%.99s", str); // No buffer overflow

Somewhat Safer is snprintf

The snprintf function is safer than sprintf. On some platforms, there is also
the sprintf s safe function. Here’s how snprintf works:

char buf[100];
snprintf (buf, 100, "%s", str); // Safer

317 Advanced C++ Memory Techniques



We can write this more portably:

char buf[100];
snprintf (buf, sizeof buf, "%s", str); // Safer

Problems with snprintf

Although using snprintf will avoid a buffer overrun and a crash
(whereas sprintf didn’t), there are still some limitations:

e Not easy to detect if any overflow occurs (i.e., was prevented).
e Difficult to use snprintf in the middle of a string.
e Appending with snprintf is similarly tricky.

Detecting Truncated Overflows with snprintf

In many applications, you might want to know that a buffer overflow was avoided,
such as by emitting an error message or throwing an exception. By
default, snprint £ will quietly truncate the output and do nothing else.

It is possible to examine the return value of snprintf to know whether an
overflow has been prevented and the output truncated. The returned value is an
integer and it’s rather weird:

The bytes that would have been output if there was enough room in buffer.

If there’s no overflow, then snprintf returns the bytes output (excluding the
terminating null byte), just like unsafe sprint£. If there’s an overtlow, then the
return value will be more than (or equal to) the size of the buffer. This seems odd,
but it’s actually quite useful, because the way to detect an overflow is simply to
compare the return code to the buffer size:

int bufsize = sizeof buf;
int ret = snprintf (buf, bufsize, "%s", s);
if (ret < 0) {
// snprintf failure... (can this really occur?)

}
else if (ret >= bufsize) {
// Overflow has occurred! (Truncated text)
}
else {
// Normal case.
// The string and its null byte fit in the buffer.
}

David Spuler 318



Note that if the return code exactly equals the buffer size (i.e., ret==bufsize),
this is still an overflow because the extra null byte didn’t fit, and snprintf has
truncated one character from the output string so as to leave room for the null byte.

Macro Wrapping snprintf Return Codes

The above code sequence is rather a lot of typing if you’re going to do that for every
call to snprintf. Here’s a way to automate it, using a preprocessor macro
intercept and an inline function to check the return code:

#undef snprintf
#define snprintf (dest, bufsize, ...) \
aussie snprintf return check( \
snprintf (dest, bufsize, VA ARGS ), \
bufsize,  func , FILE , LINE )

This looks dangerous since the macro snprintfis also in the macro value.
However, C++ preprocessor macros that are self-referential are only expanded
once. This is standard functionality since inception for both C and C++.

Note that this is using variable-arguments C++ macros, which are also standard
C++ for many years now. These include the “...” and the “ VA ARGS ”
tokens. There’s also a useful VA OPT _ macro, but we don’t need it here.

The above macro simply wraps the call to snprint £ with another function whose
only task is to check the return value. Here’s an example of that definition:

inline int aussie snprintf return check(

int snprintf retval, int bufsize,

const char* func, const char* file, int line

) A

// PURPOSE: Wrapper for snprintf return value

if (snprintf retval < 0) {
AUSSIE ERROR CONTEXT ("snprintf returned negative",

func, file, line);

return snprintf retval; // pass through

}

else if (snprintf retval >= bufsize) ({
int bytes truncated = snprintf retval - bufsize + 1;
// Optionally: report the bytes truncated, bufsize,
// etc., as extra error context...
AUSSIE ERROR CONTEXT ("snprintf overflow truncated",

func, file, line);

return snprintf retval; // pass through

}

return snprintf retval; // pass through

319 Advanced C++ Memory Techniques



Unsafe Buffer Appending with sprintf

It’s tricky to append to a string using sprintf or snprintf. Here’s the basic
idiom for unsafe sprintf appending using strlen:

char xbuf[1000] = "";

sprintf (xbuf + strlen (xbuf), "abc");
sprintf (xbuf + strlen(xbuf), "def");
sprintf (xbuf + strlen(xbuf), "xyz");

Note that this works even for the special case of an empty string,
where strlen will return 0, and add nothing to the location.

If you do this a lot, or the buffer is a massive text string (e.g., a long HTML
document in memory), then the call to strlenis a slug. Marginally better is to
maintain an incremental buffer pointer, so that the strlen calls are only from the
current location, which is faster.

char* where = xbuf;

sprintf (where, "abc");

where += strlen(where); // append
sprintf (where, "def");

where += strlen(where); // append

sprintf (where, "xyz");

And you can micro-optimize this using the return code, which works for sprintf,
which returns the number of bytes output.

char* where = xbuf;

where += sprintf (where, "abc");
where += sprintf (where, "def");
where += sprintf (where, "xyz");

But beware a pitfall: don’t do this trick for snprintf, because it doesn’t always
return the actual bytes output, but returns the bytes it would have ontput, had it been
in the right frame of mind.

There’s only one problem with all those appending tricks: none of them are safe!

David Spuler 320



Safe Buffer Appending with snprintf

How do we append safely to a buffer? We want to do this:

char xbuf[1000] = "abc";
snprintf append(xbuf, sizeof xbuf, "def");

But this function doesn’t exist. We have to try to define our own via a macro:

#define snprintf append(dest, bufsize, ...) \
do { \
int snplentmp = (int)strlen((char*)dest); \
snprintf ( (char*) (dest) + snplentmp, \
(bufsize) - snplentmp, VA ARGS ); \
} while (0)

As you can see, this figures out how far along the buffer to append using strlen.
Then it adds that byte count to the location, but also reduces the buffer size by that
amount.

1t’s difficult to return the value of snprintf in this statement-like macro.
However, if we’re using the macro intercept with #define snprintf (asin prior
sections), then the wrapped return value checking will also be occurring in this usage
of snprintf, so maybe we don’t need to return the value to the caller.

Again, the call to strlen can become a slug for large buffers, because it’s always
scanning from the very start of the buffer. The alternative is to maintain a pointer
to the end of the string, which is the location from which to append. Pointer
arithmetic can compute the byte count more efficiently.

#define snprintf append end(dest, bufsize, endstr, ...) \
do { \
long int snplentmp = (long) ( \
(char*)endstr - (char*)dest); \
snprintf ( (char*) (dest) + snplentmp, \
(bufsize) - snplentmp, VA ARGS ); \
} while (0)

If we really do need to return the code through, then it’s hard to do this in a macro,
which looks like a code block rather than a function-like macro. Instead of using a
macro, you can define a C++ function with variable arguments, and then have it
call the vsnprintf function.

321 Advanced C++ Memory Techniques



#include <stdarg.h>

int snprintf append function(char *dest, int bufsize,
char* format, ...)

{

va list ap;

int len = (int)strlen(dest);
va_ start (ap, format);

int ret = vsnprintf (dest+len, bufsize-len, format, ap);
va_end(ap) ;

return ret;

Again, we can avoid the slowdown from the strlen call if we maintain another
pointer to the end (or middle) of the text buffer:

#include <stdarg.h>

int snprintf append end function(char* dest, int bufsize,
char *endstr, char* format, ...)

{

va_ list ap;

if (*endstr != 0) endstr += strlen(endstr); // Safety
long int len = (long) ((char*)endstr - (char*)dest);
va_start (ap, format);

int ret = vsnprintf (dest+len, bufsize-len, format, ap);
va_end(ap) ;

return ret;

Actually, for a further optimization, the parameter endstr probably should be a
reference parameter, so that its value is automatically updated in the calling code
whenever it gets moved to the end.

And one final safety point: we need to check the return value of vsnprintf, so
that we know when an overflow caused a truncation. This is possible either through
another macro intercept, like we did above for snprintf, or by adding extra code
directly into the above varargs functions.

David Spuler 322



31. Preventive Memory Safety

Prevention Versus Detection

This chapter examines the question as to what DIY memory safety techniques can
be used to prevent an error from occutrring, or to prevent a security exploit being
used. There are many other techniques to “detect” a memory error, which are
valuable, but do not directly prevent a memory glitch in production. These improve
quality indirectly by finding bugs, which can then be fixed.

The list of memory errors to consider for prevention includes:

e Uninitialized memory usage (heap and stack)
e Null pointer dereference

e Buffer overflows (reads and writes)

e Buffer underflows (reads and writes)

o  Usec-after-free

¢ Double-deallocation

e  Mismatched allocation and deallocation

e Standard library container memory issues

e Standard library function problems

Some of the standard library issues include:

e Unsafe string functions — e.g., strcpy, strcat, sprintf.

e Detecting when the “safe” string functions truncate the text
(e.g., snprintf, strcpy s).

e strncpy is a special problematic case that is easily fixed by a wrapper.

e Tile pointer problems and file operation sequence errors (e.g., null file
pointers, double-fclose).

e Removing an object from a container in the middle of an iterator.

The DIY memory techniques that we can consider include:
e Memory sanitizer tools

e  Macro intercepts (e.g., malloc and free)
e Linker intercepts (e.g., new and delete)

323 Advanced C++ Memory Techniques



Some more tricks:

e Initialization methods

e Canary values

e Redzone memory regions
e Memory poisoning

e Delayed-deallocation

e Safe wrapper functions

e Smart wrapper classes

Memory Sanitizer Tools

The most obvious method of prevention of memory problems is to use runtime
memory checkers and sanitizers. Examples include:

e Valgrind (Linux)
e AddressSanitizer (GCC)
e compute-sanitizer (CUDA C++)

These tools will detect and prevent a vast range of memory errors in the stack and
heap. Examples include uninitialized memory usage, array bounds overflows, and
use-after-free errors.

But these tools are simply too slow to use in production. They are valuable in terms
of indirectly improving memory safety because glitches are detected eatly and fixed
by programmers. But they really don’t solve the prevention problem.

Preventing Memory Initialization Errors

One of the simplest DIY fixes is to avoid uninitialized memory errors in C++ by
initializing memory ourselves. To do this, we need to use these techniques:

e Intercept malloc with macros (or linking) and replace with a wrapper that
uses calloc (or uses memset to zero).

e Intercept other heap allocation primitives (e.g., strdup, realloc).

e Link-time intercept new and change to calloc (also requires matching
linker intercepts of delete to change to free).

e Intercept alloca dynamic stack memory function (and use memset to
ZE€ro Memotry).

e  Use smart buffer wrapper classes to initialize local buffer variables on the
stack (i.e., function local variables).

David Spuler 324



A whole class of memory errors disappears!

Most of the above techniques require minimal code changes to existing code, such
as to add a header file for macro intercepts. Note that C++ already zeroes all
memory for global variables and local static variables, without needing any
special changes.

The most invasive of the above methods is adding safety class wrappers for stack
buffers, but there’s not really any intercepts possible in C++ for stack memory.
Other possible solutions for stack buffers would involve changes to the code itself,
such as to use heap memory instead, or changing to dynamic alloca stack
memory (which can be macro-intercepted).

Overall, there’s only a few exceptions to what memory we can initialize with DIY
techniques, in that compiler changes are probably needed for:

e  Full stack frame initialization to zero on function entry.

e Initialization of small local variables on the stack (without extra class
wrapper variables).

e Register variable initialization (also related to local variables).

Mismatched Allocation and Deallocation

Mismatches between the various types of allocation and deallocation cause
undefined behavior, and can even crash. In some cases, they won’t crash, but will
fail to run the correct constructors or destructors. The correct matches are:

e malloc,calloc, strdup — free
e new—delete
e new[] —delete]]

Any crossover between any of the three categories is technically a failure. However,
these are easily resolved by DIY memory primitive wrappers. By using link-time
intercepting of the four new and delete primitives, everything can be converted
tomalloc/calloc and free. In this way, there won’t be any crashes anymore,
even if this error occurs. However, note that many of these failures are still higher-
level errors even if they don’t crash, because they won’t correctly run all the
destructors if non-scalar objects are being deallocated.

325 Advanced C++ Memory Techniques



Why Use Wrapper Functions?

The idea of debug wrapper functions is to fill a small gap in the self-checking
available in the C++ ecosystem. There are two types of self-testing that happen
when you run C++ programs:

e Self-tests such as error return checks, assertions, and wrappers in the main
C++ code.

e valgrind or sanitizer detection of numerous run-time errors.

Both of these methods are highly capable and will catch a lot of bugs. To optimize
your use of these capabilities in debugging, you should:

e Testall error return codes (e.g., a fancy macro method), and

¢ Runvalgrind and/or other sanitizers on lots of unit tests and regression
tests in your CI/CD approval process, ot, when that gets too slow, at least
in the nightly builds.

But this is not perfection! But there’s two main reasons that some bugs will be
missed:

e Self-testing doesn’t detect all the bugs.
e You have to remember to run sanitizers on your code.

Okay, so I'm joking about “remembering” to run the debug tests, because you've
probably got them running automatically in your build. But there’s some real cases
where the application won’t ever be run in debug mode:

e  Many internal failures trigger no visible symptoms for users (silent failures).

e Customers cannot run valgrindon their premises (unless you ask
nicely).

e Your website “customers” also cannot run it on the website backends.

e Some applications are too costly to re-run just to debug an obscure error
(I'm looking at you, Al training).

Hence, in the first case, there’s bugs missed in total silence, never to be fixed. And
in the latter cases, there’s a complex level of indirection between the failure
occurring and the C++ programmer trying to reproduce it in the test lab. It’s much
easier if your application self-diagnoses the errox!

David Spuler 326



Fast Debug Wrapper Code

But it’s too slow, 1 hear you say. Running the code with valgrind or other
runtime memory checkers is much slower than without. We can’t ship an executable
where the application has so much debug instrumentation that they’re running that
much slower.

You’re not wrong, and it’s the age-old quandary about whether to ship testing code.
Fortunately, there are a few solutions:

e Use fast self-testing tricks like magic numbers in memory.

e Have a command-line flag or config option that turns debug tests on and
off at runtime.

e Have “fast” and “debug” versions of your executable (e.g., ship both to
beta customers).

At the very least, you could have a lot of your internal C++ code development and
QA testing done on the debug wrapper version that self-detects and reports internal
errofrs.

As the first point states, there are “layers” of debugging wrappers (also ogres, like
Shrek). You can define very fast or very slow types of self-checking code into debug
wrapper code. These self-tests can be as simple as parameter null tests or as
complex as detecting memory stomp overwrites with your own custom code. In
approximate order of time cost, here are some ideas:

e  Parameter basic validation (e.g., null pointer tests).

e Magic values added to the initial bytes of uninitialized and freed memory
blocks.

e Magic values stored in every byte of these blocks.

e Tracking 1 or 2 (ot 3) of the most recently allocated/freed addresses.

e Hash tables to track addresses of every allocated or freed memory block.

I’ve actually done all of the above for a debug library in standard C++. Make sure
you check the Aussie Al website to see when it gets released.

327 Advanced C++ Memory Techniques



Standard C++ Debug Wrapper Functions

It can be helpful during debugging to wrap several standard C++ library function
calls with your own versions, so as to add additional parameter validation and self-
checking code. Some of the functions which you might consider wrapping include:

e malloc
e calloc
e memset
e memcpy
® memcmp

If you’re doing string operations in your code, you might consider wrapping these:

e strdup
e strcmp
e strcpy

e sprintf

Note that you can wrap the C++ “new” and “delete” operators at the linker level
by defining your own versions, but not as macro intercepts. You can also intercept
the “new[]” and “delete []” array allocation versions at link-time.

Example: Wrapping malloc

You can use macros to intercept various standard C++ functions. For example,
here’s a simple interception of malloc:

// intercept malloc

#undef malloc

#define malloc aussie malloc
void*aussie malloc (int sz);

Once intercepted, the wrapper code can perform simple validation tests of the
various parameters.

David Spuler 328



Here’s a simple wrapper for the malloc function in a debug library for C++ that
I’m working on:

void *aussie malloc(int sz)
{
// Debug wrapper version: malloc ()
AUSSIE DEBUGLIB TRACE ("malloc called");
AUSSIE DEBUG PRINTF ("%s: == ENTRY malloc === sz=%d\n",
__func_, sz);

g _aussie malloc count++;
AUSSIE CHECK(sz != 0, "AUS007", "malloc size is zero");
AUSSIE CHECK(sz >= 0, "AUS008", "malloc size negative");

// Call the real malloc

void *new v = NULL;

new v = malloc(sz);

if (new_v == NULL) ({
AUSSIE ERROR("AUS200", "ERROR: malloc failure");
// Try to keep going?

}

return new v;

This actually has multiple levels of tests:

e Validation of called parameter values.
e Detection of memory allocation failure.
e Builtin debug tracing macros that can be enabled.

A more advanced version could also attempt to check pointer addresses are valid
and have not been previously freed, and a variety of other memory errors. Coming
soon!

Example: memset Wrapper Self-Checks

Here’s an example of what you can do in a wrapper function called
“memset wrapper” from one of the Aussie Al projects:

void *memset wrapper (void *dest, int val, int sz)
{
if (dest == NULL) {
aussie assert2(dest != NULL, "memset null dest");
return NULL;
}
if (sz < 0) { // Why we have "int sz" not "size t sz"
aussie assert2(sz >= 0, "memset size negative");
return dest; // fail

329 Advanced C++ Memory Techniques



}
if (sz == 0) {
aussie assert2(sz != 0, "memset zero size");
return dest;
}
if (sz <= sizeof (void*)) {
// Suspiciously small size
aussie assert2(sz > sizeof (void*),
"memset with sizeof array parameter?");
// Allow it, keep going
}
if (val >= 256) {
aussie assert2(val < 256, "memset value not char");
return dest; // fail

}
void* sret = ::memset (dest, val, sz); // Call real one!
return sret;

It’s a judgement call whether or not to leave the debug wrappers in place, in the
vein of speed versus safety. Do you prefer sprinting to make your flight, or arriving two
hours early? Here’s one way to remove the wrapper functions completely with the
preprocessor if you’ve been manually changing them to the wrapper names:

#if DEBUG
// Debug mode, leave wrappers..

#else // Production (remove them all)
#define memset wrapper memset
//... others

#endif

Compile-time self-testing macro wrappers

Here’s an idea for combining the runtime debug wrapper function idea with some
additional compile-time tests using static assert.

#define memset (addr,ch,n) ( \
static_assert(n != 0), \
static_assert(ch == 0), \

memset_wrapper((addr),(ch),(n),__FILE__,__LINE__,__func__))

The idea is interesting, but it doesn’t really work, because not all calls to
the memset wrapper will have constant arguments for the character or the number
of bytes, so the static assert commands will fail in that case. You could use
standard assertions, but this adds runtime cost. Note that it’s a self-referential
macro, but that C++ guarantees it only gets expanded once (i.e., there’s no infinite
recursion of preprocessor macros).

David Spuler 330



Preventing Null Pointer Dereferences

A huge number of null pointer dereferences can be prevented and detected by
wrapping the many standard library functions. Here’s a simple example of the
intercept:

#define strcmp strcmp safe

And here’s the wrapper function with parameter validation checks that prevent null
pointer crashes:

int strcmp safe (const char* sl, const char* s2)
{

if (!sl && s2) {
AUSSIE_ASSERT(Sl);
return -1;

}

else 1f (sl && !s2) {
AUSSIE_ASSERT(S2);
return 1;

}

else 1if (!sl && !s2) {
AUSSIE_ASSERT(SI);
AUSSIE_ASSERT(S2);
return 0; // Equal-ish

}

else {
// Both non-null
return strcmp(sl, s2);

}

// NOTREACHED

Unfortunately, detecting null pointer usage requires compiler changes for direct
pointer or array operations, such as:

*ptr = 0;
ptr->value = 0;
arr[0] = 0;

331 Advanced C++ Memory Techniques



Generalized Self-Testing Debug Wrappers

The technique of debug wrappers can be extended to offer a variety of self-testing
and debug capabilities. The types of messages that can be emitted by debug
wrappers include:

e Input parameter validation failures (e.g., non-null)
e Failure returns (e.g., allocation failures)

e Common error usages

e Informational tracing messages

e Statistical tracking (e.g., call counts)

Personally, I’ve built some quite extensive debug wrapping layers over the years. It
always surprises me that this can be beneficial, because it would be easier if it were
done fully by the standard libraries of compiler vendors. The level of debugging
checks has been increasing significantly (e.g., in GCC), but I still find value in adding
my own wrappers.

There are several major areas where you can really self-check for a lot of problems
with runtime debug wrappers:

e File operations
¢ Memory allocation
e String operations

Wrapping Math Functions

It might seem that it’s not worth wrapping the mathematical functions, as their
failures are rare. However, these are some things you can check:

e errno is already set on entry.

e errno is set afterwards (if not already set).
e Function returns NaN.

e Function returns negative zero.

Most of these can be implemented as a single integer test (e.g., errno) or as a
bitwise trick on the wunderlying floating-point representation (e.g.,
convert float to an unsigned). There are also builtin library functions to detect
floating-point categories such as NaN.

David Spuler 332



In this way, a set of math wrapper functions has automated a lot of your detection
of common issues. These aren’t as common as memory issue, but it’s yet another
way to move towards a safe C++ implementation.

Wrapping File Operations

Many of the file operations are done via function calls, and are a good candidate
for debug wrapper functions. Examples of standard C++ functions that you could
intercept include:

e fopen, fread, fwrite, fseek, fclose
e open, read,write, creat,close

Note that intercepting £stream operations in this way is not workable. They don’t
use a function-like syntax for file operations.

Using the approach of wrapping file operations can add error detection, error
prevention, and tracing capabilities to these operations. Undefined situations and
errors that can be auto-detected include:

e Tile did not open (i.e., trace this).
e Read or write failed or was truncated.
e Read and write without intervening seek operation.

Link-Time Interception: new and delete

Macro interception works for C++ functions like the standard C++ functions
like malloc and free, but unfortunately you really can’t possibly macro-intercept
the new and delete operators, because they don’t use function-like syntax.
Fortunately, you can use link-time interception of these operators instead, simply
by defining your own versions. This is a standard feature of C++ that has been long

supported.

Note that defining class-level versions of the new and delete operators is a well-
known optimization for a class to manage its own memory allocation pool, but this
isn’t what we’re doing here. Instead, this link-time interception requires defining
four operators at global scope:

e new
e newl]
e delete

e deletel]
333 Advanced C++ Memory Techniques



You cannot use the real new and delete inside these link-time wrappers. They
would get intercepted again, and you’d have infinite stack recursion.

However, you can call malloc and free instead, assuming they aren’t also macro-
intercepted in this code. Here’s the simplest versions:

void * operator new(size t n)
{

return malloc (n);

void* operator new[] (size t n)
{

return malloc (n);

void operator delete(void* wv)
{

free (v);

void operator delete[] (void* wv)
{

free (v);

This method of link-time interception is an officially sanctioned standard C++
language feature since the 1990s. Be careful, though, that the return types and
parameter types are precise, using size tand void*, as you cannot
use int or char*. Also, declaring these functions as inline gets a compilation

warning, and is presumably ignored by the compiler, as this requires link-time
interception.

Here’s an example of some ideas of some basic possible checks:

void * operator new(size t n)
{
if (n == 0) {
AUSSIE ERROR("new operator size is zero\n");
}
void *v = malloc (n);
if (v == NULL) {
AUSSIE ERROR ("new operator: alloc failure\n");
}
return v;

}
David Spuler 334



Note that you can’tuse  FILE or LINE _ as these are link-time intercepts,
not macros. Maybe you could use std: :backtrace instead, but I have my

doubts.

Destructor Problems with Debug Wrappers

The use of a debug wrapper library can be very valuable. However, there are a few
problematic areas:

e Destructors should not throw an exception.
e Destructors should not call exit or abort.
e  Destructor issues with assert.

Any of these happenstances can trigger an infinite loop situation. Exception
handlers can trigger destructors, which in turn trigger exceptions again. Exiting or
aborting in a destructor may trigger global variable destruction, which calls the same
destructor, which tries to exit or abort again (and loops). Be careful of the
system assert macro inside destructors, because it’s a hidden call to abort if it
fails.

Although these infinite-looping problems are serious, it would seem that these are
minor issues to add to your coding standards: don’t do these things inside a
destructor. However, we’re talking about debug wrapper libraries, rather than
explicit calls, and destructors often have need to:

e De-allocate memory
e C(lose files

Both of these tasks are often intercepted by debug wrapper libraries, whether
macro-intercepted or at link-time. Hence, the issue we have is that any failure
detected by the debug wrapper code may trigger one of the above disallowed calls,
depending on our policy for handling a detected failure.

Unfortunately, I’'m not aware of an API that checks if “I’m running a destructor”
in C++. Hence, it’s hard for the debug library to address this issue itself. There are
a few mitigations you can use in coding destructors:

e Recursive re-entry detection inside destructors using a static local
variable.

e Modify the debug library’s error handling flags on entry and exit of a
destructor

e Have global flags called “I'm exiting” or “I’'m failing” that are checked by
all your destructors, in which case it should probably do nothing.

335 Advanced C++ Memory Techniques



Alternatively, you could manage your own global flag “I’m in a destructor” in every
destructor function. More accurately, this is not a flag, but a counter of destructor
depth. This flag or counter is then checked by the debug library to check if it’s in a
destructor before it throws an exception, exits, or aborts.

But I’'m not sure what the debug library should do instead? Maybe it can itself set a
global flag saying “I want to exit soon” and then it will later detect this flag is set
on the next intercepted call to the debug library, provided that it’s not still inside a
destructor. Perhaps your application’s main processing loop could regularly check
with the debug library whether it wants to quit, by just checking that global variable
often.

Ugh! None of that sounds workable.
A better plan is probably that your debugging library wrapper functions should
never throw an exception, exit, abort, or use the builtin system assert function,

because it can’t ever be sure it’s not inside a destructor. Instead, report errors and
log errors in another way, but try to keep going, which is a good idea anyway.

David Spuler 336



Appendix: Source Code

Tester Object Instrumentation Class

This code is for “object instrumentation” that can be useful for performance
analysis, and also for debugging and unit testing.

Here’s a test usage to see what constructors and move operations are performed
by push backin the std: :vector class:

Tester::reset counters();
std::vector<Tester> vectestd;

for (int

i

1; i <= 100; i++)

vectest4.push back(i);
Tester::print report();

Here’s the full code:

class Tester {
// Static data members
bool traceall ;

private:
static
static
static
static
static
static
static
static

private:

int
int
int
int
int
int
int

count default constructor;
count copy_ constructor;
count move_ constructor;
count copy assignment;
count move assignment;
count destructor;

count int constructor;

// Object data members
int ival ;
bool trace ;

public:
Tester () {
ival = 0;
count default constructor++;
trace = false;
if (traceall ) {

cout << "Tester: default constructor: "

<< ival << endl;

337 Advanced C++ Memory Techniques



Tester (int val) {

count int constructor++;

ival = val;
trace = false;
if (traceall ) {

cout << "Tester: int constructor: "
<< ival << endl;

Tester (const Tester &other) // Copy constructor

{

ival = other.ival ;
trace = other.trace ;
count copy constructor++;
if (trace || traceall ) {
cout << "Tester: copy constructor: "
<< ival << endl;

Tester (Tester&& other) noexcept // Move constructor

{

ival = other.ival ;
trace = other.trace ;
other.ival = -1; // Invalidate moved data
count move constructor++;
if (trace_ || traceall ) {
cout << "Tester: move constructor: "
<< ival << endl;

Tester& operator=(const Tester& other) // Copy assign

{

David Spuler

count copy assignment++;

if (this != g&other) { // Avoid aliasing
ival = other.ival ;
if (trace || traceall ) {

cout << "Tester: copy assignment: "
<< ival << endl;

}
else {
if (trace || traceall ) {
cout << "Tester: copy assignment aliasing:
<< ival << endl;
}
}

return *this;

338

"



Tester& operator=(Tester&& other) noexcept

{

count move assignment++;

if (this != &other) { // Avoid aliasing
ival = other.ival ;
if (trace || traceall ) {

cout << "Tester: move assignment:
<< ival << endl;

}

else {
if (trace_ || traceall ) {
cout << "Tester: move assignment aliasing: "
<< ival << endl;
}
}
other.ival = -1; // Invalidate moved data

return *this;

~Tester ()

{

count destructor++;

if (trace || traceall ) {

cout << "Tester: destructor: " << ival_ << endl;
}
ival_= -1; // Safety

}

// Equality operators
bool operator==(const Tester& other) {
return ival == other.ival ;

}

// Setters for object members
void trace(bool bval) { trace = bval; }

// Setters for static data members

static void traceall (bool bval) { traceall = bval; }
static void reset counters() {

count default constructor = 0;

count copy constructor = 0;

count move constructor = 0;

count copy assignment = 0;

count move assignment = 0;

count destructor = 0;

count int constructor = 0;
}
static void print report() {
cout << "Tester Count Report" << endl;

cout << "- Default constructor: "
<< count default constructor << endl;
cout << "- Int constructor: "

<< count int constructor << endl;

339 Advanced C++ Memory Techniques



cout << "- Copy constructor: "
<< count_copy_constructor << endl;

cout << "- Move constructor: "

<< count move constructor << endl;
cout << "- Copy assignment: "

<< count copy assignment << endl;
cout << "- Move assignment: "

<< count move assignment << endl;
cout << "- Destructor: "

<< count destructor << endl;

static void selftest () {

// Constructors should equal destructors

// ... but move constructors don’t increase count

int errors = 0;

int total constructors = count default constructor
+ count int constructor
+ count copy constructor;

if (total constructors != count destructor) {
if (total constructors > count destructor) {

cout << "Tester selftest: constructors ("
<< total constructors

<< ") more than destructors ("
<< count destructor << ")" << endl;
errors++;

}
else {
cout << "Tester selftest: destructors ("
<< count destructor

<< ") more than constructors ("
<< total constructors << ")" << endl;
errors++;
}
}
if (errors == 0) {

cout << "Tester selftest: no errors" << endl;

}i

// Define Tester static data members

bool Tester::traceall = false;

int Tester::count default constructor = 0;
int Tester::count copy constructor = 0;
int Tester::count move constructor = 0;
int Tester::count copy assignment = 0;

int Tester::count move assignment = 0;

int Tester::count destructor = 0;

int Tester::count int constructor = 0;

David Spuler 340



Intercepted new and delete

This

source code is the global scope intercept

functions

for

the new and delete operators. The library tracks basic statistics about calls and
bytes allocated.

// Global counters

unsigned long int s new count = 0

I~

unsigned long int s newarr count 0;
unsigned long int s delete count = 0;
unsigned long int s deletearr count = 0;
unsigned long int s new bytes = 0;
unsigned long int s newarr bytes = 0;
void memory reset counters()
{
s new count = 0;
s newarr count = 0;
s_delete count = 0;
s deletearr count = 0;
s _new bytes = 0;
s newarr bytes = 0;
}
void memory report ()
{
cout << "MEMORY CALLS REPORT" << endl;
cout << "- new calls: " << s new count << endl;
cout << "- new[] calls: " << s newarr count << endl;
cout << "- delete calls: " << s delete count << endl;
cout << "- delete[] calls: " << s deletearr count<<endl;
cout << "MEMORY SIZE REPORT" << endl;
cout << "- new bytes: " << s new bytes << endl;
cout << "- new[] bytes: " << s newarr bytes << endl;

}

void* operator new(size t n)

{

}

S_new_count++;
s new bytes += n;
return malloc(n);

void* operator new[] (size t n)

{

S _newarr_ count++;
s _newarr bytes += n;
return malloc(n);

341 Advanced C++ Memory Techniques



void operator delete(void* v)
{
s _delete count++;
free(v);

}

void operator delete[] (void* v)
{
s _deletearr count++;
free(v);

David Spuler 342



